WO2017028681A1 - 一种数据传输状态的报告、确定传输数据量的方法及装置 - Google Patents

一种数据传输状态的报告、确定传输数据量的方法及装置 Download PDF

Info

Publication number
WO2017028681A1
WO2017028681A1 PCT/CN2016/093118 CN2016093118W WO2017028681A1 WO 2017028681 A1 WO2017028681 A1 WO 2017028681A1 CN 2016093118 W CN2016093118 W CN 2016093118W WO 2017028681 A1 WO2017028681 A1 WO 2017028681A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
wlan
transmission
transmitted
status report
Prior art date
Application number
PCT/CN2016/093118
Other languages
English (en)
French (fr)
Inventor
孙建成
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2017028681A1 publication Critical patent/WO2017028681A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • the present application relates to the field of wireless technologies, and in particular, to a report of a data transmission state, and a method and apparatus for determining a data transmission amount.
  • WLAN Wireless LAN, wireless LAN
  • the LTE-WLAN aggregation technology enables user data or bearers of the user equipment (UE) to be flexibly converted or concurrent between LTE (Long Term Evolution) and WLAN.
  • UE user equipment
  • LTE Long Term Evolution
  • WLAN Wireless LAN
  • the present application provides a method and apparatus for reporting data transmission status, and a method and apparatus for determining the amount of transmission data, to provide a flow control scheme applied to LTE and WLAN aggregation technologies.
  • a method for determining the amount of transmitted data including:
  • the transmission status report carries data transmission success rate of data transmitted by the WLAN side, and data transmitted by the WLAN side is data allocated to the WLAN side for transmission to the UE;
  • the amount of data allocated to the WLAN side transmitted in the data transmitted to the UE is determined according to the data transmission success rate.
  • the transmission status report is sent from an AL layer on the WLAN side.
  • the transmission status report is received by the PDCP layer on the LTE side.
  • the amount of data allocated to the WLAN side is determined according to one of the bearer load status reported by the WLAN side, the bearer load status on the LTE side, and the data transmission success rate. .
  • a method for reporting a data transmission status is provided in the embodiment of the present application, including:
  • a transmission status report where the transmission status report carries data transmission success rate of data transmitted by the WLAN side, and data transmitted by the WLAN side is allocated to the WLAN side of data transmitted to the UE.
  • the transmission status report is sent to the LTE side.
  • the data reception confirmation report returned by the receiving UE is received by the LLC layer on the WLAN side.
  • the transmission status report is formed according to the data received by the UE to form a transmission status report, which is formed on the WLAN layer of the WLAN side.
  • the transmission status report is sent to the LTE side, and is sent to the PDCP layer on the LTE side.
  • the transmission status report is sent to the LTE side, and is sent from the AL layer of the WLAN side.
  • An apparatus for determining the amount of transmitted data including:
  • the first receiving module is configured to receive a transmission status report sent by the WLAN side, where the transmission status report carries a data transmission success rate of the data transmitted by the WLAN side, and the data transmitted by the WLAN side is allocated to the WLAN by the data transmitted by the UE. Side transmitted data;
  • a determining module configured to determine, according to the data transmission success rate, an amount of data allocated to the WLAN side for transmission in the data transmitted to the UE according to the data transmission success rate.
  • the first receiving module is further configured to receive the transmission status report sent by the AL layer on the WLAN side.
  • the first receiving module is further configured to receive the transmission status report on a PDCP layer on an LTE side.
  • a state acquiring module configured to receive a bearer load status reported by the WLAN side, and/or determine a bearer load status of the LTE side;
  • the determining module is further configured to determine, according to the bearer load status reported by the WLAN side, the bearer load status of the LTE side, the data transmission success rate, or a combination thereof, that the amount of data allocated to the WLAN side is allocated to the WLAN. The amount of data transferred on the side.
  • a reporting device for data transmission status is provided in the embodiment of the present application, including:
  • a second receiving module configured to receive a data receiving confirmation report returned by the UE
  • a reporting module configured to form a transmission status report according to the data reception confirmation report returned by the UE, where the transmission status report carries a data transmission success rate of data transmitted by the WLAN side, and the data transmitted by the WLAN side is data transmitted to the UE Data allocated to the WLAN side for transmission;
  • a sending module configured to send the transmission status report to the LTE side.
  • the second receiving module is further configured to receive, by the LLC layer on the WLAN side, a data reception confirmation report returned by the UE.
  • the reporting module is further configured to form, by the AL layer on the WLAN side, a transmission status report according to the data receipt confirmation report returned by the UE.
  • the sending module is further configured to send a transmission status report to the PDCP layer on the LTE side.
  • the sending module is further configured to send a transmission status report from the AL layer on the WLAN side to the LTE side.
  • the WLAN side firstly forms a transmission status report carrying the data transmission success rate according to the data reception confirmation report returned by the UE, and sends the transmission status report to the LTE side to determine the offload data as the LTE side.
  • the amount of data allocated to the WLAN side in the data transmitted to the UE is determined according to the data transmission success rate.
  • the ACK mechanism of the existing WLAN MAC data transmission can be utilized to multiplex the existing MAC PDU transmission status report to calculate the success rate. Therefore, the implementation is simple and has little influence on existing WLAN devices.
  • the technical solutions provided in the embodiments of the present application may all be implemented in the AL layer, and the AL layer must be introduced in the implementation of the LTE and WLAN aggregation technologies, so the solution is easy to implement.
  • FIG. 1 is a schematic diagram of an LTE-WLAN aggregation technology in an embodiment of the present application
  • FIG. 2 is a schematic diagram of two architectures of an LTE-WLAN aggregation technology in an embodiment of the present application
  • FIG. 3 is a schematic diagram of an L2 architecture of a bearer offloading according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a bearer separation L2 architecture in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a process of separating bearer data transmission according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for determining a method for determining a data volume according to an embodiment of the present application
  • FIG. 7 is a schematic flowchart of a method for reporting a data transmission state in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for determining a transmission data amount according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a reporting device for data transmission status in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an access point device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an LTE-WLAN aggregation technology.
  • the basic idea of the technology is to fully utilize the resources of the eNB and the WLAN to provide better QoE for the UE in a common coverage area of the LTE and the WLAN, for example, to the UE. Provide faster download rates.
  • the eNB is used as the control node to determine whether to aggregate the resources of the WLAN AP for a certain UE according to the signal strength and load condition of the WLAN AP (Access Point, access point), and to all/part of the data of a certain bearer of the eNB.
  • the traffic is offloaded to the WLAN AP side for transmission.
  • FIG. 2 is a schematic diagram of two architectures of the LTE-WLAN aggregation technology. As shown in the figure, at present, the LTE-WLAN aggregation technology only considers two architectures of "bearing offloading" and "bearing separation”. details as follows:
  • FIG. 3 is a schematic diagram of an L2 architecture carrying a traffic offload.
  • a UE's connection on an eNB may have independent bearers. All data carried by one or more EPS (Evolved Packet System) on the eNB is offloaded to the AP for transmission.
  • the PDCP (Packet Data Convergence Protocol) entity of the EPS bearer is located at the eNB, and the WLAN AP There is a separate WLAN layer 2 and a physical layer entity, including a WLAN LLC (Logic Link Control) layer, a MAC (Media Access Control) layer, and a PHY (Physical Layer).
  • WLAN LLC Logical Link Control
  • MAC Media Access Control
  • PHY Physical Layer
  • FIG. 4 is a schematic diagram of a bearer separation L2 architecture.
  • a UE's connection on an eNB may have an independent bearer (the portion indicated by a broken line in FIG. 4); the eNB may configure some or all bearers as separate bearers (FIG. 4).
  • the part of the solid line identifier, the eNB may offload part or all of the data on the split bearer to the WLAN AP for transmission; the PDCP entity of the split bearer is located at the eNB, and the WLAN AP has an independent WLAN layer 2 and a physical layer entity.
  • the LLC layer, the MAC layer, and the PHY layer of the WLAN are included.
  • the problem with the prior art is that under the above two architectures, the eNB needs to consider how to combine the data on the separated bearers.
  • the switch flows to the WLAN AP for transmission. If there are too many shunt data, and the AP transmission is not timely, the data on the WLAN side may be congested, the buffer (buffer) overflows, etc., and the data throughput on the entire bearer is unfavorable; but if the shunt data is too small, it cannot Making full use of the resources on the AP side does not contribute much to the throughput of the UE, and does not match the purpose of the aggregation.
  • FIG. 5 is a schematic diagram of a process of separating bearer data transmission.
  • the process indicated by the thick solid arrow in the figure is the process of separating the data transmission carried on the LTE side, the thin solid arrow indicates the confirmation process of the LTE side data transmission; the thick dotted arrow indicates the separated bearer data.
  • the thin dotted arrow is its data validation process.
  • Step 500 is a process of data offloading; steps L501 to L507 are data transmission processes on the LTE side; steps W501 to W511 are data transmission processes on the WLAN side; and step 512 is a data merge delivery process; as shown in the figure, mainly includes The following process:
  • Step 500 The PDCP on the eNB side receives downlink data on a certain UE bearer x.
  • the eNB performs data offloading according to some existing principles. A part of the data on the bearer x will be transmitted on the LTE, and another part will be transmitted on the WLAN side.
  • Step L501 The PDCP entity sends a partial data PDCP PDU (Protocol Data Unit) on the bearer x to an RLC (Radio Link Control) entity.
  • PDCP PDU Protocol Data Unit
  • RLC Radio Link Control
  • Step L502 After receiving the PDCP PDU, the RLC entity of the eNB processes the data and sends the data to the MAC layer.
  • Step L503 The MAC entity of the eNB processes the received RLC PDU and sends it to the UE through the PHY layer.
  • Step L504 After receiving the data packet on the separated bearer, the LTE MAC layer of the UE processes and delivers the data packet to the RLC entity.
  • Step L505 The LTE RLC layer of the UE processes the data packet received from the MAC and delivers the data packet to the corresponding PDCP entity.
  • Step L506 After receiving the data packet of the acknowledge mode of the MAC in step L505, the LTE RLC layer of the UE feeds back an ACK to the network, and the ACK is sent to the eNB through the MAC and the PHY.
  • step L507 the LTE MAC layer of the UE passes the ACK (Acknowledgement) in step L506.
  • Step L508 The MAC of the eNB sends the received UL (Up-Link, uplink) data packet to the RLC, and the RLC layer determines, according to the received ACK information, whether the data transmission in step L502 is successful, if not, if it is unsuccessful Retransmission.
  • UL Up-Link, uplink
  • Step W501 The PDCP entity sends the partial data (PDCP PDU) on the bearer x to the AL (Adaption Layer) of the WLAN through the Xw interface.
  • PDCP PDU partial data
  • AL Adaption Layer
  • Step W502 The AL layer encapsulates the received PDCP data packet, and adds a data header to distinguish which PDCP entity or which separate bearer is from.
  • Step W503 Encapsulating the PDCP data packet in the 802.2LLC/SNAP (Logic Link Control/Sub-Network Access Protocol) data frame is also performed by the AL layer, and the data packet is encapsulated after the packet is encapsulated. Send to the WLAN MAC layer.
  • 802.2LLC/SNAP Logic Link Control/Sub-Network Access Protocol
  • Step W504 The MAC encapsulates the received SDU (adds an 802.11 MAC header), and then sends the same to the UE-side peer MAC layer through the L1 layer.
  • Step W505 The WLAN MAC module of the UE removes the received data from the MAC header and then submits it to the upper layer.
  • Step W506 the LLC/SNAP layer processes the received data packet and delivers it to the AL layer.
  • Step W507 The adaptation layer of the UE unpacks the data packet, determines the separated bearer corresponding to the data packet, and sends the data to the PDCP entity corresponding to the LTE module.
  • Step W508 The WLAN MAC entity of the UE performs ACK confirmation on the received MAC PDU.
  • Step W509 After receiving the acknowledgment of the UE, or after the timer (timer) has not received the status of the acknowledgment packet, the MAC will send a status report to the LLC layer to report whether the MPDU is successfully sent or failed.
  • Step 512 The UE-side PDCP entity performs processing such as reordering the PDCP data packets from the RLC and the AL layer, and submits them to the upper layer.
  • the inventive concept of the present application is that in the foregoing process, flow control can be implemented by adding steps.
  • the implementation of the flow control is mainly step W510 and step W511, and the eNB can adjust the next/temporary flow according to the information of the WLAN feedback in step W511. The amount of data on the WLAN.
  • Step W510 and step W511 are used to indicate to the eNB the state of data transmission on the WLAN side separated bearer, so that the eNB adjusts the next/segment according to the information.
  • Step W510 and step W511 may specifically be:
  • step W510 the LLC forwards the received status report to the AL layer.
  • Step W511 The AL layer collects statistics on the received status packets, analyzes the success rate of the MAC PDU transmission of the AP on the AP side, and sends a status report to the eNB through the Xw interface.
  • an information feedback scheme based on the WLAN side MAC PDU transmission success rate statistics is provided in the embodiment of the present application, so that the LTE side can implement the LTE-WLAN aggregation technology to separate the bearer on the UE.
  • the traffic control can provide better QoE for the UE, reduce congestion, improve throughput, and have less impact on existing WLAN devices.
  • all the data that is offloaded to the AP in the LTE-WLAN aggregation technology is from the eNB, and the implementer of the flow control may be the eNB, and the AP on the WLAN side can timely feed back the offloaded data in the WLAN.
  • the transmission status of the side, the resource status of the WLAN side, or the buffer status, etc., will be described below.
  • FIG. 6 is a schematic flowchart of a method for determining a method for transmitting data, as shown in the figure, which may include:
  • Step 601 Receive a transmission status report sent by the WLAN side, where the transmission status report carries data transmission success rate of data transmitted by the WLAN side, and data transmitted by the WLAN side is data allocated to the WLAN side for transmission to the UE. ;
  • Step 602 Determine, during the LTE and WLAN aggregation transmission, the amount of data allocated to the WLAN side in the data transmitted to the UE according to the data transmission success rate.
  • the transmission status report may be sent from the AL layer on the WLAN side.
  • the transmission status report may be received at the PDCP layer on the LTE side.
  • FIG. 7 is a schematic flowchart of a method for reporting a data transmission state, as shown in the figure, which may include:
  • Step 701 Receive a data reception confirmation report returned by the UE.
  • the data receiving confirmation report may specifically adopt an ACK message or the like.
  • Step 702 Form a transmission status report according to the data reception confirmation report returned by the UE, where the transmission status report carries the data transmission success rate of the data transmitted by the WLAN side, and the data transmitted by the WLAN side is allocated to the data transmitted by the UE. Data transmitted to the WLAN side;
  • Step 703 Send the transmission status report to the LTE side.
  • the data reception confirmation report returned by the receiving UE may be received by the LLC layer on the WLAN side.
  • the transmission status report is formed according to the data reception confirmation report returned by the UE, and may be formed in the AL layer on the WLAN side.
  • the transmission status report is sent to the LTE side, and may be sent to the PDCP layer on the LTE side.
  • the transmission status report is sent to the LTE side, which may be sent from the AL layer on the WLAN side.
  • the WLAN side LLC layer may report the MAC PDU transmission status report to the adaptation layer AL; the adaptation layer performs aggregation and statistics to obtain the MAC PDU transmission success rate of the per UE. In this way, the UE is offloaded to the WLAN side of the data packet transmission state, and the information is fed back to the eNB through the Xw interface;
  • the eNB can determine whether to increase or decrease the data offload of the UE to the WLAN AP by using the information of the eNB or the WLAN, such as the load information of the WLAN AP obtained from the Xw interface. Not in the implementation of the plan It is necessary to accurately feed back the transmission status of the PDCP PDU on each separated bearer in the WLAN, and only provide the successful transmission status of the data packet of the per UE to the eNB.
  • the success status of the data packet transmission of each UE is also easily known.
  • the LLC layer receives the status packet of 100 MAC addresses within a period of time; 60 times is the UE1, wherein the transmission succeeds 57 times, and the success rate is 95%; 40 times is UE2, in which the transmission is successful 36 times, the success rate is 90%.
  • the IP address or UE MAC address can be used to distinguish which UE the MPDU ACK is.
  • step W508 and step W509 are existing WLAN confirmation mechanisms, and steps W10 and W511 are steps for implementing flow control.
  • the information content processed in step W510 may be the same as the information content in step W509.
  • Step W511 is to collect and collect the information processed in step W510, and feed back to the eNB according to a certain period, and the eNB feeds back according to the WLAN in step W511. The information adjusts the amount of data that is diverted to the WLAN for the next time/time.
  • the method further includes:
  • the amount of data allocated to the WLAN side is determined according to one of the bearer load status reported by the WLAN side, the bearer load status on the LTE side, and the data transmission success rate. .
  • the eNB combines its own load (load) information with the load information of the AP obtained through the Xw interface, or other available resources that facilitate flow control, according to the data transmission of the AP-side per UE in the status report.
  • Information judged that the data traffic on the split bearer should be increased, decreased or maintained.
  • the possible flow control behavior of the eNB in different situations can be implemented according to the following simple rules:
  • the eNB load is small, the AP load is small, and the split data transmission success rate is high; then the data split to the AP is increased;
  • the embodiment of the present application further provides an apparatus for determining the amount of transmitted data, a reporting apparatus for data transmission status, a principle for solving the problem by the apparatus, and a method for determining the amount of transmitted data,
  • the reporting method of the data transmission status is similar, so the implementation of these devices can be referred to the implementation of the method, and the repetition will not be repeated.
  • FIG. 8 is a schematic structural diagram of an apparatus for determining the amount of transmitted data. As shown in the figure, the apparatus may include:
  • the first receiving module 801 is configured to receive a transmission status report sent by the WLAN side, where the transmission status report carries a data transmission success rate of data transmitted by the WLAN side, and the data transmitted by the WLAN side is allocated to the data transmitted by the UE. Data transmitted by the WLAN side;
  • the determining module 802 is configured to determine, according to the data transmission success rate, the amount of data allocated to the WLAN side for transmission in the data transmitted to the UE according to the data transmission success rate.
  • the first receiving module may be further configured to receive the transmission status report sent by the AL layer on the WLAN side.
  • the first receiving module may be further configured to receive the transmission status report in a PDCP layer on an LTE side.
  • the method further includes: a state obtaining module 803, configured to receive a bearer load status reported by the WLAN side, and/or determine a bearer load status of the LTE side;
  • the determining module may be further configured to determine, according to the bearer load status reported by the WLAN side, the bearer load status of the LTE side, the data transmission success rate, or a combination thereof, when determining the amount of data allocated to the WLAN side for transmission. The amount of data transferred to the WLAN side.
  • FIG. 9 is a schematic structural diagram of a reporting device for data transmission status. As shown in the figure, the device may include:
  • the second receiving module 901 is configured to receive a data receiving confirmation report returned by the UE.
  • the reporting module 902 is configured to form a transmission status report according to the data reception confirmation report returned by the UE, where the transmission status report carries a data reception success rate of data transmitted by the WLAN side, and the data transmitted by the WLAN side is transmitted to the UE. Data allocated to the WLAN side for transmission in the data;
  • the sending module 903 is configured to send the transmission status report to the LTE side.
  • the second receiving module is further configured to receive, by the LLC layer on the WLAN side, a data reception confirmation report returned by the UE.
  • the reporting module may be further configured to form a transmission status report according to a data reception confirmation report returned by the UE at the AL layer on the WLAN side.
  • the sending module is further configured to send a transmission status report to the PDCP layer on the LTE side.
  • the sending module may be further configured to send a transmission status report from the AL layer on the WLAN side to the LTE side.
  • FIG. 10 is a schematic structural diagram of a base station, as shown in the figure, the base station includes:
  • the processor 1000 is configured to read a program in the memory 1020 and perform the following process:
  • the amount of data allocated to the WLAN side transmitted in the data transmitted to the UE is determined according to the data transmission success rate.
  • the transceiver 1010 is configured to send data under the control of the processor 1000, and performs the following processes:
  • the transmission status report carries the data transmission success rate of the data transmitted by the WLAN side
  • the data transmitted by the WLAN side is the data allocated to the WLAN side for transmitting data to the UE.
  • the transmission status report is sent from the AL layer on the WLAN side.
  • the transmission status report is received at the PDCP layer on the LTE side.
  • the implementation further includes: receiving a bearer load status reported by the WLAN side, and/or determining a bearer load status of the LTE side;
  • the amount of data allocated to the WLAN side is determined according to one of the bearer load status reported by the WLAN side, the bearer load status on the LTE side, and the data transmission success rate. .
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1000 and various circuits of memory represented by memory 1020.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1010 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 in performing operations.
  • FIG. 11 is a schematic structural diagram of an access point device. As shown in the figure, the device includes:
  • the processor 1100 is configured to read a program in the memory 1120 and perform the following process:
  • a transmission status report where the transmission status report carries data transmission success rate of data transmitted by the WLAN side, and data transmitted by the WLAN side is allocated to the WLAN side of data transmitted to the UE.
  • the transceiver 1110 is configured to send data under the control of the processor 1100, and performs the following process:
  • the transmission status report is sent to the LTE side.
  • the data reception confirmation report returned by the receiving UE is received by the LLC layer on the WLAN side.
  • the transmission status report is formed according to the data reception confirmation report returned by the UE, and is formed in the AL layer on the WLAN side.
  • the transmission status report is sent to the LTE side, and is sent to the PDCP layer on the LTE side.
  • the transmission status report is sent to the LTE side, and is sent from the AL layer on the WLAN side.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1100 and various circuits of memory represented by memory 1120.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1110 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 can store data used by the processor 1100 in performing operations.
  • the ACK mechanism based on the WLAN MAC PDU transmission success rate statistics is fully utilized, and the ACK mechanism of the existing WLAN MAC data transmission is fully utilized.
  • the MAC PDU sends a status report and performs per UE success rate statistics.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输状态的报告、确定传输数据量的方法及装置,包括:在无线局域网侧,根据所述用户设备返回的数据接收确认报告形成传输状态报告,所述传输状态报告中携带有无线局域网侧传输的数据的数据传输成功率,无线局域网侧传输的数据是向用户设备传输的数据中分配给无线局域网侧传输的数据;向长期演进网络侧发送所述传输状态报告。在长期演进网络侧,接收无线局域网侧发送的传输状态报告;在长期演进网络与无线局域网聚合传输时,根据所述数据传输成功率确定在向该用户设备传输的数据中分配给无线局域网侧传输的数据量。本申请实施简单,对现有无线局域网设备的影响小,也容易得到实施。

Description

一种数据传输状态的报告、确定传输数据量的方法及装置
本申请要求在2015年8月14日提交中国专利局、申请号为201510502506.7、申请名称为“一种数据传输状态的报告、确定传输数据量的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线技术领域,特别涉及一种数据传输状态的报告、确定传输数据量的方法及装置。
背景技术
随着用户需求的增长和通信技术的发展,出现了越来越多无线通信技术和相关网络,例如运营商不仅可以提供广覆盖的2G/3G/4G移动通信技术及网络,也可以提供热点覆盖的WLAN(Wireless LAN,无线局域网)网络。因此出现了大量不同的通信网络共存的场景,如2G/3G/4G网络和WLAN共存的场景。在这些网络共存场景下,LTE-WLAN聚合技术使得UE(User Equipment,用户设备)的用户数据或承载可在LTE(Long Term Evolution,长期演进)和WLAN间灵活的转换或并发。为了保证给用户提供更好的QoE(Quality of Experience,用户体验质量),需要在LTE和WLAN之间数据转发的过程中引入流量控制机制(简称流控)来尽可能保证用户的吞吐量和防止造成WLAN上的拥塞。
但是,现有技术的不足在于:目前还没有相应的可应用于LTE-WLAN聚合技术的流控方案。
发明内容
本申请提供了一种数据传输状态的报告方法及装置,以及一种确定传输数据量的方法及装置,用以提供应用于LTE与WLAN聚合技术的流控方案。
本申请实施例中提供了一种确定传输数据量的方法,包括:
接收WLAN侧发送的传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
在LTE与WLAN聚合传输时,根据所述数据传输成功率确定在向该UE传输的数据中分配给WLAN侧传输的数据量。
可选的,所述传输状态报告是从WLAN侧的AL层发送的。
可选的,所述传输状态报告是在LTE侧的PDCP层接收的。
可选的,进一步包括:
接收WLAN侧报告的承载负荷状态,和/或,确定LTE侧的承载负荷状态;
在确定分配给WLAN侧传输的数据量时,根据WLAN侧报告的承载负荷状态、LTE侧的承载负荷状态、所述数据传输成功率三者之一或者其组合确定分配给WLAN侧传输的数据量。
本申请实施例中提供了一种数据传输状态的报告方法,包括:
接收UE返回的数据接收确认报告;
根据所述UE返回的数据接收确认报告形成传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
向LTE侧发送所述传输状态报告。
可选的,接收UE返回的数据接收确认报告,是在WLAN侧的LLC层接收的。
可选的,根据UE返回的数据接收确认报告形成传输状态报告,是在WLAN侧的AL层形成的。
可选的,向LTE侧发送传输状态报告,是向LTE侧的PDCP层发送的。
可选的,向LTE侧发送传输状态报告,是从WLAN侧的AL层发送的。
本申请实施例中提供了一种确定传输数据量的装置,包括:
第一接收模块,用于接收WLAN侧发送的传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
确定模块,用于在LTE与WLAN聚合传输时,根据所述数据传输成功率确定在向该UE传输的数据中分配给WLAN侧传输的数据量。
可选的,第一接收模块进一步用于接收从WLAN侧的AL层发送的所述传输状态报告。
可选的,第一接收模块进一步用于在LTE侧的PDCP层接收所述传输状态报告。
可选的,进一步包括:
状态获取模块,用于接收WLAN侧报告的承载负荷状态,和/或,确定LTE侧的承载负荷状态;
确定模块进一步用于在确定分配给WLAN侧传输的数据量时,根据WLAN侧报告的承载负荷状态、LTE侧的承载负荷状态、所述数据传输成功率三者之一或者其组合确定分配给WLAN侧传输的数据量。
本申请实施例中提供了一种数据传输状态的报告装置,包括:
第二接收模块,用于接收UE返回的数据接收确认报告;
报告模块,用于根据所述UE返回的数据接收确认报告形成传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
发送模块,用于向LTE侧发送所述传输状态报告。
可选的,第二接收模块进一步用于在WLAN侧的LLC层接收UE返回的数据接收确认报告。
可选的,报告模块进一步用于在WLAN侧的AL层根据UE返回的数据接收确认报告形成传输状态报告。
可选的,发送模块进一步用于向LTE侧的PDCP层发送传输状态报告。
可选的,发送模块进一步用于从WLAN侧的AL层向LTE侧发送传输状态报告。
本申请有益效果如下:
在本申请实施例提供的技术方案中,首先在WLAN侧,根据UE返回的数据接收确认报告形成携带有数据传输成功率的传输状态报告,并向LTE侧发送,用以作为LTE侧确定分流数据量实施流控的依据。而在WLAN侧,则在LTE与WLAN聚合传输时,根据所述数据传输成功率确定在向该UE传输的数据中分配给WLAN侧传输的数据量。
由于在根据UE返回的数据接收确认报告形成传输状态报告时,可以利用现有的WLAN MAC数据传输的ACK机制,复用现有的MAC PDU发送状态报告即可统计得出成功率。因此,实施简单,对现有WLAN设备的影响小。
进一步的,本申请实施例提供的技术方案,可以都在AL层实施,而AL层是LTE与WLAN聚合技术的实施必须引入的,因此本方案容易得到实施。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例中LTE-WLAN聚合技术示意图;
图2为本申请实施例中LTE-WLAN聚合技术的两种架构示意图;
图3为本申请实施例中承载分流的L2架构示意图;
图4为本申请实施例中承载分离L2架构示意图;
图5为本申请实施例中分离承载数据传输过程示意图;
图6为本申请实施例中确定传输数据量的方法实施流程示意图;
图7为本申请实施例中数据传输状态的报告方法实施流程示意图;
图8为本申请实施例中确定传输数据量的装置结构示意图;
图9为本申请实施例中数据传输状态的报告装置结构示意图;
图10为本申请实施例中基站结构示意图;
图11为本申请实施例中接入点设备结构示意图。
具体实施方式
下面结合附图对本申请的具体实施方式进行说明。
发明人在发明过程中注意到:
图1为LTE-WLAN聚合技术示意图,如图所示,该技术的基本思想就是在LTE和WLAN的共同覆盖区内,充分利用eNB和WLAN的资源为UE提供更好的QoE,比如可以给UE提供更快的下载速率。该技术是由eNB作为控制节点,根据WLAN AP(Access Point,接入点)的信号强度以及负荷情况决定是否为某个UE聚合WLAN AP的资源,并将eNB的某个承载上全部/部分数据分流到WLAN AP侧进行传输。
图2为LTE-WLAN聚合技术的两种架构示意图,如图所示,目前,LTE-WLAN聚合技术只考虑“承载分流”和“承载分离”两种架构。具体如下:
1、承载分流架构
图3为承载分流的L2架构示意图,如图所示,UE在eNB上的连接可以有独立的承载。eNB上的一个或多个EPS(Evolved Packet System,演进分组系统)承载的全部数据分流到AP上传输,该EPS承载的PDCP(Packet Data Convergence Protocol,分组数据聚合协议)实体位于eNB,而WLAN AP上是有独立的WLAN层2和物理层实体,包括WLAN的LLC(Logic Link Control,逻辑链路控制)层、MAC(Media Access Control,媒体接入控制)层和PHY(Physical layer,物理层)层。
2、承载分离架构
图4为承载分离L2架构示意图,如图所示,UE在eNB上的连接可以有独立的承载(图4中虚线标识的部分);eNB可以将部分或全部承载配置为分离承载(图4中实线标识的部分),eNB可以将分离承载上的部分或全部数据分流到WLAN AP上进行传输;分离承载的PDCP实体位于eNB,而WLAN AP上是有独立的WLAN层2和物理层实体,包括WLAN的LLC层、MAC层和PHY层。
现有技术的问题在于,在上述两种架构下eNB都需要考虑如何将分离承载上的数据合 理分流到WLAN AP进行传输。若分流数据过多,而AP传输不及时则可能造成WLAN侧的数据拥塞,buffer(缓冲区)溢出等问题,并且对整个承载上的数据吞吐量不利;但如果分流数据过少,则又不能充分利用AP侧的资源,对UE吞吐量没什么贡献,和聚合的目的不符。
到目前为止,还没有针对LTE-WLAN聚合技术的流控机制。但发明人还注意到LTE-WLAN聚合技术中分离承载架构下分离承载上的数据传输过程如下:
图5为分离承载数据传输过程示意图,图中粗实线箭头表示的过程为分离承载在LTE侧数据传输的过程,细实线箭头表示LTE侧数据传输的确认过程;粗虚线箭头表示分离承载数据在WLAN侧的传输过程,细虚线箭头为其数据确认过程。
在步骤500之前,LTE-WLAN聚合功能已经激活,并把某UE的承载x配置为分离承载。步骤500是数据分流的过程;步骤L501~L507是数据在LTE侧的传输过程;步骤W501~W511是数据在WLAN侧的传输过程;步骤512是数据合并递交的过程;如图所示,主要包括如下流程:
步骤500、eNB侧PDCP收到某个UE承载x上的下行数据。eNB根据现有某种原则进行数据分流,承载x上的一部分数据将在LTE上传输,另外一部分将在WLAN侧传输。
在LTE侧的传输过程中:
步骤L501、PDCP实体将承载x上的部分数据PDCP PDU(Protocol Data Unit,协议数据单元)发给RLC(Radio Link Control,无线链路控制)实体。
步骤L502、eNB的RLC实体在收到PDCP PDU之后将数据进行相应处理并发送给MAC层。
步骤L503、eNB的MAC实体对收到的RLC PDU进行处理并通过PHY层发送给UE。
步骤L504、UE的LTE MAC层收到分离承载上的数据包之后,正常处理并递交给RLC实体。
步骤L505、UE的LTE RLC层将从MAC收到的数据包进行处理并递交给对应的PDCP实体。
步骤L506、UE的LTE RLC层在步骤L505收到MAC的确认模式的数据包后给网络反馈ACK,ACK通过MAC和PHY发给eNB。
步骤L507、UE的LTE MAC层传递步骤L506中的ACK(Acknowledgement,确认)。
步骤L508、eNB的MAC将收到的UL(Up-Link,上行链路)数据包发给RLC,RLC层根据收到的ACK信息判定步骤L502的数据发送是否成功,如果不成功的话则会进行重传。
在WLAN侧的传输过程中:
步骤W501、PDCP实体将承载x上的部分数据(PDCP PDU)通过Xw接口发给WLAN的AL(Adaption Layer,适配层)。
步骤W502、AL层会对接收到的PDCP数据包进行封装,增加数据头来区分来自哪一个PDCP实体或者哪一个分离承载。
步骤W503、将PDCP数据包封装在802.2LLC/SNAP(Logic Link Control/Sub-Network Access Protocol,逻辑链路控制/子网接入协议)数据帧也是由AL层完成的,封装完之后将数据包发给WLAN MAC层。
步骤W504、MAC对收到的SDU进行封装(添加802.11MAC头),然后通过L1层发送到UE侧对等MAC层。
步骤W505、UE的WLAN MAC模块将收到的数据去掉MAC头,然后递交给高层。
步骤W506、LLC/SNAP层将收到的数据包处理完之后递交给AL层。
步骤W507、UE的适配层解开数据包,判断数据包对应的分离承载并将数据发送给LTE模块对应的PDCP实体。
步骤W508、UE的WLAN MAC实体会对收到的MAC PDU进行ACK确认。
步骤W509、AP的MAC在收到UE的确认之后,或者在timer(定时器)超时没有收到确认包的状态后,会给LLC层发送状态报告,报告MPDU发送成功或者失败。
步骤512、UE侧PDCP实体将来自RLC和来自AL层的PDCP数据包进行重排序等处理并递交给高层。
本申请的发明构思在于,在上述流程中,可以通过增加步骤实现流控,流控的实施主要是步骤W510和步骤W511,eNB可以根据步骤W511中WLAN反馈的信息调整下一次/一段时间分流到WLAN的数据量。
具体的,如图5中以点画线箭头标识的过程,该过程(步骤W510和步骤W511)用以向eNB指示WLAN侧分离承载上数据传输的状态,以便于eNB根据该信息调整下一次/一段时间分流到WLAN的数据量,也即,实现流控。步骤W510和步骤W511具体可以为:
步骤W510、LLC将收到的状态报告转发给AL层。
步骤W511、AL层对收到的状态包进行统计,分析AP侧per UE的MAC PDU传输成功比例,并通过Xw接口发送状态报告给eNB。
基于上述发明构思,本申请实施例中提供了基于WLAN侧MAC PDU传输成功率统计的信息反馈方案,使得LTE侧能够据此实现LTE-WLAN聚合技术中分离承载上per UE 的流量控制,可以为UE提供更好的QoE,减少拥塞、提高吞吐量,同时对WLAN现有设备的影响较小。
在本申请实施例中提供的方案中,LTE-WLAN聚合技术中所有分流到AP上的数据均来自eNB,流控的实施方可以是eNB,可以通过WLAN侧的AP来及时反馈分流数据在WLAN侧的传输状态以及WLAN侧的资源情况或者buffer情况等,下面进行说明。
图6为确定传输数据量的方法实施流程示意图,如图所示,可以包括:
步骤601、接收WLAN侧发送的传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
步骤602、在LTE与WLAN聚合传输时,根据所述数据传输成功率确定在向该UE传输的数据中分配给WLAN侧传输的数据量。
实施中,传输状态报告可以是从WLAN侧的AL层发送的。
实施中,传输状态报告可以是在LTE侧的PDCP层接收的。
图7为数据传输状态的报告方法实施流程示意图,如图所示,可以包括:
步骤701、接收UE返回的数据接收确认报告;
实施中,数据接收确认报告具体可以采用如ACK消息等。
步骤702、根据所述UE返回的数据接收确认报告形成传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
步骤703、向LTE侧发送所述传输状态报告。
实施中,接收UE返回的数据接收确认报告,可以是在WLAN侧的LLC层接收的。
实施中,根据UE返回的数据接收确认报告形成传输状态报告,可以是在WLAN侧的AL层形成的。
实施中,向LTE侧发送传输状态报告,可以是向LTE侧的PDCP层发送的。
实施中,向LTE侧发送传输状态报告,可以是从WLAN侧的AL层发送的。
在上述基于WLAN侧MAC PDU传输成功率统计的方案中,WLAN侧LLC层可将MAC PDU传输状态报告报给适配层AL;适配层进行汇总和统计,得到per UE的MAC PDU传输成功率,以此代表该UE分流到WLAN侧的数据包传输状态,并将该信息通过Xw接口反馈给eNB;
eNB根据这些信息辅以其他一些eNB或WLAN的信息,例如从Xw接口获得的WLAN AP的load信息等,便可决定增加或减少该UE到WLAN AP的数据分流。方案实施中不 需要精确反馈每个分离承载上的PDCP PDU在WLAN的传输状态,仅仅是提供per UE的数据包发送成功状态给eNB。
具体实施中,各UE的数据包发送成功状态也是容易获知的,例如:一段时间内LLC层收到了100次MAC的状态包;60次是UE1的,其中传输成功57次,成功率95%;40次是UE2的,其中传输成功36次,成功率90%。多个UE聚合到同一个AP的情况下,可以利用IP address或UE MAC address来区分MPDU ACK是哪个UE的。
结合图5所示,步骤W508和步骤W509是WLAN现有的确认机制,步骤W10和步骤W511则是为实现流控增加的步骤。具体实施中,步骤W510处理的信息内容可以和步骤W509的信息内容相同,步骤W511则是对步骤W510处理的信息进行收集和统计,并按一定周期反馈给eNB,eNB根据步骤W511中WLAN反馈的信息调整下一次/一段时间分流到WLAN的数据量。
实施中,为了进行具体的流控,还可以进一步包括:
接收WLAN侧报告的承载负荷状态,和/或,确定LTE侧的承载负荷状态;
在确定分配给WLAN侧传输的数据量时,根据WLAN侧报告的承载负荷状态、LTE侧的承载负荷状态、所述数据传输成功率三者之一或者其组合确定分配给WLAN侧传输的数据量。
具体实施中,eNB根据状态报告中AP侧per UE的数据发送的情况,结合自身的load(负荷)信息,以及通过Xw接口获得的AP的load信息,或者是其他有助于流控的可用资源信息,判断应该增加、减少或维持split bearer(分离承载)上的数据分流量。例如,可以按如下简单规则来实施不同情况下eNB可能的流控行为:
1、若eNB负荷较大,AP负荷较小,分流数据传输成功率高;则增大到AP的数据分流;
2、若eNB负荷较大,AP负荷较小,分流数据传输成功率不高;则保持当前的数据分流状况;
3、若eNB负荷较大,AP负荷较大,分流数据传输成功率高;则保持当前的数据分流状况;
4、若eNB负荷较大,AP负荷较大,分流数据传输成功率不高;则保持当前的数据分流状况;
5、若eNB负荷较小,AP负荷较小,分流数据传输成功率高;则增大到AP的数据分流;
6、若eNB负荷较小,AP负荷较小,分流数据传输成功率不高;则减少到AP的数据 分流;
7、若eNB负荷较小,AP负荷较大,分流数据传输成功率高;则适当减少到AP的数据分流;
8、若eNB负荷较小,AP负荷较大,分流数据传输成功率不高;则减少或停止到AP的数据分流。
基于同一发明构思,本申请实施例中还提供了一种确定传输数据量的装置、一种数据传输状态的报告装置,由于这些装置解决问题的原理与一种确定传输数据量的方法、一种数据传输状态的报告方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
图8为确定传输数据量的装置结构示意图,如图所示,装置中可以包括:
第一接收模块801,用于接收WLAN侧发送的传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
确定模块802,用于在LTE与WLAN聚合传输时,根据所述数据传输成功率确定在向该UE传输的数据中分配给WLAN侧传输的数据量。
实施中,第一接收模块还可以进一步用于接收从WLAN侧的AL层发送的所述传输状态报告。
实施中,第一接收模块还可以进一步用于在LTE侧的PDCP层接收所述传输状态报告。
实施中,还可以进一步包括:状态获取模块803,用于接收WLAN侧报告的承载负荷状态,和/或,确定LTE侧的承载负荷状态;
确定模块还可以进一步用于在确定分配给WLAN侧传输的数据量时,根据WLAN侧报告的承载负荷状态、LTE侧的承载负荷状态、所述数据传输成功率三者之一或者其组合确定分配给WLAN侧传输的数据量。
图9为数据传输状态的报告装置结构示意图,如图所示,装置中可以包括:
第二接收模块901,用于接收UE返回的数据接收确认报告;
报告模块902,用于根据所述UE返回的数据接收确认报告形成传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据接收成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
发送模块903,用于向LTE侧发送所述传输状态报告。
实施中,第二接收模块还可以进一步用于在WLAN侧的LLC层接收UE返回的数据接收确认报告。
实施中,报告模块还可以进一步用于在WLAN侧的AL层根据UE返回的数据接收确认报告形成传输状态报告。
实施中,发送模块还可以进一步用于向LTE侧的PDCP层发送传输状态报告。
实施中,发送模块还可以进一步用于从WLAN侧的AL层向LTE侧发送传输状态报告。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本申请时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
在实施本申请实施例提供的技术方案时,可以按如下方式实施。
图10为基站结构示意图,如图所示,基站中包括:
处理器1000,用于读取存储器1020中的程序,执行下列过程:
在LTE与WLAN聚合传输时,根据所述数据传输成功率确定在向该UE传输的数据中分配给WLAN侧传输的数据量。
收发机1010,用于在处理器1000的控制下发送数据,执行下列过程:
接收WLAN侧发送的传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据。
实施中,所述传输状态报告是从WLAN侧的AL层发送的。
实施中,所述传输状态报告是在LTE侧的PDCP层接收的。
实施中,进一步包括:接收WLAN侧报告的承载负荷状态,和/或,确定LTE侧的承载负荷状态;
在确定分配给WLAN侧传输的数据量时,根据WLAN侧报告的承载负荷状态、LTE侧的承载负荷状态、所述数据传输成功率三者之一或者其组合确定分配给WLAN侧传输的数据量。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
图11为接入点设备结构示意图,如图所示,设备包括:
处理器1100,用于读取存储器1120中的程序,执行下列过程:
根据所述UE返回的数据接收确认报告形成传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
收发机1110,用于在处理器1100的控制下发送数据,执行下列过程:
接收UE返回的数据接收确认报告;
向LTE侧发送所述传输状态报告。
实施中,接收UE返回的数据接收确认报告,是在WLAN侧的LLC层接收的。
实施中,根据UE返回的数据接收确认报告形成传输状态报告,是在WLAN侧的AL层形成的。
实施中,向LTE侧发送传输状态报告,是向LTE侧的PDCP层发送的。
实施中,向LTE侧发送传输状态报告,是从WLAN侧的AL层发送的。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
综上所述,在本申请实施例提供的LTE与WLAN聚合技术中基于WLAN侧MAC PDU传输成功率统计的流量控制方案中,充分利用现有的WLAN MAC数据传输的ACK机制,复用现有的MAC PDU发送状态报告并进行per UE的成功率统计。
无需反向映射WLAN MAC PDU的传输状态到特定UE特定承载的特定PDCP PDU,过程很简单。
对现有WLAN设备(AC/AP)的影响很小,主要的工作可以都在AL层完成,而AL层是LTE与WLAN聚合技术的实施必须引入的。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种确定传输数据量的方法,其特征在于,包括:
    接收无线局域网WLAN侧发送的传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向用户设备UE传输的数据中分配给WLAN侧传输的数据;
    在长期演进LTE与WLAN聚合传输时,根据所述数据传输成功率确定在向该UE传输的数据中分配给WLAN侧传输的数据量。
  2. 如权利要求1所述的方法,其特征在于,所述传输状态报告是从WLAN侧的适配层AL层发送的。
  3. 如权利要求1所述的方法,其特征在于,所述传输状态报告是在LTE侧的分组数据聚合协议PDCP层接收的。
  4. 如权利要求1至3任一所述的方法,其特征在于,进一步包括:
    接收WLAN侧报告的承载负荷状态,和/或,确定LTE侧的承载负荷状态;
    在确定分配给WLAN侧传输的数据量时,根据WLAN侧报告的承载负荷状态、LTE侧的承载负荷状态、所述数据传输成功率三者之一或者其组合确定分配给WLAN侧传输的数据量。
  5. 一种数据传输状态的报告方法,其特征在于,包括:
    接收UE返回的数据接收确认报告;
    根据所述UE返回的数据接收确认报告形成传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
    向LTE侧发送所述传输状态报告。
  6. 如权利要求5所述的方法,其特征在于,接收UE返回的数据接收确认报告,是在WLAN侧的逻辑链路控制LLC层接收的。
  7. 如权利要求5所述的方法,其特征在于,根据UE返回的数据接收确认报告形成传输状态报告,是在WLAN侧的AL层形成的。
  8. 如权利要求5所述的方法,其特征在于,向LTE侧发送传输状态报告,是向LTE侧的PDCP层发送的。
  9. 如权利要求5至8任一所述的方法,其特征在于,向LTE侧发送传输状态报告,是从WLAN侧的AL层发送的。
  10. 一种确定传输数据量的装置,其特征在于,包括:
    第一接收模块,用于接收WLAN侧发送的传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
    确定模块,用于在LTE与WLAN聚合传输时,根据所述数据传输成功率确定在向该UE传输的数据中分配给WLAN侧传输的数据量。
  11. 如权利要求10所述的装置,其特征在于,第一接收模块进一步用于接收从WLAN侧的AL层发送的所述传输状态报告。
  12. 如权利要求10所述的装置,其特征在于,第一接收模块进一步用于在LTE侧的PDCP层接收所述传输状态报告。
  13. 如权利要求10至12任一所述的装置,其特征在于,进一步包括:
    状态获取模块,用于接收WLAN侧报告的承载负荷状态,和/或,确定LTE侧的承载负荷状态;
    确定模块进一步用于在确定分配给WLAN侧传输的数据量时,根据WLAN侧报告的承载负荷状态、LTE侧的承载负荷状态、所述数据传输成功率三者之一或者其组合确定分配给WLAN侧传输的数据量。
  14. 一种数据传输状态的报告装置,其特征在于,包括:
    第二接收模块,用于接收UE返回的数据接收确认报告;
    报告模块,用于根据所述UE返回的数据接收确认报告形成传输状态报告,所述传输状态报告中携带有WLAN侧传输的数据的数据传输成功率,WLAN侧传输的数据是向UE传输的数据中分配给WLAN侧传输的数据;
    发送模块,用于向LTE侧发送所述传输状态报告。
  15. 如权利要求14所述的装置,其特征在于,第二接收模块进一步用于在WLAN侧的LLC层接收UE返回的数据接收确认报告。
  16. 如权利要求14所述的装置,其特征在于,报告模块进一步用于在WLAN侧的AL层根据UE返回的数据接收确认报告形成传输状态报告。
  17. 如权利要求14所述的装置,其特征在于,发送模块进一步用于向LTE侧的PDCP层发送传输状态报告。
  18. 如权利要求14至17任一所述的装置,其特征在于,发送模块进一步用于从WLAN侧的AL层向LTE侧发送传输状态报告。
PCT/CN2016/093118 2015-08-14 2016-08-03 一种数据传输状态的报告、确定传输数据量的方法及装置 WO2017028681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510502506.7 2015-08-14
CN201510502506.7A CN106470416B (zh) 2015-08-14 2015-08-14 一种数据传输状态的报告、确定传输数据量的方法及装置

Publications (1)

Publication Number Publication Date
WO2017028681A1 true WO2017028681A1 (zh) 2017-02-23

Family

ID=58051903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093118 WO2017028681A1 (zh) 2015-08-14 2016-08-03 一种数据传输状态的报告、确定传输数据量的方法及装置

Country Status (2)

Country Link
CN (1) CN106470416B (zh)
WO (1) WO2017028681A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170923A1 (en) * 2017-03-24 2018-09-27 Nokia Technologies Oy Packet data convergence protocol windows with split bearers
CN111615137B (zh) * 2020-05-11 2023-02-28 深圳市炬力北方微电子有限公司 无线网络状态检测方法及其相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811465A (zh) * 2012-07-11 2012-12-05 北京邮电大学 异构网络下基于反馈信息的业务分流系统及方法
CN103826263A (zh) * 2012-11-16 2014-05-28 中国移动通信集团公司 一种网络分流方法和设备
US20140293970A1 (en) * 2013-03-26 2014-10-02 Qualcomm Incorporated Wlan uplink scheduler for lte-wlan aggregation
CN104427554A (zh) * 2013-08-29 2015-03-18 中兴通讯股份有限公司 一种协作多流传输数据的方法及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811465A (zh) * 2012-07-11 2012-12-05 北京邮电大学 异构网络下基于反馈信息的业务分流系统及方法
CN103826263A (zh) * 2012-11-16 2014-05-28 中国移动通信集团公司 一种网络分流方法和设备
US20140293970A1 (en) * 2013-03-26 2014-10-02 Qualcomm Incorporated Wlan uplink scheduler for lte-wlan aggregation
CN104427554A (zh) * 2013-08-29 2015-03-18 中兴通讯股份有限公司 一种协作多流传输数据的方法及基站

Also Published As

Publication number Publication date
CN106470416B (zh) 2020-03-24
CN106470416A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
US11116024B2 (en) Control mechanism for packet duplication in multi-connectivity communication
US20200178145A1 (en) Communication method, base station, terminal device, and system
EP3295700B1 (en) Uplink data splitting
CN104813725B (zh) 数据传输装置和方法
WO2018121096A1 (zh) 流控方法、装置、cu、du和存储介质
WO2019196810A1 (zh) 一种数据传输的方法、相关设备及通信系统
WO2019153935A1 (zh) 传输方式确定方法及装置,存储介质和电子装置
WO2019059836A1 (en) METHODS AND UNITS IN A NETWORK NODE FOR PROCESSING COMMUNICATION WITH A WIRELESS DEVICE
US10263895B2 (en) Data transmission method, central processing node, gateway, and base station
WO2016155292A1 (zh) 一种获取接入技术网络间传输时延的方法及装置
EP3226606B1 (en) Method for ran-wlan aggregation
US11533136B2 (en) Discard of PDCP PDU submitted for transmission
WO2017008266A1 (zh) Lte和wlan聚合的数据处理方法、装置以及通信系统
WO2018027674A1 (zh) 传输状态报告装置、方法以及通信系统
US20190223256A1 (en) Data transmission method, network device, and terminal device
WO2017216510A1 (en) Providing service data flow description
US20220303825A1 (en) Data transmission method and apparatus
CN104685959B (zh) 具有统一接口的无源无线电链路控制实体
JP7074852B2 (ja) 通信を取り扱うためのtr送信デバイスおよびその中で実行される方法
WO2017028681A1 (zh) 一种数据传输状态的报告、确定传输数据量的方法及装置
KR102667781B1 (ko) 데이터 전송 방법 및 장치, 트래픽 전환 방법 및 장치
WO2023184545A1 (zh) 一种数据传输方法及装置、通信设备
WO2022193225A1 (zh) 一种突发监测的方法和装置
WO2022239707A1 (ja) 通信制御方法
KR20210042963A (ko) 데이터 전송 방법 및 장치, 트래픽 전환 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836545

Country of ref document: EP

Kind code of ref document: A1