WO2018121096A1 - 流控方法、装置、cu、du和存储介质 - Google Patents

流控方法、装置、cu、du和存储介质 Download PDF

Info

Publication number
WO2018121096A1
WO2018121096A1 PCT/CN2017/110291 CN2017110291W WO2018121096A1 WO 2018121096 A1 WO2018121096 A1 WO 2018121096A1 CN 2017110291 W CN2017110291 W CN 2017110291W WO 2018121096 A1 WO2018121096 A1 WO 2018121096A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
flow control
data
information
sent
Prior art date
Application number
PCT/CN2017/110291
Other languages
English (en)
French (fr)
Inventor
高音
何青春
黄河
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to DK17887712.2T priority Critical patent/DK3565196T3/da
Priority to FIEP17887712.2T priority patent/FI3565196T3/fi
Priority to EP17887712.2A priority patent/EP3565196B1/en
Publication of WO2018121096A1 publication Critical patent/WO2018121096A1/zh
Priority to US16/457,581 priority patent/US11153783B2/en
Priority to US17/501,541 priority patent/US11606720B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/30Flow control; Congestion control in combination with information about buffer occupancy at either end or at transit nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/26Flow control; Congestion control using explicit feedback to the source, e.g. choke packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present invention relates to the field of communications, and in particular to a flow control method and apparatus, a centralized processing unit (Centralized Unit, CU for short), and a distributed processing unit (DU), and a computer storage medium.
  • a centralized processing unit Centralized Unit, CU for short
  • DU distributed processing unit
  • the CPRI interface transmits the in-phase positive after being processed by physical layer coding and modulation.
  • In-Phase Quadrature (IQ) signals the CPRI interface has large requirements on transmission delay and bandwidth. If the 5G air interface rate is increased to tens of Gbps, the traffic demand of the CPRI interface will rise to the Tbps level, which puts tremendous pressure on the network deployment cost and deployment difficulty.
  • the embodiments of the present invention provide a flow control method, device, CU, DU, and computer storage medium to solve at least the problem of how to implement flow control between network elements with different functional requirements in the related art.
  • a flow control method including: receiving a flow control status message sent by a second network element that is connected to a first network element through a forward interface, where the flow control status message is Carrying flow control state information for identifying a flow control state of the second network element; performing flow control processing according to the flow control state information.
  • a flow control method including: determining a flow control state of a second network element connected to a first network element through a forward interface; and transmitting a flow control state to the first network element The message, where the flow control state message carries flow control state information for identifying the flow control state of the second network element, where the flow control state information is used to perform flow control processing.
  • the method before determining the flow control state of the second network element that is in communication with the first network element by using the forward interface, the method further includes: receiving a data sending message sent by the first network element
  • the data sending message carries data identification information, where the data identifier is used to identify data that is sent by the first network element to the second network element.
  • the data identification information includes at least one of the following: a data packet sequence number used to identify the sent data, and a packet retransmission indication information used to identify whether the sent data is retransmitted data.
  • the method further includes: receiving, by the first network element, the first A network element is configured to assist the second network element to implement flow control information, and perform flow control processing according to the received information that the first network element uses to assist the second network element to implement flow control.
  • the information that is used by the first network element to assist the second network element to implement flow control includes at least one of: a buffer size of the first network element, where the first network element is based on a user equipment can The size of the buffer provided by the first network element, the first network element requesting the second network element to report the request information of the flow control state of the second network element.
  • the flow control status message is sent to the first network element by at least one of: encapsulating the flow control status message in a manner based on a user plane-based GPRS tunneling protocol GTP-U The way to control the interface message through the interface.
  • the flow control state information includes at least one of the following: identifier information of a data packet that is received by the second network element from the first network element and successfully sent to the user equipment UE; a desired buffer size of the protocol data unit PDU session of the meta; a desired buffer size of the data stream of the second network element; a desired buffer size of the radio bearer RB of the second network element; the second network element a desired buffer size based on the numerology; the second network element is based on a desired buffer size of the network slice; a minimum expected buffer size at the UE level; and the notification is that the first network element is lost in the second network element Identification information of the data packet; a second network element congestion indication for indicating that the second network element is congested; a buffer size of the second network element as a whole; the second network element is sent to the first network element Flow control indication.
  • a flow control apparatus including: a first receiving module, configured to receive a flow control status message sent by a second network element that is connected to a first network element through a forward interface, where The flow control state message carries the flow control state information for identifying the flow control state of the second network element.
  • the first processing module is configured to perform flow control processing according to the flow control state information.
  • the device further includes: a first sending module, configured to send a data sending message to the second network element, where the data sending message carries a identifier for identifying the first network element
  • the second network metadata identification information wherein the data identifier is used to identify data that is sent by the first network element to the second network element.
  • the device further includes: a second sending module, configured to send, to the second network element, information that the first network element is used to assist the second network element to implement flow control.
  • a second sending module configured to send, to the second network element, information that the first network element is used to assist the second network element to implement flow control.
  • the first receiving module is further configured to receive, by at least one of the following manners, the flow control state sent by the second network element that is communicated by the first network element by using the forward interface.
  • Message The manner in which the flow control status message is encapsulated in the header of the GPRS tunneling protocol GTP-U based on the user plane; the manner of controlling the interface message through the interface.
  • a centralized processing unit CU comprising the flow control device of any of the above.
  • a flow control apparatus including: a determining module configured to determine a flow control state of a second network element connected to a first network element through a forward interface; and a third sending module configured to And sending, to the first network element, a flow control state message, where the flow control state message carries flow control state information for identifying the flow control state of the second network element, where the flow control state information is Used to perform flow control processing.
  • the device further includes: a second receiving module, configured to receive a data sending message sent by the first network element, where the data sending message carries a identifier for identifying the first network element The second network element data identification information, wherein the data identifier is used to identify data that is sent by the first network element to the second network element.
  • a second receiving module configured to receive a data sending message sent by the first network element, where the data sending message carries a identifier for identifying the first network element
  • the second network element data identification information wherein the data identifier is used to identify data that is sent by the first network element to the second network element.
  • the device further includes: a third receiving module, configured to receive information that the first network element sent by the first network element is used to assist the second network element to implement flow control; and the second processing module And configured to perform flow control processing according to the received information that the first network element uses to assist the second network element to implement flow control.
  • a third receiving module configured to receive information that the first network element sent by the first network element is used to assist the second network element to implement flow control
  • the second processing module And configured to perform flow control processing according to the received information that the first network element uses to assist the second network element to implement flow control.
  • the third sending module is further configured to send the flow control status message to the first network element by at least one of: encapsulating the flow control status message in a user plane-based GPRS The way the tunnel protocol GTP-U is headed; the way the interface interface messages are controlled.
  • a distributed processing unit DU comprising the apparatus of any of the above.
  • a computer storage medium is provided, Computer-executable instructions are stored in the computer storage medium for performing the flow control methods provided by one or more of the foregoing technical solutions.
  • the flow control status message sent by the second network element that is connected to the first network element through the forward interface is received, where the flow control status message carries the second Flow control state information of the flow control state of the network element; performing flow control processing according to the flow control state information, and implementing the flow control state of the second network element to implement the first network element and the first communication through the forward interface
  • the flow control processing between the two network elements effectively solves the problem of how to implement flow control between network elements with different functional requirements in the related art, thereby achieving the effect of ensuring optimal throughput performance according to reasonable flow control.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal of a flow control method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a flow control method 1 according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a flow control method 2 according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a fronthaul interface between a first network element and a second network element according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of possible functional division between a first network element and a second network element according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart 1 of implementing flow control between a first network element and a second network element according to an alternative embodiment of the present invention
  • FIG. 7 is a second schematic flowchart of flow control between a first network element and a second network element according to an alternative embodiment of the present invention.
  • FIG. 8 is a schematic flowchart 3 of implementing flow control between a first network element and a second network element according to an alternative embodiment of the present invention
  • FIG. 9 is a schematic flowchart 4 of implementing flow control between a first network element and a second network element according to an alternative embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a flow control device 1 according to an embodiment of the present invention.
  • FIG. 11 is a block diagram of an optional structure of a flow control device 1 according to an embodiment of the present invention.
  • FIG. 12 is a block diagram 2 of an optional structure of a flow control device 1 according to an embodiment of the present invention.
  • Figure 13 is a centralized processing unit CU according to an embodiment of the present invention.
  • FIG. 14 is a structural block diagram of a flow control device 2 according to an embodiment of the present invention.
  • FIG. 15 is a block diagram 1 of an optional structure of a flow control device 2 according to an embodiment of the present invention.
  • 16 is a block diagram 2 of an optional structure of a flow control device 2 according to an embodiment of the present invention.
  • FIG. 17 is a structural block diagram of a distributed processing unit DU according to an embodiment of the present invention.
  • FIG. 1 is a hardware structural block diagram of a mobile terminal of a flow control method according to an embodiment of the present invention.
  • the mobile terminal 10 may include one or more (only one shown) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA).
  • FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 10 may also include more than or as shown in FIG. There are fewer components or have a different configuration than that shown in Figure 1.
  • the memory 104 can be configured as a software program and a module for storing application software, such as program instructions/modules corresponding to the flow control method in the embodiment of the present invention, and the processor 102 executes each by executing a software program and a module stored in the memory 104.
  • a functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is configured to receive or transmit data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a flow control method 1 according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 Receive a flow control state message sent by the second network element that is connected to the first network element by using the forward interface, where the flow control state message carries flow control state information used to identify the flow control state of the second network element. ;
  • Step S204 performing flow control processing according to the flow control state information.
  • the first network element and the second network element are two network elements that are connected through an X2 interface.
  • the first network element and the second network element may be both A base station, for example, an evolved base station (eNB).
  • eNB evolved base station
  • the first network element and the second network element may be divided into different functions.
  • the first network element and the second network element are two network elements connected through an S1 interface, for example,
  • the first network element may be a base station and the second network element may be a gateway, or the first network element is a network element and the second network element is a base station.
  • the method may further include: sending a data sending message to the second network element, where the data sending message is carried in the message There is data identification information for identifying data sent by the first network element to the second network element.
  • the data identification information may include at least one of the following: a data packet sequence number used to identify the sent data, and a packet retransmission indication information used to identify whether the sent data is retransmitted data.
  • the method may further include: sending, by the second network element, the first network element, for assisting the second network element Implement flow control information.
  • the information that the first network element is used to assist the second network element to implement the flow control may include at least one of the following: a size of a buffer area of the first network element, and a size of the buffer area provided by the first network element based on the capability of the user equipment.
  • a network element requests the second network element to report the request information of the flow control state of the second network element.
  • the prime buffer size may include: a buffer capacity that can be provided by the buffer.
  • the method may be used in multiple manners. For example, at least one of the following manners may be used to receive the forward interface with the first network element.
  • the flow control status message sent by the connected second network element a manner of encapsulating the flow control status message in the header of the GPRS tunneling protocol GTP-U based on the user plane; by means of controlling the interface information of the interface.
  • the foregoing flow control state information may include multiple types, for example, at least one of the following: identifier information of a data packet that is received by the second network element from the first network element and successfully sent to the user equipment UE; The expected buffer size of the protocol data unit PDU session of the second network element; the expected buffer size of the data stream of the second network element; the expected buffer size of the radio bearer RB of the second network element; the second network element is based on numerology (physical The expected buffer size of the layer parameter configuration; the second network element is based on the expected buffer size of the network slice; the minimum expected buffer size of the UE level; and the notification of the lost packet of the first network element in the second network element
  • the identifier information is used to indicate a second network element congestion indication that the second network element is congested; the second network element has a total available buffer size; and the second network element sends a flow control indication to the first network element.
  • FIG. 3 is a flowchart of a flow control method 2 according to an embodiment of the present invention. As shown in FIG. 3, the process includes:
  • Step S302 determining a flow control state of the second network element that is connected to the first network element through the forward interface.
  • Step S304 the flow control state message is sent to the first network element, where the flow control state message carries the flow control state information for identifying the flow control state of the second network element, where the first network element and the second network element are divided.
  • flow control status information is used to perform flow control processing.
  • the method may further include: receiving a data sending message sent by the first network element, where the data sending message carries And identifying data identification information of the data sent by the first network element to the second network element.
  • the data identification information may include at least one of the following: a data packet sequence number used to identify the sent data, and a packet retransmission indication information used to identify whether the sent data is retransmitted data.
  • determining a flow control state of the second network element that is connected to the first network element through the forward interface may further include: receiving information that the first network element sent by the first network element is used to assist the second network element to implement flow control; and performing, according to the received information, the first network element is used to assist the second network element to implement flow control information.
  • Flow control processing The information that the first network element uses to assist the second network element to implement flow control includes at least one of the following: a size of a buffer area of the first network element, and a size of the buffer area provided by the first network element based on the capability of the user equipment, where The network element requests the second network element to report the request information of the flow control state of the second network element.
  • the flow control status message may be sent to the first network element in multiple manners.
  • the flow control status message may be sent to the first network element by at least one of the following: encapsulating the flow control status message in the user-based The way of the GPRS tunneling protocol GTP-U header; the way through the control plane interface message.
  • the uplink flow control state information may include multiple types, for example, at least one of the following: the identifier information of the data packet that the second network element receives from the first network element and successfully sends the data packet to the user equipment UE; The expected buffer size of the protocol data unit PDU session of the network element; the expected buffer size of the data stream of the second network element; the expected buffer size of the radio bearer RB of the second network element; the second network element is based on the expected cache of the numerology The size of the area; the second network element is based on the expected size of the network slice; the minimum expected size of the buffer at the UE level; the identification information of the data packet that is lost to the first network element in the second network element; The second network element congestion indication that is congested by the network element; the size of the buffer area of the second network element as a whole; and the flow control indication sent by the second network element to the first network element.
  • the division mode of the preamble interface is redefined, and in the division mode of the preamble interface, consideration is made in terms of transmission capacity, transmission delay, and convenient deployment, for example, considering Non-ideal (fronthaul) transmission, placing delay-insensitive network functions in the first network element (for example, CU), and placing delay-sensitive network functions in the second network element (for example, DU), first
  • the interface between the network element and the second network element is transmitted through the ideal and/or non-ideal fronthaul.
  • the interface is called the front-end interface.
  • FIG. 4 is the fronthaul interface between the first network element and the second network element according to the embodiment of the present invention.
  • the fronthaul here can be ideal fronthaul or non-ideal fronthaul.
  • the ideal fronthaul transmission delay is relatively small, for example, tens to hundreds of microseconds, and the non-ideal fronthaul transmission delay is relatively large, such as milliseconds, due to the distinction between ideal and non-ideal fronthaul, resulting in the first network.
  • the yuan and the second network element have different functional divisions.
  • the first protocol entity (for example, a Radio Resource Control (RRC) entity) may be located in the first network element, where the first protocol entity performs control signaling generation, and maintains the establishment and/or modification of the radio bearer and/or Or release, maintain parameter updates of the second protocol entity, the third protocol entity, the fourth protocol entity, and the physical layer.
  • the function of the second protocol entity is similar to and enhanced by the Packet Data Convergence Protocol (PDCP) function of the LTE system.
  • PDCP Packet Data Convergence Protocol
  • the third protocol entity function and the radio link control of the LTE system (Radio Link Control, referred to as RLC for short)
  • the function is similar and enhanced, the fourth protocol entity function and the Media Access Control (MAC) function of the LTE system and its enhancement.
  • the second network element includes at least one of the following: a second protocol entity, a third protocol entity, a fourth protocol entity, a physical layer, and a radio frequency unit.
  • the first network element communicates with the second network element
  • FIG. 5 is a schematic diagram of possible functional division between a first network element and a second network element according to an embodiment of the present invention. As shown in FIG. 5, a possible functional division scheme is as follows:
  • the functional separation of this option is similar to the 1A structure in dual connectivity (DC).
  • the RRC is located in the CU, and functions such as PDCP, RLC, MAC, PHY, and RF are all located in the DU. That is, the entire UP is located in the DU.
  • RRC and PDCP are located in the CU, and functions such as RLC, MAC, PHY, and RF are all located in the DU.
  • the underlying RLC (partial functions of the RLC), the MAC, the PHY, and the RF part are located within the DU, and functions such as RRC, PDCP, and higher layer RLC (part of the RLC function) are located in the CU.
  • the MAC, PHY, and RF parts are located within the DU, and functions such as RRC, PDCP, and RLC are located in the CU.
  • Some MAC functions (such as HARQ), PHY and RF parts are located in the DU, and other upper layer functions are located in the CU.
  • the PHY and RF parts are located within the DU, and functions such as MAC, PDCP, and RLC are located in the CU.
  • PHY functions such as HARQ
  • PHY and RF parts are located in the DU
  • other upper layer functions are located in the CU.
  • the RF part is located inside the DU, and the other upper layer functions are located in the CU.
  • multiple DUs may be connected under the CU.
  • the data of the CU needs to be sent to the UE through the DU, it can be implemented by multiple DUs.
  • the data stream is divided at the CU PDCP layer or the RLC layer, and is divided into different DUs through different branches. In this case, it is necessary to control the amount of data flowing to different DUs, that is, a reasonable flow control strategy is required. Guarantee optimal throughput performance.
  • a flow control implementation method including:
  • Step 1 The first network element sends a “data sending message” to the second network element, and the second network element is sent to the second network element by the serial number of the data packet sent by the NGx-U, and the second network element can save the information, which can be used on the preamble interface. Packet loss detection.
  • the method may further include: a packet retransmission indication, used to indicate the current Whether the sent packet is a retransmitted packet;
  • Step 2 The second network element sends a “flow control status message” to the first network element, including but not limited to one or more of the following information:
  • Notifying the first network element of the information of the NGx-U packet lost in the second network element may be represented by a sequence number range of the lost data packet;
  • the second network element congestion indication
  • the total size of the second network element available for the cache is the total size of the second network element available for the cache
  • the flow control indication sent by the second network element to the first network element reducing data transmission, increasing data transmission, maintaining, and the like;
  • the second network element may further receive information for flow control on the first network element side sent by the first network element, including but not limited to one or more of the following information: The size of the cache area of the network element itself (the buffer area here may be one or more of the following: the current used buffer size of the UE/PDU session/data flow/RB level); the first network element requests the second network element to report An indication of the flow control status message on the DU side.
  • the first network element may be a CU
  • the second network element may be a DU.
  • the foregoing data packet is according to different CU-DU partitioning manners, including but not limited to: a second protocol entity data packet, and a third protocol entity data packet.
  • the foregoing data packet sequence number may be one of the following: a PDCP SN number, an RLC SN number, and a predefined user plane interface serial number.
  • the user plane interface between the first network element and the second network element may be based on The General Packet Radio Service Tunneling Protocol for the User Plane (GTP-U) transport protocol can be encapsulated in the GTP-U header.
  • GTP-U General Packet Radio Service Tunneling Protocol for the User Plane
  • the flow control message between the first network element and the second network element may also be implemented by using an NGx-C interface message.
  • the flow control implementation method provided by the foregoing embodiment implements flow control management on the interface between the first network element and the second network element, and can utilize a reasonable flow control policy to ensure optimal throughput performance and retransmission.
  • the packet is instructed for the difference processing.
  • FIG. 6 is a first schematic flowchart of flow control between a first network element and a second network element according to an alternative embodiment of the present invention.
  • the first network element is a CU
  • the second network element is a DU, a CU.
  • the interface between the interface and the DU is called the NGx interface
  • the NGx-C is the control interface of the front-end interface
  • the NGx-U is the user plane of the front-end interface.
  • Step 1 or 1a The CU sends a “data transmission message” to the DU, and tells the DU the serial number information of the data packet sent by the current NGx-U, which may be a PDCP SN number or a newly defined serial number, and the DU has to remember the transmitted data packet.
  • the serial number can be used for packet loss detection on the preamble interface.
  • Step 2 or 2a The DU sends a “flow control status message” to the CU, and the trigger of the flow control message is determined by the DU. If multiple DUs are connected to the same CU to serve the UE, multiple DUs send a flow control status message to the CU.
  • the message includes but is not limited to one or more of the following:
  • Flow control indication reduce data transmission, increase data transmission, maintenance, etc.
  • Step 3 The CU performs local flow control management according to the flow control state information sent by the DU.
  • FIG. 7 is a second schematic flowchart of flow control between a first network element and a second network element according to an alternative embodiment of the present invention, as shown in FIG. 7.
  • the first network element is a CU
  • the second network element is a DU
  • the interface between the CU and the DU is called an NGx interface
  • the NGx-C is a front-end interface control plane
  • the NGx-U is a front-end interface user plane.
  • Step 1 or 1a The CU sends a “data transmission message” to the DU, and tells the DU the serial number information of the data packet sent by the current NGx-U, which may be the RLC SN number or the newly defined sequence number, and the DU needs to remember the sent data packet.
  • the serial number can be used for packet loss detection on the preamble interface. It may also include a packet retransmission indication indicating whether the data packet is a retransmitted RLC PDU.
  • Step 2 or 2a The DU sends a “flow control status message” to the CU, and the trigger of the flow control message is determined by the DU. If multiple DUs are connected to the same CU to serve the UE, multiple DUs send a flow control status message to the CU.
  • the message includes but is not limited to one or more of the following:
  • the minimum expected buffer size at the UE level in bytes (BYTE);
  • Flow control indication reduce data transmission, increase data transmission, maintenance, etc.
  • Step 3 The CU performs local flow control management according to the flow control state information sent by the DU.
  • FIG. 8 is a third schematic flowchart of flow control between a first network element and a second network element according to an alternative embodiment of the present invention.
  • the first network element is a CU
  • the second network element is a DU, a CU.
  • the interface between the interface and the DU is called the NGx interface
  • the NGx-C is the control interface of the front-end interface
  • the NGx-U is the user plane of the front-end interface.
  • Step 1 or 1a The CU sends a “data transmission message” to the DU, and tells the DU the serial number information of the data packet sent by the current NGx-U, which may be a PDCP SN number or a newly defined serial number, and the DU has to remember the transmitted data packet.
  • the serial number can be used for packet loss detection on the preamble interface.
  • the DU may receive information for flow control on the CU side sent by the CU, including but not limited to one or more of the following information: a buffer size of the CU itself (the buffer area here may be one of the following or A variety of: the current used buffer size of the UE/PDU session/data flow/RB level; the CU requests the DU to report the flow status status information of the DU side.
  • a buffer size of the CU itself the buffer area here may be one of the following or A variety of: the current used buffer size of the UE/PDU session/data flow/RB level
  • the CU requests the DU to report the flow status status information of the DU side.
  • Step 3 or 3a The DU can perform local processing according to the flow control information sent by the CU.
  • the DU may also send a “flow control status message” to the CU, including but not limited to one or more of the following information:
  • Flow control indication reduce data transmission, increase data transmission, maintenance, etc.
  • Step 4 The CU performs local flow control management according to the flow control state information sent by the DU.
  • FIG. 9 is a schematic flowchart of flow control between a first network element and a second network element according to an alternative embodiment of the present invention.
  • the first network element is a CU
  • the second network element is a DU, a CU.
  • the interface between the interface and the DU is called the NGx interface
  • the NGx-C is the control interface of the front-end interface
  • the NGx-U is the user plane of the front-end interface.
  • Step 1 or 1a The CU sends a “data transmission message” to the DU, and tells the DU the serial number information of the data packet sent by the current NGx-U, which may be the RLC SN number or the newly defined sequence number, and the DU needs to remember the sent data packet.
  • the serial number can be used for packet loss detection on the preamble interface. It may also include a packet retransmission indication indicating whether the data packet is a retransmitted RLC PDU.
  • the DU may receive information for flow control on the CU side sent by the CU, including but not limited to one or more of the following information: a buffer size of the CU itself (the buffer area here may be one of the following or A variety of: the current used buffer size of the UE/PDU session/data flow/RB level; the CU requests the DU to report the flow status status information of the DU side.
  • a buffer size of the CU itself the buffer area here may be one of the following or A variety of: the current used buffer size of the UE/PDU session/data flow/RB level
  • the CU requests the DU to report the flow status status information of the DU side.
  • Step 3 or 3a The DU can perform local processing according to the flow control information sent by the CU.
  • the DU may also send a “flow control status message” to the CU, including but not limited to one or more of the following information:
  • Flow control indication reduce data transmission, increase data transmission, maintenance, etc.
  • Step 4 The CU performs local flow control management according to the flow control state information sent by the DU.
  • the user plane interface between the CU-DUs may be based on the GTP-U transport protocol, and the flow control message may be encapsulated in the GTP-U header.
  • Flow control messages can also be implemented through control plane interface messages.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods of various embodiments of the present invention.
  • a flow control device is further provided, which is used to implement the above-mentioned embodiments and optional embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 10 is a structural block diagram of a flow control device 1 according to an embodiment of the present invention. As shown in FIG. 10, the device includes: a first receiving module 102 and a first processing module 104, which will be described below.
  • the first receiving module 102 is configured to receive a flow control status message sent by the second network element that is connected to the first network element by using the forward interface, where the flow control status message carries the second network element
  • the flow control state information of the flow control state carries the second network element
  • the first processing module 104 is connected to the first receiving module 102, and is configured to perform flow control processing according to the flow control state information.
  • the first network element and the second network element are divided into different functions.
  • FIG. 11 is a block diagram of an optional structure of a flow control device according to an embodiment of the present invention. As shown in FIG. 11, the device includes: a first transmitting module 112, and the following The device is described.
  • the first sending module 112 is connected to the first receiving module 102, and is configured to send a data sending message to the second network element, where the data sending message carries data for identifying the first network element to send to the second network element. Data identification information.
  • FIG. 12 is a block diagram 2 of an optional structure of a flow control device according to an embodiment of the present invention. As shown in FIG. 12, the device includes: a second sending module 122, in addition to all the modules shown in FIG. The device is described.
  • the second sending module 122 is connected to the first receiving module 102, and configured to send, to the second network element, information that the first network element is used to assist the second network element to implement flow control.
  • the first receiving module 102 is further configured to receive, by using at least one of the following manners, a flow control status message sent by the second network element that is connected to the first network element by using the forward interface: encapsulating the flow control status message The way of the header of the GTP-U based on the user plane-based GPRS tunneling protocol; the way of controlling the interface message through the interface.
  • FIG. 13 is a centralized processing unit CU according to an embodiment of the present invention. As shown in FIG. 13, the CU 130 includes the flow control device 132 of any of the above.
  • the CU may include a memory or the like in addition to the flow control device, and the memory may be connected to the flow control device, and may be used to store information, for example, also used in the flow control device. Stores various information that interacts between different network elements.
  • FIG. 14 is a structural block diagram of a flow control device 2 according to an embodiment of the present invention. As shown in FIG. 14, the device includes: a determining module 142 and a third transmitting module 144. Bright.
  • the determining module 142 is configured to determine a flow control state of the second network element that is connected to the first network element by using the forward interface.
  • the third sending module 144 is connected to the determining module 142, and configured to send the flow control to the first network element.
  • the status message where the flow control status message carries flow control status information for identifying a flow control state of the second network element, and the flow control status information is used to perform flow control processing.
  • the first network element and the second network element are divided into different functions.
  • FIG. 15 is a block diagram of an optional structure of a flow control device 2 according to an embodiment of the present invention. As shown in FIG. 15, the device includes: a second receiving module 152, in addition to all the modules shown in FIG. The second receiving module 152 is described.
  • the second receiving module 152 is connected to the determining module 142, and configured to receive a data sending message sent by the first network element, where the data sending message carries data for identifying data sent by the first network element to the second network element. Identification information.
  • FIG. 16 is a block diagram 2 of an optional structure of a flow control device 2 according to an embodiment of the present invention. As shown in FIG. 16, the device includes: a third receiving module 162 and a second processing, in addition to all the modules shown in FIG. Module 164, the optional structure is described below.
  • the third receiving module 162 is configured to receive information that the first network element sent by the first network element is used to assist the second network element to implement flow control
  • the second processing module 164 is connected to the third receiving module 162 and the determining module 142. And configured to perform flow control processing according to the received information that the first network element uses to assist the second network element to implement flow control.
  • the third sending module 144 is further configured to send, by using at least one of the following manners, a flow control status message to the first network element: encapsulating the flow control status message in a user plane-based GPRS tunneling protocol GTP-U The way the header is; the way the interface interface messages are controlled.
  • FIG. 17 is a structural block diagram of a distributed processing unit DU according to an embodiment of the present invention. As shown in FIG. 17, the DU 170 includes the flow control device 172 of any of the above.
  • the DU may include storage in addition to the flow control device described above.
  • the memory may be connected to the flow control device, and may be used to store information, for example, and may also be used by the flow control device to store various information exchanged between different network elements.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a computer storage medium.
  • the foregoing storage medium may be configured to store computer executable instructions such as program code for performing the following steps:
  • S1 Receive a flow control state message sent by the second network element that is connected to the first network element by using the forward interface, where the flow control state message carries flow control state information used to identify the flow control state of the second network element.
  • the first network element and the second network element are divided into different functions;
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method further includes:
  • S1 Send a data sending message to the second network element, where the data sending message carries data identification information used to identify data sent by the first network element to the second network element.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the data identification information includes at least one of the following: a data packet sequence number used to identify the sent data, and a packet retransmission indication information used to identify whether the sent data is retransmitted data.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method further includes:
  • S1 Send, to the second network element, information that the first network element is used to assist the second network element to implement flow control.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the information that is used by the first network element to assist the second network element to implement flow control includes at least one of the following: a buffer size of the first network element, and a size of the buffer area provided by the first network element based on the capability of the user equipment.
  • the element requests the second network element to report the request information of the flow control state of the second network element.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the flow control state information includes at least one of the following: identifier information of a data packet received by the second network element from the first network element and successfully sent to the user equipment UE; and a desired cache of the protocol data unit PDU session of the second network element a size of the area; a desired buffer size of the data stream of the second network element; a desired buffer size of the radio bearer RB of the second network element; a second network element based on a desired buffer size of the numerology; and a second network element based on the network slice
  • the size of the buffer area of the second network element is generally available; and the flow control indication sent by the second network element to the first network element.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the flow control state message is sent to the first network element, where the flow control state message carries the flow control state information used to identify the flow control state of the second network element, where the first network element is different from the second network element.
  • Function, flow control status information is used to perform flow control processing.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method further includes:
  • the data transmission message sent by the first network element is received, where the data transmission message carries data identification information used to identify data sent by the first network element to the second network element.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the data identification information includes at least one of the following: a data packet sequence number used to identify the sent data, and a packet retransmission indication information used to identify whether the sent data is retransmitted data.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method further includes:
  • S1 Receive information that the first network element sent by the first network element is used to assist the second network element to implement flow control, and perform flow control processing according to the received information that the first network element uses to assist the second network element to implement flow control.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the information that is used by the first network element to assist the second network element to implement flow control includes at least one of the following: a buffer size of the first network element, and a size of the buffer area provided by the first network element based on the capability of the user equipment.
  • the element requests the second network element to report the request information of the flow control state of the second network element.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the flow control state information includes at least one of the following: identifier information of a data packet received by the second network element from the first network element and successfully sent to the user equipment UE; and a desired cache of the protocol data unit PDU session of the second network element a size of the area; a desired buffer size of the data stream of the second network element; a desired buffer size of the radio bearer RB of the second network element; a second network element based on a desired buffer size of the numerology; and a second network element based on the network slice
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor is configured to: receive, according to the stored program code in the storage medium, a flow control status message sent by the second network element that is connected to the first network element by using the forward interface, where the flow control
  • the status message carries the flow control status information for identifying the flow control state of the second network element.
  • the first network element and the second network element are divided into different functions.
  • the flow control processing is performed according to the flow control status information.
  • the processor performs, according to the stored program code in the storage medium, before receiving the flow control status message sent by the second network element that is connected to the first network element through the forward interface,
  • the data transmission message is sent to the second network element, where the data transmission message carries data identification information for identifying data sent by the first network element to the second network element.
  • the processor executes according to the stored program code in the storage medium: the data identification information includes at least one of the following: a sequence number of the data packet used to identify the sent data, and is used to identify the sent data. Whether to retransmit the indication information for the packet that retransmits the data.
  • the processor performs, according to the stored program code in the storage medium, before receiving the flow control status message sent by the second network element that is connected to the first network element through the forward interface, Transmitting, by the second network element, information that the first network element is used to assist the second network element to implement flow control.
  • the processor performs, according to the stored program code in the storage medium, the information that the first network element uses to assist the second network element to implement flow control includes at least one of the following: a first network element The size of the buffer area, the first network element is based on the size of the buffer provided by the user equipment capability, first The network element requests the second network element to report the request information of the flow control state of the second network element.
  • the processor performs, according to the stored program code in the storage medium, the flow control sent by the second network element connected to the first network element through the forward interface by using at least one of the following manners: Status message: The manner in which the flow control status message is encapsulated in the header of the GPRS tunneling protocol GTP-U based on the user plane; the way of controlling the interface message through the interface.
  • the processor is executed according to the stored program code in the storage medium: the flow control state information includes at least one of the following: the second network element is received from the first network element and successfully sent to the user equipment. Identification information of the data packet of the UE; the expected buffer size of the protocol data unit PDU session of the second network element; the expected buffer size of the data stream of the second network element; the expected buffer size of the radio bearer RB of the second network element The second network element is based on the expected buffer size of the numerology; the second network element is based on the expected buffer size of the network slice; the minimum expected buffer size at the UE level; and the data lost to the first network element in the second network element is notified The identification information of the packet; the second network element congestion indication for indicating the congestion of the second network element; the size of the buffer area of the second network element; and the flow control indication sent by the second network element to the first network element.
  • the processor performs, according to the stored program code in the storage medium, determining a flow control state of the second network element that is connected to the first network element by using the forward interface, and sending the flow control state to the first network element.
  • a flow control status message where the flow control status message carries flow control status information for identifying a flow control state of the second network element, where the first network element and the second network element are divided into different functions, and the flow control status information is used. Perform flow control processing.
  • the processor performs, according to the stored program code in the storage medium, before determining the flow control state of the second network element that is connected to the first network element by using the forward interface, the method further includes: receiving The data sending message sent by the first network element, where the data sending message carries data identification information for identifying data sent by the first network element to the second network element.
  • the processor executes according to the stored program code in the storage medium: the data identification information includes at least one of the following: a sequence of data packets used to identify the sent data. The number is used to identify whether the transmitted data is a packet retransmission indication information of the retransmitted data.
  • the processor performs, according to the stored program code in the storage medium, before determining the flow control state of the second network element that is connected to the first network element by using the forward interface, the method further includes: receiving The first network element sent by the first network element is used to assist the second network element to implement flow control information; and the flow control process is performed according to the received information used by the first network element to assist the second network element to implement flow control.
  • the processor performs, according to the stored program code in the storage medium, the information that the first network element is configured to assist the second network element to implement flow control, and the at least one of the following: the first network element The size of the buffer, the first network element is based on the size of the buffer provided by the user equipment capability, and the first network element requests the second network element to report the request information of the flow control state of the second network element.
  • the processor performs, according to the stored program code in the storage medium, sending the flow control status message to the first network element by encapsulating the flow control status message on the user based on at least one of the following manners: The way of the GPRS tunneling protocol GTP-U header; the way through the control plane interface message.
  • the processor is executed according to the stored program code in the storage medium: the flow control state information includes at least one of the following: the second network element is received from the first network element and successfully sent to the user equipment. Identification information of the data packet of the UE; the expected buffer size of the protocol data unit PDU session of the second network element; the expected buffer size of the data stream of the second network element; the expected buffer size of the radio bearer RB of the second network element The second network element is based on the expected buffer size of the numerology; the second network element is based on the expected buffer size of the network slice; the minimum expected buffer size at the UE level; and the data lost to the first network element in the second network element is notified The identification information of the packet; the second network element congestion indication for indicating the congestion of the second network element; the size of the buffer area of the second network element; and the flow control indication sent by the second network element to the first network element.
  • the flow control state information is exchanged between the first network element and the second network element, and the flow control state information may be used to control the control of the data flow between the first network element and the second network element. Therefore, the problem that the throughput between the first network element and the second network element is freely transmitted and received by the interface is large, but the redundant or invalid data is transmitted, thereby optimizing the throughput performance and having a positive industrial effect. At the same time, throughput optimization is achieved through the interaction of flow control data, which is characterized by simple implementation and strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供了一种流控方法、装置、CU及DU,其中,该方法包括:接收与第一网元通过前向接口连接的第二网元发送的流控状态消息,其中,该流控状态消息中携带有用于标识第二网元的流控状态的流控状态信息,第一网元与第二网元划分有不同功能;根据流控状态信息执行流控处理,通过交互第二网元的流控状态。本发明实施例还提供了一种计算机存储介质。

Description

流控方法、装置、CU、DU和存储介质
本申请基于申请号为201611245343.X、申请日为2016年12月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,具体而言,涉及一种流控方法、装置、集中处理单元(Centralized Unit,简称为CU)及分布式处理单元(Distributed Unit,简称为DU)、和计算机存储介质。
背景技术
5G移动通信中,海量连接,用户更高的速率要求,对长期演进(Long Term Evolution,简称为LTE)中基带处理单元(Base Band Unit,简称为BBU)BBU与射频拉远单元(Radio Remote Unit,简称为RRU)之间的前传接口通用公共无线电接口(Common Public Radio Interface,简称为CPRI)的传输容量提出了极大挑战,由于CPRI接口传输的是经过物理层编码调制等处理后的同相正交(In-Phase Quadrature,简称为IQ)信号,CPRI接口对传输时延迟和带宽都有较大的要求。如果在5G空口速率提升到数十Gbps后,CPRI接口的流量需求将上升到Tbps级别,对网络部署成本和部署难度都带来了巨大的压力。
鉴于此,在相关技术中提出对网络功能依据具体要求进行划分,功能要求不同的网元之间通过前向接口连接,然而如何实现功能要求不同的网元之间的流控,在相关技术中并没有相关解决方案。
发明内容
本发明实施例提供了一种流控方法、装置、CU、DU和计算机存储介质,以至少解决相关技术中如何实现功能要求不同的网元之间的流控的问题。
根据本发明的一个实施例,提供了一种流控方法,包括:接收与第一网元通过前向接口连接的第二网元发送的流控状态消息,其中,所述流控状态消息中携带有用于标识所述第二网元的流控状态的流控状态信息;根据所述流控状态信息执行流控处理。
根据本发明的另一方面,提供了一种流控方法,包括:确定与第一网元通过前向接口连接的第二网元的流控状态;向所述第一网元发送流控状态消息,其中,所述流控状态消息中携带有用于标识所述第二网元的所述流控状态的流控状态信息,所述流控状态信息用于执行流控处理。
可选地,在确定与所述第一网元通过所述前向接口通信的所述第二网元的所述流控状态之前,还包括:接收所述第一网元发送的数据发送消息,其中,所述数据发送消息中携带数据标识信息,其中,所述数据标识用于标识所述第一网元向所述第二网元发送的数据。
可选地,所述数据标识信息包括以下至少之一:用于标识发送的所述数据的数据包序列号,用于标识发送的所述数据是否为重传数据的包重传指示信息。
可选地,在确定与所述第一网元通过所述前向接口通信的所述第二网元的所述流控状态之前,还包括:接收所述第一网元发送的所述第一网元用于辅助所述第二网元实现流控的信息;根据接收的所述第一网元用于辅助所述第二网元实现流控的信息执行流控处理。
可选地,所述第一网元用于辅助所述第二网元实现流控的信息包括以下至少之一:所述第一网元的缓存区大小,所述第一网元基于用户设备能 力提供的缓存区大小,所述第一网元请求所述第二网元上报所述第二网元的流控状态的请求信息。
可选地,通过以下方式至少之一,向所述第一网元发送所述流控状态消息:将所述流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
可选地,所述流控状态信息包括以下至少之一:所述第二网元从所述第一网元接收到并成功发送给用户设备UE的数据包的标识信息;所述第二网元的协议数据单元PDU会话的期望缓存区大小;所述第二网元的数据流的期望缓存区大小;所述第二网元的无线承载RB的期望缓存区大小;所述第二网元基于numerology的期望缓存区大小;所述第二网元基于网络切片的期望缓存区大小;UE级别的最小的期望缓存区大小;通知给所述第一网元在所述第二网元丢失的数据包的标识信息;用于指示所述第二网元拥塞的第二网元拥塞指示;所述第二网元总体可用缓存区大小;所述第二网元发送给所述第一网元的流控指示。
根据本发明的一方面,提供了一种流控装置,包括:第一接收模块,配置为接收与第一网元通过前向接口连接的第二网元发送的流控状态消息,其中,所述流控状态消息中携带有用于标识所述第二网元的流控状态的流控状态信息;第一处理模块,用于根据所述流控状态信息执行流控处理。
可选地,该装置还包括:第一发送模块,用于向所述第二网元发送数据发送消息,其中,所述数据发送消息中携带有用于标识所述第一网元向所述第二网元数据标识信息,其中,所述数据标识用于标识所述第一网元向所述第二网元发送的数据。
可选地,该装置还包括:第二发送模块,用于向所述第二网元发送所述第一网元用于辅助所述第二网元实现流控的信息。
可选地,所述第一接收模块,还用于通过以下方式至少之一,接收与所述第一网元通过所述前向接口通信的所述第二网元发送的所述流控状态消息:将所述流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
根据本发明的另一方面,提供了一种集中式处理单元CU,包括上述任一项所述的流控装置。
根据本发明的一方面,提供了一种流控装置,包括:确定模块,配置为确定与第一网元通过前向接口连接的第二网元的流控状态;第三发送模块,配置为向所述第一网元发送流控状态消息,其中,所述流控状态消息中携带有用于标识所述第二网元的所述流控状态的流控状态信息,所述流控状态信息用于执行流控处理。
可选地,该装置还包括:第二接收模块,配置为接收所述第一网元发送的数据发送消息,其中,所述数据发送消息中携带有用于标识所述第一网元向所述第二网元数据标识信息,其中,所述数据标识用于标识所述第一网元向所述第二网元发送的数据。
可选地,该装置还包括:第三接收模块,配置为接收所述第一网元发送的所述第一网元用于辅助所述第二网元实现流控的信息;第二处理模块,配置为根据接收的所述第一网元用于辅助所述第二网元实现流控的信息执行流控处理。
可选地,所述第三发送模块,还配置为通过以下方式至少之一,向所述第一网元发送所述流控状态消息:将所述流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
根据本发明的另一方面,提供了一种分布式处理单元DU,包括上述任一项所述的装置。
根据本发明实施例的再一个方面,提供了一种计算机存储介质,所述 计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述一个或多个技术方案提供的流控方法。
在本发明实施例采用技术方案中:接收与第一网元通过前向接口连接的第二网元发送的流控状态消息,其中,所述流控状态消息中携带有用于标识所述第二网元的流控状态的流控状态信息;根据所述流控状态信息执行流控处理,通过交互第二网元的流控状态,实现了通过前向接口进行通信的第一网元与第二网元之间的流控处理,有效地解决了相关技术中如何实现功能要求不同的网元之间的流控的问题,从而达到依据合理流控保证最优吞吐性能的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例的一种流控方法的移动终端的硬件结构框图;
图2是本发明实施例的流控方法一的流程图;
图3是本发明实施例的流控方法二的流程图;
图4为本发明实施例提供的第一网元与第二网元间的fronthaul接口的示意图;
图5为本发明实施例的第一网元与第二网元之间可能的功能划分图;
图6为本发明可选实施例提供的第一网元与第二网元间实现流控的流程示意图一;
图7为本发明可选实施例提供的第一网元与第二网元间实现流控的流程示意图二;
图8为本发明可选实施例提供的第一网元与第二网元间实现流控的流程示意图三;
图9为本发明可选实施例提供的第一网元与第二网元间实现流控的流程示意图四;
图10是本发明实施例的流控装置一的结构框图;
图11是本发明实施例的流控装置一的可选结构框图一;
图12是本发明实施例的流控装置一的可选结构框图二;
图13是本发明实施例提供的一种集中式处理单元CU;
图14是本发明实施例提供的一种流控装置二的结构框图;
图15是本发明实施例的流控装置二的可选结构框图一;
图16是本发明实施例的流控装置二的可选结构框图二;
图17是本发明实施例提供的分布式处理单元DU的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在实现流控的移动终端上为例,图1是本发明实施例的一种流控方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图1中所示更多或 者更少的组件,或者具有与图1所示不同的配置。
存储器104可配置为存储应用软件的软件程序以及模块,如本发明实施例中的流控方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106配置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的流控方法,图2是本发明实施例的流控方法一的流程图,如图2所示,该流程包括如下步骤:
步骤S202,接收与第一网元通过前向接口连接的第二网元发送的流控状态消息,其中,流控状态消息中携带有用于标识第二网元的流控状态的流控状态信息;
步骤S204,根据流控状态信息执行流控处理。
通过上述步骤,通过交互第二网元的流控状态,实现了通过前向接口进行通信的第一网元与第二网元之间的流控处理,有效地解决了相关技术中如何实现功能要求不同的网元之间的流控的问题,从而达到依据合理流控保证最优吞吐性能的效果。
在一些实施例中,所述第一网元和所述第二网元是通过X2接口连接的两个网元,则此时,所述第一网元和所述第二网元可均为基站,例如,演进型基站(eNB)。
在另一些实施例中,第一网元与第二网元可划分有不同功能,例如,所述第一网元和所述第二网元是通过S1接口连接的两个网元,例如,第一网元可为基站且第二网元可为网关,或者,所述第一网元为网元且所述第二网元为基站。
可选地,在接收与第一网元通过前向接口连接的第二网元发送的流控状态消息之前,还可以包括:向第二网元发送数据发送消息,其中,数据发送消息中携带有用于标识第一网元向第二网元发送的数据的数据标识信息。其中,上述数据标识信息可以包括以下至少之一:用于标识发送的数据的数据包序列号,用于标识发送的数据是否为重传数据的包重传指示信息。
可选地,在接收与第一网元通过前向接口连接的第二网元发送的流控状态消息之前,还可以包括:向第二网元发送第一网元用于辅助第二网元实现流控的信息。其中,上述第一网元用于辅助第二网元实现流控的信息可以包括以下至少之一:第一网元的缓存区大小,第一网元基于用户设备能力提供的缓存区大小,第一网元请求第二网元上报第二网元的流控状态的请求信息。
在本实施例中素数缓存区大小,可包括:缓存区可提供的缓存容量。
接收与第一网元通过前向接口连接的第二网元发送的流控状态消息时,可以采用多种方式,例如,可以通过以下方式至少之一,接收与第一网元通过前向接口连接的第二网元发送的流控状态消息:将流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
需要说明的是,上述流控状态信息可以包括多种,例如,可以包括以下至少之一:第二网元从第一网元接收到并成功发送给用户设备UE的数据包的标识信息;第二网元的协议数据单元PDU会话的期望缓存区大小;第二网元的数据流的期望缓存区大小;第二网元的无线承载RB的期望缓存区大小;第二网元基于numerology(物理层的参数配置)的期望缓存区大小;第二网元基于网络切片的期望缓存区大小;UE级别的最小的期望缓存区大小;通知给第一网元在第二网元丢失的数据包的标识信息;用于指示第二网元拥塞的第二网元拥塞指示;第二网元总体可用缓存区大小;第二网元发送给第一网元的流控指示。
图3是本发明实施例的流控方法二的流程图,如图3所示,该流程包括:
步骤S302,确定与第一网元通过前向接口连接的第二网元的流控状态;
步骤S304,向第一网元发送流控状态消息,其中,流控状态消息中携带有用于标识第二网元的流控状态的流控状态信息,第一网元与第二网元划分有不同功能,流控状态信息用于执行流控处理。
通过上述步骤,通过交互第二网元的流控状态,实现了通过前向接口进行通信的第一网元与第二网元之间的流控处理,有效地解决了相关技术中如何实现功能要求不同的网元之间的流控的问题,从而达到依据合理流控保证最优吞吐性能的效果。
可选地,在确定与第一网元通过前向接口连接的第二网元的流控状态之前,还可以包括:接收第一网元发送的数据发送消息,其中,数据发送消息中携带有用于标识第一网元向第二网元发送的数据的数据标识信息。其中,上述数据标识信息可以包括以下至少之一:用于标识发送的数据的数据包序列号,用于标识发送的数据是否为重传数据的包重传指示信息。
可选地,在确定与第一网元通过前向接口连接的第二网元的流控状态 之前,还可以包括:接收第一网元发送的第一网元用于辅助第二网元实现流控的信息;根据接收的第一网元用于辅助第二网元实现流控的信息执行流控处理。其中,上述第一网元用于辅助第二网元实现流控的信息包括以下至少之一:第一网元的缓存区大小,第一网元基于用户设备能力提供的缓存区大小,第一网元请求第二网元上报第二网元的流控状态的请求信息。
对应地,向第一网元发送流控状态消息也可以采用多种方式,例如,可以通过以下方式至少之一,向第一网元发送流控状态消息:将流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
需要说明的是,上流控状态信息可以包括多种,例如,可以包括以下至少之一:第二网元从第一网元接收到并成功发送给用户设备UE的数据包的标识信息;第二网元的协议数据单元PDU会话的期望缓存区大小;第二网元的数据流的期望缓存区大小;第二网元的无线承载RB的期望缓存区大小;第二网元基于numerology的期望缓存区大小;第二网元基于网络切片的期望缓存区大小;UE级别的最小的期望缓存区大小;通知给第一网元在第二网元丢失的数据包的标识信息;用于指示第二网元拥塞的第二网元拥塞指示;第二网元总体可用缓存区大小;第二网元发送给第一网元的流控指示。
鉴于相关技术中所存在的上述问题,在5G中,重新定义前传接口的划分方式,在前传接口的划分方式中,从传输容量、传输时延、方便部署等几方面进行考虑,比如,考虑到非理想(fronthaul)传输,将时延不敏感的网络功能放在第一网元(比如,CU中),将时延敏感的网络功能放在第二网元(比如,DU中),第一网元与第二网元之间通过理想和/或非理想fronthaul进行传输,该接口被称为前传接口,图4为本发明实施例提供的第一网元与第二网元间的fronthaul接口的示意图,如图4所示,第一网元 与第二网元之间通过前传fronthaul接口进行信息交互,针对不同的时延,这里的fronthaul可以是理想fronthaul或非理想fronthaul。理想fronthaul的传输时延比较小,比如,大概为几十到几百微秒,非理想fronthaul的传输时延相对较大,比如为毫秒级,由于理想和非理想fronthaul的区分,导致第一网元、第二网元有不同的功能划分。
第一协议实体(例如,无线资源控制(Radio Resource Control,简称为RRC)实体)可以位于第一网元,第一协议实体进行控制信令的生成,维护无线承载的建立和/或修改和/或释放,维护第二协议实体、第三协议实体、第四协议实体和物理层的参数更新。第二协议实体功能与LTE系统的分组数据汇聚协议(Packet Data Convergence Protocol,简称为PDCP)功能类似及其增强,第三协议实体功能与LTE系统的无线链路控制(Radio Link Control,简称为RLC)功能类似及其增强,第四协议实体功能与LTE系统的媒体接入控制(Media Access Control,简称为MAC)功能及其增强。第二网元包括至少以下之一:第二协议实体、第三协议实体、第四协议实体、物理层、射频单元。第一网元与第二网元之间通过fronthaul接口通信。
图5为本发明实施例的第一网元与第二网元之间可能的功能划分图,如图5所示,可能的功能划分方案如下:
Option 1(RRC/PDCP分离,类似1A结构):
本选项的功能分离类似于双连接(DC)中的1A结构。RRC位于CU之内,PDCP、RLC、MAC、PHY及RF等功能均位于DU。即整个UP都位于DU。
Option2(PDCP/RLC分离):
本选项的功能分离类似于双连接(DC)中的3C结构。RRC和PDCP位于CU之内,RLC、MAC、PHY及RF等功能均位于DU。
Option 3(RLC高层/低层分离):
底层RLC(RLC的部分功能)、MAC、PHY以及RF部分位于DU之内,RRC,PDCP和高层RLC(RLC的部分功能)等功能均位于CU。
Option 4(RLC-MAC分离):
MAC、PHY以及RF部分位于DU之内,RRC,PDCP和RLC等功能均位于CU。
Option 5(MAC内部分离):
部分MAC功能(如HARQ)、PHY及RF部分均位于DU,其它上层功能位于CU。
Option 6(MAC-PHY分离):
PHY以及RF部分位于DU之内,MAC、PDCP和RLC等功能均位于CU。
Option 7(PHY内部分离):
部分PHY功能(如HARQ)、PHY及RF部分均位于DU,其它上层功能位于CU。
Option 8(PHY-RF分离):
RF部分位于DU之内,其他上层功能均位于CU。
在CU-DU分离的网络架构下,CU下可能连接多个DU。当CU的数据需要通过DU下发给UE的时候,可以通过多个DU实现。在CU侧路由选择中,数据流在CU PDCP层或RLC层被分割,通过不同分支分流到不同DU,这种情况下需要控制流向不同DU的数据量,也就是需要进行合理的流控制策略来保证最优的吞吐性能。
基于上述需要,在本实施例中,提供了一种流控实现方法,包括:
步骤1:第一网元给第二网元发送“数据发送消息”,将通过NGx-U发送的数据包序列号告诉第二网元,第二网元保存该信息,可以用于前传接口上数据包丢失检测。可选地,还可以包含:包重传指示,用于指示当前 发送的数据包是否是重传数据包;
步骤2:第二网元给第一网元发送“流控状态消息”,包括但不限于以下一种或多种信息:
第二网元从第一网元接收到的数据包并成功发送给用户设备(User Equipment,简称为UE)的最高数据包的对应序列号;
对应PDU会话(session)/数据流(data flow)/无线承载(Radio Bearer,简称为RB)的期望缓存区尺寸(desired buffer size),以BYTE为单位;
UE级别的最小的期望缓存尺寸(desired buffer size),以BYTE为单位;
通知给第一网元的在第二网元丢失的NGx-U数据包的信息,比如可以以丢失数据包的序列号范围来表示;
第二网元拥塞指示;
第二网元总体可用缓存大小;
第二网元发送给第一网元的流控指示:减少数据发送、增加数据发送、维持等;
可选地,在该步骤2之前,第二网元还可以接收第一网元发送的第一网元侧的用于流控的信息,包括但不限于以下一种或多种信息:第一网元自身的缓存区大小(这里的缓存区可以是以下一种或多种:UE/PDU session/data flow/RB级别的当前已用缓存区大小);第一网元请求第二网元上报DU侧流控状态消息的指示。
可选地,上述第一网元可以为CU,上述第二网元可以为DU。
可选地,上述数据包根据不同的CU-DU分割方式,包括但不限于:第二协议实体数据包,第三协议实体数据包。
可选地,上述数据包序列号可以是以下之一:PDCP SN号,RLC SN号,预定定义的用户面接口序列号。
可选地,上述第一网元和上述第二网元之间的用户面接口可以基于用 户层面的GPRS隧道协议(General Packet Radio Service Tunnelling Protocol for the User Plane,简称为GTP-U)传输协议,流控消息可以封装在GTP-U头里。
可选地,第一网元和第二网元之间的流控消息也可以通过NGx-C接口消息实现。
通过上述实施例提供的流控实现方法,在上述第一网元和第二网元间的接口上实现流控管理,能利用合理的流控制策略来保证最优的吞吐性能,以及对于重传数据包进行指示用于区别处理。
结合上述实施例,下面对本发明可选实施例进行说明。
可选实施例1
图6为本发明可选实施例提供的第一网元与第二网元间实现流控的流程示意图一,如图6所示,第一网元为CU,第二网元为DU,CU和DU之间的接口称为NGx接口,NGx-C为前传接口控制面,NGx-U为前传接口用户面。
步骤1或1a:CU给DU发送“数据发送消息”,将当前NGx-U发送的数据包序列号信息告诉DU,可以是PDCP SN号或者新定义序列号,DU要记住发送的数据包的序列号,可以用于前传接口上数据包丢失检测。
步骤2或2a:DU给CU发送“流控状态消息”,流控消息的触发由DU决定。如果有多个DU连接到同一个CU为UE服务,则多个DU向CU发送流控状态消息。该消息包括但不限于以下一种或多种信息:
DU从CU接收到的PDCP PDU并成功发送给UE的最高PDCP PDU的SN号;
对应PDU session或data flow或RB的期望缓存区尺寸(desired buffer size),以BYTE为单位;
UE级别的最小的期望缓存尺寸(desired buffer size),以BYTE为单位;
通知给CU,在DU丢失的NGx-U数据包相关信息;
DU拥塞指示;
DU总体可用缓存大小;
流控指示:减少数据发送、增加数据发送、维持等;
步骤3:CU根据DU发送的流控状态信息进行本地流控管理。
可选实施例2
图7为本发明可选实施例提供的第一网元与第二网元间实现流控的流程示意图二,如图7所示。第一网元为CU,第二网元为DU,CU和DU之间的接口称为NGx接口,NGx-C为前传接口控制面,NGx-U为前传接口用户面。
步骤1或1a:CU给DU发送“数据发送消息”,将当前NGx-U发送的数据包序列号信息告诉DU,可以是RLC SN号或者新定义序列号,DU要记住发送的数据包的序列号,可以用于前传接口上数据包丢失检测。还可以包含:包重传指示,用于指示这个数据包是否是重传RLC PDU。
步骤2或2a:DU给CU发送“流控状态消息”,流控消息的触发由DU决定。如果有多个DU连接到同一个CU为UE服务,则多个DU向CU发送流控状态消息。该消息包括但不限于以下一种或多种信息:
DU从CU接收到的RLC PDU并成功发送给UE的最高RLC PDU的SN号;
对应PDU会话(session)或数据流(data flow)或RB的期望缓存区尺寸(desired buffer size),以BYTE为单位;
UE级别的最小的期望缓存尺寸(desired buffer size),以字节(BYTE)为单位;
通知给CU,在DU丢失的NGx-U数据包相关信息;
DU拥塞指示;
DU总体可用缓存大小;
流控指示:减少数据发送、增加数据发送、维持等;
步骤3:CU根据DU发送的流控状态信息进行本地流控管理。
可选实施例3
图8为本发明可选实施例提供的第一网元与第二网元间实现流控的流程示意图三,如图8所示,第一网元为CU,第二网元为DU,CU和DU之间的接口称为NGx接口,NGx-C为前传接口控制面,NGx-U为前传接口用户面。
步骤1或1a:CU给DU发送“数据发送消息”,将当前NGx-U发送的数据包序列号信息告诉DU,可以是PDCP SN号或者新定义序列号,DU要记住发送的数据包的序列号,可以用于前传接口上数据包丢失检测。
步骤2或2a:DU可以接收CU发送的CU侧的用于流控的信息,包括但不限于以下一种或多种信息:CU自身的缓存区大小(这里的缓存区可以是以下一种或多种:UE/PDU session/data flow/RB级别的当前已用缓存区大小);CU请求DU上报DU侧流控状态信息的指示。
步骤3或3a:DU可以根据CU发送的流控信息进行本地处理。同时DU也可以给CU发送“流控状态消息”,包括但不限于以下一种或多种信息:
DU从CU接收到的PDCP PDU并成功发送给UE的最高PDCP PDU的SN号;
对应PDU session或data flow或RB的期望缓存区尺寸(desired buffer size),以BYTE为单位;
UE级别的最小的期望缓存尺寸(desired buffer size),以BYTE为单位;
通知给CU,在DU丢失的NGx-U数据包相关信息;
DU拥塞指示;
DU总体可用缓存大小;
流控指示:减少数据发送、增加数据发送、维持等;
步骤4:CU根据DU发送的流控状态信息进行本地流控管理。
可选实施例4
图9为本发明可选实施例提供的第一网元与第二网元间实现流控的流程示意图四,如图9所示,第一网元为CU,第二网元为DU,CU和DU之间的接口称为NGx接口,NGx-C为前传接口控制面,NGx-U为前传接口用户面。
步骤1或1a:CU给DU发送“数据发送消息”,将当前NGx-U发送的数据包序列号信息告诉DU,可以是RLC SN号或者新定义序列号,DU要记住发送的数据包的序列号,可以用于前传接口上数据包丢失检测。还可以包含:包重传指示,用于指示这个数据包是否是重传RLC PDU。
步骤2或2a:DU可以接收CU发送的CU侧的用于流控的信息,包括但不限于以下一种或多种信息:CU自身的缓存区大小(这里的缓存区可以是以下一种或多种:UE/PDU session/data flow/RB级别的当前已用缓存区大小);CU请求DU上报DU侧流控状态信息的指示。
步骤3或3a:DU可以根据CU发送的流控信息进行本地处理。同时DU也可以给CU发送“流控状态消息”,包括但不限于以下一种或多种信息:
DU从CU接收到的RLC PDU并成功发送给UE的最高RLC PDU的SN号;
对应PDU session或data flow或RB的期望缓存区尺寸(desired buffer size),以BYTE为单位;
UE级别的最小的期望缓存尺寸(desired buffer size),以BYTE为单位;
通知给CU,在DU丢失的NGx-U数据包相关信息;
DU拥塞指示;
DU总体可用缓存大小;
流控指示:减少数据发送、增加数据发送、维持等;
步骤4:CU根据DU发送的流控状态信息进行本地流控管理。
需要说明的是,在上述可选实施例中,CU-DU之间用户面接口可以基于GTP-U传输协议,流控消息可以封装在GTP-U头里。流控消息也可以通过控制面接口消息实现。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
实施例2
在本实施例中还提供了一种流控装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图10是本发明实施例的流控装置一的结构框图,如图10所示,该装置包括:第一接收模块102和第一处理模块104,下面对该装置进行说明。
第一接收模块102,配置为接收与第一网元通过前向接口连接的第二网元发送的流控状态消息,其中,流控状态消息中携带有用于标识第二网元 的流控状态的流控状态信息;第一处理模块104,连接至上述第一接收模块102,用于根据流控状态信息执行流控处理。在有些实施例中,,第一网元与第二网元划分有不同功能。
图11是本发明实施例的流控装置一的可选结构框图一,如图11所示,该装置除包括图10所示的所有模块外,还包括:第一发送模块112,下面对该装置进行说明。
第一发送模块112,连接至上述第一接收模块102,用于向第二网元发送数据发送消息,其中,数据发送消息中携带有用于标识第一网元向第二网元发送的数据的数据标识信息。
图12是本发明实施例的流控装置一的可选结构框图二,如图12所示,该装置除包括图10所示的所有模块外,还包括:第二发送模块122,下面对该装置进行说明。
第二发送模块122,连接至上述第一接收模块102,配置为向第二网元发送第一网元用于辅助第二网元实现流控的信息。
可选地,上述第一接收模块102,还配置为通过以下方式至少之一,接收与第一网元通过前向接口连接的第二网元发送的流控状态消息:将流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
图13是本发明实施例提供的一种集中式处理单元CU,如图13所示,该CU 130包括上述任一项的流控装置一132。
在本实施例中,所述CU除了包括上述流控装置以外,还可包括存储器等,所述存储器可与所述流控装置连接,可用于存储信息,例如,还可用于所述流控装置存储各种在不同网元之间交互的信息。
图14是本发明实施例提供的一种流控装置二的结构框图,如图14所示,该装置包括:确定模块142和第三发送模块144,下面对该装置进行说 明。
确定模块142,配置为确定与第一网元通过前向接口连接的第二网元的流控状态;第三发送模块144,连接至上述确定模块142,配置为向第一网元发送流控状态消息,其中,流控状态消息中携带有用于标识第二网元的流控状态的流控状态信息,流控状态信息用于执行流控处理。在有些实施例中,,第一网元与第二网元划分有不同功能。
图15是本发明实施例的流控装置二的可选结构框图一,如图15所示,该装置除包括图14所示的所有模块外,还包括:第二接收模块152,下面对该第二接收模块152进行说明。
第二接收模块152,连接至上述确定模块142,配置为接收第一网元发送的数据发送消息,其中,数据发送消息中携带有用于标识第一网元向第二网元发送的数据的数据标识信息。
图16是本发明实施例的流控装置二的可选结构框图二,如图16所示,该装置除包括图14所示的所有模块外,还包括:第三接收模块162和第二处理模块164,下面对该可选结构进行说明。
第三接收模块162,配置为接收第一网元发送的第一网元用于辅助第二网元实现流控的信息;第二处理模块164,连接至上述第三接收模块162和确定模块142,配置为根据接收的第一网元用于辅助第二网元实现流控的信息执行流控处理。
可选地,上述第三发送模块144,还配置为通过以下方式至少之一,向第一网元发送流控状态消息:将流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
图17是本发明实施例提供的分布式处理单元DU的结构框图,如图17所示,该DU 170包括上述任一项的流控装置二172。
在本实施例中,所述DU除了包括上述流控装置以外,还可包括存储 器等,所述存储器可与所述流控装置连接,可用于存储信息,例如,还可用于所述流控装置存储各种在不同网元之间交互的信息。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种计算机存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码等计算机可执行指令:
S1,接收与第一网元通过前向接口连接的第二网元发送的流控状态消息,其中,流控状态消息中携带有用于标识第二网元的流控状态的流控状态信息,第一网元与第二网元划分有不同功能;
S2,根据流控状态信息执行流控处理。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
在接收与第一网元通过前向接口连接的第二网元发送的流控状态消息之前,还包括:
S1,向第二网元发送数据发送消息,其中,数据发送消息中携带有用于标识第一网元向第二网元发送的数据的数据标识信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,数据标识信息包括以下至少之一:用于标识发送的数据的数据包序列号,用于标识发送的数据是否为重传数据的包重传指示信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
在接收与第一网元通过前向接口连接的第二网元发送的流控状态消息之前,还包括:
S1,向第二网元发送第一网元用于辅助第二网元实现流控的信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一网元用于辅助第二网元实现流控的信息包括以下至少之一:第一网元的缓存区大小,第一网元基于用户设备能力提供的缓存区大小,第一网元请求第二网元上报第二网元的流控状态的请求信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,通过以下方式至少之一,接收与第一网元通过前向接口连接的第二网元发送的流控状态消息:将流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,流控状态信息包括以下至少之一:第二网元从第一网元接收到并成功发送给用户设备UE的数据包的标识信息;第二网元的协议数据单元PDU会话的期望缓存区大小;第二网元的数据流的期望缓存区大小;第二网元的无线承载RB的期望缓存区大小;第二网元基于numerology的期望缓存区大小;第二网元基于网络切片的期望缓存区大小;UE级别的最小的期望缓存区大小;通知给第一网元在第二网元丢失的数据包的标识信息;用于指示第二网元拥塞的第二网元拥塞指示;第二网元总体可用缓存区大小;第二网元发送给第一网元的流控指示。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
S1,确定与第一网元通过前向接口连接的第二网元的流控状态;
S2,向第一网元发送流控状态消息,其中,流控状态消息中携带有用于标识第二网元的流控状态的流控状态信息,第一网元与第二网元划分有不同功能,流控状态信息用于执行流控处理。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
在确定与第一网元通过前向接口连接的第二网元的流控状态之前,还包括:
S1,接收第一网元发送的数据发送消息,其中,数据发送消息中携带有用于标识第一网元向第二网元发送的数据的数据标识信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,数据标识信息包括以下至少之一:用于标识发送的数据的数据包序列号,用于标识发送的数据是否为重传数据的包重传指示信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
在确定与第一网元通过前向接口连接的第二网元的流控状态之前,还包括:
S1,接收第一网元发送的第一网元用于辅助第二网元实现流控的信息;根据接收的第一网元用于辅助第二网元实现流控的信息执行流控处理。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一网元用于辅助第二网元实现流控的信息包括以下至少之一:第一网元的缓存区大小,第一网元基于用户设备能力提供的缓存区大小,第一网元请求第二网元上报第二网元的流控状态的请求信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,通过以下方式至少之一,向第一网元发送流控状态消息:将流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,流控状态信息包括以下至少之一:第二网元从第一网元接收到并成功发送给用户设备UE的数据包的标识信息;第二网元的协议数据单元PDU会话的期望缓存区大小;第二网元的数据流的期望缓存区大小;第二网元的无线承载RB的期望缓存区大小;第二网元基于numerology的期望缓存区大小;第二网元基于网络切片的期望缓存区大小;UE级别的最小的期望缓存区大小;通知给第一网元在第二网元丢失的数据包的标识信息; 用于指示第二网元拥塞的第二网元拥塞指示;第二网元总体可用缓存区大小;第二网元发送给第一网元的流控指示。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:接收与第一网元通过前向接口连接的第二网元发送的流控状态消息,其中,流控状态消息中携带有用于标识第二网元的流控状态的流控状态信息,第一网元与第二网元划分有不同功能;根据流控状态信息执行流控处理。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在接收与第一网元通过前向接口连接的第二网元发送的流控状态消息之前,还包括:向第二网元发送数据发送消息,其中,数据发送消息中携带有用于标识第一网元向第二网元发送的数据的数据标识信息。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:数据标识信息包括以下至少之一:用于标识发送的数据的数据包序列号,用于标识发送的数据是否为重传数据的包重传指示信息。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在接收与第一网元通过前向接口连接的第二网元发送的流控状态消息之前,还包括:向第二网元发送第一网元用于辅助第二网元实现流控的信息。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一网元用于辅助第二网元实现流控的信息包括以下至少之一:第一网元的缓存区大小,第一网元基于用户设备能力提供的缓存区大小,第一 网元请求第二网元上报第二网元的流控状态的请求信息。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:通过以下方式至少之一,接收与第一网元通过前向接口连接的第二网元发送的流控状态消息:将流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:流控状态信息包括以下至少之一:第二网元从第一网元接收到并成功发送给用户设备UE的数据包的标识信息;第二网元的协议数据单元PDU会话的期望缓存区大小;第二网元的数据流的期望缓存区大小;第二网元的无线承载RB的期望缓存区大小;第二网元基于numerology的期望缓存区大小;第二网元基于网络切片的期望缓存区大小;UE级别的最小的期望缓存区大小;通知给第一网元在第二网元丢失的数据包的标识信息;用于指示第二网元拥塞的第二网元拥塞指示;第二网元总体可用缓存区大小;第二网元发送给第一网元的流控指示。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定与第一网元通过前向接口连接的第二网元的流控状态;向第一网元发送流控状态消息,其中,流控状态消息中携带有用于标识第二网元的流控状态的流控状态信息,第一网元与第二网元划分有不同功能,流控状态信息用于执行流控处理。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在确定与第一网元通过前向接口连接的第二网元的流控状态之前,还包括:接收第一网元发送的数据发送消息,其中,数据发送消息中携带有用于标识第一网元向第二网元发送的数据的数据标识信息。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:数据标识信息包括以下至少之一:用于标识发送的数据的数据包序列 号,用于标识发送的数据是否为重传数据的包重传指示信息。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在确定与第一网元通过前向接口连接的第二网元的流控状态之前,还包括:接收第一网元发送的第一网元用于辅助第二网元实现流控的信息;根据接收的第一网元用于辅助第二网元实现流控的信息执行流控处理。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一网元配置为辅助第二网元实现流控的信息包括以下至少之一:第一网元的缓存区大小,第一网元基于用户设备能力提供的缓存区大小,第一网元请求第二网元上报第二网元的流控状态的请求信息。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:通过以下方式至少之一,向第一网元发送流控状态消息:将流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;通过控制面接口消息的方式。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:流控状态信息包括以下至少之一:第二网元从第一网元接收到并成功发送给用户设备UE的数据包的标识信息;第二网元的协议数据单元PDU会话的期望缓存区大小;第二网元的数据流的期望缓存区大小;第二网元的无线承载RB的期望缓存区大小;第二网元基于numerology的期望缓存区大小;第二网元基于网络切片的期望缓存区大小;UE级别的最小的期望缓存区大小;通知给第一网元在第二网元丢失的数据包的标识信息;用于指示第二网元拥塞的第二网元拥塞指示;第二网元总体可用缓存区大小;第二网元发送给第一网元的流控指示。
可选地,本实施例中的具体可选实施例可以参考上述实施例及可选实施方式中所描述的可选实施例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤 可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的可选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。
工业实用性
本发明实施例中第一网元和第二网元之间会交互流控状态信息,而该流控状态信息可以用于控制第一网元和第二网元之间的数据流的控制,从而减少第一网元和第二网元之间接口随意收发数据流导致的吞吐量大但是传输的冗余或无效数据多的问题,从而优化了吞吐性能,具有积极的工业效果。与此同时,通过流控数据的交互就实现了吞吐量优化,具有实现简单且在工业上可推广性强的特点。

Claims (25)

  1. 一种流控方法,包括:
    接收与第一网元通过前向接口连接的第二网元发送的流控状态消息,其中,所述流控状态消息中携带有用于标识所述第二网元的流控状态的流控状态信息;
    根据所述流控状态信息执行流控处理。
  2. 根据权利要求1所述的方法,其中,在接收与所述第一网元通过所述前向接口通信的所述第二网元发送的所述流控状态消息之前,还包括:
    向所述第二网元发送数据发送消息,其中,所述数据发送消息中携带有数据标识信息,其中,所述数据标识用于标识所述第一网元向所述第二网元发送的数据。
  3. 根据权利要求2所述的方法,其中,所述数据标识信息包括以下至少之一:
    用于标识发送的所述数据的数据包序列号;
    用于标识发送的所述数据是否为重传数据的包重传指示信息。
  4. 根据权利要求1所述的方法,其中,在接收与所述第一网元通过所述前向接口通信的所述第二网元发送的所述流控状态消息之前,还包括:
    向所述第二网元发送所述第一网元用于辅助所述第二网元实现流控的信息。
  5. 根据权利要求4所述的方法,其中,所述第一网元用于辅助所述第二网元实现流控的信息包括以下至少之一:
    所述第一网元的缓存区大小,所述第一网元基于用户设备能力提供的缓存区大小,所述第一网元请求所述第二网元上报所述第二网元 的流控状态的请求信息。
  6. 根据权利要求1所述的方法,其中,通过以下方式至少之一,接收与所述第一网元通过所述前向接口通信的所述第二网元发送的所述流控状态消息:
    将所述流控状态消息封装在基于用户层面的通用分组无线业务GPRS隧道协议GTP-U的头部的方式;
    通过控制面接口消息的方式。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述流控状态信息包括以下至少之一:
    所述第二网元从所述第一网元接收到并成功发送给用户设备UE的数据包的标识信息;
    所述第二网元的协议数据单元PDU会话的期望缓存区大小;
    所述第二网元的数据流的期望缓存区大小;
    所述第二网元的无线承载RB的期望缓存区大小;
    所述第二网元基于物理层的参数配置numerology的期望缓存区大小;
    所述第二网元基于网络切片的期望缓存区大小;
    UE级别的最小的期望缓存区大小;
    通知给所述第一网元在所述第二网元丢失的数据包的标识信息;
    用于指示所述第二网元拥塞的第二网元拥塞指示;
    所述第二网元总体可用缓存区大小;
    所述第二网元发送给所述第一网元的流控指示。
  8. 一种流控方法,其中,包括:
    确定与第一网元通过前向接口连接的第二网元的流控状态;
    向所述第一网元发送流控状态消息,其中,所述流控状态消息中携 带有用于标识所述第二网元的所述流控状态的流控状态信息,所述流控状态信息用于执行流控处理。
  9. 根据权利要求8所述的方法,其中,在确定与所述第一网元通过所述前向接口通信的所述第二网元的所述流控状态之前,还包括:
    接收所述第一网元发送的数据发送消息,其中,所述数据发送消息中携带有用于标识所述第一网元向所述第二网元发送的数据的数据标识信息。
  10. 根据权利要求9所述的方法,其中,所述数据标识信息包括以下至少之一:
    用于标识发送的所述数据的数据包序列号,用于标识发送的所述数据是否为重传数据的包重传指示信息。
  11. 根据权利要求8所述的方法,其中,在确定与所述第一网元通过所述前向接口通信的所述第二网元的所述流控状态之前,还包括:
    接收所述第一网元发送的所述第一网元用于辅助所述第二网元实现流控的信息;
    根据接收的所述第一网元用于辅助所述第二网元实现流控的信息执行流控处理。
  12. 根据权利要求11所述的方法,其中,所述第一网元用于辅助所述第二网元实现流控的信息包括以下至少之一:
    所述第一网元的缓存区大小,所述第一网元指示基于用户设备能力给出的缓存区大小,所述第一网元请求所述第二网元上报所述第二网元的流控状态的请求信息。
  13. 根据权利要求8所述的方法,其中,通过以下方式至少之一,向所述第一网元发送所述流控状态消息:
    将所述流控状态消息封装在基于用户层面的通用分组无线业务 GPRS隧道协议GTP-U的头部的方式;
    通过控制面接口消息的方式。
  14. 根据权利要求8至13中任一项所述的方法,其中,所述流控状态信息包括以下至少之一:
    所述第二网元从所述第一网元接收到并成功发送给用户设备UE的数据包的标识信息;
    所述第二网元的协议数据单元PDU会话的期望缓存区大小;
    所述第二网元的数据流的期望缓存区大小;
    所述第二网元的无线承载RB的期望缓存区大小;
    所述第二网元基于物理层的参数配置numerology的期望缓存区大小;
    所述第二网元基于网络切片的期望缓存区大小;
    UE级别的最小的期望缓存区大小;
    通知给所述第一网元在所述第二网元丢失的数据包的标识信息;
    用于指示所述第二网元拥塞的第二网元拥塞指示;
    所述第二网元总体可用缓存区大小;
    所述第二网元发送给所述第一网元的流控指示。
  15. 一种流控装置,包括:
    第一接收模块,配置为接收与第一网元通过前向接口连接的第二网元发送的流控状态消息,其中,所述流控状态消息中携带有用于标识所述第二网元的流控状态的流控状态信息;
    第一处理模块,配置为根据所述流控状态信息执行流控处理。
  16. 根据权利要求15所述的装置,其中,还包括:
    第一发送模块,配置为向所述第二网元发送数据发送消息,其中,所述数据发送消息中携带有数据标识信息,所述数据标识信息用于标 识所述第一网元向所述第二网元发送的数据。
  17. 根据权利要求15所述的装置,其中,还包括:
    第二发送模块,配置为向所述第二网元发送所述第一网元用于辅助所述第二网元实现流控的信息。
  18. 根据权利要求15所述的装置,其中,所述第一接收模块,还用于通过以下方式至少之一,接收与所述第一网元通过所述前向接口通信的所述第二网元发送的所述流控状态消息:
    将所述流控状态消息封装在基于用户层面的通用分组无线业务GPRS隧道协议GTP-U的头部的方式;
    通过控制面接口消息的方式。
  19. 一种集中式处理单元CU,其中,包括:权利要求15至18中任一项所述的流控装置。
  20. 一种流控装置,包括:
    确定模块,配置为确定与第一网元通过前向接口连接的第二网元的流控状态;
    第三发送模块,配置为向所述第一网元发送流控状态消息,其中,所述流控状态消息中携带有用于标识所述第二网元的所述流控状态的流控状态信息,所述流控状态信息用于执行流控处理。
  21. 根据权利要求20所述的装置,其中,还包括:
    第二接收模块,配置为接收所述第一网元发送的数据发送消息,其中,所述数据发送消息中携带有数据标识信息,所述数据标识信息用于标识所述第一网元向所述第二网元发送的数据。
  22. 根据权利要求20所述的装置,其中,还包括:
    第三接收模块,配置为接收所述第一网元发送的所述第一网元用于辅助所述第二网元实现流控的信息;
    第二处理模块,配置为根据接收的所述第一网元用于辅助所述第二网元实现流控的信息执行流控处理。
  23. 根据权利要求20所述的装置,其中,所述第三发送模块,还配置为通过以下方式至少之一,向所述第一网元发送所述流控状态消息:
    将所述流控状态消息封装在基于用户层面的GPRS隧道协议GTP-U的头部的方式;
    通过控制面接口消息的方式。
  24. 一种分布式处理单元DU,包括:权利要求20至23中任一项所述的装置。
  25. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至7或8至14任一项提供的流控方法。
PCT/CN2017/110291 2016-12-29 2017-11-09 流控方法、装置、cu、du和存储介质 WO2018121096A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK17887712.2T DK3565196T3 (da) 2016-12-29 2017-11-09 Strømstryringsfremgangsmåde og -indretning
FIEP17887712.2T FI3565196T3 (fi) 2016-12-29 2017-11-09 Vuonohjausmenetelmä ja -laite
EP17887712.2A EP3565196B1 (en) 2016-12-29 2017-11-09 Flow control method and apparatus
US16/457,581 US11153783B2 (en) 2016-12-29 2019-06-28 Flow control method and apparatus, CU, DU and storage medium
US17/501,541 US11606720B2 (en) 2016-12-29 2021-10-14 Flow control method and apparatus, CU, DU and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611245343.X 2016-12-29
CN201611245343.XA CN108259362B (zh) 2016-12-29 2016-12-29 流控方法、装置、cu及du

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/457,581 Continuation US11153783B2 (en) 2016-12-29 2019-06-28 Flow control method and apparatus, CU, DU and storage medium

Publications (1)

Publication Number Publication Date
WO2018121096A1 true WO2018121096A1 (zh) 2018-07-05

Family

ID=62706929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110291 WO2018121096A1 (zh) 2016-12-29 2017-11-09 流控方法、装置、cu、du和存储介质

Country Status (6)

Country Link
US (2) US11153783B2 (zh)
EP (1) EP3565196B1 (zh)
CN (2) CN113596913A (zh)
DK (1) DK3565196T3 (zh)
FI (1) FI3565196T3 (zh)
WO (1) WO2018121096A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202419A (ja) * 2019-06-06 2020-12-17 日本電気株式会社 無線基地局、無線通信システム、フロー制御方法及びプログラム
RU2766428C1 (ru) * 2018-08-08 2022-03-15 Телефонактиеболагет Лм Эрикссон (Пабл) Способ управления потоками данных в сетях связи с интегрированными доступом и транзитными соединениями

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111642030B (zh) * 2017-03-16 2022-05-03 中兴通讯股份有限公司 一种用户信息管理的方法和系统
CN110366202B (zh) * 2018-03-26 2022-07-26 中兴通讯股份有限公司 空口链路拥塞反馈方法、装置及设备、存储介质
CN109586886B (zh) * 2019-01-10 2022-03-01 武汉虹信科技发展有限责任公司 一种数据传输系统
US20220078868A1 (en) * 2019-02-14 2022-03-10 Ntt Docomo, Inc. Network node
US11296906B2 (en) * 2019-04-10 2022-04-05 Connections Design, LLC Wireless programming device and methods for machine control systems
CN112187414B (zh) 2019-07-04 2022-05-24 华为技术有限公司 指示数据传输情况的方法和装置
CN110602715B (zh) * 2019-09-25 2021-07-20 北京邮电大学 无线接入网络以及基于最小生成树的基带功能部署方法
US20230344772A1 (en) * 2020-06-29 2023-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Distributed unit, central unit and methods performed therein
CN113438728B (zh) * 2021-07-05 2023-04-07 上海中兴易联通讯股份有限公司 一种用于5g nr用户面数据量信息同步的方法和系统
WO2023158351A1 (en) * 2022-02-18 2023-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Determining packet loss in a fronthaul link
CN115884258B (zh) * 2022-12-02 2023-09-15 深圳市领创星通科技有限公司 一种数据传输方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909508A (zh) * 2006-08-23 2007-02-07 华为技术有限公司 端口流控方法
CN1937586A (zh) * 2006-09-21 2007-03-28 华为技术有限公司 一种实现流控信息传递的装置及方法
US20070097864A1 (en) * 2005-11-01 2007-05-03 Cisco Technology, Inc. Data communication flow control
CN101854402A (zh) * 2010-05-31 2010-10-06 中兴通讯股份有限公司 接口转换装置及流控实现方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI357744B (en) * 2002-05-10 2012-02-01 Interdigital Tech Corp Cognitive flow control based on channel quality co
WO2013167647A1 (en) * 2012-05-11 2013-11-14 Nokia Siemens Networks Oy Mechanism for controlling buffer setting in flow control
US8989010B2 (en) * 2012-07-10 2015-03-24 Telefonaktiebolaget L M Ericsson (Publ) Delayed based traffic rate control in networks with central controllers
US10271244B2 (en) * 2015-12-22 2019-04-23 Sandvine Corporation System and method for managing traffic detection
US11962644B2 (en) * 2016-07-02 2024-04-16 Intel Corporation Resource orchestration brokerage for internet-of-things networks
KR102100491B1 (ko) * 2016-07-13 2020-04-14 주식회사 케이티 프론트홀 인터페이스를 이용한 중앙 유닛 구성 방법 및 그 장치
WO2018078987A1 (ja) * 2016-10-31 2018-05-03 日本電気株式会社 移動管理エンティティ、ネットワーク・エンティティ、並びにこれらの方法及びコンピュータ可読媒体
US10462129B2 (en) * 2017-07-10 2019-10-29 Leigh M. Rothschild System and method for gaining access of devices based on user's identity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070097864A1 (en) * 2005-11-01 2007-05-03 Cisco Technology, Inc. Data communication flow control
CN1909508A (zh) * 2006-08-23 2007-02-07 华为技术有限公司 端口流控方法
CN1937586A (zh) * 2006-09-21 2007-03-28 华为技术有限公司 一种实现流控信息传递的装置及方法
CN101854402A (zh) * 2010-05-31 2010-10-06 中兴通讯股份有限公司 接口转换装置及流控实现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565196A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2766428C1 (ru) * 2018-08-08 2022-03-15 Телефонактиеболагет Лм Эрикссон (Пабл) Способ управления потоками данных в сетях связи с интегрированными доступом и транзитными соединениями
US11659447B2 (en) 2018-08-08 2023-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Flow control for integrated access backhaul (IAB) networks
JP2020202419A (ja) * 2019-06-06 2020-12-17 日本電気株式会社 無線基地局、無線通信システム、フロー制御方法及びプログラム
JP7310324B2 (ja) 2019-06-06 2023-07-19 日本電気株式会社 無線基地局、無線通信システム、フロー制御方法及びプログラム

Also Published As

Publication number Publication date
CN108259362A (zh) 2018-07-06
FI3565196T3 (fi) 2024-06-18
CN113596913A (zh) 2021-11-02
US20220070735A1 (en) 2022-03-03
US11153783B2 (en) 2021-10-19
EP3565196A1 (en) 2019-11-06
EP3565196B1 (en) 2024-05-15
EP3565196A4 (en) 2019-12-18
DK3565196T3 (da) 2024-05-27
US11606720B2 (en) 2023-03-14
CN108259362B (zh) 2021-07-27
US20190327644A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2018121096A1 (zh) 流控方法、装置、cu、du和存储介质
US11658722B2 (en) Method and apparatus for managing user plane operation in wireless communication system
US11212867B2 (en) Method and apparatus for transmitting and receiving data in wireless communication system
US11350305B2 (en) Method and apparatus for processing data in wireless communication system
US11483889B2 (en) Method and device for recovering connection failure to network in next generation mobile communication system
US11800592B2 (en) Method and apparatus for supporting RLC UM mode operation in next generation mobile communication system
CN110603803B (zh) 用于云局域网环境中网络实体之间通信的方法和设备
EP3048845B1 (en) Device and method for data transmission
TWI466484B (zh) 在無線裝置與網路間傳輸資料單元之序列的無線通訊裝置及方法
CN111373837B (zh) 用于在无线通信系统中发送和接收数据的方法和装置
KR102041996B1 (ko) 이동 통신 시스템에서의 통신 방법 및 장치
KR20200017282A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
WO2017008266A1 (zh) Lte和wlan聚合的数据处理方法、装置以及通信系统
CN104685959B (zh) 具有统一接口的无源无线电链路控制实体
US20230025829A1 (en) Method and apparatus for managing timer related to segmentation transmission of rrc message in next-generation mobile communication system
WO2019140955A1 (zh) 地址发送的方法、装置及存储介质
US11382152B2 (en) Method and device for configuring GTP transmission channel and storage medium
WO2018059148A1 (zh) 一种数据转发的方法及其设备
KR20200014155A (ko) 무선 통신 시스템에서 무선 노드 통신 방법 및 장치
KR20100008232A (ko) 무선연결 설정방법
WO2017028681A1 (zh) 一种数据传输状态的报告、确定传输数据量的方法及装置
KR20200012663A (ko) 무선 통신 시스템에서의 무선 노드 통신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017887712

Country of ref document: EP

Effective date: 20190729