WO2022193225A1 - 一种突发监测的方法和装置 - Google Patents

一种突发监测的方法和装置 Download PDF

Info

Publication number
WO2022193225A1
WO2022193225A1 PCT/CN2021/081513 CN2021081513W WO2022193225A1 WO 2022193225 A1 WO2022193225 A1 WO 2022193225A1 CN 2021081513 W CN2021081513 W CN 2021081513W WO 2022193225 A1 WO2022193225 A1 WO 2022193225A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
time
network device
uplink
downlink
Prior art date
Application number
PCT/CN2021/081513
Other languages
English (en)
French (fr)
Inventor
徐小英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/081513 priority Critical patent/WO2022193225A1/zh
Priority to CN202180087516.2A priority patent/CN116686325A/zh
Priority to EP21930817.8A priority patent/EP4311293A4/en
Publication of WO2022193225A1 publication Critical patent/WO2022193225A1/zh
Priority to US18/468,419 priority patent/US20240007886A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for burst monitoring.
  • network equipment In data transmission, network equipment (eg, access network equipment or core network equipment) generally monitors performance parameters such as transmission delay, packet loss rate and other performance parameters with data packets as the granularity. Packet performance parameters to evaluate data transfer performance. Specifically, the network device monitors the performance parameters of a data packet between the terminal device and the access network device, and monitors the performance parameters of a data packet between the terminal device and the core network device.
  • the transmission of the service flow is performed in a burst (burst) transmission unit, and a burst includes one or more data packets, and the performance parameters obtained by monitoring at the granularity of the data packets cannot be Accurately evaluate the transmission performance of data, resulting in poor user experience.
  • a video frame is a burst, and the terminal can display the image of the frame only if all the data packets in a video frame are received correctly within the preset delay. Otherwise, frame loss will cause Video freezes and user experience is poor.
  • Embodiments of the present application provide a method and apparatus for burst monitoring.
  • a network device for example, an access network device monitors when a burst (uplink burst or downlink burst) occurs between a terminal device and an access network device.
  • delay and network equipment (eg, core network equipment) monitors the time delay between the terminal equipment and the core network equipment in a burst (uplink burst or downlink burst). Therefore, a network device (eg, an access network device or a core network device) can more accurately evaluate the data transmission performance based on the burst-oriented delay, so as to improve user experience.
  • network equipment eg, access network equipment
  • a method for burst monitoring including:
  • the access network device receives a delay monitoring request from the core network device, where the delay monitoring request is used to instruct to perform delay monitoring on periodic bursts;
  • the access network device determines the uplink delay of the uplink burst between the terminal device and the access network device, wherein the uplink burst is between the terminal device and the access network device.
  • the uplink delay between the access network devices includes a first uplink delay, and the first uplink delay includes a duration from a first time to a second time, and the first time is the first time in the uplink burst.
  • an authorization time for a data packet arriving at the media access control MAC layer of the terminal device, and the second time is the last one in the uplink burst sent from the packet data convergence protocol PDCP layer of the access network device The time when the packet was sent.
  • the uplink burst is periodic
  • the delay monitoring request is used to instruct to perform delay monitoring on the uplink burst of each cycle in one or more cycles, so as to determine whether the periodic uplink burst is in the terminal equipment.
  • the transmission delay with the access network equipment.
  • the method for burst monitoring provides a method for monitoring the delay of an uplink burst. Based on the delay monitoring request for the uplink burst sent by the core network device, the access network device determines that the uplink burst is in Uplink delay of terminal equipment and access network equipment.
  • the uplink delay includes a first uplink delay from a first time to a second time, where the first time is the authorization time for the first data packet in the uplink burst to reach the MAC layer of the terminal device, and the first time The second time is the sending time of the last data packet sent from the PDCP layer of the access network device in the uplink burst.
  • the first uplink delay includes a second uplink delay and a third uplink delay, wherein the second uplink delay includes a duration from the first time to a third time, and the third The three uplink delays include the duration from the third time to the second time, where the third time is the last time in the uplink burst from the radio link control RLC layer of the access network device to the The sending time of the data packet sent by the PDCP layer of the access network device.
  • the uplink delay between the terminal device and the access network device of the uplink burst further includes a fourth uplink delay, and the fourth uplink delay includes the time from the fourth time to the fifth time.
  • the duration of the time, or, the fourth uplink delay includes the duration from the fourth time to the first time, where the fourth time is the first time in the uplink burst to reach the PDCP layer of the terminal device.
  • the arrival time of the data packet, and the fifth time is the arrival time of the first data packet in the uplink burst that reaches the MAC layer of the terminal device.
  • the uplink delay between the terminal device and the access network device for the uplink burst further includes the fourth uplink delay delivered by the uplink burst at each protocol layer of the terminal device, and then the The network access device can more accurately monitor the uplink delay of the uplink burst, so that the access network device can more accurately evaluate the data transmission performance based on the uplink delay for the uplink burst, so as to further improve the user experience.
  • the access network device determines, in response to the delay monitoring request, an uplink delay of an uplink burst between the terminal device and the access network device, including:
  • the access network device determines the second uplink delay and the third uplink delay in response to the delay monitoring request;
  • the access network device determines, according to the second uplink delay, the third uplink delay, and the fourth uplink delay, that the uplink burst occurs between the terminal device and the access network device. Upstream delay between.
  • the access network device can count the second uplink delay and the third uplink delay of the uplink burst at the terminal device and the access network device in sections, and determine the uplink burst At the fourth uplink delay generated by the terminal equipment due to submitting data, according to the second uplink delay, the third uplink delay and the fourth uplink delay, it is determined that the uplink burst occurs at the terminal equipment and the access network equipment. the uplink delay.
  • the DU can determine the second uplink delay of the uplink burst between the terminal device and the DU, and the CU can determine the third uplink delay of the uplink burst between the DU and the CU.
  • the second uplink delay, the third uplink delay and the determined fourth uplink delay determine the uplink delay of the uplink burst in the terminal device and the access network device, so as to monitor the uplink burst in the scenario where the DU and CU are separated.
  • the uplink delay sent by the device can also obtain a more accurate uplink delay.
  • the access network device determines, in response to the delay monitoring request, an uplink delay of an uplink burst between the terminal device and the access network device, including:
  • the access network device determines the first time and the second time in response to the delay monitoring request
  • the access network device determines, according to the fourth uplink delay, the first time and the second time, the uplink time of the uplink burst between the terminal device and the access network device extension.
  • the access network device determines the first time (ie, the start time) of the uplink burst transmission on the air interface, and the second time (ie, the uplink burst) of the access network device. end time) and the fourth uplink delay generated by the uplink burst at the terminal device due to data submission, based on the first time, the second time and the fourth uplink delay, determine the uplink burst at the terminal device and the access network device the uplink delay.
  • this method can obtain a more accurate uplink delay of the uplink burst, so that the access network equipment can more accurately evaluate the data transmission performance, so as to further improve the user experience.
  • this embodiment can be applied not only to the scenario where the DU and the CU are separated, but also to the scenario where the DU and the CU are not separated, and the flexibility is higher.
  • the access network device determines, in response to the delay monitoring request, an uplink delay of an uplink burst between the terminal device and the access network device, including:
  • the access network device determines the second uplink delay and the third uplink delay in response to the delay monitoring request;
  • the access network device determines, according to the second uplink delay and the third uplink delay, an uplink delay of the uplink burst between the terminal device and the access network device.
  • the access network device can count the second uplink delay and the third uplink delay of the uplink burst at the terminal device and the access network device in sections, so that according to the second uplink delay and the third uplink delay
  • the uplink delay and the third uplink delay determine the uplink delay of the uplink burst at the terminal equipment and the access network equipment.
  • the DU can determine the second uplink delay of the uplink burst between the terminal device and the DU
  • the CU can determine the third uplink delay of the uplink burst between the DU and the CU.
  • the second uplink delay and the third uplink delay determine the uplink delay of the uplink burst at the terminal device and the access network device, so as to monitor the uplink delay of the uplink burst in the scenario of separation of the DU and the CU.
  • the access network device determines, in response to the delay monitoring request, an uplink delay of an uplink burst between the terminal device and the access network device, including:
  • the access network device determines the first time and the second time in response to the delay monitoring request
  • the access network device determines, according to the first time and the second time, an uplink time delay of the uplink burst between the terminal device and the access network device.
  • the access network device determines the first time (ie, the start time) of the uplink burst transmission on the air interface and the second time (ie, the uplink burst) of the access network device. end time), and the uplink time delay of the uplink burst at the terminal device and the access network device is determined based on the first time and the second time.
  • this method can obtain a more accurate uplink delay of the uplink burst, so that the access network equipment can more accurately evaluate the data transmission performance, so as to further improve the user experience.
  • this embodiment can be applied not only to the scenario where the DU and the CU are separated, but also to the scenario where the DU and the CU are not separated, and the flexibility is higher.
  • the method further includes:
  • the access network device sends response information to the core network device, where the response information includes the uplink time delay of the uplink burst between the terminal device and the access network device.
  • the access network device can further determine the uplink burst by sending the uplink delay of the uplink burst between the terminal device and the access network device to the core network device. Uplink delay between terminal equipment and core network equipment.
  • a second aspect a method for burst monitoring, comprising:
  • the core network device sends a delay monitoring request to the access network device, where the delay monitoring request is used to instruct to perform delay monitoring on periodic bursts;
  • the core network device receives response information from the access network device, where the response information is information in response to the delay monitoring request, and the response information includes uplink bursts between the terminal device and the access network.
  • the uplink delay between devices wherein the uplink delay of the uplink burst between the terminal device and the access network device includes a first uplink delay, and the first uplink delay includes The duration from one time to a second time, where the first time is the authorization time of the first data packet in the uplink burst that reaches the media access control MAC layer of the terminal device, and the second time is the The sending time of the last data packet sent from the PDCP layer of the packet data convergence protocol of the access network device in the uplink burst;
  • the core network device determines a fifth uplink delay, where the fifth uplink delay is the last data packet sent from the PDCP layer of the access network device in the uplink burst between the access network device and the device. the delay between the core network devices;
  • the core network device determines that the uplink burst is between the terminal device and the access network device. The uplink delay between the core network devices.
  • the burst monitoring method provided by the embodiment of the present application provides a method for monitoring the delay of an uplink burst.
  • the core network device receives the uplink burst sent by the access network device between the terminal device and the access network device. Delay, based on the uplink delay and the fifth uplink delay of the uplink burst between the access network device and the core network device determined by the core network device itself, it is finally determined that the uplink burst is between the terminal device and the core network device. the uplink delay.
  • the process of monitoring the uplink delay of the uplink burst between the terminal device and the core network device is realized, so that the core network device can more accurately evaluate the data transmission performance based on the uplink delay for the uplink burst, so as to improve the performance of the data transmission. Improve user experience.
  • the uplink delay between the terminal device and the access network device of the uplink burst further includes a fourth uplink delay, and the fourth uplink delay includes the time from the fourth time to the fifth time.
  • the duration of the time, or, the fourth uplink delay includes the duration from the fourth time to the first time, where the fourth time is the first time in the uplink burst to reach the PDCP layer of the terminal device.
  • the arrival time of the data packet, and the fifth time is the arrival time of the first data packet in the uplink burst that reaches the MAC layer of the terminal device.
  • a third aspect a method for burst monitoring, comprising:
  • the core network device sends a delay monitoring request to the access network device, where the delay monitoring request is used to instruct to perform delay monitoring on periodic bursts;
  • the core network device receives response information from the access network device, where the response information is information in response to the delay monitoring request, and the response information includes a first time, and the first time is the The authorization time of the first data packet in the uplink burst that reaches the media access control MAC layer of the terminal device;
  • the core network device determines the arrival time of the last data packet in the uplink burst that reaches the core network device;
  • the core network device determines, according to the first time and the arrival time, an uplink delay of the uplink burst between the terminal device and the core network device.
  • the authorization time ie, the first time
  • the authorization time ie, the first time
  • An arrival time to the core network equipment determines the uplink delay of the uplink burst between the terminal equipment and the core network equipment.
  • the response information further includes a fourth uplink delay, and the fourth uplink delay includes the duration from the fourth time to the fifth time, or the fourth uplink delay includes the time from the fourth time to the fifth time.
  • the duration of the first time, the fourth time is the arrival time of the first data packet in the uplink burst that reaches the PDCP layer of the terminal device, and the fifth time is the time in the uplink burst. The arrival time of the first data packet to arrive at the MAC layer of the end device; and,
  • the core network device determines, according to the first time and the arrival time, the uplink delay of the uplink burst between the terminal device and the core network device, including:
  • the core network device determines the uplink delay of the uplink burst between the terminal device and the core network device according to the first time, the arrival time and the fourth uplink delay.
  • a method for burst monitoring including:
  • the access network device receives a delay monitoring request from the core network device, where the delay monitoring request is used to instruct to perform delay monitoring on periodic bursts;
  • the access network device determines the downlink delay between the terminal device and the access network device in a downlink burst, and the downlink burst is between the terminal device and the access network device.
  • the downlink delay between network access devices includes a first downlink delay, and the first downlink delay includes a duration from a first time to a second time, and the first time is the first time in the downlink burst.
  • the arrival time of a data packet arriving at the PDCP layer of the packet data convergence protocol of the access network device, and the second time is the arrival time of the last feedback information arriving at the media access control MAC layer of the access network device , or, the second time is the sending time of the last feedback information sent from the physical layer of the terminal device, where the feedback information is used to indicate that the terminal device successfully receives a data packet in the downlink burst.
  • the burst monitoring method provides a method for monitoring the delay of a downlink burst.
  • the access network device determines that the downlink burst is in the downlink burst based on the delay monitoring request for the downlink burst sent by the core network device.
  • Downlink delay of access network equipment and terminal equipment includes the first downlink delay from the first time to the second time, and the first time is the first time in the downlink burst that reaches the PDCP layer of the packet data convergence protocol of the access network device
  • the arrival time of the data packet, the second time is the arrival time of the last feedback information arriving at the MAC layer of the access network device or the sending time of sending the last feedback information from the physical layer of the terminal device.
  • the process of monitoring the downlink delay between the terminal device and the access network device for the downlink burst through the access network device is implemented, so that the access network device can more accurately determine the downlink delay based on the downlink burst for the downlink burst. Evaluate data transfer performance to improve user experience.
  • the first downlink delay includes a second downlink delay and a third downlink delay
  • the second downlink delay includes a duration from a third time to the second time
  • the third The downlink delay includes the duration from the first time to the third time, where the third time is the first data in the downlink burst that reaches the radio link control RLC layer of the access network device The arrival time of the package.
  • the access network device determines the downlink delay between the terminal device and the access network device in a downlink burst, including:
  • the access network device determines the second downlink delay and the third downlink delay in response to the delay monitoring request;
  • the access network device determines, according to the second downlink delay and the third downlink delay, the downlink delay of the downlink burst between the terminal device and the access network device.
  • the access network device can count the second downlink delay and the third downlink delay of the downlink burst at the terminal device and the access network device in sections, so that according to the second downlink delay and the third downlink delay
  • the downlink delay and the third downlink delay determine the downlink delay of the downlink burst at the terminal equipment and the access network equipment.
  • the DU can determine the second downlink delay related to the DU between the terminal equipment and the DU
  • the CU can determine the third downlink delay between the CU and the DU.
  • the CU determines the downlink delay of the downlink burst between the terminal device and the access network device according to the second downlink delay and the third downlink delay, so as to monitor the downlink of the downlink burst in the scenario where the DU and CU are separated time delay.
  • the access network device determines the downlink delay between the terminal device and the access network device in a downlink burst, including:
  • the access network device determines the first time and the second time in response to the delay monitoring request
  • the access network device determines, according to the first time and the second time, the downlink delay of the downlink burst between the terminal device and the access network device.
  • the access network device determines the first time (ie, the start time) and the second time (ie, the end time) of the downlink burst transmission between the access network device and the terminal device. , and determine the downlink delay of the downlink burst at the terminal device and the access network device based on the first time and the second time.
  • this method can obtain a more accurate downlink delay of the downlink burst, so that the access network device can more accurately evaluate the data transmission performance, so as to further improve the user experience.
  • this embodiment can be applied not only to the scenario where the DU and the CU are separated, but also to the scenario where the DU and the CU are not separated, and the flexibility is higher.
  • the downlink delay between the terminal device and the access network device of the downlink burst further includes a fourth downlink delay, and the fourth downlink delay includes the time from the fourth time to the fifth time.
  • the duration of time, the fourth time is the arrival time of the last data packet in the downlink burst that reaches the MAC layer of the terminal device, and the fifth time is the last time in the downlink burst from the The sending time of the data packet sent by the PDCP layer of the terminal device.
  • the downlink delay between the terminal device and the access network device for the downlink burst also includes the fourth downlink delay delivered by the downlink burst at each protocol layer of the terminal device, which may be
  • the access network device can monitor the downlink delay of the downlink burst more accurately, so that the access network device can more accurately evaluate the data transmission performance based on the downlink delay for the downlink burst, so as to further improve the user experience.
  • the access network device determines the downlink delay between the terminal device and the access network device in a downlink burst, including:
  • the access network device determines the second downlink delay and the third downlink delay in response to the delay monitoring request;
  • the access network device determines, according to the second downlink delay, the third downlink delay, and the fourth downlink delay, that the downlink burst occurs between the terminal device and the access network device. downlink delay.
  • the access network device can count the second downlink delay and the third downlink delay of the downlink burst at the terminal device and the access network device in sections, and determine the downlink burst
  • the fourth downlink delay is generated at each protocol layer of the terminal device due to data submission, so, according to the second downlink delay, the third downlink delay and the fourth downlink delay, it is determined that the downlink burst occurs at the terminal device and the receiver.
  • Downlink delay of the network access device In this way, in the scenario where the DU and CU are separated, the DU can determine the second downlink delay between the terminal device and the DU, and the CU can determine the third downlink delay between the DU and the CU.
  • the second downlink delay, the third downlink delay, and the determined fourth downlink delay determine the downlink delay of the downlink burst at the terminal equipment and the access network equipment, so as to monitor the downlink burst in the scenario where the DU and CU are separated.
  • the downlink delay sent can also get a more accurate downlink delay.
  • the access network device determines the downlink delay between the terminal device and the access network device in a downlink burst, including:
  • the access network device determines the first time and the second time in response to the delay monitoring request
  • the access network device determines, according to the first time, the second time and the fourth downlink delay, the downlink time of the downlink burst between the terminal device and the access network device extension.
  • the access network device determines the first time (ie, the start time) and the second time (ie, the end time) of the downlink burst transmission between the access network device and the terminal device. , and determine and determine the fourth downlink delay generated by the downlink burst at each protocol layer of the terminal device due to data submission, based on the first time, the second time and the fourth downlink delay to determine the downlink burst between the terminal device and the terminal device. Downlink delay of access network equipment.
  • this method can obtain a more accurate downlink delay of the downlink burst, so that the access network equipment can more accurately evaluate the data transmission performance, so as to further improve the user experience.
  • this embodiment can be applied not only to the scenario where the DU and the CU are separated, but also to the scenario where the DU and the CU are not separated, and the flexibility is higher.
  • the method further includes:
  • the access network device sends response information to the core network device, where the response information includes a downlink delay of the downlink burst between the terminal device and the access network device.
  • the access network device can make the core network device further determine the downlink burst by sending the downlink delay of the downlink burst between the terminal device and the access network device to the core network device. Downlink delay between terminal equipment and core network equipment.
  • a method for burst monitoring including:
  • the core network device sends a delay monitoring request to the access network device
  • the core network device receives response information from the access network device, the response information is information in response to the delay monitoring request, and the response information includes downlink bursts between the terminal device and the access network.
  • the downlink delay between devices, the downlink delay between the terminal device and the access network device of the downlink burst includes the first downlink delay, and the first downlink delay includes the first downlink delay from the first
  • the duration from a time to a second time the first time is the arrival time of the first data packet in the downlink burst that reaches the PDCP layer of the packet data convergence protocol of the access network device, and the second time is the arrival time of the last feedback information arriving at the media access control MAC layer of the access network device, or, the second time is the sending time of the last feedback information sent from the physical layer of the terminal device, the The feedback information is used to indicate that the terminal device successfully receives a data packet in the downlink burst;
  • the core network device determines a fifth downlink delay, and the fifth downlink delay is the first data packet sent from the core network device in the downlink burst between the access network device and the core network device. delay between network devices;
  • the core network device determines that the downlink burst is between the terminal device and the access network device. Downlink delay between the core network devices.
  • the burst monitoring method provides a method for monitoring the delay of a downlink burst.
  • the core network device receives the downlink burst sent by the access network device between the terminal device and the access network device. Delay, based on the downlink delay and the fifth downlink delay of the downlink burst between the access network device and the core network device determined by the core network device itself, it is finally determined that the downlink burst is between the terminal device and the core network device. downlink delay. In this way, the process of monitoring the downlink delay between the terminal device and the core network device of the downlink burst is realized, so that the core network device can more accurately evaluate the data transmission performance based on the downlink delay for the downlink burst. to improve user experience.
  • the downlink delay between the terminal device and the core network device of the downlink burst further includes a fourth downlink delay, and the fourth downlink delay includes from the fourth time to the fifth time
  • the fourth time is the arrival time of the last data packet in the downlink burst that reaches the MAC layer of the terminal device
  • the fifth time is the last time in the downlink burst that is sent from the The sending time of the data packet sent by the PDCP layer of the terminal device.
  • a method for burst monitoring including:
  • the core network device sends a delay monitoring request to the access network device
  • the core network device receives response information from the access network device, where the response information is information in response to the delay monitoring request, the response information includes a second time, and the second time is the arrival time at the destination.
  • the arrival time of the last feedback information of the media access control MAC layer of the access network device, or, the second time is the sending time of the last feedback information sent from the physical layer of the terminal device, and the feedback information is used instructing the terminal device to successfully receive a data packet in the downlink burst;
  • the core network device determines the sending time of the first data packet sent from the core network device in the downlink burst
  • the core network device determines, according to the second time and the sending time, a downlink delay of the downlink burst between the terminal device and the core network device.
  • the core network device reaches the access network device through the sending time of the first data packet sent from the core network device and the last feedback information in the uplink burst sent by the access network device Or the second time when the last feedback information is sent from the terminal device, to determine the downlink delay of the downlink burst between the terminal device and the core network device.
  • the process of monitoring the downlink delay between the terminal equipment and the core network equipment for downlink bursts is realized, but also a more accurate downlink delay can be obtained, so that the core network equipment can update the downlink delay based on the downlink bursts In order to accurately evaluate the data transmission performance to improve the user experience.
  • the response information further includes a fourth downlink delay
  • the fourth downlink delay includes a duration between a fourth time and a fifth time
  • the fourth time is the last one in the downlink burst the arrival time of the data packet arriving at the MAC layer of the terminal device
  • the fifth time is the transmission time of the last data packet sent from the PDCP layer of the terminal device in the downlink burst
  • the core network device determines, according to the second time and the sending time, the downlink delay of the downlink burst between the terminal device and the core network device, including:
  • the core network device determines the downlink delay of the downlink burst between the terminal device and the core network device according to the second time, the sending time and the fourth downlink delay.
  • a method for burst monitoring including:
  • the access network device receives the false burst monitoring request from the core network device;
  • the access network device determines a false burst rate, where the false burst rate represents the number of the first type of bursts in the multiple bursts and the number of the multiple bursts The relationship of the first type of burst indicates that at least one data packet in a burst is not successfully received by the receiving end within the preset delay;
  • the access network device sends response information to the core network device, where the response information includes the burst error rate.
  • the burst may be an uplink burst or a downlink burst, which is not limited in any embodiment of the present application.
  • the multiple bursts represent multiple bursts within a period of time, for example, the period of time may be predefined by a protocol, or may be set or configured by an access network device.
  • the preset delay may be predefined by a protocol, or may be set or configured by an access network device.
  • the first type of burst indicates that at least one data packet in a burst is not successfully received by the access network device within the preset time delay, and the access network device is the receiving end.
  • the first type of burst indicates that at least one data packet in a burst is not successfully received by the terminal device within the preset delay, and the terminal device is the receiving end. It should be understood that, in the downlink transmission, if the access network device receives the feedback information that the data packet is successfully received, it is considered that the data packet is successfully received by the terminal device.
  • the method for burst monitoring provides a method for determining the error burst rate of a burst, where the error burst rate indicates that among the multiple bursts, the multiple bursts and the first one that is not successfully received by the receiving end
  • the access network device determines the false burst rate of the multiple bursts based on the false burst monitoring request of the core network device, and sends the false burst rate to the core network device.
  • the process of monitoring the burst error rate between the terminal device and the access network device through the access network device is implemented, so that the data transmission can be more accurately evaluated based on the burst error rate for the burst. performance to improve user experience.
  • the false burst rate is a ratio of the number of bursts of the first type to the number of the plurality of bursts.
  • the first type of burst indicates that at least one data packet of the first type of data in a burst is not successfully received by the receiving end within the preset time delay, and the first type of data is: Base layer data.
  • the data of the base layer is the data referenced for decoding the burst or other bursts to which the data of the base layer belongs.
  • an apparatus for burst monitoring is provided, the apparatus is configured to perform the method provided in any one of the first to seventh aspects above.
  • the apparatus may include a module for performing any one of the possible implementation manners of any one of the above-mentioned first to seventh aspects.
  • an apparatus for burst monitoring including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory, so as to implement the method in any one of the possible implementations of any one of the first to seventh aspects above.
  • the apparatus further includes a memory.
  • the apparatus further includes a communication interface to which the processor is coupled.
  • a tenth aspect provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by an apparatus, causes the apparatus to implement any one of the first to seventh aspects above methods in possible implementations.
  • An eleventh aspect provides a computer program product comprising instructions, which when executed by a computer cause an apparatus to implement the method in any one of the possible implementations of any one of the first to seventh aspects above.
  • a twelfth aspect provides a chip, comprising: an input interface, an output interface, a processor, and a memory, wherein the input interface, the output interface, the processor, and the memory are connected through an internal connection path, and the processing
  • the processor is configured to execute the code in the memory, and when the code is executed, the processor is configured to execute the method in any one of the possible implementation manners of any one of the first to seventh aspects above.
  • FIG. 1 is a schematic diagram of a possible network architecture applied to an embodiment of the present application.
  • FIG. 2 is an example diagram of two possible protocol architectures provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of transmission of an uplink burst provided by an embodiment of the present application in a scenario where each protocol layer is sequentially submitted.
  • FIG. 4 is a schematic diagram of uplink burst transmission in a scenario of RLC layer segmentation provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of transmission in a scenario in which an uplink burst arrives out of sequence during an air interface transmission process provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of transmission of an uplink burst provided in an embodiment of the present application in a scenario where packets are lost and arrive out of sequence.
  • FIG. 7 is a schematic flowchart of a method 100 for burst monitoring of uplink transmission provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method 200 for burst monitoring of uplink transmission in a scenario where DUs and CUs of an access network device are separated according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method 300 for burst monitoring of uplink transmission in a scenario where DUs and CUs of an access network device are separated according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method 400 for burst monitoring of uplink transmission provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method 500 for burst monitoring of uplink transmission in a scenario where DUs and CUs are separated, provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of transmission of a downlink burst provided by an embodiment of the present application in a scenario where each protocol layer is sequentially delivered.
  • FIG. 13 is a schematic diagram of transmission of a downlink burst provided in an embodiment of the present application in a scenario where the RLC layer is segmented.
  • FIG. 14 is a schematic diagram of transmission in a scenario where downlink bursts arrive out of sequence during air interface transmission according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of transmission of an uplink burst provided in an embodiment of the present application in a scenario where packets are lost and arrive out of sequence.
  • FIG. 16 is a schematic flowchart of a method 600 for burst monitoring of downlink transmission provided by an embodiment of the present application.
  • FIG. 17 is a schematic flowchart of a method 700 for burst monitoring of downlink transmission in a scenario where DUs and CUs of an access network device are separated according to an embodiment of the present application.
  • FIG. 18 is a schematic flowchart of a method 800 for burst monitoring of downlink transmission in a scenario where DUs and CUs of an access network device are separated according to an embodiment of the present application.
  • FIG. 19 is a schematic flowchart of a method 900 for burst monitoring of downlink transmission provided by an embodiment of the present application.
  • FIG. 20 is a schematic flowchart of a method 1000 for burst monitoring of downlink transmission in a scenario where DUs and CUs are separated according to an embodiment of the present application.
  • FIG. 21 is a schematic flowchart of a method 1100 for burst monitoring provided by an embodiment of the present application.
  • FIG. 22 is a schematic flowchart of a method 1200 for burst monitoring of downlink transmission in a scenario where DUs and CUs of an access network device are separated according to an embodiment of the present application.
  • FIG. 23 is a schematic block diagram of an apparatus 1300 for burst monitoring provided by an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of an apparatus 1400 for hair monitoring provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G New Radio
  • FIG. 1 is a possible network architecture applied to the embodiment of the present application.
  • the network architecture includes servers, core network equipment, access network equipment and terminal equipment.
  • the core network equipment includes: user plane network elements, access management network elements, and session management network elements.
  • the access network device, the core network device, and the server may be collectively referred to as the network device in the embodiments of the present application.
  • User plane network element used for packet routing and forwarding, quality of service (QoS) processing of user plane data, packet detection, policy rule execution, etc., and for forwarding user plane data, and CDRs are generated based on traffic conditions and serve as data plane anchors.
  • QoS quality of service
  • a user plane network element may be a user plane function (UPF) network element.
  • UPF user plane function
  • future communications such as 6G communications, the user plane network element may still be a UPF network element, or have other names, which are not limited in this application.
  • the user plane network element is a UPF network element as an example for description, and the UPF network element is abbreviated as UPF.
  • the UPF network elements described later in this application can all be replaced with user plane network elements.
  • Access management network element mainly used for mobility management and access management, such as user location update, user registration network, user handover, legal interception, and access authorization/authentication functions.
  • the access management network element may be an access and mobility management function (AMF) network element.
  • AMF access and mobility management function
  • future communications such as 6G communications, the access management network element may still be an AMF network element, or have other names, which are not limited in this application.
  • the access management network element is an AMF network element as an example for description, and the AMF network element is abbreviated as AMF.
  • AMF Access Management network element
  • Session management network elements mainly used for session management, Internet Protocol (IP) address allocation and management of terminal equipment, selection of manageable UPF network elements, and realization of access network-related sessions through AMF network elements The endpoint of information exchange, policy control and charging function interface, and downlink data notification, etc.
  • the session management network element may be a session management function (session management function, SMF) network element.
  • SMF session management function
  • the session management function network element may still be an SMF network element, or have other names, which are not limited in this application.
  • the session management function network element is an SMF network element as an example for description, and the SMF network element is abbreviated as SMF.
  • SMF SMF network elements
  • the SMF network elements described later in this application can all be replaced with network elements with a session management function.
  • Server a network used to provide data transmission, such as the Internet network, etc.
  • the server may be a data network authentication, authorization, and accounting (data network authentication, authorization, and accounting) server, or an application server (application function).
  • the server may also be referred to as a data network (data network, DN) network element.
  • Terminal device It is a device with wireless communication function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted, or deployed on water (such as ships, etc.), and can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, Vehicle terminal equipment, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety, intelligent Wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, etc.
  • the embodiments of the present application do not limit application scenarios.
  • Terminal equipment may also sometimes be referred to as terminal, user equipment (UE, User Equipment), access terminal equipment, vehicle terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE proxy or UE device, etc.
  • Terminal devices can also be stationary or mobile.
  • Access network equipment It is used to provide network access functions for authorized users in a specific area, and can use different quality transmission tunnels according to user levels and business needs. Access network equipment can manage wireless resources, provide access services for terminal equipment, and then complete the forwarding of control signals and user data between terminal equipment and core network equipment. base station.
  • the access network device may also be referred to as a radio access network (radio access network, (R)AN).
  • R radio access network
  • the access network device in the embodiment of the present application is a device used for communicating with terminal devices, and the access network device may be: an evolved base station (evolutional NodeB, eNB or eNodeB) or a transmission reception point (transmission reception point) in the LTE system point, TRP), 3GPP subsequent evolution base station, wireless controller in the cloud radio access network (coud radio access network, CRAN) scenario, relay station, access point, in-vehicle equipment, wearable equipment, and 5G network in the network
  • the device or the network device in the future 6G network, etc. are not limited in the embodiments of the present application.
  • the access network equipment is divided into a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), that is, the DU is separated from the CU.
  • the DU is mainly used for the processing of the radio link control (RLC) layer, the medium access control (MAC) layer, and the physical layer (PHY), and the CU is mainly used for the packet data convergence protocol (packet). data convergence protocol, PDCP) layer processing.
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer
  • packet packet data convergence protocol
  • PDCP packet data convergence protocol
  • the control plane and user plane of the CU are separated, and the network element used for the control plane is called the central unit control plane (CU-CP) network element, and the network element used for the user plane is called a centralized unit control plane (CU-CP) network element.
  • the element is called a central unit user plane (CU-UP) network element.
  • one CU includes one CU-CP and one or more CU-UPs.
  • the N2 interface is the reference point of the access network equipment and the AMF network element, and is used for sending non-access stratum (NAS) messages
  • the N3 interface is the access network equipment and the UPF network.
  • the N4 interface is the reference point between the SMF network element and the UPF network element, used to transmit, for example, the tunnel identification information of the N3 connection, the data buffer indication information, and the downlink Information such as data notification messages
  • the N6 interface is the reference point between the UPF network element and the server, and is used to transmit data on the user plane.
  • the F1-U interface is the reference point of the DU and CU-UP, and is used for the user plane between CU and DU. Data transmission; F1-C interface is the reference point of DU and CU-CP, used for data transmission of control messages between CU and DU; E1 interface is the reference point of CU-UP and CU-CP, used for CU-CP and Data transmission of control messages between CU-UP.
  • the above-mentioned network architectures applied to the embodiments of the present application are only examples, and the network architectures applicable to the embodiments of the present application are not limited thereto, and any network architecture that can implement the functions of the above-mentioned network elements is applicable to the implementation of the present application. example.
  • the above-mentioned access management network element, access management network element and session management network element are network elements in the core network equipment.
  • the core network device may further include a policy control function (policy control function, PCF) network element, a network capability exposure function (network exposure function, NEF) network element, and the like.
  • policy control function policy control function
  • NEF network exposure function
  • the above functional network elements may be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (eg, a cloud platform).
  • network equipment evaluates data transmission performance by monitoring performance parameters such as transmission delay and packet loss rate of a data packet.
  • performance parameters such as transmission delay and packet loss rate of a data packet.
  • the transmission of service flows is carried out in bursts, and a burst includes one or more data packets.
  • the performance parameters obtained by monitoring at the granularity of data packets cannot be accurately evaluated.
  • the transmission performance is poor, resulting in poor user experience.
  • a video frame can be called a burst, and the terminal device can display the image of the frame only if all data packets in a video frame are received correctly within the preset delay.
  • Frames can cause video stuttering and poor user experience.
  • VR Virtual Reality
  • a video frame is generated every 16.7ms, and a video frame (about 583Kb) is divided into 50 pieces of data Packets (about 1500Byte) are delivered.
  • the decoder of the terminal device can only correctly receive all the data packets of the video frame within the preset delay, otherwise the frame of the image cannot be displayed, which is equivalent to losing the frame. As long as the frame is dropped, the video will freeze, and if the frame is dropped, the frequency of playback freezes is high.
  • the purpose of the embodiments of the present application is to monitor with a burst as the granularity to obtain a burst performance parameter, thereby obtaining relatively accurate data transmission performance.
  • a burst is a periodic burst of a service flow, which can represent a transmission unit of service flow transmission.
  • a burst is the smallest unit of service flow transmission.
  • a burst consists of one or more packets, and in most cases, a burst consists of multiple packets.
  • a burst may include one or more files, one file for a characteristic, the characteristic is related to the type of traffic flow.
  • the characteristic may be content representing different attributes, such as scenery, characters, animals, etc. in a video frame image.
  • a file can contain one or more data packages.
  • the burst is periodic, and when monitoring the performance parameter, the burst is periodically monitored.
  • a slice can also be used as a data transmission unit, each slice can be decoded independently, and a slice includes one or more data packets.
  • a slice may be a partial area in a frame image.
  • a burst can be understood as a slice
  • a slice can be regarded as a sub-unit of a burst
  • a burst includes one or more slices.
  • a video frame can be divided into multiple slices.
  • the "slice" can be used as the monitoring object to monitor the performance parameters of the slice. Therefore, a burst can be understood as a slice.
  • one video frame can be used as the monitoring object to monitor the performance parameters of the video frame, so one burst can be understood as one video frame.
  • a slice may also be referred to as a tile (tile), and the two descriptions may be replaced with each other.
  • the protocol architecture of wireless communication includes the protocol architecture of the control plane and the protocol architecture of the user plane.
  • the protocol architecture in the embodiments of the present application refers to the protocol architecture of the user plane.
  • FIG. 2 shows an example diagram of two possible protocol architectures provided by the embodiments of the present application.
  • FIG. 2(a) shows the protocol architecture in 4G
  • FIG. 2(b) shows the 5G protocol architecture.
  • protocol architecture The terminal device and the access network device are both configured with a protocol architecture.
  • the protocol architecture sequentially includes: PDCP layer, RLC layer, MAC layer, and PHY.
  • PDCP layer Responsible for performing IP header compression to reduce the bit-traffic that the wireless interface has to transmit.
  • RLC layer responsible for segmentation/concatenation and reassembly of data, retransmission processing, and sequential transmission of higher layer data.
  • the data received by the RLC entity from the PDCP layer or sent to the PDCP layer is called RLC SDU
  • RLC PDU The data received by the RLC entity from the MAC layer or sent to the MAC layer.
  • the size of the RLC PDU is determined by the MAC layer, and its size ratio is not necessarily equal to the size of the RLC SDU. Therefore, the sender may need to segment/concatenate the RLC SDU to make the processed data size match the size specified by the MAC layer, and The processed data is sent to the MAC layer in the form of RLC PDUs.
  • the receiving end when the receiving end receives the RLC PDU, it needs to reassemble the previously segmented RLC SDU in order to restore the original RLC SDU and deliver it to the PDCP layer.
  • MAC layer responsible for the multiplexing of control logical channels, hybrid automatic repeat request (HARQ) hybrid HARQ retransmission, scheduling of uplink and downlink.
  • HARQ hybrid automatic repeat request
  • PHY responsible for handling encoding/decoding, modulation/demodulation, multi-antenna mapping, and other types of physical layer functions.
  • the PHY, MAC layer, and RLC layer are configured in the DU, and the PDCP layer is configured in the CU. Also, in a scenario where the CU-CP of the CU is separated from the CU-UP, the PDCP layer is configured in the CU-UP.
  • the protocol architecture sequentially includes: a service data adaptation protocol (SDAP) layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY.
  • SDAP service data adaptation protocol
  • the SDAP layer is used to process QoS-related information
  • the description of other protocol layers can refer to the above description, which will not be repeated here.
  • the PHY, MAC layer and RLC layer are configured in the DU, and the PDCP layer and SDAP layer are configured in the CU.
  • the PDCP layer and the SDAP layer are configured in the CU-UP.
  • uplink data is sent from the terminal device to the access network device, and then sent by the access network device to the core network device, exemplarily, to the UPF in the core network device.
  • uplink data is delivered from the upper layer to the lower layer.
  • the terminal device sequentially submits the uplink data from the SDAP layer to the PHY in order from top to bottom.
  • the access network device receives the uplink data at the PHY, and submits the uplink data from the PHY to the SDAP layer in order from the bottom to the top to complete the uplink data between the terminal device and the access network device. transmission between.
  • the access network device sends the submitted uplink data to the core network device to complete the transmission of the uplink data between the access network device and the core network device.
  • downlink data is sent from the core network device to the access network device, exemplarily, from the UPF in the core network device to the access network device, and then sent by the access network device to the terminal device.
  • the downlink data is sent from the core network device to the access network device, and reaches the SDAP layer of the access network device to complete the transmission of the downlink data between the core network device and the access network device.
  • the access network device sequentially delivers downlink data from the SDAP layer to the PHY in a top-to-bottom order.
  • the terminal device receives the downlink data at the PHY, and sequentially submits the downlink data from the PHY to the SDAP layer in order from bottom to top to complete the transmission of the downlink data between the terminal device and the access network device.
  • the transmission of downlink data between the terminal equipment and the core network equipment is completed.
  • the embodiments of the present application mainly involve monitoring of two performance parameters.
  • One performance parameter is the burst delay, including the burst transmission delay between the terminal equipment and the access network equipment, and the burst transmission delay between the terminal equipment and the access network equipment.
  • another performance parameter is the burst error rate, which mainly monitors the bursts that do not meet the delay requirement among multiple bursts within a time period.
  • the above two performance parameters are described respectively. First, the monitoring of the burst delay is described, and then, the monitoring of the burst error rate of the burst is described.
  • FIG. 3 to 11 relate to the time delay of the uplink burst
  • FIGS. 12 to 20 relate to the time delay of the downlink burst.
  • the 5G protocol architecture UPF as an example of core network equipment, and an uplink burst including 4 data packets are used as an example for description, wherein the 4 data packets are recorded as data packet 1, data packet 2, and data packet 3 respectively. and packet 4.
  • FIG. 3 is a schematic diagram of transmission of uplink bursts in a scenario where each protocol layer is delivered in sequence.
  • four data packets arrive at the SDAP layer of the terminal device, and the terminal device sequentially delivers the four data packets to the MAC layer of the terminal device in order from top to bottom.
  • the terminal device sends 4 data packets to the access network device, and the 4 data packets arrive at the MAC layer of the access network device from the MAC layer of the terminal device.
  • the packet is delivered from the MAC layer of the access network device to the SDAP layer of the access network device, and 4 data packets are sent from the SDAP layer to the UPF.
  • FIG. 4 is a schematic diagram of uplink burst transmission in the scenario of RLC layer segmentation. It is assumed that upstream bursts are delivered in sequence at each protocol layer.
  • 4 data packets arrive at the SDAP layer of the terminal device. After the terminal device submits the 4 data packets to the RLC layer in the form of RLC SDUs in order from top to bottom, the terminal device responds to the uplink burst. Packets are fragmented. It is assumed that the terminal device segments each data packet and divides 1 data packet into two segments, and 4 data packets are segmented at the RLC layer to form 8 data packets, which are recorded as data packet 1.1, data packet 1.2, data packet Packet 2.1, Packet 2.2, Packet 3.1, Packet 3.2, Packet 4.1, Packet 4.2, 8 packets arrive at the MAC layer in sequence in the form of RLC PDUs.
  • the terminal equipment sends 8 data packets to the access network equipment, and the 8 data packets arrive at the MAC layer of the access network equipment from the MAC layer of the terminal equipment.
  • the access network device needs to reassemble the previously segmented data packet (ie, RLC SDU) to restore the previously segmented data packet, that is, 8 data packets are restored for the original 4 packets.
  • the access network device sends the 4 data packets from the RLC layer to the SDAP layer of the access network device, and sends the 4 data packets from the SDAP layer to the UPF.
  • FIG. 5 is a schematic diagram of transmission in a scenario where uplink bursts arrive out of sequence during air interface transmission.
  • the air interface transmission mentioned in the embodiments of the present application refers to the process in which the sender (for example, a terminal device) sends data from the MAC layer of the sender to the MAC layer of the receiver (for example, an access network device).
  • the sender for example, a terminal device
  • the MAC layer of the receiver for example, an access network device
  • four data packets arrive at the SDAP layer of the terminal device, and the terminal device sequentially delivers the four data packets to the MAC layer of the terminal device in order from top to bottom.
  • the terminal device sends 4 data packets to the access network device, and the 4 data packets arrive at the MAC layer of the access network device from the MAC layer of the terminal device.
  • the data packets arrive out of sequence. That is, packet 4 arrives at the MAC layer of the access network device earlier than packet 3.
  • the access network device delivers four data packets to the PDCP layer in the order of data packet 1, data packet 2, data packet 4 and data packet 3.
  • the access network device When the PDCP layer is configured with sequential delivery, no matter in which order the four data packets arrive at the PDCP layer, the access network device will send the four data packets as the original data packet 1, data packet 2, and data packet 3. , The sequence of data packets 4 is sent from the PDCP layer to the SDAP layer, and 4 data packets are sent from the SDAP layer to the UPF.
  • the access network device will send the four data packets in time order, that is, the data packets that arrive at the PDCP layer first are sent first, and then the data packets that arrive at the PDCP layer are sent out. After the packet is sent out.
  • the terminal device will continue to send 4 packets to SDAP in the order of packet 1, packet 2, packet 4, and packet 3, and from the SDAP layer to the UPF ( Figure 5). not shown).
  • FIG. 6 is a schematic diagram of transmission of uplink bursts in a scenario where packets are lost and arrive out of sequence.
  • the terminal device sequentially delivers the four data packets to the MAC layer of the terminal device in order from top to bottom.
  • the terminal device sends 4 data packets to the access network device, and the 4 data packets reach the MAC layer of the access network device from the MAC layer of the terminal device.
  • packet loss and out-of-order arrival occurred.
  • the phenomenon is that the data packet 3 does not reach the MAC layer of the access network device, and the data packet 4 arrives at the MAC layer of the access network device earlier than the time when the data packet 3 should arrive.
  • the access network device sequentially delivers the remaining three data packets to the PDCP layer in the order from bottom to top.
  • the PDCP layer When the PDCP layer is configured with sequential delivery, even if the access network device has received the data packet 4 at the PDCP layer, it will still wait for the data packet 3, and will not receive the data packet 3 within the preset time period. Packet 4 is delivered to the SDAP layer, then the remaining 3 packets are sent from the SDAP layer to the UPF.
  • the uplink delay of an uplink burst between the terminal equipment and the access network equipment is recorded as D U-UE-base station
  • the uplink burst between the terminal equipment and the core network equipment is denoted as D U-UE-base station.
  • the uplink delay is recorded as D U-UE-UPF
  • the uplink delay of an uplink burst between the access network device and the core network device is recorded as D U-base station-UPF .
  • the uplink delay D U-UE-base station in the embodiment of the present application has two possible cases (case 1 and case 2).
  • the following describes the uplink delay D U-UE-base station according to the cases.
  • the uplink delay D U-UE-base station includes the uplink delay D U1 and the uplink delay D U2 .
  • the uplink delay D U1 can be understood as the delay of the terminal equipment sending a data packet of the uplink burst from the upper layer to the lower layer, and the uplink delay D U2 can be understood as the time from the terminal equipment sending the uplink burst to the access network equipment. The duration of the time to send the last data packet of the uplink burst to the core network device.
  • the uplink delay D U1 includes a duration from time T U1.1 to time T U1.2 , for example, the duration corresponding to (1) D U1 in FIGS. 3 to 6 .
  • the time T U1.1 is the arrival time of the first data packet (eg, data packet 1 of FIGS. 3 to 6 ) in the uplink burst that arrives at the PDCP layer of the terminal device.
  • Time T U1.2 is the arrival time of the first data packet (eg, data packet 1 of FIG. 3 , FIG. 5 , FIG. 6 , or data packet 1.1 of FIG. 4 ) of the uplink burst that arrives at the MAC layer of the terminal device.
  • the first data packet eg, data packet 1 of FIG. 3 , FIG. 5 , FIG. 6 , or data packet 1.1 of FIG. 4
  • the uplink burst data packet is segmented at the RLC layer of the terminal device
  • the first data packet arriving at the MAC layer of the terminal device has been divided into multiple segments at the RLC layer
  • the first packet arriving at the terminal device's MAC layer The data packet of the MAC layer is the first data packet in the multi-segment data packet.
  • the first data packet arriving at the MAC layer of the terminal device is the data packet 1.1.
  • the uplink delay D U1 includes a duration from time T U1.1 to time T U1.3 , for example, the duration corresponding to (2) D U1 in FIGS. 3 to 6 .
  • the time T U1.3 is the grant time of the first data packet in the uplink burst that arrives at the MAC layer of the terminal device (eg, data packet 1 of Fig. 3, Fig. 5, Fig. 6, or data packet 1.1 of Fig. 4) .
  • the authorization time of the data packet represents the time when the data packet is scheduled by the access network device, and the time when the data packet is scheduled can be understood as the time when the access network device instructs the data packet to be sent from the terminal device to the access network device.
  • the access network device may send scheduling information to the terminal device, where the scheduling information includes the time when the data packet is scheduled.
  • the SDAP layer does not have the function of buffering data, the delay of data at the SDAP layer is very short, and the delay can be ignored.
  • the uplink delay D U2 includes the duration from time T U1.3 to time T U2.1 , for example, the duration corresponding to D U2 in FIGS. 3 to 6 .
  • the time T U1.3 is the grant time of the first data packet in the uplink burst that arrives at the MAC layer of the terminal device (eg, data packet 1 of Fig. 3, Fig. 5, Fig. 6, or data packet 1.1 of Fig. 4) , and the specific description can refer to the above description, which will not be repeated.
  • the time TU2.1 is the transmission time of the last data packet (eg, data packet 4) sent from the PDCP layer of the access network device in the uplink burst.
  • the time T U2.1 is the transmission time of the last data packet (eg, data packet 4 ) sent from the PDCP layer of the CU in the uplink burst.
  • the sending time of the data packet sent from the PDCP layer of the access network device in the embodiment of the present application represents the sending time of sending the data packet from the PDCP layer to the SDAP layer in 5G, and the sending time of the data packet from the PDCP layer to the SDAP layer in 4G.
  • the sending time sent by the PDCP layer to the core network device eg, UPF.
  • the uplink delay D U2 may include four parts of the delay, and the four parts of the delay include the delay D U21 , the delay D U22 , and the delay D U23 , time delay D U24 .
  • the delay D U21 can be understood as the air interface delay between the terminal equipment and the access network equipment in the uplink burst, including the time duration from time T U1.3 to time T U2.2 , for example, D in Figure 3 to Figure 6 The duration corresponding to U21 .
  • Time T U2.2 is the last data packet in the uplink burst that arrives at the MAC layer of the DU (for example, data packet 1 in Figure 3, or data packet 4.2 in Figure 4, or, data packet 3, Figure 4 in Figure 5 the arrival time of the packet 4).
  • the last data packet in the uplink burst that reaches the MAC layer of the access network device in the embodiment of the present application is a certain segment of the complete data packet.
  • the last data packet that reaches the MAC layer of the access network device is the data packet 4.2.
  • the time delay D U22 can be understood as the time delay of DU processing data packets, including the time duration from time T U2.2 to time T U2.3 , for example, the time duration corresponding to D U22 in FIG. 3 to FIG. 6 .
  • time T U2.3 is the last packet in the upstream burst sent from the RLC layer of the DU (eg, packet 4 of FIG. 3, 4 or 6, or packet 3 of FIG. 5 ). ) sending time.
  • time T U2.3 may also be the last exit from the general packet radio system tunneling protocol (GTP) tunnel of the F1-U interface of the DU in the uplink burst The sending time of the sent packet.
  • GTP general packet radio system tunneling protocol
  • the RLC layer receives and reassembles the fragmented data packet to recover the original data packet (ie, RLC SDU), and delivers the restored complete data packet to the PDCP layer. Therefore, no matter whether the data packet of the uplink burst is segmented or not, the last data packet in the uplink burst sent from the RLC layer of the access network device is also the recovered data packet. As shown in FIG. 4 , the access network device reassembles the data packet 4.1 and the data packet 4.2 into the data packet 4 at the RLC layer, and then submits it to the PDCP layer.
  • the delay D U23 can be understood as the delay of data packet transmission between the DU and the CU, including the duration from time T U2.3 to time T U2.4 , for example, the duration corresponding to D U23 in FIG. 3 to FIG. 6 .
  • time T U2.4 is the last packet in the upstream burst that arrives at the PDCP layer of the CU (eg, packet 4 of FIG. 3 , FIG. 4 , or FIG. 6 , or packet 3 of FIG. 5 ) arrival time.
  • the time T U2.4 may also be the arrival time of the last data packet in the uplink burst that arrives at the tunnel entry of the F1-U interface of the CU.
  • the time delay D U24 can be understood as the time delay for the CU to process the data packet, including the time duration from time T U2.4 to time T U2.1 , for example, the time duration corresponding to D U24 in FIG. 3 to FIG. 6 .
  • the uplink delay D U-UE-base station includes the uplink delay D U2 , and does not involve the delay of the uplink burst delivered at each protocol layer of the terminal device.
  • the uplink delay D U2 For a specific description of the uplink delay D U2 , reference may be made to the relevant description of the above case 1, and details are not repeated here.
  • the uplink delay D U-base station-UPF is the last data packet sent from the access network device in the uplink burst (for example, data packet 4 in Figure 3 to Figure 6) between the access network device and the core network device. time delay. It should be understood that the uplink delay D U-base station- UP is a delay of a packet granularity.
  • the uplink delay DU-base station-UPF includes the duration from time TU2.6 to time TU3 .
  • the time T U2.6 is the sending time of the last data packet sent from the access network device in the uplink burst.
  • the time T U2.6 may be the sending time of the last data packet sent from the GTP tunnel exit of the interface (eg, N3 interface) between the access network device and the core network device in the uplink burst.
  • the interface eg, N3 interface
  • the time T U2.6 may be the sending time of the last data packet sent from the SDAP layer of the access network device in the uplink burst. It should be understood that the sending time represents the sending time when the data packet is sent from the SDAP layer of the access network device to the core network device. For example, the time T U2.6 shown in FIG. 3 to FIG. 6 is the sending time when the data packet 4 is sent from the SDAP layer.
  • the time T U2.6 can also be any of the following:
  • the time T U2.6 may be the last transmission time in the uplink burst sent from the PDCP layer of the access network device.
  • time T U2.6 is the sending time of the last data packet sent from the PDCP layer of the access network device in the uplink burst.
  • the time T U3 may be the arrival time of the last data packet (eg, data packet 4 ) in the uplink burst that arrives at the core network device.
  • the time TU3 may be the arrival time of the last GTP tunnel entry in the uplink burst that arrives at the interface (eg, the N3 interface) between the core network device and the access network device.
  • the uplink delay D U-UE-UPF represents the delay between the terminal equipment and the core network equipment of the uplink burst, including the uplink delay U-UE-base station and the uplink delay D U-base station-UPF , about the uplink delay
  • the uplink delay D U-UE-UPF represents the delay between the terminal equipment and the core network equipment of the uplink burst, including the uplink delay U-UE-base station and the uplink delay D U-base station-UPF , about the uplink delay
  • FIG. 7 is a schematic flowchart of a method 100 for burst monitoring of uplink transmission provided by an embodiment of the present application.
  • the core network device sends a delay monitoring request to the access network device, where the delay monitoring request is used to instruct to perform delay monitoring on periodic bursts.
  • the uplink burst in this embodiment of the present application is periodic, and the delay monitoring request is used to instruct to perform delay monitoring on the uplink burst of each cycle in one or more cycles, so as to determine that the periodic uplink burst is The transmission delay between the terminal equipment and the access network equipment.
  • the delay monitoring request is used to instruct to report the delay of periodic uplink burst transmission between the terminal device and the access network device.
  • the delay monitoring request may be a single piece of information, or may be content carried in other information, which is not limited in any embodiment of the present application.
  • the delay monitoring request may be a field carried in a downlink (downlink, DL) protocol data unit (protocol data unit, PDU) session information (SESSION INFORMATION).
  • DL downlink
  • PDU protocol data unit
  • SESSION INFORMATION session information
  • the access network device determines the uplink delay between the terminal device and the access network device in the uplink burst, wherein the uplink burst is between the terminal device and the access network device.
  • the uplink delay between network devices includes the first uplink delay, and the first uplink delay includes the duration from the first time to the second time, and the first time is the first time in the uplink burst to reach the terminal device.
  • the authorization time of the data packet of the MAC layer of the medium access control, the second time is the sending time of the last data packet sent from the packet data convergence protocol PDCP layer of the access network device in the uplink burst.
  • the access network device receives the delay monitoring request, and determines the uplink delay of the uplink burst between the terminal device and the access network device.
  • the access network device can also be configured according to the network management system, such as the configuration strategy of the operation and maintenance management (OAM) system, or according to the configuration strategy stored locally by the access network device (such as the factory configuration of the device, the factory configuration can be upgraded) and so on, the above-mentioned delay monitoring is started, so the above-mentioned S110 is optional.
  • the access network device determines the uplink delay according to the network management system or the configuration policy stored locally.
  • the first time can be understood as the start time of the uplink burst between the terminal device and the access network device
  • the second time can be understood as the start time of the uplink burst between the terminal device and the access network device End Time.
  • the uplink delay of the uplink burst between the terminal equipment and the access network equipment is the uplink delay D U-UE-base station described above
  • the first uplink delay is the above delay D U2
  • the first uplink delay is the above delay D U2
  • the first time is the above time T U1.3
  • the second time is the above time T U2.1 .
  • the terminal device may determine the first data packet in the uplink burst that reaches the MAC layer of the terminal device according to the burst number of the uplink burst.
  • the terminal device may determine, according to the change of the burst number of the uplink burst, the first data packet in the uplink burst that reaches the MAC layer of the terminal device. For example, the MAC layer of the terminal device first receives the uplink burst data packet with burst number 1, and then receives the uplink burst data packet with burst number 2. Since the burst number has changed from 1 to 2, It means that the uplink burst with burst number 1 has been received, then the first time the MAC layer of the terminal device receives the uplink burst with burst number 2 is the first time to reach the MAC layer of the terminal device. the data package.
  • the terminal device may determine the first data packet in the uplink burst that reaches the MAC layer of the terminal device according to the period to which the uplink burst belongs.
  • the terminal device may start monitoring from the start time of a cycle, and the first data packet received by the MAC layer of the terminal device during the cycle is the first data of the uplink burst transmitted during the cycle. Bag.
  • the access network device may determine the last data packet sent from the PDCP layer of the access network device in the uplink burst according to the period to which the uplink burst belongs.
  • the access network device may start monitoring from the start time of a period, and the last data packet sent from the PDCP layer in the period is the last data packet sent from the access network in the uplink burst transmitted in the period. Data packets sent by the PDCP layer of the device.
  • the method for burst monitoring provides a method for monitoring the delay of an uplink burst.
  • the access network device determines the uplink delay based on the delay monitoring request for the uplink burst sent by the core network device,
  • the uplink delay includes a first uplink delay from a first time to a second time, where the first time is the authorization time for the first data packet in the uplink burst to reach the MAC layer of the terminal device, and the first time
  • the second time is the sending time of the last data packet sent from the PDCP layer of the access network device in the uplink burst.
  • the process in which the access network device monitors the uplink delay of the uplink burst between the terminal device and the access network device is implemented, so that the access network device can more accurately determine the uplink delay based on the uplink burst for the uplink burst. Evaluate data transfer performance to improve user experience.
  • the uplink delay of the uplink burst between the terminal device and the access network device further includes a fourth uplink delay, and the fourth uplink delay includes the time from the fourth time to the fifth time. duration, or, the fourth uplink delay includes the duration from the fourth time to the first time, where the fourth time is the arrival time of the first data packet arriving at the PDCP layer of the terminal device in the uplink burst, The fifth time is the arrival time of the first data packet in the uplink burst that reaches the MAC layer of the terminal device.
  • the fourth time can be understood as the start time of the uplink burst between the terminal device and the access network device.
  • the fourth uplink delay is the above uplink delay D U1
  • the fourth time is the above time T U1.1
  • the fifth time is the above time T U1.2
  • the first time is Time T U1.3 above.
  • the terminal device may count the fourth uplink delays of multiple uplink bursts to obtain an average value of the multiple fourth uplink delays, and the average value may be used as the fourth uplink delay of the uplink bursts.
  • the period lengths of the multiple uplink bursts are the same.
  • the terminal device can determine the first data packet in the uplink burst that reaches the PDCP layer of the terminal device according to the burst number of the uplink burst.
  • the related description of the first data packet arriving at the MAC layer of the terminal device in the uplink burst is determined by sending the number, and details are not repeated here.
  • the terminal device may determine the first data packet in the uplink burst to reach the PDCP layer of the terminal device according to the period to which the uplink burst belongs. The relevant description of the first data packet reaching the MAC layer of the terminal device in the periodic determination of the uplink burst will not be repeated.
  • the terminal device sends the fourth uplink delay to the access network device
  • the access network device receives the fourth uplink delay
  • the access network device determines the first uplink delay, and determines the uplink delay of the uplink burst at the terminal device and the access network device according to the fourth uplink delay and the first uplink delay.
  • the uplink delay between the terminal device and the access network device of the uplink burst includes: a first uplink delay and a fourth uplink delay. To put it simply, the access network device adds the two delays to obtain the uplink delay of the uplink burst between the terminal device and the access network device.
  • the uplink delay between the terminal device and the access network device of the uplink burst also includes the delay of the uplink burst delivered at each protocol layer of the terminal device, which can be more accurate. Therefore, the data transmission performance can be more accurately evaluated based on the uplink delay for the uplink burst, so as to further improve the user experience.
  • the embodiments of the present application provide two methods for monitoring the uplink delay (referred to as mode 1 and mode 2).
  • Method 1 is mainly to count the uplink delay between the terminal equipment and the access network equipment in sections, so as to obtain the uplink delay of the uplink burst between the terminal equipment and the access network equipment, which can be applied to the access network.
  • Mode 2 is mainly based on the first time and second time of the uplink burst to determine the uplink delay of the uplink burst between the terminal device and the access network device. This mode 2 is not limited to the scenario where the DU is separated from the CU, and can also be applied to the DU Scenarios that are not separated from the CU.
  • the access network device mainly collects statistics on two delays, that is, the second uplink delay and the third uplink delay.
  • the first uplink delay includes a second uplink delay and a third uplink delay, wherein the second uplink delay includes the duration from the first time to the third time, and the third uplink delay includes the time from the first time to the third time.
  • the duration from the third time to the second time, the third time is the sending time of the last data packet sent from the RLC layer of the access network device to the PDCP layer of the access network device in the uplink burst.
  • the first time is the arrival time of the first data packet reaching the MAC layer of the terminal device in the uplink burst, which is the above time T U1.3
  • the second time is the last slave access time in the uplink burst
  • the sending time of the data packet sent by the PDCP layer of the network device is the above time T U2.1
  • the fifth time is the above time T U2.3 .
  • the second time is the transmission time of the last data packet sent from the PDCP layer of the DU in the uplink burst
  • the third time is the RLC of the last data packet from the CU in the uplink burst The transmission time of the data packet sent by the layer to the PDCP layer of the DU.
  • the second uplink delay includes the above delays D U21 and D U22
  • the third uplink delay includes the above delays D U23 and D U24 .
  • each time delay reference may be made to the above related description, which will not be repeated.
  • the access network device may determine the last data packet sent from the RLC layer of the access network device to the PDCP layer in the uplink burst according to the period to which the uplink burst belongs. For a specific description, reference may be made to the above description about the access network device determining the last data packet in the uplink burst sent from the PDCP layer of the access network device according to the period to which the uplink burst belongs, and details are not repeated here.
  • the uplink delay between the terminal device and the access network device of the uplink burst includes the first uplink delay and the fourth uplink delay.
  • the access network device determines the uplink delay of the uplink burst between the terminal device and the access network device, including:
  • the access network device determines the second uplink delay and the third uplink delay in response to the delay monitoring request;
  • the access network device determines the fourth uplink delay
  • the access network device determines the uplink time of the uplink burst between the terminal device and the access network device according to the second uplink delay, the third uplink delay and the fourth uplink delay extension.
  • the access network device receives the fourth uplink delay sent from the terminal device to determine the fourth uplink delay, and the fourth downlink delay is the above downlink delay D U1 , and the specific description can refer to the above The relevant descriptions will not be repeated here.
  • the method for monitoring the uplink delay of the uplink burst may be as follows:
  • the DU determines the second uplink delay in response to the delay monitoring request
  • the DU sends the second uplink delay to the CU
  • the CU determines the fourth uplink delay
  • the CU determines the third uplink delay in response to the delay monitoring request
  • the CU determines the uplink delay of the uplink burst between the terminal device and the access network device according to the second uplink delay, the third uplink delay and the fourth uplink delay.
  • the terminal device sends the fourth uplink delay to the CU, so that the CU determines the fourth uplink delay.
  • the DU may determine the second uplink delay according to the first time and the third time, that is, the DU first determines the first time and the third time, and then determines the second uplink delay.
  • the DU may determine the second uplink delay according to the delay D U21 and the delay D U22 , that is, the DU first determines the delay D U21 and the delay D U22 , and then determines the second uplink delay.
  • the CU may determine the third uplink delay according to the third time and the second time, that is, the CU first determines the third time and the first time, and then determines the third uplink delay.
  • the CU may determine the third uplink delay according to the delays D U23 and D U24 , that is, the DU first determines the delays D U23 and D U24 , and then determines the third uplink delay.
  • the third uplink delay is determined by the CU-UP, and according to the second uplink delay, the third uplink delay and the fourth uplink delay
  • Uplink delay determine the uplink delay of the uplink burst between the terminal device and the access network device.
  • the method for burst monitoring supports the scenario where the DU and CU of the access network equipment are separated.
  • the uplink delay determines the uplink delay of the uplink burst in the terminal equipment and the access network equipment. That is to say, by segmenting the DU and CU to count the delay related to themselves, it is possible to monitor the uplink delay of the uplink burst in the scenario where the DU and the CU are separated.
  • the uplink delay between the terminal device and the access network device of the uplink burst includes the first uplink delay and does not include the fourth uplink delay.
  • the access network device determines the uplink delay of the uplink burst between the terminal device and the access network device, including:
  • the access network device determines the second uplink delay and the third uplink delay in response to the delay monitoring request;
  • the access network device determines the uplink delay of the uplink burst between the terminal device and the access network device according to the second uplink delay and the third uplink delay.
  • the method for monitoring the uplink delay of the uplink burst may be as follows:
  • the DU determines the second uplink delay in response to the delay monitoring request
  • the DU sends the second uplink delay to the CU
  • the CU determines the third uplink delay in response to the delay monitoring request
  • the CU determines the uplink delay of the uplink burst between the terminal device and the access network device according to the third uplink delay and the fourth uplink delay.
  • the CU-UP determines the third uplink delay, and determines the uplink delay according to the second uplink delay and the third uplink delay The burst uplink delay between the terminal equipment and the access network equipment.
  • the method for burst monitoring supports the scenario where the DU and CU of the access network equipment are separated.
  • the second uplink delay and the third uplink delay determined by the CU due to the transmission of the uplink burst between the CU and the DU and the processing of the uplink burst by the CU determine that the uplink burst occurs when the terminal equipment and the access network equipment are uplinked. extension. That is to say, by segmenting the DU and CU to count their own-related delays, it can meet the monitoring of the uplink delay of the uplink burst in the scenario where the DU and the CU are separated.
  • the uplink delay between the terminal device and the access network device of the uplink burst includes the first uplink delay and the fourth uplink delay.
  • the access network device determines the uplink delay of the uplink burst between the terminal device and the access network device, including:
  • the access network device determines the first time and the second time in response to the delay monitoring request
  • the access network device determines the fourth uplink delay
  • the access network device determines, according to the fourth uplink delay, the first time and the second time, the uplink delay of the uplink burst between the terminal device and the access network device.
  • the first time is the arrival time of the first data packet in the uplink burst that reaches the MAC layer of the terminal device, that is, the above time T U1.3 .
  • the second time is the sending time of the last data packet sent from the PDCP layer of the access network device in the uplink burst.
  • the second time is the last data packet sent from the PDCP layer of the DU in the uplink burst.
  • the sending time of the sent data packet is the above time T U2.1 .
  • the duration from the first time to the second time is the first uplink delay in this embodiment of the present application.
  • the access network equipment When the access network equipment schedules data, the access network equipment allocates an uplink grant (UL grant) to the terminal equipment.
  • the UL grant carries the authorization time of the data packet, and the terminal equipment sends the data packet through the UL grant. Even if the access network device receives the data packet only after scheduling retransmission, the access network device can still obtain the authorization time of the data packet based on the time of the UL Grant of the initial transmission of the data packet.
  • the access network device may determine the grant time of the first data packet in the uplink burst according to the UL grant.
  • the access network device in response to the delay monitoring request, determines the uplink delay of the uplink burst between the terminal device and the access network device, including:
  • the DU determines the first time in response to the delay monitoring request
  • the DU sends the first time to the CU
  • the CU determines the fourth uplink delay
  • the CU determines the second time in response to the delay monitoring request
  • the CU determines, according to the fourth uplink delay, the first time, and the second time, the uplink delay of the uplink burst between the terminal device and the access network device.
  • the terminal device sends the fourth uplink delay to the CU, so that the CU determines the fourth uplink delay.
  • the CU-UP determines that the uplink burst is between the terminal device and the connection according to the fourth uplink delay, the first time, and the second time. Upstream delay between networked devices.
  • the burst monitoring method supports the scenario in which the DU and CU of the access network device are separated. Based on the first time, the second time (ie, the end time) of the uplink burst determined by the CU at the CU, and the fourth uplink delay generated by the terminal equipment due to the uplink burst obtained by the CU due to data submission, it is determined that the uplink burst is at Uplink delay of terminal equipment and access network equipment. In this way, the process of monitoring the uplink delay of the uplink burst in the scenario where the DU and the CU are separated can be implemented. In addition, compared with the way of calculating the delay in segments of DUs and CUs, this method can obtain more accurate uplink delays of uplink bursts.
  • the uplink delay between the terminal device and the access network device of the uplink burst includes the first uplink delay and does not include the fourth uplink delay.
  • the access network device determines the uplink delay of the uplink burst between the terminal device and the access network device, including:
  • the access network device determines the first time and the second time according to the delay monitoring request
  • the access network device determines, according to the first time and the second time, the uplink time delay of the uplink burst between the terminal device and the access network device.
  • the access network device in response to the delay monitoring request, determines the uplink delay of the uplink burst between the terminal device and the access network device, including:
  • the DU determines the first time in response to the delay monitoring request
  • the DU sends the first time to the CU
  • the CU determines the second time
  • the CU determines, according to the first time and the second time, the uplink delay of the uplink burst between the terminal device and the access network device.
  • the CU-UP determines the second time, and the uplink burst is determined at the terminal according to the second time and the received first time.
  • the uplink delay between the device and the access network device is the first time.
  • the burst monitoring method supports the scenario in which the DU and CU of the access network device are separated. Based on the first time and the second time (ie, the end time) of the uplink burst determined by the CU at the CU, the uplink delay of the uplink burst at the terminal device and the access network device is determined. In this way, the uplink delay of monitoring the uplink burst can be satisfied in the scenario where the DU and the CU are separated. In addition, compared with the way of calculating the delay in segments of DUs and CUs, this method can obtain more accurate uplink delays of uplink bursts.
  • the uplink time delay between the terminal device and the core network device can also be determined. Based on this, the method 100 for burst monitoring of uplink transmission according to the embodiment of the present application further includes steps S130, S140 and S150.
  • the access network device sends response information to the core network device, where the response information is information in response to the delay monitoring request, and the response information includes the uplink burst between the terminal device and the access network device. time delay.
  • the core network device receives the response information.
  • the response information may be a single piece of information, or may be content carried in other information, which is not limited in any embodiment of the present application.
  • the response information may be a field carried in an uplink (UL) PDU SESSION INFORMATION.
  • the core network device determines the fifth uplink delay between the access network device and the core network device of the last data packet sent from the PDCP layer of the access network device in the uplink burst.
  • the fifth uplink delay is the above uplink delay D U-base station-UPF , and the specific description of the uplink delay D U-base station-UPF refers to the above related description, and will not be repeated.
  • the access network device may, according to the transmission time (ie, the second time) of the last data packet sent from the PDCP layer of the access network device in the uplink burst, the time when the last data packet reaches the core network device.
  • the arrival time of the data packet determines the fifth uplink delay.
  • the fifth uplink delay may also be determined based on the average value of multiple data packets (not limited to uplink data packets or downlink data packets) transmitted between the access network device and the core network device, or, the fifth uplink delay It can also be obtained based on the transmission delay of any data packet between the access network device and the core network device.
  • the core network device determines, according to the fifth uplink delay and the uplink delay of the uplink burst between the terminal device and the access network device, that the uplink burst is between the terminal device and the core network Upstream delay between devices.
  • the uplink delay between the terminal device and the core network device of the uplink burst includes: the fifth uplink delay and the uplink delay of the uplink burst between the terminal device and the access network device.
  • the core network equipment adds the two delays to obtain the uplink delay between the terminal equipment and the core network equipment for an uplink burst.
  • the uplink delay of the uplink burst between the terminal device and the core network device is the above-mentioned uplink delay D U-UE-UPF , and the specific description can refer to the above-mentioned related description, which will not be repeated.
  • the burst monitoring method provides a method for monitoring the delay of an uplink burst.
  • the core network device receives the uplink burst sent by the access network device between the terminal device and the access network device. Delay, based on the uplink delay and the fifth uplink delay of the uplink burst between the access network device and the core network device determined by the core network device itself, it is finally determined that the uplink burst is between the terminal device and the core network device. the uplink delay.
  • the process of monitoring the uplink delay of the uplink burst between the terminal device and the core network device is implemented, so that the core network device can more accurately evaluate the data transmission performance based on the uplink delay for the uplink burst. to improve user experience.
  • FIG. 8 and FIG. 9 a method for performing burst monitoring of downlink transmission in a scenario where DUs and CUs are separated will be described in detail below with reference to FIG. 8 and FIG. 9 .
  • the network elements involved in the methods shown in FIG. 8 and FIG. 9 include: terminal equipment, SMF and UPF of core network equipment, and CU-CP and CU-UP of access network equipment.
  • the methods shown in FIG. 8 and FIG. 9 are described by taking the uplink frame as an example of the uplink burst and taking the UE as an example of the terminal device.
  • the upstream frame may be a video frame.
  • FIG. 8 is a schematic flowchart of a method 200 for burst monitoring of uplink transmission in a scenario where DUs and CUs of an access network device are separated according to an embodiment of the present application.
  • the method 200 corresponds to the embodiment of Mode 1.
  • the SMF sends a PDU session resource setting request (PDU SESSION RESOURCE SETUP REQUEST) to the CU-CP, wherein the PDU SESSION RESOURCE SETUP REQUEST carries a QoS flow identifier (QFI) and a frame service quality monitoring request.
  • PDU SESSION RESOURCE SETUP REQUEST carries a QoS flow identifier (QFI) and a frame service quality monitoring request.
  • QFI QoS flow identifier
  • the frame service quality monitoring request is used to indicate the transmission direction of monitoring, and the transmission direction includes uplink and downlink.
  • the CU-CP After the CU-CP receives the frame service quality monitoring request, it can enable the DU and CU-UP to perform frame service quality monitoring function for the data radio bearer (DRB) of QFI, and enable the DU and CU-UP to open the frame monitoring function.
  • DRB data radio bearer
  • the transmission direction of the monitoring frame indicated by the frame service quality monitoring request is uplink transmission.
  • the frame service quality monitoring request may also be referred to as a burst service quality monitoring request, and the descriptions of the two may be replaced.
  • the CU-CP sends a bearer context setting request (BEARER CONTEXT SETUP REQUEST) to the CU-UP, and the BEARER CONTEXT SETUP REQUEST carries the QFI and frame service quality monitoring request.
  • BEARER CONTEXT SETUP REQUEST a bearer context setting request
  • the CU-UP receives the BEARER CONTEXT SETUP REQUEST sent by the CU-CP, and the CU-UP can perform the frame quality of service monitoring function for the DRB of the QFI.
  • the frame service quality monitoring function may also be referred to as a burst service quality monitoring function, and the descriptions of the two may be replaced.
  • the CU-CP sends a UE context setting request (UE CONTEXT SETUP REQUEST) to the DU, and the UE CONTEXT SETUP REQUEST carries the QFI and frame service quality monitoring request.
  • UE CONTEXT SETUP REQUEST UE context setting request
  • the DU receives the UE CONTEXT SETUP REQUEST from the CU-CP, obtains the QFI and the corresponding frame service quality monitoring request, and the DU can perform the frame service quality monitoring function for the DRB of the QFI.
  • the CU-CP sends measurement configuration information (measureconfig) to the UE, where the measureconfig includes the delivery delay of the first data packet arriving at the PDCP layer in the uplink frame instructing the UE to report the DRB, and the first data packet in the uplink frame
  • the delivery delay of each data packet arriving at the PDCP layer at the terminal device is the fourth upstream delay above, that is, the upstream delay D U1 .
  • the UE counts the fourth uplink delay of the uplink frame of the DRB.
  • the UE sends a measurement report to the CU-CP, where the measurement report carries the identifier (eg, ID) of the DRB and the fourth uplink delay D U1 of the corresponding uplink frame.
  • the CU-CP receives the measurement report, and obtains the fourth uplink delay D U1 of the uplink frame corresponding to the DRB.
  • the CU-CP sends the GNB-CU-CP measurement result (GNB-CU-CP MEASUREMENT RESULTS INFORMATION) to the CU-UP, and the GNB-CU-CP MEASUREMENT RESULTS INFORMATION carries the DRB identifier and the first number of the uplink frame corresponding to the DRB identifier.
  • GNB-CU-CP MEASUREMENT RESULTS INFORMATION carries the DRB identifier and the first number of the uplink frame corresponding to the DRB identifier.
  • Four uplink delays D U1 Four uplink delays D U1 .
  • the UPF sends the DL PDU session information (DL PDU SESSION INFORMATION) to the CU-UP, and the DL PDU SESSION INFORMATION carries the QoS monitoring frame (Qos monitoring frame, QMF).
  • the CU-UP receives the DL PDU SESSION INFORMATION and obtains the QMF.
  • the QMF can be understood as the delay monitoring request in the method 100 .
  • Table 1 shows a frame format of DL PDU SESSION INFORMATION, wherein the DL PDU SESSION INFORMATION carries a QoS monitoring frame request (QoS Monitoring frame, QMF).
  • the DL PDU SESSION INFORMATION can also carry a QoS monitoring packet request (QoS monitoring packet, QMP), and the QMP is used to instruct the access network device to perform QoS monitoring of a data packet.
  • QMP QoS monitoring packet request
  • DL PDU SESSION INFORMATION exists in one of QMP and QMF.
  • the DL PDU SESSION INFORMATION can also carry: paging policy presence (paging policy presence, PPP), reverse QoS indicator (reflective QoS indicator, RQI), paging policy indicator (paging policy indicator, PPI).
  • paging policy presence paging policy presence, PPP
  • reverse QoS indicator reflective QoS indicator, RQI
  • paging policy indicator paging policy indicator, PPI
  • the QoS monitoring frame can also be called a QoS monitoring burst, and the descriptions of the two can be replaced.
  • CU-UP sends DL user data (DL USER DATA) ((PDU Type 0) to DU, and DL USER DATA carries QMF.
  • DL USER DATA DL USER DATA
  • DU receives DL USER DATA and obtains QMF.
  • the DU determines the second uplink delay between the terminal device and the DU in the uplink frame according to the QMF received in S218.
  • the second uplink time delay the time delay D U21 and the time delay D U22 .
  • the DU sends UL auxiliary information data (UL ASSISTANCE INFORMATION DATA) (PDU Type 2) to the CU-UP, where the UL ASSISTANCE INFORMATION DATA carries the second uplink delay between the terminal device and the DU.
  • UL ASSISTANCE INFORMATION DATA UL auxiliary information data
  • the CU-UP receives the UL ASSISTANCE INFORMATION DATA to obtain the second uplink delay.
  • Table 2 shows a frame format of UL ASSISTANCE INFORMATION DATA.
  • the uplink frame delay result of DU ((UL frame,ULF)Delay DU Result) includes the second uplink delay of the uplink frame between the terminal device and the DU, which is represented by 0 or 4-bit number of bytes
  • the uplink frame delay indication (ULF Delay Ind.) indicates whether there is a ULF Delay DU Result in the UL ASSISTANCE INFORMATION DATA, which is represented by a 1-bit number of bytes.
  • ULF Delay Ind. when the value of ULF Delay Ind. is 1, it means that ULF Delay DU Result exists in UL ASSISTANCE INFORMATION DATA, and when the value of ULF Delay Ind. is 0, it means that there is no ULF Delay DU Result in UL ASSISTANCE INFORMATION DATA ULF Delay DU Result.
  • the uplink frame delay result can also be called the uplink burst delay result
  • the uplink frame delay flag bit can also be called the uplink burst delay flag bit. replace.
  • the CU-UP determines the uplink delay of the uplink frame between the terminal device and the CU-UP according to the QMF received in S217, that is, determines the uplink time delay of the uplink frame between the terminal device and the access network device Extend D U-UE-base station .
  • the CU-UP determines the uplink delay between the terminal device and the CU-UP according to the second uplink delay, the third uplink delay and the fourth uplink delay.
  • the fourth uplink delay is the second uplink delay carried in the GNB-CU-CP MEASUREMENT RESULTS INFORMATION sent by the CU-CP to the CU-UP in S216.
  • the second uplink delay is the third uplink delay carried in the UL ASSISTANCE INFORMATION DATA sent by the DU to the CU-UP in S220.
  • the third uplink delay the delay D U23 + the delay D U24 .
  • the CU-UP sends UL PDU session information (UL PDU SESSION INFORMATION) to the UPF, where the UL PDU SESSION INFORMATION carries the uplink delay D U-UE-base station between the terminal device and the CU-UP.
  • UL PDU SESSION INFORMATION carries the uplink delay D U-UE-base station between the terminal device and the CU-UP.
  • the UPF receives the UL PDU SESSION INFORMATION.
  • the UL PDU SESSION INFORMATION carries response information in response to the QMF sent in S217, where the response information includes the uplink delay between the terminal device and the CU-UP DU-UE -base station .
  • the uplink frame delay result (ULF Delay Result) includes the uplink delay of the uplink frame between the terminal device and the CU-UP, and ULF Delay Ind. indicates whether there is a ULF Delay Result in the UL PDU SESSION INFORMATION, which consists of 1-bit bytes. number representation.
  • ULF Delay Ind. indicates whether there is a ULF Delay Result in the UL PDU SESSION INFORMATION, which consists of 1-bit bytes. number representation.
  • ULF Delay Ind. when the value of ULF Delay Ind. is 1, it means that ULF Delay Result exists in UL PDU SESSION INFORMATION, and when the value of ULF Delay Ind. is 0, it means that ULF does not exist in UL PDU SESSION INFORMATION Delay Result.
  • the UPF determines the uplink delay of the uplink frame between the terminal device and the UPF (ie, the core network device).
  • the uplink delay includes the fifth uplink delay D U-base station -UPF of the uplink frame at UPF and CU-UP, and the uplink delay D U -UE-base station of the uplink frame at the terminal equipment and CU-UP.
  • the UPF determines the uplink delay D U-UE-UPF of the uplink frame between the terminal device and the UPF according to the fifth uplink delay and the uplink delay of the uplink frame at the terminal device and the CU-UP.
  • the uplink delay determined in the above embodiment includes the fourth uplink delay D U1 .
  • the uplink delay does not include the fourth uplink delay D U1 , as another specific embodiment in the scenario where the DU and the CU are separated, It can be performed with reference to the embodiment of FIG. 8 .
  • the method for monitoring the uplink time delay is slightly different: in this embodiment, S214 to S216 are omitted, and all information about the fourth uplink time delay D U1 is omitted in S219 to S223 content can be.
  • FIG. 9 is a schematic flowchart of a method 300 for burst monitoring of uplink transmission in a scenario where DUs and CUs of an access network device are separated according to an embodiment of the present application.
  • the method 300 corresponds to the embodiment of Mode 2.
  • each network element performing S311 to S318 is the same as the process of each network element performing S211 to S218 in the method 200, which is not repeated here, and the process of S319 to S323 is described below.
  • the DU determines the first time according to the QMF received in S318, and the first time is the authorization time of the first data packet in the uplink frame that reaches the MAC layer of the terminal device.
  • the first time is the above time T U1.3 , and the specific description refers to the above related description, which is not repeated here.
  • the DU sends UL ASSISTANCE INFORMATION DATA (PDU Type 2) to the CU-UP, and the UL ASSISTANCE INFORMATION DATA carries the first time.
  • PDU Type 2 UL ASSISTANCE INFORMATION DATA
  • Table 4 shows a frame format of ASSISTANCE INFORMATION DATA.
  • the uplink frame timestamp result of the DU ((UL frame, ULF) Timestamp DU Result) includes the grant time (ie, the first time) of the first data packet in the uplink frame, and the uplink frame delay indication (ULF Delay Ind.) Indicates whether ULF Timestamp DU Result exists in ASSISTANCE INFORMATION DATA. Exemplarily, when the value of ULF Delay Ind. is 1, it means that there is a ULF Timestamp DU Result in the ASSISTANCE INFORMATION DATA, and when the value of ULF Delay Ind. is 0, it means that there is no ULF Timestamp DU Result.
  • the uplink frame time stamp result may also be referred to as the uplink burst time stamp result, and the descriptions of the two may be replaced.
  • the CU-UP determines the uplink time delay of the uplink frame between the terminal device and the CU-UP, thereby determining the uplink time delay D U-UE-base station of the uplink frame between the terminal device and the access network device.
  • the uplink delay includes the fourth uplink delay submitted by the terminal device of the uplink frame, the first uplink delay from the first time to the second time, and the second time is the last uplink frame sent from the PDCP layer of the CU the sending time of the packet.
  • the CU-UP determines the uplink delay D U-UE-base station between the terminal device and the CU-UP (ie, core network device) according to the fourth uplink delay, the first time and the second time.
  • the fourth uplink delay is the fourth uplink delay carried in the GNB-CU-CP MEASUREMENT RESULTS INFORMATION sent by the CU-CP to the CU-UP in S316.
  • the CU-UP sends the UL PDU SESSION INFORMATION to the UPF, where the UL PDU SESSION INFORMATION carries the uplink delay between the terminal device and the CU-UP DU-UE -base station .
  • the UPF determines the uplink time delay D U-UE-UPF between the terminal device and the UPF (ie, the core network device) of the uplink frame.
  • each network element performing S322 to S323 is the same as the process of each network element performing S222 to S223 in method 200, and details are not repeated here.
  • the uplink delay determined in the above embodiment includes the fourth uplink delay.
  • the uplink delay does not include the fourth uplink delay
  • FIG. 9 implementation of the example since there is no need to determine the fourth uplink delay, the method for monitoring the uplink delay is slightly different: compared with case 1, in this case, S314 to S316 are omitted, and the fourth uplink delay is omitted in S321 to S323 content can be.
  • the embodiment of the present application also provides a method for burst monitoring.
  • the method provides that the core network device determines the uplink delay of the uplink burst between the terminal device and the core network device mainly based on the first time and the end time of the uplink burst between the terminal device and the core network device, compared to The uplink delay obtained by calculating the delay in segments of each network element is more accurate.
  • FIG. 10 is a schematic flowchart of a method 400 for burst monitoring of uplink transmission provided by an embodiment of the present application.
  • the core network device sends a delay monitoring request to the access network device, where the delay monitoring request is used to instruct to perform delay monitoring on periodic bursts.
  • the access network device determines a first time in response to the delay monitoring request, where the first time is the authorization time of the first data packet in the uplink burst that reaches the MAC layer of the terminal device.
  • the access network device may determine the first time according to the UL grant. For a specific description, refer to the relevant description of the access network device determining the first time in Mode 2 above, which will not be repeated here.
  • the access network device sends response information to the core network device, where the response information includes the first time.
  • the response information may be a single piece of information, or may be content carried in other information, which is not limited in any embodiment of the present application.
  • the response information may be a field carried in a UL PDU SESSION INFORMATION frame.
  • the core network device determines the arrival time of the last data packet arriving at the core network device in the uplink burst.
  • the arrival time can be understood as the end time of the uplink burst between the terminal device and the core network device.
  • the arrival time is the above time T U3 , and the specific description refers to the above related description, which will not be repeated.
  • the core network device determines the uplink delay between the terminal device and the core network device for the uplink burst according to the first time and the arrival time.
  • the uplink delay between the terminal device and the core network device of the uplink burst is the above-mentioned uplink delay D U-UE-UPF , including the duration from the first time to the arrival time.
  • the authorization time ie, the first time
  • the authorization time ie, the first time
  • An arrival time to the core network equipment determines the uplink delay of the uplink burst between the terminal equipment and the core network equipment.
  • the uplink delay D U-UE-UPF of the uplink burst between the terminal device and the core network device further includes a fourth uplink delay. Based on this, the method 400 further includes:
  • the core network device receives the fourth uplink delay from the terminal device
  • the core network device determines the uplink delay of the uplink burst between the terminal device and the core network device according to the fourth uplink delay, the first time and the arrival time.
  • the terminal device sends the fourth uplink delay to the core network device through the access network device.
  • the response information sent by the access network device includes the first time and the fourth uplink delay.
  • FIG. 11 is a schematic flowchart of a method 500 for burst monitoring of uplink transmission in a scenario where DUs and CUs are separated, provided by an embodiment of the present application.
  • the method 500 is a more specific embodiment of the method 400 .
  • the network elements involved in the method shown in FIG. 11 include: terminal equipment, SMF and UPF of core network equipment, and CU-CP and CU-UP of access network equipment.
  • the method shown in FIG. 11 is described by taking the uplink frame as an example of the uplink burst and taking the UE as an example of the terminal device.
  • the upstream frame may be a video frame.
  • each network element performing S511 to S518 is the same as the process of each network element performing S211 to S218 in the method 200, which is not repeated here, and the process of S518 to S522 is described below.
  • the DU determines the first time according to the QMF received in S518, where the first time is the authorization time of the first data packet in the uplink frame that arrives at the MAC layer of the terminal device.
  • the DU sends UL ASSISTANCE INFORMATION DATA (PDU Type 2) to the CU-UP, and the UL ASSISTANCE INFORMATION DATA carries the first time.
  • PDU Type 2 UL ASSISTANCE INFORMATION DATA
  • the CU-UP sends the UL PDU SESSION INFORMATION to the UPF, and the UL PDU SESSION INFORMATION carries the first time and the fourth uplink delay.
  • the fourth uplink delay is the fourth uplink delay carried in the GNB-CU-CP MEASUREMENT RESULTS INFORMATION sent by the CU-CP to the CU-UP in S516.
  • the UL PDU SESSION INFORMATION carries the response information in response to the QMF sent in S517, and the response information includes the first time and the fourth uplink delay.
  • Table 5 shows a frame format of UL PDU SESSION INFORMATION.
  • the uplink frame timestamp result (ULF Timestamp Result) includes the first time and the fourth uplink delay, and ULF Delay Ind. indicates whether there is a ULF Timestamp Result in the UL PDU SESSION INFORMATION.
  • ULF Delay Ind. indicates whether there is a ULF Timestamp Result in the UL PDU SESSION INFORMATION.
  • ULF Delay Ind. when the value of ULF Delay Ind. is 1, it means that there is a ULF Timestamp Result in the UL PDU SESSION INFORMATION, and when the value of ULF Delay Ind. is 0, it means that there is no ULF Timestamp Result.
  • the UPF determines the uplink delay D U-UE-UPF between the terminal device and the UPF (ie, the core network device) of the uplink frame according to the first time, the arrival time and the fourth uplink delay.
  • the uplink delay D U-UE-UPF includes the fourth uplink delay and the duration from the first time to the arrival time.
  • the uplink delay D U-UE-UPF determined in the above embodiment includes the fourth uplink delay.
  • the CU-UP sends the The UPF sends the UL PDU SESSION INFORMATION, and the UL PDU SESSION INFORMATION carries the first time.
  • the UPF determines, according to the first time and the arrival time, the duration of the uplink frame between the terminal device and the UPF (ie, the core network device). Uplink delay D U-UE-UPF .
  • the time delay of the uplink burst is described in detail above with reference to FIGS. 3 to 11 , and the time delay of the downlink burst is described in detail below with reference to FIGS. 12 to 20 .
  • the 5G protocol architecture UPF as an example of core network equipment, and a downlink burst including 4 data packets are used as an example for description, wherein the 4 data packets are recorded as data packet 1, data packet 2, and data packet 3 respectively. and packet 4.
  • Figure 12 shows a schematic diagram of transmission of downlink bursts in a scenario where each protocol layer is delivered in sequence.
  • the UPF sends four data packets to the SDAP layer of the access network device, and the access network device sequentially delivers the four data packets to the MAC layer of the access network device in order from top to bottom.
  • the access network device sends 4 data packets to the access network device, and the 4 data packets reach the MAC layer of the terminal device from the MAC layer of the access network device.
  • the packet is delivered to the SDAP layer of the end device.
  • the terminal device For each successfully received data packet, the terminal device sends feedback information from the MAC layer of the terminal device to the MAC layer of the access network device to indicate that the terminal device successfully received the data packet.
  • the feedback information may be a correct acknowledgement (Acknowledge, ACK).
  • Acknowledge, ACK Only when the access network device successfully receives the feedback information, it means that the data packet corresponding to the feedback information has been successfully received and the downlink transmission of the data packet is completed. Assuming that the terminal device successfully receives 4 data packets, it will send 4 pieces of feedback information to the MAC layer of the access network device. Only the feedback information (eg, ACK) of the data packet 4 is shown in FIG. 12 , and the rest are not shown. .
  • FIG. 13 is a schematic diagram of downlink burst transmission in the scenario of RLC layer segmentation. It is assumed that downlink bursts are delivered in sequence at each protocol layer.
  • the UPF sends 4 data packets to the SDAP layer of the access network device, the access network device submits them in order from top to bottom, and submits the 4 data packets to the RLC layer in the form of RLC SDUs Then, the access network device segments the downlink burst data packets. It is assumed that the access network device divides the data packet 4 into two segments at the RLC layer, which are denoted as data packet 4.1 and data packet 4.2. The access network device sends data packet 1, data packet 2, data packet 3, data packet 4.1 and data packet 4.2 from the RLC layer in the form of RLC PDUs and delivers them to the MAC layer in sequence. The access network device sends the five data packets to the terminal device, and the five data packets reach the MAC layer of the terminal device from the MAC layer of the access network device.
  • the terminal device Assuming that the terminal device successfully receives the 5 data packets, it will send 5 pieces of feedback information to the MAC layer of the access network device.
  • Figure 13 only shows the feedback information (eg, ACK) of the last data packet 4.2, and the rest Not shown.
  • the terminal device delivers the 5 data packets from the MAC layer to the RLC layer, and the terminal device needs to reassemble the previously segmented data packet 4 (ie, RLC SDU) to restore the previously segmented data packet 4 (RLC SDU) Fragmented packet 4. That is, the terminal device reassembles the data packet 4.1 and the data packet 4.2 and restores the original data packet 4. In this way, the terminal device delivers the four data packets from the RLC layer to the SDAP layer of the terminal device.
  • RLC SDU previously segmented data packet 4
  • RLC SDU previously segmented data packet 4
  • FIG. 14 is a schematic diagram of transmission in a scenario where downlink bursts arrive out of sequence during air interface transmission.
  • the UPF sends 4 data packets to the SDAP layer of the access network device
  • the access network device delivers the 4 data packets in order from top to bottom, and delivers the 4 data packets to the MAC layer of the access network device.
  • the access network device sends 4 data packets to the terminal device, and the 4 data packets arrive from the MAC layer of the access network device to the MAC layer of the terminal device.
  • the data packets arrive out of sequence. That is, packet 4 arrives at the MAC layer of the terminal device earlier than packet 3.
  • the terminal device Assuming that the terminal device successfully receives the 4 data packets, it will send 4 feedback information to the MAC layer of the access network device. Only the feedback information (eg, ACK) of the last data packet 4 is shown in FIG. 14 , and the rest Not shown.
  • ACK feedback information
  • the terminal device In the process of submitting data packets by the terminal device, the terminal device submits 4 data packets to the PDCP layer in the order of data packet 1, data packet 2, data packet 4 and data packet 3, and the sequential delivery is configured in the PDCP layer. No matter in which order the four data packets arrive at the PDCP layer, the terminal device will send the four data packets from the PDCP layer to the SDAP in the order of the original data packet 1, data packet 2, data packet 3, and data packet 4. Floor.
  • the terminal device when the PDCP layer is configured with out-of-order delivery, the terminal device will send four data packets in chronological order, that is, the data packets that arrive at the PDCP layer first are sent first, and then the data packets that arrive at the PDCP layer are sent. sent out later. In the scenario shown in Figure 14, the terminal device will continue to send four data packets to the SDAP in the order of data packet 1, data packet 2, data packet 4, and data packet 3.
  • Figure 15 shows a schematic diagram of uplink burst transmission in a scenario where packets are lost and arrive out of sequence.
  • the UPF sends 4 data packets to the SDAP layer of the access network device, and the 4 data packets arrive at the SDAP layer of the access network device.
  • Each data packet is delivered to the MAC layer of the access network device.
  • the access network device sends 4 data packets to the terminal device, and the 4 data packets reach the MAC layer of the terminal device from the MAC layer of the access network device.
  • packet loss and out-of-order arrival occurred.
  • the phenomenon is that the data packet 3 does not reach the MAC layer of the access network device, and the data packet 4 arrives at the MAC layer of the access network device earlier than the time when the data packet 3 should arrive.
  • Figure 15 only shows the feedback information of the last data packet 4 (for example, , ACK), the rest are not shown.
  • the terminal device sequentially submits the received data packet 1, data packet 2 and data packet 4 to the PDCP layer in the order from bottom to top.
  • the terminal device sequentially submits the received data packet 1, data packet 2 and data packet 4 to the PDCP layer in the order from bottom to top.
  • the terminal device sequentially submits the received data packet 1, data packet 2 and data packet 4 to the PDCP layer in the order from bottom to top.
  • the terminal device still waits for the data packet 3, and only after the data packet 3 is not received within a preset period of time will the data packet 4 be submitted to the SDAP layer.
  • the downlink delay between the terminal equipment and the access network equipment of a downlink burst is recorded as D D-UE-base station
  • the downlink delay between the terminal equipment and the core network equipment of a downlink burst is The downlink delay is recorded as D D-UE-UPF
  • the downlink delay of a downlink burst between the access network equipment and the core network equipment is recorded as D D -base station-UPF .
  • Downlink delay D D -base station-UPF indicates that the first data packet sent from the core network device in the downlink burst (for example, the data packet 1 shown in Figure 12 to Figure 15 ) is between the core network device and the access network device.
  • time delay for example, the time length corresponding to the downlink delay D D -base station-UPF shown in FIG. 12 to FIG. 15 . It should be understood that the downlink delay D D -base station-UPF is a delay of a packet granularity.
  • the downlink delay D D -base station-UPF includes the duration from time T D0 to time T D1.1 .
  • Time T D0 is the sending time of the first data packet sent from the core network device in the downlink burst, for example, the start time of the duration corresponding to the downlink delay D D -base station-UPF shown in FIG. 12 to FIG. 15 .
  • the time T D0 may be the sending time of the first data packet sent from the GTP tunnel exit of the interface (eg, the N3 interface) of the core network device and the access network device in the downlink burst.
  • the time T D0 may be determined according to the average value of the sending time of the data packets sent from the GTP tunnel egress of the core network device for the downlink burst data packets.
  • the time T D1.1 is the arrival time of the first data packet in the downlink burst that arrives at the access network device.
  • the time T D1.1 may be the arrival time of the first data packet in the downlink burst that arrives at the GTP tunnel entry of the interface (eg, the N3 interface) between the access network device and the core network device.
  • the interface eg, the N3 interface
  • the time T D1.1 may be the arrival time of the first data packet in the downlink burst that arrives at the SDAP layer of the access network device.
  • the time T D1.1 can also be any of the following:
  • the time T D1.1 may be the arrival time of the first data packet in the downlink burst that reaches the PDCP layer of the access network device, for example, the downlink delay D D- The end time of the duration corresponding to the base station-UPF .
  • the time T D1.1 may be the arrival time of the first data packet sent by the PDCP layer of the access network device in the downlink burst.
  • case 1 There are two possible cases (case 1 and case 2) of the downlink delay D D-UE-base station in the embodiment of the present application, and the downlink delay D D-UE- base station is described below according to the cases.
  • the downlink delay D D-UE-base station includes the downlink delay D D1 and the downlink delay D D2 .
  • the downlink delay D D1 can be understood as the time length from the time when the access network device receives the downlink burst from the core network device to the time when the terminal device sends or the access network device receives the last feedback information.
  • the downlink delay D D2 can be understood as the delay of the downlink burst delivered at each protocol layer of the terminal device.
  • downlink delay D D1 and the downlink delay D D2 are described in detail.
  • the downlink delay D D1 includes the duration from T D1.1 to the time T D3 , for example, the duration corresponding to D D1 in FIGS. 12 to 15 .
  • the time T D3 can be understood as the time when the terminal device successfully receives the last data packet of the downlink burst. Because the feedback information can indicate whether the terminal device successfully receives the data packet, in this embodiment of the present application, the terminal device sends or the access network device receives the data packet. The time of the last feedback information represents time T D3 .
  • the time TD3 is the arrival time of the last feedback information arriving at the MAC layer of the access network device, where the last feedback information is used to indicate that the terminal device successfully receives one data packet of the downlink burst.
  • the time T D3 is the transmission time of the last feedback information sent by the terminal device from the physical layer of the terminal device.
  • T D3 of this example is the time when the access network equipment is configured.
  • the access network device schedules transmission of downlink data packets to the UE, and in order to receive HARQ feedback, the access network device may send indication information to the UE for indicating the time at which the terminal device sends the feedback information.
  • the time for sending the feedback information indicated by the indication information is the time T D3 .
  • the feedback resources of multiple downlink data packets scheduled and transmitted by the access network device to the UE may be the same, and the terminal device may send multiple feedback information simultaneously on the same feedback resource.
  • the data packet corresponding to the last feedback information in this embodiment of the present application indicates the last data packet in the downlink burst that is successfully received by the terminal device, and the last data packet in the downlink burst that is successfully received by the terminal device may be a downlink burst. Any packet in a burst.
  • the last data packet in the downlink burst that is successfully received by the terminal device may be the last data packet in the downlink burst that reaches the MAC layer of the access network device, and the last data packet in the downlink burst that is successfully received by the terminal device It can also be other data packets in a downlink burst, depending on the successful reception of the data packets by the terminal device.
  • four data packets arrive at the terminal device in the order of data packet 1, data packet 2, data packet 3 and data packet 4.
  • the four data packets are successfully received by the terminal device at one time, and the terminal device can send the four data packets in sequence.
  • Packet feedback Then, in this case, the last feedback information corresponds to the last data packet 4 that reaches the MAC layer of the terminal device.
  • data packets arrive at the terminal device in the order of data packet 1, data packet 2, data packet 3 and data packet 4.
  • Data packet 1, data packet 2 and data packet 4 are successfully received by the terminal device at one time, but the data Packet 3 needs to be retransmitted multiple times to be successfully received by the terminal device.
  • the terminal device sends the feedback information of the three data packets in turn, and subsequently sends the feedback information after the data packet 3 is successfully retransmitted multiple times. Then, in this case, the last feedback information corresponds to the data packet 3 that arrives at the MAC layer before the data packet 4.
  • the terminal device will send a feedback message for each segment of the complete data packet. If a segment of the complete data packet is successfully received by the terminal device at last, then, in this case, the data packet corresponding to the last feedback information is a segment of the complete data packet.
  • data packet 4 is divided into data packet 4.1 and data packet 4.2, data packet 4 is a complete data packet, and data packet 4.2 is the last successfully received by the terminal device. Then, the data packet corresponding to the last feedback information is the data packet 4.2.
  • the downlink delay D D1 includes three parts of the delay, and the three parts of the delay include the delay D D11 , the delay D D12 and the delay D D13 .
  • the time delay D D11 can be understood as the time delay for the CU to process the data packet, including the time duration from time T D1.1 to time T D1.2 .
  • the duration corresponding to D D11 in FIG. 12 to FIG. 15 can be understood as the time delay for the CU to process the data packet, including the time duration from time T D1.1 to time T D1.2 .
  • the time T D1.2 is the transmission time of the first data packet (eg, data packet 1 shown in FIGS. 12 to 15 ) sent from the PDCP layer of the CU in the downlink burst.
  • the first data packet eg, data packet 1 shown in FIGS. 12 to 15
  • T D1.2 may also be the first data packet in the downlink burst sent from the GTP tunnel egress of the F1-U interface of the CU (for example, the data packet 1 shown in FIG. 12 to FIG. 15 ) sending time.
  • the time delay D D12 can be understood as the time delay of data packet transmission between CU and DU, including the time duration from T D1.2 to time T D1.3 , for example, the time duration corresponding to D D12 in FIG. 12 to FIG. 15 .
  • the time T D1.3 is the arrival time of the first data packet (eg, data packet 1 shown in FIGS. 12-15 ) in the downlink burst that arrives at the RLC layer of the DU.
  • T D1.3 may also be the first data packet (for example, data packet 1 shown in FIG. 12 to FIG. 15 ) that reaches the GTP tunnel entry of the F1-U interface of the DU in the downlink burst. Time of arrival.
  • the delay D D13 can be understood as the sum of the delay of DU processing data packets and the air interface delay of downlink bursts in the access network equipment and terminal equipment.
  • the delay D D13 includes the duration from time T D1.3 to time T D3 , for example, the duration corresponding to the time delay D D13 in FIG. 12 to FIG. 15 .
  • the downlink delay D D2 can be understood as the delay of the downlink burst delivered at each protocol layer of the terminal device.
  • the downlink delay D D2 includes the duration from time T D2.1 to time T D2.2 , for example, the duration corresponding to D D2 in FIGS. 12 to 15 .
  • Time T D2.1 is the last packet in the downlink burst that reaches the MAC layer of the terminal device (eg, packet 4 in Figure 12, packet 4.2 in Figure 13, packet 3 in Figure 14, packet in Figure 15 4) the arrival time.
  • the last data packet in the downlink burst that reaches the MAC layer of the terminal device in the embodiment of the present application is a certain segment of the complete data packet.
  • the last data packet to reach the MAC layer of the terminal device is data packet 4.2.
  • the time T D2.2 is the transmission time of the last data packet (eg, data packet 4 of FIGS. 12 to 15 ) sent from the PDCP layer of the terminal device in the downlink burst.
  • the sending time of the data packet sent from the PDCP layer of the terminal device in this embodiment of the present application represents the time when the data packet is sent from the PDCP layer to the upper layer, and in 5G, it indicates that the data packet is sent from the PDCP layer to the SDAP layer. In 4G, it indicates the sending time of sending the data packet from the PDCP layer to the application layer.
  • the downlink delay D D-UE-base station includes the downlink delay D D1 , and does not involve the downlink delay D D2 delivered by the downlink burst at each protocol layer of the terminal device.
  • D D1 For a specific description of the downlink delay D D1 , reference may be made to the relevant description of the above case 1, and details are not repeated here.
  • the downlink delay D D-UE-UPF represents the downlink burst delay between the terminal equipment and the core network equipment, including the downlink delay D-UE-base station and the downlink delay D D -base station-UPF .
  • the downlink delay D-UE- base station and the downlink delay D D -base station-UPF reference may be made to the above related description, and details are not repeated here.
  • FIG. 16 is a schematic flowchart of a method 600 for burst monitoring of downlink transmission provided by an embodiment of the present application.
  • the core network device sends a delay monitoring request to the access network device, where the delay monitoring request is used to instruct to perform delay monitoring on periodic bursts.
  • the downlink burst in this embodiment of the present application is periodic, and the delay monitoring request is used to instruct to perform delay monitoring on the downlink burst of each cycle in one or more cycles, so as to determine that the periodic downlink burst is at the terminal The transmission delay between the device and the access network device.
  • the delay monitoring request may be a single piece of information, or may be content carried in other information, which is not limited in any embodiment of the present application.
  • the delay monitoring request may be a field carried in the DL PDU SESSION INFORMATION.
  • the access network device determines the downlink delay between the terminal device and the access network device for a downlink burst, and the downlink burst occurs between the terminal device and the access network.
  • the downlink delay between devices includes the first downlink delay, and the first downlink delay includes the duration from the first time to the second time, and the first time is the first time in the downlink burst to reach the receiver.
  • the access network device receives the delay monitoring request, and determines the downlink delay between the terminal device and the access network device in the downlink burst.
  • the first time can be understood as the start time of the downlink burst between the terminal device and the access network device
  • the second time can be understood as the start time of the downlink burst between the terminal device and the access network device End Time.
  • the downlink delay between the terminal equipment and the access network equipment of the downlink burst is the uplink delay D D-UE-base station described above, and the first downlink delay is the above delay D D1 ,
  • the first time is the above time T D1.1
  • the second time is the above time T D3 .
  • the delay D D1 , the time T D1.1 , and the time T D3 reference may be made to the above related descriptions, which will not be repeated.
  • the access network device may determine, according to the burst number of the downlink burst, the first data packet in the downlink burst that reaches the PDCP layer of the access network device.
  • the access network device may determine, according to the change of the burst number of the downlink burst, the first data packet in the downlink burst that reaches the PDCP layer of the access network device. For example, the PDCP layer of the access network device firstly receives the downlink burst data packet with the burst number 1, and then receives the downlink burst data packet with the burst number 2, because the burst number has changed from 1 to 1. 2, means that the downlink burst with burst number 1 has been sent. Then, the first time that the PDCP layer of the access network device receives the data packet of the downlink burst with the burst number of 2 is the first data packet that reaches the PDCP layer of the access network device.
  • the access network device may determine, according to the period to which the downlink burst belongs, the first data packet in the downlink burst that reaches the PDCP layer of the access network device.
  • the access network device may start monitoring from the start time of a cycle, and the first data packet received by the PDCP layer of the access network device in this cycle is the downlink burst transmitted in the cycle. first packet.
  • the manner in which the access network device determines the first data packet arriving at a certain protocol layer of the access network device in the downlink burst may be determined based on the number or period of the downlink burst, and , the manner in which the access network device determines the first data packet sent from a certain protocol layer of the access network device in the downlink burst can also be determined based on the number or period of the downlink burst.
  • the specific process reference may be made to the description here, which will not be repeated hereafter.
  • the access network device may determine the last feedback information arriving at the MAC layer of the access network device according to the burst number of the downlink burst.
  • the access network device may determine the last feedback information for the downlink burst that reaches the MAC layer of the access network device according to the change of the burst number of the downlink burst. For example, the MAC layer of the access network device first receives the feedback information of the downlink burst data packet whose burst number is 1, and subsequently receives the feedback information of the downlink burst data packet whose burst number is 2. The number has changed from 1 to 2, which means that the feedback information of the data packet of the downlink burst whose burst number is 1 has been sent.
  • the last feedback information before the MAC layer of the access network device starts to receive the feedback information of the downlink burst whose burst number is 2 is the MAC layer that reaches the access network device in the downlink burst whose burst number is 1. the last feedback.
  • the terminal device can also determine the last feedback information sent from the physical layer of the terminal device according to the burst number of the downlink burst, and the specific description can refer to the above description, which will not be repeated.
  • the burst monitoring method provides a method for monitoring the delay of a downlink burst.
  • the access network device determines the downlink delay based on a delay monitoring request for the downlink burst sent by the core network device.
  • the downlink delay includes the first downlink delay from the first time to the second time, and the first time is the first time in the downlink burst that reaches the PDCP layer of the packet data convergence protocol of the access network device
  • the arrival time of the data packet, the second time is the arrival time of the last feedback information arriving at the MAC layer of the access network device or the sending time of sending the last feedback information from the physical layer of the terminal device.
  • the process of monitoring the downlink delay between the terminal device and the access network device through the access network device is implemented, so that the access network device can more accurately determine the downlink delay based on the downlink burst for the downlink burst. Evaluate data transfer performance to improve user experience.
  • the downlink delay of the downlink burst between the terminal device and the access network device further includes a fourth downlink delay, and the fourth downlink delay includes a time period from the fourth time to the fifth time. duration, the fourth time is the arrival time of the last data packet in the downlink burst that reaches the MAC layer of the terminal device, and the fifth time is the last packet in the downlink burst sent from the PDCP layer of the terminal device the sending time of the packet.
  • the fifth time can be understood as the end time of the downlink burst between the terminal device and the access network device.
  • the fourth downlink delay is the above downlink delay D D2
  • the fourth time is the above time T D2.1
  • the fifth time is the above time T D2.2 .
  • the terminal device determines the fourth downlink delay, and sends the fourth downlink delay to the access network device, correspondingly, the access network device receives the fourth downlink delay;
  • the access network device determines the first downlink delay, and determines the downlink delay of the downlink burst at the terminal device and the access network device according to the fourth downlink delay and the first downlink delay.
  • the terminal device may count the fourth downlink delays of multiple downlink bursts to obtain an average value of the multiple fourth downlink delays, and the average value may be used as the fourth downlink delay of the downlink bursts.
  • the downlink delay between the terminal device and the access network device of the downlink burst includes: a first downlink delay and a fourth downlink delay. To put it simply, the access network device adds the two delays to obtain the downlink delay between the terminal device and the access network device for a downlink burst.
  • the terminal device may determine the last data packet in the downlink burst that reaches the MAC layer of the terminal device according to the period to which the downlink burst belongs.
  • the terminal device may start monitoring from the start time of a cycle, and the last data packet received from the MAC layer in this cycle is the last one in the downlink burst transmitted in the cycle to reach the MAC layer of the terminal device. the data package.
  • the manner in which the terminal device determines the last data packet in the downlink burst that reaches a certain protocol layer of the terminal device may be determined based on the period of the downlink burst, and the terminal device determines the downlink burst.
  • the manner of sending the last data packet sent from a certain protocol layer of the terminal device may also be determined based on the period of the downlink burst. For the specific process, please refer to the description here, which will not be repeated hereafter.
  • the downlink delay between the terminal device and the access network device of the downlink burst also includes the delay of the downlink burst delivered at each protocol layer of the terminal device, which can make the access
  • the network device can more accurately monitor the downlink delay of the downlink burst, so that the access network device can more accurately evaluate the data transmission performance based on the downlink delay for the downlink burst, so as to further improve the user experience.
  • the embodiment of the present application provides two methods for monitoring downlink delay (referred to as mode A and mode B).
  • Method A is mainly to count the downlink delay between the terminal equipment and the access network equipment in subsections, so as to obtain the downlink delay of the downlink burst between the terminal equipment and the access network equipment, which can be applied to the access network equipment.
  • Mode B mainly determines the downlink delay of the downlink burst between the terminal device and the access network device based on the first time and the second time of the downlink burst.
  • Mode B is not limited to the scenario where the DU is separated from the CU, and can also be applied to the DU Scenarios that are not separated from the CU.
  • the access network device mainly collects statistics on two delays, that is, the second downlink delay and the third downlink delay.
  • the first downlink delay includes a second downlink delay and a third downlink delay
  • the second downlink delay includes the duration from the third time to the second time
  • the third downlink delay includes the time from the third time to the second time. The duration from the first time to the third time, where the third time is the arrival time of the first data packet arriving at the radio link control RLC layer of the access network device in the downlink burst.
  • the first time is the arrival time of the first data packet in the downlink burst that reaches the PDCP layer of the packet data convergence protocol of the access network device, which is the above time T D1.1 .
  • the second time is the arrival time of the last feedback information arriving at the MAC layer of the access network device or the sending time of sending the last feedback information from the physical layer of the terminal device, which is the above time T D3 .
  • the third time is the above time T D1.3 . For the specific description of each time, reference may be made to the above related description, which will not be repeated.
  • the first time is the arrival time of the first data packet arriving at the PDCP layer of the CU in the downlink burst
  • the second time is the last feedback arriving at the MAC layer of the DU
  • the third time is the arrival time of the first data packet arriving at the RLC layer of the DU in the downlink burst.
  • the second downlink delay is the above delay D D13
  • the third downlink delay includes the above delay D D11 and D D12 .
  • each delay please refer to the above related descriptions. Repeat.
  • the downlink delay between the terminal device and the access network device of the downlink burst includes the first downlink delay and the fourth downlink delay.
  • the access network device determines the downlink delay between the terminal device and the access network device in response to the delay monitoring request, including:
  • the access network device determines the second downlink delay and the third downlink delay in response to the delay monitoring request;
  • the access network device determines the fourth downlink delay
  • the access network device determines the downlink time of the downlink burst between the terminal device and the access network device according to the second downlink delay, the third downlink delay and the fourth downlink delay extension.
  • the access network device receives the fourth downlink delay sent from the terminal device to determine the fourth downlink delay, and the fourth downlink delay is the above downlink delay D D2 .
  • the fourth downlink delay is the above downlink delay D D2 .
  • the access network device determines the downlink delay between the terminal device and the access network device in response to the delay monitoring request, including:
  • the DU determines the second downlink delay in response to the delay monitoring request
  • the DU sends the second downlink delay to the CU
  • the CU determines the fourth downlink delay
  • the CU determines the third downlink delay in response to the delay monitoring request
  • the CU determines the downlink delay of the downlink burst between the terminal device and the access network device according to the second downlink delay, the third downlink delay and the fourth downlink delay.
  • the terminal device sends the fourth downlink delay to the CU, so that the CU determines the fourth downlink delay.
  • the DU may determine the second downlink delay according to the third time and the second time, that is, the DU first determines the third time and the fifth time, and then determines the second downlink delay.
  • the CU may determine the third downlink delay according to the first time and the third time, that is, the CU first determines the first time and the third time, and then determines the third downlink delay.
  • the CU may determine the third downlink delay according to the delays D D11 and D D12 , that is, the CU first determines the delays D D11 and D D12 , and then determines the third downlink delay.
  • the third downlink delay is determined by the CU-UP, and, according to the third downlink delay, the second downlink delay and the fourth downlink delay Downlink delay: determine the downlink delay between the terminal device and the access network device for the downlink burst.
  • the method for burst monitoring supports the scenario in which the DU and CU of the access network device are separated.
  • the DU reports to the CU the second downlink delay of the downlink burst between the DU and the terminal device.
  • delay which determines the downlink delay of the downlink burst at the terminal equipment and the access network equipment. That is, by segmenting DUs and CUs to count their own-related delays, it is possible to monitor the downlink delays of downlink bursts in a scenario where DUs and CUs are separated.
  • the downlink delay between the terminal device and the access network device of the downlink burst includes the first downlink delay and does not include the fourth downlink delay.
  • the access network device determines the downlink delay between the terminal device and the access network device in response to the delay monitoring request, including:
  • the access network device determines the second downlink delay and the third downlink delay in response to the delay monitoring request;
  • the access network device determines the downlink delay between the terminal device and the access network device for the downlink burst according to the second downlink delay and the third downlink delay.
  • the access network device determines the downlink delay between the terminal device and the access network device in response to the delay monitoring request, including:
  • the DU determines the second downlink delay in response to the delay monitoring request
  • the DU sends the second downlink delay to the CU
  • the CU determines the third downlink delay in response to the delay monitoring request
  • the CU determines the downlink delay between the terminal device and the access network device for the downlink burst according to the second downlink delay and the third downlink delay.
  • the CU-UP determines the third downlink delay, and, according to the third downlink delay and the second downlink delay, determines the downlink delay The downlink delay of the burst between the terminal equipment and the access network equipment.
  • the method for burst monitoring supports the scenario in which the DU and CU of the access network device are separated.
  • the DU reports to the CU the second downlink delay of the downlink burst between the DU and the terminal device.
  • the second downlink delay and the third uplink delay determined by the CU and generated by the transmission between the CU and the DU and the processing of the downlink burst by the CU determine the downlink delay of the downlink burst at the terminal equipment and the access network equipment. That is, by segmenting DUs and CUs to count their own-related delays, it is possible to monitor downlink delays of downlink bursts in a scenario where DUs and CUs are separated.
  • the downlink delay between the terminal device and the access network device of the downlink burst includes the first downlink delay and the fourth downlink delay.
  • the access network device determines the downlink delay between the terminal device and the access network device in response to the delay monitoring request, including:
  • the access network device determines the first time and the second time in response to the delay monitoring request
  • the access network device determines the fourth downlink delay
  • the access network device determines the downlink delay between the terminal device and the access network device for the downlink burst according to the fourth downlink delay, the first time and the second time.
  • the first time is the arrival time of the first data packet in the downlink burst that reaches the PDCP layer of the access network device, that is, the above time T D1.1 .
  • the second time is the arrival time of the last feedback information arriving at the MAC layer of the access network device or the sending time of the last feedback information sent from the physical layer of the terminal device, which is the above time T D3 .
  • the duration from the first time to the second time is the first downlink delay in this embodiment of the present application.
  • the first time is the arrival time of the first data packet arriving at the PDCP layer of the CU in the downlink burst
  • the second time is the last feedback arriving at the MAC layer of the DU
  • the third time is the arrival time of the first data packet arriving at the RLC layer of the DU in the downlink burst.
  • the second time is the sending time when the physical layer of the terminal device sends the last feedback information
  • the second time is configured by the base station for the terminal device, and the access network device can determine the second time based on the configuration.
  • the access network device schedules the transmission of downlink data packets to the UE, and in order to receive HARQ feedback, the access network device will send to the UE indication information for indicating the time at which the terminal device sends the feedback information, where the indication information indicates The time for sending the feedback information is the time T D3 .
  • the access network device determines the downlink delay between the terminal device and the access network device in response to the delay monitoring request, including:
  • the DU determines the second time in response to the delay monitoring request
  • the DU sends the second time to the CU
  • the CU determines the fourth downlink delay
  • the CU determines the first time in response to the delay monitoring request
  • the CU determines the downlink delay of the downlink burst between the terminal device and the access network device according to the first time, the second time and the fourth downlink delay.
  • the terminal device sends the fourth downlink delay to the CU, so that the CU determines the fourth downlink delay.
  • the CU-UP determines, according to the fourth downlink delay, the first time, and the second time, that the downlink burst is in the terminal device and the connection. Downlink delay between networked devices.
  • the burst monitoring method supports the scenario in which the DU and the CU of the access network device are separated, and the DU reports to the CU that the downlink burst is transmitted at the second time (that is, the end of the transmission of the access network device and the terminal device) to the CU. time), based on the second time, the downlink burst determined by the CU at the first time (ie, the start time) of the CU, and the downlink burst obtained by the CU at the terminal equipment due to the fourth downlink delay generated by data submission , to determine the downlink delay of the downlink burst at the terminal equipment and the access network equipment.
  • this method can obtain more accurate downlink delays of downlink bursts.
  • the downlink delay between the terminal device and the access network device of the downlink burst includes the first downlink delay and does not include the fourth downlink delay.
  • the access network device determines the downlink delay between the terminal device and the access network device in response to the delay monitoring request, including:
  • the access network device determines the first time and the second time in response to the delay monitoring request
  • the access network device determines the downlink delay between the terminal device and the access network device in the downlink burst according to the first time and the second time.
  • the access network device determines the downlink delay between the terminal device and the access network device in response to the delay monitoring request, including:
  • the DU determines the second time in response to the delay monitoring request
  • the DU sends the second time to the CU
  • the CU determines the first time
  • the CU determines the downlink delay between the terminal device and the access network device for the downlink burst according to the first time and the second time.
  • the CU-UP determines the first time, and according to the first time and the received second time, it is determined that the downlink burst is sent between the terminal device and the terminal device. Downlink delay between the access network devices.
  • the burst monitoring method supports the scenario in which the DU and the CU of the access network device are separated, and the DU reports to the CU that the downlink burst is transmitted at the second time (that is, the end of the transmission of the access network device and the terminal device) to the CU. time), the CU determines the downlink delay of the downlink burst at the terminal device and the access network device based on the second time and the first time (ie, the start time) of the downlink burst determined by the CU at the CU. In this way, the process of monitoring the downlink delay of the downlink burst in the scenario where the DU and the CU are separated can be implemented. In addition, compared with the way of calculating the delay in segments of DUs and CUs, this method can obtain more accurate downlink delays of downlink bursts.
  • the obtained downlink delay can also be used to determine the downlink delay between the terminal device and the core network device. Based on this, the method 600 for burst monitoring of downlink transmission in this embodiment of the present application further includes steps S630, S640 and S650.
  • the access network device sends response information to the core network device, where the response information includes the downlink delay of the downlink burst between the terminal device and the access network device.
  • the response information may be a single piece of information, or may be content carried in other information, which is not limited in any embodiment of the present application.
  • the response information may be a field carried in the UL PDU SESSION INFORMATION.
  • the core network device determines a fifth downlink delay, where the fifth downlink delay is the first data packet sent from the core network device in the downlink burst between the access network device and the core network device delay between.
  • the fifth downlink delay is the above-mentioned uplink delay D D -base station-UPF , and for the specific description of the uplink delay D D -base station-UPF , reference is made to the above related description, and details are not repeated here.
  • the access network device may be based on the sending time of the first data packet sent from the core network device in the downlink burst and the data packet of the first data packet arriving at the PDCP layer of the access network device in the downlink burst.
  • the arrival time ie, the first time determines the fifth downlink delay.
  • the fifth downlink delay represents the same data packet. is the delay of one packet. Therefore, the fifth downlink delay can also be determined based on the average value of multiple data packets (not limited to uplink data packets or downlink data packets) transmitted between the access network device and the core network device, or, the fifth downlink delay It can also be obtained based on the transmission delay of any data packet between the access network device and the core network device.
  • the core network device determines, according to the fifth downlink delay and the downlink delay of the downlink burst between the terminal device and the access network device, that the downlink burst occurs between the terminal device and the core network Downlink delay between devices.
  • the downlink delay between the terminal equipment and the core network equipment of the downlink burst includes: the fifth downlink delay and the downlink delay of the downlink burst between the terminal equipment and the access network equipment.
  • the core network device adds the two delays to obtain the downlink delay between the terminal device and the core network device for a downlink burst.
  • the downlink delay between the terminal device and the core network device of the downlink burst is the above downlink delay D D-UE-UPF , and the specific description can refer to the above related description, which will not be repeated.
  • the burst monitoring method provided by the embodiment of the present application provides a method for monitoring the delay of a downlink burst.
  • the core network device receives the downlink burst sent by the access network device between the terminal device and the access network device.
  • Delay based on the downlink delay and the fifth downlink delay of the downlink burst between the access network device and the core network device determined by the core network device itself, it is finally determined that the downlink burst is between the terminal device and the core network device. downlink delay.
  • the process of monitoring the downlink delay between the terminal device and the core network device of the downlink burst is realized, so that the core network device can more accurately evaluate the data transmission performance based on the downlink delay for the downlink burst, so as to ensure the accuracy of data transmission.
  • the core network device can more accurately evaluate the data transmission performance based on the downlink delay for the downlink burst, so as to ensure the accuracy of data transmission.
  • FIG. 17 and FIG. 18 a method for burst monitoring of downlink transmission in a scenario where DUs and CUs are separated will be described in detail below with reference to FIG. 17 and FIG. 18 .
  • the network elements involved in the methods shown in FIG. 17 and FIG. 18 include: terminal equipment, SMF and UPF of core network equipment, and CU-CP and CU-UP of access network equipment.
  • the methods shown in FIG. 17 and FIG. 18 are described by taking the downlink frame as an example of the downlink burst and the UE as an example of the terminal device.
  • the downstream frame may be a video frame.
  • FIG. 17 is a schematic flowchart of a method 700 for burst monitoring of downlink transmission in a scenario where DUs and CUs of an access network device are separated according to an embodiment of the present application.
  • the method 700 corresponds to the embodiment of mode A.
  • the SMF sends a PDU SESSION RESOURCE SETUP REQUEST to the CU-CP, wherein the PDU SESSION RESOURCE SETUP REQUEST carries a QFI and frame service quality monitoring request.
  • the transmission direction of the monitoring frame indicated by the frame service quality monitoring request is downlink transmission.
  • the CU-CP sends a BEARER CONTEXT SETUP REQUEST to the CU-UP, and the BEARER CONTEXT SETUP REQUEST carries a QFI and frame service quality monitoring request.
  • the CU-UP receives the BEARER CONTEXT SETUP REQUEST sent by the CU-CP, and the CU-UP can perform the frame quality of service monitoring function for the DRB of the QFI.
  • the CU-CP sends the UE CONTEXT SETUP REQUEST to the DU, and the UE CONTEXT SETUP REQUEST carries the QFI and frame service quality monitoring request.
  • the DU receives the UE CONTEXT SETUP REQUEST from the CU-CP, obtains the QFI and the corresponding frame service quality monitoring request, and the DU can perform the frame service quality monitoring function for the DRB of the QFI.
  • the CU-CP sends measurement configuration information (measureconfig) to the UE, where the measureconfig includes the delivery delay of the terminal device instructing the UE to report the last data packet to the MAC layer in the downlink frame of the DRB, and the last packet in the downlink frame arrives at the terminal device.
  • the delivery delay of the data packet of the MAC layer at the terminal device is the fourth downlink delay above, that is, the downlink delay D D2 .
  • the UE counts the fourth downlink delay of the downlink frame of the DRB.
  • the UE sends a measurement report to the CU-CP, where the measurement report carries the DRB identifier (eg, ID) and the fourth downlink delay of the corresponding downlink frame.
  • the CU-CP receives the measurement report, and obtains the fourth downlink delay of the downlink frame corresponding to the DRB.
  • the CU-CP sends the GNB-CU-CP measurement result (GNB-CU-CP MEASUREMENT RESULTS INFORMATION) to the CU-UP, and the GNB-CU-CP MEASUREMENT RESULTS INFORMATION carries the DRB identifier and the first number of the downlink frame corresponding to the DRB identifier.
  • GNB-CU-CP MEASUREMENT RESULTS INFORMATION carries the DRB identifier and the first number of the downlink frame corresponding to the DRB identifier.
  • Four downlink delays D D2 Four downlink delays D D2 .
  • the UPF sends a data frame of DL PDU SESSION INFORMATION to the CU-UP, where the data frame carries a QoS monitoring frame (Qos monitoring frame, QMF).
  • QMF Qos monitoring frame
  • the QMF can be understood as the delay monitoring request in the method 600 .
  • Table 1 above shows an example of DL PDU SESSION INFORMATION, where QMF is carried in the DL PDU SESSION INFORMATION.
  • QMF is carried in the DL PDU SESSION INFORMATION.
  • CU-UP sends DL USER DATA ((PDU Type 0) to DU, and DL USER DATA carries QMF.
  • the DU determines the second downlink delay of the downlink frame between the terminal device and the DU according to the QMF received in S718.
  • the second downlink delay is the delay D D13 , and the specific description can refer to the above related description, which is not repeated here.
  • the DU sends UL ASSISTANCE INFORMATION DATA (PDU Type 2) to the CU-UP, and the UL ASSISTANCE INFORMATION DATA carries the second downlink delay between the terminal device and the DU.
  • PDU Type 2 UL ASSISTANCE INFORMATION DATA
  • the downlink frame delay result of the DU ((DL frame, DLF)Delay DU Result) includes the downlink frame delay between the terminal device and the DU, which is represented by 0 or 4-bit number of bytes;
  • the delay indication indicates whether there is a DLF Delay DU Result in the UL ASSISTANCE INFORMATION DATA, which is represented by a 1-bit number of bytes.
  • DLF Delay Ind. when the value of DLF Delay Ind. is 1, it means that DLF Delay DU Result exists in UL ASSISTANCE INFORMATION DATA, and when the value of DLF Delay Ind. is 0, it means that there is no DLF Delay DU Result in UL ASSISTANCE INFORMATION DATA DLF Delay DU Result.
  • the downlink frame delay result can also be called the downlink burst delay result
  • the downlink frame delay indication can also be called the downlink burst delay indication
  • the CU-UP determines the downlink delay of the downlink frame between the terminal device and the CU-UP according to the QMF received in S717, that is, determines the downlink time delay of the downlink frame between the terminal device and the access network device Extension D U-UE-base station .
  • the CU-UP determines the downlink delay between the terminal device and the CU-UP according to the second downlink delay, the third downlink delay and the fourth downlink delay.
  • the fourth uplink delay is the fourth uplink delay carried in the GNB-CU-CP MEASUREMENT RESULTS INFORMATION sent by the CU-CP to the CU-UP in S716.
  • the second downlink delay is the second downlink delay carried in the UL ASSISTANCE INFORMATION DATA sent by the DU to the CU-UP in S720.
  • the third uplink delay the delay D D11 + the delay D D12 .
  • the CU-UP sends the UL PDU SESSION INFORMATION to the UPF, where the UL PDU SESSION INFORMATION carries the downlink delay D D-UE-base station between the terminal device and the CU-UP.
  • the UL PDU SESSION INFORMATION carries response information in response to the QMF sent in S717, where the response information includes the downlink delay D D-UE-base station between the terminal device and the CU-UP.
  • the downlink frame delay result includes the downlink delay of the downlink frame between the terminal device and the CU-UP.
  • DLF Delay Ind. indicates whether there is a DLF Delay Result in the UL PDU SESSION INFORMATION, which consists of 1 bit Indicates the number of bytes. For example, when the value of DLF Delay Ind. is 1, it means that there is DLF Delay Result in UL PDU SESSION INFORMATION, and when the value of DLF Delay Ind. is 0, it means that there is no DLF Delay Result in UL PDU SESSION INFORMATION .
  • the UPF determines the downlink delay of the downlink frame between the terminal device and the UPF (ie, the core network device).
  • the downlink delay includes the fifth downlink delay D D -base station -UPF of the downlink frame at UPF and CU-UP, and the downlink delay D D - UE-base station of the downlink frame at the terminal equipment and CU-UP.
  • the UPF determines the downlink delay D D-UE-UPF of the downlink frame between the terminal device and the UPF according to the fifth downlink delay and the downlink delay of the downlink frame between the terminal device and the CU-UP.
  • the downlink delay determined in the above embodiment includes the fourth downlink delay.
  • the downlink delay does not include the fourth downlink delay
  • FIG. 17 implementation of the example since there is no need to determine the fourth downlink delay, the method for monitoring the downlink delay is slightly different: in this embodiment, S714 to S716 are omitted, and all the content about the fourth downlink delay can be omitted in S719 to S723 .
  • FIG. 18 is a schematic flowchart of a method 800 for burst monitoring of downlink transmission in a scenario where DUs and CUs of an access network device are separated according to an embodiment of the present application.
  • the method 800 corresponds to the embodiment of Mode B.
  • each network element performing S811 to S818 is the same as the process of each network element performing S711 to S718 in the method 700, which will not be repeated here, and the process of S819 to S823 will be described below.
  • the DU determines the second time according to the QMF received in S818, and the second time is the arrival time of the last feedback information arriving at the MAC layer of the access network device or sending the last feedback information from the physical layer of the terminal device sending time.
  • the second time is the above time T D3 , and the specific description refers to the above related description, which is not repeated here.
  • the DU sends UL ASSISTANCE INFORMATION DATA (PDU Type 2) to the CU-UP, and the UL ASSISTANCE INFORMATION DATA carries the second time.
  • PDU Type 2 UL ASSISTANCE INFORMATION DATA
  • the downlink frame timestamp result of DU ((DL frame, DLF) Timestamp DU Result) includes the second time in the downlink frame, and the downlink frame delay flag (DLF Delay Ind.) indicates whether the UL ASSISTANCE INFORMATION DATA DLF Timestamp DU Result exists. For example, when the value of DLF Delay Ind. is 1, it means that DLF Timestamp DU Result exists in UL ASSISTANCE INFORMATION DATA, and when the value of DLF Delay Ind. is 0, it means that there is no DLF Timestamp in UL ASSISTANCE INFORMATION DATA DU Result.
  • the CU-UP determines the downlink delay of the downlink frame between the terminal device and the CU-UP, thereby determining the downlink delay D D-UE-base station of the downlink frame between the terminal device and the access network device.
  • the downlink delay includes the fourth downlink delay submitted by the terminal device for the last data packet in the downlink frame that reaches the MAC layer, and the first downlink delay from the first time to the second time, and the first time is the downlink delay The arrival time of the first packet in the frame that arrives at the PDCP layer of the CU.
  • the CU-UP determines the downlink delay D D-UE-base station between the terminal device and the CU-UP (ie, core network device) according to the fourth downlink delay, the first time and the second time.
  • the fourth downlink delay is the fourth downlink delay carried in the GNB-CU-CP MEASUREMENT RESULTS INFORMATION sent by the CU-CP to the CU-UP in S816.
  • the CU-UP sends the UL PDU SESSION INFORMATION to the UPF, where the UL PDU SESSION INFORMATION carries the uplink delay between the terminal device and the CU-UP DU-UE -base station .
  • Table 3 above shows an example of UL PDU SESSION INFORMATION, and the DLF Delay Result carries a downlink delay DD-UE-base station .
  • the UPF determines the downlink delay D D-UE-UPF of the downlink frame between the terminal device and the UPF (ie, the core network device).
  • each network element performing S822 to S823 is the same as the process of each network element performing S722 to S723 in method 700, and details are not repeated here.
  • the downlink delay determined in the above embodiment includes the fourth downlink delay.
  • the downlink delay does not include the fourth downlink delay
  • the method for monitoring the downlink delay is slightly different: in this embodiment, S814 to S816 are omitted, and all the content about the fourth downlink delay can be omitted in S821 to S823 .
  • the embodiment of the present application also provides a method for burst monitoring.
  • the method provides determining the downlink delay between the terminal device and the core network device of the downlink burst mainly based on the start time and the second time of the downlink burst between the terminal device and the core network device.
  • the downlink delay obtained by the network element segmentation statistics delay method is more accurate.
  • FIG. 19 is a schematic flowchart of a method 900 for burst monitoring of downlink transmission provided by an embodiment of the present application.
  • the core network device sends a delay monitoring request to the access network device, where the delay monitoring request is used to instruct to perform delay monitoring on periodic bursts.
  • the access network device determines a second time in response to the delay monitoring request, where the second time is the arrival time of the last feedback information arriving at the MAC layer of the access network device, or, the second time is the sending time of the last feedback message sent from the physical layer of the terminal device.
  • the access network device sends response information to the core network device, where the response information includes the second time.
  • the response information may be a single piece of information, or may be content carried in other information, which is not limited in any embodiment of the present application.
  • the response information may be a field carried in a UL PDU SESSION INFORMATION frame.
  • the core network device determines the sending time of the first data packet sent from the core network device in the downlink burst.
  • the sending time can be understood as the start time of the downlink burst between the terminal device and the core network device.
  • the sending time is the above time T D0 , and the specific description refers to the above related description, which will not be repeated.
  • the core network device determines the downlink delay between the terminal device and the core network device for the downlink burst according to the sending time and the second time.
  • the downlink delay of the downlink burst between the terminal device and the core network device is the above-mentioned downlink delay D D-UE-UPF , including the duration from the sending time to the second time.
  • the core network device reaches the access network device through the sending time of the first data packet sent from the core network device and the last feedback information in the uplink burst sent by the access network device Or the second time when the last feedback information is sent from the terminal device, to determine the downlink delay of the downlink burst between the terminal device and the core network device.
  • the process of monitoring the downlink delay between the terminal equipment and the core network equipment for downlink bursts is realized, but also a more accurate downlink delay can be obtained. Data transfer performance can be more accurately evaluated to improve user experience.
  • the downlink delay D D-UE-UPF of the downlink burst between the terminal device and the core network device further includes a fourth downlink delay. Based on this, the method 900 further includes:
  • the core network device receives the fourth downlink delay from the terminal device
  • the core network device determines the downlink delay between the terminal device and the core network device for the downlink burst according to the fourth downlink delay, the sending time and the second time.
  • the terminal device sends the fourth downlink delay to the core network device through the access network device.
  • the response information sent by the access network device includes the first time and the fourth downlink delay.
  • FIG. 20 is a schematic flowchart of a method 1000 for burst monitoring of downlink transmission in a scenario where DUs and CUs are separated according to an embodiment of the present application.
  • the method 1000 is a more specific embodiment of the method 900 .
  • the network elements involved in the method shown in FIG. 20 include: terminal equipment, SMF and UPF of core network equipment, and CU-CP and CU-UP of access network equipment.
  • the method shown in FIG. 20 will be described with the downlink frame as an example of the downlink burst and the UE as an example of the terminal device.
  • the downstream frame may be a video frame.
  • each network element performing S1011 to S1018 is the same as the process of each network element performing S711 to S718 in the method 700, which will not be repeated here.
  • the following describes the process of S1018 to S1022.
  • the DU determines the second time according to the QMF received in S1018.
  • the DU sends UL ASSISTANCE INFORMATION DATA (PDU Type 2) to the CU-UP, and the UL ASSISTANCE INFORMATION DATA carries the second time.
  • PDU Type 2 UL ASSISTANCE INFORMATION DATA
  • the CU-UP sends the UL PDU SESSION INFORMATION to the UPF, and the UL PDU SESSION INFORMATION carries the second time and the fourth downlink delay.
  • the fourth downlink delay is the fourth downlink delay carried in the GNB-CU-CP MEASUREMENT RESULTS INFORMATION sent by the CU-CP to the CU-UP in S1016.
  • the UL PDU SESSION INFORMATION carries response information in response to the QMF sent in S1017, where the response information includes the second time and the fourth downlink delay.
  • the downlink frame timestamp result (DLF Timestamp Result) includes the second time and the fourth downlink delay, and the DLF Delay Ind. indicates whether there is a DLF Timestamp Result in the UL PDU SESSION INFORMATION.
  • DLF Timestamp Result indicates whether there is a DLF Timestamp Result in the UL PDU SESSION INFORMATION.
  • DLF Delay Ind. indicates whether there is DLF Timestamp Result in the UL PDU SESSION INFORMATION.
  • DLF Delay Ind. when the value of DLF Delay Ind. is 1, it means that there is DLF Timestamp Result in UL PDU SESSION INFORMATION, and when the value of DLF Delay Ind. is 0, it means that UL PDU SESSION
  • the downlink frame time stamp result may also be referred to as the downlink burst time stamp result, and the descriptions of the two may be replaced.
  • the UPF determines, according to the sending time of the first data packet sent from the UPF (core network device) in the uplink frame, the second time and the fourth downlink delay, between the terminal device and the UPF (the core network device) of the downlink frame.
  • the downlink delay D D-UE-UPF includes the fourth downlink delay and the duration from the sending time to the second time.
  • the downlink delay D D-UE-UPF determined in the above embodiment includes the fourth downlink delay.
  • the CU-UP sends the The UPF sends the UL PDU SESSION INFORMATION, and the UL PDU SESSION INFORMATION carries the second time.
  • the UPF determines, according to the sending time and the second time, the duration of the downlink frame between the terminal device and the UPF (ie, the core network device). Downlink delay D D-UE-UPF .
  • the time delay of the downlink burst has been described in detail above with reference to FIG. 12 to FIG. 20 .
  • the false burst rate of the burst will be described with reference to FIG. 21 to FIG. 22 .
  • FIG. 21 is a schematic flowchart of a method 1100 for burst monitoring provided by an embodiment of the present application.
  • the method 1100 is used to determine the burst error rate and is applicable to both uplink and downlink transmissions.
  • the core network device sends a false burst monitoring request to the access network device.
  • the access network device receives the false burst monitoring request.
  • the false burst monitoring request instructs the access network device to report the false burst rates of multiple bursts to the core network device.
  • the burst is an uplink burst
  • the error burst rate is also the error burst rate for the uplink burst.
  • the burst is a downlink burst
  • the error burst rate is also the error burst rate for the downlink burst.
  • the false burst monitoring request may be a single piece of information, or may be content carried in other information, which is not limited in any embodiment of the present application.
  • the false burst monitoring request may be a field carried in the DL PDU SESSION INFORMATION.
  • the access network device determines a false burst rate, where the false burst rate represents the difference between the number of the first type of bursts in the multiple bursts and the number of the multiple bursts relationship, the first type of burst indicates that at least one data packet in a burst is not successfully received by the receiving end within the preset time delay.
  • the multiple bursts used for determining the error burst rate represent multiple bursts within a period of time, and the period of time may be predefined by a protocol or set or configured by an access network device.
  • the period of time for the uplink transmission and the downlink transmission may be the same or different, which is not limited.
  • the preset delay used for determining whether the burst is the first type may be predefined by a protocol, or may be set or configured by an access network device.
  • the preset delays of the uplink transmission and the downlink transmission may be the same or different, which is not limited.
  • the at least one data packet used to determine the first type of burst may be a 1, 2, 3, etc. data packet.
  • the first type of burst indicates that at least one data packet in a burst is not successfully received by the access network device within the preset time delay, and the access network device is the receiving end.
  • the first type of burst indicates that at least one data packet in a burst is not successfully received by the terminal device within the preset delay, and the terminal device is the receiving end. It should be understood that, in the downlink transmission, if the access network device receives the feedback information that the data packet is successfully received, it is considered that the data packet is successfully received by the terminal device.
  • each burst includes 10 data packets, and at least one data packet used to determine the first type of burst is 1 data packet.
  • the first type of burst includes the 2 bursts.
  • the false burst rate is a ratio of the number of bursts of the first type to the number of bursts.
  • the false burst rate may also be determined in other ways according to the number of the first type of bursts and the number of the multiple bursts, which is not limited in this embodiment of the present application.
  • the first type of burst may also indicate that at least one data packet of the first type of data in one burst is not successfully received by the receiving end within a preset time delay.
  • the first type of data is the data of the base layer generated by a burst, and the data of the base layer is the data used for decoding the burst or other bursts to which the data of the base layer belongs.
  • the encoder can divide a burst encoding into 2 types of data: the first type of data is the data of the base layer, and the second type of data is the data of the enhancement layer, i.e., it means that a burst includes the data of the base layer data and enhancement layer data.
  • the base station may separately count the time delays of the data of the base layer and the data of the enhancement layer. Therefore, in some cases, as long as the data of the base layer in the burst is successfully received by the receiver, the burst can also be considered to be successfully transmitted. Therefore, when calculating the burst error rate, it is only necessary to calculate whether the data packets in the first type of data are successfully received.
  • the access network device sends response information to the core network device, where the response information includes the burst error rate.
  • the core network device receives the response information and obtains the error burst rate.
  • the method for burst monitoring provides a method for determining the error burst rate of a burst, where the error burst rate indicates that among the multiple bursts, the multiple bursts and the first one that is not successfully received by the receiving end
  • the access network device determines the false burst rate of the multiple bursts based on the false burst monitoring request of the core network device and sends the false burst rate to the core network device.
  • the method for performing burst monitoring in a scenario where DUs and CUs are separated will be described below with reference to FIG. 22 .
  • This method exemplifies the process of monitoring the false burst rate.
  • the network elements involved in the method shown in FIG. 22 include: terminal equipment, SMF and UPF of core network equipment, and CU-CP and CU-UP of access network equipment.
  • the method shown in FIG. 22 will be described with a frame as an example of a burst and a UE as an example of a terminal device.
  • the downstream frame may be a video frame.
  • the SMF sends a PDU SESSION RESOURCE SETUP REQUEST to the CU-CP, and the PDU SESSION RESOURCE SETUP REQUEST carries a QFI and frame error rate service quality monitoring request.
  • the frame error rate service quality monitoring request is used to indicate the transmission direction of monitoring, and the transmission direction includes uplink and downlink.
  • the CU-CP After the CU-CP receives the frame error rate quality of service monitoring request, it can enable the DU and the CU-UP to perform the frame error rate quality of service monitoring function for the DRB of the QFI, and enable the DU to enable the frame monitoring function.
  • the frame error rate service quality monitoring request may also be referred to as a burst error rate service quality monitoring request, and the descriptions of the two may be replaced.
  • the CU-CP sends a BEARER CONTEXT SETUP REQUEST to the CU-UP, and the BEARER CONTEXT SETUP REQUEST carries a QFI and frame error rate service quality monitoring request.
  • the CU-UP receives the BEARER CONTEXT SETUP REQUEST sent by the CU-CP, and the CU-UP can perform the frame error rate quality of service monitoring function for the DRB of the QFI.
  • the frame error rate service quality monitoring function may also be referred to as the burst error rate service quality monitoring function, and the descriptions of the two may be replaced.
  • the CU-CP sends the UE CONTEXT SETUP REQUEST to the DU, and the UE CONTEXT SETUP REQUEST carries the QFI and frame error rate service quality monitoring request.
  • the DU receives the UE CONTEXT SETUP REQUEST from the CU-CP, obtains the QFI and the corresponding frame error rate service quality monitoring request, and the DU can perform the frame error rate service quality monitoring function for the DRB of the QFI.
  • the UPF sends the DL PDU SESSION INFORMATION to the CU-UP, and the DL PDU SESSION INFORMATION carries the QoS monitoring error frame.
  • the QoS monitoring error frame may be understood as the false burst monitoring request in the method 1100 .
  • the QoS monitoring error frame may also be referred to as a QoS monitoring error burst, and the descriptions of the two may be replaced.
  • CU-UP sends DL USER DATA (PDU Type 0) to DU, and DL USER DATA carries QoS monitoring error frames.
  • the DU receives DL USER DATA (PDU Type 0) and obtains QoS monitoring error frames.
  • the DU determines the frame error rate.
  • the DU monitors the first type of frames among multiple frames within a period of time, and obtains the frame error rate according to the number of the first type of frame and multiple frames.
  • the frame error rate For the specific description of determining the frame error rate, please refer to the relevant description above, and will not be repeated here. .
  • the frame error rate may also be referred to as the burst error rate, and the descriptions of the two may be replaced.
  • the DU sends UL ASSISTANCE INFORMATION DATA (PDU Type 2) to the CU-UP, wherein the UL ASSISTANCE INFORMATION DATA carries the frame error rate.
  • CU-UP receives UL ASSISTANCE INFORMATION DATA to obtain the frame error rate.
  • the CU-UP sends the UL PDU SESSION INFORMATION to the UPF, and the UL PDU SESSION INFORMATION carries the frame error rate.
  • the UPF receives the UL PDU SESSION INFORMATION to obtain the frame error rate.
  • the burst monitoring method provided by the embodiments of the present application is described in detail above with reference to FIGS. 1 to 22 , and the apparatus for burst monitoring provided according to the embodiments of the present application will be described in detail below with reference to FIGS. 23 to 24 .
  • FIG. 23 shows an apparatus 1300 for burst monitoring provided by an embodiment of the present application.
  • the apparatus 1300 may be an access network device or a core network device, or may be a chip in an access network device or a core network device.
  • the apparatus 1300 includes: a communication unit 1310 and a processing unit 1320 .
  • the apparatus 1300 is configured to execute each process and step corresponding to the access network device in the foregoing method 100 .
  • the processing unit 1320 may be configured to perform step S120 in the method 100
  • the communication unit 1310 may be configured to perform step S110 of the method 100 .
  • the apparatus 1300 is configured to execute each process and step corresponding to the core network device in the foregoing method 100 .
  • the processing unit 1320 may be configured to perform steps S140 and S150 in the method 100
  • the communication unit 1310 may be configured to perform steps S110 and S130 of the method 100 .
  • the apparatus 1300 is configured to execute each process and step corresponding to the core network device in the foregoing method 400 .
  • the communication unit 1310 may be configured to perform steps S410 and S430 in the method 400
  • the processing unit 1320 may be configured to perform steps S440 and S450 of the method 400 .
  • the apparatus 1300 is configured to execute each process and step corresponding to the access network device in the foregoing method 600 .
  • the communication unit 1310 may be configured to perform step S610 in the method 600
  • the processing unit 1320 may be configured to perform step S620 in the method 600 .
  • the apparatus 1300 is configured to execute each process and step corresponding to the core network device in the foregoing method 600 .
  • the communication unit 1310 may be configured to perform steps S610 and S630 in the method 600
  • the processing unit 1320 may be configured to perform steps S640 and S650 of the method 600 .
  • the apparatus 1300 is configured to execute each process and step corresponding to the core network device in the foregoing method 900.
  • the communication unit 1310 may be configured to perform steps S910 and S930 in the method 900
  • the processing unit 1320 may be configured to perform steps S940 and S950 of the method 900 .
  • the apparatus 1300 is configured to execute each process and step corresponding to the access network device in the foregoing method 1100 .
  • the communication unit 1310 can be used to perform steps S1110 and S1130 in the method 1100
  • the processing unit 1320 can be used to perform step S1120 in the method 1100 .
  • unit as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a dedicated processor, or a group of processors, etc.) and memory, merge logic, and/or other suitable components to support the described functions.
  • ASIC application specific integrated circuit
  • processors for executing one or more software or firmware programs (eg, a shared processor, a dedicated processor, or a group of processors, etc.) and memory, merge logic, and/or other suitable components to support the described functions.
  • the apparatus 1300 in each of the above solutions has the function of implementing the corresponding steps performed by the access network device or the core network device in the above method; the function may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the communication unit may be replaced by a transmitter and a receiver, and other units, such as a processing unit, may be replaced by a processor, which respectively executes the various method embodiments.
  • the communication unit in the apparatus 1300 may also be composed of a sending unit and a receiving unit. For performing operations related to reception, the function of the communication unit can be understood as a receiving operation performed by the receiving unit. For performing operations related to sending, The function of the communication unit can be understood as the sending operation performed by the sending unit.
  • the device in FIG. 23 may also be a chip or a system of chips, such as a system on chip (system on chip, SoC).
  • the transceiver unit may be a transceiver circuit of the chip, which is not limited herein.
  • FIG. 24 shows another apparatus 1400 for burst monitoring provided by an embodiment of the present application.
  • the apparatus 1400 may specifically be an access network device or a core network device in the foregoing embodiments, and may be configured to execute various steps and/or processes corresponding to the access network device or core network device in the foregoing method embodiments.
  • the apparatus 1400 includes a processor 1410 , a transceiver 1420 and a memory 1430 .
  • the processor 1410 , the transceiver 1420 and the memory 1430 communicate with each other through an internal connection path.
  • the processor 1410 can implement the functions of the processing unit 1320 in various possible implementations in the device 1300 , and the transceiver 1420 can implement various functions in the device 1300 .
  • the function of the communication unit 1310 in a possible implementation.
  • the memory 1430 is used to store instructions, and the processor 1410 is used to execute the instructions stored in the memory 1430. In other words, the processor 1410 can call these stored instructions to implement the functions of the processor 520 in the apparatus 1300, so as to control the transceiver 1420 to send signals and/or receive signal.
  • the memory 1430 may include read only memory and random access memory and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 1410 may be configured to execute the instructions stored in the memory, and when the processor 1410 executes the instructions stored in the memory, the processor 1410 is configured to execute the foregoing method embodiments corresponding to the access network device or the core network device the individual steps and/or processes.
  • the apparatus 1400 is configured to execute each process and step corresponding to the access network device in the foregoing method 100 .
  • the processor 1410 may be configured to perform step S120 in the method 100
  • the transceiver 1420 may be configured to perform step S110 of the method 100 .
  • the apparatus 1400 is configured to execute each process and step corresponding to the core network device in the foregoing method 100.
  • the processor 1410 may be configured to perform steps S140 and S150 in the method 100
  • the transceiver 1420 may be configured to perform steps S110 and S130 of the method 100 .
  • the apparatus 1400 is configured to execute each process and step corresponding to the core network device in the foregoing method 400 .
  • the transceiver 1420 may be used to perform steps S410 and S430 in the method 400
  • the processor 1410 may be used to perform steps S440 and S450 of the method 400 .
  • the apparatus 1400 is configured to execute each process and step corresponding to the access network device in the foregoing method 600 .
  • the transceiver 1420 may be configured to perform step S610 in the method 600
  • the processor 1410 may be configured to perform step S620 in the method 600 .
  • the apparatus 1400 is configured to execute each process and step corresponding to the core network device in the foregoing method 600 .
  • the transceiver 1420 may be configured to perform steps S610 and S630 in the method 600
  • the processor 1410 may be configured to perform steps S640 and S650 of the method 600 .
  • the apparatus 1400 is configured to execute each process and step corresponding to the core network device in the foregoing method 900 .
  • the transceiver 1420 may be configured to perform steps S910 and S930 in the method 900
  • the processor 1410 may be configured to perform steps S940 and S950 of the method 900 .
  • the apparatus 1400 is configured to execute each process and step corresponding to the access network device in the foregoing method 1100 .
  • the transceiver 1420 may be used to perform steps S1110 and S1130 in the method 1100
  • the processor 1410 may be used to perform the step S1120 of the method 1100 .
  • the processor of the above device may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software units in the processor.
  • the software unit may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种突发监测的方法和装置(1300),接入网设备确定的上行突发在终端设备和接入网设备的上行时延包括从第一时间到第二时间的第一上行时延,该第一时间为该上行突发中第一个到达终端设备的MAC层的数据包的授权时间,该第二时间是该上行突发中最后一个从该接入网设备的PDCP层发送的数据包的发送时间,这样实现了监测上行突发在终端设备和接入网设备之间的上行时延的过程,从而基于针对上行突发的上行时延可以更为精确地评估数据的传输性能,以提高用户体验。

Description

一种突发监测的方法和装置 技术领域
本申请涉及通信领域,更具体地,涉及一种突发监测的方法和装置。
背景技术
在数据传输中,网络设备(例如,接入网设备或核心网设备)一般都是以数据包为粒度进行例如传输时延、丢包率等性能参数的监测,即,网络设备通过监测一个数据包的性能参数来评估数据的传输性能。具体地,网络设备监测一个数据包在终端设备与接入网设备之间的性能参数,以及,监测一个数据包在终端设备与核心网设备之间的性能参数。
但是,在一些场景中,业务流的传输是以一个突发(burst)为传输单位进行的,一个突发包括一个或多个数据包,而以数据包为粒度进行监测得到的性能参数并不能准确评估的数据的传输性能,导致用户体验差。以视频类型的数据为例,一个视频帧是一个突发,终端只有在预设时延内将一个视频帧中的所有数据包全部正确接收,才能显示该帧的图像,否则,丢帧会引起视频卡顿,用户体验很差。
因此,需要提供一种技术,提高评估数据的传输性能的准确性以提高用户体验。
发明内容
本申请实施例提供了一种突发监测的方法和装置,网络设备(例如,接入网设备)监测突发(上行突发或下行突发)在终端设备和接入网设备之间的时延,以及,网络设备(例如,核心网设备)监测突发(上行突发或下行突发)在终端设备和核心网设备之间的时延。从而,网络设备(例如,接入网设备或核心网设备)基于针对突发的时延可以更为精确地评估数据的传输性能,以提高用户体验。此外,本申请实施例还通过网络设备(例如,接入网设备)监测了多个突发的误突发率,从而,基于针对突发的误突发率可以更为精确地评估数据的传输性能,以提高用户体验。
第一方面,提供了一种突发监测的方法,包括:
接入网设备接收来自核心网设备的时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
所述接入网设备响应于所述时延监测请求,确定上行突发在终端设备和所述接入网设备之间的上行时延,其中,所述上行突发在所述终端设备和所述接入网设备之间的上行时延包括第一上行时延,所述第一上行时延包括从第一时间到第二时间的时长,所述第一时间是所述上行突发中第一个到达所述终端设备的媒体访问控制MAC层的数据包的授权时间,所述第二时间是所述上行突发中最后一个从所述接入网设备的分组数据汇聚协议PDCP层发送的数据包的发送时间。
其中,该上行突发是周期性的,该时延监测请求用于指示对某一个或多个周期中每个周期的上行突发进行时延监测,以确定周期性的上行突发在终端设备与接入网设备之间传 输的时延。
本申请实施例提供的突发监测的方法,提供了监测上行突发的时延的方法,接入网设备基于核心网设备发送的针对上行突发的时延监测请求,确定该上行突发在终端设备和接入网设备的上行时延。其中,该上行时延包括从第一时间到第二时间的第一上行时延,该第一时间为该上行突发中第一个到达终端设备的MAC层的数据包的授权时间,该第二时间是该上行突发中最后一个从该接入网设备的PDCP层发送的数据包的发送时间。这样,实现了通过接入网设备监测上行突发在终端设备和接入网设备之间的上行时延的过程,从而,接入网可以基于针对上行突发的上行时延更为精确地评估数据的传输性能,以提高用户体验。
可选地,所述第一上行时延包括第二上行时延和第三上行时延,其中,所述第二上行时延包括从所述第一时间到第三时间的时长,所述第三上行时延包括从所述第三时间到所述第二时间的时长,所述第三时间是所述上行突发中最后一个从所述接入网设备的无线链路控制RLC层向所述接入网设备的PDCP层发送的数据包的发送时间。
可选地,所述上行突发在所述终端设备和所述接入网设备之间的上行时延还包括第四上行时延,所述第四上行时延包括从第四时间到第五时间的时长,或,所述第四上行时延包括从第四时间到所述第一时间的时长,所述第四时间是所述上行突发中第一个到达所述终端设备的PDCP层的数据包的到达时间,所述第五时间是所述上行中突发中第一个到达所述终端设备的MAC层的数据包的到达时间。
本申请实施例提供的突发监测的方法,上行突发在终端设备与接入网设备之间的上行时延还包括上行突发在终端设备的各个协议层递交的第四上行时延,接入网设备可以更为准确地监测上行突发的上行时延,从而,接入网设备可以基于针对上行突发的上行时延更为精确地评估数据的传输性能,以进一步提高用户体验。
可选地,所述接入网设备响应于所述时延监测请求,确定上行突发在终端设备和所述接入网设备之间的上行时延,包括:
所述接入网设备响应于所述时延监测请求,确定所述第二上行时延和所述第三上行时延;
所述接入网设备确定所述第四上行时延;
所述接入网设备根据所述第二上行时延、所述第三上行时延和所述第四上行时延,确定所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
本申请实施例提供的突发监测的方法,接入网设备可以分段统计上行突发在终端设备和接入网设备的第二上行时延和第三上行时延,以及,确定上行突发在终端设备由于递交数据产生的第四上行时延,从而,根据该第二上行时延、该第三上行时延和该第四上行时延,确定上行突发在终端设备和接入网设备的上行时延。这样,在DU和CU分离的场景中,可以由DU确定上行突发在终端设备与DU的第二上行时延,由CU确定上行突发在DU与CU的第三上行时延,由CU基于该第二上行时延、该第三上行时延和确定的第四上行时延确定上行突发在终端设备和接入网设备的上行时延,以实现在DU与CU分离场景中监测上行突发的上行时延,也能得到较为精确的上行时延。
可选地,所述接入网设备响应于所述时延监测请求,确定上行突发在终端设备和所述接入网设备之间的上行时延,包括:
所述接入网设备响应于所述时延监测请求,确定所述第一时间和第二时间;
所述接入网设备确定所述第四上行时延;
所述接入网设备根据所述第四上行时延、所述第一时间和所述第二时间,确定所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
本申请实施例提供的突发监测的方法,接入网设备确定上行突发在空口传输的第一时间(即,起始时间)、上行突发在接入网设备的第二时间(即,结束时间)以及上行突发在终端设备由于递交数据产生的第四上行时延,基于该第一时间、该第二时间以及该第四上行时延确定上行突发在终端设备和接入网设备的上行时延。相比于接入网设备分段统计时延的方式,该方法可以得到更精确的上行突发的上行时延,以使得接入网设备能够更为精确地评估数据的传输性能,以进一步提高用户体验。此外,该实施例不仅可以适用于DU与CU分离场景,也可以适用于DU与CU不分离的场景,灵活性更高。
可选地,所述接入网设备响应于所述时延监测请求,确定上行突发在终端设备和所述接入网设备之间的上行时延,包括:
所述接入网设备响应于所述时延监测请求,确定所述第二上行时延和所述第三上行时延;
所述接入网设备根据所述第二上行时延和所述第三上行时延,确定所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
本申请实施例提供的突发监测的方法,接入网设备可以分段统计上行突发在终端设备和接入网设备的第二上行时延和第三上行时延,从而,根据该第二上行时延和该第三上行时延确定上行突发在终端设备和接入网设备的上行时延。这样,在DU和CU分离的场景中,可以由DU确定上行突发在终端设备与DU的第二上行时延,由CU确定上行突发在DU与CU的第三上行时延,由CU基于该第二上行时延和该第三上行时延确定上行突发在终端设备和接入网设备的上行时延,以实现在DU与CU分离场景中监测上行突发的上行时延。
可选地,所述接入网设备响应于所述时延监测请求,确定上行突发在终端设备和所述接入网设备之间的上行时延,包括:
所述接入网设备响应于所述时延监测请求,确定所述第一时间和所述第二时间;
所述接入网设备根据所述第一时间和所述第二时间,确定所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
本申请实施例提供的突发监测的方法,接入网设备确定上行突发在空口传输的第一时间(即,起始时间)和上行突发在接入网设备的第二时间(即,结束时间),基于该第一时间和该第二时间确定上行突发在终端设备和接入网设备的上行时延。相比于接入网设备分段统计时延的方式,该方法可以得到更精确的上行突发的上行时延,以使得接入网设备能够更为精确地评估数据的传输性能,以进一步提高用户体验。此外,该实施例不仅可以适用于DU与CU分离场景,也可以适用于DU与CU不分离的场景,灵活性更高。
可选地,所述方法还包括:
所述接入网设备向所述核心网设备发送响应信息,所述响应信息包括所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
本申请实施例提供的突发监测的方法,接入网设备通过将上行突发在终端设备和接入 网设备的上行时延发送至核心网设备,可以使得核心网设备进一步确定该上行突发在终端设备和核心网设备之间的上行时延。
第二方面,一种突发监测的方法,其特征在于,包括:
核心网设备向接入网设备发送时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
所述核心网设备接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括上行突发在终端设备和所述接入网设备之间的上行时延,其中,所述上行突发在所述终端设备和所述接入网设备之间的上行时延包括第一上行时延,所述第一上行时延包括从第一时间到第二时间的时长,所述第一时间是所述上行突发中第一个到达所述终端设备的媒体访问控制MAC层的数据包的授权时间,所述第二时间是所述上行突发中最后一个从所述接入网设备的分组数据汇聚协议PDCP层发送的数据包的发送时间;
所述核心网设备确定第五上行时延,所述第五上行时延是所述上行突发中最后一个从所述接入网设备的PDCP层发送的数据包在所述接入网设备和所述核心网设备之间的时延;
所述核心网设备根据所述第五上行时延和所述上行突发在所述终端设备和所述接入网设备之间的上行时延,确定所述上行突发在所述终端设备和所述核心网设备之间的上行时延。
本申请实施例提供的突发监测的方法,提供了监测上行突发的时延的方法,核心网设备接收接入网设备发送的针对上行突发在终端设备和接入网设备之间的上行时延,基于该上行时延和核心网设备自己确定的该上行突发在接入网设备和核心网设备的第五上行时延,最终确定该上行突发在终端设备和核心网设备之间的上行时延。这样,实现了监测上行突发在终端设备和核心网设备之间的上行时延的过程,从而,核心网设备基于针对上行突发的上行时延可以更为精确地评估数据的传输性能,以提高用户体验。
可选地,所述上行突发在所述终端设备和所述接入网设备之间的上行时延还包括第四上行时延,所述第四上行时延包括从第四时间到第五时间的时长,或,所述第四上行时延包括从第四时间到所述第一时间的时长,所述第四时间是所述上行突发中第一个到达所述终端设备的PDCP层的数据包的到达时间,所述第五时间是所述上行突发中第一个到达所述终端设备的MAC层的数据包的到达时间。
第三方面,一种突发监测的方法,其特征在于,包括:
核心网设备向接入网设备发送时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
所述核心网设备接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括第一时间,所述第一时间是所述上行突发中第一个到达终端设备的媒体访问控制MAC层的数据包的授权时间;
所述核心网设备确定所述上行突发中最后一个到达所述核心网设备的数据包的到达时间;
所述核心网设备根据所述第一时间和所述到达时间,确定所述上行突发在所述终端设备和所述核心网设备之间的上行时延。
本申请实施例提供的突发监测的方法,核心网设备通过接入网设备发送的上行突发中第一个到达MAC层的数据包的授权时间(即,第一时间)和上行突发最后一个到达核心网设备的到达时间,确定上行突发在终端设备和核心网设备的上行时延。这样,不仅实现了监测上行突发在终端设备和核心网设备之间的上行时延的过程,而且,可以得到更精确的上行时延,从而,核心网设备可以基于针对上行突发的上行时延更为精确地评估数据的传输性能,以提高用户体验。
可选地,所述响应信息还包括第四上行时延,所述第四上行时延包括从第四时间到第五时间的时长,或,所述第四上行时延包括从第四时间到所述第一时间的时长,所述第四时间是所述上行突发中第一个到达所述终端设备的PDCP层的数据包的到达时间,所述第五时间是所述上行突发中第一个到达所述终端设备的MAC层的数据包的到达时间;以及,
所述核心网设备根据所述第一时间和所述到达时间,确定所述上行突发在所述终端设备和所述核心网设备之间的上行时延,包括:
所述核心网设备根据所述第一时间、所述到达时间和所述第四上行时延,确定所述上行突发在所述终端设备和所述核心网设备之间的上行时延。
第四方面,提供了一种突发监测的方法,包括:
接入网设备接收来自核心网设备的时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
所述接入网设备响应于所述时延监测请求,确定下行突发在终端设备和所述接入网设备之间的下行时延,所述下行突发在所述终端设备和所述接入网设备之间的下行时延包括第一下行时延,所述第一下行时延包括从第一时间到第二时间的时长,所述第一时间是所述下行突发中第一个到达所述接入网设备的分组数据汇聚协议PDCP层的数据包的到达时间,所述第二时间是到达所述接入网设备的媒体访问控制MAC层的最后一个反馈信息的到达时间,或,所述第二时间是从所述终端设备的物理层发送最后一个反馈信息的发送时间,所述反馈信息用于指示所述终端设备成功接收所述下行突发中的一个数据包。
本申请实施例提供的突发监测的方法,提供了监测下行突发的时延的方法,接入网设备基于核心网设备发送的针对下行突发的时延监测请求,确定该下行突发在接入网设备和终端设备的下行时延。其中,该下行时延包括从第一时间到第二时间的第一下行时延,该第一时间是该下行突发中第一个到达该接入网设备的分组数据汇聚协议PDCP层的数据包的到达时间,该第二时间是到达该接入网设备的MAC层的最后一个反馈信息的到达时间或是从该终端设备的物理层发送最后一个反馈信息的发送时间。这样,实现了通过接入网设备监测下行突发在终端设备和接入网设备之间的下行时延的过程,从而,接入网设备可以基于针对下行突发的下行时延更为精确地评估数据的传输性能,以提高用户体验。
可选地,所述第一下行时延包括第二下行时延和第三下行时延,所述第二下行时延包括从第三时间到所述第二时间的时长,所述第三下行时延包括从所述第一时间到所述第三时间的时长,所述第三时间是所述下行突发中第一个到达所述接入网设备的无线链路控制RLC层的数据包的到达时间。
可选地,所述接入网设备响应于所述时延监测请求,确定下行突发在所述终端设备和所述接入网设备之间的下行时延,包括:
所述接入网设备响应于所述时延监测请求,确定所述第二下行时延和所述第三下行时 延;
所述接入网设备根据所述第二下行时延和所述第三下行时延,确定所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
本申请实施例提供的突发监测的方法,接入网设备可以分段统计下行突发在终端设备和接入网设备的第二下行时延和第三下行时延,从而,根据该第二下行时延和该第三下行时延确定下行突发在终端设备和接入网设备的下行时延。这样,这样,在DU和CU分离的场景中,可以由DU确定下行突发在终端设备与DU相关的第二下行时延,由CU确定下行突发在CU与DU的第三下行时延,由CU根据该第二下行时延和该第三下行时延确定下行突发在终端设备和接入网设备之间的下行时延,以实现在DU与CU分离场景中监测下行突发的下行时延。
可选地,所述接入网设备响应于所述时延监测请求,确定下行突发在所述终端设备和所述接入网设备之间的下行时延,包括:
所述接入网设备响应于所述时延监测请求,确定所述第一时间和所述第二时间;
所述接入网设备根据所述第一时间和所述第二时间,确定所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
本申请实施例提供的突发监测的方法,接入网设备确定下行突发在接入网设备和终端设备传输的第一时间(即,起始时间)和第二时间(即,结束时间),基于该第一时间和该第二时间确定下行突发在终端设备和接入网设备的下行时延。相比于接入网设备分段统计时延的方式,该方法可以得到更精确的下行突发的下行时延,以使得接入网设备能够更为精确地评估数据的传输性能,以进一步提高用户体验。此外,该实施例不仅可以适用于DU与CU分离场景,也可以适用于DU与CU不分离的场景,灵活性更高。
可选地,所述下行突发在所述终端设备和所述接入网设备之间的下行时延还包括第四下行时延,所述第四下行时延包括从第四时间到第五时间的时长,所述第四时间是所述下行突发中最后一个到达所述终端设备的MAC层的数据包的到达时间,所述第五时间是所述下行突发中最后一个从所述终端设备的PDCP层发送的数据包的发送时间。
本申请实施例提供的突发监测的方法,下行突发在终端设备与接入网设备之间的下行时延还包括下行突发在终端设备的各个协议层递交的第四下行时延,可以使得接入网设备更为准确地监测下行突发的下行时延,从而,接入网设备可以基于针对下行突发的下行时延更为精确地评估数据的传输性能,以进一步提高用户体验。
可选地,所述接入网设备响应于所述时延监测请求,确定下行突发在所述终端设备和所述接入网设备之间的下行时延,包括:
所述接入网设备响应于所述时延监测请求,确定所述第二下行时延和所述第三下行时延;
所述接入网设备确定所述第四下行时延;
所述接入网设备根据所述第二下行时延、所述第三下行时延和所述第四下行时延,确定所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
本申请实施例提供的突发监测的方法,接入网设备可以分段统计下行突发在终端设备和接入网设备的第二下行时延和第三下行时延,以及,确定下行突发在终端设备的各个协议层由于递交数据产生的第四下行时延,从而,根据该第二下行时延、该第三下行时延和 该第四下行时延确定下行突发在终端设备和接入网设备的下行时延。这样,在DU和CU分离的场景中,可以由DU确定下行突发在终端设备与DU的第二下行时延,由CU确定下行突发在DU与CU的第三下行时延,由CU基于该第二下行时延、该第三下行时延和确定的第四下行时延确定下行突发在终端设备和接入网设备的下行时延,以实现在DU与CU分离场景中监测下行突发的下行时延,也能得到较为精确的下行时延。
可选地,所述接入网设备响应于所述时延监测请求,确定下行突发在所述终端设备和所述接入网设备之间的下行时延,包括:
所述接入网设备响应于所述时延监测请求,确定所述第一时间和所述第二时间;
所述接入网设备确定所述第四下行时延;
所述接入网设备根据所述第一时间、所述第二时间和所述第四下行时延,确定所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
本申请实施例提供的突发监测的方法,接入网设备确定下行突发在接入网设备和终端设备传输的第一时间(即,起始时间)和第二时间(即,结束时间),以及确定确定下行突发在终端设备的各个协议层由于递交数据产生的第四下行时延,基于该第一时间、该第二时间和该第四下行时延确定下行突发在终端设备和接入网设备的下行时延。相比于接入网设备分段统计时延的方式,该方法可以得到更精确的下行突发的下行时延,以能够使得接入网设备更为精确地评估数据的传输性能,以进一步提高用户体验。此外,该实施例不仅可以适用于DU与CU分离场景,也可以适用于DU与CU不分离的场景,灵活性更高。
可选地,所述方法还包括:
所述接入网设备向所述核心网设备发送响应信息,所述响应信息包括所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
本申请实施例提供的突发监测的方法,接入网设备通过将下行突发在终端设备和接入网设备的下行时延发送至核心网设备,可以使得核心网设备进一步确定该下行突发在终端设备和核心网设备之间的下行时延。
第五方面,提供了一种突发监测的方法,包括:
核心网设备向接入网设备发送时延监测请求;
所述核心网设备接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括下行突发在终端设备和所述接入网设备之间的下行时延,所述下行突发在所述终端设备和所述接入网设备之间的下行时延包括第一下行时延,所述第一下行时延包括从第一时间到第二时间的时长,所述第一时间是所述下行突发中第一个到达所述接入网设备的分组数据汇聚协议PDCP层的数据包的到达时间,所述第二时间是到达所述接入网设备的媒体访问控制MAC层的最后一个反馈信息的到达时间,或,所述第二时间是从所述终端设备的物理层发送最后一个反馈信息的发送时间,所述反馈信息用于指示所述终端设备成功接收所述下行突发中的一个数据包;
所述核心网设备确定第五下行时延,所述第五下行时延是所述下行突发中第一个从所述核心网设备发送的数据包在所述接入网设备和所述核心网设备之间的时延;
所述核心网设备根据所述第五下行时延和所述下行突发在所述终端设备和所述接入网设备之间的下行时延,确定所述下行突发在所述终端设备和所述核心网设备之间的下行时延。
本申请实施例提供的突发监测的方法,提供了监测下行突发的时延的方法,核心网设备接收接入网设备发送的针对下行突发在终端设备和接入网设备之间的下行时延,基于该下行时延和核心网设备自己确定的该下行突发在接入网设备和核心网设备的第五下行时延,最终确定该下行突发在终端设备和核心网设备之间的下行时延。这样,实现了监测下行突发在终端设备和核心网设备之间的下行时延的过程,从而,可以使得核心网设备基于针对下行突发的下行时延更为精确地评估数据的传输性能,以提高用户体验。
可选地,所述下行突发在所述终端设备和所述核心网设备之间的下行时延还包括第四下行时延,所述第四下行时延包括从第四时间到第五时间的时长,所述第四时间是所述下行突发中最后一个达到所述终端设备的MAC层的数据包的到达时间,所述第五时间是所述下行突发中最后一个被从所述终端设备的PDCP层发送的数据包的发送时间。
第六方面,提供了一种突发监测的方法,包括:
核心网设备向接入网设备发送时延监测请求;
所述核心网设备接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括第二时间,所述第二时间是到达所述接入网设备的媒体访问控制MAC层的最后一个反馈信息的到达时间,或,所述第二时间是从所述终端设备的物理层发送最后一个反馈信息的发送时间,所述反馈信息用于指示所述终端设备成功接收所述下行突发中的一个数据包;
所述核心网设备确定所述下行突发中第一个从所述核心网设备发送的数据包的发送时间;
所述核心网设备根据所述第二时间和所述发送时间,确定所述下行突发在所述终端设备和所述核心网设备之间的下行时延。
本申请实施例提供的突发监测的方法,核心网设备通过接入网设备发送的上行突发中第一个从核心网设备发送的数据包的发送时间、最后一个反馈信息到达接入网设备或最后一个反馈信息从终端设备发送的第二时间,确定下行突发在终端设备和核心网设备的下行时延。不仅实现了监测下行突发在终端设备和核心网设备之间的下行时延的过程,而且,可以得到更精确的下行时延,从而,核心网设备可以基于针对下行突发的下行时延更为精确地评估数据的传输性能,以提高用户体验。
可选地,所述响应信息还包括第四下行时延,所述第四下行时延包括第四时间和第五时间之间的时长,所述第四时间是所述下行突发中最后一个到达所述终端设备的MAC层的数据包的到达时间,所述第五时间是所述下行突发中最后一个从所述终端设备的PDCP层发送的数据包的发送时间;以及,
所述核心网设备根据所述第二时间和所述发送时间,确定所述下行突发在所述终端设备和所述核心网设备之间的下行时延,包括:
所述核心网设备根据所述第二时间、所述发送时间和所述第四下行时延,确定所述下行突发在所述终端设备和所述核心网设备之间的下行时延。
第七方面,提供了一种突发监测的方法,包括:
接入网设备接收来自核心网设备的误突发监测请求;
所述接入网设备响应于所述误突发监测请求,确定误突发率,所述误突发率表示多个突发中第一类突发的数量与所述多个突发的数量的关系,所述第一类突发表示一个突发中 有至少一个数据包未在预设时延内被接收端成功接收;
所述接入网设备向所述核心网设备发送响应信息,所述响应信息包括所述误突发率。
应理解,突发可以是上行突发,也可以是下行突发,本申请实施例不做任何限定。
多个突发表示的是一段时间内的多个突发,示例性地,该一段时间可以是协议预定义的,也可以是接入网设备设置或配置的。
示例性地,预设时延可以是协议预定义的,也可以是接入网设备设置或配置的。
在上行传输中,第一类突发表示一个突发内有至少一个数据包未在预设时延内被接入网设备成功接收,接入网设备即为接收端。
在下行传输中,第一类突发表示一个突发内有至少一个数据包未在预设时延内被终端设备成功接收,终端设备即为接收端。应理解,下行传输中,接入网设备接收到针对数据包接收成功的反馈信息,则认为该数据包被终端设备接收成功。
本申请实施例提供的突发监测的方法,提供了确定突发的误突发率的方法,误突发率表示多个突发中该多个突发与未被接收端成功接收的第一类突发的关系,接入网设备基于核心网设备的误突发监测请求确定该多个突发的误突发率且将该误突发率发送给核心网设备。这样,实现了通过接入网设备监测突发在终端设备和接入网设备之间的误突发率的过程,从而,基于针对突发的误突发率可以更为精确地评估数据的传输性能,以提高用户体验。
可选地,所述误突发率是所述第一类突发的数量与所述多个突发的数量的比值。
可选地,所述第一类突发表示一个突发中的第一类数据有至少一个数据包未在所述预设时延内被所述接收端成功接收,所述第一类数据是基本层的数据。
其中,基本层的数据是用于该基本层的数据所属的突发或其他突发进行解码所参考的数据。
第八方面,提供一种突发监测的装置,所述装置用于执行上述第一方面至第七方面中任一方面提供的方法。具体地,所述装置可以包括用于执行上述第一方面至第七方面中任一方面中任一种可能实现方式的模块。
第九方面,提供一种突发监测的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第七方面中任一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
第十方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现上述第一方面至第七方面中任一方面中任一种可能实现方式中的方法。
第十一方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现上述第一方面至第七方面中任一方面中任一种可能实现方式中的方法。
第十二方面,提供一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述第一方面至第七方面中任一方面中任一种可能实现方式中的方法。
附图说明
图1是应用于本申请实施例的一种可能的网络架构的示意图。
图2是本申请实施例提供的两种可能的协议架构的示例图。
图3是本申请实施例提供的上行突发在各个协议层按序递交的场景下传输的示意图。
图4是本申请实施例提供的上行突发在RLC层分段的场景下传输的示意图。
图5是本申请实施例提供的上行突发在空口传输过程中乱序到达的场景下传输的示意图。
图6是本申请实施例提供的上行突发在丢包且乱序到达的场景下传输的示意图。
图7是本申请实施例提供的上行传输的突发监测的方法100的示意性流程图。
图8是本申请实施例提供的在接入网设备的DU和CU分离的场景中进行上行传输的突发监测的方法200的示意性流程图。
图9是本申请实施例提供的在接入网设备的DU和CU分离的场景中进行上行传输的突发监测的方法300的示意性流程图。
图10是本申请实施例提供的上行传输的突发监测的方法400的示意性流程图。
图11是本申请实施例提供的在DU和CU分离的场景中进行上行传输的突发监测的方法500的示意性流程图。
图12是本申请实施例提供的下行突发在各个协议层按序递交的场景下传输的示意图。
图13是本申请实施例提供的下行突发在RLC层分段的场景下传输的示意图。
图14是本申请实施例提供的下行突发在空口传输过程中乱序到达的场景下传输的示意图。
图15是本申请实施例提供的上行突发在丢包且乱序到达的场景下传输的示意图。
图16是本申请实施例提供的下行传输的突发监测的方法600的示意性流程图。
图17是本申请实施例提供的在接入网设备的DU和CU分离的场景中进行下行传输的突发监测的方法700的示意性流程图。
图18是本申请实施例提供的在接入网设备的DU和CU分离的场景中进行下行传输的突发监测的方法800的示意性流程图。
图19是本申请实施例提供的下行传输的突发监测的方法900的示意性流程图。
图20是本申请实施例提供的在DU和CU分离的场景中进行下行传输的突发监测的方法1000的示意性流程图。
图21是本申请实施例提供的突发监测的方法1100的示意性流程图。
图22是本申请实施例提供的在接入网设备的DU和CU分离的场景中进行下行传输的突发监测的方法1200的示意性流程图。
图23是本申请实施例提供的突发监测的装置1300的示意性框图。
图24是本申请实施例提供的发监测的装置1400的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term  Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
图1是应用于本申请实施例的一种可能的网络架构。该网络架构包括服务器、核心网设备、接入网设备和终端设备。其中,核心网设备包括:用户面网元、接入管理网元、会话管理网元。此外,接入网设备、核心网设备和服务器可以统称为本申请实施例的网络设备。
下面,结合图1,对网络架构中的涉及的各个网元做说明。
1、用户面网元:用于分组路由和转发、用户面数据的服务质量(quality of service,QoS)处理、报文探测、策略规则执行等,以及,用于进行用户面数据的转发,并基于流量情况生成话单,同时起到数据面锚点的功能。在5G通信中,如图1所示,用户面网元可以是用户面功能(user plane function,UPF)网元。在未来通信如6G通信中,用户面网元仍可以是UPF网元,或者有其它名称,本申请对此不作限定。
为便于描述,在下文中,以用户面网元为UPF网元为例进行说明,且将UPF网元简称为UPF。本申请后续所描述的UPF网元均可替换为用户面网元。
2、接入管理网元:主要用于移动性管理和接入管理等,例如,用户位置更新、用户注册网络、用户切换、合法监听以及接入授权\鉴权等功能。在5G通信中,如图1所示,接入管理网元可以是接入管理功能(access and mobility management function,AMF)网元。在未来通信如6G通信中,接入管理网元仍可以是AMF网元,或者有其它名称,本申请对此不作限定。
为便于描述,在下文中,以接入管理网元为AMF网元为例进行说明,且将AMF网元简称为AMF。本申请后续所描述的AMF网元均可替换为接入管理网元。
3、会话管理网元:主要用于会话管理、终端设备的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理UPF网元、通过AMF网元实现与接入网相关的会话信息交互、策略控制和收费功能接口的终结点以及下行数据通知等。在5G通信中,如图1所示,会话管理网元可以是会话管理功能(session management function,SMF)网元。在未来通信如6G通信中,会话管理功能网元仍可以是SMF网元,或者有其它名称,本申请对此不作限定。
为便于描述,在下文中,以会话管理功能网元为SMF网元为例进行说明,且将SMF网元简称为SMF。本申请后续所描述的SMF网元均可替换为会话管理功能网元。
4、服务器:用于提供传输数据的网络,例如,Internet网络等。其中,服务器可以是数据网络鉴权、授权和计费(data network authentication、authorization、accounting)服务器,也可以是应用服务器(application function)等。在本申请实施例中,服务器也可以称为数据网络(data network,DN)网元。
5、终端设备:是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载,也可以部署在水面上(如轮船等),还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(VR)终端设备、增强现实(AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医 疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请实施例对应用场景不做限定。
终端设备有时也可以称为终端、用户设备(UE,User Equipment)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
6、接入网设备:用于为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等使用不同质量的传输隧道。接入网设备能够管理无线资源,为终端设备提供接入服务,进而完成控制信号和用户数据在终端设备和核心网设备之间的转发,接入网设备网元也可以理解为传统网络中的基站。在本申请实施例中,接入网设备也可以称为无线接入网络(radio access network,(R)AN)。
本申请实施例中的接入网设备是用于与终端设备通信的设备,该接入网设备可以是:LTE系统中的演进型基站(evolutional NodeB,eNB或eNodeB)或传输接收点(transmission reception point,TRP),3GPP后续演进的基站,云无线接入网络(coud radio access network,CRAN)场景下的无线控制器,中继站、接入点、车载设备、可穿戴设备,以及5G网络中的网络设备或者未来6G网络中的网络设备等,本申请实施例并不限定。
如图1所示,在一些场景中,接入网设备被划分为集中单元(central unit,CU)和分布单元(distributed unit,DU),即,DU与CU分离。DU主要用于无线链路控制(radio link control,RLC)层、介质访问控制(medium access control,MAC)层、物理层(physical layer,PHY)的处理,CU主要用于分组数据汇聚协议(packet data convergence protocol,PDCP)层的处理。
在一些场景中,CU的控制面和用户面是分离的,将用于控制面的网元称为集中单元控制面(central unit control plane,CU-CP)网元,将用于用户面的网元称为集中单元用户面(central unit user plane,CU-UP)网元。一般情况下,一个CU中包括一个CU-CP以及一个或多个CU-UP。
在该网络架构中,N2接口为接入网设备和AMF网元的参考点,用于非接入层(non-access stratum,NAS)消息的发送等;N3接口为接入网设备和UPF网元之间的参考点,用于传输用户面的数据等;N4接口为SMF网元和UPF网元之间的参考点,用于传输例如N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息;N6接口为UPF网元和服务器之间的参考点,用于传输用户面的数据等。
在接入网设备的CU和DU分离、以及CU的CU-CP和CU-UP分离的场景中,F1-U接口为DU与CU-UP的参考点,用于CU和DU间的用户面的数据传输;F1-C接口为DU与CU-CP的参考点,用于CU和DU间的控制消息的数据传输;E1接口为CU-UP与CU-CP的参考点,用于CU-CP和CU-UP间的控制消息的数据传输。
应理解,上述应用于本申请实施例的网络架构仅是举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。上述接入管理网元、接入管理网元和会话管理网元是核心网设备中的网元。
还应理解,核心网设备中可以有更多或更少的网元,本申请实施例不做任何限定。例 如,核心网设备还可以包括策略控制功能(policy control function,PCF)网元、网络能力开放功能(network exposure function,NEF)网元等。
还应理解,上述功能网元既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
目前,网络设备(例如,接入网设备或核心网设备)都是通过监测一个数据包的例如传输时延、丢包率等性能参数来评估数据的传输性能。但是,在一些场景中,业务流的传输是以突发为传输单位进行的,一个突发包括一个或多个数据包,在以数据包为粒度进行监测得到的性能参数并不能准确评估的数据的传输性能,导致用户体验差。
以视频类型的数据为例,一个视频帧可以称为一个突发,终端设备只有在预设时延内将一个视频帧中的所有数据包全部正确接收,才能显示该帧的图像,否则,丢帧会引起视频卡顿,用户体验很差。例如,以虚拟现实(Virtual Reality,VR)技术中的视频帧为例,基础体验(35Mbps,60fps)下,每16.7ms产生一个视频帧,一个视频帧(约为583Kb)被分为50个数据包(约为1500Byte)传递。对于终端设备来说,只有在预设时延内全部接收正确该视频帧的所有数据包,终端设备的解码器才能正确这帧图像,否则无法显示这帧图像,相当于丢帧。只要丢帧就引起视频卡顿,丢帧多,播放卡顿频率高。
所以,这种以数据包为粒度来监测一个数据包的性能参数已经无法满足某些场景的需求,尤其是对于视频类型的数据。因此,本申请实施例的目的在于以一个突发作为粒度进行监测以得到一个突发的性能参数,进而得到较为准确的数据传输性能。
为了便于理解,首先,对本申请实施例的相关术语和技术做一介绍。
一、突发(burst)
突发是业务流的周期性的突发,可以表示业务流传输的传输单位,示例性地,一个突发是业务流传输的最小单位。一个突发包括一个或多个数据包,大多数情况下,一个突发包括多个数据包。
在另一个角度,一个突发可以包括一个或多个文件(file),一个文件针对一种特性,特性与业务流的类型相关。示例性地,在业务流的类型是视频时,特性可以是一个视频帧图像中的风景、人物、动物等代表不同属性的内容。此外,一个文件可以包括一个或多个数据包。
在本申请实施例中,突发是周期性的,在监测性能参数时,对突发进行周期性的监测。
在一些场景中,切片(slice)也可以作为数据的传输单位,各个切片可以独立解码,一个切片包括一个或多个数据包。示例性地,一个切片可以是一个帧图像中的部分区域。
因此,在第一种情况中,一个突发可以理解为一个切片,在第二种情况中,切片可以作为一个突发的子单位,一个突发包括一个或多个切片。
以视频帧为例,一个视频帧可以被分为多个切片。
在第一种情况中,可以以“切片”为监测对象,监测切片的性能参数,因此,一个突发可以理解为一个切片。
在第二种情况中,可以以“一个视频帧”作为监测对象,监测视频帧的性能参数,因此,一个突发可以理解为一个视频帧。
需要说明的是,在本申请实施例中,切片也可以称为分片(tile),两种描述可以互相替换。
二、协议架构
无线通信的协议架构包括控制平面的协议架构和用户平面的协议架构,在本申请实施例中,若无特殊说明,本申请实施例所说的协议架构是用户平面的协议架构。
图2所示为本申请实施例提供的两种可能的协议架构的示例图,图2中的(a)所示的是4G中的协议架构,图2的(b)所示的是5G中的协议架构。其中,终端设备和接入网设备都配置有协议架构。
参考图2中的(a),从上至下,协议架构依次包括:PDCP层、RLC层、MAC层、PHY。
PDCP层:负责执行IP头压缩,以减少无线接口必须传送的比特流量。
RLC层:负责分段/级联和重组数据、重传处理,以及对高层数据的顺序传送。
RLC实体从PDCP层接收到的数据或发送至PDCP层的数据被称为RLC SDU,RLC实体从MAC层接收到的数据或发送至MAC层的数据被称为RLC PDU。RLC PDU的大小是由MAC层决定的,其大小比不一定等于RLC SDU的大小,所以,发送端可能需要分段/级联RLC SDU以使得处理后的数据大小匹配MAC层指定的大小,且将处理后的数据以RLC PDU的形式发送至MAC层。相应地,接收端接收到RLC PDU,需要对之前分段的RLC SDU进行重组,以便恢复出原来的RLC SDU并递交给PDCP层。
MAC层:负责控制逻辑信道的复用、混合自动重传请求(hybrid automatic repeat request,HARQ)混合HARQ重传、上行链路和下行链路的调度。
PHY:负责处理编码/译码、调制/解调、多天线的映射以及其它类型的物理层功能。
在接入网设备的DU和CU分离的场景中,PHY、MAC层和RLC层配置在DU中,PDCP层配置在CU中。此外,在CU的CU-CP与CU-UP分离的场景中,PDCP层配置在CU-UP中。
参考图2中的(b),从上至下,协议架构依次包括:服务数据自适应协议(service data adaptation protocol,SDAP)层、PDCP层、RLC层、MAC层和PHY。其中,SDAP层用于处理Qos相关的信息,其余协议层的描述可参考上文描述,此处不再赘述。
在接入网设备的DU和CU分离的场景中,PHY、MAC层和RLC层配置在DU中,PDCP层和SDAP层配置在CU中。此外,在CU的CU-CP与CU-UP分离的场景中,PDCP层和SDAP层配置在CU-UP中。
以图2中的(b)所示的协议架构为例,对上行传输和下行传输的过程做一说明。
在上行传输中,上行数据从终端设备发送至接入网设备,再由接入网设备发送至核心网设备,示例性地,发送至核心网设备中的UPF。
具体地,作为发送端的终端设备侧,上行数据从上层开始向下层递交,上行数据到达SDAP层后,终端设备按照从上至下的顺序,将上行数据从SDAP层依次递交至PHY。作为接收端的接入网设备侧,接入网设备在PHY接收到上行数据,按照从下至上的顺序,将上行数据从PHY依次递交至SDAP层,完成上行数据在终端设备与接入网设备之间的传输。最终,接入网设备将递交完成的上行数据发送至核心网设备,完成上行数据在接入网设备与核心网设备之间的传输。从而,完成上行数据在终端设备与核心网设备之间的传输。
在下行传输中,下行数据从核心网设备发送至接入网设备,示例性地,从核心网设备 中的UPF发送至接入网设备,再由接入网设备发送至终端设备。
具体地,下行数据从核心网设备发送至接入网设备,到达接入网设备的SDAP层,完成下行数据在核心网设备与接入网设备之间的传输。作为发送端的接入网设备侧,接入网设备按照从上至下的顺序,将下行数据从SDAP层依次递交至PHY。作为接收端的终端设备侧,终端设备在PHY接收到下行数据,按照从下至上的顺序,将下行数据从PHY依次递交至SDAP层,完成下行数据在终端设备与接入网设备之间的传输。从而,完成下行数据在终端设备与核心网设备之间的传输。
本申请实施例主要涉及两种性能参数的监测,一种性能参数是突发的时延,包括突发在终端设备与接入网设备之间传输的时延,以及,突发在终端设备与核心网设备之间传输的时延;另一种性能参数是误突发率,主要监测一个时间段内多个突发中未满足时延要求的突发。在本申请实施例中,对上述两种性能参数分别做描述,首先对突发的时延的监测做说明,后续,对突发的误突发率的监测做说明。
以下,结合图3至图20,对突发的时延做详细说明,包括上行突发的时延和下行突发的时延。其中,图3至图11,涉及的是上行突发的时延,图12至图20,涉及的是下行突发的时延。
上行传输
为了便于理解上行突发的时延,结合图3至图6,对上行突发在4种场景中从终端设备传输至核心网设备的过程的做说明。
此外,以5G的协议架构、UPF作为核心网设备的一例、一个上行突发包括4个数据包为例进行说明,其中,4个数据包分别记为数据包1、数据包2、数据包3和数据包4。
需要说明的是,由于SDAP层和PHY没有缓存数据的功能,数据在SDAP层和PHY的时延很短,可以忽略不计,所以,在图3至图6中,未示出PHY层,不过,为了便于说明其他情况,图中示出了SDAP层。
图3所示的是上行突发在各个协议层按序递交的场景下传输的示意图。
参考图3,4个数据包到达终端设备的SDAP层,终端设备按照从上至下的顺序,按序将4个数据包递交至终端设备的MAC层。终端设备将4个数据包发送给接入网设备,4个数据包从终端设备的MAC层到达接入网设备的MAC层,接入网设备按照从下至上的顺序按序,将4个数据包从接入网设备的MAC层递交至接入网设备的SDAP层,且将4个数据包从SDAP层发送至UPF。
图4所示的是上行突发在RLC层分段的场景下传输的示意图。假设,上行突发在各个协议层按序递交。
参考图4,4个数据包到达终端设备的SDAP层,终端设备按照从上至下的顺序,按序将4个数据包以RLC SDU的形式递交至RLC层后,终端设备对上行突发的数据包进行分段。假设,终端设备对每个数据包都分段且将1个数据包分为两段,4个数据包在RLC层被分段形成8个数据包,记为数据包1.1、数据包1.2、数据包2.1、数据包2.2、数据包3.1、数据包3.2、数据包4.1、数据包4.2,8个数据包以RLC PDU的形式按序到达MAC层。终端设备将8个数据包发送给接入网设备,8个数据包从终端设备的MAC层到达接入网设备的MAC层,接入网设备按照从下向上的顺序,按序将8个数据包递交至接入网设备的RLC层后,接入网设备需要对之前分段的数据包(即,RLC SDU)进行重组,以 恢复之前被分段的数据包,即,8个数据包恢复为原来的4个数据包。接入网设备将该4个数据包从RLC层发送至接入网设备的SDAP层,且将4个数据包从SDAP层发送至UPF。
图5所示的是上行突发在空口传输过程中乱序到达的场景下传输的示意图。
应理解,本申请实施例所说的空口传输表示发送端(例如,终端设备)将数据从发送端的MAC层发送至接收端(例如,接入网设备)的MAC层的过程,下文关于空口传输的解释同此处。
参考图5,4个数据包到达终端设备的SDAP层,终端设备按照从上至下的顺序,按序将4个数据包递交至终端设备的MAC层。终端设备将4个数据包发送给接入网设备,4个数据包从终端设备的MAC层到达接入网设备的MAC层,不过,在空口传输过程中,数据包发生了乱序到达的情况,即,数据包4早于数据包3到达接入网设备的MAC层。随后,接入网设备按照数据包1、数据包2、数据包4和数据包3的顺序,将4个数据包递交至PDCP层。在PDCP层配置了按序递交的情况下,无论4个数据包以哪种顺序到达PDCP层,接入网设备都会将该4个数据包以原始的数据包1、数据包2、数据包3、数据包4的顺序从PDCP层发送至SDAP层,且将4个数据包从SDAP层发送至UPF。
需要说明的是,在PDCP层配置了乱序递交的情况下,接入网设备会将4个数据包以时间顺序发送,即,先到达PDCP层的数据包先发送出去,后到达PDCP层的数据包后发送出去。在图5所示的场景中,终端设备会继续将4个数据包以数据包1、数据包2、数据包4、数据包3的顺序发送至SDAP,且从SDAP层发送至UPF(图中未示出)。
图6所示的是上行突发在丢包且乱序到达的场景下传输的示意图。
参考图3,4个数据包到达终端设备的SDAP层,终端设备按照从上至下的顺序,按序将4个数据包递交至终端设备的MAC层。终端设备将4个数据包发送给接入网设备,4个数据包从终端设备的MAC层到达接入网设备的MAC层,不过,在空口传输过程中,发生了丢包和乱序到达的现象,数据包3未到达接入网设备的MAC层,且数据包4在早于数据包3应该到达的时间之前到达接入网设备的MAC层。接入网设备按照从下至上的顺序按序将其余的3个数据包递交至PDCP层。在PDCP层配置了按序递交的情况下,即使接入网设备在PDCP层已经接收到数据包4,但仍然会等数据包3,在预设时长内未收到数据包3后,才会向SDAP层递交数据包4,随后,将剩余的3个数据包从SDAP层发送至UPF。
在本申请实施例中,将一个上行突发在终端设备与接入网设备之间的上行时延记为D U-UE-基站,将一个上行突发在终端设备与核心网设备之间的上行时延记为D U-UE-UPF,将一个上行突发在接入网设备与核心网设备之间的上行时延记为D U-基站-UPF
下面,结合图3至图6示意的场景,对上述3个时延做详细说明。
一、上行时延D U-UE-基站
本申请实施例的上行时延D U-UE-基站有两种可能的情况(情况1和情况2),以下,分情况描述上行时延D U-UE-基站
情况1
上行时延D U-UE-基站包括上行时延D U1和上行时延D U2
上行时延D U1可以理解为终端设备的从上层向下层递交上行突发的一个数据包的时延,上行时延D U2可以理解为从终端设备开始发送上行突发的时间到接入网设备向核心网 设备发送上行突发的最后一个数据包的时间的时长。
下面,对上行时延D U1和上行时延D U2做详细描述。
上行时延D U1
在一些实施例中,上行时延D U1包括从时间T U1.1到时间T U1.2的时长,例如,图3至图6的(1)D U1对应的时长。
时间T U1.1是上行突发中第一个到达终端设备的PDCP层的数据包(例如,图3至图6的数据包1)的到达时间。
时间T U1.2是上行突发中第一个到达终端设备MAC层的数据包(例如,图3、图5、图6的数据包1,或,图4的数据包1.1)的到达时间。
在上行突发的数据包在终端设备的RLC层被分段的场景中,若第一个到达终端设备的MAC层的数据包在RLC层已经被分为多段,则第一个到达终端设备的MAC层的数据包为多段数据包中的第一个数据包。例如,在图4所示的场景中,第一个到达终端设备的MAC层的数据包为数据包1.1。
下文关于上行突发中第一个到达终端设备的MAC层的数据包的解释同此处,后续不再赘述。
在另一些实施例中,上行时延D U1包括从时间T U1.1到时间T U1.3的时长,例如,图3至图6的(2)D U1对应的时长。
时间T U1.3是上行突发中第一个到达终端设备的MAC层的数据包(例如,图3、图5、图6的数据包1,或,图4的数据包1.1)的授权时间。
其中,数据包的授权时间表示数据包被接入网设备调度的时间,数据包被调度的时间可以理解为接入网设备指示数据包从终端设备向接入网设备发送的时间。示例性地,在调度数据时,接入网设备可以向终端设备发送调度信息,该调度信息中包括数据包被调度的时间。
应理解,由于SDAP层没有缓存数据的功能,数据在SDAP层的时延很短,可以忽略其时延。
上行时延D U2
上行时延D U2包括从时间T U1.3到时间T U2.1的时长,例如,图3至图6的D U2对应的时长。
时间T U1.3是上行突发中第一个到达终端设备的MAC层的数据包(例如,图3、图5、图6的数据包1,或,图4的数据包1.1)的授权时间,具体描述可参考上文描述,不再赘述。
时间T U2.1是上行突发中最后一个从接入网设备的PDCP层发送的数据包(例如,数据包4)的发送时间。在DU与CU分离的场景中,时间T U2.1是上行突发中最后一个从CU的PDCP层发送的数据包(例如,数据包4)的发送时间。
应理解,本申请实施例的从接入网设备的PDCP层发送的数据包的发送时间,在5G中表示将数据包从PDCP层向SDAP层发送的发送时间,在4G中表示将数据包从PDCP层向核心网设备(例如,UPF)发送的发送时间。
在接入网设备的DU和CU分离的场景中,示例性地,上行时延D U2可以包括4部分时延,该4部分时延包括时延D U21、时延D U22、时延D U23、时延D U24
时延D U21可以理解为上行突发在终端设备与接入网设备之间的空口时延,包括从时间T U1.3到时间T U2.2的时长,例如,图3至图6的D U21对应的时长。
时间T U2.2是上行突发中最后一个到达DU的MAC层的数据包(例如,图3的数据包1、或,图4的数据包4.2,或,图5的数据包3、图4的数据包4)的到达时间。
在上行突发的数据包在终端设备的RLC层被分段的场景中,若一个完整的数据包在终端设备的RLC层被分段,且该完整的数据包的某段数据包最后到达接入网设备的MAC层,则,本申请实施例所说的上行突发中最后一个到达接入网设备的MAC层的数据包是该完整的数据包中的某段数据包。例如,在图4所示的场景中,最后一个到达接入网设备的MAC层的数据包为数据包4.2。
时延D U22可以理解为DU处理数据包的时延,包括从时间T U2.2到时间T U2.3的时长,例如,图3至图6中的D U22对应的时长。
在一示例中,时间T U2.3是上行突发中最后一个从DU的RLC层发送的数据包(例如,图3、图4或图6的数据包4、或,图5的数据包3)的发送时间。
在另一示例中,时间T U2.3也可以是上行突发中最后一个从DU的F1-U接口的通用分组无线系统隧道协议((general packet radio system,GPRS)tunneling protocol,GTP)隧道出口发送的数据包的发送时间。
应理解,在上行突发的数据包在终端设备的RLC层被分段的场景中,在上行突发到达接入网设备的RLC层后,对于之前被分段的数据包(即,RLC SDU),RLC层将被分段的数据包接收完毕且对其进行重组,以恢复出原来的数据包(即,RLC SDU),并将恢复完整的数据包递交至PDCP层。所以,无论上行突发的数据包是否被分段,上行突发中最后一个从接入网设备的RLC层发送的数据包也是恢复后的数据包。如图4所示,接入网设备将数据包4.1和数据包4.2在RLC层重组为数据包4后,才向PDCP层递交。
时延D U23可以理解为数据包在DU与CU间传输的时延,包括从时间T U2.3到时间T U2.4的时长,例如,图3至图6中的D U23对应的时长。
在一示例中,时间T U2.4是上行突发中最后一个到达CU的PDCP层的数据包(例如,图3、图4或图6的数据包4、或,图5的数据包3)的到达时间。
在另一示例中,时间T U2.4也可以是上行突发中最后一个到达CU的F1-U接口的隧道入口的数据包的到达时间。
时延D U24可以理解为CU处理数据包的时延,包括从时间T U2.4到时间T U2.1的时长,例如,图3至图6中的D U24对应的时长。
情况2
上行时延D U-UE-基站包括上行时延D U2,不涉及上行突发在终端设备的各个协议层递交的时延。关于上行时延D U2的具体描述可参考上文情况1的相关描述,不再赘述。
二、上行时延D U-基站-UPF
上行时延D U-基站-UPF是上行突发中最后一个从接入网设备发送的数据包(例如,图3至图6的数据包4)在接入网设备和核心网设备之间的时延。应理解,上行时延D U-基站-UP是一个包粒度的时延。
在一些实施例中,上行时延D U-基站-UPF包括从时间T U2.6到时间T U3的时长。
时间T U2.6是上行突发中最后一个从接入网设备发送的数据包的发送时间。
在一示例中,时间T U2.6可以是上行突发中最后一个从接入网设备与核心网设备之间的接口(例如,N3接口)的GTP隧道出口发送的数据包的发送时间。
在另一示例中,时间T U2.6可以是上行突发中最后一个从接入网设备的SDAP层发送的数据包的发送时间。应理解,该发送时间表示的是数据包从接入网设备的SDAP层向核心网设备发送的发送时间。例如,图3至图6所示时间T U2.6即为数据包4从SDAP层发送的发送时间。
由于数据在SDAP层的时间很短,可以忽略,所以,时间T U2.6还可以是以下任一个:
在一示例中,时间T U2.6可以是上行突发中最后一个从接入网设备的PDCP层发送的发送时间。
在4G中,时间T U2.6是上行突发中最后一个从接入网设备的PDCP层发送的数据包的发送时间。
时间T U3可以是上行突发中最后一个到达核心网设备的数据包(例如,数据包4)的到达时间。
在一示例中,时间T U3可以是上行突发中最后一个到达核心网设备和接入网设备之间的接口(例如,N3接口)的GTP隧道入口的到达时间。
三、上行时延D U-UE-UPF
上行时延D U-UE-UPF表示上行突发在终端设备与核心网设备之间的时延,包括上行时延 U-UE-基站和上行时延D U-基站-UPF,关于上行时延 U-UE-基站和上行时延D U-基站-UPF的具体描述可参考上文的相关描述,不再赘述。
下面,以上述定义的上行突发的各个时延,结合图7至图11,对本申请实施例的下行传输的突发监测的方法做详细说明。
图7是本申请实施例提供的上行传输的突发监测的方法100的示意性流程图。
在S110中,核心网设备向接入网设备发送时延监测请求,该时延监测请求用于指示对周期性的突发进行时延监测。
本申请实施例的上行突发是周期性的,该时延监测请求用于指示对某一个或多个周期中每个周期的上行突发进行时延监测,以确定周期性的上行突发在终端设备与接入网设备之间传输的时延。
应理解,该时延监测请求用于指示对周期性的上行突发在终端设备与接入网设备之间传输的时延进行报告。
时延监测请求可以是单独的一个信息,也可以是携带在其他信息的内容,本申请实施例不做任何限定。
示例性地,时延监测请求可以是携带在下行(downlink,DL)协议数据单元(protocol data unit,PDU)会话信息(SESSION INFORMATION)中的字段。
在S120中,该接入网设备响应于该时延监测请求,确定上行突发在终端设备和接入网设备之间的上行时延,其中,该上行突发在该终端设备和该接入网设备之间的上行时延包括第一上行时延,该第一上行时延包括从第一时间到第二时间的时长,该第一时间是该上行突发中第一个到达该终端设备的媒体访问控制MAC层的数据包的授权时间,该第二时间是该上行突发中最后一个从该接入网设备的分组数据汇聚协议PDCP层发送的数据包的发送时间。
也就是说,接入网设备接收到时延监测请求,确定上行突发在终端设备和接入网设备之间的上行时延。由于接入网设备也可以根据网络管理系统,例如操作与维护管理(OAM)系统的配置策略,或者根据接入网设备本地已存储的(例如设备的出厂配置,该出厂配置可升级)配置策略等等方式启动上述时延监测,故而上述S110是可选的。相应地,在S120中,该接入网设备根据网络管理系统或本地存储的配置策略,确定上行时延。
在该实施例中,第一时间可以理解为上行突发在终端设备和接入网设备之间的起始时间,第二时间可以理解为上行突发在终端设备和接入网设备之间的结束时间。
其中,上行突发在终端设备和接入网设备之间的上行时延即为上文描述的上行时延D U-UE-基站,第一上行时延为上文的时延D U2,第一时间为上文的时间T U1.3,第二时间为上文的时间T U2.1。关于上行时延D U-UE-基站、时延D U2、时间T U1.3、时间T U2.1的具体描述可参考上文的相关描述,不再赘述。
在一些实施例中,终端设备可以根据上行突发的突发编号确定上行突发中第一个到达终端设备的MAC层的数据包。
示例性地,终端设备可以根据上行突发的突发编号的变化来确定上行突发中第一个到达终端设备的MAC层的数据包。例如,终端设备的MAC层先接收完突发编号为1的上行突发的数据包,后续接收到突发编号为2的上行突发的数据包,由于突发编号已经由1变为2,意味着突发编号为1的上行突发已经接收完,那么,终端设备的MAC层第一次接收到突发编号为2的上行突发的数据包即为第一个到达终端设备的MAC层的数据包。
在另一些实施例中,终端设备可以根据上行突发所属的周期确定上行突发中第一个到达终端设备的MAC层的数据包。
示例性地,终端设备可以自一个周期的起始时间开始监测,在该周期内终端设备的MAC层接收到的第一个数据包即为在该周期内传输的上行突发的第一个数据包。
在一些实施例中,接入网设备可以根据上行突发所属的周期确定上行突发中最后一个从接入网设备的PDCP层发送的数据包。
示例性地,接入网设备可以自一个周期的起始时间开始监测,在该周期内从PDCP层发送的最后一个数据包即为在该周期内传输的上行突发中最后一个从接入网设备的PDCP层发送的数据包。
本申请实施例提供的突发监测的方法,提供了监测上行突发的时延的方法,接入网设备基于核心网设备发送的针对上行突发的时延监测请求,确定该上行时延,其中,该上行时延包括从第一时间到第二时间的第一上行时延,该第一时间为该上行突发中第一个到达终端设备的MAC层的数据包的授权时间,该第二时间是该上行突发中最后一个从该接入网设备的PDCP层发送的数据包的发送时间。这样,实现了接入网设备监测上行突发在终端设备和接入网设备之间的上行时延的过程,从而,接入网设备可以基于针对上行突发的上行时延可以更为精确地评估数据的传输性能,以提高用户体验。
在一些实施例中,该上行突发在该终端设备和该接入网设备之间的上行时延还包括第四上行时延,该第四上行时延包括从第四时间到第五时间的时长,或,该第四上行时延包括从第四时间到该第一时间的时长,该第四时间是该上行突发中第一个到达该终端设备的PDCP层的数据包的到达时间,该第五时间是该上行中突发中第一个到达所述终端设备的MAC层的数据包的到达时间。
在该实施例中,第四时间可以理解为上行突发在终端设备和接入网设备之间的起始时间。
其中,第四上行时延即为上文的上行时延D U1,第四时间即为上文的时间T U1.1,第五时间即为上文的时间T U1.2,第一时间为上文的时间T U1.3。关于上行时延D U1、时间T U1.1、时间T U1.2、时间T U1.3的具体描述可参考上文的相关描述,不再赘述。
在一些实施例中,终端设备可以统计多个上行突发的第四上行时延,得到多个第四上行时延的平均值,将该平均值可以作为上行突发的第四上行时延。其中,多个上行突发的周期长度相同。
在一些实施例中,终端设备可以根据上行突发的突发编号确定上行突发中第一个到达终端设备的PDCP层的数据包,具体描述可参考上文关于终端设备根据上行突发的突发编号确定上行突发中第一个到达终端设备的MAC层的数据包的相关描述,不再赘述。
在另一些实施例中,终端设备可以根据上行突发所属的周期确定上行突发中第一个到达终端设备的PDCP层的数据包,具体描述可参考上文关于终端设备根据上行突发所属的周期确定上行突发中第一个到达终端设备的MAC层的数据包的相关描述,不再赘述。
在一些实施例中,终端设备向接入网设备发送第四上行时延;
接入网设备接收该第四上行时延;
接入网设备确定第一上行时延,且根据该第四上行时延和该第一上行时延确定上行突发在终端设备和接入网设备的上行时延。
上行突发在终端设备和接入网设备之间的上行时延包括:第一上行时延和第四上行时延。简单来说,接入网设备将两个时延相加即为上行突发在终端设备和接入网设备之间的上行时延。
本申请实施例提供的突发监测的方法,上行突发在终端设备与接入网设备之间的上行时延还包括上行突发在终端设备的各个协议层递交的时延,可以更为准确地监测上行突发的上行时延,从而,基于针对上行突发的上行时延可以更为精确地评估数据的传输性能,以进一步提高用户体验。
本申请实施例提供了两种监测上行时延的方法(记为方式1和方式2)。方式1主要是分段统计上行突发在终端设备和接入网设备之间的上行时延,以得到上行突发在终端设备与接入网设备的上行时延,可适用于在接入网设备的DU和CU分离的场景中。方式2主要是基于上行突发的第一时间和第二时间确定上行突发在终端设备与接入网设备的上行时延,该方式2不限于DU与CU分离的场景,也可以应用于DU和CU不分离的场景。
以下,分别基于方式1和方式2,对监测上行突发的上行时延的方法做详细说明,此外。
方式1
在一些实施例中,接入网设备主要分段统计两个时延,即,第二上行时延和第三上行时延。
即,第一上行时延包括第二上行时延和第三上行时延,其中,该第二上行时延包括从所述第一时间到第三时间的时长,该第三上行时延包括从该第三时间到该第二时间的时长,该第三时间是该上行突发中最后一个从该接入网设备的RLC层向该接入网设备的PDCP层发送的数据包的发送时间。
其中,第一时间是上行突发中第一个到达终端设备的MAC层的数据包的到达时间,即为上文的时间T U1.3,第二时间是上行突发中最后一个从接入网设备的PDCP层发送的数据包的发送时间,即为上文的时间T U2.1,第五时间即为上文的时间T U2.3。关于各个时间的具体描述可参考上文的相关描述,不再赘述。
在DU与CU分离的场景中,具体地,第二时间是上行突发中最后一个从DU的PDCP层发送的数据包的发送时间,第三时间是该上行突发中最后一个从CU的RLC层向DU的PDCP层发送的数据包的发送时间。
第二上行时延包括上文的时延D U21和时延D U22,第三上行时延包括上文的时延D U23和时延D U24。关于各个时延的具体描述可参考上文的相关描述,不再赘述。
在一些实施例中,接入网设备可以根据上行突发所属的周期确定上行突发中最后一个从接入网设备的RLC层向PDCP层发送的的数据包。具体描述可参考上文关于接入网设备根据上行突发所属的周期确定上行突发中最后一个从接入网设备的PDCP层发送的数据包的相关描述,不再赘述。
在第一种情况中,上行突发在终端设备与接入网设备之间的上行时延包括第一上行时延和第四上行时延。
基于此,在一些实施例中,该接入网设备响应于该时延监测请求,确定上行突发在终端设备和该接入网设备之间的上行时延,包括:
该接入网设备响应于该时延监测请求,确定该第二上行时延和该第三上行时延;
该接入网设备确定该第四上行时延;
该接入网设备根据该第二上行时延、该第三上行时延和该第四上行时延,确定所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
在一示例中,接入网设备接收来自终端设备发送的第四上行时延以确定第四上行时延,第四下行时延为上文的下行时延D U1,具体描述可参考上文的相关描述,不再赘述。
在一些实施例中,在DU和CU分离的场景中,监测上行突发的上行时延的方法可以如下:
该DU响应于时延监测请求,确定第二上行时延;
DU向该CU发送该第二上行时延;
CU确定第四上行时延;
CU响应于该时延监测请求,确定该第三上行时延;
CU根据该第二上行时延、该第三上行时延和该第四上行时延,确定该上行突发在该终端设备和该接入网设备之间的上行时延。
在一示例中,终端设备向CU发送第四上行时延,从而,CU确定该第四上行时延。
在一示例中,DU可以根据第一时间和第三时间确定第二上行时延,即,DU先确定第一时间和第三时间,再确定第二上行时延。
在另一示例中,DU可以根据时延D U21和时延D U22确定第二上行时延,即,DU先确定时延D U21和时延D U22,再确定第二上行时延。
在一示例中,CU可以根据第三时间和第二时间确定第三上行时延,即,CU先确定第三时间和第一时间,再确定第三上行时延。
在另一示例中,CU可以根据时延D U23和时延D U24确定第三上行时延,即,DU先确 定时延D U23和时延D U24,再确定第三上行时延。
在CU的CU-UP和CU-CP分离的场景中,示例性地,由CU-UP确定第三上行时延,以及,根据该第二上行时延、该第三上行时延和该第四上行时延,确定该上行突发在该终端设备和该接入网设备之间的上行时延。
本申请实施例提供的突发监测的方法,支持接入网设备的DU和CU分离的场景,由DU向CU上报上行突发在DU与终端设备的第二上行时延,由CU基于该第二上行时延、CU确定的由于上行突发在CU与DU之间传输以及CU处理上行突发而产生的第三上行时延、CU得到的上行突发在终端设备由于递交数据产生的第四上行时延,确定了上行突发在终端设备和接入网设备的上行时延。也就是说,通过DU和CU分段统计与自己相关的时延,可以实现在DU与CU分离场景中监测上行突发的上行时延。
在第二种情况中,上行突发在终端设备与接入网设备之间的上行时延包括第一上行时延,不包括第四上行时延。
基于此,在一些实施例中,该接入网设备响应于该时延监测请求,确定上行突发在终端设备和该接入网设备之间的上行时延,包括:
该接入网设备响应于该时延监测请求,确定该第二上行时延和该第三上行时延;
该接入网设备根据该第二上行时延和该第三上行时延,确定所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
在一些实施例中,在DU和CU分离的场景中,监测上行突发的上行时延的方法可以如下:
DU响应于该时延监测请求,确定该第二上行时延,;
DU向CU发送该第二上行时延;
CU响应于该时延监测请求,确定该第三上行时延;
CU根据该第三上行时延和该第四上行时延,确定该上行突发在该终端设备和该接入网设备之间的上行时延。
在CU的CU-UP和CU-CP分离的场景中,示例性地,由CU-UP确定第三上行时延,以及,根据该第二上行时延和该第三上行时延,确定该上行突发在该终端设备和该接入网设备之间的上行时延。
本申请实施例提供的突发监测的方法,支持接入网设备的DU和CU分离的场景,由DU向CU上报上行突发在DU与终端设备的第二上行时延,由CU基于该第二上行时延、CU确定的由于上行突发在CU与DU之间传输以及CU处理上行突发而产生的第三上行时延,确定了上行突发在终端设备和接入网设备的上行时延。也就是说,通过DU和CU分段统计与自己相关的时延,可以满足DU与CU分离场景中监测上行突发的上行时延。
方式2
在第一种情况中,上行突发在终端设备与接入网设备之间的上行时延包括第一上行时延和第四上行时延。
基于此,在一些实施例中,该接入网设备响应于该时延监测请求,确定上行突发在终端设备和该接入网设备之间的上行时延,包括:
接入网设备响应于时延监测请求,确定该第一时间和该第二时间;
接入网设备确定该第四上行时延;
接入网设备根据该第四上行时延、该第一时间和该第二时间,确定上行突发在终端设备和接入网设备之间的上行时延。
在该实施例中,第一时间为上行突发中第一个到达终端设备的MAC层的数据包的到达时间,即为上文的时间T U1.3。第二时间为上行突发中最后一个从接入网设备的PDCP层发送的数据包的发送时间,在DU与CU分离的场景中,第二时间是上行突发中最后一个从DU的PDCP层发送的数据包的发送时间,即为上文的时间T U2.1。关于各个时间的具体描述可参考上文的相关描述,不再赘述。其中,从第一时间到第二时间的时长为本申请实施例的第一上行时延。
接入网设备在调度数据的时候,由接入网设备向终端设备分配上行授权(UL grant),该UL grant中携带有数据包的授权时间,终端设备通过UL grant发送数据包。即使接入网设备通过调度重传才接收到数据包,接入网设备可仍基于数据包初次传输的UL Grant的时间得到数据包的授权时间。
所以,在一示例中,接入网设备可以根据UL grant确定上行突发中的第一个数据包的授权时间。
在一些实施例中,在DU与CU分离的场景中,该接入网设备响应于该时延监测请求,确定上行突发在终端设备和该接入网设备之间的上行时延,包括:
DU响应于该时延监测请求,确定该第一时间;
DU向CU发送该第一时间;
CU确定该第四上行时延;
CU响应于该时延监测请求,确定该第二时间;
CU根据该第四上行时延、该第一时间和该第二时间,确定上行突发在终端设备和接入网设备之间的上行时延。
在一示例中,终端设备向CU发送第四上行时延,从而,CU确定该第四上行时延。
在CU的CU-UP和CU-CP分离的场景中,示例性地,由CU-UP根据该第四上行时延、第一时间和第二时间确定该上行突发在该终端设备和该接入网设备之间的上行时延。
本申请实施例提供的突发监测的方法,支持接入网设备的DU和CU分离的场景,由DU向CU上报上行突发在空口传输的第一时间(即,起始时间),由CU基于该第一时间、CU确定的上行突发在CU的第二时间(即,结束时间)、CU得到的上行突发在终端设备由于递交数据产生的第四上行时延,确定上行突发在终端设备和接入网设备的上行时延。这样,可以实现在DU与CU分离场景中监测上行突发的上行时延的过程。此外,相比于DU和CU分段统计时延的方式,该方法可以得到更精确的上行突发的上行时延。
在第二种情况中,上行突发在终端设备与接入网设备之间的上行时延包括第一上行时延,不包括第四上行时延。
基于此,在一些实施例中,该接入网设备响应于该时延监测请求,确定上行突发在终端设备和该接入网设备之间的上行时延,包括:
接入网设备该时延监测请求,确定该第一时间和该第二时间;
接入网设备根据该第一时间和该第二时间,确定上行突发在终端设备和接入网设备之间的上行时延。
在一些实施例中,在DU与CU分离的场景中,该接入网设备响应于该时延监测请求, 确定上行突发在终端设备和该接入网设备之间的上行时延,包括:
DU响应于该时延监测请求,确定该第一时间;
DU向CU发送该第一时间;
CU确定该第二时间;
CU根据该第一时间和该第二时间,确定上行突发在终端设备和接入网设备之间的上行时延。
在CU的CU-UP和CU-CP分离的场景中,示例性地,由CU-UP确定第二时间,以及,根据该第二时间和接收到的第一时间确定该上行突发在该终端设备和该接入网设备之间的上行时延。
本申请实施例提供的突发监测的方法,支持接入网设备的DU和CU分离的场景,由DU向CU上报上行突发在空口传输的第一时间(即,起始时间),由CU基于该第一时间和CU确定的上行突发在CU的第二时间(即,结束时间)确定上行突发在终端设备和接入网设备的上行时延。这样,可以满足DU与CU分离场景中监测上行突发的上行时延。此外,相比于DU和CU分段统计时延的方式,该方法可以得到更精确的上行突发的上行时延。
在一些实施例中,基于上述得到的上行突发在终端设备和接入网设备之间的上行时延,还可以用于确定上行突发在终端设备和核心网设备之间的上行时延。基于此,本申请实施例的上行传输的突发监测的方法100还包括步骤S130、S140和S150。
在S130中,接入网设备向核心网设备发送响应信息,该响应信息是响应于该时延监测请求的信息,该响应信息包括上行突发在终端设备和该接入网设备之间的上行时延。对应地,核心网设备接收该响应信息。
响应信息可以是单独的一个信息,也可以是携带在其他信息的内容,本申请实施例不做任何限定。
示例性地,响应信息可以是携带在上行(uplink,UL)PDU SESSION INFORMATION中的字段。
在S140中,核心网设备确定该上行突发中最后一个从该接入网设备的PDCP层发送的数据包在该接入网设备和该核心网设备之间的第五上行时延。
其中,第五上行时延即为上文的上行时延D U-基站-UPF,关于上行时延D U-基站-UPF的具体描述参考上文的相关描述,不再赘述。
在一示例中,接入网设备可以根据上行突发中最后一个从接入网设备的PDCP层发送的数据包的发送时间(即,第二时间)、该最后一个数据包到达核心网设备的数据包的到达时间,确定第五上行时延。
应理解,上行突发中最后一个从接入网设备的PDCP层发送的数据包与上行突发中最后一个到达核心网设备的数据包是同一个数据包,该第五上行时延表示的是一个数据包的时延。因此,该第五上行时延也可以基于多个数据包(不限于上行数据包或下行数据包)在接入网设备和核心网设备之间传输的平均值确定,或者,第五上行时延也可以基于任一个数据包在接入网设备和核心网设备之间传输的时延得到。
在S150中,该核心网设备根据该第五上行时延和该上行突发在该终端设备和该接入网设备之间的上行时延,确定该上行突发在该终端设备和该核心网设备之间的上行时延。
其中,上行突发在终端设备和核心网设备之间的上行时延包括:第五上行时延和上行突发在终端设备和接入网设备的上行时延。简单来说,核心网设备将两个时延相加即为上行突发在终端设备和核心网设备之间的上行时延。
上行突发在该终端设备和该核心网设备之间的上行时延即为上文的上行时延D U-UE-UPF,具体描述可参考上文的相关描述,不再赘述。
本申请实施例提供的突发监测的方法,提供了监测上行突发的时延的方法,核心网设备接收接入网设备发送的针对上行突发在终端设备和接入网设备之间的上行时延,基于该上行时延和核心网设备自己确定的该上行突发在接入网设备和核心网设备的第五上行时延,最终确定该上行突发在终端设备和核心网设备之间的上行时延。这样,实现了监测上行突发在终端设备和核心网设备之间的上行时延的过程,从而,核心网设备可以基于针对上行突发的上行时延可以更为精确地评估数据的传输性能,以提高用户体验。
作为示例,以下,结合图8和图9,详细描述在DU和CU分离的场景下进行下行传输的突发监测的方法。图8和图9所示的方法涉及的网元包括:终端设备、核心网设备的SMF、UPF,接入网设备的CU-CP、CU-UP。此外,作为一个具体的实施例,以上行帧作为上行突发的一例、以UE作为终端设备的一例对图8和图9所示的方法做说明。示例性地,上行帧可以为视频帧。
图8是本申请实施例提供的在接入网设备的DU和CU分离的场景中进行上行传输的突发监测的方法200的示意性流程图。该方法200对应方式1的实施例。
S211、SMF向CU-CP发送PDU会话资源设置请求(PDU SESSION RESOURCE SETUP REQUEST),其中,PDU SESSION RESOURCE SETUP REQUEST中携带Qos流标识(QoS flow identifier,QFI)和帧服务质量监测请求。
其中,帧服务质量监测请求用于指示监测的传输方向,该传输方向包括上行、下行。CU-CP收到该帧服务质量监测请求后,可以使DU和CU-UP能针对QFI的数据无线承载(data radio cearer,DRB)进行帧服务质量监测功能,可以使得DU和CU-UP开启帧监测功能。
在该步骤中,帧服务质量监测请求指示的监测帧的传输方向为上行传输。
应理解,在以突发作为描述对象时,帧服务质量监测请求也可以称为突发服务质量监测请求,两者描述可以替换。
S212、CU-CP向CU-UP发送承载上下文设置请求(BEARER CONTEXT SETUP REQUEST),BEARER CONTEXT SETUP REQUEST中携带QFI和帧服务质量监测请求。
相应地,CU-UP收到CU-CP发送的BEARER CONTEXT SETUP REQUEST,CU-UP可以针对QFI的DRB进行帧服务质量监测功能。
应理解,在以突发作为描述对象时,帧服务质量监测功能也可以称为突发服务质量监测功能,两者描述可以替换。
S213、CU-CP向DU发送UE上下文设置请求(UE CONTEXT SETUP REQUEST),UE CONTEXT SETUP REQUEST中携带QFI和帧服务质量监测请求。
相应地,DU从CU-CP接收到UE CONTEXT SETUP REQUEST,获得QFI和对应的帧服务质量监测请求,DU可以针对该QFI的DRB进行帧服务质量监测功能。
S214、CU-CP向UE发送测量配置信息(measureconfig),其中,measureconfig中包括指示UE上报DRB的上行帧中第一个到达PDCP层的数据包在终端设备的递交时延,上行帧中第一个到达PDCP层的数据包在终端设备的递交时延为上文的第四上行时延,即,上行时延D U1
S215、UE统计DRB的上行帧的第四上行时延。UE向CU-CP发送测量报告,该测量报告中携带DRB的标识(例如,ID)和对应的上行帧的第四上行时延D U1
对应地,CU-CP接收该测量报告,且获取该DRB对应的上行帧的第四上行时延D U1
S216、CU-CP向CU-UP发送GNB-CU-CP测量结果(GNB-CU-CP MEASUREMENT RESULTS INFORMATION),GNB-CU-CP MEASUREMENT RESULTS INFORMATION中携带DRB标识、该DRB标识对应的上行帧的第四上行时延D U1
S217、UPF向CU-UP发送DL PDU会话信息(DL PDU SESSION INFORMATION),DL PDU SESSION INFORMATION中携带QoS监视帧(Qos monitoring frame,QMF)。对应地,CU-UP接收DL PDU SESSION INFORMATION,获得QMF。
其中,QMF可以理解为方法100中的时延监测请求。
表1所示为DL PDU SESSION INFORMATION的一种帧格式,其中,DL PDU SESSION INFORMATION中携带Qos监视帧请求(QoS Monitoring frame,QMF)。DL PDU SESSION INFORMATION中还可以携带Qos监视包请求(QoS monitoring packet,QMP),QMP用于指示指示接入网络设备进行一个数据包的Qos监测。一般来说,DL PDU SESSION INFORMATION存在QMP和QMF中的一个。
此外,示例性地,DL PDU SESSION INFORMATION还可以携带:寻呼策略存在(paging policy presence,PPP)、反向QoS指示(reflective QoS indicator,RQI)、寻呼策略指示(paging policy indicator,PPI)。
表1
Figure PCTCN2021081513-appb-000001
应理解,在以突发作为描述对象时,QoS监视帧也可以称为QoS监视突发,两者描述可以替换。
S218、CU-UP向DU发送DL用户数据(DL USER DATA)((PDU Type 0),DL USER DATA中携带QMF。
对应地,DU接收DL USER DATA,获得QMF。
S219、DU根据在S218中接收到的QMF,确定上行帧终端设备与DU之间的第二上行时延。
第二上行时延=时延D U21和时延D U22,具体关于时延的描述参考上文的相关描述,不再赘述。
S220、DU向CU-UP发送UL辅助信息数据(UL ASSISTANCE INFORMATION DATA)(PDU Type 2),UL ASSISTANCE INFORMATION DATA中携带终端设备与DU之间的第二上行时延。
对应地,CU-UP接收UL ASSISTANCE INFORMATION DATA,获得第二上行时延。
表2所示为UL ASSISTANCE INFORMATION DATA的一种帧格式。如表2所示,DU的上行帧时延结果((UL frame,ULF)Delay DU Result)包括上行帧在终端设备与DU之间的第二上行时延,由0或4位字节数表示,上行帧时延指示(ULF Delay Ind.)表示UL ASSISTANCE INFORMATION DATA中是否存在ULF Delay DU Result,由1位字节数表示。示例性地,在ULF Delay Ind.的取值为1时,则表示UL ASSISTANCE INFORMATION DATA中存在ULF Delay DU Result,在ULF Delay Ind.的取值为0时,则表示UL ASSISTANCE INFORMATION DATA中不存在ULF Delay DU Result。
应理解,在以突发作为描述对象时,上行帧时延结果也可以称为上行突发时延结果,上行帧时延标志位也可以称为上行突发时延标志位,两者描述可以替换。
表2
Figure PCTCN2021081513-appb-000002
Figure PCTCN2021081513-appb-000003
S221、CU-UP根据在S217中接收到的QMF,确定上行帧在终端设备与CU-UP之间的上行时延,即,确定了上行帧在终端设备与接入网设备之间的上行时延D U-UE-基站
其中,该上行时延包括第二上行时延、第三上行时延和第四上行时延,上文的第一上行时延=第二上行时延+第三上行时延。
也就是说,CU-UP根据第二上行时延、第三上行时延和第四上行时延,确定终端设备与CU-UP之间的上行时延。
第四上行时延是S216中由CU-CP发送给CU-UP的GNB-CU-CP MEASUREMENT RESULTS INFORMATION中携带的第二上行时延。
第二上行时延是S220中由DU向CU-UP发送的UL ASSISTANCE INFORMATION DATA中携带的第三上行时延。
第三上行时延=时延D U23+时延D U24,关于时延的具体描述可参考上文的相关描述,不再赘述。
S222、CU-UP向UPF发送UL PDU会话信息(UL PDU SESSION INFORMATION),UL PDU SESSION INFORMATION中携带终端设备与CU-UP之间的上行时延D U-UE-基站
对应地,UPF接收UL PDU SESSION INFORMATION。
可以理解,UL PDU SESSION INFORMATION中携带有在响应于在S217中发送的QMF的响应信息,该响应信息包括终端设备与CU-UP之间的上行时延D U-UE-基站
表3所示为UL PDU SESSION INFORMATION的一种帧格式。其中,上行帧时延结果(ULF Delay Result)包括上行帧在终端设备与CU-UP之间的上行时延,ULF Delay Ind.表示UL PDU SESSION INFORMATION中是否存在ULF Delay Result,由1位字节数表示。示例性地,在ULF Delay Ind.的取值为1时,则表示UL PDU SESSION INFORMATION中存在ULF Delay Result,在ULF Delay Ind.的取值为0时,则表示UL PDU SESSION INFORMATION中不存在ULF Delay Result。
表3
Figure PCTCN2021081513-appb-000004
S223、UPF确定上行帧在终端设备与UPF(即,核心网设备)之间的上行时延。
其中,该上行时延包括上行帧在UPF和CU-UP的第五上行时延D U-基站-UPF、上行帧在终端设备和CU-UP的上行时延D U-UE-基站
也就是说,UPF根据第五上行时延、上行帧在终端设备和CU-UP的上行时延,确定上行帧在终端设备与UPF之间的上行时延D U-UE-UPF
上述实施例确定的上行时延包括第四上行时延D U1,在上行时延不包括第四上行时延D U1的情况中,作为DU和CU分离的场景中的另一个具体的实施例,可以参考图8的实施例执行。不过,由于不需要确定第四上行时延D U1,监测上行时延的方法略有不同:在该实施例中,省略S214至S216,在S219至S223中省略所有关于第四上行时延D U1的内容即可。
图9是本申请实施例提供的在接入网设备的DU和CU分离的场景中进行上行传输的突发监测的方法300的示意性流程图。该方法300对应方式2的实施例。
在该方法300中,各个网元执行S311至S318的过程与方法200中各个网元执行S211至S218的过程相同,这里不再赘述,下面,描述S319至S323的过程。
S319、DU根据在S318中接收到的QMF,确定第一时间,第一时间是上行帧中第一个到达终端设备的MAC层的数据包的授权时间。
第一时间即为上文的时间T U1.3,具体描述参考上文的相关描述,不再赘述。
S320、DU向CU-UP发送UL ASSISTANCE INFORMATION DATA(PDU Type 2),UL ASSISTANCE INFORMATION DATA中携带第一时间。
表4所示为ASSISTANCE INFORMATION DATA的一种帧格式。如表4所示,DU的上行帧时间戳结果((UL frame,ULF)Timestamp DU Result)包括上行帧中的第一个数据 包的授权时间(即,第一时间),上行帧时延指示(ULF Delay Ind.)表示ASSISTANCE INFORMATION DATA中是否存在ULF Timestamp DU Result。示例性地,在ULF Delay Ind.的取值为1时,则表示ASSISTANCE INFORMATION DATA中存在ULF Timestamp DU Result,在ULF Delay Ind.的取值为0时,则表示不存在ULF Timestamp DU Result。
应理解,在以突发作为描述对象时,上行帧时间戳结果也可以称为上行突发时间戳结果,两者描述可以替换。
表4
Figure PCTCN2021081513-appb-000005
S321、CU-UP确定上行帧在终端设备与CU-UP之间的上行时延,从而,确定了上行帧在终端设备与接入网设备之间的上行时延D U-UE-基站
其中,该上行时延包括上行帧在终端设备递交的第四上行时延、从第一时间到第二时间的第一上行时延,第二时间是上行帧中最后一个从CU的PDCP层发送的数据包的发送时间。
也就是说,CU-UP根据第四上行时延、第一时间和第二时间,确定终端设备与CU-UP(即,核心网设备)之间的上行时延D U-UE-基站
其中,第四上行时延是S316中由CU-CP发送给CU-UP的GNB-CU-CP MEASUREMENT RESULTS INFORMATION中携带的第四上行时延。
S322、CU-UP向UPF发送UL PDU SESSION INFORMATION,UL PDU SESSION INFORMATION中携带终端设备与CU-UP之间的上行时延D U-UE-基站
关于UL PDU SESSION INFORMATION中携带上行时延D U-UE-基站的形式可参考方法200中表3所示的UL PDU SESSION INFORMATION,不再赘述。
S323、UPF确定上行帧在终端设备与UPF(即,核心网设备)之间的上行时延D U-UE-UPF
其中,各个网元执行S322至S323的过程与方法200中各个网元执行S222至S223的过程相同,这里不再赘述。
上述实施例确定的上行时延包括第四上行时延,在上行时延不包括第四上行时延的情况中,作为DU和CU分离的场景中的另一个具体的实施例,可以参考图9的实施例执行。不过,由于不需要确定第四上行时延,监测上行时延的方法略有不同:相比于情况1,在该情况中,省略S314至S316,在S321至S323中省略关于第四上行时延的内容即可。
本申请实施例还提供了一种突发监测的方法。该方法提供了核心网设备主要基于上行突发在终端设备和核心网设备之间的第一时间和结束时间来确定上行突发在终端设备与核心网设备之间的上行时延,相比于由各个网元分段统计时延的方式得到的上行时延更为精确。
图10是本申请实施例提供的上行传输的突发监测的方法400的示意性流程图。
在S410中,核心网设备向接入网设备发送时延监测请求,该时延监测请求用于指示对周期性的突发进行时延监测。
关于时延监测请求参考方法100中S110的相关描述,不再赘述。
在S420中,接入网设备响应于该时延监测请求,确定第一时间,该第一时间是上行突发中第一个到达终端设备的MAC层的数据包的授权时间。
接入网设备可以根据UL grant确定第一时间,具体描述可参考上文方式2中接入网设备确定第一时间的相关描述,不再赘述。
在S430中,接入网设备向核心网设备发送响应信息,该响应信息包括该第一时间。
响应信息可以是单独的一个信息,也可以是携带在其他信息的内容,本申请实施例不做任何限定。
示例性地,响应信息可以是携带在UL PDU SESSION INFORMATION帧中的字段。
在S440中,核心网设备确定该上行突发中最后一个到达该核心网设备的数据包的到达时间。
该到达时间可以理解为上行突发在终端设备和核心网设备之间的结束时间。
其中,该到达时间即为上文的时间T U3,具体描述参考上文的相关描述,不再赘述。
在S450中,核心网设备根据该第一时间和该到达时间,确定该上行突发在该终端设备和该核心网设备之间的上行时延。
上行突发在终端设备与核心网设备之间的上行时延即为上文的上行时延D U-UE-UPF,包括从第一时间至到达时间之间的时长。
本申请实施例提供的突发监测的方法,核心网设备通过接入网设备发送的上行突发中第一个到达MAC层的数据包的授权时间(即,第一时间)和上行突发最后一个到达核心网设备的到达时间,确定上行突发在终端设备和核心网设备的上行时延。这样,不仅实现 了监测上行突发在终端设备和核心网设备之间的上行时延的过程,而且,可以得到更精确的上行时延,从而,核心网设备可以基于针对上行突发的上行时延更为精确地评估数据的传输性能,以提高用户体验。
在一些实施例中,上行突发在终端设备与核心网设备之间的上行时延D U-UE-UPF还包括第四上行时延。基于此,该方法400还包括:
核心网设备接收来自终端设备的第四上行时延;
在S450中,具体地,核心网设备根据该第四上行时延、该第一时间和该到达时间,确定该上行突发在该终端设备和该核心网设备之间的上行时延。
其中,终端设备将第四上行时延通过接入网设备发送至核心网设备。
在一示例中,接入网设备发送的该响应信息中包括第一时间和该第四上行时延。
图11是本申请实施例提供的在DU和CU分离的场景中进行上行传输的突发监测的方法500的示意性流程图。该方法500是方法400的更具体的实施例。
图11所示的方法涉及的网元包括:终端设备、核心网设备的SMF、UPF,接入网设备的CU-CP、CU-UP。此外,作为一个具体的实施例,以上行帧作为上行突发的一例、以UE作为终端设备的一例对图11所示的方法做说明。示例性地,上行帧可以为视频帧。
在该方法500中,各个网元执行S511至S518的过程与方法200中各个网元执行S211至S218的过程相同,这里不再赘述,下面,描述S518至S522的过程。
519、DU根据在S518中接收到的QMF,确定第一时间,第一时间是上行帧中第一个到达终端设备的MAC层的数据包的授权时间。
S520、DU向CU-UP发送UL ASSISTANCE INFORMATION DATA(PDU Type 2),UL ASSISTANCE INFORMATION DATA中携带第一时间。
关于UL ASSISTANCE INFORMATION DATA中携带第一时间的形式可参考方法300中表4所示的UL ASSISTANCE INFORMATION DATA,不再赘述。
S521、CU-UP向UPF发送UL PDU SESSION INFORMATION,UL PDU SESSION INFORMATION中携带第一时间和第四上行时延。
其中,第四上行时延是S516中由CU-CP发送给CU-UP的GNB-CU-CP MEASUREMENT RESULTS INFORMATION中携带的第四上行时延。
可以理解,UL PDU SESSION INFORMATION中携带有在响应于在S517中发送的QMF的响应信息,该响应信息包括第一时间和第四上行时延。
表5所示为UL PDU SESSION INFORMATION的一种帧格式。其中,上行帧时间戳结果(ULF Timestamp Result)包括第一时间和第四上行时延,ULF Delay Ind.表示UL PDU SESSION INFORMATION中是否存在ULF Timestamp Result。其中,在ULF Delay Ind.的取值为1时,则表示UL PDU SESSION INFORMATION中存在ULF Timestamp Result,在ULF Delay Ind.的取值为0时,则表示不存在ULF Timestamp Result。
表5
Figure PCTCN2021081513-appb-000006
Figure PCTCN2021081513-appb-000007
S522、UPF根据第一时间、到达时间和第四上行时延,确定上行帧在终端设备与UPF(即,核心网设备)之间的上行时延D U-UE-UPF
其中,上行时延D U-UE-UPF包括该第四上行时延和从该第一时间至该到达时间的时长。
上述实施例确定的上行时延D U-UE-UPF包括第四上行时延,在上行时延D U-UE-UPF不包括第四上行时延的情况中,在S521中,CU-UP向UPF发送UL PDU SESSION INFORMATION,UL PDU SESSION INFORMATION中携带第一时间,在S522中,UPF根据该第一时间和该到达时间,确定上行帧在终端设备与UPF(即,核心网设备)之间的上行时延D U-UE-UPF
下行传输
以上,结合图3至图11,对上行突发的时延做了详细说明,以下,结合图12至图20,对下行突发的时延做详细说明。
为了便于理解下行突发的时延,结合图12至图15,对下行突发在4种场景中从接入网设备传输至终端设备的过程的做说明。
此外,以5G的协议架构、UPF作为核心网设备的一例、一个下行突发包括4个数据包为例进行说明,其中,4个数据包分别记为数据包1、数据包2、数据包3和数据包4。
需要说明的是,由于SDAP层和PHY没有缓存数据的功能,数据在SDAP层和PHY的时延很短,可以忽略不计,所以,在图12至图15中,未示出PHY层,不过,为了便于说明其他情况,图中示出了SDAP层。
图12所示的是下行突发在各个协议层按序递交的场景下传输的示意图。
参考图12,UPF将4个数据包发送至接入网设备的SDAP层,接入网设备按照从上至下的顺序,按序将4个数据包递交至接入网设备的MAC层。接入网设备将4个数据包发送给接入网设备,4个数据包从接入网设备的MAC层到达终端设备的MAC层,终端设备按照从下至上的顺序,按序将4个数据包递交至终端设备的SDAP层。
对于每个成功接收的数据包,终端设备从终端设备的MAC层向接入网设备的MAC层发送反馈信息,以表示终端设备成功接收数据包。示例性地,该反馈信息可以为正确应 答(Acknowledge,ACK)。只有接入网设备成功接收到反馈信息,这样,才表示该反馈信息对应的数据包被成功接收,数据包的下行传输完成。假设,终端设备成功接收了4个数据包,会向接入网设备的MAC层发送4个反馈信息,图12中仅示出了数据包4的反馈信息(例如,ACK),其余未示出。
图13所示的是下行突发在RLC层分段的场景下传输的示意图。假设,下行突发在各个协议层按序递交。
参考图13,UPF将4个数据包发送至接入网设备的SDAP层,接入网设备按照从上至下的顺序按序递交,将该4个数据包以RLC SDU的形式递交至RLC层后,接入网设备对下行突发的数据包进行分段。假设,接入网设备在RLC层将数据包4分为两段,记为数据包4.1、数据包4.2。接入网设备将数据包1、数据包2、数据包3、数据包4.1和数据包4.2以RLC PDU的形式从RLC层发送且按序递交至MAC层。接入网设备将这5个数据包发送给终端设备,该5个数据包从接入网设备的MAC层到达终端设备的MAC层。
假设,终端设备成功接收了该5个数据包,会向接入网设备的MAC层发送5个反馈信息,图13中仅示出了最后一个数据包4.2的反馈信息(例如,ACK),其余未示出。
在终端设备递交数据包的过程中,终端设备将该5个数据包从MAC层递交至RLC层,终端设备需要对之前分段的数据包4(即,RLC SDU)进行重组,以恢复之前被分段的数据包4。即,终端设备将数据包4.1和数据包4.2重组后恢复为原来的数据包4,这样,终端设备将该4个数据包从RLC层递交至终端设备的SDAP层。
图14所示的是下行突发在空口传输过程中乱序到达的场景下传输的示意图。
参考图14,UPF将4个数据包发送至接入网设备的SDAP层,接入网设备按照从上至下的顺序按序递交,将4个数据包递交至接入网设备的MAC层。接入网设备将4个数据包发送给终端设备,4个数据包从接入网设备的MAC层到达终端设备的MAC层,不过,在空口传输过程中,数据包发生了乱序到达的情况,即,数据包4早于数据包3到达终端设备的MAC层。
假设,终端设备成功接收了该4个数据包,会向接入网设备的MAC层发送4个反馈信息,图14中仅示出了最后一个数据包4的反馈信息(例如,ACK),其余未示出。
在终端设备递交数据包的过程中,终端设备将4个数据包按照数据包1、数据包2、数据包4和数据包3的顺序递交至PDCP层,在PDCP层配置了按序递交的情况下,无论4个数据包以哪种顺序到达PDCP层,终端设备都会将该4个数据包以原始的数据包1、数据包2、数据包3、数据包4的顺序从PDCP层发送至SDAP层。
需要说明的是,在PDCP层配置了乱序递交的情况下,终端设备会将4个数据包以时间顺序发送,即,先到达PDCP层的数据包先发送出去,后到达PDCP层的数据包后发送出去。在图14所示的场景中,终端设备会继续将4个数据包以数据包1、数据包2、数据包4、数据包3的顺序发送至SDAP。
图15所示的是上行突发在丢包且乱序到达的场景下传输的示意图。
参考图15,UPF将4个数据包发送至接入网设备的SDAP层,4个数据包到达接入网设备的SDAP层,接入网设备按照从上至下的顺序按序递交,将4个数据包递交至接入网设备的MAC层。接入网设备将4个数据包发送给终端设备,4个数据包从接入网设备的MAC层到达终端设备的MAC层,不过,在空口传输过程中,发生了丢包和乱序到达 的现象,数据包3未到达接入网设备的MAC层,且数据包4在早于数据包3应该到达的时间之前到达接入网设备的MAC层。
假设,终端设备成功接收了数据包1、数据2和数据包4,会向接入网设备的MAC层发送3个反馈信息,图15中仅示出了最后一个数据包4的反馈信息(例如,ACK),其余未示出。
在终端设备递交数据包的过程中,终端设备按照从下至上的顺序按序将收到的数据包1、数据包2和数据包4递交至PDCP层,在PDCP层配置了按序递交的情况下,即使PDCP层已经接收到数据包4,但仍然会等数据包3,在预设时长内未收到数据包3后,才会向SDAP层递交数据包4。
在本申请实施例中,将一个下行突发在终端设备与接入网设备之间的下行时延记为D D-UE-基站,将一个下行突发在终端设备与核心网设备之间的下行时延记为D D-UE-UPF,将一个下行突发在接入网设备与核心网设备之间的下行时延记为D D-基站-UPF
下面,结合图12至图15示意的场景,对上述3个时延做详细说明。
一、下行时延D D-基站-UPF
下行时延D D-基站-UPF表示下行突发中第一个从核心网设备发送的数据包(例如,图12至图15所示的数据包1)在核心网设备和接入网设备之间的时延,例如,图12至图15所示的下行时延D D-基站-UPF对应的时长。应理解,下行时延D D-基站-UPF是一个包粒度的时延。
在一些实施例中,下行时延D D-基站-UPF包括从时间T D0到时间T D1.1的时长。
时间T D0是下行突发中第一个从核心网设备发送的数据包的发送时间,例如,图12至图15所示的下行时延D D-基站-UPF对应的时长的起始时间。
在一示例中,时间T D0可以是下行突发中第一个从核心网设备和接入网设备的接口(例如,N3接口)的GTP隧道出口发送的数据包的发送时间。
示例性地,实现中,可以根据下行突发的数据包从核心网设备的GTP隧道出口发送的数据包的发送时间的平均值确定时间T D0
时间T D1.1是下行突发中第一个到达接入网设备的数据包的到达时间。
在一示例中,时间T D1.1可以是下行突发中第一个到达接入网设备与核心网设备之间的接口(例如,N3接口)的GTP隧道入口的数据包的到达时间。
在另一示例中,时间T D1.1可以是下行突发中第一个到达接入网设备的SDAP层的数据包的到达时间。
由于数据在SDAP层的时间很短,可以忽略,所以,时间T D1.1还可以是以下任一个:
在一示例中,时间T D1.1可以是下行突发中第一个到达接入网设备的PDCP层的数据包的到达时间,例如,图12至图15所示的下行时延D D-基站-UPF对应的时长的结束时间。
在4G中,时间T D1.1可以是下行突发中第一个到达接入网设备的PDCP层发送的数据包的到达时间。
二、下行时延D D-UE-基站
本申请实施例的下行时延D D-UE-基站有两种可能的情况(情况1和情况2),以下,分情况描述下行时延D D-UE-基站
情况1
下行时延D D-UE-基站包括下行时延D D1和下行时延D D2
下行时延D D1可以理解为接入网设备从核心网设备接收到下行突发的时间到终端设备发送或接入网设备接收最后一个反馈信息的时间的时长。下行时延D D2可以理解为下行突发在终端设备的各个协议层递交的时延。
下面,对下行时延D D1和下行时延D D2做详细描述。
下行时延D D1
在一些实施例中,下行时延D D1包括从T D1.1到时间T D3的时长,例如,图12至图15的D D1对应的时长。
关于时间T D1.1的描述参考上文的相关描述,不再赘述。
时间T D3可以理解为终端设备成功接收下行突发的最后一个数据包的时间,因为反馈信息可以表示终端设备是否成功接收数据包,所以,本申请实施例采用终端设备发送或接入网设备接收最后一个反馈信息的时间表示时间T D3
在一示例中,时间T D3是到达接入网设备的MAC层的最后一个反馈信息的到达时间,该最后一个反馈信息用于指示终端设备成功接收下行突发的一个数据包。
在另一示例中,时间T D3是终端设备从终端设备的物理层发送最后一个反馈信息的发送时间。该示例的T D3是接入网设备配置的时间。
示例性地,接入网设备向UE调度传输下行数据包,为了接收HARQ反馈,接入网设备会可以向UE发送用于指示终端设备发送反馈信息的时间的指示信息。其中,该指示信息所指示的发送反馈信息的时间即为时间T D3
需要说明的是,接入网设备向UE调度传输的多个下行数据包的反馈资源可以是同一个,终端设备可将多个反馈信息通过在同一个反馈资源上同时发送。
本申请实施例的最后一个反馈信息对应的数据包表示的是下行突发中最后一个被终端设备成功接收的数据包,其中,下行突发中最后一个被终端设备成功接收的数据包可以是下行突发中的任一个数据包。例如,下行突发中最后一个被终端设备成功接收的数据包可以是下行突发中最后一个到达接入网设备的MAC层的数据包,下行突发中最后一个被终端设备成功接收的数据包也可以是下行突发的其他数据包,具体看终端设备对数据包的成功接收情况。
例如,4个数据包按照数据包1、数据包2、数据包3和数据包4的顺序到达终端设备,该4个数据包被终端设备一次性成功接收,终端设备可以依次发送该4个数据包的反馈信息。那么,在这种情况中,最后一个反馈信息对应的是最后一个到达终端设备的MAC层的数据包4。
再例如,4个数据包按照数据包1、数据包2、数据包3和数据包4的顺序到达终端设备,数据包1、数据包2和数据包4被终端设备一次性成功接收,但数据包3需要重传多次才能被终端设备成功接收,终端设备依次发送该3个数据包的反馈信息,后续在数据包3多次重传成功后发送反馈信息。那么,在这种情况中,最后一个反馈信息对应的是先于数据包4到达MAC层的数据包3。
需要说明的是,在下行突发的数据包在接入网设备的RLC层被分段的场景中,以一个完整的数据包为例,若接入网设备在RLC层对一个完整的数据包做分段处理,该完整的数据包到达终端设备的MAC层后,终端设备会针对该完整的数据包的每段数据包发送一个反馈信息。若该完整的数据包的中有一段数据包最后被终端设备成功接收到,那么, 在该情况中,最后一个反馈信息对应的数据包是该完整的数据包中的一段数据包。
例如,在图13所示的数据包被分段的场景中,数据包4被分为数据包4.1和数据包4.2,数据包4是完整的数据包,数据包4.2是终端设备最后一个成功接收的数据包,那么,最后一个反馈信息对应的数据包是数据包4.2。
在接入网设备的DU和CU分离的场景中,示例性地,下行时延D D1包括3部分时延,该3部分时延包括时延D D11、时延D D12和时延D D13
时延D D11可以理解为CU处理数据包的时延,包括从时间T D1.1到时间T D1.2的时长。例如,图12至图15中D D11对应的时长。
关于时间T D1.1的描述参考上文的相关描述,不再赘述。
在一示例中,时间T D1.2是下行突发中第一个从CU的PDCP层发送的数据包(例如,图12至图15所示的数据包1)的发送时间。
在另一示例中,T D1.2也可以是下行突发中第一个从CU的F1-U接口的GTP隧道出口发送的数据包(例如,图12至图15所示的数据包1)的发送时间。时延D D12可以理解为数据包在CU和DU间传输的时延,包括从T D1.2到时间T D1.3的时长,例如,图12至图15中D D12对应的时长。
在一示例中,时间T D1.3是下行突发中第一个到达DU的RLC层的数据包(例如,图12至图15所示的数据包1)的到达时间。
在另一示例中,T D1.3也可以是下行突发中第一个到达DU的F1-U接口的GTP隧道入口的数据包(例如,图12至图15所示的数据包1)的到达时间。时延D D13可以理解为DU处理数据包的时延与下行突发在接入网设备和终端设备的空口时延的总和,时延D D13包括从时间T D1.3到时间T D3的时长,例如,图12至图15的时延D D13对应的时长。
下行时延D D2
下行时延D D2可以理解为下行突发在终端设备的各个协议层递交的时延。
下行时延D D2包括从时间T D2.1到时间T D2.2的时长,例如,图12至图15的D D2对应的时长。
时间T D2.1是下行突发中最后一个到达终端设备的MAC层的数据包(例如,图12的数据包4、图13的数据包4.2、图14的数据包3、图15的数据包4)的到达时间。
在下行突发的数据包在接入网设备的RLC层被分段的场景中,若一个完整的数据包在接入网设备的RLC层被分段,且该完整的数据包的某段数据包最后到达终端设备的MAC层,则,本申请实施例所说的下行突发中最后一个到达终端设备的MAC层的数据包是该完整的数据包中的某段数据包。例如,在图13所示的场景中,最后一个到达终端设备的MAC层的数据包为数据包4.2。
时间T D2.2是下行突发中最后一个从终端设备的PDCP层发送的数据包(例如,图12至图15的数据包4)的发送时间。
应理解,本申请实施例的从终端设备的PDCP层发送的数据包的发送时间表示的是将数据包从PDCP层向上层发送的时间,在5G中表示将数据包从PDCP层向SDAP层发送的发送时间,在4G中表示将数据包从PDCP层向应用层发送的发送时间。
情况2
下行时延D D-UE-基站包括下行时延D D1,不涉及下行突发在终端设备的各个协议层递交 的下行时延D D2。关于下行时延D D1的具体描述可参考上文情况1的相关描述,不再赘述。
三、下行时延D D-UE-UPF
下行时延D D-UE-UPF表示下行突发在终端设备与核心网设备之间的时延,包括下行时延 D-UE-基站和下行时延D D-基站-UPF。关于下行时延 D-UE-基站和下行时延D D-基站-UPF的具体描述可参考上文的相关描述,不再赘述。
下面,以上述定义的下行突发的各个时延,结合图16至图20,对本申请实施例的下行传输的突发监测的方法做详细说明。
图16是本申请实施例提供的下行传输的突发监测的方法600的示意性流程图。
在S610中,核心网设备向接入网设备发送时延监测请求,该时延监测请求用于指示对周期性的突发进行时延监测。
本申请实施例的下行突发是周期性的,该时延监测请求用于指示对一个或多个周期中每个周期的下行突发进行时延监测,以确定周期性的下行突发在终端设备与接入网设备之间传输的时延。
时延监测请求可以是单独的一个信息,也可以是携带在其他信息的内容,本申请实施例不做任何限定。
示例性地,时延监测请求可以是携带在DL PDU SESSION INFORMATION中的字段。
在S620中,该接入网设备响应于该时延监测请求,确定下行突发在终端设备和该接入网设备之间的下行时延,该下行突发在该终端设备和该接入网设备之间的下行时延包括第一下行时延,该第一下行时延包括从第一时间到第二时间的时长,该第一时间是该下行突发中第一个到达该接入网设备的分组数据汇聚协议PDCP层的数据包的到达时间,该第二时间是到达该接入网设备的媒体访问控制MAC层的最后一个反馈信息的到达时间,或,该第二时间是从该终端设备的物理层发送最后一个反馈信息的发送时间,该反馈信息用于指示该终端设备成功接收该下行突发中的一个数据包。
接入网设备接收到时延监测请求,确定下行突发在终端设备和接入网设备之间的下行时延。
在该实施例中,第一时间可以理解为下行突发在终端设备和接入网设备之间的起始时间,第二时间可以理解为下行突发在终端设备和接入网设备之间的结束时间。
其中,下行突发在终端设备和接入网设备之间的下行时延即为上文描述的上行时延D D-UE-基站,第一下行时延为上文的时延D D1,第一时间为上文的时间T D1.1,第二时间为上文的时间T D3。关于下行时延D D-UE-基站、时延D D1、时间T D1.1、时间T D3的具体描述可参考上文的相关描述,不再赘述。
在一些实施例中,接入网设备可以根据下行突发的突发编号确定下行突发中第一个到达接入网设备的PDCP层的数据包。
示例性地,接入网设备可以根据下行突发的突发编号的变化来确定下行突发中第一个到达接入网设备的PDCP层的数据包。例如,接入网设备的PDCP层先接收完突发编号为1的下行突发的数据包,后续接收到突发编号为2的下行突发的数据包,由于突发编号已经由1变为2,意味着突发编号为1的下行突发已经发送完。那么,接入网设备的PDCP层第一次接收到突发编号为2的下行突发的数据包即为第一个到达接入网设备的PDCP层的数据包。
在另一实施例中,接入网设备可以根据下行突发所属的周期确定下行突发中第一个到达接入网设备的PDCP层的数据包。
示例性地,接入网设备可以自一个周期的起始时间开始监测,在该周期内接入网设备的PDCP层接收到的第一个数据包即为在该周期内传输的下行突发的第一个数据包。
类似地,在本申请实施例中,接入网设备确定下行突发中第一个到达接入网设备的某个协议层的数据包的方式都可以基于下行突发的编号或周期确定,以及,接入网设备确定下行突发中第一个从接入网设备的某个协议层发送的数据包的方式也都可以基于下行突发的编号或周期确定。具体过程可参考这里的描述,后续不再赘述。
在一些实施例中,接入网设备可以根据下行突发的突发编号确定到达接入网设备的MAC层的最后一个反馈信息。
示例性地,接入网设备可以根据下行突发的突发编号的变化来确定针对下行突发的到达接入网设备的MAC层的最后一个反馈信息。例如,接入网设备的MAC层先接收到突发编号为1的下行突发的数据包的反馈信息,后续接收到突发编号为2的下行突发的数据包的反馈信息,由于突发编号已经由1变为2,意味着突发编号为1的下行突发的数据包的反馈信息已经发送完。那么,接入网设备的MAC层开始接收突发编号为2的下行突发的反馈信息之前的最后一个反馈信息即为针对突发编号为1的下行突发中到达接入网设备的MAC层的最后一个反馈信息。
类似地,终端设备也可以根据下行突发的突发编号确定从终端设备的物理层发送的最后一个反馈信息,具体描述可参考上文描述,不再赘述。
本申请实施例提供的突发监测的方法,提供了监测下行突发的时延的方法,接入网设备基于核心网设备发送的针对下行突发的时延监测请求,确定该下行时延。其中,该下行时延包括从第一时间到第二时间的第一下行时延,该第一时间是该下行突发中第一个到达该接入网设备的分组数据汇聚协议PDCP层的数据包的到达时间,该第二时间是到达该接入网设备的MAC层的最后一个反馈信息的到达时间或是从该终端设备的物理层发送最后一个反馈信息的发送时间。这样,实现了通过接入网设备监测下行突发在终端设备和接入网设备之间的下行时延的过程,从而,接入网设备基于针对下行突发的下行时延可以更为精确地评估数据的传输性能,以提高用户体验。
在一些实施例中,该下行突发在该终端设备和该接入网设备之间的下行时延还包括第四下行时延,该第四下行时延包括从第四时间到第五时间的时长,该第四时间是该下行突发中最后一个到达所述终端设备的MAC层的数据包的到达时间,该第五时间是所述下行突发中最后一个从该终端设备的PDCP层发送的数据包的发送时间。
在该实施例中,第五时间可以理解为下行突发在终端设备和接入网设备之间的结束时间。
其中,第四下行时延即为上文的下行时延D D2,第四时间即为上文的时间T D2.1,第五时间即为上文的时间T D2.2。关于下行时延D D2、时间T D2.1、时间T D2.2的具体描述可参考上文的相关描述,不再赘述。
在一示例中,终端设备确定第四下行时延,且向接入网设备发送第四下行时延,对应地,接入网设备接收该第四下行时延;
接入网设备确定第一下行时延,且根据该第四下行时延和该第一下行时延确定下行突 发在终端设备和接入网设备的下行时延。
在一示例中,终端设备可以统计多个下行突发的第四下行时延,得到多个第四下行时延的平均值,将该平均值可以作为下行突发的第四下行时延。
下行突发在终端设备和接入网设备之间的下行时延包括:第一下行时延和第四下行时延。简单来说,接入网设备将两个时延相加即为下行突发在终端设备和接入网设备之间的下行时延。
在一些实施例中,终端设备可以根据下行突发所属的周期确定下行突发中最后一个到达终端设备的MAC层的数据包。
示例性地,终端设备可以自一个周期的起始时间开始监测,在该周期内从MAC层接收的最后一个数据包即为在该周期内传输的下行突发中最后一个到达终端设备的MAC层的数据包。
类似地,在本申请实施例中,终端设备确定下行突发中最后一个到达该终端设备的某个协议层的数据包的方式都可以基于下行突发的周期确定,以及,终端设备确定下行突发中最后一个从该终端设备的某个协议层发送的数据包的方式也可以基于下行突发的周期确定,具体过程可参考这里的描述,后续不再赘述。
本申请实施例提供的突发监测的方法,下行突发在终端设备与接入网设备之间的下行时延还包括下行突发在终端设备的各个协议层递交的时延,可以使得接入网设备更为准确地监测下行突发的下行时延,从而,使得接入网设备基于针对下行突发的下行时延可以更为精确地评估数据的传输性能,以进一步提高用户体验。
本申请实施例提供了两种监测下行时延的方法(记为方式A和方式B)。方式A主要是分段统计下行突发在终端设备和接入网设备之间的下行时延,以得到下行突发在终端设备与接入网设备的下行时延,可适用于在接入网设备的DU和CU分离的场景中。方式B主要是基于下行突发的第一时间和第二时间确定下行突发在终端设备与接入网设备的下行时延,该方式B不限于DU与CU分离的场景,也可以应用于DU和CU不分离的场景。
以下,分别基于方式A和方式B,对监测下行突发的下行时延的方法做详细说明,此外。
方式A
在一些实施例中,接入网设备主要分段统计两个时延,即,第二下行时延和第三下行时延。
即,该第一下行时延包括第二下行时延和第三下行时延,该第二下行时延包括从第三时间到该第二时间的时长,该第三下行时延包括从该第一时间到该第三时间的时长,该第三时间是该下行突发中第一个到达该接入网设备的无线链路控制RLC层的数据包的到达时间。
其中,第一时间是该下行突发中第一个到达该接入网设备的分组数据汇聚协议PDCP层的数据包的到达时间,即为上文的时间T D1.1。第二时间是到达该接入网设备的MAC层的最后一个反馈信息的到达时间或从该终端设备的物理层发送最后一个反馈信息的发送时间,即为上文的时间T D3。第三时间即为上文的时间T D1.3。关于各个时间的具体描述可参考上文的相关描述,不再赘述。
在DU与CU分离的场景中,具体地,第一时间是该下行突发中第一个到达CU的PDCP层的数据包的到达时间,第二时间是到达该DU的MAC层的最后一个反馈信息的到达时间或从该终端设备的物理层发送最后一个反馈信息的发送时间,第三时间是该下行突发中第一个到达DU的RLC层的数据包的到达时间。
第二下行时延即为上文的时延D D13,第三下行时延包括上文的时延D D11和时延D D12,关于各个时延的具体描述可参考上文的相关描述,不再赘述。
在第一种情况中,下行突发在终端设备与接入网设备之间的下行时延包括第一下行时延和第四下行时延。
基于此,在一些实施例中,该接入网设备响应于该时延监测请求,确定下行突发在终端设备和该接入网设备之间的下行时延,包括:
该接入网设备响应于该时延监测请求,确定该第二下行时延和该第三下行时延;
该接入网设备确定该第四下行时延;
该接入网设备根据该第二下行时延、该第三下行时延和该第四下行时延,确定所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
在一示例中,接入网设备接收来自终端设备发送的第四下行时延以确定第四下行时延,第四下行时延为上文的下行时延D D2,具体描述可参考上文的相关描述,不再赘述。
在一些实施例中,在DU和CU分离的场景中,该接入网设备响应于该时延监测请求,确定下行突发在终端设备和该接入网设备之间的下行时延,包括:
DU响应于时延监测请求,确定第二下行时延;
DU向CU发送该第二下行时延;
CU确定该第四下行时延;
CU响应于时延监测请求,确定该第三下行时延;
CU根据该第二下行时延、该第三下行时延和该第四下行时延,确定该下行突发在该终端设备和该接入网设备之间的下行时延。
在一示例中,终端设备向CU发送第四下行时延,从而,CU确定第四下行时延。
在一示例中,DU可以根据第三时间和第二时间确定第二下行时延,即,DU先确定第三时间和第五时间,再确定第二下行时延。
在一示例中,CU可以根据第一时间和第三时间确定第三下行时延,即,CU先确定第一时间和第三时间,再确定第三下行时延。
在另一示例中,CU可以根据时延D D11和时延D D12确定第三下行时延,即,CU先确定时延D D11和时延D D12,再确定第三下行时延。
在CU的CU-UP和CU-CP分离的场景中,示例性地,由CU-UP确定第三下行时延,以及,根据该第三下行时延、该第二下行时延和该第四下行时延,确定该下行突发在该终端设备和该接入网设备之间的下行时延。
本申请实施例提供的突发监测的方法,支持接入网设备的DU和CU分离的场景,由DU向CU上报下行突发在DU与终端设备的第二下行时延,由CU基于该第二下行时延、CU确定的由发在CU与DU之间传输以及CU处理下行突发而产生的第三上行时延、CU得到的下行突发在终端设备由于递交数据产生的第四下行时延,确定了下行突发在终端设备和接入网设备的下行时延。即,通过DU和CU分段统计与自己相关的时延,可以实现 在DU与CU分离场景中监测下行突发的下行时延。
在第二种情况中,下行突发在终端设备与接入网设备之间的下行时延包括第一下行时延,不包括第四下行时延。
基于此,在一些实施例中,该接入网设备响应于该时延监测请求,确定下行突发在终端设备和该接入网设备之间的下行时延,包括:
该接入网设备响应于该时延监测请求,确定该第二下行时延和该第三下行时延;
该接入网设备根据该第二下行时延和该第三下行时延,确定所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
在一些实施例中,在DU和CU分离的场景中,该接入网设备响应于该时延监测请求,确定下行突发在终端设备和该接入网设备之间的下行时延,包括:
DU响应于该时延监测请求,确定该第二下行时延;
DU向CU发送该第二下行时延;
CU响应于时延监测请求,确定该第三下行时延;
CU根据该第二下行时延和该第三下行时延,确定该下行突发在所述终端设备和所述接入网设备之间的下行时延。
在CU的CU-UP和CU-CP分离的场景中,示例性地,由CU-UP确定第三下行时延,以及,根据该第三下行时延和该第二下行时延,确定该下行突发在该终端设备和该接入网设备之间的下行时延。
本申请实施例提供的突发监测的方法,支持接入网设备的DU和CU分离的场景,由DU向CU上报下行突发在DU与终端设备的第二下行时延,由CU基于该第二下行时延、CU确定的由发在CU与DU之间传输以及CU处理下行突发而产生的第三上行时延,确定了下行突发在终端设备和接入网设备的下行时延。即,通过DU和CU分段统计与自己相关的时延,可以实现在DU与CU分离场景中监测下行突发的下行时延。
方式B
在第一种情况中,下行突发在终端设备与接入网设备之间的下行时延包括第一下行时延和第四下行时延。
基于此,在一些实施例中,该接入网设备响应于该时延监测请求,确定下行突发在终端设备和该接入网设备之间的下行时延,包括:
接入网设备响应于该时延监测请求,确定该第一时间和该第二时间;
接入网设备确定该第四下行时延;
接入网设备根据该第四下行时延、该第一时间和该第二时间,确定下行突发在终端设备和接入网设备之间的下行时延。
在该实施例中,第一时间是下行突发中第一个到达该接入网设备的PDCP层的数据包的到达时间,即为上文的时间T D1.1。第二时间是到达接入网设备的MAC层的最后一个反馈信息的到达时间或从该终端设备的物理层发送最后一个反馈信息的发送时间,即为上文的时间T D3。关于各个时间的具体描述可参考上文的相关描述,不再赘述。其中,从第一时间到第二时间的时长为本申请实施例的第一下行时延。
在DU与CU分离的场景中,具体地,第一时间是该下行突发中第一个到达CU的PDCP层的数据包的到达时间,第二时间是到达该DU的MAC层的最后一个反馈信息的到达时 间或从该终端设备的物理层发送最后一个反馈信息的发送时间,第三时间是该下行突发中第一个到达DU的RLC层的数据包的到达时间。
在第二时间是终端设备的物理层发送最后一个反馈信息的发送时间的情况中,该第二时间是基站为终端设备配置的,接入网设备可以根据基于配置确定该第二时间。示例性地,接入网设备向UE调度传输下行数据包,为了接收HARQ反馈,接入网设备会向UE发送用于指示终端设备发送反馈信息的时间的指示信息,其中,该指示信息所指示的发送反馈信息的时间即为时间T D3
在一些实施例中,在DU与CU分离的场景中,该接入网设备响应于该时延监测请求,确定下行突发在终端设备和该接入网设备之间的下行时延,包括:
DU响应于时延监测请求,确定该第二时间;
DU向CU发送该第二时间;
CU确定该第四下行时延;
CU响应于时延监测请求,确定该第一时间;
CU根据该第一时间、该第二时间和该第四下行时延,确定该下行突发在该终端设备和该接入网设备之间的下行时延。
在一示例中,终端设备向CU发送第四下行时延,从而,CU确定该第四下行时延。
在CU的CU-UP和CU-CP分离的场景中,示例性地,由CU-UP根据该第四下行时延、第一时间和第二时间确定该下行突发在该终端设备和该接入网设备之间的下行时延。
本申请实施例提供的突发监测的方法,支持接入网设备的DU和CU分离的场景,由DU向CU上报下行突发在接入网设备和终端设备传输的第二时间(即,结束时间),由CU基于该第二时间、CU确定的下行突发在CU的第一时间(即,起始时间)、CU得到的下行突发在终端设备由于递交数据产生的第四下行时延,确定下行突发在终端设备和接入网设备的下行时延。这样,可以实现在DU与CU分离场景中监测下行突发的下行时延的过程。此外,相比于DU和CU分段统计时延的方式,该方法可以得到更精确的下行突发的下行时延。
在第二种情况中,下行突发在终端设备与接入网设备之间的下行时延包括第一下行时延,不包括第四下行时延。
基于此,在一些实施例中,该接入网设备响应于该时延监测请求,确定下行突发在终端设备和该接入网设备之间的下行时延,包括:
接入网设备响应于该时延监测请求,确定第一时间和第二时间;
接入网设备根据该第一时间和该第二时间,确定下行突发在终端设备和接入网设备之间的下行时延。
在一些实施例中,在DU与CU分离的场景中,该接入网设备响应于该时延监测请求,确定下行突发在终端设备和该接入网设备之间的下行时延,包括:
DU响应于时延监测请求,确定该第二时间;
DU向CU发送第二时间;
CU确定该第一时间;
CU根据该第一时间和该第二时间,确定该下行突发在该终端设备和该接入网设备之间的下行时延。
在CU的CU-UP和CU-CP分离的场景中,示例性地,由CU-UP确定第一时间,以及根据第一时间和接收到的第二时间确定该下行突发在该终端设备和该接入网设备之间的下行时延。
本申请实施例提供的突发监测的方法,支持接入网设备的DU和CU分离的场景,由DU向CU上报下行突发在接入网设备和终端设备传输的第二时间(即,结束时间),由CU基于该第二时间、CU确定的下行突发在CU的第一时间(即,起始时间),确定下行突发在终端设备和接入网设备的下行时延。这样,可以实现在DU与CU分离场景中监测下行突发的下行时延的过程。此外,相比于DU和CU分段统计时延的方式,该方法可以得到更精确的下行突发的下行时延。
在一些实施例中,基于上述得到的下行突发在终端设备和接入网设备之间的下行时延,还可以用于确定下行突发在终端设备和核心网设备之间的下行时延。基于此,本申请实施例的下行传输的突发监测的方法600还包括步骤S630、S640和S650。
在S630中,接入网设备向核心网设备发送响应信息,该响应信息包括该下行突发在该终端设备和该接入网设备之间的下行时延。
响应信息可以是单独的一个信息,也可以是携带在其他信息的内容,本申请实施例不做任何限定。
示例性地,响应信息可以是携带在UL PDU SESSION INFORMATION中的字段。
在S640中,该核心网设备确定第五下行时延,该第五下行时延是该下行突发中第一个从该核心网设备发送的数据包在该接入网设备和该核心网设备之间的时延。
其中,第五下行时延即为上文的上行时延D D-基站-UPF,关于上行时延D D-基站-UPF的具体描述参考上文的相关描述,不再赘述。
在一示例中,接入网设备可以根据下行突发中第一个从核心网设备发送的数据包的发送时间和该下行突发中第一个到达接入网设备的PDCP层的数据包的到达时间(即,第一时间),确定第五下行时延。
应理解,下行突发中第一个核心网设备发送的数据包与该下行突发中第一个到达接入网设备的PDCP层的数据包是同一个数据包,该第五下行时延表示的是一个数据包的时延。因此,该第五下行时延也可以基于多个数据包(不限于上行数据包或下行数据包)在接入网设备和核心网设备之间传输的平均值确定,或者,第五下行时延也可以基于任一个数据包在接入网设备和核心网设备之间传输的时延得到。
在S650中,该核心网设备根据该第五下行时延和该下行突发在该终端设备和该接入网设备之间的下行时延,确定该下行突发在该终端设备和该核心网设备之间的下行时延。
其中,下行突发在终端设备和核心网设备之间的下行时延包括:第五下行时延和下行突发在终端设备和接入网设备的下行时延。简单来说,核心网设备将两个时延相加即为下行突发在终端设备和核心网设备之间的下行时延。
下行突发在该终端设备和该核心网设备之间的下行时延即为上文的下行时延D D-UE-UPF,具体描述可参考上文的相关描述,不再赘述。
本申请实施例提供的突发监测的方法,提供了监测下行突发的时延的方法,核心网设备接收接入网设备发送的针对下行突发在终端设备和接入网设备之间的下行时延,基于该下行时延和核心网设备自己确定的该下行突发在接入网设备和核心网设备的第五下行时 延,最终确定该下行突发在终端设备和核心网设备之间的下行时延。这样,实现了监测下行突发在终端设备和核心网设备之间的下行时延的过程,从而,核心网设备基于针对下行突发的下行时延可以更为精确地评估数据的传输性能,以提高用户体验。
作为示例,以下,结合图17和图18,详细描述在DU和CU分离的场景下进行下行传输的突发监测的方法。图17和图18所示的方法涉及的网元包括:终端设备、核心网设备的SMF、UPF,接入网设备的CU-CP、CU-UP。此外,作为一个具体的实施例,以下行帧作为下行突发的一例、以UE作为终端设备的一例对图17和图18所示的方法做说明。示例性地,下行帧可以为视频帧。
图17是本申请实施例提供的在接入网设备的DU和CU分离的场景中进行下行传输的突发监测的方法700的示意性流程图。该方法700对应方式A的实施例。
S711、SMF向CU-CP发送PDU SESSION RESOURCE SETUP REQUEST,其中,PDU SESSION RESOURCE SETUP REQUEST中携带QFI和帧服务质量监测请求。
关于帧服务质量监测请求的具体描述可参考方法200中步骤S211的相关描述,不再赘述。
在该步骤中,帧服务质量监测请求指示的监测帧的传输方向为下行传输。
S712、CU-CP向CU-UP发送BEARER CONTEXT SETUP REQUEST,BEARER CONTEXT SETUP REQUEST中携带QFI和帧服务质量监测请求。
相应地,CU-UP收到CU-CP发送的BEARER CONTEXT SETUP REQUEST,CU-UP可以针对QFI的DRB进行帧服务质量监测功能。
S713、CU-CP向DU发送UE CONTEXT SETUP REQUEST,UE CONTEXT SETUP REQUEST中携带QFI和帧服务质量监测请求。
相应地,DU从CU-CP接收到UE CONTEXT SETUP REQUEST,获得QFI和对应的帧服务质量监测请求,DU可以针对该QFI的DRB进行帧服务质量监测功能。
S714、CU-CP向UE发送测量配置信息(measureconfig),其中,measureconfig中包括指示UE上报DRB的下行帧中最后一个到达MAC层的数据包在终端设备的递交时延,下行帧中最后一个到达MAC层的数据包在终端设备的递交时延为上文的第四下行时延,即,下行时延D D2
S715、UE统计DRB的下行帧的第四下行时延。UE向CU-CP发送测量报告,该测量报告中携带DRB的标识(例如,ID)和对应的下行帧的第四下行时延。
对应地,CU-CP接收该测量报告,且获取该DRB对应的下行帧的第四下行时延。
S716、CU-CP向CU-UP发送GNB-CU-CP测量结果(GNB-CU-CP MEASUREMENT RESULTS INFORMATION),GNB-CU-CP MEASUREMENT RESULTS INFORMATION中携带DRB标识、该DRB标识对应的下行帧的第四下行时延D D2
S717、UPF向CU-UP发送DL PDU SESSION INFORMATION的数据帧,该数据帧中携带QoS监视帧(Qos monitoring frame,QMF)。其中,QMF可以理解为方法600中的时延监测请求。
示例性地,上文的表1示出了一例DL PDU SESSION INFORMATION,DL PDU SESSION INFORMATION中携带QMF,具体描述可参考上文对表1的相关描述。
S718、CU-UP向DU发送DL USER DATA((PDU Type 0),DL USER DATA中携带QMF。
S719、DU根据在S718中接收到的QMF,确定下行帧在终端设备与DU之间的第二下行时延。
第二下行时延即为时延D D13,具体描述参考上文的相关描述,不再赘述。
S720、DU向CU-UP发送UL ASSISTANCE INFORMATION DATA(PDU Type 2),UL ASSISTANCE INFORMATION DATA中携带终端设备与DU之间的第二下行时延。
示例性地,上文的表2示出了一例UL ASSISTANCE INFORMATION DATA。参考表2,DU的下行帧时延结果((DL frame,DLF)Delay DU Result)包括下行帧在终端设备与DU之间的下行时延,由0或4位字节数表示;下行帧时延指示(DLF Delay Ind.)表示UL ASSISTANCE INFORMATION DATA中是否存在DLF Delay DU Result,由1位字节数表示。示例性地,在DLF Delay Ind.的取值为1时,则表示UL ASSISTANCE INFORMATION DATA中存在DLF Delay DU Result,在DLF Delay Ind.的取值为0时,则表示UL ASSISTANCE INFORMATION DATA中不存在DLF Delay DU Result。
应理解,在以突发作为描述对象时,下行帧时延结果也可以称为下行突发时延结果,下行帧时延指示也可以称为下行突发时延指示,两者描述可以替换。
S721、CU-UP根据在S717中接收到的QMF,确定下行帧在终端设备与CU-UP之间的下行时延,即,确定了下行帧在终端设备与接入网设备之间的下行时延D U-UE-基站
其中,该下行时延包括第二下行时延、第三下行时延和第四上行时延,上文的第一下行时延=第三下行时延+第二下行时延。
也就是说,CU-UP根据第二下行时延、第三下行时延和第四下行时延,确定终端设备与CU-UP之间的下行时延。
第四上行时延是S716中由CU-CP发送给CU-UP的GNB-CU-CP MEASUREMENT RESULTS INFORMATION中携带的第四上行时延。
第二下行时延是S720中由DU向CU-UP发送的UL ASSISTANCE INFORMATION DATA中携带的第二下行时延。
第三上行时延=时延D D11+时延D D12,关于时延的具体描述可参考上文的相关描述,不再赘述。
S722、CU-UP向UPF发送UL PDU SESSION INFORMATION,UL PDU SESSION INFORMATION中携带终端设备与CU-UP之间的下行时延D D-UE-基站
可以理解,UL PDU SESSION INFORMATION中携带有在响应于在S717中发送的QMF的响应信息,该响应信息包括终端设备与CU-UP之间的下行时延D D-UE-基站
示例性地,上文的表3示出了一例UL PDU SESSION INFORMATION。参考表3,下行帧时延结果(DLF Delay Result)包括下行帧在终端设备与CU-UP之间的下行时延,DLF Delay Ind.表示UL PDU SESSION INFORMATION中是否存在DLF Delay Result,由1位字节数表示。例如,在DLF Delay Ind.的取值为1时,则表示UL PDU SESSION INFORMATION中存在DLF Delay Result,在DLF Delay Ind.的取值为0时,则表示UL PDU SESSION INFORMATION中不存在DLF Delay Result。
S723、UPF确定下行帧在终端设备与UPF(即,核心网设备)之间的下行时延。
其中,该下行时延包括下行帧在UPF和CU-UP的第五下行时延D D-基站-UPF、下行帧在终端设备和CU-UP的下行时延D D-UE-基站
也就是说,UPF根据第五下行时延、下行帧在终端设备和CU-UP的下行时延,确定下行帧在终端设备与UPF之间的下行时延D D-UE-UPF
上述实施例确定的下行时延包括第四下行时延,在下行时延不包括第四下行时延的情况中,作为DU和CU分离的场景中的另一个具体的实施例,可以参考图17的实施例执行。不过,由于不需要确定第四下行时延,监测下行时延的方法略有不同:在该实施例中,省略S714至S716,在S719至S723中省略所有关于第四下行时延的内容即可。
图18是本申请实施例提供的在接入网设备的DU和CU分离的场景中进行下行传输的突发监测的方法800的示意性流程图。该方法800对应方式B的实施例。
在该方法800中,各个网元执行S811至S818的过程与方法700中各个网元执行S711至S718的过程相同,这里不再赘述,下面,描述S819至S823的过程。
S819、DU根据在S818中接收到的QMF,确定第二时间,第二时间是到达接入网设备的MAC层的最后一个反馈信息的到达时间或从该终端设备的物理层发送最后一个反馈信息的发送时间。
第二时间即为上文的时间T D3,具体描述参考上文的相关描述,不再赘述。
S820、DU向CU-UP发送UL ASSISTANCE INFORMATION DATA(PDU Type 2),UL ASSISTANCE INFORMATION DATA中携带第二时间。
示例性地,上文的表4示出了一例UL ASSISTANCE INFORMATION DATA。参考表4,DU的下行帧时间戳结果((DL frame,DLF)Timestamp DU Result)包括下行帧中的第二时间,下行帧时延标志位(DLF Delay Ind.)表示UL ASSISTANCE INFORMATION DATA中是否存在DLF Timestamp DU Result。例如,在DLF Delay Ind.的取值为1时,则表示UL ASSISTANCE INFORMATION DATA中存在DLF Timestamp DU Result,在DLF Delay Ind.的取值为0时,则表示UL ASSISTANCE INFORMATION DATA中不存在DLF Timestamp DU Result。
S821、CU-UP确定下行帧在终端设备与CU-UP之间的下行时延,从而,确定了下行帧在终端设备与接入网设备之间的下行时延D D-UE-基站
其中,该下行时延包括下行帧中最后一个到达MAC层的数据包在终端设备递交的第四下行时延、从第一时间到第二时间的第一下行时延,第一时间是下行帧中第一个到达CU的PDCP层的数据包的到达时间。
也就是说,CU-UP根据第四下行时延、第一时间和第二时间,确定终端设备与CU-UP(即,核心网设备)之间的下行时延D D-UE-基站
其中,第四下行时延是S816中由CU-CP发送给CU-UP的GNB-CU-CP MEASUREMENT RESULTS INFORMATION中携带的第四下行时延。
S822、CU-UP向UPF发送UL PDU SESSION INFORMATION,UL PDU SESSION INFORMATION中携带终端设备与CU-UP之间的上行时延D U-UE-基站
示例性地,上文的表3示出了UL PDU SESSION INFORMATION的一例,DLF Delay Result中干携带有下行时延D D-UE-基站
S823、UPF确定下行帧在终端设备与UPF(即,核心网设备)之间的下行时延D D-UE-UPF
其中,各个网元执行S822至S823的过程与方法700中各个网元执行S722至S723的过程相同,这里不再赘述。
上述实施例确定的下行时延包括第四下行时延,在下行时延不包括第四下行时延的情况中,作为DU和CU分离的场景中的另一个具体的实施例,可以参考图18的实施例执行。不过,由于不需要确定第四下行时延,监测下行时延的方法略有不同:在该实施例中,省略S814至S816,在S821至S823中省略所有关于第四下行时延的内容即可。
本申请实施例还提供了一种突发监测的方法。该方法提供了主要基于下行突发在终端设备和核心网设备之间的起始时间和第二时间来确定下行突发在终端设备与核心网设备之间的下行时延,相比于由各个网元分段统计时延的方式得到的下行时延更为精确。
图19是本申请实施例提供的下行传输的突发监测的方法900的示意性流程图。
在S910中,核心网设备向接入网设备发送时延监测请求,该时延监测请求用于指示对周期性的突发进行时延监测。
关于时延监测请求参考方法600中S610的相关描述,不再赘述。
在S920中,接入网设备响应于该时延监测请求,确定第二时间,该第二时间是到达该接入网设备的MAC层的最后一个反馈信息的到达时间,或,该第二时间是从该终端设备的物理层发送最后一个反馈信息的发送时间。
关于接入网设备确定第二时间的具体描述可参考上文方法B的第一种情况中描述的接入网设备确定第二时间的相关描述,不再赘述。
在S930中,接入网设备向核心网设备发送响应信息,该响应信息包括该第二时间。
响应信息可以是单独的一个信息,也可以是携带在其他信息的内容,本申请实施例不做任何限定。
示例性地,响应信息可以是携带在UL PDU SESSION INFORMATION帧中的字段。
在S940中,核心网设备确定该下行突发中第一个从核心网设备发送的数据包的发送时间。
该发送时间可以理解为下行突发在终端设备和核心网设备之间的起始时间。
其中,该发送时间即为上文的时间T D0,具体描述参考上文的相关描述,不再赘述。
在S950中,核心网设备根据该发送时间和该第二时间,确定该下行突发在该终端设备和该核心网设备之间的下行时延。
下行突发在终端设备与核心网设备之间的下行时延即为上文的下行时延D D-UE-UPF,包括从该发送时间至该第二时间之间的时长。
本申请实施例提供的突发监测的方法,核心网设备通过接入网设备发送的上行突发中第一个从核心网设备发送的数据包的发送时间、最后一个反馈信息到达接入网设备或最后一个反馈信息从终端设备发送的第二时间,确定下行突发在终端设备和核心网设备的下行时延。这样,不仅实现了监测下行突发在终端设备和核心网设备之间的下行时延的过程,而且,可以得到更精确的下行时延,从而,核心网设备基于针对下行突发的下行时延可以更为精确地评估数据的传输性能,以提高用户体验。
在一些实施例中,下行突发在终端设备与核心网设备之间的下行时延D D-UE-UPF还包 括第四下行时延。基于此,该方法900还包括:
核心网设备接收来自终端设备的第四下行时延;
在S950中,具体地,核心网设备根据该第四下行时延、该发送时间和该第二时间,确定该下行突发在该终端设备和该核心网设备之间的下行时延。
其中,终端设备将第四下行时延通过接入网设备发送至核心网设备。
在一示例中,接入网设备发送的该响应信息中包括第一时间和该第四下行时延。
图20是本申请实施例提供的在DU和CU分离的场景中进行下行传输的突发监测的方法1000的示意性流程图。该方法1000是方法900的更具体的实施例。
图20所示的方法涉及的网元包括:终端设备、核心网设备的SMF、UPF,接入网设备的CU-CP、CU-UP。此外,作为一个具体的实施例,以下行帧作为下行突发的一例、以UE作为终端设备的一例对图20所示的方法做说明。示例性地,下行帧可以为视频帧。
在该方法1000中,各个网元执行S1011至S1018的过程与方法700中各个网元执行S711至S718的过程相同,这里不再赘述,下面,描述S1018至S1022的过程。
S1019、DU根据在S1018中接收到的QMF,确定第二时间。
S1020、DU向CU-UP发送UL ASSISTANCE INFORMATION DATA(PDU Type 2),UL ASSISTANCE INFORMATION DATA中携带第二时间。
关于UL ASSISTANCE INFORMATION DATA中携带第二时间的形式可参考方法800中S820的相关描述,不再赘述。
S1021、CU-UP向UPF发送UL PDU SESSION INFORMATION,UL PDU SESSION INFORMATION中携带第二时间和第四下行时延。
其中,第四下行时延是S1016中由CU-CP发送给CU-UP的GNB-CU-CP MEASUREMENT RESULTS INFORMATION中携带的第四下行时延。
可以理解,UL PDU SESSION INFORMATION中携带有在响应于在S1017中发送的QMF的响应信息,该响应信息包括第二时间和第四下行时延。
示例性地,上文的表5示出了UL PDU SESSION INFORMATION的一例。参考表5,下行帧时间戳结果(DLF Timestamp Result)包括第二时间和第四下行时延,DLF Delay Ind.表示UL PDU SESSION INFORMATION中是否存在DLF Timestamp Result。例如,在DLF Delay Ind.的取值为1时,则表示UL PDU SESSION INFORMATION中存在DLF Timestamp Result,在DLF Delay Ind.的取值为0时,则表示UL PDU SESSION
INFORMATION中不存在DLF Timestamp Result。
应理解,在以突发作为描述对象时,下行帧时间戳结果也可以称为下行突发时间戳结果,两者描述可以替换。
S1022、UPF根据上行帧中第一个从UPF(核心网设备)发送的数据包的发送时间、该第二时间和该第四下行时延,确定下行帧在终端设备与UPF(即,核心网设备)之间的下行时延D D-UE-UPF
其中,下行时延D D-UE-UPF包括第四下行时延和从该发送时间至该第二时间的时长。
上述实施例确定的下行时延D D-UE-UPF包括第四下行时延,在下行时延D D-UE-UPF不包括第四下行时延的情况中,在S1021中,CU-UP向UPF发送UL PDU SESSION INFORMATION,UL PDU SESSION INFORMATION中携带第二时间,在S1022中,UPF 根据该发送时间和该第二时间,确定下行帧在终端设备与UPF(即,核心网设备)之间的下行时延D D-UE-UPF
以上,结合图12至图20,对下行突发的时延做了详细说明,以下,结合图21至图22,对突发的误突发率做说明。
图21是本申请实施例提供的突发监测的方法1100的示意性流程图。该方法1100用于确定误突发率,适用于上行传输和下行传输。
在S1110中,核心网设备向接入网设备发送误突发监测请求。
对应地,接入网设备接收该误突发监测请求。
该误突发监测请求指示接入网设备向核心网设备上报多个突发的误突发率。
在上行传输中,突发是上行突发,误突发率也是针对上行突发的误突发率。
在下行传输中,突发是下行突发,误突发率也是针对下行突发的误突发率。
应理解,该误突发监测请求可以是单独的一个信息,也可以是携带在其他信息的内容,本申请实施例不做任何限定。
示例性地,该误突发监测请求可以是携带在DL PDU SESSION INFORMATION中的字段。
在S1120中,接入网设备响应于该误突发监测请求,确定误突发率,该误突发率表示多个突发中第一类突发的数量与该多个突发的数量的关系,该第一类突发表示一个突发内有至少一个数据包未在预设时延内被接收端成功接收。
用于确定误突发率的多个突发表示的是一段时间内的多个突发,该一段时间可以是协议预定义的,也可以是接入网设备设置或配置的。此外,上行传输和下行传输的一段时间可以相同,也可以不同,不做限定。
用于确定是否为第一类突发的预设时延可以是协议预定义的,也可以是接入网设备设置或配置的。此外,上行传输和下行传输的预设时延可以相同,也可以不同,不做限定。
用于确定第一类突发的至少一个数据包可以是1个、2个、3个等的数据包。
在上行传输中,第一类突发表示一个突发内有至少一个数据包未在预设时延内被接入网设备成功接收,接入网设备即为接收端。
在下行传输中,第一类突发表示一个突发内有至少一个数据包未在预设时延内被终端设备成功接收,终端设备即为接收端。应理解,下行传输中,接入网设备接收到针对数据包接收成功的反馈信息,则认为该数据包被终端设备接收成功。
假设,预设时延是10ms,有10个突发,每个突发包括10个数据包,用于确定第一类突发的至少一个数据包为1个数据包。在传输过程中,其中的1个突发有2个数据包未在预设时延内被接收端成功接收,另一个突发有1个数据包未在预设时延内被接收端成功接收,其余的8个突发都在预设时延内被接收端成功接收。那么,第一类突发包括该2个突发。
在一些实施例中,该误突发率是该第一类突发的数量与该多个突发的数量的比值。
继续以上述举例为例,第一类突发包括2个突发,突发的总数为10,则,误突发率为2/10=20%。
当然,误突发率还可以根据该第一类突发的数量与该多个突发的数量以其他方式确定,本申请实施例不做任何限定。
在一些实施例中,该第一类突发还可以表示一个突发内的第一类数据有至少一个数据包未在预设时延内被接收端成功接收。其中,该第一类数据是一个突发产生的基本层的数据,基本层的数据是用于该基本层的数据所属的突发或其他突发进行解码所参考的数据。
在一些场景中,编码器可以将一个突发编码生成分成2类数据:第一类数据是基本层的数据,第二类数据是增强层的数据,即,意味着一个突发包括基本层的数据和增强层的数据。而且,该场景中,基站可分开统计基本层的数据和增强层的数据的时延。因此,在一些情况中,只要突发中基本层的数据被接收端成功接收,也可以认为该突发被成功传输。所以,在计算误突发率时,可以只需要计算第一类数据内的数据包是否被成功接收即可。
在S1130中,该接入网设备向该核心网设备发送响应信息,该响应信息包括该误突发率。
对应地,核心网设备接收该响应信息,获得该误突发率。
本申请实施例提供的突发监测的方法,提供了确定突发的误突发率的方法,误突发率表示多个突发中该多个突发与未被接收端成功接收的第一类突发的关系,接入网设备基于核心网设备的误突发监测请求确定该多个突发的误突发率且将该误突发率发送给核心网设备,这样,实现了通过接入网设备监测突发在终端设备和接入网设备之间的误突发率的过程,从而,基于针对突发的误突发率可以更为精确地评估数据的传输性能,以提高用户体验。
作为示例,下面,结合图22,描述在DU和CU分离的场景下进行突发监测的方法。该方法示例的是监测误突发率的过程。图22所示的方法涉及的网元包括:终端设备、核心网设备的SMF、UPF,接入网设备的CU-CP、CU-UP。此外,作为一个具体的实施例,以帧作为突发的一例、以UE作为终端设备的一例对图22所示的方法做说明。示例性地,下行帧可以为视频帧。
S1211、SMF向CU-CP发送PDU SESSION RESOURCE SETUP REQUEST,PDU SESSION RESOURCE SETUP REQUEST中携带QFI和误帧率服务质量监测请求。
其中,误帧率服务质量监测请求用于指示监视的传输方向,该传输方向包括上行、下行。CU-CP收到该误帧率服务质量监测请求后,可以使DU和CU-UP能针对QFI的DRB进行误帧率服务质量监测功能,可以使得DU开启帧监测功能。
应理解,在以突发作为描述对象时,误帧率服务质量监测请求也可以称为误突发率服务质量监测请求,两者描述可以替换。
S1212、CU-CP向CU-UP发送BEARER CONTEXT SETUP REQUEST,BEARERCONTEXT SETUP REQUEST中携带QFI和误帧率服务质量监测请求。
相应地,CU-UP接收CU-CP发送的BEARER CONTEXT SETUP REQUEST,CU-UP可以针对QFI的DRB进行误帧率服务质量监测功能。
应理解,在以突发作为描述对象时,误帧率服务质量监测功能也可以称为误突发率服务质量监测功能,两者描述可以替换。
S1213、CU-CP向DU发送UE CONTEXT SETUP REQUEST,UE CONTEXT SETUP REQUEST中携带QFI和误帧率服务质量监测请求。
相应地,DU从CU-CP接收UE CONTEXT SETUP REQUEST,获得QFI和对应的误帧率服务质量监测请求,DU可以针对该QFI的DRB进行误帧率服务质量监测功能。
S1214、UPF向CU-UP发送DL PDU SESSION INFORMATION,DL PDU SESSION INFORMATION中携带QoS监视误帧。其中,QoS监视误帧可以理解为方法1100中的误突发监测请求。
应理解,在以突发作为描述对象时,QoS监视误帧也可以称为QoS监视误突发,两者描述可以替换。
S1215、CU-UP向DU发送DL USER DATA(PDU Type 0),DL USER DATA携带QoS监视误帧。
对应地,DU接收DL USER DATA(PDU Type 0),获得QoS监视误帧。
S1216、DU确定误帧率。
DU监测一段时间内多个帧中的第一类帧,根据第一类帧和多个帧的数量得到误帧率,关于确定误帧率的具体描述可参考上文的相关描述,不再赘述。
应理解,在以突发作为描述对象时,误帧率也可以称为误突发率,两者描述可以替换。
S1217、DU向CU-UP发送UL ASSISTANCE INFORMATION DATA(PDU Type 2),其中,UL ASSISTANCE INFORMATION DATA中携带误帧率。
对应地,CU-UP接收UL ASSISTANCE INFORMATION DATA,获得误帧率。
S1218、CU-UP向UPF发送UL PDU SESSION INFORMATION,UL PDU SESSION INFORMATION中携带误帧率。
对应地,UPF接收UL PDU SESSION INFORMATION,获得误帧率。
以上,结合图1至图22,详细说明了本申请实施例提供的突发监测的方法,下面将结合图23至图24,详细描述根据本申请实施例提供的突发监测的装置。
图23示出了本申请实施例提供的突发监测的装置1300,该装置1300可以是接入网设备或核心网设备,也可以为接入网设备或核心网设备中的芯片。该装置1300包括:通信单元1310和处理单元1320。
在一种可能的实现方式中,装置1300用于执行上述方法100中接入网设备对应的各个流程和步骤。其中,处理单元1320可用于执行方法100中的步骤S120,通信单元1310可用于执行方法100中的步骤S110。
在另一种可能的实现方式中,装置1300用于执行上述方法100中核心网设备对应的各个流程和步骤。其中,处理单元1320可用于执行方法100中的步骤S140和S150,通信单元1310可用于执行方法100中的步骤S110和S130。
在另一种可能的实现方式中,装置1300用于执行上述方法400中核心网设备对应的各个流程和步骤。其中,通信单元1310可用于执行方法400中的步骤S410和S430,处理单元1320可用于执行方法400中的步骤S440和S450。
在另一种可能的实现方式中,装置1300用于执行上述方法600中接入网设备对应的各个流程和步骤。其中,通信单元1310可用于执行方法600中的步骤S610,处理单元1320可用于执行方法600中的步骤S620。
在另一种可能的实现方式中,装置1300用于执行上述方法600中核心网设备对应的各个流程和步骤。其中,通信单元1310可用于执行方法600中的步骤S610和S630,处理单元1320可用于执行方法600中的步骤S640和S650。
在另一种可能的实现方式中,装置1300用于执行上述方法900中核心网设备对应的 各个流程和步骤。其中,通信单元1310可用于执行方法900中的步骤S910和S930,处理单元1320可用于执行方法900中的步骤S940和S950。
在另一种可能的实现方式中,装置1300用于执行上述方法1100中接入网设备对应的各个流程和步骤。其中,通信单元1310可用于执行方法1100中的步骤S1110和S1130,处理单元1320可用于执行方法1100中的步骤S1120。
应理解,各单元执行上述各个方法中相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,此处不再赘述。
应理解,这里的装置1300以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
上述各个方案的装置1300具有实现上述方法中接入网设备或核心网设备执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如通信单元可以由发射机和接收机替代,其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。此外,装置1300中的通信单元也可以由发送单元和接收单元组成,对于执行与接收相关的操作,可以将该通信单元的功能理解为接收单元执行的接收操作,对于执行与发送相关的操作,可以将该通信单元的功能理解为发送单元执行的发送操作。
在本申请的实施例,图23中的装置也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,收发单元可以是该芯片的收发电路,在此不做限定。
图24示出了本申请实施例提供的另一突发监测的装置1400。应理解,装置1400可以具体为上述实施例中的接入网设备或核心网设备,并且可以用于执行上述方法实施例中与接入网设备或核心网设备对应的各个步骤和/或流程。
装置1400包括处理器1410、收发器1420和存储器1430。其中,处理器1410、收发器1420和存储器1430通过内部连接通路互相通信,处理器1410可以实现装置1300中各种可能的实现方式中处理单元1320的功能,收发器1420可以实现装置1300中各种可能的实现方式中通信单元1310的功能。存储器1430用于存储指令,处理器1410用于执行存储器1430存储的指令,或者说,处理器1410可以调用这些存储指令实现装置1300中处理器520的功能,以控制收发器1420发送信号和/或接收信号。
可选地,该存储器1430可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器1410可以用于执行存储器中存储的指令,并且当该处理器1410执行存储器中存储的指令时,该处理器1410用于执行上述与接入网设备或核心网设备对应的方法实施例的各个步骤和/或流程。
在一种可能的实现方式中,装置1400用于执行上述方法100中接入网设备对应的各个流程和步骤。其中,处理器1410可用于执行方法100中的步骤S120,收发器1420可用于执行方法100中的步骤S110。
在另一种可能的实现方式中,装置1400用于执行上述方法100中核心网设备对应的 各个流程和步骤。其中,处理器1410可用于执行方法100中的步骤S140和S150,收发器1420可用于执行方法100中的步骤S110和S130。
在另一种可能的实现方式中,装置1400用于执行上述方法400中核心网设备对应的各个流程和步骤。其中,收发器1420可用于执行方法400中的步骤S410和S430,处理器1410可用于执行方法400中的步骤S440和S450。
在另一种可能的实现方式中,装置1400用于执行上述方法600中接入网设备对应的各个流程和步骤。其中,收发器1420可用于执行方法600中的步骤S610,处理器1410可用于执行方法600中的步骤S620。
在另一种可能的实现方式中,装置1400用于执行上述方法600中核心网设备对应的各个流程和步骤。其中,收发器1420可用于执行方法600中的步骤S610和S630,处理器1410可用于执行方法600中的步骤S640和S650。
在另一种可能的实现方式中,装置1400用于执行上述方法900中核心网设备对应的各个流程和步骤。其中,收发器1420可用于执行方法900中的步骤S910和S930,处理器1410可用于执行方法900中的步骤S940和S950。
在另一种可能的实现方式中,装置1400用于执行上述方法1100中接入网设备对应的各个流程和步骤。其中,收发器1420可用于执行方法1100中的步骤S1110和S1130,处理器1410可用于执行方法1100中的步骤S1120。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (32)

  1. 一种突发监测的方法,其特征在于,包括:
    接入网设备接收来自核心网设备的时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
    所述接入网设备响应于所述时延监测请求,确定上行突发在终端设备和所述接入网设备之间的上行时延,其中,所述上行突发在所述终端设备和所述接入网设备之间的上行时延包括第一上行时延,所述第一上行时延包括从第一时间到第二时间的时长,所述第一时间是所述上行突发中第一个到达所述终端设备的媒体访问控制MAC层的数据包的授权时间,所述第二时间是所述上行突发中最后一个从所述接入网设备的分组数据汇聚协议PDCP层发送的数据包的发送时间。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一上行时延包括第二上行时延和第三上行时延,其中,所述第二上行时延包括从所述第一时间到第三时间的时长,所述第三上行时延包括从所述第三时间到所述第二时间的时长,所述第三时间是所述上行突发中最后一个从所述接入网设备的无线链路控制RLC层向所述接入网设备的PDCP层发送的数据包的发送时间。
  3. 根据权利要求1或2所述的方法,其特征在于,所述上行突发在所述终端设备和所述接入网设备之间的上行时延还包括第四上行时延,所述第四上行时延包括从第四时间到第五时间的时长,或,所述第四上行时延包括从第四时间到所述第一时间的时长,所述第四时间是所述上行突发中第一个到达所述终端设备的PDCP层的数据包的到达时间,所述第五时间是所述上行突发中第一个到达所述终端设备的MAC层的数据包的到达时间。
  4. 根据权利要求3所述的方法,其特征在于,所述接入网设备响应于所述时延监测请求,确定上行突发在终端设备和所述接入网设备之间的上行时延,包括:
    所述接入网设备响应于所述时延监测请求,确定第二上行时延和第三上行时延,所述第二上行时延包括从所述第一时间到第三时间的时长,所述第三上行时延包括从所述第三时间到所述第二时间的时长,所述第三时间是所述上行突发中最后一个从所述接入网设备的无线链路控制RLC层向所述接入网设备的PDCP层发送的数据包的发送时间;
    所述接入网设备确定所述第四上行时延;
    所述接入网设备根据所述第二上行时延、所述第三上行时延和所述第四上行时延,确定所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
  5. 根据权利要求3所述的方法,其特征在于,所述接入网设备响应于所述时延监测请求,确定上行突发在终端设备和所述接入网设备之间的上行时延,包括:
    所述接入网设备响应于所述时延监测请求,确定所述第一时间和第二时间;
    所述接入网设备确定所述第四上行时延;
    所述接入网设备根据所述第四上行时延、所述第一时间和所述第二时间,确定所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
  6. 根据权利要求2所述的方法,其特征在于,所述接入网设备响应于所述时延监测请求,确定上行突发在终端设备和所述接入网设备之间的上行时延,包括:
    所述接入网设备响应于所述时延监测请求,确定所述第二上行时延和所述第三上行时延;
    所述接入网设备根据所述第二上行时延和所述第三上行时延,确定所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
  7. 根据权利要求2所述的方法,其特征在于,所述接入网设备响应于所述时延监测请求,确定上行突发在终端设备和所述接入网设备之间的上行时延,包括:
    所述接入网设备响应于所述时延监测请求,确定所述第一时间和所述第二时间;
    所述接入网设备根据所述第一时间和所述第二时间,确定所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述核心网设备发送响应信息,所述响应信息包括所述上行突发在所述终端设备和所述接入网设备之间的上行时延。
  9. 一种突发监测的方法,其特征在于,包括:
    核心网设备向接入网设备发送时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
    所述核心网设备接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括上行突发在终端设备和所述接入网设备之间的上行时延,其中,所述上行突发在所述终端设备和所述接入网设备之间的上行时延包括第一上行时延,所述第一上行时延包括从第一时间到第二时间的时长,所述第一时间是所述上行突发中第一个到达所述终端设备的媒体访问控制MAC层的数据包的授权时间,所述第二时间是所述上行突发中最后一个从所述接入网设备的分组数据汇聚协议PDCP层发送的数据包的发送时间;
    所述核心网设备确定第五上行时延,所述第五上行时延是所述上行突发中最后一个从所述接入网设备的PDCP层发送的数据包在所述接入网设备和所述核心网设备之间的时延;
    所述核心网设备根据所述第五上行时延和所述上行突发在所述终端设备和所述接入网设备之间的上行时延,确定所述上行突发在所述终端设备和所述核心网设备之间的上行时延。
  10. 根据权利要求9所述的方法,其特征在于,所述上行突发在所述终端设备和所述接入网设备之间的上行时延还包括第四上行时延,所述第四上行时延包括从第四时间到第五时间的时长,或,所述第四上行时延包括从第四时间到所述第一时间的时长,所述第四时间是所述上行突发中第一个到达所述终端设备的PDCP层的数据包的到达时间,所述第五时间是所述上行突发中第一个到达所述终端设备的MAC层的数据包的到达时间。
  11. 一种突发监测的方法,其特征在于,包括:
    核心网设备向接入网设备发送时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
    所述核心网设备接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括第一时间,所述第一时间是所述上行突发中第一个到达终端设备的媒体访问控制MAC层的数据包的授权时间;
    所述核心网设备确定所述上行突发中最后一个到达所述核心网设备的数据包的到达时间;
    所述核心网设备根据所述第一时间和所述到达时间,确定所述上行突发在所述终端设备和所述核心网设备之间的上行时延。
  12. 根据权利要求11所述的方法,其特征在于,所述响应信息还包括第四上行时延,所述第四上行时延包括从第四时间到第五时间的时长,或,所述第四上行时延包括从第四时间到所述第一时间的时长,所述第四时间是所述上行突发中第一个到达所述终端设备的PDCP层的数据包的到达时间,所述第五时间是所述上行突发中第一个到达所述终端设备的MAC层的数据包的到达时间;以及,
    所述核心网设备根据所述第一时间和所述到达时间,确定所述上行突发在所述终端设备和所述核心网设备之间的上行时延,包括:
    所述核心网设备根据所述第一时间、所述到达时间和所述第四上行时延,确定所述上行突发在所述终端设备和所述核心网设备之间的上行时延。
  13. 一种突发监测的方法,其特征在于,包括:
    接入网设备接收来自核心网设备的时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
    所述接入网设备响应于所述时延监测请求,确定下行突发在终端设备和所述接入网设备之间的下行时延,所述下行突发在所述终端设备和所述接入网设备之间的下行时延包括第一下行时延,所述第一下行时延包括从第一时间到第二时间的时长,所述第一时间是所述下行突发中第一个到达所述接入网设备的分组数据汇聚协议PDCP层的数据包的到达时间,所述第二时间是到达所述接入网设备的媒体访问控制MAC层的最后一个反馈信息的到达时间,或,所述第二时间是从所述终端设备的物理层发送最后一个反馈信息的发送时间,所述反馈信息用于指示所述终端设备成功接收所述下行突发中的一个数据包。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一下行时延包括第二下行时延和第三下行时延,所述第二下行时延包括从第三时间到所述第二时间的时长,所述第三下行时延包括从所述第一时间到所述第三时间的时长,所述第三时间是所述下行突发中第一个到达所述接入网设备的无线链路控制RLC层的数据包的到达时间。
  15. 根据权利要求14所述的方法,其特征在于,所述接入网设备响应于所述时延监测请求,确定下行突发在所述终端设备和所述接入网设备之间的下行时延,包括:
    所述接入网设备响应于所述时延监测请求,确定所述第二下行时延和所述第三下行时延;
    所述接入网设备根据所述第二下行时延和所述第三下行时延,确定所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
  16. 根据权利要求14所述的方法,其特征在于,所述接入网设备响应于所述时延监测请求,确定下行突发在所述终端设备和所述接入网设备之间的下行时延,包括:
    所述接入网设备响应于所述时延监测请求,确定所述第一时间和所述第二时间;
    所述接入网设备根据所述第一时间和所述第二时间,确定所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
  17. 根据权利要求13或14所述的方法,其特征在于,所述下行突发在所述终端设备和所述接入网设备之间的下行时延还包括第四下行时延,所述第四下行时延包括从第四时间到第五时间的时长,所述第四时间是所述下行突发中最后一个到达所述终端设备的MAC层的数据包的到达时间,所述第五时间是所述下行突发中最后一个从所述终端设备的PDCP层发送的数据包的发送时间。
  18. 根据权利要求17所述的方法,其特征在于,所述接入网设备响应于所述时延监测请求,确定下行突发在所述终端设备和所述接入网设备之间的下行时延,包括:
    所述接入网设备响应于所述时延监测请求,确定第二下行时延和第三下行时延,所述第二下行时延包括从第三时间到所述第二时间的时长,所述第三下行时延包括从所述第一时间到所述第三时间的时长,所述第三时间是所述下行突发中第一个到达所述接入网设备的无线链路控制RLC层的数据包的到达时间;
    所述接入网设备确定所述第四下行时延;
    所述接入网设备根据所述第二下行时延、所述第三下行时延和所述第四下行时延,确定所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
  19. 根据权利要求17所述的方法,其特征在于,所述接入网设备响应于所述时延监测请求,确定下行突发在所述终端设备和所述接入网设备之间的下行时延,包括:
    所述接入网设备响应于所述时延监测请求,确定所述第一时间和所述第二时间;
    所述接入网设备确定所述第四下行时延;
    所述接入网设备根据所述第一时间、所述第二时间和所述第四下行时延,确定所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
  20. 根据权利要求13至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述核心网设备发送响应信息,所述响应信息包括所述下行突发在所述终端设备和所述接入网设备之间的下行时延。
  21. 一种突发监测的方法,其特征在于,包括:
    核心网设备向接入网设备发送时延监测请求;
    所述核心网设备接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括下行突发在终端设备和所述接入网设备之间的下行时延,所述下行突发在所述终端设备和所述接入网设备之间的下行时延包括第一下行时延,所述第一下行时延包括从第一时间到第二时间的时长,所述第一时间是所述下行突发中第一个到达所述接入网设备的分组数据汇聚协议PDCP层的数据包的到达时间,所述第二时间是到达所述接入网设备的媒体访问控制MAC层的最后一个反馈信息的到达时间,或,所述第二时间是从所述终端设备的物理层发送最后一个反馈信息的发送时间,所述反馈信息用于指示所述终端设备成功接收所述下行突发中的一个数据包;
    所述核心网设备确定第五下行时延,所述第五下行时延是所述下行突发中第一个从所述核心网设备发送的数据包在所述接入网设备和所述核心网设备之间的时延;
    所述核心网设备根据所述第五下行时延和所述下行突发在所述终端设备和所述接入网设备之间的下行时延,确定所述下行突发在所述终端设备和所述核心网设备之间的下行时延。
  22. 根据权利要求21所述的方法,其特征在于,所述下行突发在所述终端设备和所 述核心网设备之间的下行时延还包括第四下行时延,所述第四下行时延包括从第四时间到第五时间的时长,所述第四时间是所述下行突发中最后一个达到所述终端设备的MAC层的数据包的到达时间,所述第五时间是所述下行突发中最后一个被从所述终端设备的PDCP层发送的数据包的发送时间。
  23. 一种突发监测的方法,其特征在于,包括:
    核心网设备向接入网设备发送时延监测请求;
    所述核心网设备接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括第二时间,所述第二时间是到达所述接入网设备的媒体访问控制MAC层的最后一个反馈信息的到达时间,或,所述第二时间是从所述终端设备的物理层发送最后一个反馈信息的发送时间,所述反馈信息用于指示所述终端设备成功接收所述下行突发中的一个数据包;
    所述核心网设备确定所述下行突发中第一个从所述核心网设备发送的数据包的发送时间;
    所述核心网设备根据所述第二时间和所述发送时间,确定所述下行突发在所述终端设备和所述核心网设备之间的下行时延。
  24. 根据权利要求23所述的方法,其特征在于,所述响应信息还包括第四下行时延,所述第四下行时延包括第四时间和第五时间之间的时长,所述第四时间是所述下行突发中最后一个到达所述终端设备的MAC层的数据包的到达时间,所述第五时间是所述下行突发中最后一个从所述终端设备的PDCP层发送的数据包的发送时间;以及,
    所述核心网设备根据所述第二时间和所述发送时间,确定所述下行突发在所述终端设备和所述核心网设备之间的下行时延,包括:
    所述核心网设备根据所述第二时间、所述发送时间和所述第四下行时延,确定所述下行突发在所述终端设备和所述核心网设备之间的下行时延。
  25. 一种突发监测的装置,其特征在于,包括:
    通信单元,用于接收来自核心网设备的时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
    处理单元,用于响应于所述时延监测请求,确定上行突发在终端设备和所述装置之间的上行时延,其中,所述上行突发在所述终端设备和所述装置之间的上行时延包括第一上行时延,所述第一上行时延包括从第一时间到第二时间的时长,所述第一时间是所述上行突发中第一个到达所述终端设备的媒体访问控制MAC层的数据包的授权时间,所述第二时间是所述上行突发中最后一个从所述装置的分组数据汇聚协议PDCP层发送的数据包的发送时间。
  26. 一种突发监测的装置,其特征在于,包括:
    通信单元,用于向接入网设备发送时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
    所述通信单元还用于,接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括上行突发在终端设备和所述接入网设备之间的上行时延,其中,所述上行突发在所述终端设备和所述接入网设备之间的上行时延包括第一上行时延,所述第一上行时延包括从第一时间到第二时间的时长,所述第一时间是所 述上行突发中第一个到达所述终端设备的媒体访问控制MAC层的数据包的授权时间,所述第二时间是所述上行突发中最后一个从所述接入网设备的分组数据汇聚协议PDCP层发送的数据包的发送时间;
    处理单元,用于确定第五上行时延,所述第五上行时延是所述上行突发中最后一个从所述接入网设备的PDCP层发送的数据包在所述接入网设备和所述装置之间的时延;
    所述处理单元还用于,根据所述第五上行时延和所述上行突发在所述终端设备和所述接入网设备之间的上行时延,确定所述上行突发在所述终端设备和所述装置之间的上行时延。
  27. 一种突发监测的装置,其特征在于,包括:
    通信单元,用于向接入网设备发送时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
    所述通信单元还用于,接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括第一时间,所述第一时间是所述上行突发中第一个到达终端设备的媒体访问控制MAC层的数据包的授权时间;
    处理单元,用于确定所述上行突发中最后一个到达所述核心网设备的数据包的到达时间;
    所述处理单元还用于,根据所述第一时间和所述到达时间,确定所述上行突发在所述终端设备和所述核心网设备之间的上行时延。
  28. 一种突发监测的装置,其特征在于,包括:
    通信单元,用于接收来自核心网设备的时延监测请求,所述时延监测请求用于指示对周期性的突发进行时延监测;
    处理单元,用于响应于所述时延监测请求,确定下行突发在终端设备和所述装置之间的下行时延,所述下行突发在所述终端设备和所述装置之间的下行时延包括第一下行时延,所述第一下行时延包括从第一时间到第二时间的时长,所述第一时间是所述下行突发中第一个到达所述装置的分组数据汇聚协议PDCP层的数据包的到达时间,所述第二时间是到达所述装置的媒体访问控制MAC层的最后一个反馈信息的到达时间,或,所述第二时间是从所述终端设备的物理层发送最后一个反馈信息的发送时间,所述反馈信息用于指示所述终端设备成功接收所述下行突发中的一个数据包。
  29. 一种突发监测的装置,其特征在于,包括:
    通信单元,用于向接入网设备发送时延监测请求;
    所述通信单元还用于,接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括下行突发在终端设备和所述接入网设备之间的下行时延,所述下行突发在所述终端设备和所述接入网设备之间的下行时延包括第一下行时延,所述第一下行时延包括从第一时间到第二时间的时长,所述第一时间是所述下行突发中第一个到达所述接入网设备的分组数据汇聚协议PDCP层的数据包的到达时间,所述第二时间是到达所述接入网设备的媒体访问控制MAC层的最后一个反馈信息的到达时间,或,所述第二时间是从所述终端设备的物理层发送最后一个反馈信息的发送时间,所述反馈信息用于指示所述终端设备成功接收所述下行突发中的一个数据包;
    处理单元,用于确定第五下行时延,所述第五下行时延是所述下行突发中第一个从所 述装置发送的数据包在所述接入网设备和所述装置之间的时延;
    所述处理单元还用于,根据所述第五下行时延和所述下行突发在所述终端设备和所述接入网设备之间的下行时延,确定所述下行突发在所述终端设备和所述装置之间的下行时延。
  30. 一种突发监测的装置,其特征在于,包括:
    通信单元,用于向接入网设备发送时延监测请求;
    所述通信单元还用于,接收来自所述接入网设备的响应信息,所述响应信息是响应于所述时延监测请求的信息,所述响应信息包括第二时间,所述第二时间是到达所述接入网设备的媒体访问控制MAC层的最后一个反馈信息的到达时间,或,所述第二时间是从所述终端设备的物理层发送最后一个反馈信息的发送时间,所述反馈信息用于指示所述终端设备成功接收所述下行突发中的一个数据包;
    处理单元,用于确定所述下行突发中第一个从所述装置发送的数据包的发送时间;
    所述处理单元还用于,根据所述第二时间和所述发送时间,确定所述下行突发在所述终端设备和所述装置之间的下行时延。
  31. 一种突发监测的装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于调用所述存储器中存储的计算机指令,以执行如权利要求1至8中任一项所述的方法,或,以执行如权利要求9或10所述的方法,以执行如权利要求11或12所述的方法,以执行如权利要求13至20所述的方法,以执行如权利要求21或22所述的方法,以执行如权利要求23或24所述的方法。
  32. 一种计算机可读存储介质,其特征在于,用于存储计算机指令,所述计算机指令用于实现如权利要求1至8中任一项所述的方法,或,用于实现如权利要求9或10所述的方法,用于实现如权利要求11或12所述的方法,用于实现如权利要求13至20所述的方法,用于实现如权利要求21或22所述的方法,用于实现如权利要求23或24所述的方法。
PCT/CN2021/081513 2021-03-18 2021-03-18 一种突发监测的方法和装置 WO2022193225A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/081513 WO2022193225A1 (zh) 2021-03-18 2021-03-18 一种突发监测的方法和装置
CN202180087516.2A CN116686325A (zh) 2021-03-18 2021-03-18 一种突发监测的方法和装置
EP21930817.8A EP4311293A4 (en) 2021-03-18 2021-03-18 METHOD AND APPARATUS FOR BURST MONITORING
US18/468,419 US20240007886A1 (en) 2021-03-18 2023-09-15 Burst monitoring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081513 WO2022193225A1 (zh) 2021-03-18 2021-03-18 一种突发监测的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/468,419 Continuation US20240007886A1 (en) 2021-03-18 2023-09-15 Burst monitoring method and apparatus

Publications (1)

Publication Number Publication Date
WO2022193225A1 true WO2022193225A1 (zh) 2022-09-22

Family

ID=83321330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081513 WO2022193225A1 (zh) 2021-03-18 2021-03-18 一种突发监测的方法和装置

Country Status (4)

Country Link
US (1) US20240007886A1 (zh)
EP (1) EP4311293A4 (zh)
CN (1) CN116686325A (zh)
WO (1) WO2022193225A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746788A2 (en) * 2005-07-20 2007-01-24 Tektronix, Inc. Method and system for calculating burst bit rate for IP interactive applications
CN101056199A (zh) * 2006-04-10 2007-10-17 华为技术有限公司 一种点对多点接入网的上行突发性能监控方法
CN101141410A (zh) * 2007-10-24 2008-03-12 中兴通讯股份有限公司 一种千兆无源光网络系统中下行流控信息的传递方法
CN104734772A (zh) * 2015-04-03 2015-06-24 烽火通信科技股份有限公司 无源光网络骨干光链路保护系统及其获取均衡时延的方法
CN111565411A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 时延测量方法、网络设备和终端设备
CN111867073A (zh) * 2019-04-30 2020-10-30 中国移动通信有限公司研究院 时间信息的处理方法、定时提前的确定方法及相关设备
CN111866929A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 通信方法、装置及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2525935A (en) * 2014-05-09 2015-11-11 Nec Corp Communication system
WO2016049925A1 (zh) * 2014-09-30 2016-04-07 华为技术有限公司 网络电话业务的服务质量参数获取装置、系统及方法
US10305767B2 (en) * 2015-07-28 2019-05-28 Nokia Solutions And Networks Oy Methods and apparatuses for measurement of packet delay in uplink in E-UTRAN

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746788A2 (en) * 2005-07-20 2007-01-24 Tektronix, Inc. Method and system for calculating burst bit rate for IP interactive applications
CN101056199A (zh) * 2006-04-10 2007-10-17 华为技术有限公司 一种点对多点接入网的上行突发性能监控方法
CN101141410A (zh) * 2007-10-24 2008-03-12 中兴通讯股份有限公司 一种千兆无源光网络系统中下行流控信息的传递方法
CN104734772A (zh) * 2015-04-03 2015-06-24 烽火通信科技股份有限公司 无源光网络骨干光链路保护系统及其获取均衡时延的方法
CN111565411A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 时延测量方法、网络设备和终端设备
CN111867073A (zh) * 2019-04-30 2020-10-30 中国移动通信有限公司研究院 时间信息的处理方法、定时提前的确定方法及相关设备
CN111866929A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 通信方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4311293A4 *

Also Published As

Publication number Publication date
EP4311293A1 (en) 2024-01-24
CN116686325A (zh) 2023-09-01
US20240007886A1 (en) 2024-01-04
EP4311293A4 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
KR20210042963A (ko) 데이터 전송 방법 및 장치, 트래픽 전환 방법 및 장치
RU2422999C2 (ru) Способ работы улучшенных модуля управления радиоканалом (rlc) и модуля управления радиосетью (rnc) для множественного доступа с кодовым разделением каналов и система для его осуществления
CN111757513B (zh) 通信方法及设备
TWI445360B (zh) 在無線通訊系統中產生資料區塊的方法
EP3621348B1 (en) Mobile station and base station
JP5580418B2 (ja) 単一のrlcエンティティについての拡張された多重化
KR20060090191A (ko) 이동통신 시스템에서 재전송 제어를 위한 상태보고의요청/전송 방법 및 장치
CN109803315B (zh) 数据传输方法及装置
CN112003684A (zh) 数据传输方法及装置
WO2018058380A1 (zh) 一种数据传输方法、网络设备及终端设备
WO2021052467A1 (zh) 通信方法及装置
CN107113811A (zh) 一种建立数据无线承载的方法及装置
WO2014172896A1 (zh) 一种数据传输的方法、基站和无线通信设备
US20050054347A1 (en) Uplink resource allocation
CN115250506A (zh) 一种通信方法及设备
WO2024028277A1 (en) Infrastructure equipment, communications devices and methods
WO2022193225A1 (zh) 一种突发监测的方法和装置
WO2017028681A1 (zh) 一种数据传输状态的报告、确定传输数据量的方法及装置
CN101990241B (zh) 一种分组数据传输系统和方法
EP4211836B1 (en) Burst transmission of data packets with feedback
KR20090084701A (ko) SR (Scheduling Request) 과 PBR (Prioritized Bit Rate)을 고려하여 DRX(Discontinuous Reception) 동작을 효율적으로 수행하는 방법
CN113439401B (zh) 用于传输具有多个自动重传请求进程的数据流的方法、装置和系统
US20240146462A1 (en) Relay-assisted retransmission
CN117354950A (zh) 一种通信方法及装置
CN117479225A (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087516.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021930817

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021930817

Country of ref document: EP

Effective date: 20231016