WO2017028552A1 - 组合静磁场辅助作用下轧制金属线棒材的方法 - Google Patents
组合静磁场辅助作用下轧制金属线棒材的方法 Download PDFInfo
- Publication number
- WO2017028552A1 WO2017028552A1 PCT/CN2016/080088 CN2016080088W WO2017028552A1 WO 2017028552 A1 WO2017028552 A1 WO 2017028552A1 CN 2016080088 W CN2016080088 W CN 2016080088W WO 2017028552 A1 WO2017028552 A1 WO 2017028552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- wire bar
- rolling
- static magnetic
- width
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/16—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
- B21B1/18—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/42—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for step-by-step or planetary rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B39/00—Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B39/02—Feeding or supporting work; Braking or tensioning arrangements, e.g. threading arrangements
- B21B39/06—Pushing or forcing work into pass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B9/00—Measures for carrying out rolling operations under special conditions, e.g. in vacuum or inert atmosphere to prevent oxidation of work; Special measures for removing fumes from rolling mills
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D10/00—Modifying the physical properties by methods other than heat treatment or deformation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/46—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
- B21B1/463—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/04—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
- B21C37/047—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire of fine wires
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
Definitions
- the invention mainly relates to the field of metal wire bar extrusion rolling and drawing technology, in particular to a method for rolling a metal wire bar under the combined static magnetic field assisting action.
- Metal wire rod is an important material for engineering machinery. Its main production method is through rolling extrusion and drawing; due to the large deformation resistance of many metals, the rolling of metal wire rods or Pulling requires high energy consumption, especially when using high-strength metal production line bars, which is difficult to process, dimensional accuracy and low yield. In addition, in the process of metal rolling extrusion and drawing, it is easy to make metal Deformation processing often requires heating the wire rod billet to a higher temperature. For some active metals, especially aluminum, magnesium, titanium, etc., the oxidation and embrittlement of the high temperature processing process will seriously reduce the quality of the finished product.
- CN103628010A discloses a magneto-optical coupling method for improving the plastic deformation ability of an aluminum-based composite material, which requires a photon-magnetic field coupling action for 20s-200s, which can improve the plastic deformation ability of the aluminum-based composite material.
- the shortcoming of the method is that the magneto-optical coupling method is more complicated, and the matching between parameters is difficult.
- the method requires a long time of magneto-optical coupling, which is not suitable for continuous extrusion rolling and drawing of high-speed bar.
- CN103643190A discloses a method for improving the deformability of an aluminum-based composite material, and proposes that applying a 1T-50T DC static magnetic field of 30s-200s to the aluminum-based composite material can improve the plastic deformation ability of the aluminum-based composite material, and the method is adopted.
- the DC magnetic field is relatively strong, especially the composite material needs to be processed in a magnetic field for a long time, and therefore, it is not suitable for high-speed bar rolling.
- the object of the invention is to realize the metal in the process of high-speed rolling extrusion and drawing of the metal wire bar, supplemented by the static magnetic field, use the magnetic field to reduce the deformation resistance of the material processing process and the adverse effect of the work hardening on the further processing of the material.
- the high-speed, high-precision and high-yield processing of wire rods solves the problems caused by the high deformation resistance of the high-speed bar processing and the hardening of the processing process, and overcomes the existing technology to improve the plasticity of the material. The problem of complicated technology.
- the object of the invention is achieved by the method of combining the static magnetic field to assist the rolling of the metal wire bar.
- the method is characterized in that: a static magnetic field is arranged in the traveling direction of the metal wire bar blank, and the metal wire bar material is subjected to a magnetic field in the process of passing through the static magnetic field region before the metal wire bar is rolled and extruded.
- the longitudinal center line of the wire bar billet is in the same direction as the traveling direction, and the billet is subjected to rolling extrusion and drawing after the static magnetic field assisting treatment;
- the static magnetic field of the first pass rolling that is, the initial rolling is a gradient magnetic field composed of three sets of eternal magnets and a set of stable electromagnets arranged side by side along the traveling direction of the wire bar blank; among the three sets of eternal magnets, the magnetic induction intensity of the first set of eternal magnets is 0.01-0.30T,
- the width along the direction of travel of the wire bar billet is 0.1-1.0 m
- the magnetic induction of the second group of eternity magnets is 0.31-0.60 T
- the width along the direction of travel of the wire bar billet is 0.1.
- the magnetic induction intensity of the third group of eternal magnets is 0.61 - 0.99T, and the width along the direction of travel of the wire bar billet is 0.1 - 1.0 m;
- the ring-shaped DC superconducting magnet has a magnetic induction intensity of 1.01 - 3.00T, and the central axis of the steady electromagnet is in line with the central axis of the wire bar blank, and the steady electromagnet is along the traveling direction of the wire bar blank.
- the width, that is, the width of the active area is 0.1-1.0 meters.
- the static magnetic field treatment is performed before each pass rolling extrusion and drawing.
- the static magnetic field is arranged in the traveling direction of the wire bar blank, and the static magnetic field disposed in the second pass rolling is composed of a group of eternal magnets and a steady electromagnet arranged side by side along the traveling direction of the wire bar blank.
- a gradient magnetic field the magnetic induction intensity of the permanent magnet is 0.51 - 0.99T, and the width along the traveling direction of the wire bar blank is 0.5 - 1.0 m;
- the stable electromagnet is a circular DC superconducting
- the magnetic induction intensity of the magnet is 1.01 - 3.00T, the central axis of the steady electromagnet is in line with the central axis of the wire bar blank, and the width of the steady electromagnet along the traveling direction of the wire bar blank, that is, the width of the active region is 0.1-1.0 meters.
- the static magnetic field is disposed in the traveling direction of the wire bar blank, and the static magnetic field disposed in the multi-pass rolling after the second pass rolling is a magnetic field formed by a group of permanent magnets; the magnetic induction of the permanent magnet The strength is 0.31 - 0.75T, and the width along the direction of travel of the wire bar blank is 0.5-1.0 meters.
- the eternal magnet used may be a U-shaped magnet or a circular ring magnet; when a U-shaped magnet is used, the longitudinal center line of the metal wire bar blank and the U-shaped magnet The centerline of the notch is in a straight line; when a toroidal magnet is used, the longitudinal centerline of the wire bar blank is in line with the centerline of the toroidal magnet.
- the method of the invention is particularly suitable for extrusion rolling and drawing of non-magnetic metal material wire rods, and for the current metal wire rod production method, there is no need to change the existing heating, soaking and controlled rolling control.
- the cold method does not add any additional material processing steps. It only needs to place the required magnetostatic on the conveying track of the metal wire bar blank and the intermediate product.
- the field device enables the wire rod blank or the intermediate product to pass through the magnetic field region during the normal conveying process, thereby exerting the effect of the magnetic field on reducing the deformation resistance of the material and improving the plastic deformation ability of the material, thereby achieving the dimensional accuracy of the processed product. , product yield rate and the purpose of reducing processing defects.
- the deformation resistance of the material is lowered, the plastic deformation ability is improved, the dimensional accuracy of the processed product is improved, the product yield rate is improved, and the energy consumption of the processing is reduced, and the product is processed. Defects caused by process hardening are reduced.
- the deformation resistance of the material is reduced by 40-100 MPa, which can make the brittle fracture of the process basically disappear, and the material is finished. The rate is increased and the defects are significantly reduced.
- the electroplasticity has the advantages of simple method, safety and high efficiency. Electro-plasticity requires the introduction of pulse current in the blank, which has certain safety hazards to the metal processing process, and the present invention adopts The magnetic field formed by the eternal magnet does not need to consume any energy, and has the advantages of environmental protection, safety and energy saving; the DC superconducting magnetic field used also has the advantages of non-contact, safety and energy saving.
- Figure 1 is a schematic view of the rolling principle of the present invention.
- the blank to be rolled 2. The first set of eternal magnets; 3. The second set of eternal magnets; 4. The third set of eternal magnets; 5. The initial rolling stable electromagnet; 6. The first pass roll; 7. Transfer Roller; 8, the fourth set of eternal magnets; 9, the second pass rolling stable electromagnetic body; 10, the second pass roll; 11, the second pass after the eternal magnet.
- An oxygen-free copper blank was obtained by a power frequency induction melting furnace and semi-continuous casting, and a blank diameter of 18 cm was used as a billet for copper extrusion drawing of this example.
- the copper wire is produced by continuous extrusion process.
- the main method steps are as follows: firstly, the oxygen-free copper blank is heated to 650 ° C, and then enters the conveying roller, ready to be sent to the extruder for the first pass rolling, after entering the extruder
- a gradient magnetic field composed of three sets of U-shaped permanent magnets and a set of stable electromagnets is disposed on the front conveying roller; in this embodiment, the magnetic induction intensity of the first group of permanent magnets is 0.25T, and the width along the traveling direction of the wire bar blanks That is, the width of the active area is 0.5 m, and the magnetic induction of the second set of permanent magnets is 0.50 T.
- the width along the direction of travel of the wire bar blank is the width of the active area.
- the magnetic induction intensity of the third group of eternal magnets is 0.85T
- the width along the direction of travel of the wire bar billet is 0.1 m
- the steady electromagnet is a ring-shaped DC superconducting magnet with a magnetic induction of 2.0T.
- the mounting position of the eternal magnet ensures that the longitudinal centerline of the copper blank is in line with the notch centerline of the U-shaped magnet
- the mounting position of the stable electromagnet ensures the center axis of the stable electromagnet and the center of the wire bar blank
- the axis is on a straight line
- the width of the steady electromagnet along the direction of travel of the wire bar blank that is, the width of the active region is 0.2 m.
- the contact of oxygen avoids oxygen and ensures the low oxygen content of the copper wire; after the copper wire is extruded into the mold, it is cooled by a vacuum oxidation tube and a water tank, and dried to 25 ° C, and the diameter of the copper wire is ⁇ 10 mm.
- the obtained 10 mm diameter oxygen-free copper wire is drawn into copper filaments by multiple passes, and the drawing is divided into two times.
- the first drawing is drawn from a diameter of 10 mm to 2 mm.
- the magnetic field used for the first drawing that is, the static magnetic field disposed by the second pass rolling in the present invention, is a gradient magnetic field composed of a group of eternal magnets and a steady electromagnet arranged side by side;
- the eternal magnet is a toroidal magnet with a magnetic induction strength of 0.75T, and the width along the direction of travel of the wire bar blank is 0.75 meters;
- the stable electromagnet is a ring-shaped DC superconducting magnet, magnetic induction The strength is 3.00T, the central axis of the permanent magnet and the steady electromagnet is in line with the central axis of the wire bar blank, and the width of the steady electromagnet along the direction of travel of the wire bar blank, that is, the width of the active region is
- the second drawing draws a 2mm diameter copper wire into a thin copper wire with a diameter of 0.2mm.
- the copper wire is magnetically processed by a circular eternal magnet.
- the magnetic induction strength of the permanent magnet is 0.55T.
- Metal wire bar blank I.e., the width direction into the active region width is 0.5 m, the centerline of the longitudinal centerline and a circular wire ring magnet in a straight line.
- a copper rod having a diameter of 18 cm is extruded into a copper wire of 10 mm, and in the process of being twice drawn into a copper wire of 0.2 mm, in the case where the other processes are completely the same, the magnetic field is compared with the magnetic field of the present invention.
- the efficiency of extrusion and drawing is improved, in particular, the broken wire phenomenon in the drawing process completely disappears, and the smoothness of the surface of the wire is improved, the burr chamfering and the micro are improved during the process of pressing the round blank into a line. The crack disappears completely and the dimensional accuracy is improved.
- the contactless external field is applied only in the conveying roller path and the drawing process, and the continuity of the original production method is not changed, and the safety and the method are simple.
- the ultra-fine copper wire is produced by continuous extrusion and drawing process.
- the main method steps are as follows: firstly, the oxygen-free copper blank is heated to 650 ° C, and then enters the conveying roller, ready to be sent to the extruder for the first pass rolling.
- a gradient magnetic field composed of three sets of U-shaped permanent magnets and a set of stable electromagnets is placed on the transfer roller path before entering the extruder; in this embodiment, the magnetic induction intensity of the first set of permanent magnets is 0.30T, along the metal wire bar
- the width of the billet travel direction is the width of the action area is 0.5 m
- the magnetic induction intensity of the second group of eternity magnets is 0.60 T
- the width along the direction of travel of the metal bar billet that is, the width of the active area is 0.5 m
- the strength is 0.99T, the width along the direction of travel of the wire bar billet is 0.5 m
- the steady electromagnet is a ring-shaped DC superconducting magnet with a magnetic induction of 3.0T
- the installation position of the Eternal Magnet ensures the longitudinal direction of the copper billet
- the center line is in line with the notch center line of the U-shaped magnet, and the mounting position of the stable electromagnet
- the contact of oxygen avoids oxygen and ensures the low oxygen content of the copper wire; after the copper wire is extruded into the mold, it is cooled by a vacuum oxidation tube and a water tank, and dried to 25 ° C, and the diameter of the copper wire is ⁇ 10 mm.
- the obtained 10mm diameter oxygen-free copper wire is multi-pass drawn into ultra-fine copper filament, which is drawn three times.
- the first drawing is drawn from a diameter of 10mm to 1.2mm. In this process, the copper wire is drawn.
- the magnetic field used for the first drawing that is, the static magnetic field disposed by the second pass rolling in the present invention, is a gradient magnetic field composed of a group of eternal magnets and a steady electromagnet arranged side by side.
- the eternal magnet is a toroidal magnet having a magnetic induction strength of 0.99T, and a width along the traveling direction of the wire bar blank, that is, an effective region width of 0.50 m;
- the stable electromagnet is a ring-shaped DC superconducting magnet
- the magnetic induction intensity is 1.01T
- the central axis of the permanent magnet and the steady electromagnet is in line with the central axis of the wire bar blank, and the width of the steady electromagnet along the traveling direction of the wire bar blank, that is, the width of the active region is 0.1 m
- the second drawing draws a copper wire with a diameter of 1.2 mm into a thin copper wire with a diameter of 0.1 mm.
- the copper wire is magnetically processed by a circular eternal magnet, and the magnetic induction strength of the permanent magnet is 0.50.
- T along the metal line
- the width of the material billet traveling direction is the width of the action area is 0.5 m
- the longitudinal center line of the copper wire is in line with the center line of the toroidal magnet
- the third drawing pulls the thin copper wire with a diameter of 0.1 mm into 0.02.
- Ultra-fine copper wire of mm the magnetic wire is processed by the circular permanent magnet after the third drawing, the magnetic induction intensity of the permanent magnet is 0.31T, and the width along the traveling direction of the wire bar blank is 0.51.
- the longitudinal centerline of the copper wire is in line with the centerline of the toroidal magnet.
- the efficiency of extrusion and drawing is improved, especially the broken wire phenomenon in the drawing process completely disappears.
- the surface smoothness of the wire is improved, and the burr chamfering and microcrack disappear completely.
- the dimensional accuracy is improved.
- the contactless external field is applied only in the conveying roller path and the drawing process, and the continuity of the original production method is not changed, and the safety and the method are simple.
- the 200 mm diameter magnesium alloy ingot was preheated to 350 ° C, placed in a transfer roller equipped with a static magnetic field, the extrusion die was preheated to 350 ° C, and the magnesium alloy ingot was extruded into a 10 mm using a metal extruder.
- the magnetic induction intensity of the second group of eternal magnets is 0.40T
- the width along the direction of travel of the wire bar billet is 0.20 m
- the magnetic induction of the third group of eternal magnets is 0.65 T, along the wire bar
- the width of the billet traveling direction that is, the width of the active region is 0.20 m
- the center line of the three sets of circular magnets is in line with the longitudinal center line of the magnesium alloy ingot
- the stable electromagnet is a ring-shaped DC superconducting magnet
- the magnetic induction intensity is 1.20T
- the central axis of the electromagnet is in line with the central axis of the wire bar blank, and the width of the steady electromagnet along the direction of travel of the wire bar blank is 0.20 meters
- the second pass is placed
- the static magnetic field is a gradient magnetic field composed of a group of circular ring-shaped permanent magnets and a steady electromagnet arranged side by side.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Metal Extraction Processes (AREA)
- Wire Processing (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Hard Magnetic Materials (AREA)
Abstract
一种组合静磁场辅助作用下轧制金属线棒材的方法,在金属线棒材挤压拉拔前和挤压拉拔的过程中施加组合静磁场,具体方法是在金属线棒材行进方向上设置永恒磁体(2,3,4,8,11)和稳恒电磁体(5,9)组成的梯度静磁场,轧制金属线棒材的坯料(1)经梯度静磁场处理后进行轧制挤压和拉拔,对于多道次的轧制挤压和拉拔,在每道次轧制前都经静磁场处理,采用上述方法使得材料的变形抗力显著降低,轧制缺陷减少,成品的尺寸精整度高,材料的机械性能特别是强度和韧性提高,实现材料强韧性的同时强化。
Description
本发明主要涉及金属线棒材挤压轧制和拉拔技术领域,特别涉及到组合静磁场辅助作用下轧制金属线棒材的方法。
金属线棒材是一种重要的工程机械用材料,其最主要的生产方法是通过轧制挤压和拉拔成型;由于许多金属的变形抗力比较大,金属线棒材的轧制挤压或拉拔需要消耗较高的能量,特别是利用高强度金属生产线棒材时加工难度大、尺寸精准度和成材率低;再者,在金属轧制挤压和拉拔过程中,为使金属容易变形加工,往往需要将金属线棒材坯料加热到较高的温度,这对一些活泼性金属特别是铝、镁、钛等来说,高温加工过程的氧化及脆化会严重降低成品的质量。
现有技术中,CN103628010A公开了一种提高铝基复合材料塑性变形能力的光磁耦合方法,该方法需要光子与磁场耦合作用20s-200s的时间,可以提高铝基复合材料的塑性变形能力,该方法的不足是光磁耦合方法比较复杂,参数间的匹配达到最优效果具有一定难度,特别是该方法需要光磁耦合的时间长,不太适合高速线棒材连续挤压轧制和拉拔过程;CN103643190A公开了一种提高铝基复合材料变形能力的方法,提出对铝基复合材料施加30s-200s的1T-50T的直流静磁场可以提高铝基复合材料的塑性变形能力,由于该方法采用的直流磁场比较强,特别是需要将复合材料在磁场中处理的时间长,因此,也不适合用于高速线棒材轧制使用。
因此,为降低金属线棒材加工过程中的变形抗力,降低能源消耗,同时提高金属线棒材轧制挤压和拉拔的效率、产品的尺寸精准度和成材率,提出了组合静磁场辅助作用下轧制金属线棒材的方法。
发明内容
本发明的目的是在金属线棒材高速轧制挤压和拉拔的过程中,辅以静磁场作用,利用磁场降低材料加工过程的变形抗力及加工硬化对材料进一步加工的不利影响,实现金属线棒材的高速、高精度和高成材率的加工,解决目前高速线棒材加工因材料变形抗力大、加工过程硬化导致的问题,并克服现有技术改善材料塑性存在的效率低、难度大、工艺复杂的问题。
本发明的目的是通过如下方案实现的:组合静磁场辅助作用下轧制金属线棒材的方
法,其特征在于:在金属线棒材坯料行进方向上安置静磁场,在金属线棒材轧制挤压拉拔前,使金属线棒材坯料在穿过静磁场区域的过程中受到磁场作用,金属线棒材坯料的纵向中心线与其行进方向一致,坯料在静磁场辅助作用处理后再经过轧辊进行轧制挤压和拉拔;第一道次轧制即初轧所安置的静磁场为沿金属线棒材坯料行进方向并列安置的三组永恒磁体和一组稳恒电磁体组成的梯度磁场;所述的三组永恒磁体中:第一组永恒磁体的磁感应强度为0.01—0.30T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1—1.0米,第二组永恒磁体的磁感应强度为0.31—0.60T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1—1.0米,第三组永恒磁体的磁感应强度为0.61—0.99T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1—1.0米;所述的稳恒电磁体为环形的直流超导磁体,磁感应强度为1.01—3.00T,稳恒电磁体的中心轴线与金属线棒材坯料的中心轴线在一条直线上,稳恒电磁体沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1—1.0米。
进一步地,对于多道次的轧制挤压和拉拔,在每道次轧制挤压和拉拔前都经静磁场处理。
所述的在金属线棒材坯料行进方向上安置静磁场,第二道次轧制所安置的静磁场为沿金属线棒材坯料行进方向并列安置的一组永恒磁体和稳恒电磁体组成的梯度磁场;所述的永恒磁体的磁感应强度为0.51—0.99T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5—1.0米;所述的稳恒电磁体为环形的直流超导磁体,磁感应强度为1.01—3.00T,稳恒电磁体的中心轴线与金属线棒材坯料的中心轴线在一条直线上,稳恒电磁体沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1—1.0米。
所述的在金属线棒材坯料行进方向上安置静磁场,第二道次轧制后的多道次轧制所安置的静磁场为一组永恒磁体形成的磁场;所述的永恒磁体的磁感应强度为0.31—0.75T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5—1.0米。
所述的静磁场为永恒磁体产生的磁场时,所用的永恒磁体可以是U型磁体,也可以是圆环形磁体;采用U型磁体时,金属线棒材坯料纵向中心线与U型磁体的槽口中心线在一条直线上;采用圆环形磁体时,金属线棒材坯料纵向中心线与圆环形磁体的中心线在一条直线上。
本发明的方法特别适合于非磁性的金属材料线棒材的挤压轧制和拉拔,对目前的金属线棒材生产方法而言,不需要改变现有的加热、均热及控轧控冷方法,也不额外增加材料的处理环节,仅需要在金属线棒材坯料及中间产品的传送轨道上安置所需要的静磁
场装置,使金属线棒材坯料或中间产品在正常的输送过程中穿过磁场区域,即可发挥磁场对降低材料变形抗力、提高材料塑性变形能力的作用,从而实现提高加工产品的尺寸精准度、产品成材率以及降低加工缺陷的目的。
本发明的优点包括:
1)与不施加磁场作用相比,采用本发明后,材料的变形抗力降低,塑性变形能力提高,加工产品的尺寸精准度、产品成材率提高,同时,加工过程的能耗降低,产品因加工过程硬化导致的缺陷降低。就已有数据而言,对铜、镁、钛及其合金,采用本发明,材料的变形抗力降低40-100MPa,这对材料的塑性加工而言,可以使得加工过程的脆断基本消失,成材率提高、缺陷显著减少。
2)与现有技术采用电致塑性而言,具有方法简单,安全且效率高的优势,电致塑性需要在坯料中通入脉冲电流,对金属加工过程存在一定安全隐患,而本发明,采用永恒磁体构成的磁场,不需要消耗任何能量,具有环保、安全、节能的优势;所采用的直流超导电磁场,也具有非接触、安全和节能优势。
3)本发明的方法简单,不需要增加额外的金属材料处理环节,不影响目前生产工艺及方法的连续性,并具有投资少,运行成本低的优势。
图1本发明的轧制原理示意图。
图注:
1、待轧坯料;2、第一组永恒磁体;3、第二组永恒磁体;4、第三组永恒磁体;5、初轧稳恒电磁体;6、第一道次轧辊;7、传送辊;8、第四组永恒磁体;9、第二道次轧制用稳恒电磁体;10、第二道次轧辊;11、第二道次轧制后永恒磁体。
实施例1:铜的挤压拉拔
通过工频感应熔炼炉与半连铸获得无氧铜坯,坯直径18cm作为本实施例铜挤压拉拔的坯料。
采用连续挤压工艺生产铜线,主要方法步骤如下:首先将无氧铜坯加热至650℃,后进入传送辊道,准备送入挤压机进行第一道次轧制,在进入挤压机前的传送辊道上安置三组U型永恒磁体和一组稳恒电磁体组成的梯度磁场;本实施例中第一组永恒磁体的磁感应强度为0.25T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5米,第二组永恒磁体的磁感应强度为0.50T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为
1.0米,第三组永恒磁体的磁感应强度为0.85T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1米;稳恒电磁体为环形的直流超导磁体,磁感应强度为2.0T;永恒磁体的安装位置保证铜坯料纵向中心线与U型磁体的槽口中心线在一条直线上,稳恒电磁体的安装位置保证该稳恒电磁体的中心轴线与金属线棒材坯料的中心轴线在一条直线上,稳恒电磁体沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.2米。
无氧铜坯经过上述的磁场处理后,送入连续挤压机,挤压成铜线,连续挤压机的转速为15r/min,铜线的挤出速度为20m/min,挤压过程中铜线的温度为600℃,挤压腔内的压力为1100MPa;且铜线挤出模具后采用真空水冷装置冷却,使铜线在高温挤出后进入真空管冷却,在整个变形过程中隔断了与氧的接触,避免吸氧,保证铜线低氧含量;铜线挤出模具后经过真空防氧化管及水槽冷却、吹干至25℃,得到的铜线直径为Ф10mm。
所得的直径为10mm无氧铜线采用多道次拉拔为铜细丝,拉拔分两次,第一次拉拔由直径10mm拉拔到2mm,在这个过程中,铜丝拉拔前,经过本发明的磁场处理,第一拉拔所用的磁场即本发明中的第二道次轧制所安置的静磁场,为并列安置的一组永恒磁体和稳恒电磁体组成的梯度磁场;所述的永恒磁体为圆环形磁体,磁感应强度为0.75T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.75米;所述的稳恒电磁体为环形的直流超导磁体,磁感应强度为3.00T,永恒磁体和稳恒电磁体的中心轴线与金属线棒材坯料的中心轴线在一条直线上,稳恒电磁体沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1米;第二次拉拔将直径2mm的铜丝拉成直径0.2mm的细铜丝,第二次拉拔前铜线经圆环形永恒磁体进行磁场处理,永恒磁体的磁感应强度为0.55T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5米,铜丝的纵向中心线与圆环形磁体的中心线在一条直线上。
由直径18cm的铜棒经挤压成10mm的铜线,在经两次拉拔加工成0.2mm的铜丝过程中,在其它工艺完全相同的情况下,对比施加磁场与不采用本发明磁场可知:采用本发明,挤压与拉拔的效率得到提高,特别是拉拔过程的断丝现象完全消失,由圆坯挤压成线的过程中,线材的表面光滑度提高,毛刺倒角和微裂纹完全消失,尺寸精准度提高,另外,采用本发明,只需在传送辊道和拉丝过程中施加无接触式外场,不改变原有生产方法的连续性,具有安全、方法简单的优势。
实施例2:铜的挤压拉拔
通过工频感应熔炼炉与半连铸获得无氧铜坯,坯直径20cm,作为本实施例铜挤压拉拔的坯料;
采用连续挤压与拉拔工艺生产超微细铜线,主要方法步骤如下:首先将无氧铜坯加热至650℃,后进入传送辊道,准备送入挤压机进行第一道次轧制,在进入挤压机前的传送辊道上安置三组U型永恒磁体和一组稳恒电磁体组成的梯度磁场;本实施例中第一组永恒磁体的磁感应强度为0.30T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5米,第二组永恒磁体的磁感应强度为0.60T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5米,第三组永恒磁体的磁感应强度为0.99T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5米;稳恒电磁体为环形的直流超导磁体,磁感应强度为3.0T;永恒磁体的安装位置保证铜坯料纵向中心线与U型磁体的槽口中心线在一条直线上,稳恒电磁体的安装位置保证该稳恒电磁体的中心轴线与金属线棒材坯料的中心轴线在一条直线上,稳恒电磁体沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1米。
无氧铜坯经过上述的磁场处理后,送入连续挤压机,挤压成铜线,连续挤压机的转速为15r/min,铜线的挤出速度为20m/min,挤压过程中铜线的温度为620℃,挤压腔内的压力为1200MPa;且铜线挤出模具后采用真空水冷装置冷却,使铜线在高温挤出后进入真空管冷却,在整个变形过程中隔断了与氧的接触,避免吸氧,保证铜线低氧含量;铜线挤出模具后经过真空防氧化管及水槽冷却、吹干至25℃,得到的铜线直径为Ф10mm。
所得的直径为10mm无氧铜线采用多道次拉拔为超微细铜细丝,拉拔分三次,第一次拉拔由直径10mm拉拔到1.2mm,在这个过程中,铜丝拉拔前,经过本发明的磁场处理,第一拉拔所用的磁场即本发明中的第二道次轧制所安置的静磁场,为并列安置的一组永恒磁体和稳恒电磁体组成的梯度磁场;所述的永恒磁体为圆环形磁体,磁感应强度为0.99T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.50米;所述的稳恒电磁体为环形的直流超导磁体,磁感应强度为1.01T,永恒磁体和稳恒电磁体的中心轴线与金属线棒材坯料的中心轴线在一条直线上,稳恒电磁体沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1米;第二次拉拔将直径1.2mm的铜丝拉成直径0.1mm的细铜丝,第二次拉拔前铜线经圆环形永恒磁体进行磁场处理,永恒磁体的磁感应强度为0.50T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5米,铜丝的纵向中心线与圆环形磁体的中心线在一条直线上;第三次拉拔将直径0.1mm的细铜丝拉拔成0.02mm的超微细铜丝,第三次拉拔前铜线经圆环形永恒磁体进行磁场处理,永恒磁体的磁感应强度为0.31T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.51米,铜丝的纵向中心线与圆环形磁体的中心线在一条直线上。
在其它工艺完全相同的情况下,对比施加磁场与不采用本发明磁场可知:采用本发
明,挤压与拉拔的效率得到提高,特别是拉拔过程的断丝现象完全消失,由圆坯挤压成线的过程中,线材的表面光滑度提高,毛刺倒角和微裂纹完全消失,尺寸精准度提高,另外,采用本发明,只需在传送辊道和拉丝过程中施加无接触式外场,不改变原有生产方法的连续性,具有安全、方法简单的优势。
实施例3镁合金棒材的挤压
将直径200mm形变镁合金铸锭预热至350℃后放入安装有静磁场的传送辊道,将挤压模具预热至350℃,利用金属挤压机将镁合金铸锭挤压成10mm的棒材,相应的挤压温度为380℃,挤压速率为0.5m/min,两道次的挤压比分别为10:1和2:1;第一道次挤压所安置的静磁场为并列安置的三组圆环形永恒磁体和一组稳恒电磁体组成的梯度磁场:其中第一组永恒磁体的磁感应强度为0.20T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.20米,第二组永恒磁体的磁感应强度为0.40T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.20米,第三组永恒磁体的磁感应强度为0.65T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.20米,三组圆环形磁体的中心线与镁合金铸锭的纵向中心线在一条直线上;所述的稳恒电磁体为环形的直流超导磁体,磁感应强度为1.20T,稳恒电磁体的中心轴线与金属线棒材坯料的中心轴线在一条直线上,稳恒电磁体沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.20米;第二道次挤压所安置的静磁场为并列安置的一组圆环形永恒磁体和稳恒电磁体组成的梯度磁场,该永恒磁体的磁感应强度为0.80T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5米;第二次挤压前的稳恒电磁体为环形的直流超导磁体,磁感应强度为1.60T,稳恒电磁体的中心轴线与金属线棒材坯料的中心轴线在一条直线上,稳恒电磁体沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.20米。
将上述挤压得到的棒材与完全相同原料和挤压参数,但不施加磁场得到的棒材进行常温拉伸性能比较,结果发现:采用本发明时,材料的拉伸性能好,断裂伸长率δ=25.6%,抗拉强度σb=284.3MPa,屈服强度σ0.2=187.5MPa,而不采用本发明时,材料的拉伸性能为:断裂伸长率δ=22.6%,抗拉强度σb=264.9MPa,屈服强度σ0.2=177.1MPa。
另外,从材料的外观来看,采用本发明,获得的镁合金棒材的表面光洁度提高,无毛刺和微裂纹,说明本发明可以提高挤压棒材的表观质量和性能。
Claims (5)
- 组合静磁场辅助作用下轧制金属线棒材的方法,其特征在于:在金属线棒材坯料行进方向上安置静磁场,在金属线棒材轧制挤压拉拔前,使金属线棒材坯料在穿过静磁场区域的过程中受到磁场作用,金属线棒材坯料的纵向中心线与其行进方向一致,坯料在静磁场辅助作用处理后再经过轧辊进行轧制挤压和拉拔;第一道次轧制即初轧所安置的静磁场为沿金属线棒材坯料行进方向并列安置的三组永恒磁体和一组稳恒电磁体组成的梯度磁场;所述的三组永恒磁体中:第一组永恒磁体的磁感应强度为0.01—0.30T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1—1.0米,第二组永恒磁体的磁感应强度为0.31—0.60T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1—1.0米,第三组永恒磁体的磁感应强度为0.61—0.99T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1—1.0米;所述的稳恒电磁体为环形的直流超导磁体,磁感应强度为1.01—3.00T,稳恒电磁体的中心轴线与金属线棒材坯料的中心轴线在一条直线上,稳恒电磁体沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1—1.0米。
- 如权利要求1所述的组合静磁场辅助作用下轧制金属线棒材的方法,其特征在于:对于多道次的轧制挤压和拉拔,在每道次轧制挤压和拉拔前都经静磁场处理。
- 如权利要求1所述的组合静磁场辅助作用下轧制金属线棒材的方法,其特征在于:所述的在金属线棒材坯料行进方向上安置静磁场,第二道次轧制所安置的静磁场为沿金属线棒材坯料行进方向并列安置的一组永恒磁体和稳恒电磁体组成的梯度磁场;所述的永恒磁体的磁感应强度为0.51—0.99T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5—1.0米;所述的稳恒电磁体为环形的直流超导磁体,磁感应强度为1.01—3.00T,稳恒电磁体的中心轴线与金属线棒材坯料的中心轴线在一条直线上,稳恒电磁体沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.1—1.0米。
- 如权利要求1所述的组合静磁场辅助作用下轧制金属线棒材的方法,其特征在于:所述的在金属线棒材坯料行进方向上安置静磁场,第二道次轧制后的多道次轧制所安置的静磁场为一组永恒磁体形成的磁场;所述的永恒磁体的磁感应强度为0.31—0.75T,沿金属线棒材坯料行进方向的宽度即作用区域宽度为0.5—1.0米。
- 如权利要求1所述的组合静磁场辅助作用下轧制金属线棒材的方法,其特征在于:所述的静磁场为永恒磁体产生的磁场时,所用的永恒磁体可以是U型磁体,也可以是圆环形磁体;采用U型磁体时,金属线棒材坯料纵向中心线与U型磁体的槽口中心线 在一条直线上;采用圆环形磁体时,金属线棒材坯料纵向中心线与圆环形磁体的中心线在一条直线上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/744,076 US10906076B2 (en) | 2015-08-17 | 2016-04-23 | Method for rolling metal wire or rod with assistance of combined static magnetic field |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510503150.9 | 2015-08-17 | ||
CN201510503150.9A CN105032926B (zh) | 2015-08-17 | 2015-08-17 | 一种静磁场辅助作用下轧制金属线棒材的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017028552A1 true WO2017028552A1 (zh) | 2017-02-23 |
Family
ID=54440227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/080088 WO2017028552A1 (zh) | 2015-08-17 | 2016-04-23 | 组合静磁场辅助作用下轧制金属线棒材的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10906076B2 (zh) |
CN (1) | CN105032926B (zh) |
WO (1) | WO2017028552A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115319037A (zh) * | 2022-08-03 | 2022-11-11 | 北京科技大学 | 一种净化连铸坯中非金属夹杂物的装置和方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105032926B (zh) * | 2015-08-17 | 2017-03-01 | 江苏大学 | 一种静磁场辅助作用下轧制金属线棒材的方法 |
CN106370719B (zh) * | 2016-08-18 | 2019-04-02 | 苏州热工研究院有限公司 | 一种铁磁金属材料应变硬化指数的磁性无损检测方法 |
CN110328235A (zh) * | 2019-07-15 | 2019-10-15 | 上海大学 | 一种在磁场下高硅钢冷轧的方法 |
CN113337704B (zh) * | 2021-05-31 | 2023-06-16 | 成都昆吾科技有限公司 | 一种通过静磁场设施实现交变或脉冲磁场作用的方法 |
CN114602984A (zh) * | 2022-03-05 | 2022-06-10 | 江苏奇纳新材料科技有限公司 | 一种制备高温合金丝材的方法 |
CN114798800A (zh) * | 2022-05-11 | 2022-07-29 | 中北大学 | 一种电弧增材用重稀土镁合金丝材的制备工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4044584A (en) * | 1975-10-15 | 1977-08-30 | Korshunov Evgeny | Mill for rolling continuously cast ingot |
JPS61130475A (ja) * | 1984-11-29 | 1986-06-18 | Inoue Japax Res Inc | 高張力銅合金材の製造方法 |
CN1135383A (zh) * | 1995-05-08 | 1996-11-13 | 庞廷 | 用于将轧制的细棒材送至冷却床的方法和装置 |
CN102179404A (zh) * | 2011-03-18 | 2011-09-14 | 东北大学 | 一种金属板带材的热辊温轧装置及方法 |
CN102211153A (zh) * | 2011-05-17 | 2011-10-12 | 中南大学 | 一种镁合金板带的电磁场铸轧方法 |
CN103643190A (zh) * | 2013-12-17 | 2014-03-19 | 江苏大学 | 一种提高铝基复合材料塑性变形能力的方法 |
CN105032926A (zh) * | 2015-08-17 | 2015-11-11 | 江苏大学 | 一种静磁场辅助作用下轧制金属线棒材的方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3633991B2 (ja) * | 1995-04-10 | 2005-03-30 | 新日本製鐵株式会社 | 連続式熱間圧延におけるシートバー接合装置とその制御方法 |
CN1078251C (zh) * | 1999-01-12 | 2002-01-23 | 冶金工业部钢铁研究总院 | 小型钢材热轧后在线磁场热处理方法 |
DE10216865A1 (de) * | 2001-04-17 | 2002-12-12 | Hitachi Metals Ltd | Wärmebehandlungsofen mit Magnetfeld sowie Wärmebehandlungsverfahren unter Verwendung desselben |
US8545645B2 (en) * | 2003-12-02 | 2013-10-01 | Franklin Leroy Stebbing | Stress free steel and rapid production of same |
US20050247098A1 (en) * | 2004-04-22 | 2005-11-10 | Werner Witte | Apparatus for reforming rod-shaped and/or tubular, electrically conductive materials |
DE102006054932A1 (de) * | 2005-12-16 | 2007-09-13 | Sms Demag Ag | Verfahren und Vorrichtung zum Herstellen eines Metallbandes durch Gießwalzen |
AT506603B8 (de) * | 2008-04-04 | 2010-03-15 | Siemens Vai Metals Tech Gmbh | Verfahren und vorrichtung für eine giess-walz-verbundanlage |
CN101837380B (zh) * | 2010-05-17 | 2011-11-30 | 洛阳理工学院 | 一种镁合金丝的电磁拉拔方法和装置 |
US20130140300A1 (en) * | 2011-12-05 | 2013-06-06 | Robert Paul Cummings | Magnetic induction heater |
CN104815868A (zh) * | 2015-04-22 | 2015-08-05 | 贵州大学 | 一种高强耐热铝合金导线的加工工艺 |
-
2015
- 2015-08-17 CN CN201510503150.9A patent/CN105032926B/zh active Active
-
2016
- 2016-04-23 WO PCT/CN2016/080088 patent/WO2017028552A1/zh active Application Filing
- 2016-04-23 US US15/744,076 patent/US10906076B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4044584A (en) * | 1975-10-15 | 1977-08-30 | Korshunov Evgeny | Mill for rolling continuously cast ingot |
JPS61130475A (ja) * | 1984-11-29 | 1986-06-18 | Inoue Japax Res Inc | 高張力銅合金材の製造方法 |
CN1135383A (zh) * | 1995-05-08 | 1996-11-13 | 庞廷 | 用于将轧制的细棒材送至冷却床的方法和装置 |
CN102179404A (zh) * | 2011-03-18 | 2011-09-14 | 东北大学 | 一种金属板带材的热辊温轧装置及方法 |
CN102211153A (zh) * | 2011-05-17 | 2011-10-12 | 中南大学 | 一种镁合金板带的电磁场铸轧方法 |
CN103643190A (zh) * | 2013-12-17 | 2014-03-19 | 江苏大学 | 一种提高铝基复合材料塑性变形能力的方法 |
CN105032926A (zh) * | 2015-08-17 | 2015-11-11 | 江苏大学 | 一种静磁场辅助作用下轧制金属线棒材的方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115319037A (zh) * | 2022-08-03 | 2022-11-11 | 北京科技大学 | 一种净化连铸坯中非金属夹杂物的装置和方法 |
CN115319037B (zh) * | 2022-08-03 | 2024-05-14 | 北京科技大学 | 一种净化连铸坯中非金属夹杂物的装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105032926A (zh) | 2015-11-11 |
CN105032926B (zh) | 2017-03-01 |
US10906076B2 (en) | 2021-02-02 |
US20180200767A1 (en) | 2018-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017028552A1 (zh) | 组合静磁场辅助作用下轧制金属线棒材的方法 | |
CN102581061B (zh) | 无缝黄铜管的生产方法 | |
CN104607580A (zh) | 一种超大规格铝合金矩形环的锻造成型工艺 | |
CN102371288A (zh) | 一种高精度高强钛合金无缝管材的制备方法 | |
CN105665468A (zh) | 一种高精度大直径薄壁钛管材的制备方法 | |
CN105568195A (zh) | 一种高精度高强钛合金无缝管材的制备方法 | |
CN106591753A (zh) | 一种铜铬锆合金高铁接触线的短流程制备加工工艺 | |
CN105921539B (zh) | 大口径深盲孔工件的制备方法 | |
CN104818443A (zh) | 一种铜银合金线材的短流程高效生产方法 | |
CN103469099A (zh) | 一种低合金高强度厚板的生产方法 | |
CN110170543A (zh) | 一种钛合金无缝管短流程加工方法 | |
CN105171362A (zh) | 森吉米尔中间辊的制造方法 | |
CN103276329B (zh) | 高强度镁合金大规格板材的等温加工工艺 | |
CN104174807B (zh) | 一种大口径钛厚壁管材的制造方法 | |
CN108237197B (zh) | 一种改善结构钢大型环形件探伤的锻造方法 | |
CN103962403B (zh) | 大口径管材挤拔减壁方法 | |
CN104959503A (zh) | 现代轨道低地板动车大型整体锻造轴桥的制备工艺 | |
CN109440034B (zh) | 一种高强高导铜铬锆合金长导线的热处理工艺 | |
CN104637572A (zh) | 异型铸造合金铜排生产工艺 | |
CN113319228B (zh) | 一次加热连续完成镦粗挤压和余热正火的锻压工艺 | |
CN201950112U (zh) | 一种感应炼钢炉感应线圈用矩形偏心铜管导线拉伸模具 | |
CN102699101A (zh) | 一种HAl77-2黄铜合金管材制备方法 | |
CN205635688U (zh) | 铜包铜线表面抛光装置 | |
CN115890137A (zh) | 一种高强度轻量化的钛合金管及其加工工艺 | |
CN103056182A (zh) | 用铸挤复合成形生产大口径厚壁无缝钢管的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16836417 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15744076 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16836417 Country of ref document: EP Kind code of ref document: A1 |