WO2017028011A1 - 一种血压测量数据的处理方法及装置 - Google Patents

一种血压测量数据的处理方法及装置 Download PDF

Info

Publication number
WO2017028011A1
WO2017028011A1 PCT/CN2015/086966 CN2015086966W WO2017028011A1 WO 2017028011 A1 WO2017028011 A1 WO 2017028011A1 CN 2015086966 W CN2015086966 W CN 2015086966W WO 2017028011 A1 WO2017028011 A1 WO 2017028011A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration data
function
blood pressure
user
pulse wave
Prior art date
Application number
PCT/CN2015/086966
Other languages
English (en)
French (fr)
Inventor
陈文娟
李红刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580031329.7A priority Critical patent/CN107072555B/zh
Priority to US15/544,427 priority patent/US20180078156A1/en
Priority to PCT/CN2015/086966 priority patent/WO2017028011A1/zh
Publication of WO2017028011A1 publication Critical patent/WO2017028011A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0238Means for recording calibration data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]

Definitions

  • the invention relates to a method and a device for processing blood pressure measurement data.
  • PTT pulse wave transit time
  • diastolic blood pressure and systolic blood pressure are generally measured using a conventional sphygmomanometer, and the measurement results are transmitted to a blood pressure measuring device.
  • the microprocessor module calculates the calibration parameter based on the measurement result of the conventional sphygmomanometer and the PTT value determined by the cuffless blood pressure measuring device, thereby determining the blood pressure calculation strategy.
  • the technical problem mainly solved by the present application is how to make the calibration more accurate when the user wears the cuffless blood pressure measuring device.
  • the present application provides a method and apparatus for processing blood pressure measurement data, which can utilize pre-stored calibration data when a different user wears a cuff blood pressure measurement device, and combines with a user to use a cuff-type blood pressure measurement device.
  • Manually calibrated calibration data is measured to determine the best function between the user's pulse wave transmission time and blood pressure value, so that the original calibration data can be fully utilized and the calibration is more accurate.
  • the present application provides a method of processing blood pressure measurement data, the method comprising: a cuffless blood pressure measuring device acquiring first calibration data of a user, the first calibration data being used by a user without the cuff A manual calibration process is performed before the blood pressure measuring device measures blood pressure Data; acquiring second calibration data of the user stored in advance; determining, according to the first calibration data and the second calibration data, a relationship between a pulse wave transmission time and a blood pressure value for characterizing the user a best function; acquiring a current pulse wave transmission time of the user, and calculating a current blood pressure value of the user according to the current pulse wave transmission time and the optimal function.
  • the determining, according to the first calibration data and the second calibration data, determining a pulse wave transmission time and a blood pressure for characterizing the user includes: determining a first function based on the first calibration data; determining a second function based on the second calibration data; determining a degree of difference between the first function and the second function; The optimal function is determined based on the degree of difference.
  • the determining, according to the first calibration data, the first function comprises: passing the first calibration data according to Determining the first function by a least squares method; the determining the second function based on the second calibration data comprises determining a second function by a least squares method according to the second calibration data.
  • the determining, according to the difference degree, determining the optimal function includes: if the difference degree is less than a predetermined threshold, the third function determined by the first calibration data and the second calibration data is taken as the optimal function.
  • the determining, according to the degree of the difference, the determining the optimal function further includes: if the difference is greater than The first predetermined threshold and the sample amount of the first calibration data is less than a second predetermined threshold, the second function is taken as the optimal function; if the difference degree is greater than the first predetermined threshold The sample quantity of the first calibration data is greater than the second predetermined threshold, and the first function is taken as the optimal function.
  • the determining, according to the difference degree, determining the optimal function further includes: if the difference is greater than The first predetermined threshold and the sample amount of the first calibration data is less than a second predetermined threshold, and the third function determined by combining the first calibration data and the second calibration data is used as the optimal function; If the difference degree is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, culling the difference in the first calibration data A data point, and a fourth function calculated from a combination of the second calibration data and the remaining first calibration data as the optimal function.
  • the best function of the relationship includes: determining a first function according to the first calibration data; determining a third function according to the combination of the first calibration data and the second calibration data; determining the first function and the first The degree of difference in the three functions; the best function is determined based on the degree of the difference.
  • the determining, according to the first calibration data, the first function comprises: passing the first calibration data according to Determining a first function by a least square method; determining the third function according to the combination of the first calibration data and the second calibration data comprises: minimizing a combination according to the first calibration data and the second calibration data The second multiplication determines the third function.
  • the determining, according to the difference degree, determining the optimal function includes: if the difference degree is less than A predetermined threshold is used as the best function.
  • the determining, according to the difference degree, the determining the optimal function further includes: if the difference is greater than The first predetermined threshold and the sample amount of the first calibration data is less than a second predetermined threshold, and the second function determined by the second calibration data is used as the optimal function; if the difference is greater than the first The predetermined threshold is determined and the sample size of the first calibration data is greater than the second predetermined threshold, and the first function is taken as the optimal function.
  • the determining, according to the difference degree, the determining the optimal function further includes: if the difference is greater than The first predetermined threshold and the sample amount of the first calibration data is less than a second predetermined threshold, then the third function is taken as the optimal function; if the difference degree is greater than the first predetermined threshold and Determining an abnormal data point in the first calibration data, and combining the second calibration data with the remaining first calibration data, The calculated fourth function acts as the best function.
  • the first The calibration data and the second calibration data respectively comprise at least one set of blood pressure values and a corresponding pulse wave transmission time
  • the best function of the relationship between the transmission time and the blood pressure value includes: acquiring the current pulse wave transmission time of the user; selecting the current pulse wave transmission time from the first calibration data and the second calibration data Proximity pulse wave transmission time, with calibration data having a pulse wave transmission time closest to the current pulse wave transmission time as optimal calibration data; a function determined according to the optimal calibration data as the optimal function .
  • the obtaining, by the pre-stored second calibration data of the user that: the cuffless blood pressure measuring device acquires the identity of the user And obtaining the second calibration data from a plurality of pre-stored calibration data according to the identity of the user.
  • the obtaining the identity identifier of the user includes: according to the first calibration data of the user Determining the identity of the user by at least one of the first electrocardiographic signal and the first pulse wave signal; or measuring the current ECG signal and the current pulse wave generated according to the user currently using the cuffless blood pressure measuring device At least one of the signals determining the identity of the user.
  • the acquiring a current pulse wave transmission time of the user, according to the current pulse wave transmission time and the optimal function, calculating The current blood pressure value of the user includes: acquiring a current ECG signal and a current pulse wave signal currently measured by the user using the cuffless blood pressure measuring device, and calculating a current pulse wave transmission time; according to the optimal function and the The current pulse wave transmission time is calculated to obtain the current blood pressure value of the user.
  • a cuffless blood pressure measuring device includes a first acquiring module, a second acquiring module, a determining module, and a calculating module, wherein: the first acquiring module is used by Obtaining first calibration data, the data generated by the manual calibration process is performed before the user uses the cuffless blood pressure measuring device to measure blood pressure; and the second obtaining module is configured to acquire a pre-stored Determining a second calibration data of the user; the determining module is configured to determine, according to the first calibration data and the second calibration data, an optimal relationship between a pulse wave transmission time and a blood pressure value for characterizing the user Function; the calculation module And acquiring the current pulse wave transmission time of the user, and calculating a current blood pressure value of the user according to the current pulse wave transmission time and the optimal function.
  • the determining module includes a first determining unit, a second determining unit, a third determining unit, and a fourth determining unit, where: the first a determining unit, configured to determine a first function according to the first calibration data; the second determining unit is configured to determine a second function according to the second calibration data; the third determining unit is configured to determine the first function a degree of difference from the second function; the fourth determining unit is configured to determine the optimal function according to the degree of difference.
  • the first determining unit is configured to determine the first function by least squares according to the first calibration data
  • the second determining unit is configured to determine the second function by a least square method according to the second calibration data.
  • the fourth determining unit is configured to: when the difference degree is less than a first predetermined threshold, The third function determined by the first calibration data and the second calibration data is used as the optimal function.
  • the fourth determining unit is configured to: when the difference degree is greater than the first predetermined threshold When the sample amount of the first calibration data is less than the second predetermined threshold, the second function is used as the optimal function; or the fourth determining unit is configured to use the difference degree to be greater than the first predetermined threshold When the sample size of the first calibration data is greater than the second predetermined threshold, the first function is taken as the optimal function.
  • the fourth determining unit is configured to: when the difference degree is greater than the first predetermined threshold When the sample amount of the first calibration data is less than the second predetermined threshold, the third function determined by the first calibration data and the second calibration data is used as the optimal function; or the fourth determining unit is used to If the difference degree is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the abnormal data point in the first calibration data is culled, and the second calibration is performed The fourth function calculated by the combination of the data and the remaining first calibration data is taken as the optimal function.
  • the determining module includes a first determining unit, a second determining unit, a third determining unit, and a fourth determining unit, where: the first a determining unit configured to determine a first function according to the first calibration data; the second determining unit configured to determine a third function according to the combination of the first calibration data and the second calibration data; the third determining The unit is configured to determine a degree of difference between the first function and the third function; the fourth determining unit is configured to determine the optimal function according to the degree of difference.
  • the first determining unit is configured to determine the first function by a least square method according to the first calibration data
  • the second determining unit is configured to determine the second function by a least square method according to the second calibration data.
  • the fourth determining unit is configured to: when the difference degree is less than a first predetermined threshold, The third function serves as the best function.
  • the fourth determining unit is configured to: when the difference degree is greater than the first predetermined threshold When the sample amount of the first calibration data is less than the second predetermined threshold, the second function determined by the second calibration data is used as the optimal function; or the fourth determining unit is configured to use the difference degree to be greater than the first
  • the threshold is predetermined and the sample size of the first calibration data is greater than the second predetermined threshold, the first function being taken as the optimal function.
  • the fourth determining unit is configured to: when the difference degree is greater than the first predetermined threshold When the sample amount of the first calibration data is less than the second predetermined threshold, the third function is used as the optimal function; or the fourth determining unit is configured to use the difference degree to be greater than the first predetermined threshold and the When the sample amount of the first calibration data is greater than the second predetermined threshold, the abnormal data point in the first calibration data is culled, and is calculated by a combination of the second calibration data and the remaining first calibration data The fourth function acts as the best function.
  • the first calibration data and the second calibration data respectively include at least a set of blood pressure values and a corresponding pulse wave transmission time
  • the determining module includes an obtaining unit, a selecting unit, and a determining unit, wherein: the obtaining unit is configured to acquire a current pulse wave transmission time of the user; the selecting unit is configured to: Selecting a pulse wave transmission time closest to the current pulse wave transmission time from the first calibration data and the second calibration data to have a pulse wave transmission time closest to the current pulse wave transmission time
  • the calibration data is used as the best calibration data; the determining unit is configured to use the function determined according to the optimal calibration data as a best function.
  • the second acquiring module includes a first acquiring unit and a second acquiring unit, where: the first acquiring unit is configured to acquire the The second obtaining unit is configured to acquire the second calibration data from the plurality of pre-stored calibration data according to the identity identifier of the user acquired by the first acquiring unit.
  • the first acquiring unit is configured to use the first one of the first calibration data of the user Determining an identity of the user by at least one of an electrocardiographic signal and a first pulse wave signal; or the first obtaining unit is configured to use a current ECG signal generated by the user currently using the cuffless blood pressure measuring device And identifying the identity of the user with at least one of the current pulse wave signals.
  • the calculating module includes a first calculating unit and a second calculating unit, where: the first calculating unit is configured to acquire the current user Measuring the current pulse wave transmission time by using the cuff-type blood pressure measuring device to measure the current ECG signal and the current pulse wave signal; the second calculating unit is configured to transmit the current pulse wave according to the optimal function The time calculation calculates the current blood pressure value of the user.
  • a cuffless blood pressure measuring device comprising a processor, a memory and a receiver, wherein the processor is coupled to the memory and the receiver, respectively:
  • the processor is configured to control the receiver to receive first calibration data of a user, where the first calibration data is data generated by a manual calibration process before the user uses the cuffless blood pressure measuring device to measure blood pressure;
  • the processor is configured to obtain a pre- The stored second calibration data of the user determines, according to the first calibration data and the second calibration data, a best function for characterizing a relationship between a pulse wave transmission time of the user and a blood pressure value, and further acquiring a current user a pulse wave transmission time, calculating a current blood pressure value of the user according to a current pulse wave transmission time and the optimal function;
  • the memory is configured to store the first calibration data and the second calibration data.
  • the processor is configured to determine a first function according to the first calibration data, determine a second function according to the second calibration data, determine The degree of difference between the first function and the second function is determined, and the optimal function is determined according to the degree of the difference.
  • the processor is configured to determine a first function by a least square method according to the first calibration data, according to the The second calibration data determines the second function by a least squares method.
  • the processor is configured to: when the difference degree is less than a first predetermined threshold, the first calibration The third function determined by the data and the second calibration data is used as the optimal function.
  • the processor is configured to: when the difference degree is greater than the first predetermined threshold and the first calibration When the sample size of the data is less than the second predetermined threshold, the second function is used as the optimal function; or the processor is configured to use the first calibration threshold and the first calibration data if the difference degree is greater than the first predetermined threshold When the sample size is greater than the second predetermined threshold, the first function is taken as the optimal function.
  • the processor is configured to: when the difference is greater than the first predetermined threshold and the first calibration When the sample size of the data is less than the second predetermined threshold, the third function determined by the first calibration data and the second calibration data is used as the optimal function; or the processor is used to make the difference greater than Describe the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, then cull the abnormal data point in the first calibration data, and the second calibration data and the remaining The fourth function calculated by the combination of the first calibration data serves as the optimal function.
  • the processor is configured to determine, according to the first calibration data, a first function, according to the first calibration data and the second calibration data The combination determines a third function, determines a degree of difference between the first function and the third function, and determines the optimal function according to the degree of difference.
  • the processor is configured to determine a first function by a least square method according to the first calibration data, and determine a second function by a least square method according to the second calibration data.
  • the processor is configured to: when the degree of difference is less than a first predetermined threshold, As the best function.
  • the processor is configured to: when the difference is greater than the first predetermined threshold and the first calibration When the sample size of the data is less than the second predetermined threshold, the second function determined by the second calibration data is used as the optimal function; or the processor is configured to use the degree of the difference greater than the first predetermined threshold and the first The sample size of a calibration data is greater than the second predetermined threshold, and the first function is taken as the optimal function.
  • the processor is configured to: when the difference degree is greater than the first predetermined threshold, and the first calibration
  • the third function is used as the optimal function when the sample size of the data is less than the second predetermined threshold; or the processor is used for the sample whose degree of difference is greater than the first predetermined threshold and the first calibration data
  • the fourth function calculated by the combination of the second calibration data and the remaining first calibration data is used as the Describe the best function.
  • the first calibration data and the second calibration data respectively include at least a set of blood pressure values and a corresponding pulse wave transmission time
  • the processor is configured to acquire a current pulse wave transmission time of the user, and select a pulse wave transmission time that is closest to the current pulse wave transmission time from the first calibration data and the second calibration data to exist and The calibration data of the pulse wave transmission time closest to the current pulse wave transmission time is used as the optimal calibration data, and the function determined based on the optimal calibration data is taken as the optimal function.
  • the processor is configured to acquire an identifier of the user, and obtain, according to the identifier of the user, from a plurality of pre-stored calibration data.
  • the second calibration data is configured to acquire an identifier of the user, and obtain, according to the identifier of the user, from a plurality of pre-stored calibration data.
  • the processor is configured to use a first one of the first calibration data according to a user Determining an identity of the user by at least one of an electrocardiographic signal and a first pulse wave signal; or the processor is configured to use a current ECG signal and a current pulse generated by the user currently using the cuffless blood pressure measuring device At least one of the wave signals determines an identity of the user.
  • the processor is configured to acquire a current ECG signal and a current pulse wave signal generated by the user currently using the cuff-type blood pressure measuring device Calculating a current pulse wave transmission time, and calculating a current blood pressure value of the user according to the optimal function and the current pulse wave transmission time.
  • the above technical solution determines the function relationship between the pulse wave transmission time and the blood pressure value of the user according to the first calibration data and the second calibration data by combining the first calibration data generated by the user manual calibration and the second calibration data stored in advance. The best function.
  • the automatic calibration is combined with the pre-stored calibration data to determine the optimal function, so that the pre-stored calibration data can be fully used, and the calibration is more accurate. , so that the measurement of blood pressure values is more accurate.
  • FIG. 1 is a flowchart of a method for processing blood pressure measurement data according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of one of an electrocardiographic signal and a pulse wave signal according to an embodiment of the present invention
  • FIG. 3 is a flowchart of one implementation manner for determining a relationship between a pulse wave transmission time and a blood pressure value for characterizing a user according to an embodiment of the present invention
  • FIG. 4 is a flowchart of another implementation manner for determining a relationship between a pulse wave transmission time and a blood pressure value for characterizing a user according to an embodiment of the present invention
  • FIG. 5 is a flowchart of still another implementation manner for determining a relationship between a pulse wave transmission time and a blood pressure value for characterizing a user according to an embodiment of the present invention
  • FIG. 6 is a flowchart of acquiring a second calibration data pre-stored by a user by a cuff-based blood pressure measuring device according to an embodiment of the present invention
  • FIG. 7 is a flowchart of determining an identity of a user by using at least one of a first electrocardiographic signal and a first pulse wave signal according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a fitting result of a first calibration data provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a fitting result of a second calibration data provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a fitting result of a third calibration data provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a fitting result of a fourth calibration data provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a cuffless blood pressure measuring device according to an embodiment of the present invention.
  • Figure 13 is a schematic structural view of a second acquisition module of the cuffless blood pressure measuring device according to the embodiment of the present invention.
  • FIG. 14 is a schematic structural view of a determining module of a cuffless blood pressure measuring device according to an embodiment of the present invention.
  • 15 is another schematic structural view of a determining module of a cuffless blood pressure measuring device according to an embodiment of the present invention.
  • Figure 16 is a block diagram showing another structure of the determining module of the cuffless blood pressure measuring device according to the embodiment of the present invention.
  • 17 is a schematic structural diagram of a calculation module of a cuffless blood pressure measuring device according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of another cuffless blood pressure measuring device according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for processing blood pressure measurement data according to an embodiment of the present invention. As shown in the figure, a method for processing blood pressure measurement data in this embodiment includes:
  • the cuffless blood pressure measuring device acquires the first calibration data of the user
  • the first calibration data is data generated by the user performing a manual calibration process before the blood pressure is measured using the cuffless blood pressure measuring device.
  • the first calibration data includes at least a first blood pressure value and a first pulse wave transmission time.
  • the manual calibration process is to measure the first blood pressure value by the user using a cuff sphygmomanometer, and collect the first ECG signal of the user through the ECG sensor of the cuffless blood pressure measuring device and the light sensor and pressure through the cuffless blood pressure measuring device.
  • At least one of the sensor, the acoustic sensor, the photoelectric sensor, the acceleration sensor, and the displacement sensor acquires a first pulse wave signal of the user, and calculates a first pulse wave transmission time according to the first electrocardiographic signal of the user and the first pulse wave signal.
  • a set of first blood pressure values and a first pulse wave transmission time are generated, and the cuffless blood pressure measuring device receives the user's manual input or through a specific interface such as Bluetooth, red.
  • the outer is taken from the cuff blood pressure measuring device to form the first calibration data.
  • calculating the first pulse wave transmission time according to the first electrocardiographic signal and the first pulse wave signal may be: according to the reference point on the first electrocardiographic signal and the first pulse in the same period The time difference between the reference points on the wave signal is calculated to obtain the first pulse wave transmission time.
  • FIG. 2 is a schematic diagram of an ECG signal and a pulse wave signal according to an embodiment of the present invention.
  • the pulse wave signal in this embodiment is a photoplethysmographic signal 2 collected by a photoelectric sensor
  • the reference point is a vertex, a bottom point or an intermediate point, wherein the apex of the electrocardiographic signal is 301, and the photoplethysmographic signal
  • the bottom point 302 and the vertex 303 calculate the pulse wave transmission time PTT304 based on the time difference between the reference 301 on the electrocardiographic signal 1 and the reference point 302 on the pulse wave signal in the same period.
  • the second calibration data includes at least a second blood pressure value and a second pulse wave transmission time.
  • the second calibration data may be historical manual calibration data when the user performs a manual calibration process using the cuffless blood pressure measuring device before acquiring the first calibration data, the historical manual calibration data being stored in the cuffless blood pressure measuring device.
  • the second calibration data may also be calibration data stored in advance by the user in the cloud, the calibration data stored in the cloud may be calibration data derived from a smart wearable device such as a watch, and the cuffless blood pressure measuring device is passed from the cloud through an internal interface. The calibration data stored in the cloud is obtained as the second calibration data.
  • S12 Determine an optimal function for characterizing a functional relationship between the pulse wave transmission time of the user and the blood pressure value according to the first calibration data and the second calibration data.
  • the optimal function for determining a functional relationship between the pulse wave transmission time and the blood pressure value for characterizing the user in the embodiment of the present invention refers to determining a calibration parameter (or a calibration coefficient) for calculating a blood pressure value based on the pulse wave transmission time.
  • the determined optimal function of the embodiment of the present invention determines a1, b1, a2 thereof, The specific value of b2, thereby calculating the blood pressure value of the user based on the current measurement data and the determined calibration parameters.
  • S13 Acquire a current pulse wave transmission time of the user, and calculate a current blood pressure value of the user according to the current pulse wave transmission time and an optimal function of the user.
  • the determined optimal function is used to characterize the functional relationship between the pulse wave transmission time and the blood pressure value of the user. Therefore, when the user currently measures with the cuffless blood pressure measuring device, the current electrocardiographic signal of the user and the photosensor of the cuffless blood pressure measuring device are collected by the electrocardiographic sensor of the cuffless blood pressure measuring device, At least one of a pressure sensor, an acoustic sensor, a photoelectric sensor, an acceleration sensor, and a displacement sensor acquires a current pulse wave signal of the user, and calculates a current pulse wave transmission time according to the current ECG signal of the user and the current pulse wave signal. . According to the calculation, the current pulse wave transmission time of the user is obtained, and the current blood pressure value of the user can be calculated by combining the determined optimal function.
  • Other formulas can also be used to calculate blood pressure, including but not limited to the following formula:
  • SBP is the systolic pressure
  • DBP is the diastolic pressure
  • is the vascular characteristic parameter, generally takes a constant
  • the subscript is o for the calibration value.
  • the method for processing blood pressure measurement data determines the user for characterizing the user according to the first calibration data and the second calibration data by combining the first calibration data generated by the user manual calibration and the second calibration data stored in advance. The best function of the relationship between pulse wave transmission time and blood pressure values. In this way, it is possible to wear a cuff-free blood pressure measurement for the user.
  • the automatic calibration is combined with the pre-stored calibration data to determine the optimal function, so that the pre-stored calibration data can be fully used, and the calibration is more accurate, so that the measurement result of the user's blood pressure value is more accurate.
  • FIG. 3 is a flowchart of determining an implementation manner for determining a relationship between a pulse wave transmission time and a blood pressure value of the user according to an embodiment of the present invention, such as The figure shows the following substeps:
  • the first function is a function for characterizing the relationship between the first blood pressure value in the first calibration data and the first pulse wave transmission time.
  • the second function herein is a function for characterizing the relationship between the second blood pressure value and the second pulse wave transmission time in the second calibration data.
  • the first function is determined by a least squares method according to the first calibration data.
  • the second function is determined by a least squares method based on the second calibration data.
  • S112 Determine a degree of difference between the first function and the second function.
  • the degree of difference between the first function and the second function can be measured by the linear relationship of the two function relationships in the same coordinate system. Specifically, after the first function and the second function are determined by the least squares method, the rate of change of the slope of the first function with respect to the second function and/or the rate of change of the fitting coefficient is determined to determine the degree of difference.
  • an optimal function for characterizing the relationship between the pulse wave transmission time of the user and the blood pressure value is determined according to the degree of difference.
  • the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample size of the first calibration data is less than the second predetermined threshold, the second function is taken as the optimal function. If the degree of difference is greater than a first predetermined threshold and the sample size of the first calibration data is greater than The second predetermined threshold then takes the first function as the best function.
  • the first predetermined threshold and the second predetermined threshold herein may be thresholds preset by the user and stored in the cuffless blood pressure measuring device, and the user may adjust the first predetermined threshold and the second predetermined threshold as needed.
  • the first predetermined threshold also includes two correspondingly (the slope change rate threshold and the fit coefficient change rate threshold, respectively).
  • the slope change rate threshold is 30%
  • the fitting system change rate threshold is 10%
  • the second predetermined threshold is for the sample size, for example, it can be set to 4, 6, and the like.
  • the degree of difference when the degree of difference is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and the function determined by combining the two calibration data may be used as the optimal function. And if the degree of difference is greater than the first predetermined threshold, determining that the deviation between the first calibration data and the pre-stored second calibration data is relatively large, in this case, further determining the sample amount of the first calibration data is needed.
  • the first function determined by the first calibration data alone may be used as the best function, and if the sample size of the first calibration data is relatively small (not exceeding The second predetermined threshold) is the second function determined directly from the pre-stored second calibration data as the best function.
  • another specific implementation may be: if the degree of difference is less than the first predetermined threshold, the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is less than the second predetermined threshold, the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the abnormal data point in the first calibration data is eliminated and calculated by a combination of the second calibration data and the remaining first calibration data The fourth function serves as the best function.
  • the degree of difference when the degree of difference is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and a function determined by combining the two calibration data may be used as the optimal function.
  • a function determined by combining the two calibration data when the difference degree is greater than the first predetermined threshold, and the sample amount of the first calibration data is less than the second predetermined threshold, since the sample amount of the second calibration data is small, the difference caused by the second calibration data may be ignored, and the first The third function determined by the combination of the calibration data and the second calibration data is used as the optimal function.
  • the difference degree is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the deviation of the first calibration data from the pre-stored second calibration data is larger, and the sample size of the first calibration data is also compared. More, you can go further Performing a residual analysis on the first calibration data to determine whether there is an abnormal point in the first calibration data, and if there is an abnormal point, after the abnormal point is removed, the remaining first calibration data and the second calibration data are combined to calculate the fourth The function acts as the best function.
  • FIG. 4 is a flowchart of another implementation manner for determining a relationship between a pulse wave transmission time and a blood pressure value for characterizing the user according to an embodiment of the present invention.
  • the main difference of the illustrated embodiment is that, when determining the degree of difference, the degree of difference is the degree of difference in the third function determined by the combination of the first calibration data and the second calibration data relative to the first function determined by the first calibration data. As shown, the following substeps are included:
  • the first function is a function for characterizing the relationship between the first blood pressure value in the first calibration data and the first pulse wave transmission time.
  • S121 Determine a third function according to the combination of the first calibration data and the second calibration data.
  • the third function herein is a function for characterizing the relationship between the blood pressure value and the pulse wave transmission time after the combination of the first calibration data and the second calibration data.
  • the first function is determined by a least squares method according to the first calibration data.
  • the third function is determined by a least squares method based on the first calibration data and the second calibration data.
  • S122 Determine a degree of difference between the first function and the third function.
  • the degree of difference between the first function and the third function can be measured by the linear relationship of the two function relationships in the same coordinate system. Specifically, after determining the first function and the third function by the least square method, determining a slope change rate of the third function with respect to the second function and/or a rate of change of the fitting coefficient to determine the degree of difference.
  • the optimal function for characterizing the relationship between the pulse wave transmission time of the user and the blood pressure value is determined according to the degree of difference.
  • the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample size of the first calibration data is less than the second predetermined threshold, the second function is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample size of the first calibration data is greater than the second predetermined threshold, then the first function is taken as the optimal function.
  • the first predetermined threshold and The second predetermined threshold may be a threshold preset by the user and stored in the cuffless blood pressure measuring device, and the user may adjust the first predetermined threshold and the second predetermined threshold as needed.
  • the first predetermined threshold also includes two correspondingly (the slope change rate threshold and the fit coefficient change rate threshold, respectively).
  • the slope change rate threshold is 30%
  • the fitting system change rate threshold is 10%
  • the second predetermined threshold is for the sample size, for example, it can be set to 4, 6, and the like.
  • the degree of difference when the degree of difference is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and a function determined by combining the two calibration data may be used as the optimal function. And if the degree of difference is greater than the first predetermined threshold, determining that the deviation between the first calibration data and the pre-stored second calibration data is relatively large, in this case, further determining the sample amount of the first calibration data is needed.
  • the first function determined by the first calibration data alone may be used as the optimal function, and if the sample amount of the first calibration data is relatively small (The second function determined directly from the pre-stored second calibration data is used as the optimal function if the second predetermined threshold is not exceeded.
  • another specific implementation may be: if the degree of difference is less than the first predetermined threshold, the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is less than the second predetermined threshold, the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the abnormal data point in the first calibration data is eliminated and calculated by a combination of the second calibration data and the remaining first calibration data The fourth function serves as the best function.
  • the degree of difference when the degree of difference is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and a function determined by combining the two calibration data may be used as the optimal function.
  • a function determined by combining the two calibration data when the difference degree is greater than the first predetermined threshold, and the sample amount of the first calibration data is less than the second predetermined threshold, since the sample amount of the second calibration data is small, the difference caused by the second calibration data may be ignored, and the first The third function determined by the combination of the calibration data and the second calibration data is used as the optimal function.
  • the difference degree is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the deviation of the first calibration data from the pre-stored second calibration data is larger, and the sample size of the first calibration data is also compared. More, the residual data of the first calibration data may be further analyzed to determine whether there is an abnormal point in the first calibration data, such as If there is an abnormal point, after the abnormal point is eliminated, the fourth function calculated by combining the remaining first calibration data and the second calibration data is taken as the optimal function.
  • FIG. 5 is a flowchart of still another implementation manner for determining a relationship between a pulse wave transmission time and a blood pressure value of the user according to an embodiment of the present invention. Includes the following substeps:
  • the current pulse wave transmission time of the user may be that the current pulse wave transmission time of the user is calculated by acquiring the corresponding ECG signal and the pulse wave signal when the user currently uses the cuff-type blood pressure measuring device.
  • the current electrocardiographic signal of the user is collected by the ECG sensor of the cuffless blood pressure measuring device, and at least the light sensor, the pressure sensor, the acoustic sensor, the photoelectric sensor, the acceleration sensor and the displacement sensor of the cuffless blood pressure measuring device
  • a current pulse wave signal is collected from the user, and the current pulse wave transmission time of the user is calculated according to the current ECG signal of the user and the current pulse wave signal.
  • S131 Select a pulse wave transmission time that is closest to the current pulse wave transmission time from the first calibration data and the second calibration data, and use the calibration data of the pulse wave transmission time closest to the current pulse wave transmission time as the best calibration. data.
  • the current pulse wave transmission time of the user obtained above is PTT3, and the current pulse wave transmission time PTT3 is respectively matched with the first pulse wave transmission time PTT1 in the first calibration data and the second pulse wave in the second calibration data.
  • the transmission time PTT2 is compared, and it is judged whether the difference from PTT3 is PTT1 or PTT2. If the difference from PTT3 is PTT1, then the optimal function is determined by the first calibration data, if the difference from PTT3 is PTT2 , the best function is determined with the second calibration data.
  • the PTT2 calculated by combining the PPT1 in the first calibration data and the PTT2 of the second calibration data, and the data obtained by the current measurement is used as the calibration data corresponding to the PTT closest to the PTT3.
  • the pulse wave transmission time calculated by the plurality of pairs of data in the first calibration data may be averaged as the first pulse wave transmission time PTT1, and the plurality of pairs of data in the second calibration data may be calculated.
  • the pulse wave transmission time is averaged as the second pulse wave transmission time PTT2, and PTT1 and PTT2 are respectively compared with PTT3 to determine the best calibration data.
  • the plurality of second pulse wave transmission times PTT2 in the quasi-data finds the PTT closest to PTT3, and the calibration data of the PTT closest to PTT3 exists as the best calibration data.
  • the first calibration data has a plurality of first pulse wave transmission times A, B, C, and D
  • the second calibration data has a plurality of second pulse wave transmission times A1, B1, C1, and D1, if A, B, and C. If there is one closest to PTT3 in D, the first calibration data is used as the best calibration data. If one of A1, B1, C1, and D1 is closest to PTT3, the second calibration data is used as the best calibration data.
  • a function determined according to the best calibration data is used as a best function for characterizing the relationship between the pulse wave transmission time of the user and the blood pressure value.
  • the function determined by the least squares method with the best calibration data is used as the best function for characterizing the relationship between the user's pulse wave transmission time and the blood pressure value.
  • the implementation schemes shown in FIG. 3 and FIG. 4 only consider the first calibration data generated by the user manual calibration and the second calibration data stored in advance, and the first calibration data and the second After the calibration data determines the function, the best function is determined based on the degree of difference.
  • the current measurement data is further combined to determine the optimal function. That is, when the pulse wave transmission time in the first calibration data is PTT1, the pulse wave transmission time in the second calibration data is PTT2, and if the current user uses the cuffless blood pressure measuring device to measure blood pressure, the corresponding acquired electrocardiogram
  • the pulse wave transmission time calculated by the signal and the pulse wave signal is PTT3. If PTT3 is close to PTT1, the first calibration data is used for calibration to obtain the optimal function, and the blood pressure value is calculated. If the PTT is close to PTT2, the second calibration data is used. Calibrate to get the best function and calculate the blood pressure value.
  • the first calibration data or the second calibration data does not exist or the first calibration data and the second calibration data do not exist.
  • the first calibration data does not exist
  • performing calibration with the first calibration data determines an optimal function, if neither the first calibration data nor the second calibration data exists, in this case, Prompt the user to perform a manual calibration.
  • the cuff-type blood pressure measuring device acquires the second calibration data that is pre-stored by the user in the cuffless blood pressure measuring device, and may specifically include the following sub-steps:
  • S140 The cuffless blood pressure measuring device acquires the identity of the user.
  • the cuffless blood pressure measuring device may determine the identity of the user based on one or both of the first electrocardiographic signal and the first pulse wave signal in the first calibration data of the user. It is also possible to determine the identity of the user based on one or both of the current ECG signal and the current pulse wave signal currently generated by the user using the cuffless blood pressure measuring device.
  • the ECG signal and pulse wave signal of the same person remain basically stable, and the ECG of different individuals There is a large difference between the signal and the pulse wave signal. Therefore, the user's identity can be determined by the ECG signal or the pulse wave signal.
  • S141 Acquire second calibration data from a plurality of pre-stored calibration data according to the identity of the user.
  • the second calibration data is obtained from the plurality of pre-stored calibration data according to the identity of the user.
  • the method for obtaining the second calibration data according to the identity of the user may be implemented by using the technical solutions of the prior art, which is not limited by the present invention.
  • FIG. 7 is a flowchart of determining an identity of a user by using at least one of a first electrocardiographic signal and a first pulse wave signal according to an embodiment of the present invention, as shown in the figure, according to the first electrocardiographic signal and the first pulse wave. At least one of the signals determining the identity of the user includes the following steps:
  • S150 Perform pre-processing on at least one of the first electrocardiographic signal and the first pulse wave signal, extract characteristic parameters of the signal, and generate a physiological signal feature vector template;
  • the manner of preprocessing at least one of the first electrocardiographic signal and the first pulse wave signal may be, but is not limited to, digital signal conversion, noise reduction, and the like.
  • the characteristic parameters of the extracted signal may be vertices, valley points, and the like of the signal waveform.
  • a physiological signal feature vector template is generated according to the extracted feature parameters.
  • S151 Determine whether there is a pre-stored physiological signal feature vector template that matches the physiological signal feature vector template to a predetermined matching threshold
  • the matching threshold here is a threshold that is preset by the user and stored in the measuring device for measuring the degree of matching. It can be adjusted as needed.
  • S152 Determine an identity identifier corresponding to the pre-stored physiological signal feature vector template as a user identity identifier.
  • the identity identifier corresponding to the pre-stored physiological signal feature vector template is determined as the user's identity.
  • S153 Create a user identity, and bind the generated physiological signal feature vector template.
  • the first calibration data does not exist, for example, the user does not perform the manual calibration process before using the cuffless blood pressure measuring device for measurement.
  • at least one of the corresponding ECG signal and the pulse wave signal measured by the current user using the cuffless blood pressure measuring device may be obtained to determine the identity of the user.
  • the specific implementation process of determining the identity of the user according to at least one of the ECG signal and the pulse wave signal is similar to the process shown in FIG. 7, and the present invention is not described herein again.
  • the degree of difference between the first calibration data and the second calibration data is determined by way of least squares method as an example.
  • the following examples are all taking the determination process of the diastolic pressure calibration data a2 and b2 as an example.
  • Calibration Strategy 1 Combine the first calibration data with the second calibration data, estimate the calibration parameters by least squares, and determine the best function based on the results of the least squares fit.
  • the first strategy is to combine the first calibration data and the second calibration data, and perform the least squares linear fitting result together with the first calibration data and the second calibration data, that is, the third function is used as the optimal function characterization parameter, and the characterization parameters are updated.
  • the user's blood pressure value is calculated based on the updated characterization parameters.
  • replacing the original second calibration data with the updated calibration data ie, replacing the previously stored second calibration data with the first calibration data and the second calibration data
  • the characterization parameter obtained by replacing the original second calibration data is the second function.
  • the dot in the right figure is the updated calibration data, that is, the first calibration data described above (in this embodiment, the user recalibrates four times using the cuff sphygmomanometer, and the left figure shows the original calibration data, in the right figure Each dot represents a calibration.
  • the slope change rate is
  • the R 2 change rate is
  • the second strategy is adopted as the blood pressure calculation strategy.
  • the second strategy is to not update the characterization parameters, and the second function determined by the originally stored calibration data, that is, the second calibration data, is used as the optimal function to calculate the blood pressure.
  • the calibration data of this update that is, the first calibration data described above, is also not stored. At this time, the user may be alerted that the calibration data may be abnormal.
  • the data is the first calibration data.
  • the third strategy is employed as the blood pressure calculation strategy.
  • the third strategy is to use the calibration parameters (ie, the first function) determined by the updated calibration data as a best function, replacing the originally stored calibration data and characterization parameters with the updated calibration data and the optimal function.
  • the updated calibration data sample size is greater than the specified threshold 6 (in this embodiment, the user recalibrates 7 times using the cuff sphygmomanometer, and each dot in the right figure represents one calibration.
  • the user uses a cuff sphygmomanometer to measure diastolic blood pressure and systolic blood pressure. After 30 seconds of rest, wear a cuffless blood pressure measuring device to measure PTT.
  • the blood pressure value delete the original calibration data, store the updated calibration data, that is, the first calibration data, and replace the original characterization parameters with the updated calibration parameter, that is, the first function.
  • residual analysis may be performed in combination with existing calibration data (second calibration data) and updated calibration data (first calibration data). It is judged whether there is an abnormal point in the second calibration data. If there is an abnormal point, after the abnormal point is removed, the fourth function calculated by combining the second calibration data after the abnormal point and the first calibration data is taken as the optimal function.
  • the present invention is based on the first calibration data acquired when the user performs the manual calibration process before measuring the blood pressure using the cuffless blood pressure measuring device, and
  • the second calibration data pre-stored in the cuff blood pressure measuring device determines an optimal function for characterizing a functional relationship between the predetermined biometrics of the user and the blood pressure value. In this way, the accuracy of the calibration can be improved, thereby improving the accuracy of blood pressure measurement results.
  • the identity identifier of the user may be determined according to the physiological signal of the user (at least one of the ECG signal and the pulse wave signal), and the calibration data of the originally stored user may be obtained according to the determined user identity identifier.
  • manual selection is required to obtain the calibration data and the calibration parameter problem, so that the calibration data corresponding to the user and the corresponding calibration parameters can be automatically obtained without manual selection, thereby improving the user experience and simultaneously combining the user during calibration.
  • the pre-stored calibration data can be fully utilized and the calibration is more accurate, making the measurement of blood pressure values more accurate.
  • FIG. 12 is a schematic structural diagram of a cuffless blood pressure measuring device according to an embodiment of the present invention.
  • the cuffless blood pressure measuring device provided in this embodiment is used to execute the method described in the foregoing embodiment.
  • the cuff-type blood pressure measurement device 100 of the present embodiment includes a first acquisition module 11, a second acquisition module 12, a determination module 13, and a calculation module 14, wherein:
  • the first obtaining module 11 is configured to acquire first calibration data, where the first calibration data is used by the user.
  • the data generated by the manual calibration process is performed before the cuff blood pressure measuring device measures blood pressure.
  • the first calibration data includes at least a first blood pressure value and a first pulse wave transmission time.
  • the manual calibration process is to measure the first blood pressure value by the user using a cuff sphygmomanometer, and collect the first ECG signal of the user through the ECG sensor of the cuffless blood pressure measuring device and the light sensor and pressure through the cuffless blood pressure measuring device.
  • At least one of the sensor, the acoustic sensor, the photoelectric sensor, the acceleration sensor, and the displacement sensor acquires a first pulse wave signal of the user, and calculates a first pulse wave transmission time according to the first electrocardiographic signal of the user and the first pulse wave signal.
  • a set of first blood pressure values and a first pulse wave transmission time are generated, and the first acquisition module 11 measures the cuff blood pressure by receiving the manual input by the user or by using a specific interface such as Bluetooth, infrared, or the like.
  • the device acquires to form the first calibration data.
  • calculating the first pulse wave transmission time according to the first electrocardiographic signal and the first pulse wave signal may be: according to the reference point on the first electrocardiographic signal and the first pulse in the same period The time difference between the reference points on the wave signal is calculated to obtain the first pulse wave transmission time.
  • the second obtaining module 12 is configured to acquire pre-stored second calibration data of the user.
  • the second calibration data includes at least a second blood pressure value and a second pulse wave transmission time.
  • the second calibration data may be historical manual calibration data when the user performs a manual calibration process using the cuffless blood pressure measuring device before acquiring the first calibration data, the historical manual calibration data being stored in the cuffless blood pressure measuring device.
  • the second calibration data may also be calibration data that the user pre-stores in the cloud, the calibration data stored in the cloud may be calibration data derived from a smart wearable device such as a watch, and the second acquisition module 12 is stored from the cloud through the internal interface. The calibration data of the cloud is used as the second calibration data.
  • FIG. 13 is a schematic structural diagram of a second acquiring module in a cuffless blood pressure measuring device according to an embodiment of the present invention.
  • the second acquiring module includes An acquisition unit 111 and a second acquisition unit 112, wherein:
  • the first obtaining unit 111 is configured to acquire an identity of the user.
  • the first obtaining unit 111 may determine the identity of the user according to at least one of the first electrocardiographic signal and the first pulse wave signal in the first calibration data, and may also use the cuff-based blood pressure measurement currently used by the user. At least one of a current ECG signal generated by the device and a current pulse wave signal determines an identity of the user.
  • the ECG signal and pulse wave signal of the same person remain basically stable, and the ECG of different individuals There is a large difference between the signal and the pulse wave signal. Therefore, the user's identity can be determined by the ECG signal or the pulse wave signal.
  • the second obtaining unit 112 is configured to acquire second calibration data from a plurality of pre-stored calibration data according to the identity of the user acquired by the first obtaining unit 111.
  • the second obtaining unit 162 acquires second calibration data from a plurality of pre-stored calibration data according to the identity of the user.
  • the determining module 13 is configured to determine an optimal function for characterizing a relationship between the pulse wave transmission time of the user and the blood pressure value according to the first calibration data and the second calibration data.
  • the determining module 13 determines that the optimal function for characterizing the functional relationship between the pulse wave transmission time and the blood pressure value of the user refers to determining a calibration parameter (or a calibration coefficient) for calculating the blood pressure value according to the pulse wave transmission time. .
  • the determined optimal function of the embodiment of the present invention determines a1, b1, a2 thereof, The specific value of b2, thereby calculating the blood pressure value of the user based on the current measurement data and the determined calibration parameters.
  • the determining module of the cuffless blood pressure measuring device of the above embodiment includes a first determining unit 121, a second determining unit 122, a third determining unit 123, and a fourth determining unit. 124, where:
  • the first determining unit 121 is configured to determine the first function according to the first calibration data.
  • the first function is a function for characterizing the relationship between the first blood pressure value in the first calibration data and the first pulse wave transmission time.
  • the second determining unit 122 is configured to determine a second function according to the second calibration data.
  • the second function herein is a function for characterizing the relationship between the second blood pressure value and the second pulse wave transmission time in the second calibration data.
  • the first determining unit 121 determines the first function by a least square method according to the first calibration data.
  • the second determining unit 122 determines the second function by a least squares method according to the second calibration data.
  • the third determining unit 123 is configured to determine a degree of difference between the first function and the second function.
  • the difference between the first function and the second function can be achieved by placing the two function relationships in the same
  • the linear relationship in the taxonomy is measured. Specifically, after the first function and the second function are determined by the least squares method, the rate of change of the slope of the first function with respect to the second function and/or the rate of change of the fitting coefficient is determined to determine the degree of difference.
  • the fourth determining unit 124 is configured to determine an optimal function according to the degree of difference.
  • the fourth determining unit 124 determines an optimal function for characterizing the relationship between the pulse wave transmission time of the user and the blood pressure value based on the degree of the difference.
  • the fourth determining unit 124 if the degree of difference is less than the first predetermined threshold, the fourth determining unit 124 takes the first function determined by the first calibration data and the second calibration data as a best function. If the degree of difference is greater than the first predetermined threshold and the sample size of the first calibration data is less than the second predetermined threshold, the fourth determining unit 124 optimizes the second function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the fourth determining unit 124 takes the first function as a best function.
  • the first predetermined threshold and the second predetermined threshold herein may be thresholds preset by the user and stored in the cuffless blood pressure measuring device, and the user may adjust the first predetermined threshold and the second predetermined threshold as needed.
  • the first predetermined threshold also includes two correspondingly (the slope change rate threshold and the fit coefficient change rate threshold, respectively).
  • the slope change rate threshold is 30%
  • the fitting system change rate threshold is 10%
  • the second predetermined threshold is for the sample size, for example, it can be set to 4, 6, and the like.
  • the degree of difference when the degree of difference is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and the function determined by combining the two calibration data may be used as the optimal function. And if the degree of difference is greater than the first predetermined threshold, determining that the deviation between the first calibration data and the pre-stored second calibration data is relatively large, in this case, further determining the sample amount of the first calibration data is needed.
  • the first function determined by the first calibration data alone may be used as the best function, and if the sample size of the first calibration data is relatively small (not exceeding The second predetermined threshold) is the second function determined directly from the pre-stored second calibration data as the best function.
  • another specific implementation may be: if the degree of difference is less than the first predetermined threshold, the fourth determining unit 124 takes the first function determined by the first calibration data and the second calibration data as a best function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is less than the second predetermined threshold, the fourth determining unit 124 determines the first calibration data and the second calibration data. The third function acts as the best function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the fourth determining unit 124 rejects the abnormal data point in the first calibration data, and the second calibration data and the remaining first The fourth function of the combination of the calibration data is calculated as the best function.
  • the degree of difference when the degree of difference is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and the function determined by combining the two calibration data may be used as the optimal function. And when the difference degree is greater than the first predetermined threshold, and the sample amount of the first calibration data is less than the second predetermined threshold, since the sample amount of the second calibration data is small, the difference caused by the second calibration data may be ignored, and the first The third function determined by the combination of the calibration data and the second calibration data is used as the optimal function.
  • the difference degree is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the deviation of the first calibration data from the pre-stored second calibration data is larger, and the sample size of the first calibration data is also compared.
  • the first calibration data may be further subjected to residual analysis to determine whether there is an abnormal point in the first calibration data. If there is an abnormal point, after the abnormal point is removed, the remaining first calibration data and the second calibration data are combined and calculated. The resulting fourth function is used as the best function.
  • the determining module of the sleeveless blood pressure measuring device of the above embodiment includes a first determining unit 131, a second determining unit 132, a third determining unit 133, and a fourth determining unit. 134, where:
  • the first determining unit 131 is configured to determine the first function according to the first calibration data.
  • the first function is a function for characterizing the relationship between the first blood pressure value in the first calibration data and the first pulse wave transmission time.
  • the second determining unit 132 is configured to determine a third function according to the combination of the first calibration data and the second calibration data.
  • the third function herein is a function for characterizing the relationship between the blood pressure value and the pulse wave transmission time after the combination of the first calibration data and the second calibration data.
  • the first determining unit 131 determines the first function by a least square method according to the first calibration data.
  • the second determining unit 132 determines the third function by a least square method based on the first calibration data and the second calibration data.
  • the third determining unit 133 is configured to determine the degree of difference between the first function and the third function.
  • the difference between the first function and the third function can be achieved by placing the two function relationships in the same
  • the linear relationship in the taxonomy is measured. Specifically, after determining the first function and the third function by the least square method, determining a slope change rate of the third function with respect to the second function and/or a rate of change of the fitting coefficient to determine the degree of difference.
  • the fourth determining unit 134 is configured to determine an optimal function according to the degree of difference.
  • the fourth determining unit 134 determines an optimal function for characterizing the relationship between the pulse wave transmission time of the user and the blood pressure value based on the degree of the difference.
  • the fourth determining unit 134 uses the third function determined by the first calibration data and the second calibration data as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample size of the first calibration data is less than the second predetermined threshold, the fourth determining unit 134 sets the second function as the best function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the fourth determining unit 134 then uses the first function as the optimal function.
  • the first predetermined threshold and the second predetermined threshold herein may be thresholds preset by the user and stored in the cuffless blood pressure measuring device, and the user may adjust the first predetermined threshold and the second predetermined threshold as needed.
  • the first predetermined threshold also includes two correspondingly (the slope change rate threshold and the fit coefficient change rate threshold, respectively)
  • the slope change rate threshold is 30%
  • the fitting system change rate threshold is 10%
  • the second predetermined threshold is for the sample size, for example, it can be set to 4, 6, and so on.
  • the degree of difference when the degree of difference is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and a function determined by combining the two calibration data may be used as the optimal function. . And if the degree of difference is greater than the first predetermined threshold, determining that the deviation between the first calibration data and the pre-stored second calibration data is relatively large, in this case, further determining the sample amount of the first calibration data is needed.
  • the first function determined by the first calibration data alone may be used as the optimal function, and if the sample amount of the first calibration data is relatively small (The second function determined directly from the pre-stored second calibration data is used as the optimal function if the second predetermined threshold is not exceeded.
  • another specific implementation may be: if the degree of difference is less than the first predetermined threshold, the fourth determining unit 134 takes the first function determined by the first calibration data and the second calibration data as a best function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is less than the second predetermined threshold, the fourth determining unit 134 determines the first calibration data and the second calibration data The third function serves as the best function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the fourth determining unit 134 rejects the abnormal data point in the first calibration data, and the second calibration data and the remaining number The fourth function of the combination of a calibration data is calculated as the best function.
  • the degree of difference when the degree of difference is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and the function determined by combining the two calibration data may be used as the optimal function. . And when the difference degree is greater than the first predetermined threshold, and the sample amount of the first calibration data is less than the second predetermined threshold, since the sample amount of the second calibration data is small, the difference caused by the second calibration data may be ignored, The third function determined by the combination of the first calibration data and the second calibration data is used as the optimal function.
  • the difference degree is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the deviation of the first calibration data from the pre-stored second calibration data is larger, and the sample amount of the first calibration data
  • the residual data of the first calibration data may be further analyzed to determine whether there is an abnormal point in the first calibration data. If there is an abnormal point, after the abnormal point is removed, the remaining first calibration data and the second calibration data are deleted. The fourth function obtained by the combination calculation is taken as the optimal function.
  • the determining module of the cuffless blood pressure measuring device of the above embodiment includes an obtaining unit 141, a selecting unit 142, and a determining unit 143, wherein:
  • the obtaining unit 141 is configured to acquire a current pulse wave transmission time of the user.
  • the current pulse wave transmission time of the user may be obtained by acquiring the corresponding ECG signal and the pulse wave signal when the user currently uses the cuff-type blood pressure measuring device, and calculating the current pulse wave transmission time of the user.
  • the ECG sensor of the cuffless blood pressure measuring device collects at least one of a current ECG signal of the user and a light sensor, a pressure sensor, an acoustic sensor, a photoelectric sensor, an acceleration sensor, and a displacement sensor through the cuffless blood pressure measuring device
  • the current pulse wave signal of the user is collected, and the current pulse wave transmission time of the user is calculated according to the current ECG signal of the user and the current pulse wave signal.
  • the selecting unit 142 is configured to select a pulse wave transmission time closest to the current pulse wave transmission time from the first calibration data and the second calibration data, so as to have the calibration data of the pulse wave transmission time closest to the current pulse wave transmission time as Best calibration data.
  • the transmission time PTT3 is respectively compared with the first pulse wave transmission time PTT1 in the first calibration data and the second pulse wave transmission time PTT2 in the second calibration data, and it is determined whether the difference from the PTT3 is PTT1 or PTT2, if If the PTT3 difference is small for PTT1, then the optimal function is determined with the first calibration data. If the difference from PTT3 is PTT2, the optimal function is determined with the second calibration data.
  • the PTT2 calculated by combining the PPT1 in the first calibration data and the PTT2 of the second calibration data, and the data obtained by the current measurement is used as the calibration data corresponding to the PTT closest to the PTT3.
  • the pulse wave transmission time calculated by the plurality of pairs of data in the first calibration data may be averaged as the first pulse wave transmission time PTT1, and the plurality of pairs of data in the second calibration data may be calculated.
  • the pulse wave transmission time is averaged as the second pulse wave transmission time PTT2, and PTT1 and PTT2 are respectively compared with PTT3 to determine the best calibration data.
  • a plurality of first pulse wave transmission time PTT1 in the first calibration data and a plurality of second pulse wave transmission time PTT2 in the second calibration data find the PTT closest to PTT3, and the PTT3 is the most
  • the calibration data of the close PTT is used as the best calibration data.
  • the first calibration data has a plurality of first pulse wave transmission times A, B, C, and D
  • the second calibration data has a plurality of second pulse wave transmission times A1, B1, C1, and D1, if A, B, and C. If there is one closest to PTT3 in D, the first calibration data is used as the best calibration data. If one of A1, B1, C1, and D1 is closest to PTT3, the second calibration data is used as the best calibration data.
  • the determining unit 143 is for using a function determined based on the optimal calibration data as a best function.
  • the function determined by the least squares method with the best calibration data is used as the best function for characterizing the relationship between the user's pulse wave transmission time and the blood pressure value.
  • the determining module determines The second calibration data is calibrated to determine an optimal function.
  • the determining module performs calibration with the first calibration data to determine an optimal function. If the first calibration data and the second calibration data are not present, In this case, the user is prompted to perform manual calibration.
  • the calculating module 14 is configured to acquire the current pulse wave transmission time of the user, and calculate the current blood pressure value of the user according to the current pulse wave transmission time and the optimal function.
  • the calculation module in the cuffless blood pressure measurement device of the above embodiment includes a first calculation unit 151 and a second calculation unit 152, wherein:
  • the first calculating unit 151 is configured to acquire a current ECG signal and a current pulse wave signal that are currently measured by the user using the cuffless blood pressure measuring device, and calculate a current pulse wave transmission time.
  • the second calculating unit 152 is configured to calculate the current blood pressure value of the user according to the optimal function and the current pulse wave transmission time.
  • the determined optimal function is used to characterize the functional relationship between the user's pulse wave transmission time and blood pressure values. Therefore, when the user currently measures with the cuffless blood pressure measuring device, the current electrocardiographic signal of the user and the photosensor of the cuffless blood pressure measuring device are collected by the electrocardiographic sensor of the cuffless blood pressure measuring device, At least one of a pressure sensor, an acoustic sensor, a photoelectric sensor, an acceleration sensor, and a displacement sensor acquires a current pulse wave signal of the user, and the calculation module 14 calculates a current pulse according to the current ECG signal of the user and the current pulse wave signal. Wave transmission time. Further, according to the calculated current pulse wave transmission time of the user, combined with the determined optimal function, the current blood pressure value of the user can be calculated.
  • Other formulas can also be used to calculate blood pressure, including but not limited to the following formula:
  • SBP is the systolic pressure
  • DBP is the diastolic pressure
  • is the vascular characteristic parameter, generally takes a constant
  • the subscript is o for the calibration value.
  • FIG. 18 is a schematic structural diagram of another cuffless blood pressure measuring device according to an embodiment of the present invention.
  • the base station provided in this embodiment is used to execute the paging method in the embodiment shown in FIG. .
  • the cuffless blood pressure measuring device 200 of the present embodiment includes a processor 21, a memory 22, a receiver 23, and a bus system 24, wherein:
  • the processor 21 controls the operation of the cuffless blood pressure measuring device 200, which may also be referred to as a CPU (Central Processing Unit).
  • Processor 21 may be an integrated circuit chip with signal processing capabilities.
  • the processor 21 can also be a general-purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), a Field-Programmable Gate Array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • Memory 22 can include read only memory and random access memory and provides instructions and data to processor 21. A portion of the memory 22 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the various components of the cuffless blood pressure measuring device 200 are coupled together by a bus system 24, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • the bus system may be an ISA (Industry Standard Architecture) bus, a PCI (Peripheral Component Interconnect) bus, or an EISA (Extended Industry Standard Architecture) bus.
  • the bus may be one or more physical lines, and when it is a plurality of physical lines, it may be divided into an address bus, a data bus, a control bus, and the like.
  • the processor 21, the memory 22, and the receiver 23 may also be directly connected through a communication line.
  • various buses are labeled as the bus system 24 in the figure.
  • the memory 22 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 21 performs the following operations by calling an operation instruction stored in the memory 22 (the operation instruction can be stored in the operating system):
  • the processor 21 is configured to control the receiver 23 to receive the first calibration data of the user, and the first calibration data is data generated by the manual calibration process before the user measures the blood pressure using the cuffless blood pressure measuring device.
  • the processor 21 is configured to acquire pre-stored second calibration data of the user, and determine, according to the first calibration data and the second calibration data, an optimal relationship between a pulse wave transmission time and a blood pressure value for characterizing the user. a function further obtaining a current pulse wave transmission time of the user, and calculating a current blood pressure value of the user according to the current pulse wave transmission time and the optimal function.
  • the memory 22 is used to store first calibration data and second calibration data.
  • the first calibration data includes at least a first blood pressure value and a first pulse wave transmission time.
  • the manual calibration process described above is for the user to measure the first blood pressure value using a cuff type sphygmomanometer, and to collect the first ECG signal of the user through the ECG sensor of the cuffless blood pressure measuring device and the non-cuff blood pressure measuring device.
  • At least one of a light sensor, a pressure sensor, an acoustic sensor, a photoelectric sensor, an acceleration sensor, and a displacement sensor collects a first pulse wave signal of the user, and calculates a first pulse according to the first electrocardiographic signal and the first pulse wave signal of the user. Wave transmission time.
  • a set of first blood pressure values and a first pulse wave transmission time are generated, and the processor 21 controls the receiver 23 to receive the cuff blood pressure measurement by receiving a manual input from a user or through a specific interface such as Bluetooth, infrared, or the like.
  • the device acquires to form the first calibration data.
  • calculating the first pulse wave transmission time according to the first electrocardiographic signal and the first pulse wave signal may be: according to the reference point on the first electrocardiographic signal and the first pulse in the same period The time difference between the reference points on the wave signal is calculated to obtain the first pulse wave transmission time.
  • the second calibration data includes at least a second blood pressure value and a second pulse wave transmission time.
  • the second calibration data may be historical manual calibration data when the user performs a manual calibration process using the cuffless blood pressure measuring device before acquiring the first calibration data, the historical manual calibration data being present in the cuffless blood pressure measuring device.
  • the second calibration data may also be pre-stored by the user.
  • the calibration data stored in the cloud, the calibration data stored in the cloud may be calibration data derived from a smart wearable device such as a watch, and the processor 21 acquires the calibration data stored in the cloud from the cloud as the second calibration data through the internal interface.
  • the processor 21 may acquire the identity of the user, and obtain second calibration data from a plurality of pre-stored calibration data according to the identity of the user.
  • the processor 21 may determine the identity of the user according to one or both of the first ECG signal and the first pulse wave signal in the first calibration data of the user, or may be determined according to the user.
  • One or both of the generated current ECG signal and the current pulse wave signal are currently measured using a cuffless blood pressure measuring device to determine the identity of the user.
  • the processor 21 determines that the optimal function for characterizing the functional relationship between the pulse wave transmission time and the blood pressure value of the user refers to determining a calibration parameter (or a calibration coefficient) for calculating the blood pressure value according to the pulse wave transmission time.
  • the determined optimal function of the embodiment of the present invention determines a1, b1, a2 thereof
  • the specific value of b2 is such that the blood pressure value of the user is calculated based on the current measurement data and the determined calibration parameters.
  • the determined optimal function is used to characterize the functional relationship between the user's pulse wave transmission time and blood pressure values. Therefore, when the user currently measures with the cuffless blood pressure measuring device, the current electrocardiographic signal of the user and the photosensor of the cuffless blood pressure measuring device are collected by the electrocardiographic sensor of the cuffless blood pressure measuring device, At least one of a pressure sensor, an acoustic sensor, a photoelectric sensor, an acceleration sensor, and a displacement sensor acquires a current pulse wave signal of the user, and calculates a current pulse wave transmission time according to the current ECG signal of the user and the current pulse wave signal. . According to the calculated current pulse wave transmission time of the user, combined with the determined optimal function, the current blood pressure value of the user can be calculated.
  • Other formulas can also be used to calculate blood pressure, including but not limited to the following formula:
  • SBP is the systolic pressure
  • DBP is the diastolic pressure
  • is the vascular characteristic parameter, generally takes a constant
  • the subscript is o for the calibration value.
  • the processor 21 may determine the best function according to the following manner: determining a first function according to the first calibration data, determining a second function according to the second calibration data, determining a degree of difference between the first function and the second function, according to The degree of difference determines the best function.
  • the first function here is a function for characterizing the relationship between the first blood pressure value in the first calibration data and the first pulse wave transmission time.
  • the second function herein is a function for characterizing the relationship between the second blood pressure value and the second pulse wave transmission time in the second calibration data.
  • the processor 21 determines the first function by a least squares method according to the first calibration data.
  • the processor 21 determines the second function by a least squares method based on the second calibration data.
  • the degree of difference between the first function and the second function can be measured by the linear relationship of the two function relationships in the same coordinate system. Specifically, after the first function and the second function are determined by the least squares method, the rate of change of the slope of the first function with respect to the second function and/or the rate of change of the fitting coefficient is determined to determine the degree of difference.
  • the optimal function for characterizing the relationship between the pulse wave transmission time of the user and the blood pressure value is determined according to the degree of difference.
  • the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample size of the first calibration data is less than the second predetermined threshold, the second function is the most optimal function. If the degree of difference is greater than a first predetermined threshold and the sample size of the first calibration data is greater than the second The predetermined threshold is then used as the best function.
  • the first predetermined threshold and the second predetermined threshold herein may be thresholds preset by the user and stored in the cuffless blood pressure measuring device, and the user may adjust the first predetermined threshold and the second predetermined threshold as needed.
  • the first predetermined threshold also includes two correspondingly (the slope change rate threshold and the fit coefficient change rate threshold, respectively).
  • the slope change rate threshold is 30%
  • the fitting system change rate threshold is 10%
  • the second predetermined threshold is for the sample size, for example, it can be set to 4, 6, and the like.
  • the degree of difference between the first function and the second function when the degree of difference between the first function and the second function is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and the two calibration data may be combined to determine the function. As the best function. And if the degree of difference is greater than the first predetermined threshold, determining that the deviation between the first calibration data and the pre-stored second calibration data is relatively large, in this case, further determining the sample amount of the first calibration data is needed.
  • the first function determined by the first calibration data alone may be used as the best function, and if the sample size of the first calibration data is relatively small (not exceeding The second predetermined threshold) is the second function determined directly from the pre-stored second calibration data as the optimal function.
  • another specific implementation may be: if the degree of difference is less than the first predetermined threshold, the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is less than the second predetermined threshold, the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the abnormal data point in the first calibration data is eliminated and calculated by a combination of the second calibration data and the remaining first calibration data The fourth function serves as the best function.
  • the degree of difference between the first function and the second function when the degree of difference between the first function and the second function is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and the two calibration data may be combined and determined.
  • the function is the best function.
  • the difference degree is greater than the first predetermined threshold, and the sample amount of the first calibration data is less than the second predetermined threshold, since the sample amount of the second calibration data is small, the difference caused by the second calibration data may be ignored,
  • a third function determined by combining one calibration data with the second calibration data is used as the optimal function.
  • the first calibration data The deviation from the pre-stored second calibration data is large, and the sample quantity of the first calibration data is also relatively large, and the residual analysis may be further performed on the first calibration data to determine whether there is an abnormal point in the first calibration data, if any The abnormal point, after the abnormal point is eliminated, the fourth function calculated by combining the remaining first calibration data and the second calibration data is used as the optimal function.
  • the processor 21 may determine the optimal function by determining the first function according to the first calibration data, determining the third function according to the combination of the first calibration data and the second calibration data, and determining the first function and the third function. The degree of difference, based on the degree of difference to determine the best function.
  • the first function here is a function for characterizing the relationship between the first blood pressure value in the first calibration data and the first pulse wave transmission time.
  • the third function herein is a function for characterizing the relationship between the blood pressure value and the pulse wave transmission time after the combination of the first calibration data and the second calibration data.
  • the processor 21 determines the first function by a least squares method according to the first calibration data.
  • the processor 21 determines the third function by a least squares method based on the first calibration data and the second calibration data.
  • the degree of difference between the first function and the third function can be measured by the linear relationship of the two function relationships in the same coordinate system. Specifically, after determining the first function and the third function by the least square method, determining a slope change rate of the third function with respect to the second function and/or a rate of change of the fitting coefficient to determine the degree of difference.
  • the optimal function for characterizing the relationship between the pulse wave transmission time of the user and the blood pressure value is determined according to the degree of difference.
  • the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample size of the first calibration data is less than the second predetermined threshold, the second function is the most optimal function. If the degree of difference is greater than the first predetermined threshold and the sample size of the first calibration data is greater than the second predetermined threshold, then the first function is taken as the best function.
  • the first predetermined threshold and the second predetermined threshold herein may be thresholds preset by the user and stored in the cuffless blood pressure measuring device, and the user may adjust the first predetermined threshold and the second predetermined threshold as needed.
  • the first predetermined threshold also includes two correspondingly (the slope change rate threshold and the fit coefficient change rate threshold, respectively).
  • the slope change rate threshold is 30%
  • the fitting system change rate threshold is 10%
  • the second predetermined threshold is for the sample size, for example, it can be set to 4, 6, and the like.
  • the degree of difference between the first function and the third function when the degree of difference between the first function and the third function is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and the two calibration data may be combined to determine the function. As the best function. And if the degree of difference is greater than the first predetermined threshold, determining that the deviation between the first calibration data and the pre-stored second calibration data is relatively large, in this case, further determining the sample amount of the first calibration data is needed.
  • the first function determined by the first calibration data alone may be used as the best function, and if the sample size of the first calibration data is relatively small (not exceeding The second predetermined threshold) is the second function determined directly from the pre-stored second calibration data as the best function.
  • another specific implementation may be: if the degree of difference between the first function and the third function is less than the first predetermined threshold, the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is less than the second predetermined threshold, the third function determined by the first calibration data and the second calibration data is taken as the optimal function. If the degree of difference is greater than the first predetermined threshold and the sample amount of the first calibration data is greater than the second predetermined threshold, the abnormal data point in the first calibration data is eliminated and calculated by a combination of the second calibration data and the remaining first calibration data The fourth function serves as the best function.
  • the degree of difference between the first function and the third function when the degree of difference between the first function and the third function is less than the first predetermined threshold, it may be determined that the deviation between the first calibration data and the pre-stored second calibration data is not large, and the two calibration data may be combined and determined.
  • the function is the best function.
  • the difference degree is greater than the first predetermined threshold, and the sample amount of the first calibration data is less than the second predetermined threshold, since the sample amount of the second calibration data is small, the difference caused by the second calibration data may be ignored,
  • a third function determined by combining the calibration data with the second calibration data is used as the optimal function.
  • the residual data of the first calibration data may be further analyzed to determine whether there is an abnormal point in the first calibration data. If there is an abnormal point, after the abnormal point is removed, the remaining first calibration data and the second calibration data are combined. The calculated fourth function is taken as the optimal function.
  • the processor 21 may further determine the optimal function by acquiring the current pulse wave transmission time of the user, and selecting a pulse wave transmission closest to the current pulse wave transmission time from the first calibration data and the second calibration data. Time, the calibration data with the pulse wave transmission time closest to the current pulse wave transmission time as the best calibration data, determined by the best calibration data The function is the best function.
  • the current pulse wave transmission time of the user may be obtained by acquiring the corresponding ECG signal and the pulse wave signal when the user currently uses the cuff-type blood pressure measuring device, and calculating the current pulse wave transmission time of the user.
  • the ECG sensor of the cuffless blood pressure measuring device collects at least one of a current ECG signal of the user and a light sensor, a pressure sensor, an acoustic sensor, a photoelectric sensor, an acceleration sensor, and a displacement sensor through the cuffless blood pressure measuring device Collecting a current pulse wave signal of the user, and calculating a current pulse wave transmission time of the user according to the current ECG signal of the user and the current pulse wave signal.
  • the current pulse wave transmission time of the user obtained above is PTT3, and the current pulse wave transmission time PTT3 is respectively matched with the first pulse wave transmission time PTT1 in the first calibration data and the second pulse wave in the second calibration data.
  • the transmission time PTT2 is compared, and it is judged whether the difference from PTT3 is PTT1 or PTT2. If the difference from PTT3 is PTT1, then the optimal function is determined by the first calibration data, if the difference from PTT3 is PTT2 , the best function is determined with the second calibration data.
  • the PTT2 calculated by combining the PPT1 in the first calibration data and the PTT2 of the second calibration data, and the data obtained by the current measurement is used as the calibration data corresponding to the PTT closest to the PTT3.
  • the pulse wave transmission time calculated by the plurality of pairs of data in the first calibration data may be averaged as the first pulse wave transmission time PTT1, and the plurality of pairs of data in the second calibration data may be calculated.
  • the pulse wave transmission time is averaged as the second pulse wave transmission time PTT2, and PTT1 and PTT2 are respectively compared with PTT3 to determine the best calibration data.
  • a plurality of first pulse wave transmission time PTT1 in the first calibration data and a plurality of second pulse wave transmission time PTT2 in the second calibration data find the PTT closest to PTT3, and the PTT3 is the most
  • the calibration data of the close PTT is used as the best calibration data.
  • the first calibration data has a plurality of first pulse wave transmission times A, B, C, and D
  • the second calibration data has a plurality of second pulse wave transmission times A1, B1, C1, and D1, if A, B, and C. If there is one closest to PTT3 in D, the first calibration data is used as the best calibration data. If one of A1, B1, C1, and D1 is closest to PTT3, the second calibration data is used as the best calibration data.
  • the function determined by the least squares method with the best calibration data is used as the best function for characterizing the relationship between the user's pulse wave transmission time and the blood pressure value.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 21 or an instruction in the form of software.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 22, and the processor 21 reads the information in the memory 22 and combines the hardware to perform the steps of the above method.
  • the present invention combines the first calibration data generated by the user's manual calibration with the second calibration data stored in advance.
  • An optimal function for characterizing a functional relationship between the user's pulse wave transmission time and the blood pressure value is determined based on the first calibration data and the second calibration data.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated in In a unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种血压测量数据的处理方法及装置。其中,血压测量数据的处理方法包括:获取用户的第一校准数据(S10)和预先存储的用户的第二校准数据(S11),根据第一校准数据和第二校准数据,确定用于表征用户的脉搏波传输时间与血压值之间的函数关系的最佳函数(S12),获取用户的当前脉搏波传输时间,根据当前脉搏波传输时间和最佳函数,计算用户的当前血压值(S13)。通过这样的方式,能够针对不同的用户佩戴无袖带血压测量装置时,结合原有数据进行自动校准确定最佳函数,从而使得原有的校准数据能够得到充分使用,校准更加准确。

Description

一种血压测量数据的处理方法及装置 技术领域
本发明涉及一种血压测量数据的处理方法及装置。
背景技术
近年来,随着移动医疗技术的发展,血压监测的便捷性逐渐提升。一种常用的无袖带血压测量方法是基于血压和脉搏波传输速度之间的关系来确定血压。当血压上升时,血管扩张,脉搏波传输速度加快;反之,脉搏波传输速度减慢。脉搏波传输速度通常用脉搏波传输时间(PTT)来间接表征。已有研究表明,血压与PTT之间为准线性关系,但是由于每个人的动脉壁弹性、血液密度等生理参数不同,PTT与被测者血压之间的关系是对象依赖的,利用PTT计算血压之前需要针对每个被测者进行校准。
现有技术中,一般利用传统血压计测量舒张压和收缩压,并将测量结果传输给血压测量装置。用户佩戴无袖带血压测量装置时,微处理器模块根据传统血压计的测量结果和无袖带血压测量装置确定的PTT值计算校准参数,从而确定血压计算策略。
但是,这样的方式,用户再次进行校准时,原有的校准数据无法再次使用,造成数据浪费,且校准不够精确。
发明内容
本申请主要解决的技术问题是针对用户佩戴无袖带血压测量装置时,如何使校准更加准确。
有鉴于此,本申请提出一种血压测量数据的处理方法及装置,能够针对不同的用户佩戴无袖带血压测量装置时,利用预先存储的校准数据,并结合用户使用无袖带式血压测量装置测量之前手动校准的校准数据,确定用户的脉搏波传输时间与血压值之间的最佳函数,从而使得原有的校准数据能够得到充分使用,校准更加准确。
第一方面,本申请提供一种血压测量数据的处理方法,所述方法包括:无袖带式血压测量装置获取用户的第一校准数据,所述第一校准数据为用户使用所述无袖带式血压测量装置测量血压之前,执行手动校准过程产生 的数据;获取预先存储的所述用户的第二校准数据;根据所述第一校准数据和所述第二校准数据,确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数;获取所述用户的当前脉搏波传输时间,根据所述当前脉搏波传输时间和所述最佳函数,计算所述用户的当前血压值。
结合第一方面,在第一方面的第一种可能的实现方式中:所述根据所述第一校准数据和所述第二校准数据,确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数包括:根据所述第一校准数据确定第一函数;根据所述第二校准数据确定第二函数;确定所述第一函数与所述第二函数的差异程度;根据所述差异程度,确定所述最佳函数。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中:所述根据所述第一校准数据确定第一函数包括:根据所述第一校准数据通过最小二乘法确定所述第一函数;所述根据所述第二校准数据确定第二函数包括:根据所述第二校准数据通过最小二乘法确定第二函数。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中:所述根据所述差异程度,确定所述最佳函数包括:若所述差异程度小于第一预定阈值,则将所述第一校准数据与所述第二校准数据确定的第三函数作为所述最佳函数。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中:所述根据所述差异程度,确定所述最佳函数还包括:若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值,则将所述第二函数作为所述最佳函数;若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则将所述第一函数作为所述最佳函数。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中:所述根据所述差异程度,确定所述最佳函数还包括:若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值,则将所述第一校准数据与所述第二校准数据组合确定的第三函数作为所述最佳函数;若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则剔除所述第一校准数据中的异 常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
结合第一方面,在第一方面的第六种可能的实现方式中:所述根据所述第一校准数据和所述第二校准数据,确定所述用户的脉搏波传输时间与血压值之间关系的最佳函数包括:根据所述第一校准数据确定第一函数;根据所述第一校准数据与所述第二校准数据的组合确定第三函数;确定所述第一函数与所述第三函数的差异程度;根据所述差异程度,确定所述最佳函数。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中:所述根据所述第一校准数据确定第一函数包括:根据所述第一校准数据通过最小二乘法确定第一函数;所述根据所述第一校准数据与所述第二校准数据的组合确定第三函数包括:根据所述第一校准数据与所述第二校准数据的组合通过最小二乘法确定第三函数。
结合第一方面的第六种可能的实现方式,在第一方面的第八种可能的实现方式中:所述根据所述差异程度,确定所述最佳函数包括:若所述差异程度小于第一预定阈值,则将所述第三函数作为所述最佳函数。
结合第一方面的第八种可能的实现方式,在第一方面的第九种可能的实现方式中:所述根据所述差异程度,确定所述最佳函数还包括:若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值,则将第二校准数据确定的第二函数作为所述最佳函数;若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则将所述第一函数作为所述最佳函数。
结合第一方面的第八种可能的实现方式,在第一方面的第十种可能的实现方式中:所述根据所述差异程度,确定所述最佳函数还包括:若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值,则将所述第三函数作为所述最佳函数;若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
结合第一方面,在第一方面的第十一种可能的实现方式中:所述第一 校准数据和所述第二校准数据分别至少包括一组血压值和对应的脉搏波传输时间,所述根据所述第一校准数据和所述第二校准数据,确定用于表征所述用户脉搏波传输时间与血压值之间关系的最佳函数包括:获取所述用户的当前脉搏波传输时间;从所述第一校准数据和所述第二校准数据中选择与所述当前脉搏波传输时间最接近的脉搏波传输时间,以存在与所述当前脉搏波传输时间最接近的脉搏波传输时间的校准数据作为最佳校准数据;将根据所述最佳校准数据确定的函数作为所述最佳函数。
结合第一方面,在第一方面的第十二种可能的实现方式中:所述获取预先存储的所述用户的第二校准数据包括:无袖带式血压测量装置获取所述用户的身份标识;根据所述用户的身份标识从多个预先存储的校准数据中获取所述第二校准数据。
结合第一方面的第十二种可能的实现方式,在第一方面的第十三种可能的实现方式中:所述获取所述用户的身份标识包括:根据用户的所述第一校准数据中的第一心电信号和第一脉搏波信号中的至少一个,确定所述用户的身份标识;或根据所述用户当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号中的至少一个,确定所述用户的身份标识。
结合第一方面,在第一方面的第十四种可能的实现方式中:所述获取所述用户的当前脉搏波传输时间,根据所述当前脉搏波传输时间和所述最佳函数,计算所述用户的当前血压值包括:获取所述用户当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号,计算得到当前脉搏波传输时间;根据所述最佳函数与所述当前脉搏波传输时间计算得到所述用户的当前血压值。
第二方面,提供一种无袖带式血压测量装置,所述无袖带式血压测量装置包括第一获取模块、第二获取模块、确定模块以及计算模块,其中:所述第一获取模块用于获取第一校准数据,所述第一校准数据为用户使用所述无袖带式血压测量装置测量血压之前,执行手动校准过程产生的数据;所述第二获取模块用于获取预先存储的所述用户的第二校准数据;所述确定模块用于根据所述第一校准数据和所述第二校准数据,确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数;所述计算模块用 于获取所述用户的当前脉搏波传输时间,根据所述当前脉搏波传输时间和所述最佳函数,计算所述用户的当前血压值。
结合第二方面,在第二方面的第一种可能的实现方式中:所述确定模块包括第一确定单元、第二确定单元、第三确定单元以及第四确定单元,其中:所述第一确定单元用于根据所述第一校准数据确定第一函数;所述第二确定单元用于根据所述第二校准数据确定第二函数;所述第三确定单元用于确定所述第一函数与所述第二函数的差异程度;所述第四确定单元用于根据所述差异程度,确定所述最佳函数。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中:所述第一确定单元用于根据所述第一校准数据通过最小二乘法确定第一函数;所述第二确定单元用于根据所述第二校准数据通过最小二乘法确定第二函数。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中:所述第四确定单元用于在所述差异程度小于第一预定阈值时,将所述第一校准数据与所述第二校准数据确定的第三函数作为所述最佳函数。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中:所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第二函数作为所述最佳函数;或所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值时,将所述第一函数作为所述最佳函数。
结合第二方面的第三种可能的实现方式,在第二方面的第五种可能的实现方式中:所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第一校准数据与所述第二校准数据确定的第三函数作为所述最佳函数;或所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
结合第二方面,在第二方面的第六种可能的实现方式中:所述确定模块包括第一确定单元、第二确定单元、第三确定单元以及第四确定单元,其中:所述第一确定单元用于根据所述第一校准数据确定第一函数;所述第二确定单元用于根据所述第一校准数据与所述第二校准数据的组合确定第三函数;所述第三确定单元用于确定所述第一函数与所述第三函数的差异程度;所述第四确定单元用于根据所述差异程度,确定所述最佳函数。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中:所述第一确定单元用于根据所述第一校准数据通过最小二乘法确定第一函数;所述第二确定单元用于根据所述第二校准数据通过最小二乘法确定第二函数。
结合第二方面的第六种可能的实现方式,在第二方面的第八种可能的实现方式中:所述第四确定单元用于在所述差异程度小于第一预定阈值时,将所述第三函数作为所述最佳函数。
结合第二方面的第八种可能的实现方式,在第二方面的第九种可能的实现方式中:所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将第二校准数据确定的第二函数作为所述最佳函数;或所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,将所述第一函数作为所述最佳函数。
结合第二方面的第八种可能的实现方式,在第二方面的第十种可能的实现方式中:所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第三函数作为所述最佳函数;或所述第四确定单元用于所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值时,剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
结合第二方面,在第二方面的第十一种可能的实现方式中:所述第一校准数据和所述第二校准数据分别至少包括一组血压值和对应的脉搏波传输时间,所述确定模块包括获取单元、选择单元以及确定单元,其中:所述获取单元用于获取所述用户的当前脉搏波传输时间;所述选择单元用于 从所述第一校准数据和所述第二校准数据中选择与所述当前脉搏波传输时间最接近的脉搏波传输时间,以存在与所述当前脉搏波传输时间最接近的脉搏波传输时间的校准数据作为最佳校准数据;所述确定单元用于将根据所述最佳校准数据确定的函数作为最佳函数。
结合第二方面,在第二方面的第十二种可能的实现方式中:所述第二获取模块包括第一获取单元以及第二获取单元,其中:所述第一获取单元用于获取所述用户的身份标识;所述第二获取单元用于根据所述第一获取单元获取的所述用户的身份标识从多个预先存储的校准数据中获取所述第二校准数据。
结合第二方面的第十二种可能的实现方式,在第二方面的第十三种可能的实现方式中:所述第一获取单元用于根据用户的所述第一校准数据中的第一心电信号和第一脉搏波信号中的至少一个,确定所述用户的身份标识;或所述第一获取单元用于根据所述用户当前使用无袖带式血压测量装置产生的当前心电信号和当前脉搏波信号中的至少一个,确定所述用户的身份标识。
结合第二方面,在第二方面的第十四种可能的实现方式中:所述计算模块包括第一计算单元以及第二计算单元,其中:所述第一计算单元用于获取所述用户当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号,计算得到当前脉搏波传输时间;所述第二计算单元用于根据所述最佳函数与所述当前脉搏波传输时间计算得到所述用户的当前血压值。
第三方面,提供一种无袖带式血压测量装置,所述无袖带式血压测量装置包括处理器、存储器以及接收器,所述处理器分别耦接所述存储器以及接收器,其中:所述处理器用于控制所述接收器接收用户的第一校准数据,第一校准数据为用户使用无袖带式血压测量装置测量血压之前,执行手动校准过程产生的数据;所述处理器用于获取预先存储的用户的第二校准数据,根据所述第一校准数据和所述第二校准数据,确定用于表征用户的脉搏波传输时间与血压值之间关系的最佳函数,进一步获取用户的当前脉搏波传输时间,根据当前脉搏波传输时间和所述最佳函数,计算所述用户的当前血压值;所述存储器用于存储所述第一校准数据和所述第二校准 数据。
结合第三方面,在第三方面的第一种可能的实现方式中:所述处理器用于根据所述第一校准数据确定第一函数,根据所述第二校准数据确定第二函数,确定所述第一函数与所述第二函数的差异程度,根据所述差异程度,确定所述最佳函数。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中:所述处理器用于根据所述第一校准数据通过最小二乘法确定第一函数,根据所述第二校准数据通过最小二乘法确定第二函数。
结合第三方面的第一种可能的实现方式,在第三方面的第三种可能的实现方式中:所述处理器用于在所述差异程度小于第一预定阈值时,将所述第一校准数据与所述第二校准数据确定的第三函数作为所述最佳函数。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中:所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第二函数作为所述最佳函数;或所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值时,将所述第一函数作为所述最佳函数。
结合第三方面的第三种可能的实现方式,在第三方面的第五种可能的实现方式中:所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第一校准数据与所述第二校准数据确定的第三函数作为所述最佳函数;或所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
结合第三方面,在第三方面的第六种可能的实现方式中:所述处理器用于根据所述第一校准数据确定第一函数,根据所述第一校准数据与所述第二校准数据的组合确定第三函数,确定所述第一函数与所述第三函数的差异程度,根据所述差异程度,确定所述最佳函数。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的 实现方式中:所述处理器用于根据所述第一校准数据通过最小二乘法确定第一函数,根据所述第二校准数据通过最小二乘法确定第二函数。
结合第三方面的第六种可能的实现方式,在第三方面的第八种可能的实现方式中:所述处理器用于在所述差异程度小于第一预定阈值时,将所述第三函数作为所述最佳函数。
结合第三方面的第八种可能的实现方式,在第三方面的第九种可能的实现方式中:所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将第二校准数据确定的第二函数作为所述最佳函数;或所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,将所述第一函数作为所述最佳函数。
结合第三方面的第八种可能的实现方式,在第三方面的第十种可能的实现方式中:所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第三函数作为所述最佳函数;或所述处理器用于所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值时,剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
结合第三方面,在第三方面的第十一种可能的实现方式中:所述第一校准数据和所述第二校准数据分别至少包括一组血压值和对应的脉搏波传输时间,所述处理器用于获取所述用户的当前脉搏波传输时间,从所述第一校准数据和所述第二校准数据中选择与所述当前脉搏波传输时间最接近的脉搏波传输时间,以存在与所述当前脉搏波传输时间最接近的脉搏波传输时间的校准数据作为最佳校准数据,将根据所述最佳校准数据确定的函数作为最佳函数。
结合第三方面,在第三方面的第十二种可能的实现方式中:所述处理器用于获取所述用户的身份标识,根据所述用户的身份标识从多个预先存储的校准数据中获取所述第二校准数据。
结合第三方面的第十二种可能的实现方式,在第三方面的第十三种可能的实现方式中:所述处理器用于根据用户的所述第一校准数据中的第一 心电信号和第一脉搏波信号中的至少一个,确定所述用户的身份标识;或所述处理器用于根据所述用户当前使用无袖带式血压测量装置产生的当前心电信号和当前脉搏波信号中的至少一个,确定所述用户的身份标识。
结合第三方面,在第三方面的第十四种可能的实现方式中:所述处理器用于获取所述用户当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号,计算得到当前脉搏波传输时间,根据所述最佳函数与所述当前脉搏波传输时间计算得到所述用户的当前血压值。
上述技术方案,通过结合用户手动校准产生的第一校准数据和预先存储的第二校准数据,根据第一校准数据和第二校准数据确定用于表征用户脉搏波传输时间与血压值之间函数关系的最佳函数。通过这样的方式,能够针对不同用户佩戴无袖带式血压测量装置进行测量时,结合预先存储的校准数据进行自动校准确定最佳函数,从而使预先存储的校准数据能够得到充分使用,校准更加准确,从而使血压值的测量结果更加准确。
附图说明
图1是本发明实施例提供的一种血压测量数据的处理方法的流程图;
图2是本发明实施例提供的其中一种心电信号和脉搏波信号的示意图;
图3是本发明实施例提供的确定用于表征用户的脉搏波传输时间与血压值之间关系的其中一种实现方式的流程图;
图4是本发明实施例提供的确定用于表征用户的脉搏波传输时间与血压值之间关系的另一种实现方式的流程图;
图5是本发明实施例提供的确定用于表征用户的脉搏波传输时间与血压值之间关系的又一种实现方式的流程图;
图6是本发明实施例提供的无袖带式血压测量装置获取用户预先存储的第二校准数据的流程图;
图7是本发明实施例提供的通过第一心电信号和第一脉搏波信号的至少一种确定用户的身份标识的流程图;
图8是本发明实施例提供的第一种校准数据的拟合结果示意图;
图9是本发明实施例提供的第二种校准数据的拟合结果示意图;
图10是本发明实施例提供的第三种校准数据的拟合结果示意图;
图11是本发明实施例提供的第四种校准数据的拟合结果示意图;
图12是本发明实施例提供的一种无袖带式血压测量装置的结构示意图;
图13是本发明实施例的无袖带式血压测量装置的第二获取模块的结构示意图;
图14是本发明实施例的无袖带式血压测量装置的确定模块的一种结构示意图;
图15是本发明实施例的无袖带式血压测量装置的确定模块的另一种结构示意图;
图16是本发明实施例的无袖带式血压测量装置的确定模块的又一种结构示意图;
图17是本发明实施例提供的无袖带式血压测量装置的计算模块的结构示意图;
图18是本发明实施例提供的另一种无袖带式血压测量装置的结构示意图。
具体实施方式
请参阅图1,图1是本发明实施例提供的一种血压测量数据的处理方法的流程图,如图所示,本实施例的血压测量数据的处理方法包括:
S10:无袖带式血压测量装置获取用户的第一校准数据;
第一校准数据是用户在使用无袖带式血压测量装置测量血压之前,执行手动校准过程产生的数据。其中,第一校准数据至少包括第一血压值和第一脉搏波传输时间。
手动校准过程为用户使用袖带式血压计测量得到第一血压值,通过无袖带血压测量装置的心电传感器采集用户的第一心电信号以及通过无袖带血压测量装置的光传感器、压力传感器、声传感器、光电传感器、加速度传感器和位移传感器中的至少一种采集用户的第一脉搏波信号,根据用户的第一心电信号和第一脉搏波信号计算得到第一脉搏波传输时间。用户每进行一次手动校准即产生一组第一血压值和第一脉搏波传输时间,无袖带式血压测量装置通过接收用户手动输入或者通过特定的接口比如蓝牙、红 外等从袖带式血压测量装置获取,以形成第一校准数据。
其中,作为一种可能的实现方式,根据第一心电信号和第一脉搏波信号计算得到第一脉搏波传输时间可以是:根据第一心电信号上的参考点和同一周期内第一脉搏波信号上的参考点之间的时间差,计算得到第一脉搏波传输时间。
其中,作为一种根据心电信号和脉搏波信号计算脉搏波传输时间的具体举例,请参阅图2,图2为本发明实施例提供的其中一种心电信号和脉搏波信号的示意图,如图所示,本实施例中的脉搏波信号是通过光电传感器采集到的光电容积描记信号2,参考点为顶点、底点或中间点,其中,心电信号的顶点为301,光电容积描记信号底点302和顶点303,根据心电信号1上的参考,301和同一周期内的脉搏波信号上的参考点302之间的时间差,计算得到脉搏波传输时间PTT304。
S11:获取预先存储的所述用户的第二校准数据;
其中,第二校准数据至少包括第二血压值和第二脉搏波传输时间。第二校准数据可以是获取第一校准数据之前所述用户使用无袖带式血压测量装置执行手动校准过程时的历史手动校准数据,该历史手动校准数据存储在无袖带式血压测量装置中。第二校准数据也可以是所述用户预先存储在云端的校准数据,存储在云端的校准数据可以是从智能可穿戴设备比如手表导出的校准数据,无袖带式血压测量装置通过内部接口从云端获取存储在云端的校准数据作为第二校准数据。
S12:根据第一校准数据和第二校准数据,确定用于表征所述用户的脉搏波传输时间与血压值之间的函数关系的最佳函数。
本发明实施例中确定用于表征所述用户的脉搏波传输时间与血压值之间的函数关系的最佳函数是指确定根据脉搏波传输时间计算血压值的校准参数(或者说校准系数)。具体而言,比如通过公式SBP=a1×PTT+b1计算收缩压,根据公式DBP=a2×PTT+b2计算舒张压,本发明实施例的确定最佳函数即确定其中的a1,b1,a2,b2的具体数值,从而根据当前的测量数据和确定的校准参数,计算得到用户的血压值。
S13:获取所述用户的当前脉搏波传输时间,根据所述用户的当前脉搏波传输时间和最佳函数,计算所述用户的当前血压值。
因为确定的最佳函数是用于表征所述用户的脉搏波传输时间和血压值之间的函数关系的。因此,当前所述用户使用无袖带式血压测量装置进行测量时,通过无袖带血压测量装置的心电传感器采集所述用户的当前心电信号以及通过无袖带血压测量装置的光传感器、压力传感器、声传感器、光电传感器、加速度传感器和位移传感器中的至少一种采集所述用户的当前脉搏波信号,根据所述用户的当前心电信号和当前脉搏波信号计算得到当前脉搏波传输时间。根据计算得到所述用户的当前脉搏波传输时间,结合确定的最佳函数,即能计算得到所述用户的当前血压值。
以上本发明实施例中根据公式SBP=a1*PTT+b1计算收缩压,根据公式DBP=a2*PTT+b2计算舒张压,只是本发明的一个具体实施例子。也可以使用其他公式来计算血压,比如包括但不限于如下公式:
1)BP=A1ln(PTTR)+B1
Figure PCTCN2015086966-appb-000001
Figure PCTCN2015086966-appb-000002
4)BP=A4PTTR+B4
Figure PCTCN2015086966-appb-000003
Figure PCTCN2015086966-appb-000004
其中,上述公式中A2=μ*ln(PTTw0)
B2=-(SBP0-DBP0)*PTTw0/3
C2=SBP0/3+2DBP0/3
D2=(SBP0-DBP0)*PTTw0 2
公式中SBP为收缩压,DBP为舒张压,μ为血管特性参数,一般取常数,下标为o代表校准值。
以上本发明实施例提供的血压测量数据的处理方法,通过结合用户手动校准产生的第一校准数据和预先存储的第二校准数据,根据第一校准数据和第二校准数据确定用于表征该用户脉搏波传输时间与血压值之间函数关系的最佳函数。通过这样的方式,能够针对用户佩戴无袖带式血压测量 装置进行测量时,结合预先存储的校准数据进行自动校准确定最佳函数,从而使预先存储的校准数据能够得到充分使用,校准更加准确,从而使该用户血压值的测量结果更加准确。
其中,本发明以上实施例中,根据第一校准数据和第二校准数据,确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数有三种可能的实现方式,以下结合图3、图4以及图5对这三种可能的实现方式进行进一步的说明:
第一种可能的实现方式请参阅图3,图3是本发明实施例提供的确定用于表征所述用户的脉搏波传输时间与血压值之间关系的其中一种实现方式的流程图,如图所示,包括以下子步骤:
S110:根据第一校准数据确定第一函数。
这里的第一函数是用于表征第一校准数据中第一血压值与第一脉搏波传输时间之间关系的函数。
S111:根据第二校准数据确定第二函数。
这里的第二函数是用于表征第二校准数据中第二血压值与第二脉搏波传输时间之间关系的函数。
其中,作为一种可能的实现方案,根据第一校准数据通过最小二乘法确定第一函数。根据第二校准数据通过最小二乘法确定第二函数。
S112:确定第一函数与第二函数的差异程度。
第一函数与第二函数的差异程度,可以通过将两个函数关系在同一坐标系中的线性关系来度量。具体为采用最小二乘法确定第一函数与第二函数后,确定第一函数相对于第二函数的斜率变化率和/或拟合系数变化率来确定差异程度。
S113:根据所述差异程度,确定所述最佳函数。
在确定两个函数的差异程度后,根据差异程度确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数。
具体实现时,如果差异程度小于第一预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,将第二函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量大于 第二预定阈值,则将第一函数作为所述最佳函数。这里的第一预定阈值和第二预定阈值,可以是用户预设并存储在无袖带式血压测量装置中的阈值,用户可以根据需要调整第一预定阈值和第二预定阈值。当差异程度通过第一函数相对于第二函数的斜率变化率和拟合系数变化率来表示时,第一预定阈值也相应包括两个(分别是斜率变化率阈值和拟合系数变化率阈值),比如斜率变化率阈值为30%,拟合系统变化率阈值为10%,而第二预定阈值是针对样本量的,比如可以设置为4个、6个等等。
也就是说,在差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为最佳函数。而如果差异程度大于第一预定阈值,确定第一校准数据与预存的第二校准数据的偏差比较大,这时候,需要进一步结合第一校准数据的样本量来确定。如果第一校准数据的样本量足够多(超过第二预定阈值),那么可以单独以第一校准数据确定的第一函数作为最佳函数,而如果第一校准数据的样本量比较少(没有超过第二预定阈值),则直接以预存的第二校准数据确定的第二函数作为最佳函数。
另外,另一种具体实现可以是:如果差异程度小于第一预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,剔除第一校准数据中的异常数据点,并由第二校准数据和剩余的第一校准数据的结合计算的第四函数作为所述最佳函数。
在该具体实现时,在差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为所述最佳函数。而当差异程度大于第一预定阈值时,且第一校准数据的样本量小于第二预定阈值,由于第二校准数据的样本量少,可以忽略第二校准数据所带来的差异,将第一校准数据与第二校准数据组合确定的第三函数作为所述最佳函数。而如果差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,第一校准数据相对于预存的第二校准数据的偏差较大,而且第一校准数据的样本量也比较多,可以进一步 对第一校准数据进行残差分析,判断第一校准数据中是否存在异常点,如果存在异常点,剔除该异常点后,将剩余的第一校准数据和第二校准数据组合计算得到的第四函数作为所述最佳函数。
请参阅图4,图4是本发明实施例提供的确定用于表征所述用户的脉搏波传输时间与血压值之间关系的另一种实现方式的流程图,该实现方案中,与图3所示实施例的主要差别在于,确定差异程度时,差异程度是第一校准数据与第二校准数据的组合确定的第三函数相对于第一校准数据确定的第一函数的差异程度。如图所示,包括以下子步骤:
S120:根据第一校准数据确定第一函数。
这里的第一函数是用于表征第一校准数据中第一血压值与第一脉搏波传输时间之间关系的函数。
S121:根据第一校准数据与第二校准数据的组合确定第三函数。
这里的第三函数是用于表征第一校准数据与第二校准数据组合以后其中的血压值与脉搏波传输时间之间关系的函数。
其中,作为一种可能的实现方案,根据第一校准数据通过最小二乘法确定第一函数。根据第一校准数据和第二校准数据通过最小二乘法确定第三函数。
S122:确定第一函数与第三函数的差异程度。
第一函数与第三函数的差异程度,可以通过将两个函数关系在同一坐标系中的线性关系来度量。具体为采用最小二乘法确定第一函数与第三函数后,确定第三函数相对于第二函数的斜率变化率和/或拟合系数变化率来确定差异程度。
S123:根据差异程度,确定所述最佳函数。
在确定两个函数的差异程度后,根据差异程度确定用于表征用户的脉搏波传输时间与血压值之间关系的最佳函数。
具体实现时,如果差异程度小于第一预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,将第二函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,则将第一函数作为所述最佳函数。这里的第一预定阈值和 第二预定阈值,可以是用户预设并存储在无袖带式血压测量装置中的阈值,用户可以根据需要调整第一预定阈值和第二预定阈值。当差异程度通过第一函数相对于第二函数的斜率变化率和拟合系数变化率来表示时,第一预定阈值也相应包括两个(分别是斜率变化率阈值和拟合系数变化率阈值),比如斜率变化率阈值为30%,拟合系统变化率阈值为10%,而第二预定阈值是针对样本量的,比如可以设置为4个、6个等等。
也就是说,在差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为所述最佳函数。而如果差异程度大于第一预定阈值,确定第一校准数据与预存的第二校准数据的偏差比较大,这时候,需要进一步结合第一校准数据的样本量来确定。如果第一校准数据的样本量足够多(超过第二预定阈值),那么可以单独以第一校准数据确定的第一函数作为所述最佳函数,而如果第一校准数据的样本量比较少(没有超过第二预定阈值),则直接以预存的第二校准数据确定的第二函数作为所述最佳函数。
另外,另一种具体实现可以是:如果差异程度小于第一预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,剔除第一校准数据中的异常数据点,并由第二校准数据和剩余的第一校准数据的结合计算的第四函数作为所述最佳函数。
在该具体实现时,在差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为所述最佳函数。而当差异程度大于第一预定阈值时,且第一校准数据的样本量小于第二预定阈值,由于第二校准数据的样本量少,可以忽略第二校准数据所带来的差异,将第一校准数据与第二校准数据组合确定的第三函数作为所述最佳函数。而如果差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,第一校准数据相对于预存的第二校准数据的偏差较大,而且第一校准数据的样本量也比较多,可以进一步对第一校准数据进行残差分析,判断第一校准数据中是否存在异常点,如 果存在异常点,剔除该异常点后,将剩余的第一校准数据和第二校准数据组合计算得到的第四函数作为所述最佳函数。
请参阅图5,图5是本发明实施例提供的又一种确定用于表征所述用户的脉搏波传输时间与血压值之间关系的另一种实现方式的流程图,如图所示,包括以下子步骤:
S130:获取所述用户的当前脉搏波传输时间。
其中,所述用户的当前脉搏波传输时间可以是通过获取该用户当前使用无袖带式血压测量装置时对应的心电信号和脉搏波信号,计算得到该用户当前的脉搏波传输时间。其中,通过无袖带血压测量装置的心电传感器采集该用户的当前心电信号以及通过无袖带血压测量装置的光传感器、压力传感器、声传感器、光电传感器、加速度传感器和位移传感器中的至少一种采集该用户的当前脉搏波信号,根据该用户的当前心电信号和当前脉搏波信号计算得到该用户的当前脉搏波传输时间。
S131:从第一校准数据和第二校准数据中选择与当前脉搏波传输时间最接近的脉搏波传输时间,以存在与当前脉搏波传输时间最接近的脉搏波传输时间的校准数据作为最佳校准数据。
假设以上得到的所述用户的当前脉搏波传输时间为PTT3,将当前的脉搏波传输时间PTT3分别与第一校准数据中的第一脉搏波传输时间PTT1和第二校准数据中的第二脉搏波传输时间PTT2进行比对,判断与PTT3差值小的是PTT1还是PTT2,如果与PTT3差值小的为PTT1,那么就以第一校准数据确定最佳函数,如果与PTT3差值小的为PTT2,则以第二校准数据确定最佳函数。也就是说,这种实现方式中,同时结合第一校准数据中的PPT1和第二校准数据的PTT2,以及当前测量获取的数据计算得到的PTT3,以与PTT3最接近的PTT对应的校准数据作为最佳校准数据,以最佳校准数据确定的函数作为最佳函数。
这里,在具体比较时,可以是将第一校准数据中的多对数据计算得到的脉搏波传输时间取平均值作为第一脉搏波传输时间PTT1,将第二校准数据中的多对数据计算得到的脉搏波传输时间取平均值作为第二脉搏波传输时间PTT2,将PTT1和PTT2分别与PTT3进行比较确定最佳校准数据。
也可以是从第一校准数据中的多个第一脉搏波传输时间PTT1、第二校 准数据中的多个第二脉搏波传输时间PTT2,找到与PTT3最接近的PTT,将存在该与PTT3最接近的PTT的校准数据作为最佳校准数据。比如第一校准数据中有多个第一脉搏波传输时间A、B、C、D,第二校准数据有多个第二脉搏波传输时间A1、B1、C1、D1,如果A、B、C、D中存在一个与PTT3最接近,则以第一校准数据作为最佳校准数据,如果A1、B1、C1、D1存在一个与PTT3最接近,则以第二校准数据作为最佳校准数据。
S132:将根据最佳校准数据确定的函数作为用于表征所述用户脉搏波传输时间与血压值之间关系的最佳函数。
在确定最佳校准数据后,以最佳校准数据通过最小二乘法确定的函数作为用于表征用户脉搏波传输时间与血压值之间关系的最佳函数。
以上具体实现方案中,图3和图4所示的实现方案,在进行校准时,仅考虑用户手动校准产生的第一校准数据以及预先存储的第二校准数据,通过第一校准数据和第二校准数据确定函数后,根据差异程度来确定最佳函数。
而图5所示实现方案中,在进行校准时,除考虑手动校准产生的第一校准数据以及预先存储的第二校准数据以外,还进一步结合当前测量的数据,进行综合考虑确定最佳函数。也就是当第一校准数据中的脉搏波传输时间为PTT1,第二校准数据中的脉搏波传输时间为PTT2,如果当前所述用户使用无袖带血压测量装置测量血压时,对应获取的心电信号和脉搏波信号计算得到的脉搏波传输时间为PTT3,如果PTT3接近PTT1,就以第一校准数据来进行校准获取最佳函数,计算血压值,如果PTT接近PTT2,就以第二校准数据进行校准获取最佳函数,计算血压值。
上述本发明的技术方案中,可能会出现不存在第一校准数据或第二校准数据或者第一校准数据和第二校准数据都不存在的情况,当第一校准数据不存在时,以第二校准数据进行校准确定最佳函数,当第二校准数据不存在时,以第一校准数据进行校准确定最佳函数,如果第一校准数据和第二校准数据都不存在,在这种情况下,提示用户进行手动校准。
其中,请进一步参阅图6,在以上实施例中,无袖带式血压测量装置获取用户预先存储在无袖带血压测量装置中的第二校准数据具体可以包括以下子步骤:
S140:无袖带式血压测量装置获取所述用户的身份标识。
无袖带式血压测量装置可以根据所述用户的第一校准数据中的第一心电信号和第一脉搏波信号中的其中一个或者两个,确定该用户的身份标识。也可以是根据所述用户当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号中的一个或者两个,确定该用户的身份标识。
因为虽然每个个体的心电信号和脉搏波信号的特征会随着检测部位和检测时刻的变化而存在差异,但是,同一个人的心电信号和脉搏波信号基本保持稳定,不同个体的心电信号和脉搏波信号存在比较大的差异,因此,可以通过心电信号或脉搏波信号来确定用户的身份标识。
S141:根据所述用户的身份标识从多个预先存储的校准数据中获取第二校准数据。
确定所述用户的身份标识后,根据该用户的身份标识,从多个预先存储的校准数据中获取第二校准数据。其中,根据用户的身份标识获取第二校准数据可以采用现有技术的技术方案来实现,本发明对此不做限定。
图7是本发明实施例提供的通过第一心电信号和第一脉搏波信号的至少一种确定用户的身份标识的流程图,如图所示,根据第一心电信号和第一脉搏波信号的至少一种确定用户的身份标识包括以下步骤:
S150:对第一心电信号和第一脉搏波信号的至少一种进行预处理,提取信号的特征参数,生成生理信号特征向量模板;
其中,对第一心电信号和第一脉搏波信号的至少一种进行预处理的方式,可以但不限于是数字信号转换、降噪等。提取信号的特征参数可以是信号波形的顶点、谷点等。根据提取的特征参数,生成生理信号特征向量模板。
S151:判断是否存在与所述生理信号特征向量模板的匹配度达到预定匹配阈值的预存生理信号特征向量模板;
将生成的所述生理信号特征向量模板与预存的生理信号特征向量模板进行匹配,并判断是否存在与之匹配达到预定匹配阈值的预存生理信号特征向量模板,如果存在,执行S152,否则,执行S153。
这里的匹配阈值是用户预设并存储在测量装置中的用于度量匹配程度的阈值。可以根据需要进行调整。
S152:确定与所述预存生理信号特征向量模板对应的身份标识为用户的身份标识;
当存在与生成的生理信号特征向量模板匹配且匹配度达到预定匹配阈值的预存生理信号特征向量模板,确定该预存生理信号特征向量模板对应的身份标识为用户的身份标识。
S153:新建一个用户的身份标识,并与生成的所述生理信号特征向量模板进行绑定;
当不存在与生成的所述生理信号特征向量模块匹配度达到预定匹配阈值的预存生理信号特征向量模板时,新建一个用户的身份标识,并与生成的所述生理信号特征向量模板进行绑定。
在具体实现过程中,可能会出现不存在第一校准数据的情况,比如用户在使用无袖带式血压测量装置测量之前,没有进行手动校准过程。这时候,作为一种可能的实现方式,可以获取当前所述用户使用无袖带式血压测量装置测量时对应的心电信号和脉搏波信号的至少一种来确定该用户的身份标识。其中,根据心电信号和脉搏波信号的至少一种来确定用户的身份标识的具体实现过程跟图7所示过程类似,本发明在此不再赘述。
为了更进一步的说明本发明的方法,以下以通过最小二乘法的方式确定第一校准数据和第二校准数据的差异程度作为举例说明。本发明实施例中,根据公式SBP=a1×PTT+b1计算收缩压,根据公式DBP=a2×PTT+b2计算舒张压。以下举例均以舒张压的校准数据a2和b2的确定过程为例。
校准策略1:结合第一校准数据和第二校准数据,通过最小二乘法估计校准参数,根据最小二乘法拟合的结果确定最佳函数。
当第一校准数据和第二校准数据的拟合结果相比,满足以下条件时,确定为校准数据没有发生明显变化,以第一策略作为血压计算策略:
(1)趋势线的斜率变化率小于指定阈值v1=30%;
(2)R2的变化率小于指定阈值v2=10%且更新后的R2大于指定阈值v3=0.9。
第一策略是结合第一校准数据和第二校准数据,以第一校准数据和第二校准数据一起进行最小二乘法线性拟合的结果即第三函数作为最佳函数表征参数,更新表征参数,根据更新后的表征参数计算用户的血压值。
在更新表征参数后,以更新后的校准数据替代原有的第二校准数据(即以第一校准数据和第二校准数据一起替代原有存储的第二校准数据),以更新后的表征参数替代原第二校准数据得到的表征参数即第二函数。
例如如图8,图8中,左边图为原有的校准数据即上述的第二校准数据(横轴为袖带式血压计测量的舒张压,单位mmHg,纵轴为无袖带血压测量装置测量到的PTT值,单位s)。线性拟合结果为y=-0.0098x+1.0499,R2=0.9308。右图中的圆点为更新的校准数据即上述的第一校准数据(本实施例中,用户使用袖带式血压计重新校准了四次,左图为原有的校准数据,右图中的每个圆点代表一次校准,每次校准过程为用户使用袖带式血压计测量舒张压和收缩压,休息30s后佩戴无袖带血压测量装置,测量PTT)。结合已有的校准数据和更新的校准数据,重新拟合的结果为y=-0.0076x+0.891,R2=0.9753,重新计算的表征参数没有发生明显变化:
斜率变化率为|-0.0098-(-0.0076)|/|-0.0098|=23.45%,小于v1=30%;
R2变化率为|0.9308-0.9753)|/0.9308=4.78%,小于v2=10%,且更新后的R2=0.9753,大于v3=0.9。
更新表征参数为a2=-0.0076,b2=0.8910(即第三函数),根据更新后的表征参数计算用户的血压值,存储更新的校准数据,并用更新后的校准数据替换原有的校准数据。
当第一校准数据和第二校准数据的拟合结果相比,满足以下条件之一时,确定为校准数据发生明显变化:
(1)趋势线的斜率变化率大于v1=30%;
(2)R2的变化率大于指定阈值v2=10%或R2≤0.9。
这时候,需要进一步判断更新的校准数据的样本量,如果更新的校准数据的样本量小于指定的阈值,采用第二策略作为血压计算策略。
第二策略是不更新表征参数,以原来存储的校准数据即第二校准数据确定的第二函数作为最佳函数计算血压。也不存储本次更新的校准数据即上述的第一校准数据。这时候,可以向用户发出校准数据可能存在异常的提示。
如图9所示,图9中,更新的校准数据样本量小于指定阈值6(本实施例中,用户使用袖带式血压计重新校准了四次),线性拟合结果为 y=-0.0098x+1.0499,R2=0.9308,右图中的每个圆点代表一次校准(每次校准过程为用户使用袖带式血压计测量舒张压和收缩压,休息30s后佩戴无袖带血压测量装置,测量PTT),结合两组校准数据的拟合结果为y=-0.0063x+0.8,R2=0.8817,拟合结果相比,确定为校准数据发生明显变化,且更新的校准数据样本量小于指定阈值,对应的校准策略:不更新校准数据,根据原来存储的函数(即第二校准数据确定的第二函数)a2=-0.0098,b2=1.0499计算用户的血压值,不存储此次更新的校准数据即第一校准数据。
如果更新的校准数据样本量大于指定阈值,采用第三策略作为血压计算策略。
第三策略是以更新的校准数据确定的校准参数(即第一函数)作为最佳函数,用更新的校准数据和最佳函数替代原来存储的校准数据和表征参数。
如图10所示,图10中,更新的校准数据样本量大于指定阈值6(本实施例中,用户使用袖带式血压计重新校准了7次,右图中的每个圆点代表一次校准,每次校准过程为用户使用袖带式血压计测量舒张压和收缩压,休息30s后佩戴无袖带血压测量装置,测量PTT),更新的校准数据拟合结果为y=-0.0081x+0.9809,R2=0.9741,原有的校准数据的拟合结果为y=-0.0098x+1.0499,R2=0.9308,拟合结果比较,确定为校准数据发生明显变化,且更新的校准数据样本量大于指定阈值,则对应的校准策略:根据更新的校准数据重新计算表征参数a2=-0.0081,b2=0.9809(即第一表征参数),根据重新计算的表征参数a2=-0.0081,b2=0.9809计算用户的血压值,删除原有的校准数据,存储更新的校准数据即第一校准数据,并用更新后的校准参数即第一函数替换原有的表征参数。
在更新的校准数据样本量大于指定阈值时,作为一种优选的实现方案,可以结合已有的校准数据(第二校准数据)和更新的校准数据(第一校准数据),进行残差分析,判断其中第二校准数据是否存在异常点,如果存在异常点,剔除异常点后,以剔除异常点后的第二校准数据和第一校准数据的结合所计算的第四函数作为最佳函数。
如图11所示,图11中,左图中的方形点为已有的校准数据(横轴为 袖带式血压计测量的舒张压,单位mmHg,纵轴为无袖带血压测量装置测量到的PTT值,单位s),线性拟合结果为y=-0.0098x+1.0499,R2=0.9308,圆点为更新的校准数据(本实施例中,无袖带血压测量装置与云端进行通信,从云端下载了用户的校准数据,样本量为8,更新的校准数据线性拟合结果为y=-0.0083x+1.0008,R2=0.7762,对这8组校准数据进行残差分析,发现1个异常点——图中的三角形,删掉该点,结合剩余的7组校准数据和原有的6组校准数据,线性拟合的结果为y=-0.0061x+0.7893,R2=0.8597,重新计算表征参数a2=-0.0061,b2=0.7893(第四函数),根据第四函数计算血压值)。
以上是本发明实施例提供的血压测量数据的处理方法的详细说明,可以理解,本发明根据用户使用无袖带式血压测量装置测量血压之前执行手动校准过程时获取的第一校准数据,以及无袖带式血压测量装置中预先存储的第二校准数据,确定用于表征用户的预定生物特征与血压值之间的函数关系的最佳函数。通过这样的方式,可以提高校准的精度,从而提升血压测量结果的准确性。
另外,本发明实施例中,可以根据用户的生理信号(心电信号和脉搏波信号的至少一种)确定用户的身份标识,根据确定的用户身份标识可以获取原来存储的用户的校准数据,解决现有技术中需要手动选择才能获取校准数据和校准参数问题,实现无需手动选择即能自动获取用户对应的校准数据以及对应的校准参数,提升用户使用体验,同时,在进行校准时候,同时结合用户手动校准产生的第一校准数据和预先存储的第二校准数据,根据第一校准数据和第二校准数据确定用于表征用户脉搏波传输时间与血压值之间函数关系的最佳函数,从而使预先存储的校准数据能够得到充分使用,校准更加准确,从而使血压值的测量结果更加准确。
请进一步参阅图12,图12是本发明实施例提供的一种无袖带式血压测量装置的结构示意图,本实施例提供的无袖带式血压测量装置用于执行上述实施例所述的方法,如图所示,本实施例的无袖带式血压测量装置100包括第一获取模块11、第二获取模块12、确定模块13以及计算模块14,其中:
第一获取模块11用于获取第一校准数据,第一校准数据为用户使用无 袖带式血压测量装置测量血压之前,执行手动校准过程产生的数据。
其中,第一校准数据至少包括第一血压值和第一脉搏波传输时间。
手动校准过程为用户使用袖带式血压计测量得到第一血压值,通过无袖带血压测量装置的心电传感器采集用户的第一心电信号以及通过无袖带血压测量装置的光传感器、压力传感器、声传感器、光电传感器、加速度传感器和位移传感器中的至少一种采集用户的第一脉搏波信号,根据用户的第一心电信号和第一脉搏波信号计算得到第一脉搏波传输时间。用户每进行一次手动校准即产生一组第一血压值和第一脉搏波传输时间,第一获取模块11通过接收所述用户手动输入或者通过特定的接口比如蓝牙、红外等从袖带式血压测量装置获取,以形成第一校准数据。
其中,作为一种可能的实现方式,根据第一心电信号和第一脉搏波信号计算得到第一脉搏波传输时间可以是:根据第一心电信号上的参考点和同一周期内第一脉搏波信号上的参考点之间的时间差,计算得到第一脉搏波传输时间。
第二获取模块12用于获取预先存储的所述用户的第二校准数据。
其中,第二校准数据至少包括第二血压值和第二脉搏波传输时间。第二校准数据可以是获取第一校准数据之前所述用户使用无袖带式血压测量装置执行手动校准过程时的历史手动校准数据,该历史手动校准数据存储在无袖带式血压测量装置中。第二校准数据也可以是该用户预先存储在云端的校准数据,存储在云端的校准数据可以是从智能可穿戴设备比如手表导出的校准数据,第二获取模块12通过内部接口从云端获取存储在云端的校准数据作为第二校准数据。
其中,请进一步参阅图13,图13为本发明实施例中的无袖带式血压测量装置中的第二获取模块的结构示意图,在其中一种可能的实现方案中,第二获取模块包括第一获取单元111以及第二获取单元112,其中:
第一获取单元111用于获取所述用户的身份标识。
其中,第一获取单元111可以根据第一校准数据中的第一心电信号和第一脉搏波信号中的至少一个,确定该用户的身份标识,也可以根据用户当前使用无袖带式血压测量装置产生的当前心电信号和当前脉搏波信号中的至少一个,确定该用户的身份标识。
因为虽然每个个体的心电信号和脉搏波信号的特征会随着检测部位和检测时刻的变化而存在差异,但是,同一个人的心电信号和脉搏波信号基本保持稳定,不同个体的心电信号和脉搏波信号存在比较大的差异,因此,可以通过心电信号或脉搏波信号来确定用户的身份标识。
第二获取单元112用于根据第一获取单元111获取的用户的身份标识从多个预先存储的校准数据中获取第二校准数据。
第一获取单元111确定所述用户的身份标识后,第二获取单元162根据用户的身份标识,从多个预先存储的校准数据中获取第二校准数据。
确定模块13用于根据第一校准数据和第二校准数据,确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数。
本发明实施例中确定模块13确定用于表征用户的脉搏波传输时间与血压值之间的函数关系的最佳函数是指确定根据脉搏波传输时间计算血压值的校准参数(或者说校准系数)。具体而言,比如通过公式SBP=a1×PTT+b1计算收缩压,根据公式DBP=a2×PTT+b2计算舒张压,本发明实施例的确定最佳函数即确定其中的a1,b1,a2,b2的具体数值,从而根据当前的测量数据和确定的校准参数,计算得到用户的血压值。
请进一步参阅图14,在其中一个实施例中,上述实施例的无袖带式血压测量装置的确定模块包括第一确定单元121、第二确定单元122、第三确定单元123以及第四确定单元124,其中:
第一确定单元121用于根据第一校准数据确定第一函数。
这里的第一函数是用于表征第一校准数据中第一血压值与第一脉搏波传输时间之间关系的函数。
第二确定单元122用于根据第二校准数据确定第二函数。
这里的第二函数是用于表征第二校准数据中第二血压值与第二脉搏波传输时间之间关系的函数。
其中,作为一种可能的实现方案,第一确定单元121根据第一校准数据通过最小二乘法确定第一函数。第二确定单元122根据第二校准数据通过最小二乘法确定第二函数。
第三确定单元123用于确定第一函数与第二函数的差异程度。
第一函数与第二函数的差异程度,可以通过将两个函数关系在同一坐 标系中的线性关系来度量。具体为采用最小二乘法确定第一函数与第二函数后,确定第一函数相对于第二函数的斜率变化率和/或拟合系数变化率来确定差异程度。
第四确定单元124用于根据所述差异程度,确定最佳函数。
在确定两个函数的差异程度后,第四确定单元124根据该差异程度确定用于表征用户的脉搏波传输时间与血压值之间关系的最佳函数。
具体实现时,如果该差异程度小于第一预定阈值,第四确定单元124将第一校准数据与第二校准数据确定的第三函数作为最佳函数。如果该差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,第四确定单元124将第二函数最为最佳函数。如果该差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,则第四确定单元124将第一函数作为最佳函数。这里的第一预定阈值和第二预定阈值,可以是用户预设并存储在无袖带式血压测量装置中的阈值,用户可以根据需要调整第一预定阈值和第二预定阈值。当差异程度通过第一函数相对于第二函数的斜率变化率和拟合系数变化率来表示时,第一预定阈值也相应包括两个(分别是斜率变化率阈值和拟合系数变化率阈值),比如斜率变化率阈值为30%,拟合系统变化率阈值为10%,而第二预定阈值是针对样本量的,比如可以设置为4个、6个等等。
也就是说,在差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为最佳函数。而如果差异程度大于第一预定阈值,确定第一校准数据与预存的第二校准数据的偏差比较大,这时候,需要进一步结合第一校准数据的样本量来确定。如果第一校准数据的样本量足够多(超过第二预定阈值),那么可以单独以第一校准数据确定的第一函数作为最佳函数,而如果第一校准数据的样本量比较少(没有超过第二预定阈值),则直接以预存的第二校准数据确定的第二函数作为最佳函数。
另外,另一种具体实现可以是:如果该差异程度小于第一预定阈值,第四确定单元124将第一校准数据与第二校准数据确定的第三函数作为最佳函数。如果该差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,第四确定单元124将第一校准数据与第二校准数据确定的 第三函数作为最佳函数。如果该差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,第四确定单元124剔除第一校准数据中的异常数据点,并由第二校准数据和剩余的第一校准数据的结合计算的第四函数作为最佳函数。
在该具体实现时,在差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为最佳函数。而当差异程度大于第一预定阈值时,且第一校准数据的样本量小于第二预定阈值,由于第二校准数据的样本量少,可以忽略第二校准数据所带来的差异,将第一校准数据与第二校准数据组合确定的第三函数作为最佳函数。而如果差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,第一校准数据相对于预存的第二校准数据的偏差较大,而且第一校准数据的样本量也比较多,可以进一步对第一校准数据进行残差分析,判断第一校准数据中是否存在异常点,如果存在异常点,剔除该异常点后,将剩余的第一校准数据和第二校准数据组合计算得到的第四函数作为最佳函数。
请进一步参阅图15,在另一个实施例中,上述实施例的无袖带式血压测量装置的确定模块包括第一确定单元131、第二确定单元132、第三确定单元133以及第四确定单元134,其中:
第一确定单元131用于根据第一校准数据确定第一函数。
这里的第一函数是用于表征第一校准数据中第一血压值与第一脉搏波传输时间之间关系的函数。
第二确定单元132用于根据第一校准数据与第二校准数据的组合确定第三函数。
这里的第三函数是用于表征第一校准数据与第二校准数据组合以后其中的血压值与脉搏波传输时间之间关系的函数。
其中,作为一种可能的实现方案,第一确定单元131根据第一校准数据通过最小二乘法确定第一函数。第二确定单元132根据第一校准数据和第二校准数据通过最小二乘法确定第三函数。
第三确定单元133用于确定第一函数与第三函数的差异程度。
第一函数与第三函数的差异程度,可以通过将两个函数关系在同一坐 标系中的线性关系来度量。具体为采用最小二乘法确定第一函数与第三函数后,确定第三函数相对于第二函数的斜率变化率和/或拟合系数变化率来确定差异程度。
第四确定单元134用于根据所述差异程度,确定最佳函数。
在确定两个函数的差异程度后,第四确定单元134根据该差异程度确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数。
具体实现时,如果该差异程度小于第一预定阈值,第四确定单元134将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果该差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,第四确定单元134将第二函数最为所述最佳函数。如果该差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,第四确定单元134则将第一函数作为所述最佳函数。这里的第一预定阈值和第二预定阈值,可以是用户预设并存储在无袖带式血压测量装置中的阈值,用户可以根据需要调整第一预定阈值和第二预定阈值。当该差异程度通过第一函数相对于第二函数的斜率变化率和拟合系数变化率来表示时,第一预定阈值也相应包括两个(分别是斜率变化率阈值和拟合系数变化率阈值),比如斜率变化率阈值为30%,拟合系统变化率阈值为10%,而第二预定阈值是针对样本量的,比如可以设置为4个、6个等等。
也就是说,在所述差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为所述最佳函数。而如果差异程度大于第一预定阈值,确定第一校准数据与预存的第二校准数据的偏差比较大,这时候,需要进一步结合第一校准数据的样本量来确定。如果第一校准数据的样本量足够多(超过第二预定阈值),那么可以单独以第一校准数据确定的第一函数作为所述最佳函数,而如果第一校准数据的样本量比较少(没有超过第二预定阈值),则直接以预存的第二校准数据确定的第二函数作为所述最佳函数。
另外,另一种具体实现可以是:如果所述差异程度小于第一预定阈值,第四确定单元134将第一校准数据与第二校准数据确定的第三函数作为最佳函数。如果所述差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,第四确定单元134将第一校准数据与第二校准数据确定 的第三函数作为所述最佳函数。如果所述差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,第四确定单元134剔除第一校准数据中的异常数据点,并由第二校准数据和剩余的第一校准数据的结合计算的第四函数作为最佳函数。
在该具体实现时,在所述差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为最佳函数。而当所述差异程度大于第一预定阈值时,且第一校准数据的样本量小于第二预定阈值,由于第二校准数据的样本量少,可以忽略第二校准数据所带来的差异,将第一校准数据与第二校准数据组合确定的第三函数作为所述最佳函数。而如果所述差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,第一校准数据相对于预存的第二校准数据的偏差较大,而且第一校准数据的样本量也比较多,可以进一步对第一校准数据进行残差分析,判断第一校准数据中是否存在异常点,如果存在异常点,剔除该异常点后,将剩余的第一校准数据和第二校准数据组合计算得到的第四函数作为所述最佳函数。
请进一步参阅图16,在又一实施例中,上述实施例的无袖带式血压测量装置的确定模块包括获取单元141、选择单元142以及确定单元143,其中:
获取单元141用于获取用户的当前脉搏波传输时间。
其中,用户的当前脉搏波传输时间可以是通过获取所述用户当前使用无袖带式血压测量装置时对应的心电信号和脉搏波信号,计算得到该用户当前的脉搏波传输时间。其中,通过无袖带血压测量装置的心电传感器采集用户的当前心电信号以及通过无袖带血压测量装置的光传感器、压力传感器、声传感器、光电传感器、加速度传感器和位移传感器中的至少一种采集用户的当前脉搏波信号,根据所述用户的当前心电信号和当前脉搏波信号计算得到该用户的当前脉搏波传输时间。
选择单元142用于从第一校准数据和第二校准数据中选择与当前脉搏波传输时间最接近的脉搏波传输时间,以存在与当前脉搏波传输时间最接近的脉搏波传输时间的校准数据作为最佳校准数据。
假设以上得到的用户的当前脉搏波传输时间为PTT3,将当前的脉搏波 传输时间PTT3分别与第一校准数据中的第一脉搏波传输时间PTT1和第二校准数据中的第二脉搏波传输时间PTT2进行比对,判断与PTT3差值小的是PTT1还是PTT2,如果与PTT3差值小的为PTT1,那么就以第一校准数据确定最佳函数,如果与PTT3差值小的为PTT2,则以第二校准数据确定最佳函数。也就是说,这种实现方式中,同时结合第一校准数据中的PPT1和第二校准数据的PTT2,以及当前测量获取的数据计算得到的PTT3,以与PTT3最接近的PTT对应的校准数据作为最佳校准数据,以最佳校准数据确定的函数作为最佳函数。
这里,在具体比较时,可以是将第一校准数据中的多对数据计算得到的脉搏波传输时间取平均值作为第一脉搏波传输时间PTT1,将第二校准数据中的多对数据计算得到的脉搏波传输时间取平均值作为第二脉搏波传输时间PTT2,将PTT1和PTT2分别与PTT3进行比较确定最佳校准数据。
也可以是从第一校准数据中的多个第一脉搏波传输时间PTT1、第二校准数据中的多个第二脉搏波传输时间PTT2,找到与PTT3最接近的PTT,将存在该与PTT3最接近的PTT的校准数据作为最佳校准数据。比如第一校准数据中有多个第一脉搏波传输时间A、B、C、D,第二校准数据有多个第二脉搏波传输时间A1、B1、C1、D1,如果A、B、C、D中存在一个与PTT3最接近,则以第一校准数据作为最佳校准数据,如果A1、B1、C1、D1存在一个与PTT3最接近,则以第二校准数据作为最佳校准数据。
确定单元143用于将根据最佳校准数据确定的函数作为最佳函数。
在确定最佳校准数据后,以最佳校准数据通过最小二乘法确定的函数作为用于表征用户脉搏波传输时间与血压值之间关系的最佳函数。
上述本发明的技术方案中,可能会出现不存在第一校准数据或第二校准数据或者第一校准数据和第二校准数据都不存在的情况,当第一校准数据不存在时,确定模块以第二校准数据进行校准确定最佳函数,当第二校准数据不存在时,确定模块以第一校准数据进行校准确定最佳函数,如果第一校准数据和第二校准数据都不存在,在这种情况下,提示用户进行手动校准。
计算模块14用于获取所述用户的当前脉搏波传输时间,根据当前脉搏波传输时间和最佳函数,计算所述用户的当前血压值。
请进一步参阅图17,在其中一个实施例中,上述实施例的无袖带式血压测量装置中的计算模块包括第一计算单元151以及第二计算单元152,其中:
第一计算单元151用于获取所述用户当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号,计算得到当前脉搏波传输时间。
第二计算单元152用于根据最佳函数与当前脉搏波传输时间计算得到所述用户的当前血压值。
因为确定的最佳函数是用于表征用户的脉搏波传输时间和血压值之间的函数关系的。因此,当前所述用户使用无袖带式血压测量装置进行测量时,通过无袖带血压测量装置的心电传感器采集所述用户的当前心电信号以及通过无袖带血压测量装置的光传感器、压力传感器、声传感器、光电传感器、加速度传感器和位移传感器中的至少一种采集所述用户的当前脉搏波信号,计算模块14根据所述用户的当前心电信号和当前脉搏波信号计算得到当前脉搏波传输时间。进一步根据计算得到的用户的当前脉搏波传输时间,结合确定的最佳函数,即能计算得到所述用户的当前血压值。
以上本发明实施例中根据公式SBP=a1*PTT+b1计算收缩压,根据公式DBP=a2*PTT+b2计算舒张压,只是本发明的一个具体实施例子。也可以使用其他公式来计算血压,比如包括但不限于如下公式:
1)BP=A1ln(PTTR)+B1
Figure PCTCN2015086966-appb-000005
Figure PCTCN2015086966-appb-000006
4)BP=A4PTTR+B4
Figure PCTCN2015086966-appb-000007
Figure PCTCN2015086966-appb-000008
其中,上述公式中A2=μ*ln(PTTw0)
B2=-(SBP0-DBP0)*PTTw0/3
C2=SBP0/3+2DBP0/3
D2=(SBP0-DBP0)*PTTw0 2
公式中SBP为收缩压,DBP为舒张压,μ为血管特性参数,一般取常数,下标为o代表校准值。
请进一步参阅图18,图18是本发明实施例提供的另一种无袖带式血压测量装置的结构示意图,本实施例所提供的基站用于执行上述图1所示实施例的寻呼方法。本实施例的无袖带式血压测量装置200包括处理器21、存储器22、接收器23以及总线系统24,其中:
处理器21控制无袖带式血压测量装置200的操作,处理器21还可以称为CPU(Central Processing Unit,中央处理单元)。处理器21可能是一种集成电路芯片,具有信号的处理能力。处理器21还可以是通用处理器、数字信号处理器(DSP,Digital Signal Processing)、专用集成电路(ASIC,Application Specific Integrated Circuit)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器22可以包括只读存储器和随机存取存储器,并向处理器21提供指令和数据。存储器22的一部分还可以包括非易失性随机存取存储器(NVRAM)。
无袖带式血压测量装置200的各个组件通过总线系统24耦合在一起,其中总线系统24除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。该总线系统可以是ISA(Industry Standard Architecture,工业标准体系结构)总线、PCI(Peripheral Component Interconnect,外部设备互连)总线或EISA(Extended Industry Standard Architecture,扩展工业标准体系结构)总线等。所述总线可以是一条或多条物理线路,当是多条物理线路时可以分为地址总线、数据总线、控制总线等。在本发明的其它一些实施例中,处理器21、存储器22以及接收器23也可以通过通信线路直接连接。但是为了清楚说明起见,在图中将各种总线都标为总线系统24。
存储器22存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
在本发明实施例中,处理器21通过调用存储器22存储的操作指令(该操作指令可存储在操作系统中),执行如下操作:
处理器21用于控制接收器23接收用户的第一校准数据,第一校准数据为用户使用无袖带式血压测量装置测量血压之前,执行手动校准过程产生的数据。
处理器21用于获取预先存储的所述用户的第二校准数据,根据第一校准数据和第二校准数据,确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数,进一步获取所述用户的当前脉搏波传输时间,根据当前脉搏波传输时间和所述最佳函数,计算所述用户的当前血压值。
存储器22用于存储第一校准数据和第二校准数据。
其中,第一校准数据至少包括第一血压值和第一脉搏波传输时间。
以上所说的手动校准过程为用户使用袖带式血压计测量得到第一血压值,通过无袖带血压测量装置的心电传感器采集用户的第一心电信号以及通过无袖带血压测量装置的光传感器、压力传感器、声传感器、光电传感器、加速度传感器和位移传感器中的至少一种采集用户的第一脉搏波信号,根据用户的第一心电信号和第一脉搏波信号计算得到第一脉搏波传输时间。用户每进行一次手动校准即产生一组第一血压值和第一脉搏波传输时间,处理器21控制接收器23通过接收用户手动输入或者通过特定的接口比如蓝牙、红外等从袖带式血压测量装置获取,以形成第一校准数据。
其中,作为一种可能的实现方式,根据第一心电信号和第一脉搏波信号计算得到第一脉搏波传输时间可以是:根据第一心电信号上的参考点和同一周期内第一脉搏波信号上的参考点之间的时间差,计算得到第一脉搏波传输时间。
其中,上述的第二校准数据至少包括第二血压值和第二脉搏波传输时间。第二校准数据可以是获取第一校准数据之前所述用户使用无袖带式血压测量装置执行手动校准过程时的历史手动校准数据,该历史手动校准数据存在无袖带式血压测量装置中。第二校准数据也可以是所述用户预先存 储在云端的校准数据,存储在云端的校准数据可以是从智能可穿戴设备比如手表导出的校准数据,处理器21通过内部接口从云端获取存储在云端的校准数据作为第二校准数据。
其中,处理器21可以获取所述用户的身份标识,根据所述用户的身份标识从多个预先存储的校准数据中获取第二校准数据。其中,处理器21可以根据所述用户的第一校准数据中的第一心电信号和第一脉搏波信号中的一个或者两个,确定所述用户的身份标识,也可以根据所述用户的当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号中的一个或者两个,确定所述用户的身份标识。
本发明实施例中处理器21确定用于表征用户的脉搏波传输时间与血压值之间的函数关系的最佳函数是指确定根据脉搏波传输时间计算血压值的校准参数(或者说校准系数)。具体而言,比如通过公式SBP=a1×PTT+b1计算收缩压,根据公式DBP=a2×PTT+b2计算舒张压,本发明实施例的确定最佳函数即确定其中的a1,b1,a2,b2的具体数值,从而根据当前的测量数据和确定的校准参数,计算得到所述用户的血压值。
因为确定的最佳函数是用于表征用户的脉搏波传输时间和血压值之间的函数关系的。因此,当前所述用户使用无袖带式血压测量装置进行测量时,通过无袖带血压测量装置的心电传感器采集所述用户的当前心电信号以及通过无袖带血压测量装置的光传感器、压力传感器、声传感器、光电传感器、加速度传感器和位移传感器中的至少一种采集所述用户的当前脉搏波信号,根据所述用户的当前心电信号和当前脉搏波信号计算得到当前脉搏波传输时间。根据计算得到的所述用户的当前脉搏波传输时间,结合确定的最佳函数,即能计算得到该用户的当前血压值。
以上本发明实施例中根据公式SBP=a1*PTT+b1计算收缩压,根据公式DBP=a2*PTT+b2计算舒张压,只是本发明的一个具体实施例子。也可以使用其他公式来计算血压,比如包括但不限于如下公式:
1)BP=A1ln(PTTR)+B1
Figure PCTCN2015086966-appb-000009
Figure PCTCN2015086966-appb-000010
4)BP=A4PTTR+B4
Figure PCTCN2015086966-appb-000011
Figure PCTCN2015086966-appb-000012
其中,上述公式中A2=μ*ln(PTTw0)
B2=-(SBP0-DBP0)*PTTw0/3
C2=SBP0/3+2DBP0/3
D2=(SBP0-DBP0)*PTTw0 2
公式中SBP为收缩压,DBP为舒张压,μ为血管特性参数,一般取常数,下标为o代表校准值。
其中,处理器21可以通过以下方式确定上述最佳函数:根据第一校准数据确定第一函数,根据第二校准数据确定第二函数,确定第一函数与第二函数之间的差异程度,根据差异程度确定最佳函数。
这里的第一函数是用于表征第一校准数据中第一血压值与第一脉搏波传输时间之间关系的函数。这里的第二函数是用于表征第二校准数据中第二血压值与第二脉搏波传输时间之间关系的函数。
其中,作为一种可能的实现方案,处理器21根据第一校准数据通过最小二乘法确定第一函数。处理器21根据第二校准数据通过最小二乘法确定第二函数。
第一函数与第二函数的差异程度,可以通过将两个函数关系在同一坐标系中的线性关系来度量。具体为采用最小二乘法确定第一函数与第二函数后,确定第一函数相对于第二函数的斜率变化率和/或拟合系数变化率来确定差异程度。
在确定两个函数的差异程度后,根据差异程度确定用于表征用户的脉搏波传输时间与血压值之间关系的最佳函数。
具体实现时,如果差异程度小于第一预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,将第二函数最为最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量大于第二 预定阈值,则将第一函数作为所述最佳函数。这里的第一预定阈值和第二预定阈值,可以是用户预设并存储在无袖带式血压测量装置中的阈值,用户可以根据需要调整第一预定阈值和第二预定阈值。当差异程度通过第一函数相对于第二函数的斜率变化率和拟合系数变化率来表示时,第一预定阈值也相应包括两个(分别是斜率变化率阈值和拟合系数变化率阈值),比如斜率变化率阈值为30%,拟合系统变化率阈值为10%,而第二预定阈值是针对样本量的,比如可以设置为4个、6个等等。
也就是说,在第一函数与第二函数的差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为最佳函数。而如果所述差异程度大于第一预定阈值,确定第一校准数据与预存的第二校准数据的偏差比较大,这时候,需要进一步结合第一校准数据的样本量来确定。如果第一校准数据的样本量足够多(超过第二预定阈值),那么可以单独以第一校准数据确定的第一函数作为最佳函数,而如果第一校准数据的样本量比较少(没有超过第二预定阈值),则直接以预存的第二校准数据确定的第二函数作为所述最佳函数。
另外,另一种具体实现可以是:如果所述差异程度小于第一预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,剔除第一校准数据中的异常数据点,并由第二校准数据和剩余的第一校准数据的结合计算的第四函数作为所述最佳函数。
在该具体实现时,在第一函数与第二函数的差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为最佳函数。而当该差异程度大于第一预定阈值时,且第一校准数据的样本量小于第二预定阈值,由于第二校准数据的样本量少,可以忽略第二校准数据所带来的差异,将第一校准数据与第二校准数据组合确定的第三函数作为最佳函数。而如果该差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,第一校准数据 相对于预存的第二校准数据的偏差较大,而且第一校准数据的样本量也比较多,可以进一步对第一校准数据进行残差分析,判断第一校准数据中是否存在异常点,如果存在异常点,剔除该异常点后,将剩余的第一校准数据和第二校准数据组合计算得到的第四函数作为所述最佳函数。
或处理器21也可以通过以下方式确定上述最佳函数:根据第一校准数据确定第一函数,根据第一校准数据和第二校准数据的组合确定第三函数,确定第一函数与第三函数的差异程度,根据差异程度确定最佳函数。
这里的第一函数是用于表征第一校准数据中第一血压值与第一脉搏波传输时间之间关系的函数。这里的第三函数是用于表征第一校准数据与第二校准数据组合以后其中的血压值与脉搏波传输时间之间关系的函数。
其中,作为一种可能的实现方案,处理器21根据第一校准数据通过最小二乘法确定第一函数。处理器21根据第一校准数据和第二校准数据通过最小二乘法确定第三函数。
第一函数与第三函数的差异程度,可以通过将两个函数关系在同一坐标系中的线性关系来度量。具体为采用最小二乘法确定第一函数与第三函数后,确定第三函数相对于第二函数的斜率变化率和/或拟合系数变化率来确定差异程度。
在确定两个函数的差异程度后,根据差异程度确定用于表征用户的脉搏波传输时间与血压值之间关系的最佳函数。
具体实现时,如果第一函数与第三函数的差异程度小于第一预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果该差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,将第二函数最为最佳函数。如果该差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,则将第一函数作为最佳函数。这里的第一预定阈值和第二预定阈值,可以是用户预设并存储在无袖带式血压测量装置中的阈值,用户可以根据需要调整第一预定阈值和第二预定阈值。当差异程度通过第一函数相对于第二函数的斜率变化率和拟合系数变化率来表示时,第一预定阈值也相应包括两个(分别是斜率变化率阈值和拟合系数变化率阈值),比如斜率变化率阈值为30%,拟合系统变化率阈值为10%,而第二预定阈值是针对样本量的,比如可以设置为4个、6个等等。
也就是说,在第一函数与第三函数的差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为最佳函数。而如果差异程度大于第一预定阈值,确定第一校准数据与预存的第二校准数据的偏差比较大,这时候,需要进一步结合第一校准数据的样本量来确定。如果第一校准数据的样本量足够多(超过第二预定阈值),那么可以单独以第一校准数据确定的第一函数作为最佳函数,而如果第一校准数据的样本量比较少(没有超过第二预定阈值),则直接以预存的第二校准数据确定的第二函数作为最佳函数。
另外,另一种具体实现可以是:如果第一函数与第三函数的差异程度小于第一预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量小于第二预定阈值,将第一校准数据与第二校准数据确定的第三函数作为所述最佳函数。如果差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,剔除第一校准数据中的异常数据点,并由第二校准数据和剩余的第一校准数据的结合计算的第四函数作为所述最佳函数。
在该具体实现时,在第一函数与第三函数的差异程度小于第一预定阈值时,可以确定第一校准数据与预存的第二校准数据的偏差不大,可以将两个校准数据组合确定的函数作为所述最佳函数。而当该差异程度大于第一预定阈值时,且第一校准数据的样本量小于第二预定阈值,由于第二校准数据的样本量少,可以忽略第二校准数据所带来的差异,将第一校准数据与第二校准数据组合确定的第三函数作为所述最佳函数。而如果该差异程度大于第一预定阈值且第一校准数据的样本量大于第二预定阈值,第一校准数据相对于预存的第二校准数据的偏差较大,而且第一校准数据的样本量也比较多,可以进一步对第一校准数据进行残差分析,判断第一校准数据中是否存在异常点,如果存在异常点,剔除该异常点后,将剩余的第一校准数据和第二校准数据组合计算得到的第四函数作为所述最佳函数。
或处理器21还可以通过以下方式确定上述最佳函数:获取所述用户的当前脉搏波传输时间,从第一校准数据和第二校准数据中选择与当前脉搏波传输时间最接近的脉搏波传输时间,以存在与当前脉搏波传输时间最接近的脉搏波传输时间的校准数据作为最佳校准数据,以最佳校准数据确定 的函数作为最佳函数。
其中,用户的当前脉搏波传输时间可以是通过获取所述用户当前使用无袖带式血压测量装置时对应的心电信号和脉搏波信号,计算得到所述用户当前的脉搏波传输时间。其中,通过无袖带血压测量装置的心电传感器采集用户的当前心电信号以及通过无袖带血压测量装置的光传感器、压力传感器、声传感器、光电传感器、加速度传感器和位移传感器中的至少一种采集用户的当前脉搏波信号,根据所述用户的当前心电信号和当前脉搏波信号计算得到所述用户的当前脉搏波传输时间。
假设以上得到的所述用户的当前脉搏波传输时间为PTT3,将当前的脉搏波传输时间PTT3分别与第一校准数据中的第一脉搏波传输时间PTT1和第二校准数据中的第二脉搏波传输时间PTT2进行比对,判断与PTT3差值小的是PTT1还是PTT2,如果与PTT3差值小的为PTT1,那么就以第一校准数据确定最佳函数,如果与PTT3差值小的为PTT2,则以第二校准数据确定最佳函数。也就是说,这种实现方式中,同时结合第一校准数据中的PPT1和第二校准数据的PTT2,以及当前测量获取的数据计算得到的PTT3,以与PTT3最接近的PTT对应的校准数据作为最佳校准数据,以最佳校准数据确定的函数作为最佳函数。
这里,在具体比较时,可以是将第一校准数据中的多对数据计算得到的脉搏波传输时间取平均值作为第一脉搏波传输时间PTT1,将第二校准数据中的多对数据计算得到的脉搏波传输时间取平均值作为第二脉搏波传输时间PTT2,将PTT1和PTT2分别与PTT3进行比较确定最佳校准数据。
也可以是从第一校准数据中的多个第一脉搏波传输时间PTT1、第二校准数据中的多个第二脉搏波传输时间PTT2,找到与PTT3最接近的PTT,将存在该与PTT3最接近的PTT的校准数据作为最佳校准数据。比如第一校准数据中有多个第一脉搏波传输时间A、B、C、D,第二校准数据有多个第二脉搏波传输时间A1、B1、C1、D1,如果A、B、C、D中存在一个与PTT3最接近,则以第一校准数据作为最佳校准数据,如果A1、B1、C1、D1存在一个与PTT3最接近,则以第二校准数据作为最佳校准数据。
在确定最佳校准数据后,以最佳校准数据通过最小二乘法确定的函数作为用于表征用户脉搏波传输时间与血压值之间关系的最佳函数。
上述本发明实施例揭示的方法可以应用于处理器21中,或者由处理器21实现。在实现过程中,上述方法的各步骤可以通过处理器21中的硬件的集成逻辑电路或者软件形式的指令完成。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器22,处理器21读取存储器22中的信息,结合其硬件完成上述方法的步骤。
以上本发明实施例提供的血压测量数据的处理方法以及无袖带式血压测量装置的详细说明,可以理解,本发明通过结合用户手动校准产生的第一校准数据和预先存储的第二校准数据,根据第一校准数据和第二校准数据确定用于表征用户脉搏波传输时间与血压值之间函数关系的最佳函数。通过这样的方式,能够针对用户佩戴无袖带式血压测量装置进行测量时,结合预先存储的校准数据进行自动校准确定最佳函数,从而使预先存储的校准数据能够得到充分使用,校准更加准确,从而使血压值的测量结果更加准确。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在 一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,RandomAccess Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (45)

  1. 一种血压测量数据的处理方法,其特征在于,包括:
    无袖带式血压测量装置获取用户的第一校准数据,所述第一校准数据为用户使用所述无袖带式血压测量装置测量血压之前,执行手动校准过程产生的数据;
    获取预先存储的所述用户的第二校准数据;
    根据所述第一校准数据和所述第二校准数据,确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数;
    获取所述用户的当前脉搏波传输时间,根据所述当前脉搏波传输时间和所述最佳函数,计算所述用户的当前血压值。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一校准数据和所述第二校准数据,确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数包括:
    根据所述第一校准数据确定第一函数;
    根据所述第二校准数据确定第二函数;
    确定所述第一函数与所述第二函数的差异程度;
    根据所述差异程度,确定所述最佳函数。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一校准数据确定第一函数包括:根据所述第一校准数据通过最小二乘法确定所述第一函数;所述根据所述第二校准数据确定第二函数包括:根据所述第二校准数据通过最小二乘法确定第二函数。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述差异程度,确定所述最佳函数包括:
    若所述差异程度小于第一预定阈值,则将所述第一校准数据与所述第二校准数据确定的第三函数作为所述最佳函数。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述差异程度,确定所述最佳函数还包括:
    若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值,则将所述第二函数作为所述最佳函数;
    若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则将所述第一函数作为所述最佳函数。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述差异程度,确定所述最佳函数还包括:
    若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值,则将所述第一校准数据与所述第二校准数据组合确定的第三函数作为所述最佳函数;
    若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述第一校准数据和所述第二校准数据,确定所述用户的脉搏波传输时间与血压值之间关系的最佳函数包括:
    根据所述第一校准数据确定第一函数;
    根据所述第一校准数据与所述第二校准数据的组合确定第三函数;
    确定所述第一函数与所述第三函数的差异程度;
    根据所述差异程度,确定所述最佳函数。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一校准数据确定第一函数包括:根据所述第一校准数据通过最小二乘法确定第一函数;
    所述根据所述第一校准数据与所述第二校准数据的组合确定第三函数包括:根据所述第一校准数据与所述第二校准数据的组合通过最小二乘法确定第三函数。
  9. 根据权利要求7所述的方法,其特征在于,所述根据所述差异程度,确定所述最佳函数包括:
    若所述差异程度小于第一预定阈值,则将所述第三函数作为所述最佳函数。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述差异程度,确定所述最佳函数还包括:
    若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值,则将第二校准数据确定的第二函数作为所述最佳函数;
    若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则将所述第一函数作为所述最佳函数。
  11. 根据权利要求9所述的方法,其特征在于,所述根据所述差异程度,确定所述最佳函数还包括:
    若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值,则将所述第三函数作为所述最佳函数;
    若所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
  12. 根据权利要求1所述的方法,其特征在于,所述第一校准数据和所述第二校准数据分别至少包括一组血压值和对应的脉搏波传输时间,
    所述根据所述第一校准数据和所述第二校准数据,确定用于表征所述用户脉搏波传输时间与血压值之间关系的最佳函数包括:
    获取所述用户的当前脉搏波传输时间;
    从所述第一校准数据和所述第二校准数据中选择与所述当前脉搏波传输时间最接近的脉搏波传输时间,以存在与所述当前脉搏波传输时间最接近的脉搏波传输时间的校准数据作为最佳校准数据;
    将根据所述最佳校准数据确定的函数作为所述最佳函数。
  13. 根据权利要求1所述的方法,其特征在于,所述获取预先存储的所述用户的第二校准数据包括:
    无袖带式血压测量装置获取所述用户的身份标识;
    根据所述用户的身份标识从多个预先存储的校准数据中获取所述第二校准数据。
  14. 根据权利要求13所述的方法,其特征在于,所述获取所述用户的身份标识包括:
    根据用户的所述第一校准数据中的第一心电信号和第一脉搏波信号中的至少一个,确定所述用户的身份标识;或
    根据所述用户当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号中的至少一个,确定所述用户的身份标识。
  15. 根据权利要求1所述的方法,其特征在于,所述获取所述用户的当前脉搏波传输时间,根据所述当前脉搏波传输时间和所述最佳函数,计算所述用户的当前血压值包括:
    获取所述用户当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号,计算得到当前脉搏波传输时间;
    根据所述最佳函数与所述当前脉搏波传输时间计算得到所述用户的当前血压值。
  16. 一种无袖带式血压测量装置,其特征在于,所述无袖带式血压测量装置包括第一获取模块、第二获取模块、确定模块以及计算模块,其中:
    所述第一获取模块用于获取第一校准数据,所述第一校准数据为用户使用所述无袖带式血压测量装置测量血压之前,执行手动校准过程产生的数据;
    所述第二获取模块用于获取预先存储的所述用户的第二校准数据;
    所述确定模块用于根据所述第一校准数据和所述第二校准数据,确定用于表征所述用户的脉搏波传输时间与血压值之间关系的最佳函数;
    所述计算模块用于获取所述用户的当前脉搏波传输时间,根据所述当前脉搏波传输时间和所述最佳函数,计算所述用户的当前血压值。
  17. 根据权利要求16所述的无袖带式血压测量装置,其特征在于,所述确定模块包括第一确定单元、第二确定单元、第三确定单元以及第四确定单元,其中:
    所述第一确定单元用于根据所述第一校准数据确定第一函数;
    所述第二确定单元用于根据所述第二校准数据确定第二函数;
    所述第三确定单元用于确定所述第一函数与所述第二函数的差异程度;
    所述第四确定单元用于根据所述差异程度,确定所述最佳函数。
  18. 根据权利要求17所述的无袖带式血压测量装置,其特征在于,所述第一确定单元用于根据所述第一校准数据通过最小二乘法确定第一函数;所述第二确定单元用于根据所述第二校准数据通过最小二乘法确定第二函 数。
  19. 根据权利要求18所述的无袖带式血压测量装置,其特征在于,所述第四确定单元用于在所述差异程度小于第一预定阈值时,将所述第一校准数据与所述第二校准数据确定的第三函数作为所述最佳函数。
  20. 根据权利要求19所述的无袖带式血压测量装置,其特征在于,所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第二函数作为所述最佳函数;或
    所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值时,将所述第一函数作为所述最佳函数。
  21. 根据权利要求19所述的无袖带式血压测量装置,其特征在于,所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第一校准数据与所述第二校准数据确定的第三函数作为所述最佳函数;或
    所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
  22. 根据权利要求16所述的无袖带式血压测量装置,其特征在于,所述确定模块包括第一确定单元、第二确定单元、第三确定单元以及第四确定单元,其中:
    所述第一确定单元用于根据所述第一校准数据确定第一函数;
    所述第二确定单元用于根据所述第一校准数据与所述第二校准数据的组合确定第三函数;
    所述第三确定单元用于确定所述第一函数与所述第三函数的差异程度;
    所述第四确定单元用于根据所述差异程度,确定所述最佳函数。
  23. 根据权利要求22所述的无袖带式血压测量装置,其特征在于,所述第一确定单元用于根据所述第一校准数据通过最小二乘法确定第一函数; 所述第二确定单元用于根据所述第二校准数据通过最小二乘法确定第二函数。
  24. 根据权利要求22所述的无袖带式血压测量装置,其特征在于,所述第四确定单元用于在所述差异程度小于第一预定阈值时,将所述第三函数作为所述最佳函数。
  25. 根据权利要求24所述的无袖带式血压测量装置,其特征在于,所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将第二校准数据确定的第二函数作为所述最佳函数;或
    所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,将所述第一函数作为所述最佳函数。
  26. 根据权利要求24所述的无袖带式血压测量装置,其特征在于,所述第四确定单元用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第三函数作为所述最佳函数;或
    所述第四确定单元用于所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值时,剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
  27. 根据权利要求16所述的无袖带式血压测量装置,其特征在于,所述第一校准数据和所述第二校准数据分别至少包括一组血压值和对应的脉搏波传输时间,所述确定模块包括获取单元、选择单元以及确定单元,其中:
    所述获取单元用于获取所述用户的当前脉搏波传输时间;
    所述选择单元用于从所述第一校准数据和所述第二校准数据中选择与所述当前脉搏波传输时间最接近的脉搏波传输时间,以存在与所述当前脉搏波传输时间最接近的脉搏波传输时间的校准数据作为最佳校准数据;
    所述确定单元用于将根据所述最佳校准数据确定的函数作为最佳函数。
  28. 根据权利要求16所述的无袖带式血压测量装置,其特征在于,所述 第二获取模块包括第一获取单元以及第二获取单元,其中:
    所述第一获取单元用于获取所述用户的身份标识;
    所述第二获取单元用于根据所述第一获取单元获取的所述用户的身份标识从多个预先存储的校准数据中获取所述第二校准数据。
  29. 根据权利要求28所述的无袖带式血压测量装置,其特征在于,所述第一获取单元用于根据用户的所述第一校准数据中的第一心电信号和第一脉搏波信号中的至少一个,确定所述用户的身份标识;或所述第一获取单元用于根据所述用户当前使用无袖带式血压测量装置产生的当前心电信号和当前脉搏波信号中的至少一个,确定所述用户的身份标识。
  30. 根据权利要求16所述的无袖带式血压测量装置,其特征在于,所述计算模块包括第一计算单元以及第二计算单元,其中:
    所述第一计算单元用于获取所述用户当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号,计算得到当前脉搏波传输时间;
    所述第二计算单元用于根据所述最佳函数与所述当前脉搏波传输时间计算得到所述用户的当前血压值。
  31. 一种无袖带式血压测量装置,其特征在于,所述无袖带式血压测量装置包括处理器、存储器以及接收器,所述处理器分别耦接所述存储器以及接收器,其中:
    所述处理器用于控制所述接收器接收用户的第一校准数据,第一校准数据为用户使用无袖带式血压测量装置测量血压之前,执行手动校准过程产生的数据;
    所述处理器用于获取预先存储的用户的第二校准数据,根据所述第一校准数据和所述第二校准数据,确定用于表征用户的脉搏波传输时间与血压值之间关系的最佳函数,进一步获取用户的当前脉搏波传输时间,根据当前脉搏波传输时间和所述最佳函数,计算所述用户的当前血压值;
    所述存储器用于存储所述第一校准数据和所述第二校准数据。
  32. 根据权利要求31所述的无袖带式血压测量装置,其特征在于,所述处理器用于根据所述第一校准数据确定第一函数,根据所述第二校准数据确定第二函数,确定所述第一函数与所述第二函数的差异程度,根据所述 差异程度,确定所述最佳函数。
  33. 根据权利要求32所述的无袖带式血压测量装置,其特征在于,所述处理器用于根据所述第一校准数据通过最小二乘法确定第一函数,根据所述第二校准数据通过最小二乘法确定第二函数。
  34. 根据权利要求33所述的无袖带式血压测量装置,其特征在于,所述处理器用于在所述差异程度小于第一预定阈值时,将所述第一校准数据与所述第二校准数据确定的第三函数作为所述最佳函数。
  35. 根据权利要求34所述的无袖带式血压测量装置,其特征在于,所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第二函数作为所述最佳函数;或
    所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值时,将所述第一函数作为所述最佳函数。
  36. 根据权利要求34所述的无袖带式血压测量装置,其特征在于,所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第一校准数据与所述第二校准数据确定的第三函数作为所述最佳函数;或
    所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,则剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
  37. 根据权利要求31所述的无袖带式血压测量装置,其特征在于,所述处理器用于根据所述第一校准数据确定第一函数,根据所述第一校准数据与所述第二校准数据的组合确定第三函数,确定所述第一函数与所述第三函数的差异程度,根据所述差异程度,确定所述最佳函数。
  38. 根据权利要求37所述的无袖带式血压测量装置,其特征在于,所述处理器用于根据所述第一校准数据通过最小二乘法确定第一函数,根据所述第二校准数据通过最小二乘法确定第二函数。
  39. 根据权利要求37所述的无袖带式血压测量装置,其特征在于,所述处理器用于在所述差异程度小于第一预定阈值时,将所述第三函数作为所 述最佳函数。
  40. 根据权利要求39所述的无袖带式血压测量装置,其特征在于,所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将第二校准数据确定的第二函数作为所述最佳函数;或
    所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值,将所述第一函数作为所述最佳函数。
  41. 根据权利要求39所述的无袖带式血压测量装置,其特征在于,所述处理器用于在所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量小于第二预定阈值时,将所述第三函数作为所述最佳函数;或
    所述处理器用于所述差异程度大于所述第一预定阈值且所述第一校准数据的样本量大于所述第二预定阈值时,剔除所述第一校准数据中的异常数据点,并由所述第二校准数据和剩余的所述第一校准数据的结合所计算的第四函数作为所述最佳函数。
  42. 根据权利要求31所述的无袖带式血压测量装置,其特征在于,所述第一校准数据和所述第二校准数据分别至少包括一组血压值和对应的脉搏波传输时间,所述处理器用于获取所述用户的当前脉搏波传输时间,从所述第一校准数据和所述第二校准数据中选择与所述当前脉搏波传输时间最接近的脉搏波传输时间,以存在与所述当前脉搏波传输时间最接近的脉搏波传输时间的校准数据作为最佳校准数据,将根据所述最佳校准数据确定的函数作为最佳函数。
  43. 根据权利要求31所述的无袖带式血压测量装置,其特征在于,所述处理器用于获取所述用户的身份标识,根据所述用户的身份标识从多个预先存储的校准数据中获取所述第二校准数据。
  44. 根据权利要求43所述的无袖带式血压测量装置,其特征在于,所述处理器用于根据用户的所述第一校准数据中的第一心电信号和第一脉搏波信号中的至少一个,确定所述用户的身份标识;或所述处理器用于根据所述用户当前使用无袖带式血压测量装置产生的当前心电信号和当前脉搏波信号中的至少一个,确定所述用户的身份标识。
  45. 根据权利要求31所述的无袖带式血压测量装置,其特征在于,所述处理器用于获取所述用户当前使用无袖带式血压测量装置测量产生的当前心电信号和当前脉搏波信号,计算得到当前脉搏波传输时间,根据所述最佳函数与所述当前脉搏波传输时间计算得到所述用户的当前血压值。
PCT/CN2015/086966 2015-08-14 2015-08-14 一种血压测量数据的处理方法及装置 WO2017028011A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580031329.7A CN107072555B (zh) 2015-08-14 2015-08-14 一种血压测量数据的校准方法及装置
US15/544,427 US20180078156A1 (en) 2015-08-14 2015-08-14 Blood Pressure Measurement Data Processing Method and Apparatus
PCT/CN2015/086966 WO2017028011A1 (zh) 2015-08-14 2015-08-14 一种血压测量数据的处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086966 WO2017028011A1 (zh) 2015-08-14 2015-08-14 一种血压测量数据的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2017028011A1 true WO2017028011A1 (zh) 2017-02-23

Family

ID=58050474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086966 WO2017028011A1 (zh) 2015-08-14 2015-08-14 一种血压测量数据的处理方法及装置

Country Status (3)

Country Link
US (1) US20180078156A1 (zh)
CN (1) CN107072555B (zh)
WO (1) WO2017028011A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108272446A (zh) * 2018-01-30 2018-07-13 浙江大学 无创连续血压测量系统及其校准方法
WO2018176536A1 (zh) * 2017-04-01 2018-10-04 华为技术有限公司 血压监测方法、装置和设备
EP3417771A1 (en) * 2017-06-20 2018-12-26 Heartisans Limited A method for monitoring blood pressure, and a device thereof
CN110292367A (zh) * 2018-03-21 2019-10-01 杭州兆观传感科技有限公司 一种可扩展多生理参数监测指环
CN110974199A (zh) * 2019-11-27 2020-04-10 英华达(上海)科技有限公司 血压测量的校准方法、装置、系统、电子设备、存储介质
CN113749633A (zh) * 2021-08-07 2021-12-07 广东乐心医疗电子股份有限公司 血压校准方法、装置、血压测量系统和电子设备
CN114176546A (zh) * 2021-08-07 2022-03-15 广东乐心医疗电子股份有限公司 血压测量方法、装置和电子设备
WO2023016326A1 (zh) * 2021-08-07 2023-02-16 广东乐心医疗电子股份有限公司 血压校准方法、装置、血压测量系统和电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10973422B2 (en) 2016-01-22 2021-04-13 Fitbit, Inc. Photoplethysmography-based pulse wave analysis using a wearable device
US11589758B2 (en) 2016-01-25 2023-02-28 Fitbit, Inc. Calibration of pulse-transit-time to blood pressure model using multiple physiological sensors and various methods for blood pressure variation
US11179049B2 (en) * 2016-02-29 2021-11-23 Fitbit, Inc. Intelligent inflatable cuff for arm-based blood pressure measurement
US11457824B2 (en) 2016-03-07 2022-10-04 Fitbit, Inc. Blood pressure sensors
CN107788965A (zh) * 2016-09-05 2018-03-13 京东方科技集团股份有限公司 一种血压的确定方法及装置
EP3395236B1 (en) * 2017-04-25 2022-08-17 Tata Consultancy Services Limited Processor-implemented method, system and computer program product for adaptive sensor calibration
CN107714022B (zh) * 2017-11-10 2024-01-02 江苏鱼跃医疗设备股份有限公司 具有血压深度测量功能的血压测量装置及其数据处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1548005A (zh) * 2003-05-20 2004-11-24 香港中文大学 基于桡动脉脉搏信息的血压测量装置及方法
CN101147678A (zh) * 2006-09-22 2008-03-26 李中健 心电生物特征身份识别技术及其应用
CN101327121A (zh) * 2007-06-22 2008-12-24 香港中文大学 一种生理参数测量装置
US20100081946A1 (en) * 2008-09-26 2010-04-01 Qualcomm Incorporated Method and apparatus for non-invasive cuff-less blood pressure estimation using pulse arrival time and heart rate with adaptive calibration
EP2644089A1 (en) * 2012-03-29 2013-10-02 Lifewatch technologies Ltd. Blood pressure estimation using a hand-held device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100512750C (zh) * 2006-06-16 2009-07-15 香港中文大学 对无袖带式动脉血压测量装置进行校准的方法
CN100560019C (zh) * 2007-01-26 2009-11-18 香港中文大学 脉搏波传输时间法测量动脉血压的初始校准装置
CN102397064B (zh) * 2011-12-14 2014-02-19 中国航天员科研训练中心 连续血压测量装置
CN104257371A (zh) * 2014-10-13 2015-01-07 天津工业大学 一种桡动脉动态血压检测及校准方法的研究
CN104757955A (zh) * 2015-03-25 2015-07-08 华中科技大学 一种基于脉搏波的人体血压预测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1548005A (zh) * 2003-05-20 2004-11-24 香港中文大学 基于桡动脉脉搏信息的血压测量装置及方法
CN101147678A (zh) * 2006-09-22 2008-03-26 李中健 心电生物特征身份识别技术及其应用
CN101327121A (zh) * 2007-06-22 2008-12-24 香港中文大学 一种生理参数测量装置
US20100081946A1 (en) * 2008-09-26 2010-04-01 Qualcomm Incorporated Method and apparatus for non-invasive cuff-less blood pressure estimation using pulse arrival time and heart rate with adaptive calibration
EP2644089A1 (en) * 2012-03-29 2013-10-02 Lifewatch technologies Ltd. Blood pressure estimation using a hand-held device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018176536A1 (zh) * 2017-04-01 2018-10-04 华为技术有限公司 血压监测方法、装置和设备
CN109890276A (zh) * 2017-04-01 2019-06-14 华为技术有限公司 血压监测方法、装置和设备
EP3417771A1 (en) * 2017-06-20 2018-12-26 Heartisans Limited A method for monitoring blood pressure, and a device thereof
CN109091127A (zh) * 2017-06-20 2018-12-28 心匠有限公司 用于监测血压的方法及其设备
CN108272446B (zh) * 2018-01-30 2021-03-26 浙江大学 无创连续血压测量系统及其校准方法
CN108272446A (zh) * 2018-01-30 2018-07-13 浙江大学 无创连续血压测量系统及其校准方法
CN110292367A (zh) * 2018-03-21 2019-10-01 杭州兆观传感科技有限公司 一种可扩展多生理参数监测指环
CN110974199A (zh) * 2019-11-27 2020-04-10 英华达(上海)科技有限公司 血压测量的校准方法、装置、系统、电子设备、存储介质
CN110974199B (zh) * 2019-11-27 2022-07-08 英华达(上海)科技有限公司 血压测量的校准方法、装置、系统、电子设备、存储介质
CN113749633A (zh) * 2021-08-07 2021-12-07 广东乐心医疗电子股份有限公司 血压校准方法、装置、血压测量系统和电子设备
CN114176546A (zh) * 2021-08-07 2022-03-15 广东乐心医疗电子股份有限公司 血压测量方法、装置和电子设备
CN114176546B (zh) * 2021-08-07 2022-12-09 广东乐心医疗电子股份有限公司 血压测量装置和电子设备
WO2023016326A1 (zh) * 2021-08-07 2023-02-16 广东乐心医疗电子股份有限公司 血压校准方法、装置、血压测量系统和电子设备

Also Published As

Publication number Publication date
CN107072555A (zh) 2017-08-18
US20180078156A1 (en) 2018-03-22
CN107072555B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2017028011A1 (zh) 一种血压测量数据的处理方法及装置
WO2019218774A1 (zh) 对象识别方法、装置及存储介质
WO2018072212A1 (zh) 血压测量设备的校准方法及血压测量设备
CN109124606B (zh) 一种血压计算模型构建方法及构建系统
CN108024740A (zh) 血压测量方法、血压测量装置以及终端
JP2013200590A (ja) 類似画像検索装置、方法及びプログラム
JP2022187119A (ja) 情報処理装置、血圧推定方法及びプログラム
RU2731445C1 (ru) Система обработки информации
CN108272449A (zh) 非接触式的血压监测方法及系统
JP2022538361A (ja) 画像分割信頼度決定
CN111588353A (zh) 一种体温测量方法
IL307210A (en) Apparatus, software, method and system for assisting in electrocardiogram analysis, a method for producing a peak evaluation model and a method for producing a segment evaluation model
WO2021056286A1 (zh) 一种血压标定选择方法及其建模方法
JP6414981B2 (ja) 生体情報推定装置、生体情報推定方法、及びコンピュータプログラム
IL307211A (en) Device, software, method and system for assisting in electrocardiogram analysis
CN111714135B (zh) 血氧饱和度确定方法及装置
CN111643056B (zh) 数据处理方法及系统
CN112786185A (zh) 血压健康状态获取方法、装置和系统
CN111128321A (zh) 信息显示方法及系统、装置、电子设备和可读介质
US11547310B2 (en) Autonomous full spectrum biometric monitoring
US11832925B2 (en) Electronic device for measuring biometric information and method for operating the same
CN111643057B (zh) 生理参数数据处理方法及系统
US12097039B2 (en) Hydration assessment using a sensor
EP4250311A1 (en) Ultrasound system with customization unit
CN117423457B (zh) 远程健康监测方法及其系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901217

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544427

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901217

Country of ref document: EP

Kind code of ref document: A1