WO2017026301A1 - 黄色ブドウ球菌不活化菌体とロイコシジンを混合したワクチン - Google Patents

黄色ブドウ球菌不活化菌体とロイコシジンを混合したワクチン Download PDF

Info

Publication number
WO2017026301A1
WO2017026301A1 PCT/JP2016/072313 JP2016072313W WO2017026301A1 WO 2017026301 A1 WO2017026301 A1 WO 2017026301A1 JP 2016072313 W JP2016072313 W JP 2016072313W WO 2017026301 A1 WO2017026301 A1 WO 2017026301A1
Authority
WO
WIPO (PCT)
Prior art keywords
leukocidin
antigen
protein
immunogenic composition
staphylococcus aureus
Prior art date
Application number
PCT/JP2016/072313
Other languages
English (en)
French (fr)
Inventor
伊藤 寿浩
太一 野呂
Original Assignee
株式会社微生物化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社微生物化学研究所 filed Critical 株式会社微生物化学研究所
Priority to JP2017534183A priority Critical patent/JP6620817B2/ja
Priority to AU2016304671A priority patent/AU2016304671A1/en
Priority to EP16834998.3A priority patent/EP3335726A4/en
Priority to US15/751,123 priority patent/US10668141B2/en
Publication of WO2017026301A1 publication Critical patent/WO2017026301A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/085Staphylococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/521Bacterial cells; Fungal cells; Protozoal cells inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine

Definitions

  • the present invention relates to a vaccine for protecting ruminants from diseases (mastitis) caused by Staphylococcus aureus, S. aureus.
  • Staphylococcus aureus is one of the staphylococci that are resident bacteria (intestinal bacteria) of the skin and digestive tract (intestine) of humans and animals, and is known as one of the causative agents of purulent diseases and food poisoning in humans and animals. ing.
  • the animal itself infected with food poisoning does not develop symptoms, there is a possibility that humans who have come into contact with the animal may be infected with food poisoning bacteria, or food poisoning bacteria may adhere to products produced by animals, It is known to significantly reduce the value of the animal itself and the value of products produced by the animal.
  • Staphylococcus aureus is said to be strongly associated with bovine mastitis.
  • Staphylococcus aureus is one of the major pathogens that cause infectious mastitis in cattle, and unlike environmental mastitis bacteria such as Escherichia coli and environmental streptococci, it is said that the curative effect of antibiotics is low. .
  • At least 30 pathogenic factors as bacterial cell components of Staphylococcus aureus are known, and protein A, fibronectin binding protein, clamping factor, lipoteichoic acid and the like are known as molecules localized in cells.
  • protein A, fibronectin binding protein, clamping factor, lipoteichoic acid and the like are known as molecules localized in cells.
  • coagulase and staphylokinase are known as enzymes related to pathogenicity.
  • enterotoxins that are closely related to food poisoning in humans, TSST-1 associated with sepsis, and leukocidin that exhibits toxic activity against leukocytes that are immune cells are known.
  • the use of the supernatant component as a vaccine antigen has also been studied, but no studies have been made in consideration of the actual condition of mastitis-derived bacteria as an active ingredient contained in the supernatant, and as a result, no infection prevention effect has been achieved. . In addition, it is thought that the supernatant component alone cannot be expected to provide sufficient immunological protection. With respect to the fact that an effective vaccine against S. aureus bovine mastitis has not been developed so far, the above background is considered.
  • a mastitis vaccine (Patent Document 1) or 1 containing Staphylococcus aureus as an immunogen and contained in a vaccine carrier composed of liposomes containing methylglutarylated polyglycidol.
  • a method for treating or preventing S. aureus infection in a bird or mammal comprising administering to the bird or mammal a therapeutically effective amount of a pharmaceutical composition comprising one or more types of digestive enzymes ( Techniques such as Patent Document 2) are known, but in Japan, there are no vaccines that can be used against mastitis, including other pathogens, at sites such as ranches.
  • the present inventors focused on leukocidin M / F, which is a staphylococcal toxin, and produced bovine mastitis on farms by producing antibodies against the toxin in the target animal. Has been found to be effective in preventing infections. Furthermore, the present inventors have found that in addition to the leukocidin M / F antigen, a bacterial antigen of Staphylococcus aureus is used in combination to prevent bovine mastitis infection more efficiently. The present invention has been completed by the present inventors based on the above findings.
  • the gist of the present invention is as follows.
  • An immunogenic composition comprising leukocidin M / F antigen and capable of imparting toxin neutralizing activity to ruminant animals to be administered;
  • the above-mentioned leukocidin M / F antigen is a protein or peptide having at least part of an amino acid sequence constituting leukocidin M protein, or a protein or peptide having at least part of an amino acid sequence constituting leukocidin F protein [ 1) the immunogenic composition according to 1), [3]
  • the aforementioned leukocidin M / F antigen is a protein or peptide having at least a part of an amino acid sequence constituting leukocidin M protein, and a protein or peptide having at least a part of the amino acid sequence constituting leukocidin F protein [ 1) the immunogenic composition according to 1), [4] The immunogenic composition according to any one of [1] to [3], wherein the leukocidin M /
  • the immunogenic composition of the present invention in addition to the existing symptomatic treatment with antibiotic treatment and hygiene measures for infection prevention, in addition to the staphylococcus aureus such as active mastitis in ruminants including cattle It is possible to provide a preventive means for the disease from which it originates.
  • FIG. 1 is a graph showing the results of an onset protection test using the S. aureus HK-3 strain inactivated cell antigen performed in Example 3.
  • the vertical axis of the upper figure shows the number of somatic cells per mL of milk, and the horizontal axis shows the number of days (d).
  • the vertical axis of the lower figure shows the number of bacteria per mL of milk, and the horizontal axis shows the number of days (d) (the same applies to the upper and lower figures of FIG. 3).
  • FIG. 2 is a graph showing the results of an inflammatory effect reduction test on supernatant components using the leukocidin M / F concentrated inactivated antigen performed in Example 4.
  • FIG. 3 is a graph showing the results of an infection protection test using leukocidin M / F concentrated inactivated antigen and inactivated whole cell antigen performed in Example 5-1.
  • FIG. 4 is a graph showing the results of an infection protection test using leukocidin M / F concentrated inactivated antigen and inactivated whole cell antigen performed in Example 5-2.
  • toxin neutralizing activity means the toxin of leukocidin M / F which is a bacterial toxin produced by Staphylococcus aureus when the immunogenic composition of the present invention is administered to ruminants.
  • immunogenicity refers to the property of stimulating the immune system of ruminant animals, which are the administration target animals, to induce the production of antibodies against the aforementioned leukocidin M / F and S. aureus whole cells.
  • An immunogenic composition refers to a composition that, when administered to a ruminant, causes an immune response in the ruminant.
  • ruminants that are animals to be administered include cows, goats, sheep or deer. Of these, cattle are preferred because they can efficiently prevent diseases that are economically lossy for breeders, such as bovine mastitis.
  • the present invention is an immunogenic composition
  • an immunogenic composition comprising leukocidin M / F antigen and capable of imparting toxin neutralizing activity to ruminants which are animals to be administered.
  • leucocidin M / F is a kind of bacterial toxin produced by Staphylococcus aureus, and refers to a dimer formed by binding leucocidin M protein (LukM) and leucocidin F protein (LukF).
  • Leukocidin M protein is known to have a binding activity to neutrophils
  • leukocidin F protein is known to have a neutrophil-damaging activity.
  • the leukocidin M protein consists of an amino acid sequence of 308 amino acid residues (SEQ ID NO: 3), which is encoded by the 927 bp base sequence shown in SEQ ID NO: 1 in the gene sequence of S. aureus.
  • the leukocidin F protein consists of an amino acid sequence of 322 amino acid residues (SEQ ID NO: 4), which is shown in SEQ ID NO: 2 via a 1 bp base downstream of the gene region encoding the leukocidin M protein. It is encoded by a 969 bp base sequence.
  • the amino acid sequences and base sequences of the Leukocidin M protein and Leukocidin F protein can be confirmed with a known database. Known databases include DNA Data Bank of Japan, Medline and the like.
  • leukocidin M / F antigen refers to an antigen capable of producing an antibody capable of binding to leukocidin M / F in a ruminant which is an animal to be administered.
  • the leukocidin M / F antigen include a protein or peptide having at least a part of the amino acid sequence constituting the leukocidin M protein, or a protein or peptide having at least a part of the amino acid sequence constituting the leukocidin F protein.
  • the protein or peptide having at least a portion refers to a protein or peptide having at least a portion of the amino acid sequence represented by SEQ ID NO: 3 or SEQ ID NO: 4, and the length of the amino acid sequence of these proteins or peptides.
  • the protein having at least a part may be a protein in which a mutation is introduced into the amino acid sequence described in SEQ ID NO: 3 or SEQ ID NO: 4.
  • the mutation-introduced protein is not particularly limited as long as it is capable of imparting toxin neutralizing activity to the ruminant animal to be administered.
  • the mutation is introduced.
  • the homology of the amino acid sequences of the proteins should be at least 70% or more, preferably 80% or more, more preferably 90% or more with respect to the amino acid sequence of SEQ ID NO: 3 or SEQ ID NO: 4. Good.
  • Examples of the amino acid residue mutation that can be introduced into the amino acid sequence shown in SEQ ID NO: 3 or 4 include substitution, deletion, insertion and / or addition of 1 to 2 amino acids.
  • the amino acid to be substituted is desirably an amino acid having a chemical property close to that of the original amino acid in order to retain the three-dimensional structure of the original protein.
  • conservative substitution include, for example, mutual substitution between nonpolar amino acids of Ala, Val, Leu, Ile, Pro, Met, Phe, Trp, Gly, Ser, Thr, Cys, Tyr, Asn, Gln. And the substitution between acidic amino acids Asp and Glu, and mutual substitution of basic amino acids with Lys, Arg, and His. Moreover, what is necessary is just to perform about mutations, such as the said deletion and insertion addition, using a well-known method.
  • the protein used in the present invention does not need to include the entire amino acid sequence of leucocidin M / F as long as it can impart toxin neutralizing activity equivalent to leucocidin M / F existing in nature.
  • the leukocidin M / F antigen is preferably a protein or peptide having at least a part of the amino acid sequence constituting the leukocidin M protein and a protein or peptide having at least a part of the amino acid sequence constituting the leukocidin F protein.
  • the leukocidin M / F antigen can be prepared from the culture supernatant of S. aureus.
  • Staphylococcus aureus can be cultured by the method described in the Examples below, and leucocidin M / F antigen can be obtained from the supernatant.
  • the leucocidin M / F antigen may be synthesized.
  • Examples of the synthesis method include a method using an apparatus such as an automatic protein synthesizer and a fully automatic peptide synthesizer.
  • the leukocidin M / F antigen prepared from or synthesized from the culture supernatant of S. aureus can be imparted with a toxin neutralizing activity equivalent to that of leukocidin M / F existing in nature. If it is a thing, the length of an amino acid may be shortened or a specific amino acid may be modified by further applying an enzyme treatment or the like.
  • the leucocidin M / F antigen may be inactivated.
  • the leukocidin M / F antigen obtained from the culture supernatant has toxicity, and thus the safety can be enhanced by inactivation treatment.
  • the inactivation treatment method include, but are not particularly limited to, a method in which the leucocidin M / F antigen is brought into contact with formalin or phenol, or subjected to heating treatment, ultraviolet irradiation, or the like.
  • the immunogenic composition of the present invention contains a bacterial antigen of Staphylococcus aureus, thereby preventing bovine mastitis infection more efficiently.
  • Examples of the cell antigen of S. aureus include inactivated whole cells of S. aureus or a part thereof.
  • Examples of the inactivation treatment of Staphylococcus aureus include a method in which the cells of Staphylococcus aureus are brought into contact with formalin and phenol, or are subjected to heating treatment, ultraviolet irradiation, and the like, but are not particularly limited. Further, as a part of the inactivated whole cell body, the inactivated whole cell body is subjected to a treatment such as a decomposition by a physical treatment such as ultrasonic treatment or an enzyme treatment using a hydrolase such as lysostaphin. What you get.
  • the S. aureus may be a commercially available strain or a strain stored in various research institutions.
  • Staphylococcus aureus isolated from a site where the disease occurs using a known method may be used.
  • Staphylococcus aureus isolated from ruminant milk is preferable.
  • the immunogenic composition of the present invention includes, for example, a pharmacologically acceptable carrier or medium, specifically, sterilized water, physiological saline, vegetable oil, emulsifier, suspending agent, surfactant, stabilizer and the like. And an appropriate combination thereof, it is possible to produce antibodies against leukocidin M / F antigen and Staphylococcus aureus antigens and to enhance the protective effect against infection.
  • a pharmacologically acceptable carrier or medium specifically, sterilized water, physiological saline, vegetable oil, emulsifier, suspending agent, surfactant, stabilizer and the like. And an appropriate combination thereof, it is possible to produce antibodies against leukocidin M / F antigen and Staphylococcus aureus antigens and to enhance the protective effect against infection.
  • Various immunostimulants may be added to the immunogenic composition of the present invention.
  • the immunogenic composition can be produced, for example, by mixing the various components such as leucocidin M / F antigen and, if necessary, a Staphylococcus aureus cell antigen.
  • the immunogenic composition of the present invention can be suitably used as a vaccine against ruminants that are adversely affected by infection with Staphylococcus aureus.
  • Adjuvants formulated when the immunogenic composition of the present invention is used as a vaccine include, for example, inorganic substances such as aluminum gel adjuvant, microorganisms or microorganism-derived substances (BCG, muramyl dipeptide, Bordetella pertussis, Hundred days Cough toxin, cholera toxin, etc.), surfactants (saponin, deoxycholic acid, etc.), emulsions of oily substances (mineral oil, vegetable oil, animal oil), etc. These can be used alone or in combination. can do.
  • an adjuvant to be blended in the immunogenic composition of the present invention an oil adjuvant is preferable. More preferred is an oil adjuvant mainly composed of squalane.
  • an anhydrous mannitol oleate-added squalane solution is preferable from the viewpoint of safety.
  • the effect of this adjuvant is more remarkable than expected, and by blending this adjuvant, an excellent protective effect against Staphylococcus aureus and high safety can be obtained.
  • the anhydrous mannitol oleate-added squalane liquid refers to a solution comprising anhydrous mannitol oleate and squalane.
  • the immunogenic compositions of the present invention can also be used to prepare formulations for the treatment or prevention of diseases associated with S. aureus in ruminants.
  • the disease associated with S. aureus is not particularly limited, but includes mastitis, suppurative disease, arthritis, conjunctivitis, dermatitis and the like.
  • treatment refers to curing or ameliorating the symptom in a ruminant animal that has developed a disease due to infection with Staphylococcus aureus.
  • prevention refers to inhibition of onset by prophylactic administration to ruminants in a state after infection with S. aureus but before the onset of the disease.
  • an “immunologically effective amount” is a cellular immune response (T cell) or a humoral immune response (B cell or antibody) as measured by standard assays known to those skilled in the art. Or refers to the amount of antigen or immunogenic composition sufficient to induce both immune responses.
  • the immunogenic composition of the present invention can be administered to animals by, for example, intraarterial injection, intravenous injection, subcutaneous injection, intranasal, transbronchial, intramuscular, or oral administration to those skilled in the art. It can be performed by a known method.
  • the dosage varies depending on the body weight and age of the ruminant, the administration method, the purpose of use, etc., but those skilled in the art can appropriately select an appropriate dosage.
  • Test strain Use a strain that satisfies the following conditions as a test strain for S. aureus.
  • a strain in which the culture supernatant has a stronger damaging activity against bovine neutrophils than that of a strain without leucocidin M / F.
  • [Method for preparing immunogen] Preparation of Whole Cell Antigen and Leukocidin M / F Antigen Staphylococcus aureus is obtained by transplanting the inoculum into a liquid medium such as Brain Heart Infusion broth (BHI medium) and shaking culture at 37 ° C. for 18 to 24 hours.
  • BHI medium Brain Heart Infusion broth
  • the culture method is not limited to this as long as the number of bacteria reaches 10 9 CFU / mL or more, and expression of CP antigen or leukocidin is recognized, and a known culture method can be used.
  • the leukocidin toxin activity was measured according to the following procedure. 1) Polymorphonuclear (PMN) leukocytes and leukocidin PMN leukocytes were prepared from bovine peripheral blood by centrifugation using Ficoll (Pharmacia). As a positive control, BM1006 strain isolated from milk was cultured in a BHI medium at 37 ° C. for 20 hours, and the supernatant of a bacterial solution (leucosidine toxin activity: equivalent to 320 times) was used as a leucosidine reference solution.
  • PMN Polymorphonuclear
  • BM1006 strain isolated from milk was cultured in a BHI medium at 37 ° C. for 20 hours, and the supernatant of a bacterial solution (leucosidine toxin activity: equivalent to 320 times) was used as a leucosidine reference solution.
  • PMN assay Measurement of leukocidin toxin activity (PMN assay) According to 1) above, PMN leukocytes were prepared from bovine peripheral blood and mixed with each specimen diluted stepwise in a flat bottom 96 well plate. The leucocidin toxin activity of the specimen was determined based on the maximum dilution factor at which 50% or more injury was observed per well. 3) Measurement of Leukocidin Neutralizing Antibody A sample diluted with RPMI-GH (RPMI1640 + 0.1% gelatin + 20 mM HEPES) and diluted 2-fold in a flat-bottom 96-well plate was diluted 50-fold with RPMI-GH. An equal amount of a reference solution was added and sensitized for 60 minutes at 37 ° C.
  • RPMI-GH RPMI1640 + 0.1% gelatin + 20 mM HEPES
  • the test substance in which the leucocidin antibody titer in the specimen is significantly higher than 4 times that of a control cow not administered with the test substance is referred to as “leucocidin toxin”. It is judged that neutralizing activity can be imparted.
  • Adjuvant As a vaccine, an adjuvant for conferring immunity against active ingredients on milk is added. Although an oily adjuvant mainly composed of mineral oil or vegetable oil is basically used, an aluminum gel adjuvant or the like may be added thereto.
  • Example 1 Selection of strains MLST analysis, leukocidin gene analysis For Staphylococcus aureus isolated and identified from cow's milk, DNA is extracted by a general method such as phenol chloroform extraction / ethanol precipitation method, boil method or commercially available kit method. It was used for.
  • the MLST typing method is a molecular epidemiological analysis method based on the base sequence for determining and analyzing subspecies of bacterial isolates and other microorganisms. The MLST typing method (http://www.mlst.net/) This was carried out and analyzed in the same manner. Leukocidin gene possession survey was conducted according to the method described in Hata et al., J Clin Microbiol.
  • the supernatant obtained by inoculating the candidate strain into a bacterial growth medium (Brain Heart Infusion Porcine broth) and shaking culture at 37 ° C. for 24 hours is a commercially available Eagle minimum essential medium ( Eg-MEM) was diluted stepwise, and equal amounts of granulocyte cells collected and purified from bovine peripheral blood were mixed and sensitized at 37 ° C. for 2 hours.
  • the toxic activity of the candidate strain supernatant was evaluated with the leucocidin toxin activity as the maximum dilution factor showing a degenerative effect on granulocyte cells.
  • Example 2 Specific immunogen preparation method Preparation of inactivated whole cell antigens Culture of cells: The S. aureus HK-3 strain obtained in Example 1 was inoculated on a manufacturing agar medium (Brain Heart Infusion Porcine + Bacto Agar), and cultured at 37 ° C. for 24 hours. The grown colonies were picked and transplanted into a production liquid medium (Brain Heart Infusion Porcine) and cultured with shaking at 37 ° C. for 18 to 24 hours. The number of bacteria reached 2 ⁇ 10 9 CFU / mL or more. This was used as the main culture broth.
  • a manufacturing agar medium (Brain Heart Infusion Porcine + Bacto Agar)
  • the grown colonies were picked and transplanted into a production liquid medium (Brain Heart Infusion Porcine) and cultured with shaking at 37 ° C. for 18 to 24 hours.
  • the number of bacteria reached 2 ⁇ 10 9 CFU / mL or more. This was used as the main culture broth.
  • inactivated whole cell antigen solution Formalin (formaldehyde) was added to the main culture broth at 0.4 v / v% and sensitized at 37 ° C. for 24 hours. After sensitization, the number of bacteria was appropriately adjusted with PBS so as to be 1 to 3 ⁇ 10 11 CFU / mL, and used for Example 3, Example 5-1, and Example 5-2 described later. 2. Preparation of Leukocidin M / F Concentrated Inactivated Antigen The supernatant was collected from the main culture by cooling centrifugation, and the precipitate was collected by the ammonium sulfate method, dissolved in PBS, and dialyzed to obtain leucocidin M / F antigen.
  • the obtained leucocidin M / F antigen was prepared by preparing a recombinant protein based on SEQ ID NO: 3 and SEQ ID NO: 4, respectively, and performing Western blotting using immune serum prepared based on the recombinant protein. 3 and leucocidin F protein shown in SEQ ID NO: 4 were confirmed. And after adjusting so that it may become 25,600 U / mL or more as leukocidin toxin activity, 0.2% / v% of formalin (formaldehyde) was added, and what was sensitized for 24 hours at 37 degreeC below-mentioned Example 4, implementation It used for Example 5-1 and Example 5-2. The inactivated antigen after formalin sensitization was confirmed by measuring the leukocidin toxin activity and examining the disappearance of the toxin activity.
  • Example 3 Onset protection test using inactivated cell antigen of HK-3 strain Among the immunogens prepared in Example 2, a vaccine prepared by using inactivated whole cells was used for milking cows (Holstein, 5 years old). ) was compared with control cattle (unvaccinated cattle) for protection against intramammary infection.
  • an inactivated whole cell vaccine an inactivated bacteria-containing liquid adjusted to 4 ⁇ 10 10 CFU as the number of bacteria before inactivation was added to 2 mL injection amount per injection, and an adjuvant was added to this 4 Two intramuscular injections were made at weekly intervals.
  • S. aureus HK-3 strain 500 CFU was inoculated into the breast two weeks after the second immunization.
  • the somatic cells in the early stages of infection were higher in the breasts 1 and 2 of the test cows administered with the HK-3 strain inactivated bacterial antigen vaccine than in the breasts 1 and 2 of the control cow.
  • the degree was limited, so the inactivated bacterial antigen vaccine alone could prevent the disease caused by Staphylococcus aureus in the cow's breast. It was determined that the preventive effect to suppress was insufficient.
  • Example 4 Inflammatory effect reduction test on supernatant components using leukocidin M / F concentrated inactivated antigen Vaccine prepared using leukocidin M / F concentrated inactivated antigen among immunogens prepared in Example 2 was injected into milking cows (Holstein, age 3), and before and after that, a supernatant component containing leukocidin M / F was inoculated into the breast to compare the inflammation-reducing effect.
  • leukocidin M / F concentrated inactivated antigen vaccine 5120 U of leukocidin M / F concentrated inactivated antigen was used as the leucocidin toxin activity before inactivation with respect to 2 mL injection amount per injection, and an adjuvant was added thereto. Two intramuscular injections were made at 4-week intervals.
  • As a supernatant inoculation test 1280 U of concentrated supernatant of S. aureus HK-3 strain was inoculated into the breast before immunization and 2 weeks after the second immunization. After inoculating the concentrated supernatant, the number of milk somatic cells was evaluated as a mammary inflammation condition. The results are shown in FIG.
  • the somatic cell counts (SCC, leukocytes and leukocytes) were obtained by inoculating concentrated supernatant in the breasts 1 and 2 of the test cow and the control cow (unvaccinated cow) before vaccine injection (before immunization).
  • the number of cells in milk mainly composed of epithelial cells was intense inflammation exceeding 5 million / mL, whereas this was significantly increased after injection of leucocidin M / F concentrated inactivated antigen vaccine prepared from HK-3 strain. The reduction shows that breast inflammation is significantly reduced.
  • S. aureus HK-3 strain was inoculated into the breast in the same manner as in the method described in Example 3 in this test cow.
  • Example 5-1 Infection protection test by using together leukocidin M / F concentrated inactivated antigen and inactivated whole cell antigen Among the immunogens prepared in Example 2, inactivated whole cell body and leukocidin M After injecting a vaccine prepared using / F concentrated inactivated antigen into milking cows (Holstein, 4 years old), the protective effect against intramammary infection was compared with control cows (unvaccinated cows).
  • inactivated whole cell vaccine As an inactivated whole cell vaccine, a liquid containing inactivated bacteria adjusted to 4 ⁇ 10 10 CFU as the number of bacteria before inactivation with respect to 2 mL of injection amount per injection, and 5120 U of leukocidin as the leukocidin toxin activity before inactivation M / F-concentrated inactivated antigen was added and adjuvant was added twice intramuscularly at 4-week intervals.
  • the amount of ELISA antibody against whole cells and neutralizing antibody against leucocidin in the milk after the second injection of vaccine was higher in test cows after vaccine injection than in test cows before vaccine injection and unvaccinated control cows. It was confirmed that a remarkably high antibody was given to both the bacterial cells and leukocidin.
  • Table 2 The antibody titer against bovine serum cells was measured by indirect ELISA using 1 to 3 ⁇ 10 7 CFU of inactivated whole cell antigen prepared by the same method as in Example 2 as an antigen.
  • the breasts 1 and 2 of the test cows administered with the leukocidin M / F concentrated inactivated antigen and the inactivated whole cell antigen were compared with the breasts 1 and 2 of the control cow, The number of somatic cells at the early stage of infection was significantly reduced, and the number of bacteria excreted from milk was not confirmed. From the above results, it was found that the combination of the leukocidin M / F concentrated inactivated antigen and the HK-3 strain inactivated cell antigen combined with the yellow grape It can be seen that in addition to the effect of further reducing the degree of disease caused by cocci, an infection protection effect is also exhibited.
  • Example 5-2 Infection protection test using a combination of leukocidin M / F concentrated inactivated antigen and inactivated whole cell antigen After two immunizations in the same manner as in Example 5-1, 2 Week test and control cows were inoculated intramammary with 100 CFU of S. aureus HK-3 strain as a viable challenge test. After inoculation with live bacteria, the number of milk somatic cells was evaluated as a malignant inflammatory condition, and the number of bacteria excreted from milk was evaluated over time as the degree of infection. The results are shown in FIG. From the results shown in the upper and lower diagrams of FIG.
  • the breasts of the test cows administered with the leukocidin M / F concentrated inactivated antigen and the inactivated whole cell antigen were obtained from the somatic cell count and milk as compared with the breast of the control cow. There was a significant reduction in both the number of bacteria excreted. From the above results, it was found that the combination of the leukocidin M / F concentrated inactivated antigen and the HK-3 strain inactivated cell antigen combined with the yellow grape It can be seen that in addition to the effect of further reducing the degree of disease caused by cocci, an infection protection effect is also exhibited.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

ロイコシジンM/F抗原を含有してなり、かつ、投与対象動物である反芻動物に毒素中和活性を付与することが可能な免疫原性組成物。前記免疫原性組成物は、反芻動物における黄色ブドウ球菌が原因の疾患の発症を予防またはその症状を軽減することを可能とする。前記ロイコシジンM/F抗原は、ロイコシジンMタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチド、またはロイコシジンFタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチドである。前記免疫原性組成物は、さらに黄色ブドウ球菌の菌体抗原を含有してもよい。

Description

黄色ブドウ球菌不活化菌体とロイコシジンを混合したワクチン
 本発明は黄色ブドウ球菌(Staphylococcus aureus、S. aureus)に起因する疾患(乳房炎)から反芻動物を防御するためのワクチンに関わる。
 黄色ブドウ球菌はヒトや動物の皮膚、消化管(腸)常在菌(腸内細菌)であるブドウ球菌の一つで、ヒトや動物の化膿性疾患や食中毒の原因菌の一つとして知られている。また、食中毒の原因菌が感染した動物自身が症状を発症していない場合でも、その動物に接触したヒトが食中毒菌に感染したり、動物が生み出す商品に食中毒菌が付着する可能性があり、前記動物そのものの価値や動物が生み出す商品の価値を著しく低下させることが知られている。そのような中でも、例えば、黄色ブドウ球菌は牛の乳房炎との関わりが強いと言われている。
 牛における乳房炎の被害総額は日本国内で年間600億円と言われている。黄色ブドウ球菌は牛の伝染性乳房炎の原因となる主要な病原体のひとつであり、大腸菌や環境性レンサ球菌等の環境性乳房炎細菌と異なり、抗生剤による治癒効果は低いと言われている。
 黄色ブドウ球菌の菌体成分としての病原因子は少なくとも30種以上知られており、細胞に局在する分子としてプロテインA、フィブロネクチン結合蛋白、クランピングファクターやリポテイコ酸などが知られている。その他にも病原性に関わる酵素群としてコアグラーゼやスタフィロキナーゼなどが知られている。
 菌体外に放出される毒素としては、人の食中毒と関わりが深いエンテロトキシン群、敗血症と関わるTSST-1や、免疫担当細胞である白血球に傷害活性を示すロイコシジンなどが知られている。
 黄色ブドウ球菌性乳房炎に対するワクチンの取り組みとしては、これまでに主として菌体成分に着目した検討が進められてきたが、これまでに明瞭な感染予防効果を持つ主成分は見いだされていない。その理由として、菌体成分としての病原因子の保有状況は分離菌株毎に異なっており、単一の分子による防御効果は期待できないことがあげられる。これを克服するために全菌体を抗原として用いたワクチンの試みもなされているが、上述の場合と同様に明瞭な感染予防効果を付与するには至っていない。その背景として、乳汁に対する免疫の付与が不十分あるいは評価自体がなされていない場合が多いことが一因と考えられる。上清成分をワクチン抗原として用いる検討もなされているが、上清に含まれる有効成分として乳房炎由来菌の実状を考慮した研究はなされておらず、結果として感染予防効果の付与には至っていない。また上清成分単独では免疫学的にも十分な感染防御効果は期待できないと考えられている。これまでに黄色ブドウ球菌性牛乳房炎に対して有効なワクチンが開発されていないことに関しては、以上のような背景が考えられている。
 また、黄色ブドウ球菌の感染を防御する技術としては、黄色ブドウ球菌を免疫原とし、メチルグリタリル化ポリグリシドールを含むリポソームから構成されるワクチン担体中に含ませた乳房炎ワクチン(特許文献1)や1種類または複数の種類の消化酵素を含む治療的有効量の薬学的組成物を鳥または哺乳動物に投与する鳥または哺乳動物における黄色ブドウ球菌(S. aureus)感染を治療または予防するための方法(特許文献2)などの技術は知られているが、日本では、牧場などの現場において、他の病原体も含めて乳房炎に対して使用可能なワクチンは現段階では存在しない。
特開2009-286730号公報 特表2012-514602号公報
Rainardら、Clin Diagn Lab Immunol. 2003;10(2):272-277 Younis ら、J Vet Med B Infect Dis Vet Public Health. 2003;50(1):1-7. Rainardら、Vet Res. 2007 38(5):685-696.
 本発明は、反芻動物における黄色ブドウ球菌が原因の疾患の発症を予防すること、あるいは症状の軽減を可能とする免疫原性組成物を提供することを目的とする。
 また、本発明は、前記免疫原性組成物を反芻動物に投与して、黄色ブドウ球菌に対する免疫応答を誘発する方法を提供することを目的とする。
 本発明者らは、前記課題を解決すべく鋭意検討した結果、ブドウ球菌毒素であるロイコシジンM/Fに着目し、この毒素に対する抗体を対象動物内で産生させることで、農場などにおける牛乳房炎の感染の予防に有効であることを見出した。
 さらに、本発明者らは、前記ロイコシジンM/F抗原に加えて、黄色ブドウ球菌の菌体抗原を併用することで、より効率よく牛乳房炎の感染の予防することを見出した。
 本発明は、上記の知見に基づいて本発明者らが完成させたものである。
 すなわち、本発明の要旨は、
〔1〕ロイコシジンM/F抗原を含有してなり、かつ、投与対象動物である反芻動物に毒素中和活性を付与することが可能な免疫原性組成物、
〔2〕ロイコシジンM/F抗原が、ロイコシジンMタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチド、またはロイコシジンFタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチドである前記〔1〕に記載の免疫原性組成物、
〔3〕ロイコシジンM/F抗原が、ロイコシジンMタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチド、およびロイコシジンFタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチドである前記〔1〕に記載の免疫原性組成物、
〔4〕前記ロイコシジンM/F抗原が、黄色ブドウ球菌(Staphylococcus aureus)の培養上清から得られたものである前記〔1〕~〔3〕のいずれかに記載の免疫原性組成物、
〔5〕前記ロイコシジンM/F抗原が、合成されたものである前記〔1〕~〔3〕のいずれかに記載の免疫原性組成物、
〔6〕前記ロイコシジンM/F抗原が、不活化処理されたものである前記〔1〕~〔5〕のいずれかに記載の免疫原性組成物、
〔7〕さらに黄色ブドウ球菌の菌体抗原を含有する前記〔1〕~〔6〕のいずれかに記載の免疫原性組成物、
〔8〕前記黄色ブドウ球菌の菌体抗原が、黄色ブドウ球菌の不活化全菌体またはその一部である前記〔7〕に記載の免疫原性組成物、
〔9〕前記黄色ブドウ球菌が、反芻動物の乳汁より分離された黄色ブドウ球菌である前記〔7〕または〔8〕に記載の免疫原性組成物、
〔10〕前記反芻動物がウシ、ヤギ、ヒツジまたはシカである前記〔1〕~〔9〕のいずれかに記載の免疫原性組成物、
〔11〕ワクチンとして使用するための、前記〔1〕~〔10〕のいずれかに記載の免疫原性組成物、
〔12〕反芻動物における黄色ブドウ球菌に関連する疾患の治療または予防用の製剤を調製するための、前記〔1〕~〔10〕のいずれかに記載の免疫原性組成物、
〔13〕免疫学的に効果的な量の前記〔1〕~〔12〕のいずれか1項に記載の免疫原性組成物を投与対象動物である反芻動物に投与することを含む、黄色ブドウ球菌(Staphylococcus aureus)に対する免疫応答を誘発する方法、
〔14〕免疫応答が、反芻動物における黄色ブドウ球菌に関連する疾患もしくは症状を予防するかもしくは低減させる、前記〔13〕に記載の方法、
に関する。
 本発明の免疫原性組成物を使用することで、既存の抗生剤治療による対症療法及び感染予防のための衛生対策に加え、ウシを含む反芻動物における能動的な乳房炎などの黄色ブドウ球菌に由来する疾患の予防手段の提供が可能となる。
図1は、実施例3において行ったS. aureusHK-3株不活化菌体抗原を用いた発症防御試験の結果を示すグラフである。上図の縦軸は乳汁1mLあたりの体細胞数、横軸は日数(d)を示す。下図の縦軸は乳汁1mLあたりの菌数、横軸は日数(d)を示す(図3の上図、下図も同じ。) 図2は、実施例4で行ったロイコシジンM/F濃縮不活化抗原を用いた、上清成分に対する炎症効果軽減試験の結果を示すグラフである。上図の縦軸は乳汁1mLあたりの体細胞数、横軸は時間(h)を示す。下図の縦軸は乳汁1mLあたりの菌数、横軸は時間(h)を示す(図4の上図、下図も同じ。) 図3は、実施例5-1で行ったロイコシジンM/F濃縮不活化抗原と不活化全菌体抗原による感染防御試験の結果を示すグラフである。 図4は、実施例5-2で行ったロイコシジンM/F濃縮不活化抗原と不活化全菌体抗原による感染防御試験の結果を示すグラフである。
 本発明において、「毒素中和活性」とは、本発明の免疫原性組成物を反芻動物に投与した場合に、黄色ブドウ球菌(Staphylococcus aureus)が産生する細菌毒素であるロイコシジンM/Fの毒素としての作用を中和する活性をいう。
 毒素中和活性を反芻動物に付与することが可能であることについては、具体的には、後述の実施例に記載の手順に基づいて、確認することができる。
 本発明において、「免疫原性」とは、投与対象動物である反芻動物の免疫系を刺激して前記ロイコシジンM/FやS. aureus全菌体に対する抗体の産生を誘発する性質をいう。また、免疫原性組成物とは、反芻動物に投与した場合に、この反芻動物において免疫応答を引き起こす組成物をいう。
 本発明において、投与対象動物である反芻動物としては、ウシ、ヤギ、ヒツジまたはシカなどが挙げられる。中でも、飼育者にとって経済的な損失が大きい疾患、例えば、牛乳房炎などを効率的に予防することができる点で、ウシが好ましい。
 本発明は、ロイコシジンM/F抗原を含有してなり、かつ、投与対象動物である反芻動物に毒素中和活性を付与することが可能な免疫原性組成物である。
 前記「ロイコシジンM/F」とは、黄色ブドウ球菌が産生する細菌毒素の一種であり、ロイコシジンMタンパク質(LukM)およびロイコシジンFタンパク質(LukF)とが結合して形成された二量体をいう。ロイコシジンMタンパク質は好中球に対する結合活性を有すること、およびロイコシジンFタンパク質は好中球に対する傷害活性があることがそれぞれ知られている。
 前記ロイコシジンMタンパク質は、308アミノ酸残基のアミノ酸配列(配列番号3)からなり、これは黄色ブドウ球菌が有する遺伝子配列において配列番号1に示される927bpの塩基配列でコードされる。
 また、前記ロイコシジンFタンパク質は、322アミノ酸残基のアミノ酸配列(配列番号4)からなり、これは前記ロイコシジンMタンパク質をコードする遺伝子領域の下流側に1bpの塩基を介して配列番号2に示される969bpの塩基配列でコードされる。
 なお、前記ロイコシジンMタンパク質およびロイコシジンFタンパク質のアミノ酸配列や塩基配列は、公知のデータベースで確認することができる。公知のデータベースとしては、DNA Data Bank of Japan, Medlineなどが挙げられる。
 本発明において「ロイコシジンM/F抗原」とは、投与対象動物である反芻動物においてロイコシジンM/Fと結合できる抗体を産生させることができる抗原をいう。
 ロイコシジンM/F抗原としては、ロイコシジンMタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチド、またはロイコシジンFタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチドが挙げられる。
 前記少なくとも一部を有するタンパク質もしくはペプチドとは、前記配列番号3または配列番号4で示されるアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチドをいい、これらのタンパク質もしくはペプチドのアミノ酸配列の長さについては、投与対象動物である反芻動物に毒素中和活性を付与することが可能であればよく、特に限定はない。
 また、前記少なくとも一部を有するタンパク質は、配列番号3または配列番号4に記載のアミノ酸配列に変異を導入されたものでもよい。この場合、変異を導入されたタンパク質としては、投与対象動物である反芻動物に毒素中和活性を付与することが可能なものであれば変異の程度は特に限定はなく、例えば、変異を導入されたタンパク質のアミノ酸配列の相同性は、配列番号3または配列番号4のアミノ酸配列に対して、少なくとも70%以上、好ましくは80%以上、より好ましくは90%以上の相同性を有していればよい。配列番号3または配列番号4に記載のアミノ酸配列に導入しうるアミノ酸残基の変異としては、1~2個のアミノ酸が置換、欠失、挿入及び/又は付加することが挙げられる。例えば、置換するアミノ酸は、元の蛋白質の立体構造を保持するために、元のアミノ酸に近い化学的性質のアミノ酸であることが望ましい。このような保存的置換の具体例として、例えば、Ala、Val、Leu、Ile、Pro、Met、Phe、Trpの非極性アミノ酸間の相互置換、Gly、Ser、Thr、Cys、Tyr、Asn、Glnの非荷電性アミノ酸間の置換、酸性アミノ酸であるAspとGluとの置換、及び塩基性アミノ酸のLys、Arg、Hisによる相互置換を挙げることができる。また、前記欠失、挿入付加などの変異についても、公知の手法を用いて行えばよい。
 本発明で用いるタンパク質としては、自然界に存在するロイコシジンM/Fと同等の毒素中和活性を付与することが可能なものであればロイコシジンM/Fの全アミノ酸配列を包含している必要はなく、ロイコシジンM/F抗原が、ロイコシジンMタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチド、およびロイコシジンFタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチドであることが好ましい。
 前記ロイコシジンM/F抗原は、黄色ブドウ球菌の培養上清から作製することができる。
 例えば、後述の実施例に記載の方法によって、黄色ブドウ球菌を培養し、その上清からロイコシジンM/F抗原を得ることができる。
 また、前記ロイコシジンM/F抗原は、合成されたものでもよい。
 前記合成の方法としては、例えば、タンパク質自動合成装置、全自動ペプチド合成装置などの装置を用いる方法などが挙げられる。
 前記のように黄色ブドウ球菌の培養上清から作製されたり、合成されたりしたロイコシジンM/F抗原には、自然界に存在するロイコシジンM/Fと同等の毒素中和活性を付与することが可能なものであればさらに酵素処理などを施すことで、アミノ酸の長さを短くしたり、特定のアミノ酸に修飾を加えたりしてもよい。
 また、前記ロイコシジンM/F抗原は、不活化処理されたものでもよい。
 例えば、前記培養上清から得られるロイコシジンM/F抗原は、毒性を有するため、不活化処理することで安全性を高めることができる。
 不活化処理の方法としては、前記ロイコシジンM/F抗原をホルマリンやフェノールと接触させたり、加温処理、紫外線照射などに供したりする方法が挙げられるが、特に限定はない。
 また、本発明の免疫原性組成物は、前記ロイコシジンM/F抗原に加えて、黄色ブドウ球菌の菌体抗原を含有することで、さらに効率よく牛乳房炎の感染を予防することができる。
 前記黄色ブドウ球菌の菌体抗原としては、黄色ブドウ球菌の不活化全菌体またはその一部が挙げられる。
 黄色ブドウ球菌の不活化処理としては、黄色ブドウ球菌の菌体をホルマリン、フェノールと接触させたり、加温処理、紫外線照射などに供したりする方法などが挙げられるが、特に限定はない。
 また、前記不活化全菌体の一部としては、前記不活化全菌体を超音波処理等の物理的処理またはリゾスタフィン等の加水分解酵素を用いた酵素処理などで分解等の処理を施して得られるものをいう。
 前記黄色ブドウ球菌は、市販されている菌株、各種の研究機関に保存されている菌株でもよい。また、予防または治療を対象とする疾患を予め決定している場合、疾患が起こる部位から公知の手法を用いて分離される黄色ブドウ球菌を用いてもよい。例えば、乳房炎を予防する場合には、反芻動物の乳汁より分離された黄色ブドウ球菌であることが好ましい。
 本発明の免疫原性組成物には、例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤などと適宜組み合わせて製剤化することによって、ロイコシジンM/F抗原や黄色ブドウ球菌の菌体抗原に対する抗体の産生や、感染防御効果の増強を行うことができる。また、本発明の免疫原性組成物には、各種免疫賦活剤を添加してもよい。
 前記免疫原性組成物は、例えば、ロイコシジンM/F抗原、必要であれば、黄色ブドウ球菌の菌体抗原などの前記各種成分を混合することによって製造することができる。
 本発明の免疫原性組成物は、黄色ブドウ球菌に感染することで有害な影響を受ける反芻動物に対するワクチンとして好適に使用することができる。
 本発明の免疫原性組成物をワクチンとして使用する場合に配合されるアジュバントには、例えばアルミニウムゲルアジュバントなどの無機物質、微生物もしくは微生物由来物質(BCG、ムラミルジペプチド、百日せき菌、百日せきトキシン、コレラトキシンなど)、界面活性作用物質(サポニン、デオキシコール酸など)、油性物質(鉱油、植物油、動物油)のエマルジョン等があり、これらは、単独で使用するか、複数を組み合わせて使用することができる。本発明の免疫原性組成物に配合されるアジュバントとしては、オイルアジュバントが好ましい。さらに好ましくはスクワランを主成分とするオイルアジュバントであり、具体的に例をあげれば、無水マンニトールオレイン酸エステル加スクワラン液が安全性の上からも好ましい。このアジュバントの効果は予想以上に著しく、このアジュバントの配合によって、黄色ブドウ球菌に対する優れた防御効果と高い安全性を獲得することができる。
 無水マンニトールオレイン酸エステル加スクワラン液とは、無水マンニトールオレイン酸エステルおよびスクワランからなる溶液をいう。
 また、本発明の免疫原性組成物は、反芻動物における黄色ブドウ球菌に関連する疾患の治療または予防用の製剤を調製するのに使用することもできる。
 前記黄色ブドウ球菌に関連する疾患としては、特に限定はないが、乳房炎、化膿性疾患、関節炎、結膜炎、皮膚炎などが挙げられる。
 本発明において、治療とは、黄色ブドウ球菌に感染することで疾患が発症している反芻動物において、その症状を治癒又は寛解することをいう。
 また、予防とは、黄色ブドウ球菌に感染した後で疾患を発症する前の状態に有る反芻動物への予防的な投与によって、発症を阻害することをいう。
 また、免疫学的に効果的な量の前記免疫原性組成物を投与対象動物である反芻動物に投与することで、黄色ブドウ球菌に対する免疫応答を誘発することもできる。
 「免疫学的に効果的な量」とは、当業者に知られている標準的なアッセイによって測定されるように、細胞性免疫応答(T細胞)または液性免疫応答(B細胞または抗体)または両方の免疫応答を誘導するために十分な抗原または免疫原性組成物の量を言う。
 本発明の免疫原性組成物の動物への投与は、例えば、動脈内注射、静脈内注射、皮下注射などのほか、鼻腔内的、経気管支的、筋内的、又は経口的に当業者に公知の方法により行いうる。投与量は、反芻動物の体重や齢、投与方法、使用目的などにより変動するが、当業者であれば適当な投与量を適宜選択することが可能である。
[試験用菌株の選定]
 黄色ブドウ球菌の試験用菌株の選定として以下の条件を満たすものを使用する。
1.野外で黄色ブドウ球菌が原因と考えられる乳房炎を発症した牛の乳汁より分離された菌株。黄色ブドウ球菌としての同定方法は一般的な同定方法に準ずる。200CFU程度を牛の乳房に接種することで急性乳房炎を発症する。
2.遺伝子プロファイルによりCP5型・MLST型別-CC97型で、かつ、ロイコシジンM/Fを保有する菌株。この他にフィブロネクチン結合蛋白、クランピングファクターといった既知の病原因子の遺伝子保有も含まれる。
3.培養上清が、ロイコシジンM/F非保有株のそれに比べ牛の好中球に対して強い傷害活性を有する菌株。
[免疫原の調製方法]
1.全菌体抗原及びロイコシジンM/F抗原の調製
 黄色ブドウ球菌の培養は種菌をBrain Heart Infusion broth(BHI培地)といった液体培地に移植し、37℃で18~24時間振とう培養等により得る。培養方法は、菌数が10CFU/mL以上に達すること、CP抗原やロイコシジンの発現が認められるものであればこれに限定されるものではなく、公知の培養方法が利用できる。
2.全菌体抗原の調製方法
 全菌体抗原は上記培養菌液を遠心処理して集菌した後、ホルマリン(ホルムアルデヒド)を加えて37℃で24時間感作することで不活化する。ホルマリン濃度は抗原性を損なわず不活化が達成される範囲でよい。
3.ロイコシジンM/F抗原の調製方法
 培養菌液より冷却遠心分離により上清を採取し、硫酸アンモニウム法により沈渣を回収しPBSに溶解後、透析を行う。硫酸アンモニウムの濃度はロイコシジンM/F分画を沈殿可能な範囲でよい。また、他のポリエチレングリコール法等を用いてもよい。得られた濃縮ロイコシジンM/Fに対してホルマリン(ホルムアルデヒド)を加えて37℃で24時間感作することで不活化する。
4.抗原の調製
 抗原量として、一回注射量あたり不活化菌体を不活化前の菌数として4×1010CFU/dose、これに加え不活化濃縮上清を不活化前のロイコシジン毒素活性として5120U/doseになるように添加する。
 前記ロイコシジン毒素活性は、以下の手順に準じて測定した。
1)多形核(PMN)白血球及びロイコシジン
 PMN白血球は、牛末梢血よりフィコール(Pharmacia社)を用いた遠心分離法により調製した。陽性対照として、牛乳汁から分離したBM1006株をBHI培地で37℃、20時間培養した菌液の上清(ロイコシジン毒素活性:320倍相当)をロイコシジン参照液として用いた。
2)ロイコシジン毒素活性の測定(PMNアッセイ)
 前記1)に従い、牛末梢血よりPMN白血球を調製し、平底96ウェルプレート内で階段希釈した各検体と混合した。1ウェルあたり50%以上の傷害が見られた最大希釈倍率をもとに検体のロイコシジン毒素活性を求めた。
3)ロイコシジン中和抗体の測定
 RPMI-GH(RPMI1640+0.1%ゼラチン+20mM HEPES)を希釈液とし、平底96ウェルプレート内で2倍階段希釈した検体に対し、RPMI-GHで50倍に希釈したロイコシジン参照液を等量加え、37℃で60分間感作した。ゼラチンコーティングをした平底96ウェルプレートに中和感作液を80μL添加した後、4×10cell/mLに調整したPMN白血球含有液20μLを添加してプレートミキサーで攪拌後、37℃で感作をおこなった。1ウェルあたり50%以上の傷害が見られたものをロイコシジン毒素活性陽性とし、ロイコシジン毒素活性を抑制した最大希釈倍率をもとに検体のロイコシジン抗体価を求めた。本発明では、被験物を牛に投与した場合に、被験物を投与していない対照牛と比べて、前記検体でのロイコシジン抗体価を4倍以上に有意に高くできた被験物を「ロイコシジン毒素中和活性を付与することが可能」と判断する。
5.アジュバントの使用
 ワクチンとしては、乳汁に対して有効成分に対する免疫を付与させるためのアジュバントを添加する。鉱物油あるいは植物油を主体とした油性アジュバントを基本とするが、これにアルミニウムゲルアジュバント等を加えてもよい。
(実施例1)菌株の選定
1.MLST解析、ロイコシジン遺伝子解析
 牛乳汁より分離、同定した黄色ブドウ球菌について、フェノールクロロホルム抽出・エタノール沈殿法、ボイル法や市販キットを用いた方法などの一般的手法によりDNAを抽出し、MLST型別法に供した。MLST型別法はバクテリア分離体や他の微生物の亜種決定及び解析を行なう塩基配列に基づいた分子疫学的解析手法であり、MLST型別法(http://www.mlst.net/)に準じて実施、解析した。ロイコシジン遺伝子保有調査はHataら、J Clin Microbiol. 2010.48:2130-2139 2003; 10(2):272-277に記載の方法に準じて実施した。
2.培養上清の好中球傷害活性評価
 候補菌株を細菌増殖用培地(Brain Heart Infusion Porcine broth)に接種し、37℃で24時間振とう培養して得た上清を市販のイーグル最小必須培地(Eg-MEM)で階段希釈し、これに牛末梢血より採取、精製した顆粒球細胞を等量混合して37℃で2時間感作させた。顆粒球細胞に対して変性効果を示す最大希釈倍率をロイコシジン毒素活性として候補株上清の毒素活性を評価した。
 なお、上清中では、ロイコシジンEとロイコシジンDとの複合体(LukE-LukD)、ヘモリジン(溶血素)(hlg)、ロイコシジンMおよび/またはロイコシジンF(LukM(/F))の有無を公知の手法に基づいて調べ、表中では、検出したものを「+」で示す。
 得られた結果を表1に示す。
 表1に示す結果より、MLST型別においてCC97型かつ、ロイコシジンM/F遺伝子を保有し、毒素活性に優れたS. aureus HK-3株を選抜し、以下の試験に供した。
Figure JPOXMLDOC01-appb-T000001
(実施例2)具体的な免疫原の調製方法
1.不活化全菌体抗原の調製
菌体の培養:
 実施例1で得られたS. aureus HK-3株を製造用寒天培地(Brain Heart Infusion Porcine + Bacto Agar)に接種し、37℃で24時間静置培養した。発育した集落を釣菌して製造用液体培地(Brain Heart Infusion Porcine)に移植し、37℃で18~24時間振とう培養したもので、菌数が2×10CFU/mL以上に達したものを本培養菌液とした。
不活化全菌体抗原液の調製:
 本培養菌液にホルマリン(ホルムアルデヒド)を0.4v/v%加え、37℃で24時間感作した。感作後、菌数を1~3×1011CFU/mLとなるようにPBSで適宜調整し、後述の実施例3、実施例5-1及び実施例5-2に供した。
2.ロイコシジンM/F濃縮不活化抗原の調製
 本培養菌液から冷却遠心分離により上清を採取し、硫酸アンモニウム法により沈渣を回収しPBSに溶解後、透析を行い、ロイコシジンM/F抗原を得た。なお、得られたロイコシジンM/F抗原は、配列番号3及び配列番号4を基にそれぞれ組換え蛋白を作製し、それを元に作製した免疫血清を用いてウエスタンブロッティングを行うことで、配列番号3に示されるロイコシジンMタンパク質と、配列番号4に示されるロイコシジンFタンパク質とを含むことを確認した。そして、ロイコシジン毒素活性として25,600U/mL以上となるように調整した後、ホルマリン(ホルムアルデヒド)を0.2v/v%加え、37℃で24時間感作したものを後述の実施例4、実施例5-1及び実施例5-2に供した。
 なお、ホルマリン感作後に不活化抗原となっていることは、前記ロイコシジン毒素活性を測定して、毒素活性が消失していることを調べて確認した。
(実施例3)HK-3株不活化菌体抗原を用いた発症防御試験
 実施例2で調製した免疫原のうち、不活化全菌体を用いて調製したワクチンを搾乳牛(ホルスタイン、5齢)に注射した後、乳房内感染に対する防御効果を対照牛(ワクチン未接種牛)と比較した。
 不活化全菌体ワクチンとして、一回あたりの注射量2mLに対して不活化前の菌数として4×1010CFUに調整した不活化菌含有液を加え、これにアジュバントを加えたものを4週間隔で2回筋肉内注射した。生菌攻撃試験として、2回の免疫後2週間後にS. aureus HK-3株 500CFUを乳房内に接種した。生菌接種後、乳房炎症状として乳汁体細胞数、および感染の程度として乳汁からの菌排泄数をそれぞれ経日的に評価した。結果を図1に示す。
 図1の上図および下図に示す結果より、HK-3株不活化菌体抗原ワクチンを投与した試験牛の乳房1、2では、対照牛の乳房1、2に比べ、感染初期での体細胞数上昇の早期回復と乳汁からの菌排泄数の軽減効果が見られたが程度は限定的であったことから、不活化菌体抗原ワクチン単独では牛の乳房における黄色ブドウ球菌による疾患の発病を抑える予防効果は不十分であると判定した。
(実施例4)ロイコシジンM/F濃縮不活化抗原を用いた、上清成分に対する炎症効果軽減試験
 実施例2で調製した免疫原のうち、ロイコシジンM/F濃縮不活化抗原を用いて調製したワクチンを搾乳牛(ホルスタイン、3齢)に注射し、その前後でロイコシジンM/Fを含む上清成分を乳房内に接種して炎症軽減効果を比較した。ロイコシジンM/F濃縮不活化抗原ワクチンとして、一回あたりの注射量2mLに対して不活化前のロイコシジン毒素活性として5120UのロイコシジンM/F濃縮不活化抗原を用い、これにアジュバントを加えたものを4週間隔で2回筋肉内注射した。上清接種試験として、免疫前及び2回の免疫後2週間後にS. aureus HK-3株の濃縮上清1280Uを乳房内に接種した。前記濃縮上清接種後、乳房炎症状として乳汁体細胞数を評価した。結果を図2に示す。
 図2の上図および下図に示す結果から、ワクチン注射前(免疫前)の試験牛及び対照牛(ワクチン未接種牛)の乳房1、2では濃縮上清接種により体細胞数(SCC、白血球と上皮細胞を主体とする乳汁中の細胞数)500万/mLを超える強い炎症が惹起されたのに対し、HK-3株より調製したロイコシジンM/F濃縮不活化抗原ワクチン注射後ではこれが大幅に軽減されたことから、乳房の炎症が有意に弱められていることがわかる。
 次いで、引き続き、本試験牛に実施例3で記載した方法と同様にS. aureus HK-3株を乳房内に接種した。その結果、M/F濃縮不活化抗原ワクチン注射牛の乳房1、2において乳汁からの菌排泄について軽減効果は見られなかった。
 以上の結果から、ロイコシジンM/F濃縮不活化抗原には、S. aureus HK-3株による炎症惹起に対する抑制効果が認められたことから、試験牛に毒素中和活性を付与できたことがわかる。ただし、黄色ブドウ球菌の排泄量が有意に低減せず、感染防御効果は認められなかった。したがって、前記ロイコシジンM/F濃縮不活化抗原には、黄色ブドウ球菌による疾患の程度を軽減する効果があることがわかる。
(実施例5-1)ロイコシジンM/F濃縮不活化抗原と不活化全菌体抗原とを併用することによる感染防御試験
 実施例2で調製した免疫原のうち、不活化全菌体及びロイコシジンM/F濃縮不活化抗原を用いて調製したワクチンを搾乳牛(ホルスタイン、4齢)に注射した後、乳房内感染に対する防御効果を対照牛(ワクチン未接種牛)と比較した。
 不活化全菌体ワクチンとして、一回あたりの注射量2mLに対して不活化前の菌数として4×1010CFUに調整した不活化菌含有液及び不活化前のロイコシジン毒素活性として5120UのロイコシジンM/F濃縮不活化抗原を加え、これにアジュバントを加えたものを4週間隔で2回筋肉内注射した。ワクチン2回注射後の乳汁における全菌体に対するELISA抗体、ロイコシジンに対する中和抗体の量は、ワクチン注射後の試験牛では、ワクチン注射前の試験牛およびワクチン未接種の対照牛と比べて、全菌体及びロイコシジン双方に対して顕著に高い抗体付与がなされていることが確認された。
 これらの結果を表2に示す。
 なお、実施例2と同様の方法で作製した1~3×10CFUの不活化全菌体抗原を抗原として間接ELISA法で牛血清の菌体に対する抗体価を測定した。
 生菌攻撃試験として、対照牛および2回の免疫後2週間後の試験牛にS. aureus HK-3株500CFUを乳房内に接種した。生菌接種後、乳房炎症状として乳汁体細胞数、および感染の程度として乳汁からの菌排泄数をそれぞれ経日的に評価した。結果を図3に示す。
 図3の上図、下図に示す結果から、ロイコシジンM/F濃縮不活化抗原と不活化全菌体抗原とを投与した試験牛の乳房1、2では、対照牛の乳房1、2に比べ、感染初期での体細胞数を有意に低減し、しかも乳汁からの菌排泄数が確認されなかった。
 以上の結果から、ロイコシジンM/F濃縮不活化抗原とHK-3株不活化菌体抗原とを併用することで、ロイコシジンM/F濃縮不活化抗原を単独で使用した場合と比べて、黄色ブドウ球菌による疾患の程度をより軽減する効果に加えて、感染防御効果も発揮されることがわかる。
Figure JPOXMLDOC01-appb-T000002
(実施例5-2)ロイコシジンM/F濃縮不活化抗原と不活化全菌体抗原とを併用することによる感染防御試験
 実施例5-1と同様の方法で2回の免疫を行った後2週目の試験牛および対照牛に、生菌攻撃試験として、S. aureus HK-3株100CFUを乳房内に接種した。生菌接種後、乳房炎症状として乳汁体細胞数、および感染の程度として乳汁からの菌排泄数をそれぞれ経時的に評価した。結果を図4に示す。
 図4の上図、下図に示す結果から、ロイコシジンM/F濃縮不活化抗原と不活化全菌体抗原とを投与した試験牛の乳房では、対照牛の乳房に比べ、体細胞数及び乳汁からの菌排泄数双方において有意な低減が認められた。
 以上の結果から、ロイコシジンM/F濃縮不活化抗原とHK-3株不活化菌体抗原とを併用することで、ロイコシジンM/F濃縮不活化抗原を単独で使用した場合と比べて、黄色ブドウ球菌による疾患の程度をより軽減する効果に加えて、感染防御効果も発揮されることがわかる。

Claims (14)

  1.  ロイコシジンM/F抗原を含有してなり、かつ、投与対象動物である反芻動物に毒素中和活性を付与することが可能な免疫原性組成物。
  2.  ロイコシジンM/F抗原が、ロイコシジンMタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチド、またはロイコシジンFタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチドである請求項1に記載の免疫原性組成物。
  3.  ロイコシジンM/F抗原が、ロイコシジンMタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチド、およびロイコシジンFタンパク質を構成するアミノ酸配列の少なくとも一部を有するタンパク質もしくはペプチドである請求項1に記載の免疫原性組成物。
  4.  前記ロイコシジンM/F抗原が、黄色ブドウ球菌(Staphylococcus aureus)の培養上清から得られたものである請求項1~3のいずれか1項に記載の免疫原性組成物。
  5.  前記ロイコシジンM/F抗原が、合成されたものである請求項1~3のいずれか1項に記載の免疫原性組成物。
  6.  前記ロイコシジンM/F抗原が、不活化処理されたものである請求項1~5のいずれか1項に記載の免疫原性組成物。
  7.  さらに黄色ブドウ球菌の菌体抗原を含有する請求項1~6のいずれか1項に記載の免疫原性組成物。
  8.  前記黄色ブドウ球菌の菌体抗原が、黄色ブドウ球菌の不活化全菌体またはその一部である請求項7に記載の免疫原性組成物。
  9.  前記黄色ブドウ球菌が、反芻動物の乳汁より分離された黄色ブドウ球菌である請求項7または8に記載の免疫原性組成物。
  10.  前記反芻動物がウシ、ヤギ、ヒツジまたはシカである請求項1~9のいずれか1項に記載の免疫原性組成物。
  11.  ワクチンとして使用するための、請求項1~10のいずれか1項に記載の免疫原性組成物。
  12.  反芻動物における黄色ブドウ球菌に関連する疾患の治療または予防用の製剤を調製するための、請求項1~10のいずれか1項に記載の免疫原性組成物。
  13.  免疫学的に効果的な量の請求項1~12のいずれか1項に記載の免疫原性組成物を投与対象動物である反芻動物に投与することを含む、黄色ブドウ球菌(Staphylococcus aureus)に対する免疫応答を誘発する方法。
  14.  免疫応答が、反芻動物における黄色ブドウ球菌に関連する疾患もしくは症状を予防するかもしくは低減させる、請求項13に記載の方法。
     
PCT/JP2016/072313 2015-08-10 2016-07-29 黄色ブドウ球菌不活化菌体とロイコシジンを混合したワクチン WO2017026301A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017534183A JP6620817B2 (ja) 2015-08-10 2016-07-29 黄色ブドウ球菌不活化菌体とロイコシジンを混合したワクチン
AU2016304671A AU2016304671A1 (en) 2015-08-10 2016-07-29 Vaccine obtained by mixing inactivated staphylococcus aureus and leukocidin
EP16834998.3A EP3335726A4 (en) 2015-08-10 2016-07-29 VACCINE OBTAINED BY MIXING INACTIVATED GOLD STAPHYLOCOCCUS AND LEUCOCIDINE
US15/751,123 US10668141B2 (en) 2015-08-10 2016-07-29 Vaccine containing inactivated cells of Staphylococcus aureus mixed with leucocidin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-158323 2015-08-10
JP2015158323 2015-08-10

Publications (1)

Publication Number Publication Date
WO2017026301A1 true WO2017026301A1 (ja) 2017-02-16

Family

ID=57983092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072313 WO2017026301A1 (ja) 2015-08-10 2016-07-29 黄色ブドウ球菌不活化菌体とロイコシジンを混合したワクチン

Country Status (5)

Country Link
US (1) US10668141B2 (ja)
EP (1) EP3335726A4 (ja)
JP (1) JP6620817B2 (ja)
AU (1) AU2016304671A1 (ja)
WO (1) WO2017026301A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356426A (ja) * 1989-07-24 1991-03-12 Gifu Meneki Kenkyusho:Kk ウシ乳房炎予防および治療用抗体含有材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327082A (en) * 1979-07-12 1982-04-27 Adcock-Ingram Laboratories Limited Mastitis vaccination
KR20090019007A (ko) * 2006-06-12 2009-02-24 나비 바이오파마슈티컬즈 스타필로코쿠스 감염증을 치료 및 예방하기 위한 알파-독소의 용도
JP2009286730A (ja) 2008-05-29 2009-12-10 Nai Kk 新規乳房炎ワクチン
US9107419B2 (en) 2009-01-06 2015-08-18 Curelon Llc Compositions and methods for treatment or prevention of Staphylococcus aureus infections and for the eradication or reduction of Staphylococcus aureus on surfaces
ES2728445T3 (es) * 2011-12-02 2019-10-24 Integrated Biotherapeutics Inc Composición inmunogénica que comprende polipéptidos derivados de leucocidina de Panton-Valentine (PVL)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356426A (ja) * 1989-07-24 1991-03-12 Gifu Meneki Kenkyusho:Kk ウシ乳房炎予防および治療用抗体含有材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALONZO, F. ET AL.: "The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus", MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, vol. 78, no. 2, June 2014 (2014-06-01), pages 199 - 230, XP002750719, ISSN: 1092-2172 *
BARRIO, M. ET AL.: "LukM/LukF'-PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils", MICROBES AND INFECTION, vol. 8, 26 May 2006 (2006-05-26), pages 2068 - 2074, XP028072269, ISSN: 1286-4579 *
See also references of EP3335726A4 *
VRIELING, M. ET AL.: "Bovine Staphylococcus aureus Secretes the Leukocidin LukMF", TO KILL MIGRATING NEUTROPHILS THROUGH CCR1, MBIO, vol. 6, no. Issue 3, May 2015 (2015-05-01), pages 1 - 9, XP055364675, ISSN: 2150-7511 *

Also Published As

Publication number Publication date
AU2016304671A1 (en) 2018-02-22
EP3335726A4 (en) 2019-01-16
US10668141B2 (en) 2020-06-02
EP3335726A1 (en) 2018-06-20
JP6620817B2 (ja) 2019-12-18
US20180228884A1 (en) 2018-08-16
JPWO2017026301A1 (ja) 2018-04-19

Similar Documents

Publication Publication Date Title
US9981028B2 (en) Polypeptides and immunizing compositions containing gram positive polypeptides and methods of use
JP2015164949A (ja) ポリペプチド及びグラム陽性ポリペプチドを含有する免疫化組成物並びにこれらの使用方法
JP6620817B2 (ja) 黄色ブドウ球菌不活化菌体とロイコシジンを混合したワクチン
US20140248273A1 (en) Vaccine based on staphylococcal superantigen-like 3 protein (ssl3)
AU2012244060B2 (en) Polypeptides from staphylococcus aureus and methods of use
Stewart Vaccination against footrot and foot abscess
AU2015258239B2 (en) Polypeptides from staphylococcus aureus and methods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534183

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15751123

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016304671

Country of ref document: AU

Date of ref document: 20160729

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016834998

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018002660

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018002660

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180208