WO2017024904A1 - 一种压电主动隔振机构及其降低振动系统固有频率的方法 - Google Patents

一种压电主动隔振机构及其降低振动系统固有频率的方法 Download PDF

Info

Publication number
WO2017024904A1
WO2017024904A1 PCT/CN2016/087427 CN2016087427W WO2017024904A1 WO 2017024904 A1 WO2017024904 A1 WO 2017024904A1 CN 2016087427 W CN2016087427 W CN 2016087427W WO 2017024904 A1 WO2017024904 A1 WO 2017024904A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
flexible hinge
controller
force sensor
platform
Prior art date
Application number
PCT/CN2016/087427
Other languages
English (en)
French (fr)
Inventor
陈学东
陶业英
李小清
王敏
明平光
李明
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2017024904A1 publication Critical patent/WO2017024904A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means

Definitions

  • the invention belongs to the field of micro vibration suppression, and more particularly to a piezoelectric active vibration isolation mechanism and a method for reducing the natural frequency of the vibration system.
  • the traditional passive vibration isolator consists of a mass-spring-damper element. Due to the inherent contradiction between the low-frequency vibration transmission rate and the high-frequency vibration attenuation rate, it cannot meet the vibration isolation requirements of precision micro-vibration. Therefore, some urgent needs are needed. New technologies and new methods to improve this situation. For example, during the orbital operation of the satellite, the micro-vibration is the main factor affecting the key performance of high-precision remote sensing satellite pointing accuracy and imaging quality due to the normal operation of the mounted equipment, which will cause the satellite to have a small overall reciprocating motion.
  • the current mainstream micro-vibration isolators are combined with passive vibration isolation components and active actuators in a certain connection.
  • the active and passive mixing of the air spring and the voice coil motor in parallel, the active and passive mixing of the diaphragm spring and the voice coil motor, etc. all greatly improve the low frequency vibration damping and high frequency attenuation capability of such precision damper. .
  • the active-passive parallel structure of the air spring and the voice coil motor makes the vibration isolator have the characteristics of large working stroke, high load and low natural frequency, but its structure is also complicated, the air spring needs continuous air supply, and the voice coil motor consumes a large amount of energy. And the mechanism is a soft structure, and the space device needs additional locking device when launching. The above factors restrict its application in the space environment.
  • the application of piezoelectric intelligent materials has opened up a new field for the design of vibration isolator. It has high positioning accuracy and good dynamic response, and the actuation stroke is small, which can be applied to the micro-motion positioning and vibration suppression platform.
  • the active vibration isolation mechanism using piezoelectric ceramics as the actuator is mostly a hard structure, and the space device does not need a locking device when launching, which greatly expands the use of the vision.
  • the piezoelectric ceramic has high rigidity, which leads to high natural frequency of the structure, and it is difficult to effectively attenuate low-frequency interference. Therefore, a two-layer series piezoelectric active actuator structure is proposed, which can effectively attenuate low-frequency vibration. Improve the active control capability of multi-band vibration.
  • the present invention provides a piezoelectric active vibration isolation mechanism for reducing the natural frequency of a vibration system.
  • the active vibration isolation mechanism is compact in structure, simple to install, and has a low natural frequency. It can effectively attenuate the micro-vibration signal. It is a kind of micro-vibration vibration isolation mechanism used in combination of main and passive vibration isolation components. It not only has good high attenuation rate vibration isolation effect for high-frequency vibration interference, but also effectively realizes low-frequency resonance. By suppressing and isolating low-frequency vibration, the active vibration isolator can effectively suppress satellite micro-vibration and provide a stable working environment for high-resolution observation imaging of remote sensing satellites.
  • a piezoelectric active vibration isolation mechanism comprising: a first flexible hinge, a piezoelectric actuator, a force sensor, a second flexible hinge and a controller, wherein:
  • One end of the first flexible hinge is used for connecting the base platform, and the other end is connected to the piezoelectric actuator, the force sensor and the second flexible hinge in turn, and the other end of the second flexible hinge is used for connecting the load platform;
  • the piezoelectric actuator and the force sensor are both connected to the controller;
  • the force sensor is configured to detect a vibration signal of the load platform and transmit the vibration signal to the controller, and the controller uses a PI feedback control method to control the piezoelectric actuator to apply a force on the load platform, thereby compensating the load platform to reduce Vibration of a small load platform;
  • the piezoelectric actuator includes a piezoelectric unit and a force amplifying mechanism for amplifying an output force of the piezoelectric unit to reduce vibration of the load platform.
  • the controller includes a proportional controller and an integrator to ensure that the controller obtains a high gain and improves its control effect.
  • a piezoelectric active vibration isolation mechanism comprising: a first force sensor, a spring bellows, an intermediate mass, a first flexible hinge, a piezoelectric actuator, and a second a force sensor, a second flexible hinge and a controller, wherein
  • One end of the first force sensor is used to connect the base platform, and the other end of the first force sensor is connected to the spring bellows, the intermediate mass, the first flexible hinge, the piezoelectric actuator, the second force sensor and the second flexible hinge.
  • the other end of the second flexible hinge is used to connect the load platform;
  • the first force sensor, the piezoelectric actuator and the second force sensor are both connected to the controller;
  • the first force sensor and the second pressure sensor are respectively configured to detect vibration signals of the base platform and the load platform, and respectively transmit the detected vibration signals to the controller, so that the controller controls the piezoelectric actuator to apply the force to the load.
  • the load platform is compensated to reduce the vibration of the load platform.
  • the controller includes a proportional controller and an integrator to ensure that the controller achieves a high gain.
  • a method for reducing a natural frequency of a vibration system characterized in that: the vibration system comprises a base platform, a load platform and a vibration isolation mechanism, wherein the vibration isolation mechanism is first a flexible hinge is coupled to the base platform, and the second flexible hinge is coupled to the load platform;
  • C is the system damping
  • K is the system stiffness
  • M is the load mass
  • ie the mass of the object carried on the second flexible hinge
  • k p is the controller scale factor
  • k i is the system integral coefficient
  • s is Lapla Variable of the sigma transformation
  • a method for reducing a natural frequency of a vibration system characterized in that: the vibration system comprises a base platform, a load platform and a vibration isolation mechanism, wherein the vibration isolation mechanism is first The force sensor is coupled to the base platform, and the second flexible hinge is coupled to the load platform;
  • C 0 is the damping of the first-stage vibration isolation unit close to the base platform
  • K 0 is the stiffness of the first-stage vibration isolation unit close to the base platform
  • C 1 is the damping of the second-stage vibration isolation unit near the load platform
  • K 1 is the stiffness of the second-stage vibration isolation unit near the load platform
  • M 0 is the mass of the intermediate mass
  • M 1 is the load mass
  • ie the mass of the object carried on the second flexible hinge
  • k p is the controller ratio
  • the piezoelectric actuator is used in the invention, and the piezoelectric actuator can achieve the nano-level positioning precision of the active vibration isolation system, and can be effectively applied to the field of precision micro-vibration suppression and isolation; in addition, the piezoelectric actuator consumes little energy and is hard.
  • the structure, the device does not require an additional locking device when launched, and the use of the voice coil motor can be more effectively used in the space environment, expanding the use of the scene.
  • the present invention provides a suspension system composed of an intermediate mass and a spring bellows, and the double-layer series suspension system can effectively reduce the inherent flatness of the structure, thereby effectively suppressing the precision equipment. Micro-vibration low frequency interference.
  • the invention adopts the active and passive vibration isolation systems in parallel, and the mixed use of the active and passive vibration isolation systems can effectively suppress the low frequency vibration, ensure the low frequency vibration transmission rate, and provide the high attenuation of the high frequency vibration, thereby effectively suppressing the precision. Vibration interference in the device.
  • FIG. 1(a) and 1(b) are schematic structural views of Embodiment 1 and Embodiment 2 of the present invention.
  • Example 2 is a transfer rate curve of Example 1 and Comparative Example 1, Example 2, and Comparative Example 2 of the present invention. Comparison chart
  • Figure 3 (a) is a schematic diagram of the principle of Embodiment 1 of the present invention.
  • Fig. 3 (b) is a schematic diagram showing the principle of the embodiment 2 of the present invention.
  • a piezoelectric active vibration isolation mechanism includes a first flexible hinge 12b, a piezoelectric actuator, a force sensor 13a, a second flexible hinge 12a, and a controller.
  • One end of the first flexible hinge 12b is used to connect the base platform 16, and the other end is connected to the piezoelectric actuator, the force sensor 13a and the second flexible hinge 12a in sequence, and the other end of the second flexible hinge 12a is used for Connecting the load platform 11;
  • the piezoelectric actuator and the force sensor 13a are both connected to the controller;
  • the force sensor 13a is configured to detect a vibration signal of the load platform 11 and transmit the vibration signal to the controller, and the controller controls the piezoelectric actuator to apply a force on the load platform 11 by using a PI feedback control method, thereby the load platform 11 Compensating to reduce the vibration of the load platform 11;
  • the piezoelectric actuator includes a piezoelectric unit 14 and a force amplifying mechanism 15 for amplifying the output force of the piezoelectric unit 14 to reduce the vibration of the load platform 11.
  • the controller includes a proportional controller and an integrator to ensure that the controller obtains a high gain and improves its control effect.
  • a vibration system is formed, which is a single-layer active system.
  • C is the system damping
  • K is the system stiffness
  • M is the load mass
  • ie the mass of the object carried on the second flexible hinge 12a
  • k p is the controller proportional coefficient
  • k i is the system integral coefficient
  • s is the Lapp The variable of the Las transform.
  • Figure 3 (a) shows a schematic diagram of a single-layer piezoelectric active vibration isolation unit.
  • the first flexible hinge and the second flexible hinge enable rotation in a small range, eliminating idle and mechanical friction during transmission, and improving displacement resolution.
  • the force sensor 13a is disposed between the second flexible hinge and the piezoelectric actuator for detecting the micro-vibration signal on the load platform 11, and transmitting the force signal to the piezoelectric actuator for the active vibration isolation unit output force compensation.
  • the control force F 0 in which the pressure actuator is applied to the satellite platform is calculated as follows:
  • k p is the proportional coefficient in the PI active control
  • k i is the integral coefficient
  • x 1 is the vibration amplitude of the load platform
  • s is the variable of the Laplace transform.
  • the transmission rate G 0 of its vibration system is: Where M is the load mass, that is, the mass of the object carried on the second flexible hinge 12a, K and C are the elastic coefficient and the damping coefficient between the load and the base flat 16, respectively, and s is a variable of the Laplace transform.
  • the transfer rate curve of Comparative Example 1 can be seen from the figure.
  • the single-layer passive system maintains a high attenuation rate at high frequencies because of the damping, but the high-frequency resonance peak has a high peak and is active.
  • the piezoelectric unit in the actuator has a high rigidity, resulting in a high natural frequency of the vibration isolation unit. The rate curve cannot be quickly attenuated.
  • the transfer rate curve of the single-layer active system of Embodiment 1 of FIG. 2 and the single-layer passive system of Comparative Example 1 can be seen.
  • the single-layer active system outputs a force compensation link through the piezoelectric actuator.
  • the magnitude of the peak at the natural frequency of the transmission rate curve can be attenuated, and the micro-vibration on the load platform 11 can be effectively suppressed.
  • a piezoelectric active vibration isolation mechanism comprising a first force sensor 23b, a spring bellows 27, an intermediate mass 26, a first flexible hinge 22b, a piezoelectric actuator, a second force sensor 23a, a second flexible hinge 22a and control Device, among them,
  • first force sensor 23b One end of the first force sensor 23b is used to connect the base platform 28, and the other end thereof is connected to the second force sensor 23b, the spring bellows 27, the intermediate mass 26, the first flexible hinge 22b, the piezoelectric actuator, a second force sensor 23a, a second flexible hinge 22a, the other end of the second flexible hinge 22a is used to connect the load platform 21;
  • the first force sensor 23b, the piezoelectric actuator and the second force sensor 23a are both connected to the controller;
  • the first pressure sensor 23b and the second pressure sensor 23a are respectively used for detecting vibration signals of the base platform 28 and the load platform 21, and respectively transmitting the detected vibration signals to the controller, so that the controller controls the piezoelectric actuator to apply.
  • the force is on the load platform 21 to compensate the load platform 21 to reduce the vibration of the load platform 21;
  • the spring bellows 27 is for providing rigidity in the connecting direction, and the intermediate mass 26 is a mass unit of the primary vibration isolating unit, which together form a first stage vibration isolating unit of the vibration isolating mechanism.
  • the controller includes a proportional controller and an integrator to ensure that the controller obtains a high gain and improves its control effect.
  • a vibration system is formed, which is a two-layer active system.
  • C 0 is the damping of the first-stage vibration isolation unit close to the base platform
  • K 0 is the stiffness of the first-stage vibration isolation unit close to the base platform
  • C 1 is the damping of the second-stage vibration isolation unit near the load platform
  • K 1 is the stiffness of the second-stage vibration isolation unit near the load platform
  • M 0 is the mass of the intermediate mass
  • M 1 is the load mass, that is, the mass k p of the object carried on the second flexible hinge is the controller proportional coefficient
  • k i is the system integral coefficient
  • s is the variable of the Laplace transform
  • the transfer rate curve is drawn and the natural frequency of the vibration system is obtained from the transfer rate curve. Adjusting the value of k p above can reduce the natural frequency of the system.
  • a first force sensor 23b is disposed between the spring bellows 27 and the base platform 28 for collecting the base platform 28 excitation signal.
  • the force amplifying mechanism of the piezoelectric unit performs output force compensation to suppress microvibration on the load platform 21.
  • the double-layer piezoelectric active vibration isolating unit shown in Fig. 3(b) has an elastic unit (spring bellows 27) added as compared with Fig. 3(a), and the intermediate mass 26 is a double-layer piezoelectric active vibration isolating device.
  • the intermediate mass, the intermediate mass 26 and the spring bellows 27 and the like constitute the first-stage vibration isolation unit of the active vibration isolator, and then subjected to the secondary vibration isolation through the piezoelectric active vibration isolation link as shown in Fig. 3(a).
  • Embodiment 2 can be greatly increased by adding an intermediate mass 26 and a less rigid elastic unit (spring bellows 27) between the single-layer vibration isolation system of Embodiment 1 and the base platform 28.
  • the natural frequency of the vibration isolation unit is reduced, so that the transmission rate curve is quickly attenuated.
  • the piezoelectric actuator output force compensation link By the piezoelectric actuator output force compensation link, the peak value at the natural frequency of the transmission rate curve can be further attenuated, and the micro-vibration on the load platform 21 can be effectively suppressed.
  • the control force F 0 in which the pressure actuator is applied to the satellite platform is calculated as follows:
  • k p is the proportional coefficient in PI active control
  • k i is the integral coefficient
  • M is the load mass
  • ie the mass of the object carried on the second flexible hinge
  • x 1 is the vibration amplitude of the load platform
  • s is the Lapp The variable of the Las transform.
  • Example 2 The product of Comparative Example 2 was compared with Example 2, and the resulting vibration system lacked the first force sensor 23b, the intermediate mass 26 and the spring bellows 27; this vibration system was a two-layer passive system.
  • the transmission rate of the vibration system is:
  • C 0 is the damping of the first-stage vibration isolation unit close to the base platform
  • K 0 is the stiffness of the first-stage vibration isolation unit close to the base platform
  • C 1 is the damping of the second-stage vibration isolation unit near the load platform
  • K 1 is the stiffness of the second stage vibration isolation unit near the load platform
  • M 0 is the mass of the intermediate mass 26
  • M 1 is the load mass
  • s is the variable of the Laplace transform.
  • the spring-damping constitutes a passive vibration isolating mechanism
  • the piezoelectric actuator-sensor-controller constitutes an active vibration isolating mechanism.
  • the force sensor 23a is used to monitor the load vibration signal, and the vibration signal is transmitted to the controller for calculation of the control algorithm. After completion, the output is output to the pressure actuator to perform force compensation on the load platform 21.

Abstract

一种压电主动隔振机构,包括第一力传感器(23b)、弹簧波纹管(27)、中间质量块(26)、第一柔性铰链(22b)、压电执行器、第二力传感器(23a)、第二柔性铰链(22a)和控制器,第一力传感器(23b)的一端用于连接基础平台(28),其另一端依次连接弹簧波纹管(27)、中间质量块(26)、第一柔性铰链(22b)、压电执行器、第二力传感器(23a)、第二柔性铰链(22a)。第一力传感器(23b)和第二力传感器(23a)分别用于检测基础平台(28)和负载平台(21)的振动信号,并分别将检测的振动信号传递给控制器,以使控制器控制压电执行器施加作用力在负载平台(21)上,从而对负载平台(21)进行补偿。该压电主动隔振机构采用双级串联式悬置结构,有效的降低了结构的固有频率,能够有效的抑制精密设备中的微振动低频干扰。还公开了一种降低振动系统固有频率的方法。

Description

一种压电主动隔振机构及其降低振动系统固有频率的方法 [技术领域]
本发明属于微振动抑制领域,更具体地,涉及一种压电主动隔振机构及其降低振动系统固有频率的方法。
[背景技术]
传统的被动隔振器由质量-弹簧-阻尼元件构成,由于其在低频振动传递率与高频振动衰减率之间存在的固有矛盾,而无法满足精密微振动的隔振需求,因此迫切需要一些新技术、新方法来改善这一现状。如卫星在轨运行期间,由于搭载设备正常工作会造成卫星整体及局部幅度较小的往复运动,这些微振动是影响高精度遥感卫星指向精度和成像质量等关键性能的主要因素。
结构上,目前主流的微振动隔振器均采用被动隔振元件与主动执行器以一定连接方式组合而成。如空气弹簧与音圈电机的主被动混合并联使用、膜片弹簧与音圈电机的主被动混合串联使用等都手段都极大提高了这类精密减振器的低频减振与高频衰减能力。
空气弹簧与音圈电机的主被动并联结构使得隔振器具有工作行程大、负载高和固有频率低的特点,但其结构也较为复杂,空气弹簧需持续供气,音圈电机耗能大,且该机构为软式结构,且空间设备发射时需要额外的锁定装置,以上因素制约了其在太空环境中的应用。压电智能材料的应用为隔振器的设计开拓了新领域,其定位精度高且动态响应好,作动行程较小,可应用于微动定位及振动抑制平台。采用压电陶瓷为执行器的主动隔振机构多为硬式结构,空间设备发射时不需要锁定装置,大大扩大使用远景。但压电陶瓷刚度大,导致结构固有频率较高,难以有效的衰减低频干扰,因此提出一种双层串联式压电主动执行器结构,可以有效的衰减低频振动, 提高多频段振动主动控制能力。
[发明内容]
针对现有技术的以上缺陷或改进需求,本发明提供了一种压电主动隔振机构其降低振动系统固有频率的方法,该主动隔振机构结构紧凑、安装简便,具有较低的固有频率,能够有效的衰减微振动信号,是一种主、被动隔振元件混合使用的微振动隔振机构,其不仅对高频振动干扰具有良好的高衰减率隔振效果,还能有效的实现低频共振抑制,隔离低频振动,该主动隔振器可有效抑制卫星微振动,为遥感卫星高分辨率观测成像提供稳定的工作环境。
为实现上述目的,按照本发明,提供了一种压电主动隔振机构,其特征在于:包括第一柔性铰链、压电执行器、力传感器、第二柔性铰链和控制器,其特征在于:
所述第一柔性铰链的一端用于连接基础平台,其另一端依次连接所述压电执行器、力传感器和第二柔性铰链,所述第二柔性铰链的另一端用于连接负载平台;
所述压电执行器和力传感器均与所述控制器连接;
所述力传感器用于检测负载平台的振动信号,并将振动信号传递给控制器,控制器采用PI反馈控制方法控制压电执行器施加作用力在负载平台上,从而对负载平台进行补偿以减小负载平台的振动;
所述压电执行器包括压电单元及力放大机构,所述力放大机构用于放大压电单元的输出力以减小负载平台的振动。
优选地,所述控制器包括比例控制器和积分器,以保证控制器获得高增益,提高其控制效果。
按照本发明的另一个方面,还提供了一种压电主动隔振机构,其特征在于:包括第一力传感器、弹簧波纹管、中间质量块、第一柔性铰链、压电执行器、第二力传感器、第二柔性铰链和控制器,其中,
所述第一力传感器的一端用于连接基础平台,其另一端依次连接所述弹簧波纹管、中间质量块、第一柔性铰链、压电执行器、第二力传感器和第二柔性铰链,所述第二柔性铰链的另一端用于连接负载平台;
所述第一力传感器、压电执行器和第二力传感器均与所述控制器连接;
所述第一力传感器和第二压力传感器分别用于检测基础平台和负载平台的振动信号,并分别将检测的振动信号传递给控制器,以使控制器控制压电执行器施加作用力在负载平台上,从而对负载平台进行补偿以减小负载平台的振动。
优选地,所述控制器包括比例控制器和积分器,以保证控制器获得高增益。
按照本发明的另一个方面,还提供了一种降低振动系统固有频率的方法,其特征在于:所述振动系统包括基础平台、负载平台和隔振机构,其中,所述隔振机构的第一柔性铰链与基础平台连接,所述第二柔性铰链与负载平台连接;
获得所述振动系统的传递率G1
Figure PCTCN2016087427-appb-000001
其中,C为系统阻尼,K为系统刚度,M为负载质量,即第二柔性铰链上所承载的物体的质量,kp为控制器比例系数,ki为系统积分系数,s为拉普拉斯变换的变量;
然后通过传递率获取系统的固有频率,则调节上述kp的值,能降低系统的固有频率。
按照本发明的另一个方面,还提供了一种降低振动系统固有频率的方法,其特征在于:所述振动系统包括基础平台、负载平台和隔振机构,其中,所述隔振机构的第一力传感器与基础平台连接,所述第二柔性铰链与负载平台连接;
获得所述振动系统的传递率G4
Figure PCTCN2016087427-appb-000002
其中,C0为靠近基础平台的第一级隔振单元的阻尼,K0为靠近基础平台的第一级隔振单元的刚度,C1为靠近负载平台的第二级隔振单元的阻尼,K1为靠近负载平台的第二级隔振单元的刚度,M0为中间质量块的质量,M1为负载质量,即第二柔性铰链上所承载的物体的质量,kp为控制器比例系数,ki为系统积分系数,s为拉普拉斯变换的变量;
然后通过传递率获取系统的固有频率,则调节上述kp的值,能降低系统的固有频率。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明采用压电执行器,压电执行器能够使主动隔振系统达到纳米级定位精度,可有效应用于精密微振动抑制及隔离领域;加之压电执行器耗能小且为硬式结构,设备发射时不需要额外的锁定装置,相比于音圈电机能够更为有效的在太空环境中使用,扩大了使用场景。
(2)本发明设置了由中间质量块及弹簧波纹管构成的悬置系统,所组成的双层串联式悬置系统能够有效的降低结构的固有平率,因此能有效的抑制精密设备中的微振动低频干扰。
(3)本发明采用主被动隔振系统并联使用,主被动隔振系统混合使用可有效抑制低频振动,在保证低频振动传递率,同时提供高频振动的高衰减性,因此能有效的抑制精密设备中的振动干扰。
[附图说明]
图1(a)和图1(b)分别为本发明实施例1和实施例2的结构示意图;
图2为本发明实施例1与对比例1、实施例2与对比例2的传递率曲线 对比图;
图3(a)为本发明实施例1的原理简图;
图3(b)为本发明实施例2的原理简图。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
参照图1(a)、图2和图3(a),一种压电主动隔振机构,包括第一柔性铰链12b、压电执行器、力传感器13a、第二柔性铰链12a和控制器,所述第一柔性铰链12b的一端用于连接基础平台16,其另一端依次连接所述压电执行器、力传感器13a和第二柔性铰链12a,所述第二柔性铰链12a的另一端用于连接负载平台11;
所述压电执行器和力传感器13a均与所述控制器连接;
所述力传感器13a用于检测负载平台11的振动信号,并将振动信号传递给控制器,控制器采用PI反馈控制方法控制压电执行器施加作用力在负载平台11上,从而对负载平台11进行补偿以减小负载平台11的振动;
所述压电执行器包括压电单元14及力放大机构15,所述力放大机构15用于放大压电单元14的输出力以减小负载平台11的振动。
优选地,所述控制器包括比例控制器和积分器,以保证控制器获得高增益,提高其控制效果。
将本隔振机构连接基础平台16和负载平台11后,就组成了振动系统,此振动系统为单层主动系统。
所述振动系统的传递率G1
Figure PCTCN2016087427-appb-000003
其中,C为系统阻尼,K为系统刚度,M为负载质量,即第二柔性铰链12a上所承载的物体的质量,kp为控制器比例系数,ki为系统积分系数,s为拉普拉斯变换的变量。
然后通过传递率获取系统的固有频率,则调节上述kp的值,能降低系统的固有频率。
图3(a)所示为单层压电主动隔振单元的原理简图。第一柔性铰链和第二柔性铰链可实现微小范围内的旋转,消除了传动过程中的空程和机械摩擦,提高了位移分辨率。力传感器13a布置在第二柔性铰链与压电执行器之间,用于检测负载平台11上的微振动信号,并将力信号传递给压电执行器做主动隔振单元输出力补偿。
其中压力执行器施加在卫星平台上的控制力F0计算如下:
F0=(kp+ki/s)Mx1s2
其中kp为PI主动控制中的比例系数,ki为积分系数,x1为负载平台的振动幅值,s为拉普拉斯变换的变量。
对比例1
对比例1产品的构造与实施例1相比,形成的振动系统缺少力传感器13a和控制器;此振动系统为单层被动系统。
其振动系统的传递率G0为:
Figure PCTCN2016087427-appb-000004
式中M为负载质量,即第二柔性铰链12a上所承载的物体的质量,K与C分别为负载与基础平16之间的弹性系数与阻尼系数,s为拉普拉斯变换的变量。
如图2所示,对比例1的传递率曲线从图中可以看出单层被动系统因为存在阻尼,高频上会保持高衰减率,但低频共振峰处具有较高的峰值,且由于主动执行器中的压电单元刚度大,导致隔振单元固有频率较高,传 递率曲线不能得到很快的衰减。
从图2的实施例1的单层主动系统和对比例1的单层被动系统的传递率曲线可以看了,相对于单层被动系统,单层主动系统通过压电执行器输出力补偿环节,可以衰减传递率曲线固有频率处峰值的大小,能够有效的抑制负载平台11上的微振动。
实施例2
一种压电主动隔振机构,包括第一力传感器23b、弹簧波纹管27、中间质量块26、第一柔性铰链22b、压电执行器、第二力传感器23a、第二柔性铰链22a和控制器,其中,
所述第一力传感器23b的一端用于连接基础平台28,其另一端依次连接所述第二力传感器23b、弹簧波纹管27、中间质量块26、第一柔性铰链22b、压电执行器、第二力传感器23a、第二柔性铰链22a,所述第二柔性铰链22a的另一端用于连接负载平台21;
所述第一力传感器23b、压电执行器和第二力传感器23a均与所述控制器连接;
所述第一压力传感器23b和第二压力传感器23a分别用于检测基础平台28和负载平台21的振动信号,并分别将检测的振动信号传递给控制器,以使控制器控制压电执行器施加作用力在负载平台21上,从而对负载平台21进行补偿以减小负载平台21的振动;
所述弹簧波纹管27用于提供沿连接方向的刚度,中间质量块26为初级隔振单元的质量单元,两者共同形成隔振机构的第一级隔振单元。
优选地,所述控制器包括比例控制器和积分器,以保证控制器获得高增益,提高其控制效果。
将本隔振机构连接基础平台28和负载平台21后,就组成了振动系统,此振动系统为双层主动系统。
所述振动系统的传递率G4
Figure PCTCN2016087427-appb-000005
其中,C0为靠近基础平台的第一级隔振单元的阻尼,K0为靠近基础平台的第一级隔振单元的刚度,C1为靠近负载平台的第二级隔振单元的阻尼,K1为靠近负载平台的第二级隔振单元的刚度,M0为中间质量块的质量,M1为负载质量,即第二柔性铰链上所承载的物体的质量kp为控制器比例系数,ki为系统积分系数,s为拉普拉斯变换的变量;
然后根据传递率绘制传递率曲线并从传递率曲线上获得振动系统的固有频率,则调节上述kp的值,能降低系统的固有频率。
在图3(b)中第一力传感器23b布置在弹簧波纹管27与基础平台28之间,用来采集基础平台28激励信号。压电单元的力放大机构进行输出力补偿以抑制负载平台21上的微振动。图3(b)所示的双层压电主动隔振单元相比于图3(a)增加了弹性单元(弹簧波纹管27),且中间质量块26为双层压电主动隔振装置上的中间质量,中间质量块26与弹簧波纹管27等零件组成主动隔振器的第一级隔振单元,然后经过如图3(a)中的压电主动隔振环节进行二级隔振。
从图2中可以看出,实施例2通过在实施例1的单层隔振系统与基础平台28之间增加中间质量块26和较小刚度的弹性单元(弹簧波纹管27),可以极大的减小隔振单元的固有频率,使传递率曲线得到很快的衰减。通过压电执行器输出力补偿环节,可以进一步衰减传递率曲线固有频率处峰值的大小,能够有效的抑制负载平台21上的微振动。
其中压力执行器施加在卫星平台上的控制力F0计算如下:
F0=(kp+ki/s)Mx1s2
其中kp为PI主动控制中的比例系数,ki为积分系数,M为负载质量, 即第二柔性铰链上所承载的物体的质量,x1为负载平台的振动幅值,s为拉普拉斯变换的变量。
对比例2
对比例2的产品与实施例2相比,形成的振动系统缺少了第一力传感器23b、中间质量块26和弹簧波纹管27;此振动系统为双层被动系统。
振动系统的传递率为:
Figure PCTCN2016087427-appb-000006
其中,C0为靠近基础平台的第一级隔振单元的阻尼、K0为靠近基础平台的第一级隔振单元的刚度、C1为靠近负载平台的第二级隔振单元的阻尼、K1为靠近负载平台的第二级隔振单元的刚度、M0为中间质量块26的质量、M1为负载质量,s为拉普拉斯变换的变量。
参照图3(a)、图3(b),本发明中,弹簧-阻尼构成被动隔振机构,压电执行器-传感器-控制器构成主动隔振机构。主动隔振机构中采用力传感器23a监测负载振动信号,将振动信号传递给控制器进行控制算法计算,完成后输出给压力执行器对负载平台21进行力补偿。通过对比图2中各振动系统的传递率曲线,可得使用了主动隔振机构的振动系统的固有频率峰值得到了明显的衰减。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种压电主动隔振机构,其特征在于:包括第一柔性铰链、压电执行器、力传感器、第二柔性铰链和控制器,其特征在于:
    所述第一柔性铰链的一端用于连接基础平台,其另一端依次连接所述压电执行器、力传感器和第二柔性铰链,所述第二柔性铰链的另一端用于连接负载平台;
    所述压电执行器和力传感器均与所述控制器连接;
    所述力传感器用于检测负载平台的振动信号,并将振动信号传递给控制器,控制器采用PI反馈控制方法控制压电执行器施加作用力在负载平台上,从而对负载平台进行补偿以减小负载平台的振动;
    所述压电执行器包括压电单元及力放大机构,所述力放大机构用于放大压电单元的输出力以减小负载平台的振动。
  2. 根据权利要求1所述的一种压电主动隔振机构,其特征在于:所述控制器包括比例控制器和积分器,以保证控制器获得高增益,提高其控制效果。
  3. 一种压电主动隔振机构,其特征在于:包括第一力传感器、弹簧波纹管、中间质量块、第一柔性铰链、压电执行器、第二力传感器、第二柔性铰链和控制器,其中,
    所述第一力传感器的一端用于连接基础平台,其另一端依次连接所述弹簧波纹管、中间质量块、第一柔性铰链、压电执行器、第二力传感器和第二柔性铰链,所述第二柔性铰链的另一端用于连接负载平台;
    所述第一力传感器、压电执行器和第二力传感器均与所述控制器连接;
    所述第一力传感器和第二压力传感器分别用于检测基础平台和负载平台的振动信号,并分别将检测的振动信号传递给控制器,以使控制器控制压电执行器施加作用力在负载平台上,从而对负载平台进行补偿以减小负 载平台的振动。
  4. 根据权利要求3所述的一种压电主动隔振机构,其特征在于:所述控制器包括比例控制器和积分器,以保证控制器获得高增益。
  5. 一种降低振动系统固有频率的方法,其特征在于:所述振动系统包括基础平台、负载平台和权利要求1或2中任一所述的隔振机构,其中,所述隔振机构的第一柔性铰链与基础平台连接,所述第二柔性铰链与负载平台连接;
    获得所述振动系统的传递率G1
    Figure PCTCN2016087427-appb-100001
    其中,C为系统阻尼,K为系统刚度,M为负载质量,即第二柔性铰链上所承载的物体的质量,kp为控制器比例系数,ki为系统积分系数,s为拉普拉斯变换的变量;
    然后通过传递率获取系统的固有频率,则调节上述kp的值,能降低系统的固有频率。
  6. 一种降低振动系统固有频率的方法,其特征在于:所述振动系统包括基础平台、负载平台和权利要求3或4中任一所述的隔振机构,其中,所述隔振机构的第一力传感器与基础平台连接,所述第二柔性铰链与负载平台连接;
    获得所述振动系统的传递率G4
    Figure PCTCN2016087427-appb-100002
    其中,C0为靠近基础平台的第一级隔振单元的阻尼,K0为靠近基础平台的第一级隔振单元的刚度,C1为靠近负载平台的第二级隔振单元的阻尼,K1为靠近负载平台的第二级隔振单元的刚度,M0为中间质量块的质量,M1 为负载质量,即第二柔性铰链上所承载的物体的质量,kp为控制器比例系数,ki为系统积分系数,s为拉普拉斯变换的变量;
    然后通过传递率获取系统的固有频率,则调节上述kp的值,能降低系统的固有频率。
PCT/CN2016/087427 2015-08-07 2016-06-28 一种压电主动隔振机构及其降低振动系统固有频率的方法 WO2017024904A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510482336.0 2015-08-07
CN201510482336.0A CN105134866B (zh) 2015-08-07 2015-08-07 一种压电主动隔振机构及其降低振动系统固有频率的方法

Publications (1)

Publication Number Publication Date
WO2017024904A1 true WO2017024904A1 (zh) 2017-02-16

Family

ID=54720352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087427 WO2017024904A1 (zh) 2015-08-07 2016-06-28 一种压电主动隔振机构及其降低振动系统固有频率的方法

Country Status (2)

Country Link
CN (1) CN105134866B (zh)
WO (1) WO2017024904A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110936801A (zh) * 2019-11-22 2020-03-31 阿尔特汽车技术股份有限公司 一种电动车双层隔振悬置系统
CN113686197A (zh) * 2021-08-30 2021-11-23 哈尔滨工业大学 一种基于压电驱动器的火炮减振系统、方法及火炮装备
CN115325088A (zh) * 2022-07-26 2022-11-11 中国舰船研究设计中心 一种船舶长轴系中间轴承主动减振装置
CN110936801B (zh) * 2019-11-22 2024-05-14 阿尔特汽车技术股份有限公司 一种电动车双层隔振悬置系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134866B (zh) * 2015-08-07 2017-03-08 华中科技大学 一种压电主动隔振机构及其降低振动系统固有频率的方法
CN105909725B (zh) * 2016-04-14 2018-02-02 华中科技大学 一种三自由度微振动抑制平台及其控制方法
CN106059392B (zh) * 2016-07-08 2018-04-06 上海大学 一种实现整星自供能主被动一体化非线性振动控制装置
CN106286692B (zh) * 2016-09-20 2018-07-03 华中科技大学 一种六自由度微振动抑制平台及其控制方法
CN106321708B (zh) * 2016-10-20 2018-02-23 华中科技大学 一种两自由度隔振与精密定位的复合主动隔振器
CN106321719B (zh) * 2016-10-20 2018-02-23 华中科技大学 一种采用正负刚度并联的主被动复合隔振器
CN106940524B (zh) * 2017-03-06 2020-03-17 西安交通大学 一种压电定位装置的振动和非线性抑制方法
CA3089305C (en) * 2018-02-28 2021-03-09 Maq Ab Mass damper and cutting tool
CN109555812B (zh) * 2018-07-18 2023-04-28 中国航空工业集团公司洛阳电光设备研究所 一种压电驱动的各向同性多自由度隔振平台
CN110611454B (zh) * 2019-09-23 2020-10-16 上海大学 基于压电的自供电减振装置及其控制方法
CN112483586B (zh) * 2020-10-19 2022-04-15 南京航空航天大学 一种基于智能弹簧的可调谐动力吸振器及控制方法
CN113202897A (zh) * 2021-05-07 2021-08-03 华中科技大学 一种基于压电陶瓷的主被动减振装置及六自由度减振系统
CN114035627B (zh) * 2021-11-17 2022-06-21 上海大学 基于单自由度隔振平台的主动复合控制系统及方法
CN114183493B (zh) * 2021-12-20 2023-03-21 西安交通大学 一种主被动隔振杆及主动控制传感方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503246A2 (en) * 2003-07-31 2005-02-02 Canon Kabushiki Kaisha Positioning mechanism, exposure apparatus, and device manufacturing method
US20070024829A1 (en) * 2003-04-25 2007-02-01 Canon Kabushiki Kaisha Driving unit, exposure apparatus using the same, and device fabrication method
CN103587724A (zh) * 2013-09-24 2014-02-19 南京航空航天大学 一种基于Stewart并联机构的六自由度隔振平台
CN104265829A (zh) * 2014-09-16 2015-01-07 上海卫星工程研究所 具备铰链和隔振功能的一体化减振器及主被动隔振系统
CN105094165A (zh) * 2015-08-24 2015-11-25 华中科技大学 一种Stewart主动平台和基于Stewart主动平台的振动抑制方法
CN105134866A (zh) * 2015-08-07 2015-12-09 华中科技大学 一种压电主动隔振机构及其降低振动系统固有频率的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1454753A (zh) * 2003-06-20 2003-11-12 北京工业大学 一种串-并联式微操作并联机器人机械装置
JP2007315878A (ja) * 2006-05-25 2007-12-06 Mitsubishi Electric Corp 多軸力覚センサ
CN102141110B (zh) * 2011-01-24 2012-10-03 北京航空航天大学 一种液压振动主动隔离平台
CN102155516B (zh) * 2011-01-24 2012-05-23 北京航空航天大学 一种八杆冗余构型六自由度振动主动控制装置
CN104802151A (zh) * 2015-04-28 2015-07-29 上海大学 一种重载搬运装配移动机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070024829A1 (en) * 2003-04-25 2007-02-01 Canon Kabushiki Kaisha Driving unit, exposure apparatus using the same, and device fabrication method
EP1503246A2 (en) * 2003-07-31 2005-02-02 Canon Kabushiki Kaisha Positioning mechanism, exposure apparatus, and device manufacturing method
CN103587724A (zh) * 2013-09-24 2014-02-19 南京航空航天大学 一种基于Stewart并联机构的六自由度隔振平台
CN104265829A (zh) * 2014-09-16 2015-01-07 上海卫星工程研究所 具备铰链和隔振功能的一体化减振器及主被动隔振系统
CN105134866A (zh) * 2015-08-07 2015-12-09 华中科技大学 一种压电主动隔振机构及其降低振动系统固有频率的方法
CN105094165A (zh) * 2015-08-24 2015-11-25 华中科技大学 一种Stewart主动平台和基于Stewart主动平台的振动抑制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110936801A (zh) * 2019-11-22 2020-03-31 阿尔特汽车技术股份有限公司 一种电动车双层隔振悬置系统
CN110936801B (zh) * 2019-11-22 2024-05-14 阿尔特汽车技术股份有限公司 一种电动车双层隔振悬置系统
CN113686197A (zh) * 2021-08-30 2021-11-23 哈尔滨工业大学 一种基于压电驱动器的火炮减振系统、方法及火炮装备
CN115325088A (zh) * 2022-07-26 2022-11-11 中国舰船研究设计中心 一种船舶长轴系中间轴承主动减振装置

Also Published As

Publication number Publication date
CN105134866B (zh) 2017-03-08
CN105134866A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2017024904A1 (zh) 一种压电主动隔振机构及其降低振动系统固有频率的方法
US9777793B1 (en) Six-degree-of-freedom micro vibration suppression platform and control method thereof
Zilletti Feedback control unit with an inerter proof-mass electrodynamic actuator
Yang et al. Optimization of noncollocated sensor/actuator location and feedback gain in control systems
CN106678241A (zh) 一种单自由度主被动隔振装置
CN105094165A (zh) 一种Stewart主动平台和基于Stewart主动平台的振动抑制方法
Sun et al. A new methodology for developing flexure-hinged displacement amplifiers with micro-vibration suppression for a giant magnetostrictive micro drive system
Liao et al. Adaptive metamaterials for broadband sound absorption at low frequencies
CN108240415B (zh) 复合屈曲梁/板负刚度动力吸振器的大载荷高阻尼减振器
Grasso et al. Piezoelectric self sensing actuators for high voltage excitation
Li Active modal control simulation of vibro-acoustic response of a fluid-loaded plate
Song et al. A novel piezoelectric-based active-passive vibration isolator for low-frequency vibration system and experimental analysis of vibration isolation performance
Zhang et al. The model of active vibration control based on giant magnetostrictive materials
Li et al. Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator
JP5591199B2 (ja) 振動絶縁装置
Shimon et al. Theoretical and experimental study of efficient control of vibrations in a clamped square plate
TW201120331A (en) Vibration control of an optical table by disturbance response decoupling
Chatziathanasiou et al. Semi-active vibration control of aircraft structures
Alaluf et al. Damping of piezoelectric space instruments: application to an active optics deformable mirror
Souleille et al. A concept of active mount for space applications
Fleming et al. Innovations in piezoelectric shunt damping
Kletz et al. Active vibration isolation of rear-view mirrors based on piezoceramic double spiralactuators
Tan et al. Research on Active-Passive Hybrid Vibration Isolator Based on Piezoelectric Reactor and Micro-Amplitude Isolator
Falangas A vibration isolation system using active PZT brackets
Shen et al. Study of shell interior noise control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834528

Country of ref document: EP

Kind code of ref document: A1