WO2017024664A1 - Sncr脱硝系统及垃圾焚烧锅炉 - Google Patents
Sncr脱硝系统及垃圾焚烧锅炉 Download PDFInfo
- Publication number
- WO2017024664A1 WO2017024664A1 PCT/CN2015/091231 CN2015091231W WO2017024664A1 WO 2017024664 A1 WO2017024664 A1 WO 2017024664A1 CN 2015091231 W CN2015091231 W CN 2015091231W WO 2017024664 A1 WO2017024664 A1 WO 2017024664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water wall
- furnace
- spoiler
- flue gas
- denitration system
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/44—Details; Accessories
Definitions
- the invention relates to the technical field of waste incineration, in particular to an SNCR denitration system and a garbage incineration boiler.
- Waste incineration treatment is the treatment technology with the highest degree of waste disposal, resource reduction and harmlessness at the present stage, and is produced by incineration.
- Thermal energy can supply heat or generate electricity.
- pollutants such as nitrogen oxides are generated during waste incineration, and if they are directly discharged into the environment without passing through the flue gas purification device, it will have a bad impact on the ecosystem.
- the process of reducing nitrogen oxides to nitrogen is called denitration.
- the existing denitration techniques usually use selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR). And the degree of industrialization is high.
- SCR selective catalytic reduction
- SNCR selective non-catalytic reduction
- the selective non-catalytic reduction method (SNCR) is widely used due to its advantages of small investment, low operating cost, and short construction period.
- the optimum temperature for the denitration reaction is 800 to 1200 degrees, but the temperature of the waste incineration and the structure of the boiler cause a temperature region suitable for the denitration reaction.
- the denitration agent leaves the suitable reaction zone without being sufficiently reacted, resulting in a low removal rate of nitrogen oxides.
- a spoiler disposed circumferentially along a water wall of the furnace, the spoiler being located on a discharge path of the flue gas, and The spoiler is located downstream of the denitrification lance and is sprayable to form a turbulent flow opposite the direction of flow of the flue gas.
- the spoiler is arranged above the denitrification spray gun, and the spoiler flow opposite to the flow direction of the flue gas is sprayed, and the spoiler gas flow is sprayed to increase the residence time of the flue gas in the suitable denitration reaction zone, which is favorable for the residence time of the flue gas in the suitable denitration reaction zone.
- the denitration reduction reaction is uniform and sufficient.
- the jet stream of the spoiler perturbs the denitration agent to increase the uniformity of the denitration agent, thereby further increasing the reaction rate of the denitration reaction.
- the furnace includes a first water wall and a second water wall respectively disposed opposite to each other, and a third water wall and a fourth water wall, the first water wall, the second water wall, and the third
- the water wall and the fourth water wall are sequentially connected to form the furnace, and the denitrification spray guns are respectively installed on the first water wall and the second water wall of the furnace, and the SNCR denitration system is installed in the furnace.
- the installation height of the denitrification spray gun mounted on the first water wall is greater than the installation height of the denitration spray gun installed on the second water wall relative to the furnace inlet.
- the denitrification spray guns located on the first water wall are arranged equidistantly horizontally, and the denitrification spray guns on the second water wall are arranged equidistantly horizontally;
- a denitrification spray gun located on the first water wall and a denitrification spray gun located on the second water wall are arranged alternately.
- the spoilers disposed on the first water wall and the second water wall are located above the denitrification gun and are respectively at a vertical distance from the line of the denitrification gun.
- a vertical distance of the spoiler disposed on the first water wall from the furnace inlet is a first height
- the spoiler distance is disposed on the second water wall.
- the vertical distance of the furnace inlet is a second height
- the distance between the spoiler located at the third water wall and the fourth water wall from the furnace inlet is the first height and the second height average value.
- the flow of the spoiler is directed toward the inlet of the furnace and is inclined relative to a vertical plane perpendicular to the water wall of the furnace.
- each of the spoilers is directed toward the next of the spoilers to form a spoiler swirl.
- the spoiler has an angle of 10 to 25 degrees with respect to a plane perpendicular to the water wall of the furnace.
- the spoiler is in communication with the furnace outlet, and the flue gas of the furnace outlet may be pumped back to the furnace inlet;
- the spoiler returns the flue gas of the furnace outlet to 5% to 8% of the total amount of flue gas in the furnace.
- a waste incineration boiler comprising the SNC denitration system as described above.
- FIG. 1 is a partial structural schematic view of a waste incineration boiler in accordance with a preferred embodiment of the present invention
- Figure 2 is a plan view showing a section of a furnace of the garbage incineration boiler shown in Figure 1;
- Fig. 3 is a layout view of a spoiler of the garbage incineration boiler shown in Fig. 1.
- the SNCR denitration system 10 in the preferred embodiment of the present invention is installed in a furnace 30 for denitration of flue gas.
- the SNCR denitration system 10 includes a denitrification spray gun 12 and a spoiler. 14.
- the denitrification spray gun 12 is mounted on the water wall of the furnace 30.
- the spoiler 14 is disposed circumferentially along the water wall of the furnace.
- the spoiler 14 is located on the discharge path of the flue gas, and the spoiler 14 is located at the denitration agent. Downstream of the lance 12, a turbulent flow opposite the direction of flow of the flue gas can be formed.
- the SNCR denitration system 10 is installed at the inlet of the furnace 30, and the furnace 30 includes The first water wall 32, the second water wall 34, the third water wall 36 and the fourth water wall 38, the first water wall 32 and the second water wall 34, and the third water wall 36 and the fourth water wall 38 respectively In a relative arrangement, the first water wall 32, the second water wall 34, the third water wall 36, and the fourth water wall 38 are sequentially connected to form the furnace 30.
- the denitrification spray gun 12 is installed at the first water wall 32 and the second water wall 34 at the inlet of the furnace 30.
- the spoiler 14 is connected to the outlet of the furnace 30, and can return the flue gas from the outlet of the furnace 30 to the inlet of the furnace 30.
- the spoiler 14 is disposed circumferentially along the water wall of the furnace 30 and is positioned above the denitrification lance 12 and forms a turbulent flow toward the inlet of the furnace 30.
- first water wall 32 and the second water wall 34 are the front water wall and the rear water wall of the boiler furnace 30, respectively, and the third water wall 36 and the fourth water wall 38 are the left water wall and the right of the boiler, respectively.
- the front, rear, left and right waterwalls of the boiler grate 30 are well known to those skilled in the art, and thus their specific definitions are not described herein.
- the denitration agent is urea or ammonia water
- the flue gas of the spoiler 14 back to the outlet of the furnace 30 accounts for 5% to 8% of the total amount of flue gas in the furnace 30, and the garbage enters the grate 22 to form an incinerator.
- the combustion is carried out on the grate 22, and nitrogen oxides are generated during the combustion process, and the denitration agent sprayed by the denitrification spray gun 12 reduces the nitrogen oxides to nitrogen to achieve the pollutant removal effect.
- the ideal reaction temperature for ammonia denitration is 850 to 1100 degrees
- the ideal reaction temperature for urea denitration is 900 to 1150 degrees.
- the denitration reaction can be fully reacted.
- the flue gas temperature of the waste incineration meets the ideal reaction temperature of the denitration agent at the inlet of the furnace 30, and the spoiler 14 is disposed above the denitrification spray gun 12, and the flue gas at the outlet of the furnace 30 is pumped back.
- the spoiler gas flow is formed in the opposite direction to the flow direction of the flue gas, and the flue gas residence time is increased by the jet spoiler gas flow, which facilitates the uniformity and sufficient progress of the denitration reduction reaction.
- the existing flue gas has a residence time of about 0.5 seconds in the ideal reaction temperature region, and the installer spoiler 14 can use the flue gas residence time to increase by 10%, and at the same time, the spoiler 14 is sprayed to the denitrification. The agent is disturbed to increase the uniformity of the denitration agent, thereby increasing the reaction rate of the denitration reaction.
- the position of the SNCR denitration system can be determined according to the ideal reaction temperature of the different denitration agents and the structure of the waste incineration boiler, which is not limited herein.
- the installation height of the denitrification spray gun 12 installed on the first water wall 32 is larger than that installed on the inlet of the furnace 30.
- the installation height of the dewatering agent spray gun 12 of the second water wall 34 ensures that the reaction surface formed by the denitration agent is approximately coincident with the isothermal temperature surface of the flue gas, which is favorable for increasing the reaction rate of the denitration reaction.
- the first water wall 32 is provided with a plurality of spaced-apart denitrification spray guns 12, and the second water wall 34 is provided with a plurality of spaced-apart denitrification spray guns 12, and is located on the first water wall 32.
- the line level setting of the denitrification spray gun 12 is set at the line level of the denitrification spray gun 12 on the second water wall 34. Further, the denitrification spray gun 12 located at the first water wall 32 is alternately arranged with the denitrification spray gun 12 located at the second water wall 34. More specifically, a denitrification spray gun 12 located at the first water wall 32 is located correspondingly. The position between the two denitrification spray guns 12 of the second water wall 34 forms a relatively uniform spray surface to make the denitration reaction more uniform.
- the spoiler 14 disposed on the first water wall 32 and the second water wall 34 is located above the corresponding denitrification spray gun 12, and the vertical distance from the corresponding denitrification spray gun 12 is equal. .
- the distance between the spoiler 14 respectively disposed on the first water-cooling wall 32 and the second water-cooling wall 34 from the corresponding denitrification spray gun 12 is 300-800 mm. In this way, the spoiler effect is optimized, so that the time during which the combustion flue gas stays in the reasonable reaction zone is increased, thereby improving the reaction efficiency.
- the vertical distance between the spoiler 14 disposed on the first water wall 32 and the inlet of the furnace 30 is a first height
- the vertical distance of the spoiler 14 disposed on the second water wall 34 from the inlet of the furnace 30 is The two heights
- the vertical distance between the spoiler 14 located at the third water wall 36 and the fourth water wall 38 from the inlet of the furnace 30 is the average of the first height and the second height, so that the plane of the spoiler 14 and the denitrification
- the planes of the spray guns 12 are substantially parallel, so that the turbulent flow is more uniform, and the denitration reaction is more uniform and sufficient.
- the air flow of the spoiler 14 flows toward the inlet of the furnace 30 and is inclined with respect to a vertical plane perpendicular to the water wall of the furnace 30, and each spoiler 14 faces the next spoiler. 14.
- the spoiler is formed by spraying. That is, the airflow of the spoiler 14 flows obliquely downward, and the spoilers 14 disposed on the first water wall 32, the second water wall 34, the third water wall 36, and the fourth water wall 38 are respectively inclined
- the turbulent airflow is sprayed downward to form a swirling flow, so that the denitration agent stays in the ideal reaction zone for a long time, and facilitates uniform spraying and sufficient reaction of the denitration agent to improve the denitration reaction rate.
- the angle between the spoiler 14 and the plane perpendicular to the water wall of the furnace 30 is 10 to 25 degrees.
- a waste incineration boiler (not shown) is also provided.
- the garbage incineration boiler includes a combustion device 20 and a furnace 30, and the furnace 30 communicates with the combustion.
- the combustion apparatus 20 includes a grate 22 and a combustion chamber 24, and an inlet of the furnace 30 communicates with a combustion chamber 24 for arranging combustion products such as garbage to be combusted in the combustion chamber 24.
- the spoiler 14 is disposed above the denitrification spray gun 12, and the flue gas at the outlet of the furnace 30 is pumped back to form a spoiler flow opposite to the flow direction of the flue gas.
- the turbulent airflow increases the residence time of the flue gas, which is favorable for the uniformity and sufficient denitration reduction reaction.
- the jet stream of the spoiler 14 perturbs the denitration agent to increase the uniformity of the denitration agent, thereby further increasing the reaction rate of the denitration reaction.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Treating Waste Gases (AREA)
Abstract
一种SNCR脱硝系统及垃圾焚烧锅炉,用于对烟气进行脱硝。该SNCR脱硝系统(10)包括脱硝剂喷枪(12)及扰流器(14),脱硝剂喷枪(12)安装于炉膛(30)的水冷壁;扰流器(14)沿炉膛(30)的水冷壁周向设置,扰流器(14)位于烟气的排放路径上且位于脱硝剂喷枪(12)的下游,并可喷射形成与烟气流动方向相反的扰流气流。
Description
本发明涉及垃圾焚烧技术领域,特别是涉及一种SNCR脱硝系统及垃圾焚烧锅炉。
随着城市化步伐的加快和人们生活水平的提高,国内生活垃圾量大幅增长,垃圾无害化处理成了必然选择。目前,对垃圾的处理大多数国家采用垃圾焚烧余热锅炉对垃圾进行焚烧处理,垃圾焚烧处理是现阶段垃圾处理减量化、资源化和无害化程度最高的一种处理技术,而且焚烧产生的热能可以供热或发电。但是,同时垃圾焚烧过程中会产生氮氧化物等污染物,如若未经过烟气净化装置而直接排放到环境中,将对生态系统造成恶劣的影响。
将氮氧化物还原成氮气的过程被称作脱硝过程,现有的脱硝技术中通常采用选择性催化还原法(SCR)和选择性非催化还原法(SNCR),两种方式的还原方法的应用和工业化程度较高,其中,选择性非催化还原法(SNCR)由于投资小、运行成本低、施工周期短等优点,而被广泛应用。
一般地,在选择性非催化还原法脱硝过程中,由于没有采用催化剂,脱硝反应的最佳适宜温度为800~1200度,但是垃圾焚烧的温度和锅炉结构的原因,造成适合脱硝反应的温度区域具有局限性,而脱硝剂在未反应充分的情况下就离开了适宜反应的区域,导致氮氧化物的脱除率较低。
发明内容
基于此,有必要针对现有的选择性非催化还原法脱硝过程中,氮氧化物脱除率较低的问题,提供一种使脱硝过程反应充分,提高脱硝率的SNCR脱硝系统及垃圾焚烧锅炉。
一种SNCR脱硝系统,安装于炉膛内,用于对烟气进行脱硝,所述SNCR脱硝系统包括:
脱硝剂喷枪,安装于所述炉膛的水冷壁;
扰流器,沿所述炉膛的水冷壁周向设置,所述扰流器位于所述烟气的排放路径上,且所
述扰流器位于所述脱硝剂喷枪的下游,并可喷射形成与所述烟气流动方向相反的扰流气流。
上述SNCR脱硝系统,将扰流器设于脱硝剂喷枪的上方,并喷射与烟气流动方向相反的扰流气流,通过喷射出扰流气流使烟气在适宜脱硝反应区的停留时间增加,利于脱硝还原反应的均匀与充分。此外,扰流器的喷射气流对脱硝剂进行扰动,使脱硝剂的均匀度提高,从而进一步提高脱硝反应的反应率。
在其中一实施例中,所述炉膛包括分别相对设置的第一水冷壁与第二水冷壁,以及第三水冷壁与第四水冷壁,所述第一水冷壁、第二水冷壁、第三水冷壁及所述第四水冷壁依次相连围设形成所述炉膛,所述脱硝剂喷枪分别安装于所述炉膛的第一水冷壁及所述第二水冷壁,所述SNCR脱硝系统安装于所述炉膛进口处;
其中,相对所述炉膛进口,安装于所述第一水冷壁的所述脱硝剂喷枪的安装高度大于安装于所述第二水冷壁的脱硝剂喷枪的安装高度。
在其中一实施例中,位于所述第一水冷壁的脱硝剂喷枪等距水平排布,位于所述第二水冷壁的脱硝剂喷枪等距水平排布;
位于所述第一水冷壁的脱硝剂喷枪与位于所述第二水冷壁的脱硝剂喷枪交错相对排布。
在其中一实施例中,设置于所述第一水冷壁及第二水冷壁的扰流器位于所述脱硝剂喷枪上方,且分别距所述脱硝剂喷枪连线的竖直距离相等。
在其中一实施例中,设置于所述第一水冷壁的所述扰流器距所述炉膛进口的竖直距离为第一高度,设置于所述第二水冷壁的所述扰流器距所述炉膛进口的竖直距离为第二高度,位于所述第三水冷壁及第四水冷壁的所述扰流器距所述炉膛进口的距离为所述第一高度与所述第二高度的平均值。
在其中一实施例中,所述扰流器的气流流向朝所述炉膛进口方向,且相对垂直于所述炉膛的水冷壁的竖直平面倾斜设置。
在其中一实施例中,每个所述扰流器均朝向下一个所述扰流器,以喷射形成扰流旋流。
在其中一实施例中,所述扰流器相对垂直于所述炉膛的水冷壁的平面之间的夹角为10~25度。
在其中一实施例中,所述扰流器与所述炉膛出口连通,并可回抽所述炉膛出口的烟气至所述炉膛进口处;
其中,所述扰流器回抽所述炉膛出口的烟气占所述炉膛内烟气总量的5%~8%。
一种垃圾焚烧锅炉,包括如上述的SNC脱硝系统。
图1为本发明较佳实施例中的垃圾焚烧锅炉的局部结构示意图;
图2为图1所示的垃圾焚烧锅炉的炉膛截面的俯视图;
图3为图1所示的垃圾焚烧锅炉的扰流器的布置图。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1及图2所示,本发明较佳实施例中的SNCR脱硝系统10,安装于炉膛30内,用于对烟气进行脱硝,该SNCR脱硝系统10包括脱硝剂喷枪12及扰流器14。该脱硝剂喷枪12安装于炉膛30的水冷壁,该扰流器14沿炉膛的水冷壁周向设置,该扰流器14位于烟气的排放路径上,且该扰流器14位于该脱硝剂喷枪12的下游,并可形成与烟气流动方向相反的扰流气流。
具体地,本实施例中,该SNCR脱硝系统10安装于炉膛30的进口处,该炉膛30包括
第一水冷壁32、第二水冷壁34、第三水冷壁36及第四水冷壁38,该第一水冷壁32与第二水冷壁34,以及第三水冷壁36与第四水冷壁38分别相对设置,该第一水冷壁32、第二水冷壁34、第三水冷壁36及第四水冷壁38依次相连围设形成所述炉膛30。该脱硝剂喷枪12安装于炉膛30进口处的第一水冷壁32及第二水冷壁34,该扰流器14与炉膛30出口连通,并可回抽炉膛30出口的烟气至炉膛30的进口处,该扰流器14沿炉膛30的水冷壁周向设置,且相对脱硝剂喷枪12位于其上方,并形成朝向所述炉膛30进口的扰流气流。
需要说明的是,第一水冷壁32和第二水冷壁34分别为锅炉炉膛30的前水冷壁和后水冷壁,第三水冷壁36和第四水冷壁38分别为锅炉的左水冷壁和右水冷壁。锅炉炉膛30的前、后、左、右水冷壁为本领域技术人员所熟知的技术名词,故不在此赘述其具体的定义。
本实施例中,该脱硝剂为尿素或氨水,该扰流器14回抽炉膛30出口的烟气占炉膛30内烟气总量的5%~8%,垃圾进入炉排22形成焚烧炉后,在炉排22上进行燃烧,燃烧过程中会生成氮氧化物,通过脱硝剂喷枪12喷射的脱硝剂将氮氧化物还原成氮气,达到污染物脱除效果。通常,氨水脱硝的理想反应温度为850~1100度,尿素脱硝的理想反应温度为900~1150度,在合理的温度区间内停留足够时间,脱硝反应才能反应充分。一般地,垃圾焚烧的烟气温度在炉膛30的进口处符合脱硝剂的理想反应温度,而将扰流器14设于脱硝剂喷枪12的上方,并将炉膛30出口的烟气回抽喷射,形成与烟气流动方向相反的扰流气流,通过喷射扰流气流使烟气停留时间增加,利于脱硝还原反应的均匀与充分进行。经过实际检测,现有的烟气在理想反应温度区域的停留时间约为0.5秒,而加装扰流器14可以使用烟气停留时间增加10%,同时,扰流器14的喷射气流对脱硝剂进行扰动,使脱硝剂的均匀度提高,从而提高脱硝反应的反应率。
可以理解,SNCR脱硝系统的位置可根据不同脱硝剂的理想反应温度以及垃圾焚烧锅炉的结构而定,在此不作限定。
请继续参阅图1,由于炉膛30的结构导致燃烧物烟气的温度区间存在差异,为适应此差异,相对炉膛30进口,安装于第一水冷壁32的脱硝剂喷枪12的安装高度大于安装于第二水冷壁34脱硝剂喷枪12的安装高度,从而保证脱硝剂形成的反应面与烟气的等温温度面相近似吻合,利于提高脱硝反应的反应率。优选的,位于炉膛30的第一水冷壁32的脱硝剂喷枪12为多个,位于炉膛30的第二水冷壁34的脱硝剂喷枪12也为多个,位于炉膛30的第
一水冷壁32的脱硝剂喷枪12等距水平排布,位于第二水冷壁34的脱硝剂喷枪12等距水平排布。也就是说,第一水冷壁32上设有多个间隔排布的脱硝剂喷枪12,第二水冷壁34上设有多个间隔排布的脱硝剂喷枪12,且位于第一水冷壁32上的脱硝剂喷枪12的连线水平设置,位于第二水冷壁34上的脱硝剂喷枪12的连线水平设置。进一步地,位于第一水冷壁32的脱硝剂喷枪12与位于第二水冷壁34的脱硝剂喷枪12交错相对排布,更清楚地说,位于第一水冷壁32的一脱硝剂喷枪12对应位于第二水冷壁34的两脱硝剂喷枪12之间的位置,从而形成相对均匀的喷洒面,使脱硝反应更均匀。
请再次参阅图1,设置于第一水冷壁32及第二水冷壁34的扰流器14位于对应的脱硝剂喷枪12的上方,且分别距对应的脱硝剂喷枪12连线的竖直距离相等。本实施例中,分别设置于所述第一水冷壁32及第二水冷壁34的所述扰流器14距对应的所述脱硝剂喷枪12连线的距离为300~800毫米。如此,使扰流效果达到最佳,从而使燃烧烟气停留在合理反应区域的时间增加,从而提高反应效率。
优选的,设置于第一水冷壁32的扰流器14距炉膛30进口的竖直距离为第一高度,设置于第二水冷壁34的扰流器14距炉膛30进口的竖直距离为第二高度,位于第三水冷壁36及第四水冷壁38的扰流器14距炉膛30进口的竖直距离为第一高度与第二高度的平均值,从而使扰流器14所在平面与脱硝剂喷枪12所在平面基本平行,使扰流气流更均匀,进而使脱硝反应更加均匀与充分。
请一并参阅图2及图3,该扰流器14气流流向朝炉膛30进口方向,且相对垂直于炉膛30水冷壁的竖直平面倾斜设置,每个扰流器14朝向下一个扰流器14,以喷射形成扰流旋流。也就是说,扰流器14的气流流向沿斜向下,设置于第一水冷壁32、第二水冷壁34、第三水冷壁36及第四水冷壁38上的扰流器14分别朝斜下方喷射的扰流气流,从而形成一旋流,进而使脱硝剂在理想反应区域内停留时间长边,且利于脱硝剂的均匀喷洒与充分反应,提高脱硝反应率。本实施例中,该扰流器14对垂直于炉膛30的水冷壁的平面之间的夹角为10~25度。
基于上述的SNCR脱硝系统10,还提供一种垃圾焚烧锅炉(图未标)。
具体地,如图1所示,该垃圾焚烧锅炉包括燃烧设备20及炉膛30,炉膛30连通该燃烧
设备20,用于将烟气排出。该燃烧设备20包括炉排22及燃烧室24,炉膛30的进口与燃烧室24连通,炉排22用于置放垃圾等燃烧物,在燃烧室24内进行燃烧。
上述SNCR脱硝系统10及垃圾焚烧锅炉,将扰流器14设于脱硝剂喷枪12的上方,并将炉膛30出口的烟气回抽喷射,形成与烟气流动方向相反的扰流气流,通过喷射扰流气流使烟气停留时间增加,利于脱硝还原反应的均匀与充分。此外,扰流器14的喷射气流对脱硝剂进行扰动,使脱硝剂的均匀度提高,从而进一步提高脱硝反应的反应率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种SNCR脱硝系统,安装于炉膛内,用于对烟气进行脱硝,其特征在于,所述SNCR脱硝系统包括:脱硝剂喷枪,安装于所述炉膛的水冷壁;扰流器,沿所述炉膛的水冷壁周向设置,所述扰流器位于所述烟气的排放路径上,且所述扰流器位于所述脱硝剂喷枪的下游,并可喷射形成与所述烟气流动方向相反的扰流气流。
- 根据权利要求1所述的SNCR脱硝系统,其特征在于,所述炉膛包括分别相对设置的第一水冷壁与第二水冷壁,以及第三水冷壁与第四水冷壁,所述第一水冷壁、第二水冷壁、第三水冷壁及所述第四水冷壁依次相连围设形成所述炉膛,所述脱硝剂喷枪分别安装于所述炉膛的第一水冷壁及所述第二水冷壁,所述SNCR脱硝系统安装于所述炉膛进口处;其中,相对所述炉膛进口,安装于所述第一水冷壁的所述脱硝剂喷枪的安装高度大于安装于所述第二水冷壁的脱硝剂喷枪的安装高度。
- 根据权利要求2所述的SNCR脱硝系统,其特征在于,位于所述第一水冷壁的脱硝剂喷枪等距水平排布,位于所述第二水冷壁的脱硝剂喷枪等距水平排布;位于所述第一水冷壁的脱硝剂喷枪与位于所述第二水冷壁的脱硝剂喷枪交错相对排布。
- 根据权利要求3所述的SNCR脱硝系统,其特征在于,设置于所述第一水冷壁及第二水冷壁的扰流器位于所述脱硝剂喷枪上方,且分别距所述脱硝剂喷枪连线的竖直距离相等。
- 根据权利要求4所述的SNCR脱硝系统,其特征在于,设置于所述第一水冷壁的所述扰流器距所述炉膛进口的竖直距离为第一高度,设置于所述第二水冷壁的所述扰流器距所述炉膛进口的竖直距离为第二高度,位于所述第三水冷壁及第四水冷壁的所述扰流器距所述炉膛进口的距离为所述第一高度与所述第二高度的平均值。
- 根据权利要求要求1所述的SNCR脱硝系统,其特征在于,所述扰流器的气流流向朝所述炉膛进口方向,且相对垂直于所述炉膛的水冷壁的竖直平面倾斜设置。
- 根据权利要求6所述的SNCR脱硝系统,其特征在于,每个所述扰流器均朝向下一个所述扰流器,以喷射形成扰流旋流。
- 根据权利要求7所述的SNCR脱硝系统,其特征在于,所述扰流器相对垂直于所述炉膛的水冷壁的平面之间的夹角为10~25度。
- 根据权利要求1所述的SNCR脱硝系统,其特征在于,所述扰流器与所述炉膛出口 连通,并可回抽所述炉膛出口的烟气至所述炉膛进口处;其中,所述扰流器回抽所述炉膛出口的烟气占所述炉膛内烟气总量的5%~8%。
- 一种垃圾焚烧锅炉,其特征在于,包括如权利要求1~9任意一项所述的SNCR脱硝系统。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510494130.X | 2015-08-12 | ||
CN201510494130.XA CN105080322B (zh) | 2015-08-12 | 2015-08-12 | Sncr脱硝系统及垃圾焚烧锅炉 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017024664A1 true WO2017024664A1 (zh) | 2017-02-16 |
Family
ID=54562197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/091231 WO2017024664A1 (zh) | 2015-08-12 | 2015-09-30 | Sncr脱硝系统及垃圾焚烧锅炉 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105080322B (zh) |
WO (1) | WO2017024664A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110454802A (zh) * | 2019-09-05 | 2019-11-15 | 成都市兴蓉再生能源有限公司 | 降低炉内氮氧化物浓度的浓缩液入炉回喷系统及回喷方法 |
CN111214937A (zh) * | 2020-03-16 | 2020-06-02 | 中国华能集团清洁能源技术研究院有限公司 | 一种适用于电厂锅炉的sncr反应器及运行方法 |
CN114849455A (zh) * | 2022-04-24 | 2022-08-05 | 苏州谦恒巨环保科技有限公司 | 一种sncr脱硝处理的锅炉炉膛测温控制还原剂喷射系统 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109432978B (zh) * | 2018-12-28 | 2023-05-02 | 启明星宇节能科技股份有限公司 | 一种脱硝烟气扰动装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009108726A (ja) * | 2007-10-29 | 2009-05-21 | Mitsubishi Heavy Ind Ltd | 排ガス浄化装置 |
CN202315691U (zh) * | 2011-11-16 | 2012-07-11 | 福建鑫泽环保设备工程有限公司 | 一种sncr-scr联合烟气脱硝装置 |
CN203123800U (zh) * | 2012-12-20 | 2013-08-14 | 江苏瑞帆环保装备股份有限公司 | 一种适合垃圾焚烧炉的sncr脱硝装置 |
CN203816484U (zh) * | 2014-05-09 | 2014-09-10 | 江苏东本环保工程有限公司 | 一种选择性非催化还原脱硝设备 |
CN204973530U (zh) * | 2015-08-12 | 2016-01-20 | 广州特种承压设备检测研究院 | Sncr脱硝系统及垃圾焚烧锅炉 |
-
2015
- 2015-08-12 CN CN201510494130.XA patent/CN105080322B/zh active Active
- 2015-09-30 WO PCT/CN2015/091231 patent/WO2017024664A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009108726A (ja) * | 2007-10-29 | 2009-05-21 | Mitsubishi Heavy Ind Ltd | 排ガス浄化装置 |
CN202315691U (zh) * | 2011-11-16 | 2012-07-11 | 福建鑫泽环保设备工程有限公司 | 一种sncr-scr联合烟气脱硝装置 |
CN203123800U (zh) * | 2012-12-20 | 2013-08-14 | 江苏瑞帆环保装备股份有限公司 | 一种适合垃圾焚烧炉的sncr脱硝装置 |
CN203816484U (zh) * | 2014-05-09 | 2014-09-10 | 江苏东本环保工程有限公司 | 一种选择性非催化还原脱硝设备 |
CN204973530U (zh) * | 2015-08-12 | 2016-01-20 | 广州特种承压设备检测研究院 | Sncr脱硝系统及垃圾焚烧锅炉 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110454802A (zh) * | 2019-09-05 | 2019-11-15 | 成都市兴蓉再生能源有限公司 | 降低炉内氮氧化物浓度的浓缩液入炉回喷系统及回喷方法 |
CN111214937A (zh) * | 2020-03-16 | 2020-06-02 | 中国华能集团清洁能源技术研究院有限公司 | 一种适用于电厂锅炉的sncr反应器及运行方法 |
CN114849455A (zh) * | 2022-04-24 | 2022-08-05 | 苏州谦恒巨环保科技有限公司 | 一种sncr脱硝处理的锅炉炉膛测温控制还原剂喷射系统 |
Also Published As
Publication number | Publication date |
---|---|
CN105080322A (zh) | 2015-11-25 |
CN105080322B (zh) | 2018-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104645828B (zh) | 一种应用于水泥熟料生产线窑尾高粉尘烟气的scr脱硝装置及方法 | |
CN102644922B (zh) | 用于含氮有机废物的焚烧处理装置及其焚烧处理工艺 | |
WO2017024664A1 (zh) | Sncr脱硝系统及垃圾焚烧锅炉 | |
JP5284722B2 (ja) | 排煙脱硝装置 | |
CN102302893B (zh) | 一种用于循环流化床锅炉的选择性非催化还原脱硝方法 | |
CN203935782U (zh) | 生活垃圾焚烧发电厂低温scr烟气脱硝装置 | |
CN208406566U (zh) | 一种用于循环流化床锅炉sncr脱硝系统的多点式喷射装置 | |
CN110180386B (zh) | 一种烟气螺旋扩散脱硝装置和脱硝方法 | |
JP4381208B2 (ja) | オーバファイア空気及びオーバファイア空気/n−剤噴射システムの段付きディフューザ | |
CN106268270B (zh) | 一种链篦机-回转窑脱硝系统 | |
CN103252163B (zh) | 一种氨剂喷射组合内置式催化反应去除烟气中nox的装置 | |
CN206540138U (zh) | 一种垃圾焚烧烟气再循环系统 | |
CN103768935A (zh) | Co锅炉与烟气脱硝反应器联合装置 | |
CN103041703A (zh) | 用于燃烧褐煤的scr烟气脱硝系统 | |
CN106582286B (zh) | 一种烟气净化装置与方法 | |
CN103776014B (zh) | 一种具有除灰功能的co锅炉 | |
CN204672469U (zh) | 一种适用于sncr工艺进行烟气脱硝的喷射器及锅炉喷射结构 | |
CN103776013B (zh) | 具有除灰功能的co锅炉 | |
KR20070019924A (ko) | 무촉매 탈질설비의 노즐 배치방법과 배기가스 처리장치 | |
CN106310933A (zh) | 一种用于水煤浆锅炉的烟气脱硝系统及烟气脱硝的方法 | |
CN204735100U (zh) | 对燃煤链条锅炉的烟气进行湿法氧化脱硝的吸收系统 | |
CN104329946A (zh) | 一种焦炉烟道废气脱硝及余热回收的一体化系统 | |
CN111804138A (zh) | 一种生物质锅炉烟气脱硝系统及其使用工艺 | |
CN202289834U (zh) | 一种循环流化床锅炉的高效脱硝装置 | |
CN102553420B (zh) | 一种用于煤粉锅炉的高效脱硝装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15900859 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15900859 Country of ref document: EP Kind code of ref document: A1 |