WO2017024614A1 - Ffs型液晶面板的配向方法 - Google Patents

Ffs型液晶面板的配向方法 Download PDF

Info

Publication number
WO2017024614A1
WO2017024614A1 PCT/CN2015/087913 CN2015087913W WO2017024614A1 WO 2017024614 A1 WO2017024614 A1 WO 2017024614A1 CN 2015087913 W CN2015087913 W CN 2015087913W WO 2017024614 A1 WO2017024614 A1 WO 2017024614A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal panel
molecule compound
small molecule
alignment method
Prior art date
Application number
PCT/CN2015/087913
Other languages
English (en)
French (fr)
Inventor
侯俊
杨凯能
Original Assignee
深圳市华星光电技术有限公司
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510485901.9A external-priority patent/CN105093694B/zh
Application filed by 深圳市华星光电技术有限公司, 武汉华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/777,745 priority Critical patent/US20170139281A1/en
Publication of WO2017024614A1 publication Critical patent/WO2017024614A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to an alignment method of an FFS type liquid crystal panel.
  • Liquid crystal display has many advantages such as thin body, power saving, no radiation, etc., and has been widely used, such as: LCD TV, smart phone, digital camera, notebook computer, tablet computer, public display device, LCD monitors, etc., LCD monitors have become inseparable from modern life.
  • a liquid crystal display on the prior art generally includes a housing, a liquid crystal panel disposed in the housing, and a backlight module disposed in the housing.
  • the liquid crystal panel is usually composed of a color filter substrate (CF), a thin film transistor array substrate (Thin Film Transistor Array Substrate, TFT Array Substrate), and a liquid crystal layer (Liquid Crystal Layer) disposed between the two substrates.
  • CF color filter substrate
  • TFT Array Substrate Thin Film Transistor Array Substrate
  • Liquid Crystal Layer Liquid Crystal Layer
  • liquid crystal panels in the mainstream market can be classified into the following types: Vertical Alignment (VA), Twisted Nematic (TN) or Super Twisted Nematic (Super Twisted Nematic) , STN) type, In-Plane Switching (IPS) type, and Fringe Field Switching (FFS) type.
  • VA Vertical Alignment
  • TN Twisted Nematic
  • Super Twisted Nematic Super Twisted Nematic
  • STN STN
  • IPS In-Plane Switching
  • FFS Fringe Field Switching
  • a conventional liquid crystal panel is provided with a polyimide (PI) alignment film on the side of the array substrate and the color filter substrate adjacent to the liquid crystal layer, and a liquid crystal molecule is used by a rubbing alignment method.
  • Perform alignment As shown in FIG. 1 to FIG. 3, the rubbing alignment method firstly grinds the grooves arranged in a certain direction on the upper layer of the alignment film 30 by using a cloth roller 10, and then cleans the surface of the alignment film 30 with deionized water, and finally performs the liquid crystal panel.
  • the liquid crystal molecules 50 are aligned along the direction of the grooves on the alignment film 30.
  • the conventional friction alignment method is simple and easy to perform, and the anchoring force is strong, but the contrast of the display screen is not high, and cleaning the surface of the alignment film 30 with deionized water cannot ensure that the alignment film debris has no residue, and the display screen is prone to breakage. And other issues.
  • An object of the present invention is to provide an alignment method for an FFS liquid crystal panel, which has a low process difficulty, and has no alignment film debris remaining compared with the conventional friction alignment method, so that the FFS liquid crystal panel has a high display contrast. Improve display quality.
  • the present invention provides an alignment method of an FFS type liquid crystal panel, comprising at least the following steps:
  • Step 1 providing a TFT substrate and a CF substrate, bonding the TFT substrate and the CF substrate to each other, and dropping a mixture of the liquid crystal and the photosensitive small molecule compound between the TFT substrate and the CF substrate to form a liquid crystal panel;
  • Step 2 illuminating the liquid crystal panel with linearly polarized light to polymerize the photosensitive small molecule compound to form a polymer having a specific direction, and preliminary alignment of the liquid crystal molecules;
  • Step 3 Stand the LCD panel.
  • the alignment method of the FFS type liquid crystal panel further includes:
  • Step 4 The liquid crystal panel is irradiated again with linearly polarized light, so that the remaining photosensitive small molecule compound is completely reacted, and the liquid crystal molecules are realigned.
  • the linearly polarized light is UV light.
  • the photosensitive small molecule compound is:
  • R is an alkyl chain.
  • the weight percentage of the photosensitive small molecule compound to the liquid crystal is 0.1 to 3%.
  • the irradiation energy of the linearly polarized light is 1000 to 30000 mj, and the irradiation time is 60 to 300 s.
  • the duration of the liquid crystal panel is set to 30 min.
  • the irradiation energy of the linearly polarized light is 1000 to 30000 mj, and the irradiation time is 60 to 300 s.
  • the invention also provides an alignment method of an FFS type liquid crystal panel, which comprises at least the following steps:
  • Step 1 providing a TFT substrate and a CF substrate, bonding the TFT substrate and the CF substrate to each other, and dropping a mixture of the liquid crystal and the photosensitive small molecule compound between the TFT substrate and the CF substrate to form a liquid crystal panel;
  • Step 2 illuminating the liquid crystal panel with linearly polarized light to polymerize the photosensitive small molecule compound to form a polymer having a specific direction, and preliminary alignment of the liquid crystal molecules;
  • Step 3 The liquid crystal panel is left to stand
  • Step 4 irradiating the liquid crystal panel again with linearly polarized light, so that the remaining photosensitive small molecule compound is completely reacted, and the liquid crystal molecules are realigned;
  • the weight percentage of the photosensitive small molecule compound and the liquid crystal is 0.1 to 3%;
  • the irradiation energy of the linearly polarized light is 1000 to 30000 mj, and the irradiation duration is 60 to 300 s;
  • the duration of the liquid crystal panel is set to 30 min;
  • the irradiation energy of the linearly polarized light in the step 4 is 1000 to 30000 mj, and the irradiation duration is 60 to 300 s.
  • the present invention provides an alignment method of an FFS liquid crystal panel, which irradiates a mixture of a liquid crystal and a photosensitive small molecule compound by linearly polarized light to polymerize a photosensitive small molecule compound to form a polymer having a specific direction.
  • the polymer replaces the traditional rubbing alignment film to initially align the liquid crystal molecules, and utilizes the torsional potential energy of the aligned liquid crystal molecules to re-illuminate the remaining photosensitive small molecule compounds to completely realign the liquid crystal molecules, and the entire alignment process does not need to be energized.
  • the process difficulty is low, and compared with the conventional friction alignment method, no detachment film debris remains, which enables the FFS type liquid crystal panel to have higher display contrast and improve display quality.
  • 1 to 3 are schematic views of a conventional friction alignment method
  • FIG. 4 is a flow chart of a method for aligning an FFS type liquid crystal panel of the present invention
  • FIG. 5 is a schematic view showing the first step of the alignment method of the FFS type liquid crystal panel of the present invention.
  • FIG. 6 and FIG. 7 are schematic diagrams showing the second step of the alignment method of the FFS type liquid crystal panel of the present invention.
  • FIG. 8 and FIG. 9 are schematic diagrams showing the step 4 of the alignment method of the FFS type liquid crystal panel of the present invention.
  • the present invention provides an alignment method of an FFS type liquid crystal panel, which includes the following steps:
  • Step 1 referring to FIG. 5, a TFT substrate and a CF substrate are provided, and a TFT substrate and a CF substrate are bonded to each other (not shown), and a liquid crystal 10 and a photosensitive small molecule compound 20 are dropped between the TFT substrate and the CF substrate. 'The mixture forms a liquid crystal panel.
  • the TFT substrate and the CF substrate are the same as the TFT substrate and the CF substrate in the conventional FFS liquid crystal panel except that the PI alignment film is not required to be provided.
  • the weight percentage of the photosensitive small molecule compound 20' to the liquid crystal 10 is 0.1 to 3%.
  • the photosensitive small molecule compound 20' can be:
  • R is an alkyl chain.
  • Step 2 referring to FIG. 6 and FIG. 7, the liquid crystal panel is irradiated with linearly polarized light, and the photosensitive small molecule compound 20' is polymerized along linearly polarized light to form a polymer 20 having a specific direction instead of the conventional friction.
  • the alignment film performs preliminary alignment of the liquid crystal molecules 10.
  • the linearly polarized light is UV light.
  • the irradiation energy of the linearly polarized light is 1000 to 30000 mj; the irradiation duration is related to the intensity of the illumination, and is generally 60 to 300 s.
  • Step 3 Stand the LCD panel.
  • the length of the liquid crystal panel in the step 3 is 30 min.
  • the alignment method of the liquid crystal panel of the present invention further includes:
  • Step 4 referring to FIG. 8 and FIG. 9, the liquid crystal panel is irradiated again with linearly polarized light to completely react the remaining photosensitive small molecule compound 20', which is close to the polymer 2 having a specific direction formed in the above step 2.
  • the liquid crystal molecules 10 have been aligned, and the remaining photo-sensitive molecules 20' continue to react completely in the alignment direction by utilizing the twisting potential of the liquid crystal molecules 10 to realign the liquid crystal molecules.
  • the irradiation energy of the linearly polarized light in the step 4 is 1000 to 30000 mj; the irradiation duration is related to the intensity of the illumination, and is generally 60 to 300 s.
  • the non-photosensitive small molecule compound 20' remains, and the liquid crystal molecules 10 are regularly arranged in the alignment direction.
  • the alignment method of the liquid crystal panel of the invention does not need to be energized during the entire alignment process, and the process difficulty is low; due to the use of the light alignment mode, compared with the conventional friction alignment method, no alignment film debris remains, and the liquid crystal panel can be made higher. Display contrast to improve display quality.
  • a mixture of a liquid crystal and a photosensitive small molecule compound is irradiated by linearly polarized light, and a photosensitive small molecule compound is polymerized to form a polymer having a specific direction to replace the polymer.
  • the conventional rubbing alignment film initially aligns the liquid crystal molecules, and utilizes the torsional potential energy of the aligned liquid crystal molecules to re-illuminate the remaining photosensitive small molecule compounds to completely realign the liquid crystal molecules, and the entire alignment process does not need to be energized, and the process difficulty is more difficult.
  • no detachment film debris remains, which enables the FFS liquid crystal panel to have a higher display contrast and improve display quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

一种FFS型液晶面板的配向方法,通过线性偏振光照射液晶(10)与感光小分子化合物(20')的混合物,使感光小分子化合物(20')发生聚合反应,形成有特定方向的高分子聚合物(20)来取代传统的摩擦配向膜对液晶分子(10)进行初步配向,并利用已配向的液晶分子(10)的扭转势能,再次光照使剩余的感光小分子化合物(20')完全反应对液晶分子(10)进行再次配向,整个配向过程无需通电,工艺难度较低,与传统的摩擦配向法相比,无配向膜碎屑残留,能够使FFS型液晶面板有较高的显示对比度,提高显示品质。

Description

FFS型液晶面板的配向方法 技术领域
本发明涉及液晶显示技术领域,尤其涉及一种FFS型液晶面板的配向方法。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用,如:液晶电视、智能手机、数字相机、笔记本电脑、平板电脑、公共显示装置、车载显示装置等,液晶显示器已与现代生活密不可分。
现有市场上的液晶显示器一般包括壳体、设于壳体内的液晶面板及设于壳体内的背光模组(Backlight module)。其中,液晶面板通常是由一彩膜基板(Color Filter,CF)、一薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)以及一配置于两基板间的液晶层(Liquid Crystal Layer)所构成,其工作原理是通过在两片玻璃基板上施加驱动电压来控制液晶层内液晶分子的旋转,将背光模组的光线折射出来产生画面。按照液晶的取向方式不同,目前主流市场上的液晶面板可以分为以下几种类型:垂直配向(Vertical Alignment,VA)型、扭曲向列(Twisted Nematic,TN)或超扭曲向列(Super Twisted Nematic,STN)型、平面转换(In-Plane Switching,IPS)型、及边缘场开关(Fringe Field Switching,FFS)型。
为了使液晶分子排列较规则,传统的液晶面板在阵列基板与彩膜基板靠近液晶层的一侧分别设置有聚酰亚胺(Polyimide,PI)配向膜,采用摩擦(Rubbing)配向法对液晶分子进行配向。如图1至图3所示,摩擦配向法先使用一布毛滚轮10在配向膜30上层刷磨出按一定方向排列的沟槽,再用去离子水清洗配向膜30表面,最后进行液晶面板贴合制程,液晶分子50沿配向膜30上的沟槽方向进行配向。这种传统的摩擦配向法简单易行,锚定力强,但显示画面的对比度不高,且用去离子水清洗配向膜30表面无法保证配向膜碎屑无残留,显示画面时易出现碎亮点等问题。
随着显示技术的发展与革新,人们对液晶显示器显示画面的要求也在不断提高,因此需要对液晶面板的配向方法进行改进。
发明内容
本发明的目的在于提供一种FFS型液晶面板的配向方法,其工艺难度较低,与传统的摩擦配向法相比,无配向膜碎屑残留,能够使FFS型液晶面板有较高的显示对比度,提高显示品质。
为实现上述目的,本发明提供一种FFS型液晶面板的配向方法,至少包括如下步骤:
步骤1、提供TFT基板与CF基板,将TFT基板与CF基板对组贴合,并在TFT基板与CF基板之间滴入液晶与感光小分子化合物的混合物,形成液晶面板;
步骤2、使用线性偏振光照射液晶面板,使所述感光小分子化合物发生聚合反应形成有特定方向的高分子聚合物,对液晶分子进行初步配向;
步骤3、静置液晶面板。
所述FFS型液晶面板的配向方法还包括:
步骤4、再次使用线性偏振光照射液晶面板,使剩余的感光小分子化合物完全反应,对液晶分子进行再次配向。
所述线性偏振光为UV光。
所述感光小分子化合物为:
Figure PCTCN2015087913-appb-000001
其中,R为烷基链。
所述步骤1液晶与感光小分子化合物的混合物中,感光小分子化合物与液晶的重量百分比为0.1~3%。
所述步骤2中线性偏振光的照射能量为1000~30000mj,照射时长为60~300S。
所述步骤3中,静置液晶面板的时长为30min。
所述步骤4中线性偏振光的照射能量为1000~30000mj,照射时长为60~300S。
本发明还提供一种FFS型液晶面板的配向方法,至少包括如下步骤:
步骤1、提供TFT基板与CF基板,将TFT基板与CF基板对组贴合,并在TFT基板与CF基板之间滴入液晶与感光小分子化合物的混合物,形成液晶面板;
步骤2、使用线性偏振光照射液晶面板,使所述感光小分子化合物发生聚合反应形成有特定方向的高分子聚合物,对液晶分子进行初步配向;
步骤3、静置液晶面板;
还包括:
步骤4、再次使用线性偏振光照射液晶面板,使剩余的感光小分子化合物完全反应,对液晶分子进行再次配向;
其中,所述步骤1液晶与感光小分子化合物的混合物中,感光小分子化合物与液晶的重量百分比为0.1~3%;
其中,所述步骤2中线性偏振光的照射能量为1000~30000mj,照射时长为60~300S;
其中,所述步骤3中,静置液晶面板的时长为30min;
其中,所述步骤4中线性偏振光的照射能量为1000~30000mj,照射时长为60~300S。
本发明的有益效果:本发明提供的一种FFS型液晶面板的配向方法,通过线性偏振光照射液晶与感光小分子化合物的混合物,使感光小分子化合物发生聚合反应,形成有特定方向的高分子聚合物来取代传统的摩擦配向膜对液晶分子进行初步配向,并利用已配向的液晶分子的扭转势能,再次光照使剩余的感光小分子化合物完全反应对液晶分子进行再次配向,整个配向过程无需通电,工艺难度较低,与传统的摩擦配向法相比,无配向膜碎屑残留,能够使FFS型液晶面板有较高的显示对比度,提高显示品质。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1至图3为传统的摩擦配向法的示意图;
图4为本发明FFS型液晶面板的配向方法的流程图;
图5为本发明FFS型液晶面板的配向方法的步骤1的示意图;
图6、图7为本发明FFS型液晶面板的配向方法的步骤2的示意图;
图8、图9为本发明FFS型液晶面板的配向方法的步骤4的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图4,本发明提供一种FFS型液晶面板的配向方法,包括如下步骤:
步骤1、请参阅图5,提供TFT基板与CF基板,将TFT基板与CF基板对组贴合(未图示),并在TFT基板与CF基板之间滴入液晶10与感光小分子化合物20’的混合物,形成液晶面板。
在该步骤1中,所述TFT基板与CF基板除不需要设置PI配向膜以外,其它结构均与现有FFS型液晶面板中的TFT基板与CF基板相同,此处不展开详述。
具体地,在所述液晶10与感光小分子化合物20’的混合物中,感光小分子化合物20’与液晶10的重量百分比为0.1~3%。
所述感光小分子化合物20’可为:
Figure PCTCN2015087913-appb-000002
其中,R为烷基链。
步骤2、请参阅图6、图7,使用线性偏振光照射液晶面板,使所述感光小分子化合物20’沿线性偏振光发生聚合反应形成有特定方向的高分子聚合物20来取代传统的摩擦配向膜,对液晶分子10进行初步配向。
优选的,所述线性偏振光为UV光。
在该步骤2中,线性偏振光的照射能量为1000~30000mj;照射时长与照射光强有关,一般为60~300S。
完成该步骤2后,绝大部分的感光小分子化合物20’已经发生聚合反应,达到配向效果。
步骤3、静置液晶面板。
优选的,该步骤3静置液晶面板的时长为30min。
此时,液晶面板中还残留有少量未反应的感光小分子化合物20’,若不处理,会直接影响到液晶面板的画面显示质量。为了消除残留的少量未反应的感光小分子化合物20’的影响,本发明的液晶面板的配向方法进一步还包括:
步骤4、请参阅图8、图9,再次使用线性偏振光照射液晶面板,使剩余的感光小分子化合物20’完全反应,由于靠近上述步骤2中形成的具有特定方向的高分子聚合物2的液晶分子10已经进行了配向,利用液晶分子10的扭转势能使剩余的感光小分子化合物20’继续沿配向方向反应完全,对液晶分子进行再次配向。
优选的,该步骤4中线性偏振光的照射能量为1000~30000mj;照射时长与照射光强有关,一般为60~300S。
完成该步骤4后,无感光小分子化合物20’残留,液晶分子10沿配向方向规整排列。
本发明的液晶面板的配向方法在整个配向过程中无需通电,工艺难度较低;由于采用光配向方式,与传统的摩擦配向法相比,无配向膜碎屑残留,能够使液晶面板有较高的显示对比度,提高显示品质。
综上所述,本发明的FFS型液晶面板的配向方法,通过线性偏振光照射液晶与感光小分子化合物的混合物,使感光小分子化合物发生聚合反应,形成有特定方向的高分子聚合物来取代传统的摩擦配向膜对液晶分子进行初步配向,并利用已配向的液晶分子的扭转势能,再次光照使剩余的感光小分子化合物完全反应对液晶分子进行再次配向,整个配向过程无需通电,工艺难度较低,与传统的摩擦配向法相比,无配向膜碎屑残留,能够使FFS型液晶面板有较高的显示对比度,提高显示品质。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (12)

  1. 一种FFS型液晶面板的配向方法,至少包括如下步骤:
    步骤1、提供TFT基板与CF基板,将TFT基板与CF基板对组贴合,并在TFT基板与CF基板之间滴入液晶与感光小分子化合物的混合物,形成液晶面板;
    步骤2、使用线性偏振光照射液晶面板,使所述感光小分子化合物发生聚合反应形成有特定方向的高分子聚合物,对液晶分子进行初步配向;
    步骤3、静置液晶面板。
  2. 如权利要求1所述的FFS型液晶面板的配向方法,还包括:
    步骤4、再次使用线性偏振光照射液晶面板,使剩余的感光小分子化合物完全反应,对液晶分子进行再次配向。
  3. 如权利要求1所述的FFS型液晶面板的配向方法,其中,所述线性偏振光为UV光。
  4. 如权利要求2所述的FFS型液晶面板的配向方法,其中,所述线性偏振光为UV光。
  5. 如权利要求1所述的FFS型液晶面板的配向方法,其中,所述感光小分子化合物为:
    Figure PCTCN2015087913-appb-100001
    其中,R为烷基链。
  6. 如权利要求1所述的FFS型液晶面板的配向方法,其中,所述步骤1液晶与感光小分子化合物的混合物中,感光小分子化合物与液晶的重量百分比为0.1~3%。
  7. 如权利要求1所述的FFS型液晶面板的配向方法,其中,所述步骤2中线性偏振光的照射能量为1000~30000mj,照射时长为60~300S。
  8. 如权利要求1所述的FFS型液晶面板的配向方法,其中,所述步骤3中,静置液晶面板的时长为30min。
  9. 如权利要求2所述的FFS型液晶面板的配向方法,其中,所述步骤4中线性偏振光的照射能量为1000~30000mj,照射时长为60~300S。
  10. 一种FFS型液晶面板的配向方法,至少包括如下步骤:
    步骤1、提供TFT基板与CF基板,将TFT基板与CF基板对组贴合, 并在TFT基板与CF基板之间滴入液晶与感光小分子化合物的混合物,形成液晶面板;
    步骤2、使用线性偏振光照射液晶面板,使所述感光小分子化合物发生聚合反应形成有特定方向的高分子聚合物,对液晶分子进行初步配向;
    步骤3、静置液晶面板;
    还包括:
    步骤4、再次使用线性偏振光照射液晶面板,使剩余的感光小分子化合物完全反应,对液晶分子进行再次配向;
    其中,所述步骤1液晶与感光小分子化合物的混合物中,感光小分子化合物与液晶的重量百分比为0.1~3%;
    其中,所述步骤2中线性偏振光的照射能量为1000~30000mj,照射时长为60~300S;
    其中,所述步骤3中,静置液晶面板的时长为30min;
    其中,所述步骤4中线性偏振光的照射能量为1000~30000mj,照射时长为60~300S。
  11. 如权利要求10所述的FFS型液晶面板的配向方法,其中,所述线性偏振光为UV光。
  12. 如权利要求10所述的FFS型液晶面板的配向方法,其中,所述感光小分子化合物为:
    Figure PCTCN2015087913-appb-100002
    其中,R为烷基链。
PCT/CN2015/087913 2015-08-10 2015-08-24 Ffs型液晶面板的配向方法 WO2017024614A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/777,745 US20170139281A1 (en) 2015-08-10 2015-08-24 Alignment method of ffs type liquid crystal panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510485901.9A CN105093694B (zh) 2015-08-10 Ffs型液晶面板的配向方法
CN201510485901.9 2015-08-10

Publications (1)

Publication Number Publication Date
WO2017024614A1 true WO2017024614A1 (zh) 2017-02-16

Family

ID=54574466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087913 WO2017024614A1 (zh) 2015-08-10 2015-08-24 Ffs型液晶面板的配向方法

Country Status (2)

Country Link
US (1) US20170139281A1 (zh)
WO (1) WO2017024614A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061113A (en) * 1997-02-07 2000-05-09 Fuji Photo Film Co., Ltd. Optical compensatory sheet having an orientation layer activated by irradiation of light, process and preparation of the same and liquid crystal display
CN1355443A (zh) * 2000-11-30 2002-06-26 中国科学院长春光学精密机械与物理研究所 小分子单体链状光聚合形成液晶取向膜的方法
JP4292778B2 (ja) * 2002-10-07 2009-07-08 セイコーエプソン株式会社 照明装置及び投射型表示装置並びに液晶素子
CN102402069A (zh) * 2011-11-11 2012-04-04 深圳市华星光电技术有限公司 液晶显示面板的配向膜制作方法
CN104166274A (zh) * 2014-07-22 2014-11-26 京东方科技集团股份有限公司 光配向膜及其制备方法、液晶显示基板和装置
CN104503149A (zh) * 2014-12-30 2015-04-08 南京中电熊猫液晶显示科技有限公司 液晶显示面板及其光配向方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0182876B1 (ko) * 1996-01-09 1999-05-01 구자홍 액정셀의 프리틸트방향 제어방법
TWI292846B (zh) * 2000-07-13 2008-01-21 Japan Science & Tech Agency
CN103748508B (zh) * 2011-08-26 2016-08-31 夏普株式会社 液晶显示面板和液晶显示装置
CN102732265B (zh) * 2012-06-15 2014-04-09 深圳市华星光电技术有限公司 用于液晶显示器的液晶介质组合物
US9228130B2 (en) * 2013-06-25 2016-01-05 Shenzhen China Star Optoelectronics Technology Co., Ltd Alignment film, a method of fabricating the same, and a liquid crystal display using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061113A (en) * 1997-02-07 2000-05-09 Fuji Photo Film Co., Ltd. Optical compensatory sheet having an orientation layer activated by irradiation of light, process and preparation of the same and liquid crystal display
CN1355443A (zh) * 2000-11-30 2002-06-26 中国科学院长春光学精密机械与物理研究所 小分子单体链状光聚合形成液晶取向膜的方法
JP4292778B2 (ja) * 2002-10-07 2009-07-08 セイコーエプソン株式会社 照明装置及び投射型表示装置並びに液晶素子
CN102402069A (zh) * 2011-11-11 2012-04-04 深圳市华星光电技术有限公司 液晶显示面板的配向膜制作方法
CN104166274A (zh) * 2014-07-22 2014-11-26 京东方科技集团股份有限公司 光配向膜及其制备方法、液晶显示基板和装置
CN104503149A (zh) * 2014-12-30 2015-04-08 南京中电熊猫液晶显示科技有限公司 液晶显示面板及其光配向方法

Also Published As

Publication number Publication date
CN105093694A (zh) 2015-11-25
US20170139281A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US9804433B2 (en) Liquid crystal display panel of improving color washout
WO2016049958A1 (zh) 液晶显示装置
US20180088364A1 (en) Manufacture method of psva liquid crystal panel
WO2016049960A1 (zh) 液晶显示装置
WO2016049961A1 (zh) 液晶显示装置
US9182623B2 (en) Liquid crystal display and manufacturing method thereof
WO2017084154A1 (zh) 反应型垂直取向材料、液晶显示面板、及液晶配向方法
US20160342036A1 (en) Uv2a pixel structure
JP5113869B2 (ja) 液晶表示装置及びその製造方法
US9605206B2 (en) Liquid crystal composition and liquid crystal display including the same
US8089591B2 (en) Liquid crystal display device and method of aligning liquid crystal molecules utilized thereby
KR102073957B1 (ko) 액정표시패널 및 그 제조방법
WO2016049959A1 (zh) 液晶显示装置
US20180321560A1 (en) Liquid crystal display device and method for producing same
JP3674610B2 (ja) 液晶装置、液晶装置の製造方法、電子機器
US20140063410A1 (en) Liquid crystal display panel and liquid crystal display apparatus
WO2017024614A1 (zh) Ffs型液晶面板的配向方法
US20120307187A1 (en) Method for producing liquid crystal display panel, and liquid crystal display panel
TWI477862B (zh) 液晶顯示面板及液晶顯示裝置
JPH11212095A (ja) 液晶表示装置およびその製法
US8570471B2 (en) OCB liquid crystal panel and manufacturing method thereof, and OCB liquid crystal display
JP7072055B2 (ja) 液晶配向方法及び液晶配向システム
US20130314656A1 (en) Liquid Crystal Panel And Method Of Liquid Crystal Alignment
CN105093694B (zh) Ffs型液晶面板的配向方法
US9733524B2 (en) Liquid crystal display device and manufacturing method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14777745

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900811

Country of ref document: EP

Kind code of ref document: A1