WO2017024609A1 - 一种多电机系统及其控制方法和应用其的冰柜及控制方法 - Google Patents

一种多电机系统及其控制方法和应用其的冰柜及控制方法 Download PDF

Info

Publication number
WO2017024609A1
WO2017024609A1 PCT/CN2015/087793 CN2015087793W WO2017024609A1 WO 2017024609 A1 WO2017024609 A1 WO 2017024609A1 CN 2015087793 W CN2015087793 W CN 2015087793W WO 2017024609 A1 WO2017024609 A1 WO 2017024609A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
ecm
temperature
main
ecm motor
Prior art date
Application number
PCT/CN2015/087793
Other languages
English (en)
French (fr)
Inventor
边文清
胡戈
Original Assignee
中山大洋电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大洋电机股份有限公司 filed Critical 中山大洋电机股份有限公司
Priority to US14/985,368 priority Critical patent/US10396700B2/en
Publication of WO2017024609A1 publication Critical patent/WO2017024609A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to a multi-motor system, a control method thereof and a freezer and a control method thereof.
  • ECM motors Electric commutation motors
  • DC brushless motors Electronic commutation motors
  • the existing speed control of the ECM motor for the freezer is equipped with a dedicated motor speed controller for sending commands to the ECM motor to control whether the ECM motor speed is running at high or low.
  • the cost is high, the parts are numerous, and the installation is complicated.
  • the applicant has proposed a solution and applied for a patent.
  • the solution is that the microprocessor of the motor controller of each ECM motor is also connected with a first temperature detecting unit and a second temperature detecting unit, and the first temperature detecting is performed.
  • the unit and the second temperature detecting unit are respectively placed at different positions outside the main ECM motor to respectively detect the temperature T1 and the temperature T2 at different external positions. If the temperature difference between the temperature T1 and the temperature T2 is less than or equal to the set value T0, the micro processing The first speed S1 is selected and the motor is controlled to run at a first speed S1 at a constant speed. If the temperature difference between the temperature T1 and the temperature T2 is greater than the set value T0, the microprocessor selects the second speed S2 and controls the motor to The second speed S2 runs at a constant speed.
  • the above solutions are also imperfect.
  • the main points are as follows: 1) Since there may be 4 to 10 side-by-side ECM motors in a freezer, if each ECM motor has a first temperature probe The unit and the second temperature detecting unit are bound to cause an increase in cost; 2) if each ECM motor has a first temperature detecting unit and a second temperature detecting unit, resulting in more troublesome installation and wiring; 3) due to each The ECM motor has a first temperature detecting unit and a second temperature detecting unit, and each ECM motor has an inconsistency in the accuracy detection of the first temperature detecting unit and the second temperature detecting unit, resulting in out of synchronization, and each ECM exists. The motor speed is not synchronized.
  • a first object of the present invention is to provide a multi-motor system that realizes synchronous control of the rotational speed of each ECM motor while having a simple structure, low cost, and simple installation.
  • Another object of the present invention is to provide a control method for a multi-motor system that can more reliably cause each ECM motor to implement synchronous speed control.
  • a third object of the present invention is to provide a freezer which is less expensive and simpler in construction.
  • a fourth object of the present invention is to provide a method of controlling a freezer that can more reliably cause each ECM motor to perform synchronous speed control.
  • a multi-motor system comprising a plurality of ECM motors, each of the ECM motors comprising a motor controller and a motor entity; wherein: the plurality of ECM motors comprises a main ECM motor and a plurality of slave ECM motors, a main ECM The motor and each of the slave ECM motors are wired or wirelessly communicated, wherein: the microprocessor of the motor controller of the main ECM motor is further connected with a first temperature detecting unit and a second temperature detecting unit, a first temperature detecting unit and a The two temperature detecting units are respectively placed at different positions outside the main ECM motor to respectively detect the temperature T1 and the temperature T2 of different external positions, and the microprocessor of the motor controller of the main ECM motor automatically selects according to the temperature difference of the temperature T1 and the temperature T2.
  • the operating parameters of the current main ECM motor; the main ECM motor notifies each of the detected temperature data T1, T2 from the ECM motor, and the operating parameters of the ECM motor are selected by the ECM motor according to the temperature data T1, T2; or the main ECM motor is according to different positions
  • the temperature T1 and temperature T2 are the operating parameters set by each ECM motor, and the main ECM motor notifies each station to operate from the ECM motor according to the set operating parameters.
  • the motor body described above comprises a stator assembly, a rotor assembly and a casing assembly, the stator assembly and the rotor assembly being mounted inside the casing assembly, the stator assembly comprising a stator core and a coil winding wound on the stator core, the rotor assembly comprising a rotor core and a permanent magnet nested inside the rotor core, the motor controller includes a control circuit board, a microprocessor on the control circuit board, an inverter circuit, a motor operation parameter detecting unit, and a motor operation parameter detecting unit
  • the motor running data is transmitted to the microprocessor, the output end of the microprocessor is connected to the input end of the inverter circuit, and the output end of the inverter circuit is connected to the coil winding wound on the stator core.
  • the operating parameters of the above-mentioned motor refer to the rotational speed, or the operating current, or the torque, or the air volume.
  • the gear speed V of the main ECM motor described above has two gear speeds S1 and S2. If the temperature difference ⁇ T between the temperature T1 and the temperature T2 is less than or equal to the set value t0, the microprocessor selects the first speed. S1 and control the motor to run at a constant speed of the first speed S1. If the temperature difference between the temperature T1 and the temperature T2 is greater than the set value t0, the microprocessor selects the second speed S2 and controls the motor to be constant at the second speed S2. Speed running.
  • the gear speed V of the main ECM motor described above has five gear speeds S1, S2, S3, S4 and S5. If the temperature difference ⁇ T between the temperature T1 and the temperature T2 is less than or equal to the set value t00, the microprocessor The first speed S1 is selected and the motor is controlled to run at a constant speed of the first speed S1; if the temperature difference ⁇ T between the temperature T1 and the temperature T2 is greater than the set value t00 and less than or equal to the set value t01, the microprocessor selects The second speed S2 controls the motor to run at a constant speed of the second speed S2; if the temperature difference ⁇ T between the temperature T1 and the temperature T2 is greater than the set value t01 and less than or equal to the set value t02, the microprocessor selects the third The speed S3 is controlled to control the motor to run at a constant speed of the third speed S3; if the temperature difference ⁇ T between the temperature T1 and the temperature T2 is greater than the set value t02
  • the first temperature detecting unit and the second temperature detecting unit described above are the thermistor temperature detecting units.
  • the microprocessor in the motor controller of each ECM motor described above is connected to a serial communication module, and the main ECM motor and each station are connected to the bus from the ECM motor through respective serial communication modules for communication.
  • the microprocessor in the motor controller of each ECM motor described above is connected to a wireless communication module, and the main ECM motor and each station communicate from the ECM motor through respective wireless communication modules.
  • the wireless communication module described above is a Bluetooth module, a satellite communication module, and a mobile phone communication module.
  • the main ECM motor described above has a programming port module to set the speed of each gear, each from the ECM
  • the motor does not have a programming port module to save cost and simplify the structure.
  • the speed is not modified within n seconds, 1 ⁇ n ⁇ 300.
  • the temperature difference ⁇ T described above is an interval value [to-tb, to + tb], to is a critical temperature difference, and tb is a fluctuation range of the allowable temperature difference.
  • a control method for a multi-motor system comprising a plurality of ECM motors, a plurality of ECM motors including a main ECM motor and a plurality of slave ECM motors, a main ECM motor and a single slave ECM motor Communication; characterized in that: the microprocessor of the motor controller of the main ECM motor is further connected with a first temperature detecting unit and a second temperature detecting unit, and the first temperature detecting unit and the second temperature detecting unit are respectively placed in the main ECM motor The external external position detects the temperature T1 and the temperature T2 of different external positions respectively, and the microprocessor of the motor controller of the main ECM motor automatically selects the current motor running parameter of the main ECM motor according to the temperature difference of the temperature T1 and the temperature T2; the main ECM motor Notify each station from the ECM motor's detected temperature data T1, T2, from the ECM motor according to the temperature data T1, T2 select the operating parameters from the ECM motor, each station from the ECM motor does not return
  • the main ECM motor and each of the above-described slave ECM motors communicate via a bus.
  • the main ECM motor described above and each station are wirelessly communicated between the ECM motors.
  • a control method for a multi-motor system comprising a plurality of ECM motors, a plurality of ECM motors including a main ECM motor and a plurality of slave ECM motors, a main ECM motor and a plurality of slave ECM motors Communication; characterized in that: the microprocessor of the motor controller of the main ECM motor is further connected with a first temperature detecting unit and a second temperature detecting unit, and the first temperature detecting unit and the second temperature detecting unit are respectively disposed outside the main ECM motor Different positions to detect the temperature T1 of different external locations and Temperature T2, the microprocessor of the motor controller of the main ECM motor automatically selects the current motor operating parameters of the main ECM motor according to the temperature difference of the temperature T1 and the temperature T2; the main ECM motor notifies each of the detected temperature data T1, T2 from the ECM motor, The operating parameters from the ECM motor are selected from the ECM motor according to the temperature data T1, T2, and each station returns data from the ECM motor to
  • the operating parameters set by the motor are notified by the main ECM motor to operate from the ECM motor according to the set operating parameters.
  • Each station returns data from the ECM motor to the main ECM motor.
  • the operating parameters of the motor refer to the speed. Or working current, either torque or air volume.
  • the main ECM motor and each of the above-described slave ECM motors communicate via a bus.
  • the main ECM motor described above and each station are wirelessly communicated between the ECM motors.
  • A) designation is one communication cycle every T seconds; B) time period of the Ta seconds starting each cycle (Ta ⁇ T, the same below), the main ECM motor fixed transmission temperature difference or speed message, from the ECM motor can not reply; C) every cycle Ta seconds start to the end of the cycle, is the time period from the ECM motor is allowed to reply, the main ECM motor can not Send a message, from the ECM motor to send a reply message; from the ECM motor, first need to monitor the bus to determine whether there are other motors on the bus to send a signal; D) if the bus is idle, the slave ECM motor immediately sends a reply message; E) If the bus is busy, the slave ECM motor will wait for a random interval and then retry to send a reply message; F) if the bus is always busy during this period, then the slave ECM motor needs to wait for the next cycle to try to send a reply again.
  • A1) designation is one communication cycle every T seconds; B1) time period of the Ta seconds starting from each cycle (Ta ⁇ T), the main ECM motor fixed transmission temperature difference or speed message, from the ECM motor can not reply; C1) every cycle from Ta seconds to the end of the cycle, is the time period from the ECM motor is allowed to reply, the main ECM motor can not send messages From the ECM motor to send a reply message; from the ECM motor first need to monitor the bus to determine whether there are other motors on the bus to send a signal; D1) If the bus is idle, the ECM motor immediately sends a reply message; E1) The bus is busy, the slave ECM motor is waiting for a random Retry to send a reply message after the interval; F1) If the message collision occurs, wait for a random interval and retry step C1; G1) If the bus is always busy during this period, then the slave ECM motor needs to wait for the next cycle
  • the main ECM motor described above and each of the slave ECM motors do not need to be assigned a communication address.
  • the main ECM motor and each of the slave ECM motors described above are each assigned an independent communication address.
  • a freezer includes a compressor, a coil evaporator, and an evaporator fan, wherein the evaporator fan includes a fan casing, a multi-motor system, and a plurality of sets of blades, and the compressor supplies a cooling medium to the coil evaporator, the fan casing
  • a coil evaporator is installed on one side of the air inlet, and an air outlet is arranged on the other side of the fan casing.
  • the multi-motor system is installed inside the fan casing, and several groups of blades are driven by a multi-motor system, and the multi-motor system and the blades are located on the disk.
  • the multi-motor system is any one of the above-mentioned motor systems consisting of multiple automatic speed-regulating ECM motors; wherein the first temperature detection is connected to the main ECM motor
  • the unit is located near the air inlet of the fan casing for detecting the hot air temperature T1, and is connected to the main ECM motor.
  • the second temperature detecting unit is located near the air outlet of the fan casing for detecting the cold air temperature T2.
  • a control method for a freezer, the refrigerator includes a compressor, a coil evaporator, and an evaporator fan, wherein the evaporator fan includes a fan casing, a multi-motor system, and a plurality of sets of blades, and the compressor supplies the coil evaporator Cooling medium, a coil evaporator is installed on the air inlet side of the fan casing, and an air outlet is arranged on the other side of the fan casing, and the multi-motor system is installed inside the fan casing, and several groups of blades are driven by the multi-motor system.
  • the multi-motor system and the vane are located between the coil evaporator and the air outlet, and the multi-motor system is any one of the above-mentioned motor systems composed of a plurality of automatically-adjusted ECM motors; wherein, the main ECM is connected
  • the first temperature detecting unit on the motor is located near the air inlet of the fan casing for detecting the hot air temperature T1, and is connected to the main ECM motor.
  • the second temperature detecting unit is located near the air outlet of the fan casing for detecting the cold air temperature T2.
  • the characteristic is that the microprocessor of the motor controller of the main ECM motor automatically selects the current motor operating parameters of the main ECM motor according to the temperature difference of the temperature T1 and the temperature T2, the main ECM motor and Each station performs one-way communication from the ECM motor; the main ECM motor notifies each of the detected temperature data T1 and T2 from the ECM motor, and the slave ECM motor selects the slave ECM motor based on the temperature data T1, T2.
  • each unit does not return to the main ECM motor from the ECM motor; or the main ECM motor is based on the temperature T1 and temperature T2 of different positions for each set of operating parameters set from the ECM motor, the main ECM motor notifies each unit from the ECM motor According to the set operating parameters, each ECM motor does not return to the main ECM motor.
  • the operating parameters of the motor refer to the speed, or the operating current, or the torque, or the air volume, the main ECM motor and each unit. Communication via bus or wireless communication between ECM motors.
  • a control method for a freezer, the refrigerator includes a compressor, a coil evaporator, and an evaporator fan, wherein the evaporator fan includes a fan casing, a multi-motor system, and a plurality of sets of blades, and the compressor supplies the coil evaporator Cooling medium, a coil evaporator is installed on the air inlet side of the fan casing, and an air outlet is arranged on the other side of the fan casing, and the multi-motor system is installed inside the fan casing, and several groups of blades are driven by the multi-motor system.
  • the multi-motor system and the vane are located between the coil evaporator and the air outlet, and the multi-motor system is any one of the above-mentioned motor systems composed of a plurality of automatically-adjusted ECM motors; wherein, the main ECM is connected
  • the first temperature detecting unit on the motor is located near the air inlet of the fan casing for detecting the hot air temperature T1, and is connected to the main ECM motor.
  • the second temperature detecting unit is located near the air outlet of the fan casing for detecting the cold air temperature T2.
  • the characteristic is that the microprocessor of the motor controller of the main ECM motor automatically selects the current motor operating parameter of the main ECM motor according to the temperature difference of the temperature T1 and the temperature T2; the main ECM motor Knowing the detected temperature data T1 and T2 of each ECM motor from the ECM motor, the operating parameters of the ECM motor are selected according to the temperature data T1 and T2 from the ECM motor, and each station has received data from the ECM motor to return to the main ECM motor; or the main ECM motor According to the temperature T1 and temperature T2 of different positions, the operating parameters set by each ECM motor are notified. The main ECM motor notifies each station to run from the ECM motor according to the set operating parameters. Each station returns from the ECM motor and the main ECM motor has received. To the data, the operating parameters of the motor refer to the rotational speed, or the operating current, or the torque, or the air volume.
  • A) designation is one communication cycle every T seconds; B) time period of the Ta seconds starting each cycle (Ta ⁇ T, the same below), the main ECM motor fixed transmission temperature difference or speed message, from the ECM motor can not reply; C) every cycle Ta seconds start to the end of the cycle, is the time period from the ECM motor allowed to reply, the main ECM power
  • the machine shall not send a message, and the ECM motor shall send a reply message; from the ECM motor, the bus shall first be monitored to determine whether there are other motors transmitting signals on the bus; D) if the bus is idle, the slave ECM motor immediately sends a reply message.
  • A1) specifies that each T seconds is a communication cycle; B1) within a time period of Ta seconds from the beginning of each cycle (Ta ⁇ T ), the main ECM motor fixed transmission temperature difference or speed message, from the ECM motor can not reply; C1) every cycle from Ta seconds to the end of the cycle, is the time period from the ECM motor is allowed to reply, the main ECM motor can not send messages, The ECM motor should send a reply message; the ECM motor first needs to monitor the bus to judge whether there are other motors on the bus to send the signal; D1) If the bus is idle, the slave ECM motor immediately sends a reply message; E1) If the bus It is busy, the ECM motor waits for a random interval and then retry to send a reply message; F1) If the message collision occurs, wait for a random interval and retry step C1; G1) If the bus is always busy during this period, Then the slave ECM motor needs
  • the invention has the following effects:
  • the multi-motor system of the present invention includes a plurality of ECM motors including a main ECM motor and a plurality of slave ECM motors, a main ECM motor, and each of the slave ECM motors via wired or wireless communication.
  • the microprocessor of the motor controller of the main ECM motor is further connected with a first temperature detecting unit and a second temperature detecting unit, wherein the first temperature detecting unit and the second temperature detecting unit are respectively placed at different positions outside the main ECM motor.
  • the temperature T1 and the temperature T2 of different external positions are respectively detected, and the microprocessor of the motor controller of the main ECM motor automatically selects the operating parameters of the current main ECM motor according to the temperature difference of the temperature T1 and the temperature T2; the main ECM motor notifies each station from the ECM
  • the detected temperature data T1 and T2 of the motor are selected from the operating parameters of the ECM motor by the ECM motor according to the temperature data T1 and T2; or the main ECM motor is set to operate from the ECM motor according to the temperature T1 and temperature T2 of the different positions.
  • the parameters are notified by the main ECM motor to each unit from the ECM motor to operate according to the set operating parameters. No need to set each ECM motor
  • the first temperature detecting unit and the second temperature detecting unit are simple in structure, low in cost and easy to install.
  • the gear speed V of the main ECM motor of the multi-motor system of the present invention has five gear speeds S1, S2, S3, S4, and S5, and five gears are selected according to the temperature difference ⁇ T between the temperature T1 and the temperature T2. Bit speed, speed selection is more refined control, making control more precise;
  • the first temperature detecting unit and the second temperature detecting unit used in the multi-motor system of the present invention are the thermistor temperature detecting unit, which have high detection precision and low cost.
  • the ECM motor has a programming port module to set the speed of each gear, making it more flexible and convenient to use.
  • the control method of the multi-motor system of the present invention can more reliably enable the synchronous speed control of each ECM motor, and the microprocessor of the motor controller of the main ECM motor automatically selects the main according to the temperature difference of the temperature T1 and the temperature T2.
  • the current motor running parameters of the ECM motor; the main ECM motor notifies each of the detected temperature data T1 and T2 from the ECM motor, and the operating parameters of the ECM motor are selected by the ECM motor according to the temperature data T1 and T2, and the stations no longer reply from the ECM motor.
  • the main ECM motor or the main ECM motor according to different positions of the temperature T1 and temperature T2 for each set of operating parameters from the ECM motor, the main ECM motor informs each station from the ECM motor according to the set operating parameters, each station The ECM motor no longer returns to the main ECM motor.
  • the operating parameters of the motor refer to the speed, or the operating current, or the torque, or the air volume.
  • the control method of the multi-motor system of the present invention can more reliably enable the synchronous speed control of each ECM motor, and the microprocessor of the motor controller of the main ECM motor automatically selects the main body according to the temperature difference of the temperature T1 and the temperature T2.
  • the current motor operating parameters of the ECM motor; the main ECM motor notifies each of the detected temperature data T1 and T2 from the ECM motor, and the operating parameters of the ECM motor are selected by the ECM motor according to the temperature data T1 and T2, and each station returns from the ECM motor to the main ECM.
  • the motor has received the data; or the main ECM motor is based on the temperature T1 and temperature T2 of the different positions for the operating parameters set by each ECM motor, and the main ECM motor notifies each station to operate from the ECM motor according to the set operating parameters, each The station has received data from the ECM motor to return to the main ECM motor.
  • the operating parameters of the motor refer to the rotational speed, or the operating current, or the torque, or the air volume. .
  • the freezer of the present invention uses the above multi-motor system, has a simpler structure, lower cost, and is installed. Simple.
  • the control method of the ice bin of the present invention can realize the synchronous rotation speed control of each ECM motor more reliably by using the above-described control method of the multi-motor system.
  • the gear speed V of the main ECM motor has two gear speeds S1 and S2. If the temperature difference ⁇ T between the temperature T1 and the temperature T2 is less than or equal to the set value t0, the microprocessor selects the first speed S1. And controlling the motor to run at a first speed S1 at a constant speed. If the temperature difference between the temperature T1 and the temperature T2 is greater than the set value t0, the microprocessor selects the second speed S2 and controls the motor to maintain the second speed S2 at a constant speed. run. It is the critical temperature difference of t0, but in actual application, if the temperature difference fluctuates around t0, it will cause the motor to repeatedly switch between high and low speeds to cause operation fluctuations.
  • FIG. 1 is a schematic structural view of a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of another embodiment of the present invention.
  • FIG. 3 is a perspective view of an ECM motor used in various embodiments of the present invention.
  • FIG. 4 is an exploded view of an ECM motor used in various embodiments of the present invention.
  • Figure 5 is a cross-sectional view showing the structure of an ECM motor used in each embodiment of the present invention.
  • Figure 6 is a perspective view of a stator core in an ECM motor used in various embodiments of the present invention.
  • Figure 7 is a perspective view of a rotor assembly in an ECM motor used in various embodiments of the present invention.
  • Figure 8 is a top plan view of a rotor assembly in an ECM motor used in various embodiments of the present invention.
  • Figure 9 is a circuit block diagram of a main ECM motor in various embodiments of the present invention.
  • FIG. 10 is a circuit block diagram of an ECM motor in various embodiments of the present invention.
  • Figure 11 is a control flow chart of the main ECM motor in the first embodiment of the present invention.
  • Figure 12 is a control flow chart of the main ECM motor in the first embodiment of the present invention.
  • Figure 13 is a schematic view showing the structure of a freezer in the fourth embodiment of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a multi-motor system includes a plurality of ECM motors, each of which includes a motor controller and a motor entity; and the plurality of ECM motors includes a main ECM motor 100 and a plurality of slave ECM motors.
  • the main ECM motor 101 and each station communicate from the ECM motors 101, 102, 103, 104 by wire, only four slave ECM motors 101, 102, 103, 104 are shown.
  • the number of ECM motors can be increased or decreased; as shown in FIG.
  • the main ECM motor 101 and each station communicate wirelessly from the ECM motors 101, 102, 103, 104, wherein: the main ECM motor 100
  • the microprocessor of the motor controller is further connected with a first temperature detecting unit 5 and a second temperature detecting unit 6, and the first temperature detecting unit 5 and the second temperature detecting unit 6 are respectively placed at different positions outside the main ECM motor 100.
  • the temperature T1 and the temperature T2 of different external locations are respectively detected, and the microprocessor of the motor controller of the main ECM motor 100 automatically selects the operating parameters of the current main ECM motor according to the temperature difference of the temperature T1 and the temperature T2; the main ECM motor 100 notifies each station From the ECM motors 101, 102,
  • the detected temperature data T1, T2 of 103, 104 are selected from the ECM motor 101, 102, 103, 104 according to the temperature data T1, T2 from the operating parameters of the ECM motor; or the main ECM motor 100 according to the temperature T1 and temperature T2 of the different positions
  • the main ECM motor 100 notifies each station to operate from the ECM motors 101, 102, 103, 104 in accordance with the set operating parameters.
  • the operating parameters of the above-mentioned motor refer to the rotational speed, or the operating current, or the torque, or the air volume.
  • the middle main ECM motor 100 and the plurality of slave ECM motors 101, 102, 103, and 104 of the embodiments of the present invention use an automatic speed regulating ECM motor, and the automatic adjustment is performed.
  • the speed ECM motor includes a motor controller 1 and a motor body 2, and the motor body 2 includes a rotating shaft 20, a stator assembly 21, a rotor assembly 22, and a casing assembly 23.
  • the casing assembly 23 includes a casing 231 and a front end.
  • the motor controller 1 includes a control box 11 and is mounted in the control box 11
  • the control circuit board 12 the rotor assembly 22 is mounted on the rotating shaft 20
  • the stator assembly 21 and the casing 231 are connected together and nested outside the rotor assembly 22, and the front end cover 232 and the rear end cover 233 are respectively mounted at the two ends of the casing 231.
  • the rotating shaft 20 is supported on the bearings of the front end cover 232 and the rear end cover 233, and the control box 11 is mounted on the rear end cover 233, and a plurality of upper bosses 2331 and lower convex portions respectively protrude from the edges of the end faces of the rear end cover 233
  • the table 2332, the connecting screw 9 extends from the top of the control box 11 and is screwed into the upper boss 2331 to mount the control box 11 on the top surface of the rear end cover 233, and the connecting screw 9 extends from the top of the front end cover 232 and is screwed into the lower convex portion.
  • the stage 2332 mounts the front end cover 232 and the rear end cover 233 at both ends of the casing 231.
  • the number of the upper boss 2331 and the lower boss 2332 are both two, and the upper boss 2331 and the lower boss 2332 are symmetrically distributed on both end faces of the rear end cover 233.
  • a plurality of mounting screws 10 are respectively disposed on the tops of the control box 11 and the front end cover 232.
  • the stator assembly 21 includes a stator core 211 and a coil winding 212 wound on the stator core 211.
  • the stator core 211 includes an annular yoke portion 2111 and six tooth portions 2112 projecting outward from the annular yoke portion 2111, adjacent thereto.
  • a welt groove 2113 is formed between the two tooth portions 2112, and a groove 2110 is formed in the axial direction on the outer surface of the ring yoke portion 2111, and the connecting screw 9 passes through the groove 2110.
  • the rotor assembly 22 includes a rotor core 221 and a permanent magnet 222 nested inside the rotor core 221, and four positioning blocks 2211 are disposed on the outer surface of the rotor core 221 in the axial direction, and four positioning blocks 2211 are along
  • the outer surfaces of the rotor cores 221 are circumferentially spaced apart, and the permanent magnets 222 are circumferentially spaced apart on the outer surface of the rotor core 221 and embedded between adjacent two positioning blocks 2211.
  • the positioning block 2211 includes two oppositely disposed bumps 2212, and a U-shaped groove 2213 is formed between the two protrusions 2212.
  • the motor controller 1 includes a control circuit board, and a microprocessor, an inverter circuit, a motor operation parameter detecting unit, a power supply circuit, and a memory are disposed on the control circuit board, and the power circuit is a control circuit.
  • the motor running parameter detecting unit transmits the motor running data to the microprocessor
  • the output end of the microprocessor is connected to the input end of the inverter circuit
  • the output end of the inverter circuit is connected and wound around the stator core 211.
  • the upper coil winding 212, the microprocessor of the motor controller of the main ECM motor 100 is further connected with a first temperature detecting unit 5 and a second temperature detecting unit 6, and the first temperature detecting unit 5 and the second temperature detecting unit 6 are respectively disposed.
  • the motor controller does not have a first temperature detecting unit 5 and a second temperature detecting unit 6; the first temperature detecting unit 5 and the second temperature detecting unit 6 are thermistor temperature detecting units, and the motor of each ECM motor
  • the microprocessor in the controller is connected to a serial communication module, and the main ECM motor 100 and each station are connected to the bus from the ECM motors 101, 102, 103, 104 via respective serial communication modules for communication.
  • each ECM motor is connected to a wireless communication module, and the main ECM motor 100 and each station communicate from the ECM motors 101, 102, 103, 104 through respective wireless communication modules,
  • the wireless communication module is a Bluetooth module, a satellite communication module, and a mobile communication module.
  • the main ECM motor 100 has a programming port module to set the gear speed and steering, and each of the slave ECM motors 101, 102, 103, 104 does not have a programming port module to simplify the structure and save cost.
  • the gear speed V of the main ECM motor 100 has two gear speeds S1 and S2. If the temperature difference ⁇ T between the temperature T1 and the temperature T2 is less than or equal to the set value t0, the microprocessor selects The first speed S1 controls the motor to run at the first speed S1 at a constant speed. If the temperature difference between the temperature T1 and the temperature T2 is greater than the set value t0, the microprocessor selects the second speed S2 and controls the motor to the second speed. The speed S2 runs at a constant speed. When the motor is powered on, the microprocessor first selects the second speed S2 to run the ECM motor.
  • n seconds can be selected according to the actual situation, 1 ⁇ n ⁇ 300, can be 5 seconds, can be 10 seconds, can also be 1 minute, as appropriate And set.
  • the temperature difference ⁇ T is an interval value [to-tb, to + tb], to is the critical temperature difference, and tb is the fluctuation range of the allowable temperature difference.
  • the first speed S1 when the temperature difference enters this range from the high temperature difference, the second speed S2 is selected, and the temperature difference is within the range of the interval value [to-tb, to + tb], and the main ECM motor maintains the same speed. .
  • the gear speed V of the main ECM motor 100 has five gear speeds S1, S2, S3, S4, and S5.
  • the first speed gear is selected first.
  • the speed S5 of the gear is operated. If the temperature difference ⁇ T between the temperature T1 and the temperature T2 is less than or equal to the set value t00, the microprocessor selects the first speed S1 and controls the motor to run at the first speed S1 at a constant speed; T1 and When the temperature difference ⁇ T of the temperature T2 is greater than the set value t00 and less than or equal to the set value t01, the microprocessor selects the second speed S2 and controls the motor to run at the second speed S2 at a constant speed; if the temperature T1 and the temperature T2 When the temperature difference ⁇ T is greater than the set value t01 and less than or equal to the set value t02, the microprocessor selects the third speed S3 and controls the motor to run at the third speed S3 at a constant speed;
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a plurality of ECM motors include one main ECM motor and a plurality of slave ECM motors 100, a main ECM motor and each of the slave ECM motors 101, 102, 103, 104 for one-way communication; the main ECM motor
  • the microprocessor of the motor controller of 100 is also connected to a first temperature detecting unit 5 and a second temperature detecting unit 6, which are respectively placed outside the main ECM motor 100.
  • the position is to respectively detect the temperature T1 and the temperature T2 of different external positions, and the microprocessor of the motor controller of the main ECM motor 100 automatically selects the current motor running parameter of the current main ECM motor 100 according to the temperature difference change of the temperature T1 and the temperature T2; the main ECM motor 100 notifies each of the detected temperature data T1, T2 from the ECM motors 101, 102, 103, 104, and selects the operating parameters of the slave ECM motor from the ECM motors 101, 102, 103, 104 based on the temperature data T1, T2, The ECM motors 101, 102, 103, 104 no longer return to the main ECM motor 100; or the main ECM motor 100 sets the operating parameters set by the respective ECM motors 101, 102, 103, 104 according to the temperature T1 and temperature T2 of the different positions.
  • the station runs from the ECM motors 101, 102, 103, 104 according to the set operating parameters, and each station does not return to the main ECM motor from the ECM motors 101, 102, 103, 104.
  • the operating parameters of the motor refer to the rotational speed, or Working current, either torque or air volume.
  • the main ECM motor 100 and each station communicate with each other from the ECM 101, 102, 103, 104 motors via a bus or by wireless communication.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a control method of a multi-motor system includes a plurality of ECM motors including a main ECM motor 100 and a plurality of slave ECM motors 101 , 102 , 103 , 104 .
  • the main ECM motor 100 and each station perform bidirectional communication between the ECM motors 101, 102, 103, 104; the microprocessor of the motor controller of the main ECM motor 100 is also connected with the first temperature detecting unit 5 and the second temperature detecting The unit 6, the first temperature detecting unit 5 and the second temperature detecting unit 6 are respectively placed at different positions outside the main ECM motor 100 to respectively detect the temperature T1 and the temperature T2 of different external positions, and the micro controller of the main ECM motor 100
  • the processor automatically selects the current motor operating parameters of the main ECM motor 100 according to the temperature difference of the temperature T1 and the temperature T2; the main ECM motor 100 notifies each of the detected temperature data T1, T2 from the ECM motors 101, 102, 103, 104, from the E
  • the main ECM motor 100 and each station communicate with each other from the ECM 101, 102, 103, 104 motors via a bus or by wireless communication.
  • the two-way communication between the main ECM motor and each of the ECM motors can be performed as follows: A) specifying a communication cycle every T seconds; B) the main ECM in the time period of the Ta seconds starting each cycle The motor fixedly sends the temperature difference or speed message, which can't be recovered from the ECM motor; C) After the start of the Ta seconds in each cycle to the end of the cycle, the main ECM motor must not send the message from the ECM motor to allow the reply, from the ECM motor Send a reply message; the ECM motor first needs to monitor the bus to determine if there are other motors on the bus to send a signal; D) if the bus is idle, the ECM motor immediately sends a reply message; E) If the bus is busy, The slave ECM motor retries to send a reply message after waiting for a certain random interval; F) if the bus is always busy during this period, then the slave ECM motor needs to wait Try to send a reply message again in the next cycle.
  • the above two main ECM motors and each of the two-way communication from the ECM motor can also be performed as follows: A1) specifies that each T seconds is a communication cycle; B1) The time period of the Ta seconds from the beginning of each cycle, the main ECM The motor fixedly sends the temperature difference or speed message, and can't reply from the ECM motor; C1) After the Ta seconds from the beginning of each cycle to the end of the cycle, it is the time period from the ECM motor to allow the reply, the main ECM motor must not send the message, from the ECM motor Send a reply message; the ECM motor first needs to monitor the bus to determine if there are other motors on the bus to send a signal; D1) If the bus is idle, the slave ECM motor immediately sends a reply message; E1) If the bus is busy, The slave ECM motor retries to send a reply message after waiting for a certain random interval; F1) if a message collision occurs, wait for a random interval and then retry step C1; G1) if the bus is
  • the main ECM motor and each of the ECM motors do not need to be assigned a communication address for communication or the main ECM motor and each of the ECM motors are each assigned an independent communication address for communication.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the utility model comprises a compressor, a coil evaporator and an evaporator fan, wherein the evaporator fan comprises a fan casing 3, a multi-motor system and a plurality of sets of blades 4, and the compressor supplies a cooling medium to the coil evaporator, and the fan casing 3 enters
  • a coil evaporator is installed on one side of the tuyere 31, and an air outlet 32 is disposed on the other side of the fan casing 3.
  • the multi-motor system is installed inside the fan casing, and several sets of blades 4 are driven by a multi-motor system, and a multi-motor system and wind
  • the leaf 4 is located between the coil evaporator and the air outlet 32.
  • the multi-motor system is a motor system composed of a plurality of automatic speed-regulating ECM motors, which adopts a multi-motor system described in the embodiment. The description will not be repeated; the first temperature detecting unit 5 connected to the main ECM motor 100 is located near the air inlet 31 of the fan casing 3 for detecting the hot air temperature T1, and is connected to the second temperature detecting unit on the main ECM motor 100. 6 is located near the air outlet 32 of the fan casing 3 for detecting the cold air temperature T2.
  • the microprocessor of the motor controller of the main ECM motor 100 is based on the temperature The temperature difference of the degree T1 and the temperature T2 automatically selects the operating parameters of the current main ECM motor 100; the main ECM motor 100 notifies each of the detected temperature data T1, T2 from the ECM motors 101, 102, 103, from the ECM motors 101, 102, 103 selects an operating parameter from the ECM motor according to the temperature data T1, T2; or the main ECM motor 100 sets the operating parameters set by the respective ECM motors 101, 102, 103 according to the temperature T1 and the temperature T2 of the different positions, by the main ECM motor 100 notifies each station to operate from the ECM motors 101, 102, 103 according to the set operating parameters.
  • the operating parameters of the above-mentioned motor refer to the rotational speed, or the operating current, or the torque, or the air volume.
  • the gear speed V of the main ECM motor 100 has two gear speeds S1 and S2. If the temperature difference ⁇ T between the temperature T1 and the temperature T2 is less than or equal to the set value t0, the microprocessor selects The first speed S1 controls the motor to run at the first speed S1 at a constant speed. If the temperature difference between the temperature T1 and the temperature T2 is greater than the set value t0, the microprocessor selects the second speed S2 and controls the motor to the second speed. The speed S2 runs at a constant speed. When the motor is powered on, the microprocessor first selects the second speed S2 to run the ECM motor. The first speed S1 is 800 rpm and the second speed S2 is 1550 rpm.
  • the set value t0 is in the range of 1 degree Celsius to 50 degrees Celsius.
  • a control box 7 is mounted on the inner middle portion of the fan casing, and the motor controller of each ECM motor is electrically connected to the control box.
  • the first temperature detecting unit 5 and the second temperature detecting unit 6 are both the thermistor temperature detecting units.
  • the air outlet 32 of the fan casing 3 is provided with a filter 8, and the second temperature detecting unit 6 is located outside the filter 8.
  • the control box 7 inputs an AC power of 115V or 230V.
  • Embodiment 2 For the communication manner of the main ECM motor 101 and each of the slave ECM motors 101, 102, and 103, reference may be made to Embodiment 2 and Embodiment 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

一种多电机系统及其控制方法和应用其的冰柜及控制方法。多电机系统,包括多台ECM电机,多台ECM电机包括1台主ECM电机(100)和若干台从ECM电机(101,102,103,104),第一温度探测单元(5)和第二温度探测单元(6)分别探测外界不同位置的温度T1和温度T2,主ECM电机根据温度T1和温度T2的温差变化自动选择当前主ECM电机的运行参数;主ECM电机通知各台从ECM电机检测的温度T1、T2,由从ECM电机根据温度T1、T2选择从ECM电机的运行参数;或者主ECM电机根据不同位置的温度T1和T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行。该系统能够实现各ECM电机的同步控制,结构简单,成本低,安装简便。

Description

一种多电机系统及其控制方法和应用其的冰柜及控制方法 技术领域:
本发明涉及一种多电机系统及其控制方法和应用其的冰柜及控制方法。
背景技术:
电子换相电机(通俗称ECM电机,或者叫直流无刷电机)因为具有很强控制性能和具有节能环保等特点,广泛应用在电器设备中,例如冰柜、空调,暖通系统等。
现有的用于冰柜的ECM电机的转速控制,系统中配有专用的电机转速控制器,用于发送命令给ECM电机,控制ECM电机转速运行在高档还是低档。成本高,零件多,安装麻烦复杂。
申请人曾经提出了一种解决的方案并申请了专利,该方案就是:每台ECM电机的电机控制器的微处理器还连接有第一温度探测单元和第二温度探测单元,第一温度探测单元和第二温度探测单元分别置于主ECM电机外部的不同位置以分别探测外界不同位置的温度T1和温度T2,若温度T1与温度T2的温度差小于等于设定值T0时,则微处理器选择第一档速度S1并控制电机以第一档速度S1恒速运行,若温度T1与温度T2的温度差大于设定值T0时,则微处理器选择第二档速度S2并控制电机以第二档速度S2恒速运行。
上述的解决方案还有不完善的地方,主要有以下几点需要完善:1)由于一个冰柜里面可能安装有4至10台并排的ECM电机,如果每一台ECM电机都带有第一温度探测单元和第二温度探测单元,那麽势必造成成本的增加;2)如果每一台ECM电机都带有第一温度探测单元和第二温度探测单元,导致安装和布线更加麻烦;3)由于每一台ECM电机都带有第一温度探测单元和第二温度探测单元,而各台ECM电机都带有第一温度探测单元和第二温度探测单元精度检测不一致问题,导致不同步,存在各台ECM电机的运转速度不同步问题。
发明内容:
本发明的第一个目的是提供一种多电机系统,实现各ECM电机转速的同步控制同时,结构简单,成本低,安装简便。
本发明的另一个目的是提供一种多电机系统的控制方法,可以更加可靠使各ECM电机实施同步转速控制。
本发明的第三个目的是提供一种冰柜,它成本更加低,结构更简单。
本发明的第四个目的是提供一种冰柜的控制方法,可以更加可靠使各ECM电机实施同步转速控制。
本发明是通过下述技术方案予以实现的:
一种多电机系统,包括多台ECM电机,所述的每台ECM电机包括电机控制器及电机实体;其特征在于:多台ECM电机包括1台主ECM电机和若干台从ECM电机,主ECM电机和各台从ECM电机之间通过有线或者无线通信,其中:主ECM电机的电机控制器的微处理器还连接有第一温度探测单元和第二温度探测单元,第一温度探测单元和第二温度探测单元分别置于主ECM电机外部的不同的位置以分别探测外界不同位置的温度T1和温度T2,主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择当前主ECM电机的运行参数;主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行。
上述所述的电机实体包括定子组件、转子组件和机壳组件,定子组件、转子组件安装在机壳组件里面,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组,转子组件包括转子铁芯和嵌套在转子铁芯里面的永磁体,所述的电机控制器包括控制线路板,控制线路板上设置微处理器、逆变电路、电机运行参数检测单元,电机运行参数检测单元将电机运行数据传输到微处理器,微处理器输出端连接逆变电路的输入端,逆变电路的输出端连接卷绕在定子铁芯上的线圈绕组。
上述所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
上述所述的主ECM电机的档位转速V具有2个档位转速S1和S2,若温度T1与温度T2的温度差△T小于等于设定值t0时,则微处理器选择第一档速度S1并控制电机以第一档速度S1恒速运行,若温度T1与温度T2的温度差大于设定值t0时,则微处理器选择第二档速度S2并控制电机以第二档速度S2恒速运行。
上述所述的主ECM电机的档位转速V具有5个档位转速S1、S2、S3、S4和S5,若温度T1与温度T2的温度差△T小于等于设定值t00时,则微处理器选择第一档速度S1并控制电机以第一档速度S1恒速运行;若温度T1与温度T2的温度差△T大于设定值t00且小于等于设定值t01时,则微处理器选择第二档速度S2并控制电机以第二档速度S2恒速运行;若温度T1与温度T2的温度差△T大于设定值t01且小于等于设定值t02时,则微处理器选择第三档速度S3并控制电机以第三档速度S3恒速运行;若温度T1与温度T2的温度差△T大于设定值t02且小于等于设定值t03时,则微处理器选择第四档速度S4并控制电机以第四档速度S4恒速运行;若温度T1与温度T2的温度差△T大于设定值t03时,则微处理器选择第五档速度S5并控制电机以第五档速度S5恒速运行。
上述所述的第一温度探测单元和第二温度探测单元是热敏电阻温度探测单元。
上述所述的每台ECM电机的电机控制器里面的微处理器都连接一个串行通信模块,主ECM电机和各台从ECM电机通过各自的串行通信模块连接到总线上进行通信。
上述所述的每台ECM电机的电机控制器里面的微处理器都连接一个无线通信模块,主ECM电机和各台从ECM电机通过各自的无线通信模块进行通信。
上述所述的无线通信模块是蓝牙模块、卫星通信模块、手机通信模块。
上述所述的主ECM电机带有编程端口模块,以设定各挡位速度,各从ECM 电机不带有编程端口模块,以节省成本和简化结构。
上述所述的微处理器一旦选择了某档转速运行,在n秒内不再修改转速,1<n<300。
上述所述的温度差△T是一个区间值【to-tb,to+tb】,to是临界的温度差值,tb是允许温度差的波动范围,当温度差从高温差值进入这个范围时,选择第一档速度S1;当温度差从低温差值进入这个范围时,选择第二档速度S2,温度差在区间值【to-tb,to+tb】这个范围内,主ECM电机保持转速不变。
一种多电机系统的控制方法,所述的电机系统包括多台ECM电机,多台ECM电机包括1台主ECM电机和若干台从ECM电机,主ECM电机和各台从ECM电机之间进行单向通信;其特征在于:主ECM电机的电机控制器的微处理器还连接有第一温度探测单元和第二温度探测单元,第一温度探测单元和第二温度探测单元分别置于主ECM电机外部的不同位置以分别探测外界不同位置的温度T1和温度T2,主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机当前电机运行参数;主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机不再回复主ECM电机;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行,各台从ECM电机不再回复主ECM电机,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
上述所述的主ECM电机和各台从ECM电机之间通过总线通信。
上述所述的主ECM电机和各台从ECM电机之间通过无线通信。
一种多电机系统的控制方法,所述的电机系统包括多台ECM电机,多台ECM电机包括1台主ECM电机和若干台从ECM电机,主ECM电机和各台从ECM电机之间进行双向通信;其特征在于:主ECM电机的电机控制器的微处理器还连接有第一温度探测单元和第二温度探测单元,第一温度探测单元和第二温度探测单元分别置于主ECM电机外部的不同位置以分别探测外界不同位置的温度T1和 温度T2,主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机当前电机运行参数;主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机回复主ECM电机已经接收到数据;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行,各台从ECM电机回复主ECM电机已经接收到数据,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
上述所述的主ECM电机和各台从ECM电机之间通过总线通信。
上述所述的主ECM电机和各台从ECM电机之间通过无线通信。
上述所述的主ECM电机和各台从ECM电机之间进行双向通信的步骤如下:A)指定每T秒是一个通信周期;B)每一个周期开始的第Ta秒的时间段内(Ta<T,下同),主ECM电机固定发送温差或者转速报文,从ECM电机不得回复;C)每个周期Ta秒开始后到周期结束,是从ECM电机允许回复的时间段,主ECM电机不得发送报文,从ECM电机要发送回复报文;从ECM电机首先需监听总线,来判断总线上是否有其他电机发送信号;D)如果总线是空闲的,该从ECM电机立即发送回复报文;E)如果总线是忙碌的,该从ECM电机则等待一定随机间隔后重试发送回复报文;F)如果总线在这个周期内始终忙碌,那么该从ECM电机需要等待下一个周期再次尝试发送回复报文。
上述所述的主ECM电机和各台从ECM电机之间进行双向通信的步骤如下:A1)指定每T秒是一个通信周期;B1)每一个周期开始的第Ta秒的时间段内(Ta<T),主ECM电机固定发送温差或者转速报文,从ECM电机不得回复;C1)每个周期Ta秒开始后到周期结束,是从ECM电机允许回复的时间段,主ECM电机不得发送报文,从ECM电机要发送回复报文;从ECM电机首先需监听总线,来判断总线上是否有其他电机发送信号;D1)如果总线是空闲的,该从ECM电机立即发送回复报文;E1)如果总线是忙碌的,该从ECM电机则等待一定随机 间隔后重试发送回复报文;F1)假如报文碰撞发生,等待一定随机间隔后重试步骤C1;G1)如果总线在这个周期内始终忙碌,那么该从ECM电机需要等待下一个周期再次尝试发送回复报文。
上述所述的主ECM电机和各台从ECM电机都不需要分配通信地址。
上述所述的主ECM电机和各台从ECM电机都分别分配一个独立的通信地址。
一种冰柜,包括压缩机、盘管蒸发器、蒸发器风扇,其中蒸发器风扇包括风扇壳体、多电机系统和若干组风叶,压缩机向盘管蒸发器供应冷却媒介,风扇壳体的进风口一侧安装有盘管蒸发器,风扇壳体的另一侧设置出风口,多电机系统安装在风扇壳体的内部,若干组风叶由多电机系统驱动,多电机系统和风叶位于盘管蒸发器与出风口之间,所述的多电机系统是上述所述的任何一项由多台自动调速的ECM电机组成的电机系统;其中,连接在主ECM电机上的第一温度探测单元位于风扇壳体的进风口附近用于检测热空气温度T1,连接在主ECM电机上第二温度探测单元位于风扇壳体的出风口附近用于检测冷空气温度T2。
一种冰柜的控制方法,所述的冰柜包括压缩机、盘管蒸发器、蒸发器风扇,其中蒸发器风扇包括风扇壳体、多电机系统和若干组风叶,压缩机向盘管蒸发器供应冷却媒介,风扇壳体的进风口一侧安装有盘管蒸发器,风扇壳体的另一侧设置出风口,多电机系统安装在风扇壳体的内部,若干组风叶由多电机系统驱动,多电机系统和风叶位于盘管蒸发器与出风口之间,所述的多电机系统是上述所述的任何一项由多台自动调速的ECM电机组成的电机系统;其中,连接在主ECM电机上的第一温度探测单元位于风扇壳体的进风口附近用于检测热空气温度T1,连接在主ECM电机上第二温度探测单元位于风扇壳体的出风口附近用于检测冷空气温度T2;其特征在于:主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机当前电机运行参数,主ECM电机和各台从ECM电机之间进行单向通信;主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的 运行参数,各台从ECM电机不再回复主ECM电机;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行,各台从ECM电机不再回复主ECM电机,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量,主ECM电机和各台从ECM电机之间通过总线通信或者无线通信。
一种冰柜的控制方法,所述的冰柜包括压缩机、盘管蒸发器、蒸发器风扇,其中蒸发器风扇包括风扇壳体、多电机系统和若干组风叶,压缩机向盘管蒸发器供应冷却媒介,风扇壳体的进风口一侧安装有盘管蒸发器,风扇壳体的另一侧设置出风口,多电机系统安装在风扇壳体的内部,若干组风叶由多电机系统驱动,多电机系统和风叶位于盘管蒸发器与出风口之间,所述的多电机系统是上述所述的任何一项由多台自动调速的ECM电机组成的电机系统;其中,连接在主ECM电机上的第一温度探测单元位于风扇壳体的进风口附近用于检测热空气温度T1,连接在主ECM电机上第二温度探测单元位于风扇壳体的出风口附近用于检测冷空气温度T2;其特征在于:主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机当前电机运行参数;主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机回复主ECM电机已经接收到数据;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行,各台从ECM电机回复主ECM电机已经接收到数据,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
上述所述的主ECM电机和各台从ECM电机之间进行双向通信的步骤如下:A)指定每T秒是一个通信周期;B)每一个周期开始的第Ta秒的时间段内(Ta<T,下同),主ECM电机固定发送温差或者转速报文,从ECM电机不得回复;C)每个周期Ta秒开始后到周期结束,是从ECM电机允许回复的时间段,主ECM电 机不得发送报文,从ECM电机要发送回复报文;从ECM电机首先需监听总线,来判断总线上是否有其他电机发送信号;D)如果总线是空闲的,该从ECM电机立即发送回复报文;E)如果总线是忙碌的,该从ECM电机则等待一定随机间隔后重试发送回复报文;F)如果总线在这个周期内始终忙碌,那么该从ECM电机需要等待下一个周期再次尝试发送回复报文。
上述所述的主ECM电机和各台从ECM电机之间进行双向通信的步骤如下A1)指定每T秒是一个通信周期;B1)每一个周期开始的第Ta秒的时间段内(Ta<T),主ECM电机固定发送温差或者转速报文,从ECM电机不得回复;C1)每个周期Ta秒开始后到周期结束,是从ECM电机允许回复的时间段,主ECM电机不得发送报文,从ECM电机要发送回复报文;从ECM电机首先需监听总线,来判断总线上是否有其他电机发送信号;D1)如果总线是空闲的,该从ECM电机立即发送回复报文;E1)如果总线是忙碌的,该从ECM电机则等待一定随机间隔后重试发送回复报文;F1)假如报文碰撞发生,等待一定随机间隔后重试步骤C1;G1)如果总线在这个周期内始终忙碌,那么该从ECM电机需要等待下一个周期再次尝试发送回复报文。
本发明与现有技术相比具有如下效果:
(1)本发明的多电机系统,包括多台ECM电机,多台ECM电机包括1台主ECM电机和若干台从ECM电机,主ECM电机和各台从ECM电机之间通过有线或者无线通信,其中:主ECM电机的电机控制器的微处理器还连接有第一温度探测单元和第二温度探测单元,第一温度探测单元和第二温度探测单元分别置于主ECM电机外部的不同位置以分别探测外界不同位置的温度T1和温度T2,主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择当前主ECM电机的运行参数;主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行。各从ECM电机无须设 置第一温度探测单元和第二温度探测单元,结构简单,成本低,安装简便。
(2)本发明的多电机系统的主ECM电机的档位转速V具有5个档位转速S1、S2、S3、S4和S5,根据温度T1与温度T2的温度差△T来选择5个档位转速,转速选择较为细化控制,使控制更加精确;
(3)本发明的多电机系统使用的第一温度探测单元和第二温度探测单元是热敏电阻温度探测单元,检测精度高,成本更低。ECM电机的带带有编程端口模块,以设定各挡位速度,使用更加灵活方便。
(4)本发明的一种多电机系统的控制方法,可以更加可靠使各ECM电机实施同步转速控制,主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机当前电机运行参数;主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机不再回复主ECM电机;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行,各台从ECM电机不再回复主ECM电机,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
(5)本发明的一种多电机系统的控制方法,可以更加可靠使各ECM电机实施同步转速控制,主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机当前电机运行参数;主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机回复主ECM电机已经接收到数据;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行,各台从ECM电机回复主ECM电机已经接收到数据,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。。
(6)本发明的冰柜使用上述的多电机系统,结构更简单,成本低,安装 简便。
(7)本发明的冰柜的控制方法,使用了上述多电机系统的控制方法可以更加可靠使各ECM电机实施同步转速控制。
(8)主ECM电机的档位转速V具有2个档位转速S1和S2,若温度T1与温度T2的温度差△T小于等于设定值t0时,则微处理器选择第一档速度S1并控制电机以第一档速度S1恒速运行,若温度T1与温度T2的温度差大于设定值t0时,则微处理器选择第二档速度S2并控制电机以第二档速度S2恒速运行。就是t0这个临界温度差,但是实际应用中,万一温度差在t0附近波动,就会造成电机反复在高低转速之间切换造成运行波动,所以提出2个解决的方案:A)微处理器一旦选择了某档转速运行,在n秒内不再修改转速,1<n<300。B)温度差△T是一个区间值【to-tb,to+tb】,to是临界的温度差值,tb是允许温度差的波动范围,当温度差从高温差值进入这个范围时,选择第一档速度S1;当温度差从低温差值进入这个范围时,选择第二档速度S2,温度差在区间值【to-tb,to+tb】这个范围内,主ECM电机保持转速不变。
附图说明:
图1是本发明实施例一的一种结构示意图;
图2是本发明实施例一的另一种结构示意图;
图3是本发明的各实施例中使用的ECM电机的立体图;
图4是本发明的各实施例中使用的ECM电机的分解图;
图5是本发明的各实施例中使用的ECM电机的结构剖视图;
图6是本发明各实施例使用的ECM电机中定子铁芯的立体图;
图7是本发明各实施例使用的的ECM电机中转子组件的立体图;
图8是本发明各实施例使用的的ECM电机中转子组件的俯视图;
图9是本发明的各实施例中主ECM电机的电路方框图;
图10是本发明的各实施例中从ECM电机的电路方框图;
图11是本发明的实施例一中主ECM电机的一种控制流程图;
图12是本发明的实施例一中主ECM电机的一种控制流程图;
图13是本发明的实施例四中冰柜的结构示意图。
具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
如图1所示,一种多电机系统,包括多台ECM电机,所述的每台ECM电机包括电机控制器及电机实体;多台ECM电机包括1台主ECM电机100和若干台从ECM电机101、102、103、104,主ECM电机101和各台从ECM电机101、102、103、104之间通过有线方式通信,图中只显示了4台从ECM电机101、102、103、104,但从ECM电机的数量是可以增加或者减少的;如图2所示,主ECM电机101和各台从ECM电机101、102、103、104之间通过无线方式通信,其中:主ECM电机100的电机控制器的微处理器还连接有第一温度探测单元5和第二温度探测单元6,第一温度探测单元5和第二温度探测单元6分别置于主ECM电机100外部的不同的位置以分别探测外界不同位置的温度T1和温度T2,主ECM电机100的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择当前主ECM电机的运行参数;主ECM电机100通知各台从ECM电机101、102、103、104的检测温度数据T1、T2,由从ECM电机101、102、103、104根据温度数据T1、T2选择从ECM电机的运行参数;或者主ECM电机100根据不同位置的温度T1和温度T2为各台从ECM电机101、102、103、104设定的运行参数,由主ECM电机100通知各台从ECM电机101、102、103、104按设定的运行参数运行。上述所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
如图3至图8所示,本发明各实施例的中主ECM电机100和若干台从ECM电机101、102、103、104使用的是一种自动调速的ECM电机,所述的自动调速的ECM电机包括电机控制器1及电机实体2,所述的电机实体2包括转轴20、定子组件21、转子组件22和机壳组件23,所述的机壳组件23包括机壳231、前端盖232和后端盖233,电机控制器1包括控制盒11和安装在控制盒11里面 的控制线路板12,转子组件22安装在转轴20上,定子组件21与机壳231连接在一起嵌套在转子组件22外面,前端盖232和后端盖233分别安装在机壳231的两端,转轴20支承在前端盖232和后端盖233的轴承上,控制盒11安装在后端盖233上,在后端盖233两端面的边缘上分别伸出有若干上凸台2331和下凸台2332,连接螺钉9从控制盒11顶部伸入并拧进上凸台2331把控制盒11安装在后端盖233的顶面上,连接螺钉9从前端盖232顶部伸入并拧进下凸台2332把前端盖232和后端盖233安装在机壳231的两端。上凸台2331和下凸台2332的数量均是两个,上凸台2331和下凸台2332对称分布在后端盖233的两端面上。在控制盒11和前端盖232的顶部分别设置有若干安装螺钉10。
定子组件21包括定子铁芯211和卷绕在定子铁芯211上的线圈绕组212,定子铁芯211包括环形轭部2111和从环形轭部2111往内侧伸出的6个齿部2112,相邻两个齿部2112之间形成嵌线槽2113,在环形轭部2111的外表面上沿轴向方向上开设有凹槽2110,连接螺钉9从凹槽2110穿过。
转子组件22包括转子铁芯221和嵌套在转子铁芯221里面的永磁体222,在转子铁芯221外表面上沿轴向方向上设置4个定位卡块2211,4个定位卡块2211沿转子铁芯221外表面周向间隔排布,永磁体222周向间隔安装在转子铁芯221的外表面上并镶嵌在相邻2个定位卡块2211之间。所述的定位卡块2211包括2个相对设置的凸块2212,在两凸块2212之间形成U型槽2213。
如图9和图10所示,所述的电机控制器1包括控制线路板,控制线路板上设置微处理器、逆变电路、电机运行参数检测单元、电源电路和存储器,电源电路为控制线路板上的各部分电路供电,电机运行参数检测单元将电机运行数据传输到微处理器,微处理器输出端连接逆变电路的输入端,逆变电路的输出端连接卷绕在定子铁芯211上的线圈绕组212,主ECM电机100的电机控制器的微处理器还连接有第一温度探测单元5和第二温度探测单元6,第一温度探测单元5和第二温度探测单元6分别置于主ECM电机100外部的不同的位置以分别探测外界不同位置的温度T1和温度T2,从ECM电机101、102、103、104的 电机控制器不带有第一温度探测单元5和第二温度探测单元6;所述的第一温度探测单元5和第二温度探测单元6是热敏电阻温度探测单元,每台ECM电机的电机控制器里面的微处理器都连接一个串行通信模块,主ECM电机100和各台从ECM电机101、102、103、104通过各自的串行通信模块连接到总线上进行通信。或者每台ECM电机的电机控制器里面的微处理器都连接一个无线通信模块,主ECM电机100和各台从ECM电机101、102、103、104通过各自的无线通信模块进行通信,所述的无线通信模块是蓝牙模块、卫星通信模块、手机通信模块。主ECM电机100带有编程端口模块,以设定各挡位速度和转向,和各台从ECM电机101、102、103、104都不带有编程端口模块,以简化结构,节省成本。
如图11所示,主ECM电机100的档位转速V具有2个档位转速S1和S2,若温度T1与温度T2的温度差△T小于等于设定值t0时,则微处理器选择第一档速度S1并控制电机以第一档速度S1恒速运行,若温度T1与温度T2的温度差大于设定值t0时,则微处理器选择第二档速度S2并控制电机以第二档速度S2恒速运行,电机上电初始运行时微处理器首先选择第二档速度S2运行ECM电机。就是t0这个临界温度差,但是实际应用中,万一温度差在t0附近波动,就会造成电机反复在高低转速之间切换造成运行波动,所以提出2个解决的方案:A)微处理器一旦选择了某档转速运行,在n秒内不再修改转速,n秒可以根据实际情况来选择,1<n<300,可以是5秒,也可以是10秒,也可以是1分钟,视情况而定。B)温度差△T是一个区间值【to-tb,to+tb】,to是临界的温度差值,tb是允许温度差的波动范围,当温度差从高温差值进入这个范围时,选择第一档速度S1;当温度差从低温差值进入这个范围时,选择第二档速度S2,温度差在区间值【to-tb,to+tb】这个范围内,主ECM电机保持转速不变。
如图12所示,主ECM电机100的档位转速V具有5个档位转速S1、S2、S3、S4和S5,主ECM电机100上电开始运行时,首先选择最高转速档位以第五档的转速S5运行,若温度T1与温度T2的温度差△T小于等于设定值t00时,则微处理器选择第一档速度S1并控制电机以第一档速度S1恒速运行;若温度T1与 温度T2的温度差△T大于设定值t00且小于等于设定值t01时,则微处理器选择第二档速度S2并控制电机以第二档速度S2恒速运行;若温度T1与温度T2的温度差△T大于设定值t01且小于等于设定值t02时,则微处理器选择第三档速度S3并控制电机以第三档速度S3恒速运行;若温度T1与温度T2的温度差△T大于设定值t02且小于等于设定值t03时,则微处理器选择第四档速度S4并控制电机以第四档速度S4恒速运行;若温度T1与温度T2的温度差△T大于设定值t03时,则微处理器选择第五档速度S5并控制电机以第五档速度S5恒速运行。假设t00=10摄氏度,t01=15摄氏度,t02=20摄氏度,t03=25摄氏度。
实施例二:
如图1所示,多台ECM电机包括1台主ECM电机和若干台从ECM电机100,主ECM电机和各台从ECM电机101、102、103、104之间进行单向通信;主ECM电机100的电机控制器的微处理器还连接有第一温度探测单元5和第二温度探测单元6,第一温度探测单元5和第二温度探测单元6分别置于主ECM电机100外部的不同的位置以分别探测外界不同位置的温度T1和温度T2,主ECM电机100的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择当前主ECM电机100当前电机运行参数;主ECM电机100通知各台从ECM电机101、102、103、104的检测温度数据T1、T2,由从ECM电机101、102、103、104根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机101、102、103、104不再回复主ECM电机100;或者主ECM电机100根据不同位置的温度T1和温度T2为各台从ECM电机101、102、103、104设定的运行参数,由主ECM电机100通知各台从ECM电机101、102、103、104按设定的运行参数运行,各台从ECM电机101、102、103、104不再回复主ECM电机,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。主ECM电机100和各台从ECM101、102、103、104电机之间通过总线通信或者通过无线通信。
实施例三:
如图1所示,一种多电机系统的控制方法,所述的电机系统包括多台ECM电机,多台ECM电机包括1台主ECM电机100和若干台从ECM电机101、102、103、104,主ECM电机100和各台从ECM电机101、102、103、104之间进行双向通信;主ECM电机100的电机控制器的微处理器还连接有第一温度探测单元5和第二温度探测单元6,第一温度探测单元5和第二温度探测单元6分别置于主ECM电机100外部的不同位置以分别探测外界不同位置的温度T1和温度T2,主ECM电机100的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机100当前电机运行参数;主ECM电机100通知各台从ECM电机101、102、103、104的检测温度数据T1、T2,由从ECM电机101、102、103、104根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机101、102、103、104回复主ECM电机100已经接收到数据;或者主ECM电机100根据不同位置的温度T1和温度T2为各台从ECM电机101、102、103、104设定的运行参数,由主ECM电机100通知各台从ECM电机101、102、103、104按设定的运行参数运行,各台从ECM电机101、102、103、104回复主ECM电机100已经接收到数据,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
主ECM电机100和各台从ECM101、102、103、104电机之间通过总线通信或者通过无线通信。
上述主ECM电机和各台从ECM电机之间进行双向通信的可以按如下步骤进行:A)指定每T秒是一个通信周期;B)每一个周期开始的第Ta秒的时间段内,主ECM电机固定发送温差或者转速报文,从ECM电机不得回复;C)每个周期Ta秒开始后到周期结束,是从ECM电机允许回复的时间段,主ECM电机不得发送报文,从ECM电机要发送回复报文;从ECM电机首先需监听总线,来判断总线上是否有其他电机发送信号;D)如果总线是空闲的,该从ECM电机立即发送回复报文;E)如果总线是忙碌的,该从ECM电机则等待一定随机间隔后重试发送回复报文;F)如果总线在这个周期内始终忙碌,那么该从ECM电机需要等 待下一个周期再次尝试发送回复报文。
上述主ECM电机和各台从ECM电机之间进行双向通信的也可以按如下步骤进行A1)指定每T秒是一个通信周期;B1)每一个周期开始的第Ta秒的时间段内,主ECM电机固定发送温差或者转速报文,从ECM电机不得回复;C1)每个周期Ta秒开始后到周期结束,是从ECM电机允许回复的时间段,主ECM电机不得发送报文,从ECM电机要发送回复报文;从ECM电机首先需监听总线,来判断总线上是否有其他电机发送信号;D1)如果总线是空闲的,该从ECM电机立即发送回复报文;E1)如果总线是忙碌的,该从ECM电机则等待一定随机间隔后重试发送回复报文;F1)假如报文碰撞发生,等待一定随机间隔后重试步骤C1;G1)如果总线在这个周期内始终忙碌,那么该从ECM电机需要等待下一个周期再次尝试发送回复报文。
主ECM电机和各台从ECM电机都不需要分配通信地址进行通信或者主ECM电机和各台从ECM电机都分别分配一个独立的通信地址进行通信。
实施例四:
如图1、图2、图3、图4、图5、图6、图7、图8、图9、图10、图11、图12和图13所示,本实施例是一种冰柜,包括压缩机、盘管蒸发器、蒸发器风扇,其中蒸发器风扇包括风扇壳体3、多电机系统和若干组风叶4,压缩机向盘管蒸发器供应冷却媒介,风扇壳体3的进风口31一侧安装有盘管蒸发器,风扇壳体3的另一侧设置出风口32,多电机系统安装在风扇壳体的内部,若干组风叶4由多电机系统驱动,多电机系统和风叶4位于盘管蒸发器与出风口32之间,所述的多电机系统是由多台自动调速的ECM电机组成的电机系统,它采用了实施例一种所描述的多电机系统,在此不再重复叙述;连接在主ECM电机100上的第一温度探测单元5位于风扇壳体3的进风口31附近用于检测热空气温度T1,连接在主ECM电机100上第二温度探测单元6位于风扇壳体3的出风口32附近用于检测冷空气温度T2。主ECM电机100的电机控制器的微处理器根据温 度T1和温度T2的温差变化自动选择当前主ECM电机100的运行参数;主ECM电机100通知各台从ECM电机101、102、103的检测温度数据T1、T2,由从ECM电机101、102、103根据温度数据T1、T2选择从ECM电机的运行参数;或者主ECM电机100根据不同位置的温度T1和温度T2为各台从ECM电机101、102、103设定的运行参数,由主ECM电机100通知各台从ECM电机101、102、103按设定的运行参数运行。上述所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
如图11所示,主ECM电机100的档位转速V具有2个档位转速S1和S2,若温度T1与温度T2的温度差△T小于等于设定值t0时,则微处理器选择第一档速度S1并控制电机以第一档速度S1恒速运行,若温度T1与温度T2的温度差大于设定值t0时,则微处理器选择第二档速度S2并控制电机以第二档速度S2恒速运行,电机上电初始运行时微处理器首先选择第二档速度S2运行ECM电机。第一档速度S1是800rpm,第二档速度S2是1550rpm。设定值t0是1摄氏度至50摄氏度的范围内。风扇壳体的里面中部安装有控制箱7,各ECM电机的电机控制器与控制箱电连接。第一温度探测单元5和第二温度探测单元6都热敏电阻温度探测单元。风扇壳体3的出风口32出设置过滤网8,第二温度探测单元6位于过滤网8的外侧。控制箱7输入115V或者230V的交流电源。
主ECM电机101和各台从ECM电机101、102、103的通信方式可以参考实施例二和实施例三。

Claims (27)

  1. 一种多电机系统,包括多台ECM电机,
    所述的每台ECM电机包括电机控制器及电机实体;
    其特征在于:多台ECM电机包括1台主ECM电机和若干台从ECM电机,主ECM电机和各台从ECM电机之间通过有线或者无线通信,其中:
    主ECM电机的电机控制器的微处理器还连接有第一温度探测单元和第二温度探测单元,第一温度探测单元和第二温度探测单元分别置于主ECM电机外部的不同的位置以分别探测外界不同位置的温度T1和温度T2,主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择当前主ECM电机的运行参数;
    主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行。
  2. 根据权利要求1所述的一种多电机系统,其特征在于:所述的电机实体包括定子组件、转子组件和机壳组件,定子组件、转子组件安装在机壳组件里面,定子组件包括定子铁芯和卷绕在定子铁芯上的线圈绕组,转子组件包括转子铁芯和嵌套在转子铁芯里面的永磁体,所述的电机控制器包括控制线路板,控制线路板上设置微处理器、逆变电路、电机运行参数检测单元,电机运行参数检测单元将电机运行数据传输到微处理器,微处理器输出端连接逆变电路的输入端,逆变电路的输出端连接卷绕在定子铁芯上的线圈绕组。
  3. 根据权利要求1或2所述的一种多电机系统,其特征在于:所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
  4. 根据权利要求3所述的一种多电机系统,其特征在于:主ECM电机的档位转速V具有2个档位转速S1和S2,若温度T1与温度T2的温度差△T小于等 于设定值t0时,则微处理器选择第一档速度S1并控制电机以第一档速度S1恒速运行,若温度T1与温度T2的温度差大于设定值t0时,则微处理器选择第二档速度S2并控制电机以第二档速度S2恒速运行。
  5. 根据权利要求1或2所述的一种多电机系统,其特征在于:主ECM电机的档位转速V具有5个档位转速S1、S2、S3、S4和S5,若温度T1与温度T2的温度差△T小于等于设定值t00时,则微处理器选择第一档速度S1并控制电机以第一档速度S1恒速运行;若温度T1与温度T2的温度差△T大于设定值t00且小于等于设定值t01时,则微处理器选择第二档速度S2并控制电机以第二档速度S2恒速运行;若温度T1与温度T2的温度差△T大于设定值t01且小于等于设定值t02时,则微处理器选择第三档速度S3并控制电机以第三档速度S3恒速运行;若温度T1与温度T2的温度差△T大于设定值t02且小于等于设定值t03时,则微处理器选择第四档速度S4并控制电机以第四档速度S4恒速运行;若温度T1与温度T2的温度差△T大于设定值t03时,则微处理器选择第五档速度S5并控制电机以第五档速度S5恒速运行。
  6. 根据权利要求1或2所述的一种多电机系统,其特征在于:所述的第一温度探测单元和第二温度探测单元是热敏电阻温度探测单元。
  7. 根据权利要求1或2所述的一种多电机系统,其特征在于:每台ECM电机的电机控制器里面的微处理器都连接一个串行通信模块,主ECM电机和各台从ECM电机通过各自的串行通信模块连接到总线上进行通信。
  8. 根据权利要求1或2所述的一种多电机系统,其特征在于,每台ECM电机的电机控制器里面的微处理器都连接一个无线通信模块,主ECM电机和各台从ECM电机通过各自的无线通信模块进行通信。
  9. 根据权利要求7所述的一种多电机系统,其特征在于:无线通信模块是蓝牙模块、卫星通信模块、手机通信模块。
  10. 根据权利要求1或2所述的一种多电机系统,其特征在于:主ECM电机带有编程端口模块,以设定各挡位速度。
  11. 根据权利要求4所述的一种多电机系统,其特征在于:微处理器一旦选择了某档转速运行,在n秒内不再修改转速,1<n<300。
  12. 根据权利要求4所述的一种多电机系统,其特征在于:温度差△T是一个区间值【to-tb,to+tb】,to是临界的温度差值,tb是允许温度差的波动范围,当温度差从高温差值进入这个范围时,选择第一档速度S1;当温度差从低温差值进入这个范围时,选择第二档速度S2,温度差在区间值【to-tb,to+tb】这个范围内,主ECM电机保持转速不变。
  13. 一种多电机系统的控制方法,所述的电机系统包括多台ECM电机,多台ECM电机包括1台主ECM电机和若干台从ECM电机,主ECM电机和各台从ECM电机之间进行单向通信;其特征在于:主ECM电机的电机控制器的微处理器还连接有第一温度探测单元和第二温度探测单元,第一温度探测单元和第二温度探测单元分别置于主ECM电机外部的不同位置以分别探测外界不同位置的温度T1和温度T2,主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机当前电机运行参数;
    主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机不再回复主ECM电机;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行,各台从ECM电机不再回复主ECM电机,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
  14. 根据权利要求13所述的一种多电机系统的控制方法,其特征在于:主ECM电机和各台从ECM电机之间通过总线通信。
  15. 根据权利要求13所述的一种多电机系统的控制方法,其特征在于:主ECM电机和各台从ECM电机之间通过无线通信。
  16. 一种多电机系统的控制方法,所述的电机系统包括多台ECM电机,多台ECM电机包括1台主ECM电机和若干台从ECM电机,主ECM电机和各台从ECM 电机之间进行双向通信;其特征在于:主ECM电机的电机控制器的微处理器还连接有第一温度探测单元和第二温度探测单元,第一温度探测单元和第二温度探测单元分别置于主ECM电机外部的不同位置以分别探测外界不同位置的温度T1和温度T2,主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机当前电机运行参数;
    主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机回复主ECM电机已经接收到数据;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行,各台从ECM电机回复主ECM电机已经接收到数据,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
  17. 根据权利要求16所述的一种多电机系统的控制方法,其特征在于:主ECM电机和各台从ECM电机之间通过总线通信。
  18. 根据权利要求16所述的一种多电机系统的控制方法,其特征在于:主ECM电机和各台从ECM电机之间通过无线通信。
  19. 根据权利要求17所述的一种多电机系统的控制方法,其特征在于:主ECM电机和各台从ECM电机之间进行双向通信的步骤如下:A)指定每T秒是一个通信周期;B)每一个周期开始的第Ta秒的时间段内(Ta<T,下同),主ECM电机固定发送温差或者转速报文,从ECM电机不得回复;C)每个周期Ta秒开始后到周期结束,是从ECM电机允许回复的时间段,主ECM电机不得发送报文,从ECM电机要发送回复报文;从ECM电机首先需监听总线,来判断总线上是否有其他电机发送信号;D)如果总线是空闲的,该从ECM电机立即发送回复报文;E)如果总线是忙碌的,该从ECM电机则等待一定随机间隔后重试发送回复报文;F)如果总线在这个周期内始终忙碌,那么该从ECM电机需要等待下一个周期再次尝试发送回复报文。
  20. 根据权利要求17所述的一种多电机系统的控制方法,其特征在于:上 述所述的主ECM电机和各台从ECM电机之间进行双向通信的步骤如下A1)指定每T秒是一个通信周期;B1)每一个周期开始的第Ta秒的时间段内(Ta<T),主ECM电机固定发送温差或者转速报文,从ECM电机不得回复;C1)每个周期Ta秒开始后到周期结束,是从ECM电机允许回复的时间段,主ECM电机不得发送报文,从ECM电机要发送回复报文;从ECM电机首先需监听总线,来判断总线上是否有其他电机发送信号;D1)如果总线是空闲的,该从ECM电机立即发送回复报文;E1)如果总线是忙碌的,该从ECM电机则等待一定随机间隔后重试发送回复报文;F1)假如报文碰撞发生,等待一定随机间隔后重试步骤C1;G1)如果总线在这个周期内始终忙碌,那么该从ECM电机需要等待下一个周期再次尝试发送回复报文。
  21. 根据权利要求19或20所述的一种多电机系统的控制方法,其特征在于:主ECM电机和各台从ECM电机都不需要分配通信地址。
  22. 根据权利要求19或20所述的一种多电机系统的控制方法,其特征在于:主ECM电机和各台从ECM电机都分别分配一个独立的通信地址。
  23. 一种冰柜,包括压缩机、盘管蒸发器、蒸发器风扇,其中蒸发器风扇包括风扇壳体、多电机系统和若干组风叶,压缩机向盘管蒸发器供应冷却媒介,风扇壳体的进风口一侧安装有盘管蒸发器,风扇壳体的另一侧设置出风口,多电机系统安装在风扇壳体的内部,若干组风叶由多电机系统驱动,多电机系统和风叶位于盘管蒸发器与出风口之间,其特征在于:所述的多电机系统是权利要求1至9所述的任何一项由多台自动调速的ECM电机组成的电机系统;其中,连接在主ECM电机上的第一温度探测单元位于风扇壳体的进风口附近用于检测热空气温度T1,连接在主ECM电机上第二温度探测单元位于风扇壳体的出风口附近用于检测冷空气温度T2。
  24. 一种冰柜的控制方法,所述的冰柜包括压缩机、盘管蒸发器、蒸发器风扇,其中蒸发器风扇包括风扇壳体、多电机系统和若干组风叶,压缩机向盘管蒸发器供应冷却媒介,风扇壳体的进风口一侧安装有盘管蒸发器,风扇壳 体的另一侧设置出风口,多电机系统安装在风扇壳体的内部,若干组风叶由多电机系统驱动,多电机系统和风叶位于盘管蒸发器与出风口之间,所述的多电机系统是权利要求1至9所述的任何一项由多台自动调速的ECM电机组成的电机系统;其中,连接在主ECM电机上的第一温度探测单元位于风扇壳体的进风口附近用于检测热空气温度T1,连接在主ECM电机上第二温度探测单元位于风扇壳体的出风口附近用于检测冷空气温度T2;其特征在于:主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机当前电机运行参数,主ECM电机和各台从ECM电机之间进行单向通信;
    主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机不再回复主ECM电机;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行,各台从ECM电机不再回复主ECM电机,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量,主ECM电机和各台从ECM电机之间通过总线通信或者无线通信。
  25. 一种冰柜的控制方法,所述的冰柜包括压缩机、盘管蒸发器、蒸发器风扇,其中蒸发器风扇包括风扇壳体、多电机系统和若干组风叶,压缩机向盘管蒸发器供应冷却媒介,风扇壳体的进风口一侧安装有盘管蒸发器,风扇壳体的另一侧设置出风口,多电机系统安装在风扇壳体的内部,若干组风叶由多电机系统驱动,多电机系统和风叶位于盘管蒸发器与出风口之间,所述的多电机系统是权利要求1至9所述的任何一项由多台自动调速的ECM电机组成的电机系统;其中,连接在主ECM电机上的第一温度探测单元位于风扇壳体的进风口附近用于检测热空气温度T1,连接在主ECM电机上第二温度探测单元位于风扇壳体的出风口附近用于检测冷空气温度T2;其特征在于:主ECM电机的电机控制器的微处理器根据温度T1和温度T2的温差变化自动选择主ECM电机当前电机运行参数;
    主ECM电机通知各台从ECM电机的检测温度数据T1、T2,由从ECM电机根据温度数据T1、T2选择从ECM电机的运行参数,各台从ECM电机回复主ECM电机已经接收到数据;或者主ECM电机根据不同位置的温度T1和温度T2为各台从ECM电机设定的运行参数,由主ECM电机通知各台从ECM电机按设定的运行参数运行,各台从ECM电机回复主ECM电机已经接收到数据,所述的电机的运行参数是指转速,或者工作电流,或者是转矩,或者是风量。
  26. 根据权利要求25所述的一种冰柜的控制方法,其特征在于:主ECM电机和各台从ECM电机之间进行双向通信的步骤如下:A)指定每T秒是一个通信周期;B)每一个周期开始的第Ta秒的时间段内(Ta<T),主ECM电机固定发送温差或者转速报文,从ECM电机不得回复;C)每个周期Ta秒开始后到周期结束,是从ECM电机允许回复的时间段,主ECM电机不得发送报文,从ECM电机要发送回复报文;从ECM电机首先需监听总线,来判断总线上是否有其他电机发送信号;D)如果总线是空闲的,该从ECM电机立即发送回复报文;E)如果总线是忙碌的,该从ECM电机则等待一定随机间隔后重试发送回复报文;F)如果总线在这个周期内始终忙碌,那么该从ECM电机需要等待下一个周期再次尝试发送回复报文。
  27. 根据权利要求25所述的一种冰柜的控制方法,其特征在于:A1)指定每T秒是一个通信周期;B1)每一个周期开始的第Ta秒的时间段内(Ta<T),主ECM电机固定发送温差或者转速报文,从ECM电机不得回复;C1)每个周期Ta秒开始后到周期结束,是从ECM电机允许回复的时间段,主ECM电机不得发送报文,从ECM电机要发送回复报文;从ECM电机首先需监听总线,来判断总线上是否有其他电机发送信号;D1)如果总线是空闲的,该从ECM电机立即发送回复报文;E1)如果总线是忙碌的,该从ECM电机则等待一定随机间隔后重试发送回复报文;F1)假如报文碰撞发生,等待一定随机间隔后重试步骤C1;G1)如果总线在这个周期内始终忙碌,那么该从ECM电机需要等待下一个周期再次尝试发送回复报文。
PCT/CN2015/087793 2015-08-13 2015-08-21 一种多电机系统及其控制方法和应用其的冰柜及控制方法 WO2017024609A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/985,368 US10396700B2 (en) 2015-08-13 2015-12-30 Multi-motor system, freezer comprising the same, and methods for controlling thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510497978.8 2015-08-13
CN201510497978.8A CN106411186B (zh) 2015-08-13 2015-08-13 一种多电机系统及其控制方法和应用其的冰柜及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/985,368 Continuation-In-Part US10396700B2 (en) 2015-08-13 2015-12-30 Multi-motor system, freezer comprising the same, and methods for controlling thereof

Publications (1)

Publication Number Publication Date
WO2017024609A1 true WO2017024609A1 (zh) 2017-02-16

Family

ID=57983002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087793 WO2017024609A1 (zh) 2015-08-13 2015-08-21 一种多电机系统及其控制方法和应用其的冰柜及控制方法

Country Status (3)

Country Link
US (1) US10396700B2 (zh)
CN (1) CN106411186B (zh)
WO (1) WO2017024609A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11196362B2 (en) 2017-10-30 2021-12-07 Annexair Inc. System for controlling a plurality of synchronous permanent magnet electronically commutated motors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018117262A1 (de) * 2018-07-17 2020-01-23 Ebm-Papst Mulfingen Gmbh & Co. Kg Motorenidentifikation
CN109889106B (zh) * 2019-01-28 2021-11-23 北京经纬恒润科技股份有限公司 一种电机控制方法及装置
CN113844268B (zh) * 2021-11-09 2022-06-21 珠海英搏尔电气股份有限公司 确定电动车辆的冷却装置的工作转速的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037737A1 (en) * 1995-05-26 1996-11-28 Airtec Advanced Air Conditioning Industries Ltd. Air conditioning system
US20080084171A1 (en) * 2006-10-06 2008-04-10 Jonathan Robert Leehey Method and apparatus for controlling motors of different types
CN101231015A (zh) * 2007-01-27 2008-07-30 三星电子株式会社 空调机的风扇电机控制装置及其方法
CN202431562U (zh) * 2011-12-29 2012-09-12 安瑞科(蚌埠)压缩机有限公司 压缩机风机变频调节装置
US20140132185A1 (en) * 2012-11-14 2014-05-15 Nidec Motor Corporation System And Method For Variable Speed Motor Control With A Single Control Signal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI222268B (en) * 2003-08-26 2004-10-11 Delta Electronics Inc Fan system
CN201322411Y (zh) * 2008-09-11 2009-10-07 深圳市赛为智能股份有限公司 中央空调节电装置
CN202833210U (zh) * 2012-06-30 2013-03-27 中山大洋电机股份有限公司 一种直流电机驱动的引风机
CN102857170B (zh) * 2012-09-20 2015-02-04 北京合康亿盛变频科技股份有限公司 多电机同步控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037737A1 (en) * 1995-05-26 1996-11-28 Airtec Advanced Air Conditioning Industries Ltd. Air conditioning system
US20080084171A1 (en) * 2006-10-06 2008-04-10 Jonathan Robert Leehey Method and apparatus for controlling motors of different types
CN101231015A (zh) * 2007-01-27 2008-07-30 三星电子株式会社 空调机的风扇电机控制装置及其方法
CN202431562U (zh) * 2011-12-29 2012-09-12 安瑞科(蚌埠)压缩机有限公司 压缩机风机变频调节装置
US20140132185A1 (en) * 2012-11-14 2014-05-15 Nidec Motor Corporation System And Method For Variable Speed Motor Control With A Single Control Signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11196362B2 (en) 2017-10-30 2021-12-07 Annexair Inc. System for controlling a plurality of synchronous permanent magnet electronically commutated motors
US11936323B2 (en) 2017-10-30 2024-03-19 Annexair Inc. System for controlling a plurality of synchronous permanent magnet electronically commutated motors

Also Published As

Publication number Publication date
US20170047882A1 (en) 2017-02-16
US10396700B2 (en) 2019-08-27
CN106411186A (zh) 2017-02-15
CN106411186B (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
WO2017024609A1 (zh) 一种多电机系统及其控制方法和应用其的冰柜及控制方法
US10844861B2 (en) Systems and method for wirelessly communicating with electric motors
CN104052343B (zh) 一种用来替换psc电机的ecm电机力矩自动校正的方法
CN103900208B (zh) 一种空调控制方法及空调
CN109552021A (zh) 冷却控制系统、冷却控制方法、冷却控制器和电动汽车
CN104467558A (zh) 一种替换psc电机的ecm电机参数设定方法
CN101446434A (zh) 直流电机的驱动模组及具有该驱动模组的风机盘管
US20190082240A1 (en) Systems and methods for wirelessly communicating within electric motor systems
CN110726200A (zh) 一种空调的控制系统及空调系统
CN102748834A (zh) 一种家用中央空调的hvac控制系统
CA2951319C (en) Automatic speed regulating ecm motor and freezer using same
CN110454939A (zh) 空调器及其控制方法、控制装置
CN207117459U (zh) 半侧自励式永磁调速器
CA2824610C (en) Fan motor
CN108527162A (zh) 一种磨床主轴温度无线自适应冷却系统及方法
CN106257820B (zh) 电机多模态控制方法及系统
US10536062B2 (en) Induction motor with series connected windings for multi-speed operation
CN208216482U (zh) 一种增程系统的冷却系统布置结构及汽车
CN205112986U (zh) 车辆散热系统
CN211084360U (zh) 一种空调的控制系统及空调系统
US20180246485A1 (en) Systems and methods for programming a motor
WO2022047834A1 (zh) 一种hvac系统控制单元及hvac系统
CN102969853B (zh) 双定子单转子平面制冷压缩机电机
JP2003106618A (ja) 空気調和機の制御装置
CN218624711U (zh) 一种低能耗自动控制电柜风扇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900806

Country of ref document: EP

Kind code of ref document: A1