WO2017022101A1 - Chilling unit - Google Patents

Chilling unit Download PDF

Info

Publication number
WO2017022101A1
WO2017022101A1 PCT/JP2015/072254 JP2015072254W WO2017022101A1 WO 2017022101 A1 WO2017022101 A1 WO 2017022101A1 JP 2015072254 W JP2015072254 W JP 2015072254W WO 2017022101 A1 WO2017022101 A1 WO 2017022101A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
tank
pipe
heat medium
Prior art date
Application number
PCT/JP2015/072254
Other languages
French (fr)
Japanese (ja)
Inventor
正紘 伊藤
航祐 田中
拓也 伊藤
靖 大越
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017532319A priority Critical patent/JP6437120B2/en
Priority to PCT/JP2015/072254 priority patent/WO2017022101A1/en
Publication of WO2017022101A1 publication Critical patent/WO2017022101A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Definitions

  • the present invention relates to a chilling unit. In particular, it relates to prevention of liquid back.
  • a refrigeration cycle apparatus having an accumulator for storing excess refrigerant in a refrigerant circuit.
  • the accumulator is a container that stores excess refrigerant as a liquid refrigerant (liquid refrigerant).
  • liquid refrigerant liquid refrigerant
  • the liquid refrigerant is accumulated in the accumulator so that the liquid refrigerant does not return to the compressor.
  • the accumulator container must be enlarged to secure the volume. For this reason, it cannot respond to the request
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a chilling unit capable of preventing the occurrence of liquid back without using an accumulator.
  • a chilling unit includes a refrigerant circuit in which a compressor, a flow path switching device, an air heat exchanger, a first throttle device, and a heat medium heat exchanger are sequentially connected by piping, and through which a refrigerant flows, and a first throttle And a bypass circuit connected in parallel with the refrigerant circuit between the device and the heat medium heat exchanger, and between the first expansion device and the air heat exchanger. It is possible to switch between a flow path that is a cooling operation mode in which the exchanger becomes an evaporator and cools the heat medium and a flow path that becomes a heating operation mode in which the heat medium heat exchanger becomes a condenser and heats the heat medium.
  • the bypass circuit is provided in the bypass circuit and controls the flow rate of the refrigerant flowing through the bypass circuit.
  • the second throttle is provided in the bypass circuit and adjusts the refrigerant flowing through the bypass circuit in cooperation with the flow rate adjusting device.
  • Equipment, and buy A refrigerant tank that is provided between the flow adjustment device of the flow circuit and the second expansion device and stores liquid refrigerant that has passed through the flow adjustment device or the second expansion device, and at least starts a cooling operation mode or performs a heating operation Before the mode starts, the liquid refrigerant is accumulated in the refrigerant tank.
  • the chilling unit of the present invention based on the control of the operation control device, the chilling unit is in a state in which liquid refrigerant is accumulated in the refrigerant tank before at least performing the normal heating operation mode or cooling operation mode. Thus, liquid back at the start of normal operation can be prevented.
  • FIG. 1 is a diagram showing a configuration of a chilling unit 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the configuration and operation of the chilling unit 100 will be described.
  • the chilling unit 100 in the present embodiment constitutes a refrigerant circuit that circulates refrigerant, and uses a refrigeration cycle (heat pump cycle) as an operation for cooling and heating a heat medium serving as a medium for transferring heat as a normal operation. Do. Here, it demonstrates as what uses water as a thermal medium. Moreover, in this Embodiment, the object space shall be air-conditioned by the heat which water conveys.
  • the heating operation of the chilling unit 100 will be described as a heating operation, and the cooling operation will be described as a cooling operation.
  • the cooling operation is an operation that satisfies at least one of a case where the discharge side of the compressor 10 and the air heat exchanger 30 are connected via the four-way valve 20 and a case where the temperature of the water decreases. It is. Further, the heating operation satisfies at least one of a case where the discharge side of the compressor 10 and the water heat exchanger 60 are connected via the four-way valve 20 and a case where the temperature of the water rises, as will be described later. Driving.
  • the chilling unit 100 of this embodiment includes a compressor 10, a four-way valve 20, an air heat exchanger 30, a distribution capillary 40, a main expansion valve 50, a water heat exchanger 60, and an accumulator 70. And has a main refrigerant circuit. Moreover, it has the control apparatus 200 which controls the component apparatus of a refrigerant circuit.
  • Compressor 10 compresses and discharges the sucked refrigerant.
  • the compressor 10 may have, for example, an inverter drive device.
  • the capacity of the compressor 10 (the amount of refrigerant sent out per unit time) can be finely changed by arbitrarily changing the drive frequency based on an instruction from the control device 200.
  • the four-way valve 20 serving as the flow path switching device switches the refrigerant flow by the operation to be executed based on the instruction from the control device 200. For example, during cooling operation, the four-way valve 20 allows the refrigerant to flow so that the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the air heat exchanger 30. Further, at the time of heating operation or the like, the refrigerant flows so that the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the water heat exchanger 60.
  • the air heat exchanger 30 has a plurality of heat transfer tubes, and performs heat exchange between the refrigerant passing through the heat transfer tubes and air (for example, outside air).
  • the air heat exchanger 30 functions as an evaporator during heating operation, performs heat exchange between the low-pressure refrigerant flowing from the main expansion valve 50 (distribution capillary 40) side and air, and evaporates and vaporizes the refrigerant. . Further, during the cooling operation, it functions as a condenser, performs heat exchange between the low-pressure refrigerant flowing from the compressor 10 side and air, and condenses and liquefies the refrigerant.
  • the distribution capillary 40 serving as a distributor has, for example, a capillary tube. The distribution capillary 40 distributes the refrigerant flowing from the main expansion valve 50 side to the plurality of heat transfer tubes of the air heat exchanger 30.
  • the water heat exchanger 60 serving as a heat medium heat exchanger performs heat exchange between the refrigerant and water.
  • the water heat exchanger 60 functions as a condenser during heating operation, for example, and performs heat exchange between the refrigerant flowing in from the compressor 10 side and water, condensing the refrigerant and liquefying (or gas-liquid two-phase). And heat the water.
  • it functions as an evaporator, performs heat exchange between the refrigerant flowing in from the main expansion valve 50 side and water, evaporates and vaporizes the refrigerant, and cools the water.
  • the main expansion valve 50 serving as the first expansion device adjusts the pressure of the refrigerant in the water heat exchanger 60, for example, by changing the opening degree.
  • the main expansion valve 50 may be a temperature-sensitive expansion valve that changes its opening degree based on the temperature of the refrigerant, but in this embodiment, the opening degree is changed based on an instruction from the control device 200. It consists of an electronic expansion valve.
  • the accumulator 70 is provided on the suction side of the compressor 10 and stores excess refrigerant in the refrigerant circuit.
  • the chilling unit 100 of the present embodiment has a pump-down flow path 80 connected in parallel with the main expansion valve 50.
  • the pump-down flow path 80 includes a first branch pipe 81, a second branch pipe 82, a refrigerant tank 83, an electromagnetic valve 84, and a pump-down expansion valve 85.
  • 1st branch piping 81 used as 1st piping is branch piping which connects the piping between the main expansion valve 50 and the water heat exchanger 60, and the refrigerant
  • An electromagnetic valve 84 serving as a flow rate adjusting device is installed in the first branch pipe 81.
  • the electromagnetic valve 84 opens or closes the valve based on an instruction from the control device 200 and controls whether or not the refrigerant passes through the pump-down flow path 80.
  • the flow rate adjusting device is configured by the electromagnetic valve 84.
  • an expansion valve or the like may be used as the flow rate adjusting device as long as it is possible to control whether the refrigerant is allowed to pass by opening and closing the flow path.
  • the second branch pipe 82 serving as the second pipe is a branch connecting the pipe between the main expansion valve 50 and the distribution capillary 40 (air heat exchanger 30) and the refrigerant tank 83 (tank body 91 described later). It is piping.
  • the pump-down expansion valve 85 serving as the second expansion device can change the opening degree based on an instruction from the control device 200 and adjusts the amount of refrigerant flowing into and out of the refrigerant tank 83.
  • FIG. 2 is a diagram showing the configuration of the refrigerant tank 83 in the chilling unit 100 according to Embodiment 1 of the present invention.
  • the refrigerant tank 83 of the present embodiment has a tank body 91, a first pipe connection part 92, a second pipe connection part 93, an extension pipe 94 and an oil return hole 95.
  • the tank body 91 is a container for storing a liquid refrigerant.
  • the first pipe connection part 92 is installed on the upper part of the tank main body 91.
  • a first branch pipe 81 is connected to the first pipe connection portion 92.
  • the second pipe connection part 93 is installed at the lower part of the tank body 91.
  • a second branch pipe 82 is connected to the second pipe connection portion 93.
  • the extension pipe 94 protrudes into the tank body 91 and has an opening at the top.
  • the extension pipe 94 extends through the second branch pipe 82 into the tank body 91 by communicating with the second branch pipe 82 through the second pipe connection portion 93.
  • the oil return hole 95 is formed in the lower part of the extension pipe 94 and returns the refrigeration oil accumulated in the tank body 91 together with the refrigerant to the refrigerant circuit.
  • the refrigerating machine oil is oil that prevents the compressor 10 from being seized.
  • refrigerating machine oil that has a higher density than liquid refrigerant and is incompatible (oil that does not dissolve in the refrigerant) separates from the liquid refrigerant and accumulates below the liquid refrigerant in the tank body 91. Therefore, it is desirable to provide the oil return hole 95 at a position as low as possible in the tank body 91 (desirably, a boundary portion with the bottom surface).
  • the outside air temperature sensor 211 detects the temperature of outside air to be heat exchanged with the refrigerant in the air heat exchanger 30.
  • a water temperature sensor 212 serving as a heat medium temperature sensor detects the temperature of water to be heat exchanged with the refrigerant in the water heat exchanger 60.
  • the liquid level detector 213 detects the liquid level of the liquid refrigerant accumulated in the refrigerant tank 83. For example, it is detected whether or not the liquid refrigerant in the refrigerant tank 83 is in a state (for example, a full state).
  • the liquid level detector 213 detects whether or not the refrigerant tank 83 is full, but the present invention is not limited to this. For example, you may have a sensor etc. which detect the amount of liquid refrigerant in a refrigerant tank.
  • the control device 200 controls the chilling unit 100.
  • the control device 200 includes at least an operation control device 210 and a determination device 220.
  • the operation control device 210 performs operation control of the entire chilling unit 100.
  • the operation control device 210 according to the present embodiment is a pre-operation pump-down operation in which liquid refrigerant is stored in the refrigerant tank 83, particularly in a stage before performing a normal operation (including a case where the operation is performed by switching between a cooling operation and a heating operation). I do.
  • the determination device 220 performs various determinations such as operation stop based on, for example, temperatures detected by the outside air temperature sensor 211 and the water temperature sensor 212, detection by the liquid level detector 213, and the like.
  • the operation control device 210 and the determination device 220 of the control device 200 in the present embodiment can be configured by different hardware, for example.
  • the processing procedure may be preprogrammed and configured by software, firmware, or the like while being configured by arithmetic control means (computer) such as a CPU (Central Processing Unit).
  • the arithmetic control means executes the program, performs processing based on the program, and realizes processing performed by each of the above devices.
  • the data of these programs may be stored in a storage device (not shown), for example.
  • the chilling unit 100 of the present embodiment performs a pre-operation pump down operation as a previous step at least when starting a normal operation.
  • the pump-down operation before operation is divided into a pump-down operation before cooling performed before the cooling operation and a pump-down operation before heating performed before the heating operation.
  • FIG. 3 is a diagram for explaining the operation in the pre-cooling pump down operation according to the first embodiment of the present invention.
  • the refrigerant flows from the water heat exchanger 60 side to the accumulator 70 (compressor 10).
  • the accumulator 70 compressor 10
  • liquid refrigerant such as the water heat exchanger 60 is accumulated in the refrigerant tank 83 to suppress the amount of liquid refrigerant flowing to the accumulator 70 side.
  • the operation control device 210 When performing the pump-down operation before cooling, the operation control device 210 sets the flow path in the four-way valve 20 so that the refrigerant flow is the same as in the heating operation. And before starting the compressor 10, the solenoid valve 84 is closed. The pump down expansion valve 85 is opened. The main expansion valve 50 is closed (FIG. 3 (a)).
  • the solenoid valve 84 is opened. Further, the pump-down expansion valve 85 is slightly opened (slightly opened). Further, the main expansion valve 50 is opened (FIG. 3B). Then, the compressor 10 is started. In the state where the main expansion valve 50 is closed, the pre-operation pump-down operation tends to accumulate liquid refrigerant in the refrigerant tank 83, but the operation is not stable. Therefore, in order to perform the pump-down operation before operation while stabilizing the refrigerant circuit, it is performed while controlling the opening degree of the main expansion valve 50.
  • the refrigerant in the water heat exchanger 60 and the like flows out from the water heat exchanger 60 side, flows through the main expansion valve 50 side, and part of the refrigerant flows into the pump down flow path 80 side.
  • the refrigerant that has flowed to the pump-down flow path 80 side passes through the first branch pipe 81 (electromagnetic valve 84) and flows into the refrigerant tank 83.
  • the gaseous refrigerant (gas refrigerant) in the refrigerant tank 83 flows out from the refrigerant tank 83 through the opening of the extension pipe 94 in an extruded form, and then enters the second branch pipe 82 ( It passes through the pump-down expansion valve 85) and joins the main refrigerant circuit.
  • the liquid refrigerant is stored in the tank body 91.
  • the refrigeration oil that flows in together with the refrigerant stays in the lower portion of the tank body 91, but flows out of the refrigerant tank 83 together with the gas refrigerant through the oil return hole 95, passes through the second branch pipe 82, It merges into the refrigerant circuit.
  • the operation control device 210 ends the pre-cooling pump down operation.
  • the operation control device 210 closes the electromagnetic valve 84 and the main expansion valve 50 (FIG. 3C). Then, the compressor 10 is stopped, and the pre-cooling pump down operation is ended. And the operation control apparatus 210 transfers to control of air_conditionaing
  • FIG. 4 is a diagram for explaining the operation in the pump-down operation before heating according to Embodiment 1 of the present invention.
  • the refrigerant flows from the air heat exchanger 30 side to the accumulator 70 (compressor 10).
  • the accumulator 70 (compressor 10) side As much as possible. Therefore, before the heating operation, liquid refrigerant such as the air heat exchanger 30 is accumulated in the refrigerant tank 83 to suppress the amount of liquid refrigerant flowing to the accumulator 70 side.
  • the operation control device 210 When performing the pump-down operation before heating, the operation control device 210 sets the flow path in the four-way valve 20 so that the refrigerant flow is the same as in the cooling operation. And before starting the compressor 10, the electromagnetic valve 84 is opened. The pump down expansion valve 85 is closed. The main expansion valve 50 is closed (FIG. 4 (a)).
  • the solenoid valve 84 is opened. Further, the pump-down expansion valve 85 is slightly opened (slightly opened). Further, the main expansion valve 50 is opened (FIG. 4B). Then, the compressor 10 is started.
  • the refrigerant in the air heat exchanger 30 or the like flows out from the air heat exchanger 30 side, flows through the main expansion valve 50 side, and part of the refrigerant flows into the pump down flow path 80 side.
  • the refrigerant that has flowed to the pump-down flow path 80 side passes through the second branch pipe 82 (pump-down expansion valve 85) and flows into the refrigerant tank 83.
  • the gaseous refrigerant (gas refrigerant) in the refrigerant tank 83 (tank main body 91) flows out from the refrigerant tank 83 via the first pipe connection portion 92 in an extruded form, and the first branch pipe 81. It passes through the (electromagnetic valve 84) and joins the main refrigerant circuit.
  • the liquid refrigerant is stored in the tank body 91.
  • the operation control device 210 ends the pre-heating pump-down operation.
  • the operation control device 210 closes the pump down expansion valve 85 and the main expansion valve 50 (FIG. 4C). Then, the compressor 10 is stopped, and the pre-heating pump down operation is terminated. And the operation control apparatus 210 transfers to control of heating operation.
  • the refrigerating machine oil the refrigerating machine oil mixed with the liquid refrigerant flows out of the refrigerating tank 83 when the refrigerating tank 83 becomes full.
  • the chilling unit 100 of the first embodiment for example, in a stage before performing a normal operation (heating operation or cooling operation), a liquid refrigerant that performs a pump-down operation before operation and has a risk of liquid back. Is stored in the refrigerant tank 83 and the normal operation is performed, so that the volume of the accumulator 70 can be reduced. For this reason, the chilling unit 100 can be reduced in size. For example, the volume of the accumulator 70 can be expected to be about 1/3.
  • FIG. FIG. 5 is a diagram for explaining the determination of the pre-operation pump down operation according to Embodiment 2 of the present invention.
  • it is determined whether or not the pre-operation pump down operation is performed at the timing of performing the pre-operation pump down operation shown in the first embodiment. Good.
  • the determination in the present embodiment is performed by the determination device 220 of the control device 200.
  • the determination is made based on the state of the chilling unit 100, the temperature relationship, and the state of the refrigerant tank 83.
  • the determination device 220 determines the state of the chilling unit 100 based on whether it is a stop state before the cooling operation or a stop state before the heating operation. Further, regarding the temperature relationship, the determination device 220 has an air temperature (a temperature related to detection by the outside air temperature sensor 211) equal to or higher than a water temperature (a temperature related to detection by the water temperature sensor 212) (the air temperature is lower than the water temperature). ) Or not.
  • the determination device 220 determines the state of the refrigerant tank 83 based on whether it is full or not. In the present embodiment, the determination device 220 performs the determination in the order of the state of the chilling unit 100, the temperature relationship, and the state of the refrigerant tank 83, but the order is not limited.
  • the determination device 220 determines whether it is a stop state before the cooling operation or a stop state before the heating operation. If it is determined that the vehicle is stopped before the cooling operation, NO. 01-NO. Either of 08. If it is determined that the vehicle is stopped before the cooling operation, NO. 09-NO. 16 either.
  • the determination device 220 determines whether the air temperature is equal to or higher than the water temperature. For example, if it is determined that the air temperature is lower than the water temperature (NO.05 to NO.08), liquid refrigerant accumulates on the air heat exchanger 30 side. At this time, the refrigerant in the water heat exchanger 60 moves. I fall asleep. Therefore, even if the chilling unit 100 starts the cooling operation in a state where the air temperature is lower than the water temperature, the liquid refrigerant in the air heat exchanger 30 is evaporated in the water heat exchanger 60. There is little risk to occur. Therefore, the determination device 220 determines that it is not necessary to perform the pump-down operation before cooling. The operation control device 210 does not perform the pump-down operation before cooling based on the determination of the determination device 220.
  • the determination device 220 determines whether the air temperature is equal to or higher than the water temperature (NO.01 to NO.04). the determination device 220 further determines whether the liquid level is full or not based on the detection of the liquid level detector 213. To do. If the determination device 220 determines that the liquid is full (NO.01, NO.03), it is assumed that most of the liquid refrigerant is stored in the refrigerant tank 83 and that there is little risk of liquid back. Therefore, the determination device 220 determines that it is not necessary to perform the pump-down operation before cooling.
  • the determination device 220 determines that the liquid is not full (NO.02, NO.04), a large amount of liquid refrigerant accumulates due to the refrigerant sleeping in the water heat exchanger 60, and liquid back may occur. Suppose there is sex. Therefore, the determination device 220 determines that it is necessary to perform the pump-down operation before operation.
  • the operation control device 210 performs a pump-down operation before cooling based on the determination of the determination device 220.
  • the determination device 220 determines whether the air temperature is equal to or higher than the water temperature. For example, if it is determined that the air temperature is equal to or higher than the water temperature (NO. 09 to NO. 12), liquid refrigerant is accumulated on the water heat exchanger 60 side. At this time, the refrigerant in the air heat exchanger 30 moves. I fall asleep. Therefore, even if the chilling unit 100 starts the heating operation in the state where the air temperature is equal to or higher than the water temperature, the liquid refrigerant in the water heat exchanger 60 is evaporated in the air heat exchanger 30, so the liquid back There is little risk to occur. Therefore, the determination apparatus 220 determines that it is not necessary to perform the pump-down operation before heating. The operation control device 210 does not perform the pre-heating pump down operation based on the determination of the determination device 220.
  • determination device 220 determines whether the liquid level is full or not based on the detection of liquid level detector 213. To do. If the determination device 220 determines that the liquid is full (NO.13, NO.15), it is assumed that most of the liquid refrigerant is stored in the refrigerant tank 83 and that the risk of liquid back is small. Therefore, the determination apparatus 220 determines that it is not necessary to perform the pump-down operation before heating.
  • the determination device 220 determines that the liquid is not full (NO.14, NO.16), the refrigerant stagnates in the air heat exchanger 30, so that a large amount of liquid refrigerant accumulates and liquid back may occur. Suppose there is sex. Therefore, the determination apparatus 220 determines that it is necessary to perform the pump-down operation before heating.
  • the operation control device 210 performs the pre-heating pump down operation based on the determination by the determination device 220.
  • the determination device 220 determines whether to perform the pre-operation pump down operation, it is not necessary to perform an unnecessary pre-operation pump down operation. .
  • FIG. FIG. 6 is a diagram showing a configuration of the refrigerant tank 83 in the chilling unit 100 according to Embodiment 3 of the present invention.
  • the present embodiment shows a refrigerant tank 83 having a configuration example different from the refrigerant tank 83 described with reference to FIG. 2 in the first embodiment.
  • FIG. 6 the description will focus on parts different from the refrigerant tank 83 described in Embodiment 1 with reference to FIG. 2.
  • the second pipe connection portion 93 in FIG. 2 is installed in the lower portion of the tank main body 91.
  • the lower portion of the tank main body 91 is provided in the same manner as the first pipe connection portion 92. is set up.
  • the refrigerant tank 83 of the present embodiment has a third pipe connection portion 96, an oil return pipe 97, and an oil return capillary 98 that serves as an oil return adjustment device.
  • the third pipe connection part 96 is installed in the lower part of the tank main body 91.
  • the oil return pipe 97 has one end connected to the third pipe connection 96 and the other connected to the second branch pipe 82.
  • the oil return pipe 97 is a pipe through which the refrigerating machine oil accumulated in the lower part of the tank main body 91 flows to the second branch pipe 82.
  • the oil return capillary 98 adjusts the amount of refrigerating machine oil flowing through the oil return pipe 97.
  • the pre-operation pump down operation is performed in the stage before performing the normal operation, but there is no particular limitation.
  • the pre-operation pump down operation may be performed periodically (periodically).
  • the determination device 220 periodically performs the determination described in the second embodiment and determines that the pre-operation pump down operation is necessary, the operation control device 210 controls the pre-operation pump down operation. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This chilling unit is equipped with: a refrigerant circuit that is configured by a compressor, a four-way valve, an air heat exchanger, a main expansion valve, and a water heat exchanger being sequentially connected by piping and circulates a refrigerant therethrough; and a bypass circuit that is connected in parallel with the refrigerant circuit between the main expansion valve and the water heat exchanger and between the main expansion valve and the air heat exchanger. The four-way valve is capable of switching between the paths of a cooling operation mode and a heating operation mode. The bypass circuit has a solenoid valve, a pump down expansion valve, and a refrigerant tank that stores liquid refrigerant. The liquid refrigerant is stored in the refrigerant tank before at least the cooling operation mode or the heating operation mode is started.

Description

チリングユニットChilling unit
 本発明はチリングユニットに関するものである。特に液バック防止に関するものである。 The present invention relates to a chilling unit. In particular, it relates to prevention of liquid back.
 たとえば、冷媒回路において、余剰冷媒を溜めておくアキュムレーターを有する冷凍サイクル装置がある。アキュムレーターは、余剰冷媒を液状の冷媒(液冷媒)として溜めておく容器である。ここで、たとえば、停止した冷媒回路を起動させる際、蒸発器、圧縮機の吸入側の配管などに溜まった液冷媒が、圧縮機に流入する液バックが発生する。圧縮機に多くの液冷媒が流入すると故障原因となる。そこで、液バックを抑制するため、従来、アキュムレーターに液冷媒を溜めるようにして、圧縮機に液冷媒が戻らないようにしていた。 For example, there is a refrigeration cycle apparatus having an accumulator for storing excess refrigerant in a refrigerant circuit. The accumulator is a container that stores excess refrigerant as a liquid refrigerant (liquid refrigerant). Here, for example, when starting the stopped refrigerant circuit, a liquid back is generated in which the liquid refrigerant accumulated in the evaporator, the suction side piping of the compressor, etc. flows into the compressor. If a large amount of liquid refrigerant flows into the compressor, it will cause a failure. Therefore, in order to suppress the liquid back, conventionally, the liquid refrigerant is accumulated in the accumulator so that the liquid refrigerant does not return to the compressor.
特開昭63-290371号公報(図1)JP-A-63-290371 (FIG. 1)
 しかし、冷媒をアキュムレーターに溜めて液バックを防ごうとすると、アキュムレーターの容器を大きくして、容積を確保しなければならなくなる。このため、コンパクト化および低コスト化の要請に応えることができないことになる。 However, if the refrigerant is stored in the accumulator to prevent liquid back, the accumulator container must be enlarged to secure the volume. For this reason, it cannot respond to the request | requirement of compactization and cost reduction.
 本発明は、上記のような課題を解決するためになされたもので、アキュムレーターによらずとも液バックの発生を防止することができるチリングユニットを得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a chilling unit capable of preventing the occurrence of liquid back without using an accumulator.
 本発明に係るチリングユニットは、圧縮機、流路切替装置、空気熱交換器、第1の絞り装置および熱媒体熱交換器が配管で順に接続され、冷媒が流れる冷媒回路と、第1の絞り装置と熱媒体熱交換器との間と、第1の絞り装置と空気熱交換器との間とにおいて、冷媒回路と並列に接続するバイパス回路とを備え、流路切替装置は、熱媒体熱交換器が蒸発器となって熱媒体を冷却する冷却運転モードとなる流路と熱媒体熱交換器が凝縮器となって熱媒体を加熱する加熱運転モードとなる流路とに切り替えることができ、バイパス回路は、バイパス回路に設けられ、バイパス回路を流れる冷媒の流量を制御する流量調整装置、バイパス回路に設けられ、バイパス回路を流れる冷媒を流量調整装置と連携して調整する第2の絞り装置、およびバイパス回路の流量調整装置と第2の絞り装置の間に設けられ、流量調整装置または第2の絞り装置とを通過した液冷媒を溜める冷媒タンクを有し、少なくとも冷却運転モードの開始または加熱運転モード開始の前に、液冷媒が、冷媒タンクに溜まっているものである。 A chilling unit according to the present invention includes a refrigerant circuit in which a compressor, a flow path switching device, an air heat exchanger, a first throttle device, and a heat medium heat exchanger are sequentially connected by piping, and through which a refrigerant flows, and a first throttle And a bypass circuit connected in parallel with the refrigerant circuit between the device and the heat medium heat exchanger, and between the first expansion device and the air heat exchanger. It is possible to switch between a flow path that is a cooling operation mode in which the exchanger becomes an evaporator and cools the heat medium and a flow path that becomes a heating operation mode in which the heat medium heat exchanger becomes a condenser and heats the heat medium. The bypass circuit is provided in the bypass circuit and controls the flow rate of the refrigerant flowing through the bypass circuit. The second throttle is provided in the bypass circuit and adjusts the refrigerant flowing through the bypass circuit in cooperation with the flow rate adjusting device. Equipment, and buy A refrigerant tank that is provided between the flow adjustment device of the flow circuit and the second expansion device and stores liquid refrigerant that has passed through the flow adjustment device or the second expansion device, and at least starts a cooling operation mode or performs a heating operation Before the mode starts, the liquid refrigerant is accumulated in the refrigerant tank.
 本発明に係るチリングユニットによれば、運転制御装置の制御に基づいて、チリングユニットが、少なくとも通常の加熱運転モードまたは冷却運転モードを行う前に、冷媒タンクに液冷媒が溜まった状態にすることで、通常運転開始時における液バックを防止することができる。 According to the chilling unit of the present invention, based on the control of the operation control device, the chilling unit is in a state in which liquid refrigerant is accumulated in the refrigerant tank before at least performing the normal heating operation mode or cooling operation mode. Thus, liquid back at the start of normal operation can be prevented.
本発明の実施の形態1に係るチリングユニット100の構成を示す図である。It is a figure which shows the structure of the chilling unit 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るチリングユニット100における冷媒タンク83の構成を示す図である。It is a figure which shows the structure of the refrigerant | coolant tank 83 in the chilling unit 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷房前ポンプダウン運転における動作などを説明する図である。It is a figure explaining the operation | movement etc. in the pump down driving | operation before cooling which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る暖房前ポンプダウン運転における動作などを説明する図である。It is a figure explaining the operation | movement in the pump down driving | operation etc. before a heating which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る運転前ポンプダウン運転の判定に係る説明を行うための図である。It is a figure for performing the description which concerns on the determination of the pump down driving | operation before a driving | operation which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るチリングユニット100における冷媒タンク83の構成を示す図である。It is a figure which shows the structure of the refrigerant | coolant tank 83 in the chilling unit 100 which concerns on Embodiment 3 of this invention.
 以下、本発明の実施の形態に係るチリングユニットについて図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表されている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。そして、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、温度、圧力などの高低については、特に絶対的な値との関係で高低などが定まっているものではなく、各システム、各装置などにおける状態、動作などにおいて相対的に定まるものとする。 Hereinafter, a chilling unit according to an embodiment of the present invention will be described with reference to the drawings. In the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. And the form of the component represented to the whole text of specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In particular, the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment. In addition, when there is no need to particularly distinguish or specify a plurality of similar devices that are distinguished by subscripts, the subscripts may be omitted. In the drawings, the relationship between the sizes of the constituent members may be different from the actual one. The level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state and operation of each system and each device.
実施の形態1.
 図1は本発明の実施の形態1に係るチリングユニット100の構成を示す図である。図1に基づいて、チリングユニット100の構成、動作などについて説明する。本実施の形態におけるチリングユニット100は、冷媒を循環させる冷媒回路を構成し、冷凍サイクル(ヒートポンプサイクル)を利用して、熱を搬送する媒体となる熱媒体を冷却および加熱する運転を通常運転として行う。ここでは、水を熱媒体として用いるものとして説明する。また、本実施の形態では、水が搬送する熱によって対象空間を空気調和するものとする。このため、チリングユニット100の加熱運転を暖房運転とし、冷却運転を冷房運転として説明する。冷房運転は、後述するように、圧縮機10の吐出側と空気熱交換器30とが、四方弁20を介して接続される場合、および水の温度が下降する場合の少なくとも一方を満たした運転である。また、暖房運転は、後述するように、圧縮機10の吐出側と水熱交換器60とが四方弁20を介して接続される場合、および水の温度が上昇する場合の少なくとも一方を満たした運転である。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a chilling unit 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the configuration and operation of the chilling unit 100 will be described. The chilling unit 100 in the present embodiment constitutes a refrigerant circuit that circulates refrigerant, and uses a refrigeration cycle (heat pump cycle) as an operation for cooling and heating a heat medium serving as a medium for transferring heat as a normal operation. Do. Here, it demonstrates as what uses water as a thermal medium. Moreover, in this Embodiment, the object space shall be air-conditioned by the heat which water conveys. For this reason, the heating operation of the chilling unit 100 will be described as a heating operation, and the cooling operation will be described as a cooling operation. As will be described later, the cooling operation is an operation that satisfies at least one of a case where the discharge side of the compressor 10 and the air heat exchanger 30 are connected via the four-way valve 20 and a case where the temperature of the water decreases. It is. Further, the heating operation satisfies at least one of a case where the discharge side of the compressor 10 and the water heat exchanger 60 are connected via the four-way valve 20 and a case where the temperature of the water rises, as will be described later. Driving.
 図1に示すように、本実施の形態のチリングユニット100は、圧縮機10、四方弁20、空気熱交換器30、分配キャピラリー40、主膨張弁50、水熱交換器60およびアキュムレーター70を有し、主となる冷媒回路を構成する。また、冷媒回路の構成機器の制御などを行う制御装置200を有している。 As shown in FIG. 1, the chilling unit 100 of this embodiment includes a compressor 10, a four-way valve 20, an air heat exchanger 30, a distribution capillary 40, a main expansion valve 50, a water heat exchanger 60, and an accumulator 70. And has a main refrigerant circuit. Moreover, it has the control apparatus 200 which controls the component apparatus of a refrigerant circuit.
 圧縮機10は吸入した冷媒を圧縮して吐出する。ここで、圧縮機10は、たとえばインバータ駆動装置などを有するようにしてもよい。制御装置200からの指示に基づいて、駆動周波数を任意に変化させることにより、圧縮機10の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができる。また、流路切替装置となる四方弁20は、制御装置200からの指示に基づいて、実行する運転によって冷媒の流れを切替える。たとえば、冷房運転などのときには、四方弁20は圧縮機10が吐出した高温高圧の冷媒が空気熱交換器30に流入するように冷媒が流れるようにする。また、暖房運転などのときには、圧縮機10の吐出した高温高圧の冷媒が水熱交換器60に流入するように冷媒が流れるようにする。 Compressor 10 compresses and discharges the sucked refrigerant. Here, the compressor 10 may have, for example, an inverter drive device. The capacity of the compressor 10 (the amount of refrigerant sent out per unit time) can be finely changed by arbitrarily changing the drive frequency based on an instruction from the control device 200. Further, the four-way valve 20 serving as the flow path switching device switches the refrigerant flow by the operation to be executed based on the instruction from the control device 200. For example, during cooling operation, the four-way valve 20 allows the refrigerant to flow so that the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the air heat exchanger 30. Further, at the time of heating operation or the like, the refrigerant flows so that the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the water heat exchanger 60.
 空気熱交換器30は、複数の伝熱管を有し、伝熱管を通過する冷媒と空気(たとえば、外気)との熱交換を行う。空気熱交換器30は、暖房運転時においては蒸発器として機能し、主膨張弁50(分配キャピラリー40)側から流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させて気化させる。また、冷房運転時においては凝縮器として機能し、圧縮機10側から流入した低圧の冷媒と空気との熱交換を行い、冷媒を凝縮させて液化させる。分配器となる分配キャピラリー40は、たとえばキャピラリーチューブなどを有している。分配キャピラリー40は、空気熱交換器30が有する複数の伝熱管に、主膨張弁50側から流れてきた冷媒を分配する。 The air heat exchanger 30 has a plurality of heat transfer tubes, and performs heat exchange between the refrigerant passing through the heat transfer tubes and air (for example, outside air). The air heat exchanger 30 functions as an evaporator during heating operation, performs heat exchange between the low-pressure refrigerant flowing from the main expansion valve 50 (distribution capillary 40) side and air, and evaporates and vaporizes the refrigerant. . Further, during the cooling operation, it functions as a condenser, performs heat exchange between the low-pressure refrigerant flowing from the compressor 10 side and air, and condenses and liquefies the refrigerant. The distribution capillary 40 serving as a distributor has, for example, a capillary tube. The distribution capillary 40 distributes the refrigerant flowing from the main expansion valve 50 side to the plurality of heat transfer tubes of the air heat exchanger 30.
 熱媒体熱交換器となる水熱交換器60は、冷媒と水との熱交換を行う。水熱交換器60は、たとえば暖房運転時においては凝縮器として機能し、圧縮機10側から流入した冷媒と水との熱交換を行い、冷媒を凝縮させて液化(または気液二相化)させ、水を加熱する。一方、冷房運転時においては蒸発器として機能し、主膨張弁50側から流入した冷媒と水との熱交換を行い、冷媒を蒸発させて気化させ、水を冷却する。第1の絞り装置となる主膨張弁50は、たとえば開度を変化させることで、水熱交換器60における冷媒の圧力などを調整をする。主膨張弁50は、冷媒の温度に基づいて開度を変化する感温式膨張弁などであってもよいが、本実施の形態では、制御装置200からの指示に基づいて開度を変化させる電子式膨張弁で構成する。アキュムレーター70は、圧縮機10の吸入側に設けられており、冷媒回路において余剰となる冷媒を貯留する。 The water heat exchanger 60 serving as a heat medium heat exchanger performs heat exchange between the refrigerant and water. The water heat exchanger 60 functions as a condenser during heating operation, for example, and performs heat exchange between the refrigerant flowing in from the compressor 10 side and water, condensing the refrigerant and liquefying (or gas-liquid two-phase). And heat the water. On the other hand, during the cooling operation, it functions as an evaporator, performs heat exchange between the refrigerant flowing in from the main expansion valve 50 side and water, evaporates and vaporizes the refrigerant, and cools the water. The main expansion valve 50 serving as the first expansion device adjusts the pressure of the refrigerant in the water heat exchanger 60, for example, by changing the opening degree. The main expansion valve 50 may be a temperature-sensitive expansion valve that changes its opening degree based on the temperature of the refrigerant, but in this embodiment, the opening degree is changed based on an instruction from the control device 200. It consists of an electronic expansion valve. The accumulator 70 is provided on the suction side of the compressor 10 and stores excess refrigerant in the refrigerant circuit.
 また、本実施の形態のチリングユニット100は、主膨張弁50と並列に接続されるポンプダウン流路80を有している。ポンプダウン流路80は、第1の分岐配管81、第2の分岐配管82、冷媒タンク83、電磁弁84およびポンプダウン膨張弁85により構成する。 Further, the chilling unit 100 of the present embodiment has a pump-down flow path 80 connected in parallel with the main expansion valve 50. The pump-down flow path 80 includes a first branch pipe 81, a second branch pipe 82, a refrigerant tank 83, an electromagnetic valve 84, and a pump-down expansion valve 85.
 第1の配管となる第1の分岐配管81は、主膨張弁50と水熱交換器60との間の配管と、冷媒タンク83(後述するタンク本体91)とをつなぐ分岐配管である。流量調整装置となる電磁弁84は、第1の分岐配管81に設置される。電磁弁84は、制御装置200からの指示に基づいて弁を開放または閉止し、ポンプダウン流路80に冷媒を通過させるか否かを制御する。ここでは、流量調整装置を電磁弁84で構成するが、流路を開閉して冷媒を通過させるか否かを制御することができれば、たとえば膨張弁などを流量調整装置として用いてもよい。 1st branch piping 81 used as 1st piping is branch piping which connects the piping between the main expansion valve 50 and the water heat exchanger 60, and the refrigerant | coolant tank 83 (tank main body 91 mentioned later). An electromagnetic valve 84 serving as a flow rate adjusting device is installed in the first branch pipe 81. The electromagnetic valve 84 opens or closes the valve based on an instruction from the control device 200 and controls whether or not the refrigerant passes through the pump-down flow path 80. Here, the flow rate adjusting device is configured by the electromagnetic valve 84. However, for example, an expansion valve or the like may be used as the flow rate adjusting device as long as it is possible to control whether the refrigerant is allowed to pass by opening and closing the flow path.
 第2の配管となる第2の分岐配管82は、主膨張弁50と分配キャピラリー40(空気熱交換器30)との間の配管と、冷媒タンク83(後述するタンク本体91)とをつなぐ分岐配管である。第2の絞り装置となるポンプダウン膨張弁85は、制御装置200からの指示に基づいて開度を変化させることができ、冷媒タンク83に流入出する冷媒量を調整する。 The second branch pipe 82 serving as the second pipe is a branch connecting the pipe between the main expansion valve 50 and the distribution capillary 40 (air heat exchanger 30) and the refrigerant tank 83 (tank body 91 described later). It is piping. The pump-down expansion valve 85 serving as the second expansion device can change the opening degree based on an instruction from the control device 200 and adjusts the amount of refrigerant flowing into and out of the refrigerant tank 83.
 図2は本発明の実施の形態1に係るチリングユニット100における冷媒タンク83の構成を示す図である。本実施の形態の冷媒タンク83は、タンク本体91、第1の配管接続部92、第2の配管接続部93、延長配管94および返油穴95を有している。タンク本体91は液冷媒を溜める容器である。第1の配管接続部92は、タンク本体91の上部に設置される。第1の配管接続部92には第1の分岐配管81が接続される。また、第2の配管接続部93は、タンク本体91の下部に設置される。第2の配管接続部93には第2の分岐配管82が接続される。 FIG. 2 is a diagram showing the configuration of the refrigerant tank 83 in the chilling unit 100 according to Embodiment 1 of the present invention. The refrigerant tank 83 of the present embodiment has a tank body 91, a first pipe connection part 92, a second pipe connection part 93, an extension pipe 94 and an oil return hole 95. The tank body 91 is a container for storing a liquid refrigerant. The first pipe connection part 92 is installed on the upper part of the tank main body 91. A first branch pipe 81 is connected to the first pipe connection portion 92. The second pipe connection part 93 is installed at the lower part of the tank body 91. A second branch pipe 82 is connected to the second pipe connection portion 93.
 延長配管94は、タンク本体91内に突出し、上部に開口部を有している。延長配管94は、第2の配管接続部93を介して第2の分岐配管82と連通することで、タンク本体91内まで第2の分岐配管82を延長している。返油穴95は、延長配管94の下部に形成され、冷媒とともにタンク本体91に溜まった冷凍機油を冷媒回路に戻す。冷凍機油は、圧縮機10の焼き付きなどを防ぐ油である。たとえば液冷媒よりも密度が高く、非相溶の冷凍機油(冷媒に溶け込まない油)は、液冷媒と分離して、タンク本体91内において液冷媒よりも下部に溜まる。そこで、返油穴95は、タンク本体91内のできる限り下部の位置(望ましくは底面との境界部分)に設けることが望ましい。 The extension pipe 94 protrudes into the tank body 91 and has an opening at the top. The extension pipe 94 extends through the second branch pipe 82 into the tank body 91 by communicating with the second branch pipe 82 through the second pipe connection portion 93. The oil return hole 95 is formed in the lower part of the extension pipe 94 and returns the refrigeration oil accumulated in the tank body 91 together with the refrigerant to the refrigerant circuit. The refrigerating machine oil is oil that prevents the compressor 10 from being seized. For example, refrigerating machine oil that has a higher density than liquid refrigerant and is incompatible (oil that does not dissolve in the refrigerant) separates from the liquid refrigerant and accumulates below the liquid refrigerant in the tank body 91. Therefore, it is desirable to provide the oil return hole 95 at a position as low as possible in the tank body 91 (desirably, a boundary portion with the bottom surface).
 また、外気温度センサー211、水温センサー212および液面検知器213を有している。外気温度センサー211は、空気熱交換器30における冷媒との熱交換対象となる外気の温度を検出する。熱媒体温度センサーとなる水温センサー212は、水熱交換器60における冷媒との熱交換対象となる水の温度を検出する。液面検知器213は、冷媒タンク83内に溜まった液冷媒の液面を検知する。たとえば、冷媒タンク83内の液冷媒の状態(たとえば満液の状態)にあるか否かを検知する。ここで、本実施の形態では、液面検知器213が冷媒タンク83が満液であるかどうかに関する検知を行うが、これに限定するものではない。たとえば冷媒タンク内の液冷媒量を検知するセンサーなどを有していてもよい。 Also, it has an outside air temperature sensor 211, a water temperature sensor 212, and a liquid level detector 213. The outside air temperature sensor 211 detects the temperature of outside air to be heat exchanged with the refrigerant in the air heat exchanger 30. A water temperature sensor 212 serving as a heat medium temperature sensor detects the temperature of water to be heat exchanged with the refrigerant in the water heat exchanger 60. The liquid level detector 213 detects the liquid level of the liquid refrigerant accumulated in the refrigerant tank 83. For example, it is detected whether or not the liquid refrigerant in the refrigerant tank 83 is in a state (for example, a full state). Here, in the present embodiment, the liquid level detector 213 detects whether or not the refrigerant tank 83 is full, but the present invention is not limited to this. For example, you may have a sensor etc. which detect the amount of liquid refrigerant in a refrigerant tank.
 制御装置200は、チリングユニット100の制御を行う。本実施の形態の制御装置200は、少なくとも運転制御装置210および判定装置220を有している。運転制御装置210は、チリングユニット100全体の運転制御を行う。本実施の形態の運転制御装置210は、特に通常運転(冷房運転と暖房運転とを切り替えて運転を行う場合も含む)を行う前段階において、冷媒タンク83に液冷媒を溜める運転前ポンプダウン運転を行う。運転前ポンプダウン運転を行う際には、通常運転と同様の圧縮機10、主膨張弁50などの機器だけでなく、電磁弁84およびポンプダウン膨張弁85などを制御する。また、判定装置220は、たとえば外気温度センサー211、水温センサー212の検出に係る温度、液面検知器213の検知などに基づいて、運転停止など、各種判定を行う。 The control device 200 controls the chilling unit 100. The control device 200 according to the present embodiment includes at least an operation control device 210 and a determination device 220. The operation control device 210 performs operation control of the entire chilling unit 100. The operation control device 210 according to the present embodiment is a pre-operation pump-down operation in which liquid refrigerant is stored in the refrigerant tank 83, particularly in a stage before performing a normal operation (including a case where the operation is performed by switching between a cooling operation and a heating operation). I do. When performing the pump-down operation before operation, not only the devices such as the compressor 10 and the main expansion valve 50 as in the normal operation, but also the electromagnetic valve 84 and the pump-down expansion valve 85 are controlled. The determination device 220 performs various determinations such as operation stop based on, for example, temperatures detected by the outside air temperature sensor 211 and the water temperature sensor 212, detection by the liquid level detector 213, and the like.
 ここで、たとえば本実施の形態における制御装置200の運転制御装置210および判定装置220を、たとえばそれぞれ異なるハードウェアで装置構成することができる。また、CPU(Central Prosessing Unit)のような演算制御手段(コンピュータ)で構成する一方、その処理手順をあらかじめプログラム化し、ソフトウェア、ファームウェアなどで構成することもできる。演算制御手段がそのプログラムを実行し、そのプログラムに基づく処理を行い、上記の各装置が行う処理を実現する。これらのプログラムのデータはたとえば記憶装置(図示せず)に記憶するようにしてもよい。 Here, for example, the operation control device 210 and the determination device 220 of the control device 200 in the present embodiment can be configured by different hardware, for example. In addition, the processing procedure may be preprogrammed and configured by software, firmware, or the like while being configured by arithmetic control means (computer) such as a CPU (Central Processing Unit). The arithmetic control means executes the program, performs processing based on the program, and realizes processing performed by each of the above devices. The data of these programs may be stored in a storage device (not shown), for example.
 本実施の形態のチリングユニット100は、少なくとも通常運転を開始する際、その前段階として運転前ポンプダウン運転を行うものである。ここで、運転前ポンプダウン運転については、冷房運転を行う前に行う冷房前ポンプダウン運転と暖房運転を行う前に行う暖房前ポンプダウン運転とに分かれる。 The chilling unit 100 of the present embodiment performs a pre-operation pump down operation as a previous step at least when starting a normal operation. Here, the pump-down operation before operation is divided into a pump-down operation before cooling performed before the cooling operation and a pump-down operation before heating performed before the heating operation.
 図3は本発明の実施の形態1に係る冷房前ポンプダウン運転における動作などを説明する図である。冷房運転では、水熱交換器60側からアキュムレーター70(圧縮機10)に冷媒が流れる。このため、冷房運転開始時に、水熱交換器60に寝込んだ液冷媒がアキュムレーター70(圧縮機10)側に流れる量をできる限り少なくしたい。そこで、冷房運転前に、水熱交換器60などの液冷媒を冷媒タンク83に溜め、アキュムレーター70側に流れる液冷媒量を抑える。 FIG. 3 is a diagram for explaining the operation in the pre-cooling pump down operation according to the first embodiment of the present invention. In the cooling operation, the refrigerant flows from the water heat exchanger 60 side to the accumulator 70 (compressor 10). For this reason, at the start of the cooling operation, it is desired to reduce the amount of liquid refrigerant that has fallen into the water heat exchanger 60 to the accumulator 70 (compressor 10) side as much as possible. Therefore, before the cooling operation, liquid refrigerant such as the water heat exchanger 60 is accumulated in the refrigerant tank 83 to suppress the amount of liquid refrigerant flowing to the accumulator 70 side.
 冷房前ポンプダウン運転を行う際、運転制御装置210は、冷媒の流れが、暖房運転と同様になるように四方弁20における流路を設定する。そして、圧縮機10を起動前は、電磁弁84を閉止しておく。また、ポンプダウン膨張弁85は開放しておく。また、主膨張弁50は閉止しておく(図3(a))。 When performing the pump-down operation before cooling, the operation control device 210 sets the flow path in the four-way valve 20 so that the refrigerant flow is the same as in the heating operation. And before starting the compressor 10, the solenoid valve 84 is closed. The pump down expansion valve 85 is opened. The main expansion valve 50 is closed (FIG. 3 (a)).
 そして、電磁弁84を開放する。また、ポンプダウン膨張弁85を少し開放(微開放)する。また、主膨張弁50を開放する(図3(b))。そして、圧縮機10を起動する。主膨張弁50を閉止した状態で運転前ポンプダウン運転を、冷媒タンク83に液冷媒が溜まりやすくなるが、運転が安定しない。そこで、冷媒回路を安定させつつ運転前ポンプダウン運転を行うために、主膨張弁50の開度を制御しながら行う。 Then, the solenoid valve 84 is opened. Further, the pump-down expansion valve 85 is slightly opened (slightly opened). Further, the main expansion valve 50 is opened (FIG. 3B). Then, the compressor 10 is started. In the state where the main expansion valve 50 is closed, the pre-operation pump-down operation tends to accumulate liquid refrigerant in the refrigerant tank 83, but the operation is not stable. Therefore, in order to perform the pump-down operation before operation while stabilizing the refrigerant circuit, it is performed while controlling the opening degree of the main expansion valve 50.
 圧縮機10を起動すると、水熱交換器60などにある冷媒が水熱交換器60側から流出し、主膨張弁50側を流れるとともに、一部の冷媒はポンプダウン流路80側に流れる。ポンプダウン流路80側に流れた冷媒は、第1の分岐配管81(電磁弁84)を通過して冷媒タンク83に流入する。このとき、冷媒タンク83(タンク本体91)のガス状の冷媒(ガス冷媒)は、押し出される形で、延長配管94の開口部を介して冷媒タンク83から流出し、第2の分岐配管82(ポンプダウン膨張弁85)を通過して主となる冷媒回路に合流する。 When the compressor 10 is started, the refrigerant in the water heat exchanger 60 and the like flows out from the water heat exchanger 60 side, flows through the main expansion valve 50 side, and part of the refrigerant flows into the pump down flow path 80 side. The refrigerant that has flowed to the pump-down flow path 80 side passes through the first branch pipe 81 (electromagnetic valve 84) and flows into the refrigerant tank 83. At this time, the gaseous refrigerant (gas refrigerant) in the refrigerant tank 83 (tank main body 91) flows out from the refrigerant tank 83 through the opening of the extension pipe 94 in an extruded form, and then enters the second branch pipe 82 ( It passes through the pump-down expansion valve 85) and joins the main refrigerant circuit.
 冷媒タンク83に流入した冷媒のうち、液冷媒はタンク本体91内に貯留する。このとき、冷媒とともに流入した冷凍機油は、タンク本体91の下部に滞留するが、返油穴95を介してガス冷媒とともに冷媒タンク83から流出し、第2の分岐配管82を通過して主となる冷媒回路に合流する。 Among the refrigerant flowing into the refrigerant tank 83, the liquid refrigerant is stored in the tank body 91. At this time, the refrigeration oil that flows in together with the refrigerant stays in the lower portion of the tank body 91, but flows out of the refrigerant tank 83 together with the gas refrigerant through the oil return hole 95, passes through the second branch pipe 82, It merges into the refrigerant circuit.
 判定装置220は、液面検知器213からの信号に基づいて、冷媒タンク83が満液になったものと判定すると、運転制御装置210に冷房前ポンプダウン運転を終了させる。運転制御装置210は、電磁弁84および主膨張弁50を閉止する(図3(c))。そして圧縮機10を停止して、冷房前ポンプダウン運転を終了する。そして、運転制御装置210は、冷房運転の制御に移行する。 If the determination device 220 determines that the refrigerant tank 83 is full based on the signal from the liquid level detector 213, the operation control device 210 ends the pre-cooling pump down operation. The operation control device 210 closes the electromagnetic valve 84 and the main expansion valve 50 (FIG. 3C). Then, the compressor 10 is stopped, and the pre-cooling pump down operation is ended. And the operation control apparatus 210 transfers to control of air_conditionaing | cooling operation.
 図4は本発明の実施の形態1に係る暖房前ポンプダウン運転における動作などを説明する図である。暖房運転では、空気熱交換器30側からアキュムレーター70(圧縮機10)に冷媒が流れる。このため、暖房運転開始時に、空気熱交換器30に寝込んだ液冷媒がアキュムレーター70(圧縮機10)側に流れる量をできる限り少なくしたい。そこで、暖房運転前に、空気熱交換器30などの液冷媒を冷媒タンク83に溜め、アキュムレーター70側に流れる液冷媒量を抑える。 FIG. 4 is a diagram for explaining the operation in the pump-down operation before heating according to Embodiment 1 of the present invention. In the heating operation, the refrigerant flows from the air heat exchanger 30 side to the accumulator 70 (compressor 10). For this reason, at the start of the heating operation, it is desired to reduce the amount of liquid refrigerant that has fallen into the air heat exchanger 30 to the accumulator 70 (compressor 10) side as much as possible. Therefore, before the heating operation, liquid refrigerant such as the air heat exchanger 30 is accumulated in the refrigerant tank 83 to suppress the amount of liquid refrigerant flowing to the accumulator 70 side.
 暖房前ポンプダウン運転を行う際、運転制御装置210は、冷媒の流れが、冷房運転と同様になるように四方弁20における流路を設定する。そして、圧縮機10を起動前は、電磁弁84を開放しておく。また、ポンプダウン膨張弁85は閉止しておく。また、主膨張弁50は閉止しておく(図4(a))。 When performing the pump-down operation before heating, the operation control device 210 sets the flow path in the four-way valve 20 so that the refrigerant flow is the same as in the cooling operation. And before starting the compressor 10, the electromagnetic valve 84 is opened. The pump down expansion valve 85 is closed. The main expansion valve 50 is closed (FIG. 4 (a)).
 そして、電磁弁84を開放する。また、ポンプダウン膨張弁85を少し開放(微開放)する。また、主膨張弁50を開放する(図4(b))。そして、圧縮機10を起動する。 Then, the solenoid valve 84 is opened. Further, the pump-down expansion valve 85 is slightly opened (slightly opened). Further, the main expansion valve 50 is opened (FIG. 4B). Then, the compressor 10 is started.
 圧縮機10を起動すると、空気熱交換器30などにある冷媒が空気熱交換器30側から流出し、主膨張弁50側を流れるとともに、一部の冷媒はポンプダウン流路80側に流れる。ポンプダウン流路80側に流れた冷媒は、第2の分岐配管82(ポンプダウン膨張弁85)を通過して冷媒タンク83に流入する。このとき、冷媒タンク83(タンク本体91)のガス状の冷媒(ガス冷媒)は、押し出される形で、第1の配管接続部92を介して冷媒タンク83から流出し、第1の分岐配管81(電磁弁84)を通過して主となる冷媒回路に合流する。冷媒タンク83に流入した冷媒のうち、液冷媒はタンク本体91内に貯留する。 When the compressor 10 is started, the refrigerant in the air heat exchanger 30 or the like flows out from the air heat exchanger 30 side, flows through the main expansion valve 50 side, and part of the refrigerant flows into the pump down flow path 80 side. The refrigerant that has flowed to the pump-down flow path 80 side passes through the second branch pipe 82 (pump-down expansion valve 85) and flows into the refrigerant tank 83. At this time, the gaseous refrigerant (gas refrigerant) in the refrigerant tank 83 (tank main body 91) flows out from the refrigerant tank 83 via the first pipe connection portion 92 in an extruded form, and the first branch pipe 81. It passes through the (electromagnetic valve 84) and joins the main refrigerant circuit. Of the refrigerant that has flowed into the refrigerant tank 83, the liquid refrigerant is stored in the tank body 91.
 判定装置220は、液面検知器213からの信号に基づいて、冷媒タンク83が満液になったものと判定すると、運転制御装置210に暖房前ポンプダウン運転を終了させる。運転制御装置210は、ポンプダウン膨張弁85および主膨張弁50を閉止する(図4(c))。そして圧縮機10を停止して、暖房前ポンプダウン運転を終了する。そして、運転制御装置210は、暖房運転の制御に移行する。
 ここで、冷凍機油については、冷媒タンク83が満液になることで、液冷媒と混合した冷凍機油が、冷媒タンク83から流出する。
If the determination device 220 determines that the refrigerant tank 83 is full based on the signal from the liquid level detector 213, the operation control device 210 ends the pre-heating pump-down operation. The operation control device 210 closes the pump down expansion valve 85 and the main expansion valve 50 (FIG. 4C). Then, the compressor 10 is stopped, and the pre-heating pump down operation is terminated. And the operation control apparatus 210 transfers to control of heating operation.
Here, with respect to the refrigerating machine oil, the refrigerating machine oil mixed with the liquid refrigerant flows out of the refrigerating tank 83 when the refrigerating tank 83 becomes full.
 以上のように、実施の形態1のチリングユニット100によれば、たとえば、通常運転(暖房運転または冷房運転)を行う前段階において、運転前ポンプダウン運転を行い、液バックの危険がある液冷媒を冷媒タンク83に溜めてから通常運転を行うようにしたので、アキュムレーター70の容積を少なくすることができる。このため、チリングユニット100の小型化をはかることができる。たとえばアキュムレーター70の容積を約1/3程度にすることが期待できる。 As described above, according to the chilling unit 100 of the first embodiment, for example, in a stage before performing a normal operation (heating operation or cooling operation), a liquid refrigerant that performs a pump-down operation before operation and has a risk of liquid back. Is stored in the refrigerant tank 83 and the normal operation is performed, so that the volume of the accumulator 70 can be reduced. For this reason, the chilling unit 100 can be reduced in size. For example, the volume of the accumulator 70 can be expected to be about 1/3.
実施の形態2.
 図5は本発明の実施の形態2に係る運転前ポンプダウン運転の判定に係る説明を行うための図である。上述した実施の形態1では特に規定しなかったが、たとえば、実施の形態1で示した運転前ポンプダウン運転を行うタイミングで、運転前ポンプダウン運転を行うか否かを判定するようにしてもよい。本実施の形態における判定は、制御装置200の判定装置220が行うものとする。
Embodiment 2. FIG.
FIG. 5 is a diagram for explaining the determination of the pre-operation pump down operation according to Embodiment 2 of the present invention. Although not specifically defined in the above-described first embodiment, for example, it is determined whether or not the pre-operation pump down operation is performed at the timing of performing the pre-operation pump down operation shown in the first embodiment. Good. The determination in the present embodiment is performed by the determination device 220 of the control device 200.
 図5に示すように、本実施の形態では、チリングユニット100の状態、温度関係および冷媒タンク83の状態に基づいて判定を行う。判定装置220は、チリングユニット100の状態については、冷房運転前の停止状態かまたは暖房運転前の停止状態かを基準として判定する。また、判定装置220は、温度関係については、空気温度(外気温度センサー211の検出に係る温度)が水温(水温センサー212の検出に係る温度)以上かまたは未満(水温に対して空気温度が低い)かを基準として判定する。判定装置220は、冷媒タンク83の状態については、満液かまたは満液以外かを基準として判定する。本実施の形態では、判定装置220は、チリングユニット100の状態、温度関係および冷媒タンク83の状態の順序で判定を行うが、順序について限定するものではない。 As shown in FIG. 5, in the present embodiment, the determination is made based on the state of the chilling unit 100, the temperature relationship, and the state of the refrigerant tank 83. The determination device 220 determines the state of the chilling unit 100 based on whether it is a stop state before the cooling operation or a stop state before the heating operation. Further, regarding the temperature relationship, the determination device 220 has an air temperature (a temperature related to detection by the outside air temperature sensor 211) equal to or higher than a water temperature (a temperature related to detection by the water temperature sensor 212) (the air temperature is lower than the water temperature). ) Or not. The determination device 220 determines the state of the refrigerant tank 83 based on whether it is full or not. In the present embodiment, the determination device 220 performs the determination in the order of the state of the chilling unit 100, the temperature relationship, and the state of the refrigerant tank 83, but the order is not limited.
 判定装置220は、冷房運転前の停止状態かまたは暖房運転前の停止状態かを判定する。冷房運転前の停止状態であると判定すると、NO.01~NO.08のいずれかとなる。冷房運転前の停止状態であると判定すると、NO.09~NO.16のいずれかとなる。 The determination device 220 determines whether it is a stop state before the cooling operation or a stop state before the heating operation. If it is determined that the vehicle is stopped before the cooling operation, NO. 01-NO. Either of 08. If it is determined that the vehicle is stopped before the cooling operation, NO. 09-NO. 16 either.
 まず、冷房運転前の停止状態であると判定した場合について説明する。判定装置220は、空気温度が水温以上かまたは未満かを判定する。たとえば空気温度が水温未満である(NO.05~NO.08)と判定すると、空気熱交換器30側において、液冷媒が溜まることになり、このとき、水熱交換器60の冷媒は移動して寝込む。したがって、空気温度が水温未満の状態で、チリングユニット100が冷房運転を開始したとしても、空気熱交換器30における液冷媒は、水熱交換器60において蒸発されることになるので、液バックが発生する危険が少ない。したがって、判定装置220は、冷房前ポンプダウン運転を行う必要がないと判定する。運転制御装置210は、判定装置220の判定に基づいて、冷房前ポンプダウン運転は行わない。 First, the case where it is determined that the vehicle is stopped before the cooling operation will be described. The determination device 220 determines whether the air temperature is equal to or higher than the water temperature. For example, if it is determined that the air temperature is lower than the water temperature (NO.05 to NO.08), liquid refrigerant accumulates on the air heat exchanger 30 side. At this time, the refrigerant in the water heat exchanger 60 moves. I fall asleep. Therefore, even if the chilling unit 100 starts the cooling operation in a state where the air temperature is lower than the water temperature, the liquid refrigerant in the air heat exchanger 30 is evaporated in the water heat exchanger 60. There is little risk to occur. Therefore, the determination device 220 determines that it is not necessary to perform the pump-down operation before cooling. The operation control device 210 does not perform the pump-down operation before cooling based on the determination of the determination device 220.
 一方、判定装置220は、空気温度が水温以上である(NO.01~NO.04)と判定すると、さらに、液面検知器213の検知に基づいて、満液かまたは満液以外かを判定する。判定装置220は、満液である(NO.01、NO.03)と判定すると、液冷媒の大部分が冷媒タンク83に貯留されており、液バックが発生する危険が少ないとする。したがって、判定装置220は、冷房前ポンプダウン運転を行う必要がないと判定する。 On the other hand, when the determination device 220 determines that the air temperature is equal to or higher than the water temperature (NO.01 to NO.04), the determination device 220 further determines whether the liquid level is full or not based on the detection of the liquid level detector 213. To do. If the determination device 220 determines that the liquid is full (NO.01, NO.03), it is assumed that most of the liquid refrigerant is stored in the refrigerant tank 83 and that there is little risk of liquid back. Therefore, the determination device 220 determines that it is not necessary to perform the pump-down operation before cooling.
 判定装置220は、満液以外である(NO.02、NO.04)と判定すると、水熱交換器60に冷媒が寝込むことで、液冷媒が多量に溜まっており、液バックが発生する可能性があるとする。したがって、判定装置220は、運転前ポンプダウン運転を行う必要があると判定する。運転制御装置210は、判定装置220の判定に基づいて、冷房前ポンプダウン運転を行う。 If the determination device 220 determines that the liquid is not full (NO.02, NO.04), a large amount of liquid refrigerant accumulates due to the refrigerant sleeping in the water heat exchanger 60, and liquid back may occur. Suppose there is sex. Therefore, the determination device 220 determines that it is necessary to perform the pump-down operation before operation. The operation control device 210 performs a pump-down operation before cooling based on the determination of the determination device 220.
 次に暖房運転前の停止状態であると判定した場合について説明する。判定装置220は、空気温度が水温以上かまたは未満かを判定する。たとえば空気温度が水温以上である(NO.09~NO.12)と判定すると、水熱交換器60側において、液冷媒が溜まることになり、このとき、空気熱交換器30の冷媒は移動して寝込む。したがって、空気温度が水温以上の状態で、チリングユニット100が暖房運転を開始したとしても、水熱交換器60における液冷媒は、空気熱交換器30において蒸発されることになるので、液バックが発生する危険が少ない。したがって、判定装置220は、暖房前ポンプダウン運転を行う必要がないと判定する。運転制御装置210は、判定装置220の判定に基づいて、暖房前ポンプダウン運転は行わない。 Next, a case where it is determined that the vehicle is stopped before the heating operation will be described. The determination device 220 determines whether the air temperature is equal to or higher than the water temperature. For example, if it is determined that the air temperature is equal to or higher than the water temperature (NO. 09 to NO. 12), liquid refrigerant is accumulated on the water heat exchanger 60 side. At this time, the refrigerant in the air heat exchanger 30 moves. I fall asleep. Therefore, even if the chilling unit 100 starts the heating operation in the state where the air temperature is equal to or higher than the water temperature, the liquid refrigerant in the water heat exchanger 60 is evaporated in the air heat exchanger 30, so the liquid back There is little risk to occur. Therefore, the determination apparatus 220 determines that it is not necessary to perform the pump-down operation before heating. The operation control device 210 does not perform the pre-heating pump down operation based on the determination of the determination device 220.
 一方、判定装置220は、空気温度が水温未満である(NO.13~NO.16)と判定すると、さらに、液面検知器213の検知に基づいて、満液かまたは満液以外かを判定する。判定装置220は、満液である(NO.13、NO.15)と判定すると、液冷媒の大部分が冷媒タンク83に貯留されており、液バックが発生する危険が少ないとする。したがって、判定装置220は、暖房前ポンプダウン運転を行う必要がないと判定する。 On the other hand, when determining that the air temperature is lower than the water temperature (NO.13 to NO.16), determination device 220 further determines whether the liquid level is full or not based on the detection of liquid level detector 213. To do. If the determination device 220 determines that the liquid is full (NO.13, NO.15), it is assumed that most of the liquid refrigerant is stored in the refrigerant tank 83 and that the risk of liquid back is small. Therefore, the determination apparatus 220 determines that it is not necessary to perform the pump-down operation before heating.
 判定装置220は、満液以外である(NO.14、NO.16)と判定すると、空気熱交換器30に冷媒が寝込むことで、液冷媒が多量に溜まっており、液バックが発生する可能性があるとする。したがって、判定装置220は、暖房前ポンプダウン運転を行う必要があると判定する。運転制御装置210は、判定装置220の判定に基づいて、暖房前ポンプダウン運転を行う。 If the determination device 220 determines that the liquid is not full (NO.14, NO.16), the refrigerant stagnates in the air heat exchanger 30, so that a large amount of liquid refrigerant accumulates and liquid back may occur. Suppose there is sex. Therefore, the determination apparatus 220 determines that it is necessary to perform the pump-down operation before heating. The operation control device 210 performs the pre-heating pump down operation based on the determination by the determination device 220.
 以上のように、実施の形態2のチリングユニット100によれば、判定装置220が運転前ポンプダウン運転を行うかどうかを判定するようにしたので、不要な運転前ポンプダウン運転を行わずにすむ。 As described above, according to the chilling unit 100 of the second embodiment, since the determination device 220 determines whether to perform the pre-operation pump down operation, it is not necessary to perform an unnecessary pre-operation pump down operation. .
実施の形態3.
 図6は本発明の実施の形態3に係るチリングユニット100における冷媒タンク83の構成を示す図である。本実施の形態は、実施の形態1において、図2を用いて説明した冷媒タンク83とは別の構成例の冷媒タンク83を示すものである。
Embodiment 3 FIG.
FIG. 6 is a diagram showing a configuration of the refrigerant tank 83 in the chilling unit 100 according to Embodiment 3 of the present invention. The present embodiment shows a refrigerant tank 83 having a configuration example different from the refrigerant tank 83 described with reference to FIG. 2 in the first embodiment.
 図6において、実施の形態1において図2を用いて説明した冷媒タンク83と異なる部分を中心に説明する。図2の第2の配管接続部93は、タンク本体91の下部に設置されていたが、本実施の形態の冷媒タンク83では、第1の配管接続部92と同様にタンク本体91の下部に設置されている。 In FIG. 6, the description will focus on parts different from the refrigerant tank 83 described in Embodiment 1 with reference to FIG. 2. The second pipe connection portion 93 in FIG. 2 is installed in the lower portion of the tank main body 91. However, in the refrigerant tank 83 of the present embodiment, the lower portion of the tank main body 91 is provided in the same manner as the first pipe connection portion 92. is set up.
 また、本実施の形態の冷媒タンク83は、第3の配管接続部96、返油配管97および返油調整装置となる返油キャピラリー98を有している。第3の配管接続部96は、タンク本体91の下部に設置されている。また、返油配管97は、端部の一方が第3の配管接続部96に接続され、他方が第2の分岐配管82に接続されている。返油配管97は、タンク本体91内の下部に溜まる冷凍機油を第2の分岐配管82に流す配管である。返油キャピラリー98は、返油配管97を流れる冷凍機油の量を調整する。 Further, the refrigerant tank 83 of the present embodiment has a third pipe connection portion 96, an oil return pipe 97, and an oil return capillary 98 that serves as an oil return adjustment device. The third pipe connection part 96 is installed in the lower part of the tank main body 91. The oil return pipe 97 has one end connected to the third pipe connection 96 and the other connected to the second branch pipe 82. The oil return pipe 97 is a pipe through which the refrigerating machine oil accumulated in the lower part of the tank main body 91 flows to the second branch pipe 82. The oil return capillary 98 adjusts the amount of refrigerating machine oil flowing through the oil return pipe 97.
実施の形態4.
 上述した実施の形態1~実施の形態3のチリングユニット100では、通常運転を行う前段階において運転前ポンプダウン運転を行うようにしたが、特に限定するものではない。たとえば、通常運転前の他に、さらに定期的(周期的)に運転前ポンプダウン運転を行うようにしてもよい。また、判定装置220が、実施の形態2において説明した判定を定期的に行い、運転前ポンプダウン運転が必要であると判定すれば、運転制御装置210が運転前ポンプダウン運転の制御を行うようにしてもよい。
Embodiment 4 FIG.
In the chilling unit 100 of the first to third embodiments described above, the pre-operation pump down operation is performed in the stage before performing the normal operation, but there is no particular limitation. For example, in addition to the normal operation, the pre-operation pump down operation may be performed periodically (periodically). Further, if the determination device 220 periodically performs the determination described in the second embodiment and determines that the pre-operation pump down operation is necessary, the operation control device 210 controls the pre-operation pump down operation. It may be.
 10 圧縮機、20 四方弁、30 空気熱交換器、40 分配キャピラリー、50 主膨張弁、60 水熱交換器、70 アキュムレーター、80 ポンプダウン流路、81 第1の分岐配管、82 第2の分岐配管、83 冷媒タンク、84 電磁弁、85 ポンプダウン膨張弁、91 タンク本体、92 第1の配管接続部、93 第2の配管接続部、94 延長配管、95 返油穴、96 第3の配管接続部、97 返油配管、98 返油キャピラリー、100 チリングユニット、200 制御装置、210 運転制御装置、211 外気温度センサー、212 水温センサー、213 液面検知器、220 判定装置。 10 compressor, 20 four-way valve, 30 air heat exchanger, 40 distribution capillary, 50 main expansion valve, 60 water heat exchanger, 70 accumulator, 80 pump-down flow path, 81 first branch pipe, 82 second Branch piping, 83 refrigerant tank, 84 solenoid valve, 85 pump down expansion valve, 91 tank body, 92 1st piping connection, 93 2nd piping connection, 94 extension piping, 95 oil return hole, 96 3rd Pipe connection part, 97 oil return pipe, 98 oil return capillary, 100 chilling unit, 200 control device, 210 operation control device, 211 outside air temperature sensor, 212 water temperature sensor, 213 liquid level detector, 220 determination device.

Claims (5)

  1.  圧縮機、流路切替装置、空気熱交換器、第1の絞り装置および熱媒体熱交換器が配管で順に接続され、冷媒が流れる冷媒回路と、
     前記第1の絞り装置と前記熱媒体熱交換器との間と、前記第1の絞り装置と前記空気熱交換器との間とにおいて、前記冷媒回路と並列に接続するバイパス回路とを備え、
     前記流路切替装置は、前記熱媒体熱交換器が蒸発器となって熱媒体を冷却する冷却運転モードとなる流路と前記熱媒体熱交換器が凝縮器となって前記熱媒体を加熱する加熱運転モードとなる流路とに切り替えることができ、
     前記バイパス回路は、
     前記バイパス回路に設けられ、前記バイパス回路を流れる冷媒の流量を制御する流量調整装置、前記バイパス回路に設けられ、前記バイパス回路を流れる冷媒を前記流量調整装置と連携して調整する第2の絞り装置、および前記バイパス回路の前記流量調整装置と前記第2の絞り装置の間に設けられ、前記流量調整装置または前記第2の絞り装置とを通過した液冷媒を溜める冷媒タンクを有し、
     少なくとも前記冷却運転モードの開始または前記加熱運転モード開始の前に、前記液冷媒が、前記冷媒タンクに溜まっているチリングユニット。
    A refrigerant circuit in which a compressor, a flow path switching device, an air heat exchanger, a first expansion device, and a heat medium heat exchanger are sequentially connected by piping, and a refrigerant flows;
    A bypass circuit connected in parallel with the refrigerant circuit between the first expansion device and the heat medium heat exchanger and between the first expansion device and the air heat exchanger;
    In the flow path switching device, the heat medium heat exchanger serves as an evaporator, and the heat medium heat exchanger serves as a condenser and the heat medium heat exchanger serves as a condenser to heat the heat medium. It can be switched to the flow path that becomes the heating operation mode,
    The bypass circuit is:
    A flow rate adjusting device provided in the bypass circuit for controlling the flow rate of the refrigerant flowing through the bypass circuit, and a second throttle provided in the bypass circuit for adjusting the refrigerant flowing through the bypass circuit in cooperation with the flow rate adjusting device. And a refrigerant tank that is provided between the flow rate adjusting device and the second throttling device of the bypass circuit and stores liquid refrigerant that has passed through the flow rate adjusting device or the second throttling device,
    The chilling unit in which the liquid refrigerant is accumulated in the refrigerant tank at least before the start of the cooling operation mode or the heating operation mode.
  2.  前記熱媒体の温度を検出する熱媒体温度センサーと、
     外気の温度を検出する外気温度センサーと、
     前記冷媒タンク内の前記液冷媒の量を検出する冷媒量検出センサーと、
     前記熱媒体の温度、前記外気の温度および前記冷媒タンク内の前記液冷媒の量から、前記冷媒タンクに前記液冷媒を溜めるか否かを判定する判定装置とをさらに備える請求項1に記載のチリングユニット。
    A heat medium temperature sensor for detecting the temperature of the heat medium;
    An outside temperature sensor that detects the temperature of the outside air,
    A refrigerant amount detection sensor for detecting the amount of the liquid refrigerant in the refrigerant tank;
    2. The determination device according to claim 1, further comprising: a determination device that determines whether to store the liquid refrigerant in the refrigerant tank from the temperature of the heat medium, the temperature of the outside air, and the amount of the liquid refrigerant in the refrigerant tank. Chilling unit.
  3.  前記加熱運転モード開始前に、前記空気熱交換器側から前記第1の絞り装置側に冷媒が流れるように前記流路切替装置を切り替えて前記空気熱交換器側から流入する前記液冷媒を前記冷媒タンクに溜め、
     前記冷却運転モード開始前に、前記熱媒体熱交換器側から前記第1の絞り装置側への冷媒の流れるように前記流路切替装置を切り替えて前記熱媒体熱交換器側から流入する前記液冷媒を前記冷媒タンクに溜める運転を行う請求項1または請求項2に記載のチリングユニット。
    Before starting the heating operation mode, the liquid refrigerant flowing from the air heat exchanger side is changed by switching the flow path switching device so that the refrigerant flows from the air heat exchanger side to the first expansion device side. Store in the refrigerant tank,
    Before starting the cooling operation mode, the liquid that flows from the heat medium heat exchanger side by switching the flow path switching device so that the refrigerant flows from the heat medium heat exchanger side to the first expansion device side The chilling unit according to claim 1 or 2, wherein an operation for storing the refrigerant in the refrigerant tank is performed.
  4.  前記冷媒タンクは、
     タンク本体と、
     前記タンク本体の上部に設置され、前記第1の絞り装置と前記熱媒体熱交換器との間の配管と、前記タンク本体とをつなぐ第1の配管が接続される第1の配管接続部と、
     前記タンク本体の下部に設置され、前記第1の絞り装置と前記空気熱交換器との間の配管と、前記タンク本体とをつなぐ第2の配管が接続される第2の配管接続部と、
     前記タンク本体内に設置され、前記第2の配管接続部と連通して、前記タンク本体の上部に向けて前記第2の配管を延長する延長配管と、
     該延長配管の下部に形成され、前記タンク本体に溜まった冷凍機油を前記冷媒回路に戻す返油穴と
    を備える請求項1~請求項3のいずれか一項に記載のチリングユニット。
    The refrigerant tank is
    The tank body,
    A first pipe connection part installed at an upper part of the tank main body, to which a pipe between the first expansion device and the heat medium heat exchanger and a first pipe connecting the tank main body are connected; ,
    A second pipe connecting portion installed at a lower part of the tank body, to which a pipe between the first expansion device and the air heat exchanger and a second pipe connecting the tank body are connected;
    An extension pipe that is installed in the tank body, communicates with the second pipe connection portion, and extends the second pipe toward the upper portion of the tank body;
    The chilling unit according to any one of claims 1 to 3, further comprising an oil return hole formed at a lower portion of the extension pipe and configured to return the refrigeration oil accumulated in the tank body to the refrigerant circuit.
  5.  前記冷媒タンクは、
     タンク本体と、
     前記タンク本体の上部に設置され、前記第1の絞り装置と前記熱媒体熱交換器との間の配管と、前記タンク本体とをつなぐ第1の配管が接続される第1の配管接続部と、
     前記タンク本体の上部に設置され、前記第1の絞り装置と前記空気熱交換器との間の配管と、前記タンク本体とをつなぐ第2の配管が接続される第2の配管接続部と、
     前記タンク本体の下部と前記第2の配管とを接続して前記タンク本体に溜まった冷凍機油を前記冷媒回路に戻す返油配管と、
     該返油配管を流れる前記冷凍機油の量を調整する油調整装置と
    を備える請求項1~請求項3のいずれか一項に記載のチリングユニット。
    The refrigerant tank is
    The tank body,
    A first pipe connection part installed at an upper part of the tank main body, to which a pipe between the first expansion device and the heat medium heat exchanger and a first pipe connecting the tank main body are connected; ,
    A second pipe connecting portion installed at an upper part of the tank body, to which a pipe between the first expansion device and the air heat exchanger and a second pipe connecting the tank body are connected;
    An oil return pipe for connecting the lower part of the tank body and the second pipe to return the refrigeration oil accumulated in the tank body to the refrigerant circuit;
    The chilling unit according to any one of claims 1 to 3, further comprising an oil adjusting device that adjusts an amount of the refrigerating machine oil flowing through the oil return pipe.
PCT/JP2015/072254 2015-08-05 2015-08-05 Chilling unit WO2017022101A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017532319A JP6437120B2 (en) 2015-08-05 2015-08-05 Chilling unit
PCT/JP2015/072254 WO2017022101A1 (en) 2015-08-05 2015-08-05 Chilling unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072254 WO2017022101A1 (en) 2015-08-05 2015-08-05 Chilling unit

Publications (1)

Publication Number Publication Date
WO2017022101A1 true WO2017022101A1 (en) 2017-02-09

Family

ID=57942669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072254 WO2017022101A1 (en) 2015-08-05 2015-08-05 Chilling unit

Country Status (2)

Country Link
JP (1) JP6437120B2 (en)
WO (1) WO2017022101A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017061010A1 (en) * 2015-10-08 2018-06-07 三菱電機株式会社 Refrigeration cycle equipment
JPWO2017061009A1 (en) * 2015-10-08 2018-06-07 三菱電機株式会社 Refrigeration cycle equipment
CN110542235A (en) * 2019-09-12 2019-12-06 广东美的制冷设备有限公司 Air conditioner, control method and device thereof, and computer-readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296558A (en) * 2019-04-22 2019-10-01 珠海格力电器股份有限公司 Refrigerant storage device, cooling cycle system and its control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183212A (en) * 1997-09-02 1999-03-26 Daikin Ind Ltd Operation controller for refrigerator
JP2001091023A (en) * 1999-09-22 2001-04-06 Mitsubishi Electric Corp Air conditioner
JP2003240368A (en) * 2002-02-08 2003-08-27 Daikin Ind Ltd Method of recovering refrigerant and oil, controller for recovering refrigerant and oil, and air conditioner
WO2007049372A1 (en) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
JP2008082653A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Hot water supply cold and warm water air conditioner
JP2014119161A (en) * 2012-12-14 2014-06-30 Sharp Corp Refrigeration cycle and air conditioner with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3710043B2 (en) * 1999-11-10 2005-10-26 株式会社日立製作所 Air conditioner
JP5875649B2 (en) * 2014-09-03 2016-03-02 三菱電機株式会社 Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183212A (en) * 1997-09-02 1999-03-26 Daikin Ind Ltd Operation controller for refrigerator
JP2001091023A (en) * 1999-09-22 2001-04-06 Mitsubishi Electric Corp Air conditioner
JP2003240368A (en) * 2002-02-08 2003-08-27 Daikin Ind Ltd Method of recovering refrigerant and oil, controller for recovering refrigerant and oil, and air conditioner
WO2007049372A1 (en) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
JP2008082653A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Hot water supply cold and warm water air conditioner
JP2014119161A (en) * 2012-12-14 2014-06-30 Sharp Corp Refrigeration cycle and air conditioner with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017061010A1 (en) * 2015-10-08 2018-06-07 三菱電機株式会社 Refrigeration cycle equipment
JPWO2017061009A1 (en) * 2015-10-08 2018-06-07 三菱電機株式会社 Refrigeration cycle equipment
CN110542235A (en) * 2019-09-12 2019-12-06 广东美的制冷设备有限公司 Air conditioner, control method and device thereof, and computer-readable storage medium
CN110542235B (en) * 2019-09-12 2021-03-02 广东美的制冷设备有限公司 Air conditioner, control method and device thereof, and computer-readable storage medium

Also Published As

Publication number Publication date
JP6437120B2 (en) 2018-12-12
JPWO2017022101A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
US11143439B2 (en) Heat pump with refrigerant leak detection and pump-down method
JP5855129B2 (en) Outdoor unit and air conditioner
JP5595245B2 (en) Refrigeration equipment
EP3147587B1 (en) Air conditioning device
US20100205987A1 (en) Refrigeration cycle apparatus
JP6545252B2 (en) Refrigeration cycle device
JP6437120B2 (en) Chilling unit
JP2010112655A (en) Refrigerating device
EP2615388B1 (en) Air conditioner
JP2008096033A (en) Refrigerating device
JP2016003848A (en) Air conditioning system and control method for the same
JP5274174B2 (en) Air conditioner
JP2007139244A (en) Refrigeration device
JP2009139041A (en) Air conditioner
JP6021943B2 (en) Air conditioner
JP2008014545A (en) Cooling device
JP6157182B2 (en) Refrigeration equipment
JP2009293887A (en) Refrigerating device
JP6072178B1 (en) Refrigeration cycle equipment
JP6766239B2 (en) Refrigeration cycle equipment
WO2017098655A1 (en) Refrigeration cycle device
JP6491465B2 (en) Cooling system
JP6795680B2 (en) Refrigeration cycle equipment
JP2009236346A (en) Refrigerating device
JP7282258B2 (en) Outdoor unit and refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900412

Country of ref document: EP

Kind code of ref document: A1