WO2017021918A1 - Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage - Google Patents

Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage Download PDF

Info

Publication number
WO2017021918A1
WO2017021918A1 PCT/IB2016/054705 IB2016054705W WO2017021918A1 WO 2017021918 A1 WO2017021918 A1 WO 2017021918A1 IB 2016054705 W IB2016054705 W IB 2016054705W WO 2017021918 A1 WO2017021918 A1 WO 2017021918A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
fuselage
nacelle
flaps
aircraft according
Prior art date
Application number
PCT/IB2016/054705
Other languages
English (en)
Inventor
Gerome Bermond
Etienne VANDAME
Original Assignee
Gerome Bermond
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerome Bermond filed Critical Gerome Bermond
Publication of WO2017021918A1 publication Critical patent/WO2017021918A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/28Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8254Shrouded tail rotors, e.g. "Fenestron" fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8263Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising in addition rudders, tails, fins, or the like
    • B64C2027/8272Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising in addition rudders, tails, fins, or the like comprising fins, or movable rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8263Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising in addition rudders, tails, fins, or the like
    • B64C2027/8281Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising in addition rudders, tails, fins, or the like comprising horizontal tail planes

Definitions

  • the present invention relates to improvements made to convertible aircraft with streamlined rotors.
  • nacelle tilting streamlined rotors, arranged on either side of the fuselage, the assembly being called “nacelle”.
  • helicopter a low translational speed
  • airplane a high speed airplane
  • the present invention aims to provide a convertible aircraft with streamlined rotors whose control is improved in efficiency and reliability, while complying with aircraft certification standards, thus allowing to consider a series production and a mass exploitation.
  • its configuration makes it possible to size the nacelles favorably to improve its performance in all phases of flight.
  • a convertible aircraft comprising a fuselage, at least one fixed horizontal ducted rotor, called “horizontal fan", located at the front or rear end of the fuselage, a stabilizer comprising a stabilizer and a drift at least two wings arranged on either side of the fuselage, and at least one first and one second pods arranged at the ends of the wings; these nacelles, mounted tilting about an axis transverse to the fuselage, each comprise a shrouded rotor and a flap disposed at the outlet of each streamlined rotor to ensure control of the aircraft.
  • the presence of the horizontal fan makes it possible to vary in a wide range the center of gravity of the aircraft, thus greatly facilitating the longitudinal distribution of the onboard loads.
  • the shutters at the fairing outlet can therefore be differentially driven.
  • the independent operation of the shutters combined with the action of the horizontal fan offer precise and particularly simple control and compensation possibilities for the aircraft in roll, yaw and pitch, whatever the phase of flight.
  • the fan ensures the stability of the axis longitudinal axis of the aircraft, while the center of thrust of the nacelles and the center of gravity are no longer aligned.
  • the shutters placed at the outlet of the nacelle can take advantage of a generous air flow and available regardless of the flight phases. The control of the aircraft can therefore be assured constantly regardless of its speed of advancement.
  • the presence of the wing allows both to house the systems of actuation of the rotation of the nacelles, the transmission of the power, and the fuel or any other source of energy, without obstructing the space cabin.
  • this general configuration close to a conventional aircraft, allows for vertical and horizontal takeoffs and landings from a runway, and provides great aerodynamic stability in horizontal flight.
  • the invention further comprises at least any of the following:
  • the aircraft is provided with a heat engine positioned in the fuselage, preferably behind the wings, and driving by a mechanical transmission the rotors located in the nacelles.
  • Each nacelle includes a power return box and the means of varying the pitch of the rotor, thus giving them the opportunity, at equal power absorbed, to vary the thrust they exert.
  • the aircraft is provided with an electric generator coupled to the heat engine and an electricity storage system, an electrical transformation system and means of transporting this electricity to electric motors integrated in each nacelle.
  • the aircraft is characterized in that the engine exhaust gases are ejected on the top of the fuselage by an opening for diffusing the noise of the exhaust upwards, and thus significantly reduce the sound signature of said aircraft for an observer on the ground.
  • the aircraft is equipped with two air intakes located on the top of the fuselage in front of the wings, to supply air to the engine and to ensure the cooling of the onboard systems.
  • the wings are fixed and located at the upper level of the fuselage. Preferably, they are linked on top of the fuselage.
  • the high installation of the wings makes it possible to increase the size of the nacelles and consequently the total thrust of the propulsion system with constant power. It also facilitates access to the passenger compartment and clears the visibility of the pilot and passengers.
  • the wings extend in a direction substantially perpendicular to the fuselage of the aircraft. Alternatively, they may have an arrow backwards.
  • the aircraft includes a conventional tailplane.
  • it includes a horizontal plane called stabilizer, and a vertical plane called drift.
  • the stabilizer is equipped with elevators
  • the fin is equipped with a rudder.
  • the aircraft is equipped with a stabilizer comprising a stabilizer and two offset fins at each end of the stabilizer.
  • the stabilizer is equipped with elevators, and the fins are equipped with rudders.
  • This arrangement allows the insertion of the horizontal fan at the end of the fuselage, and therefore a better aerodynamic efficiency during its operation. In this way, the horizontal empennage is blown by the nacelles during the transition phase, making it functional when the relative wind does not allow it yet.
  • the fan is disposed in the turbulent air flow at the rear end of the fuselage, which makes it less penalizing as for the aerodynamic drag balance of the aircraft.
  • the aircraft is equipped with a "butterfly" V tail, where the stabilizer and the drift are replaced by two surfaces forming a V, equipped with moving surfaces acting as both elevator and control gear. of management.
  • This arrangement allows in the same way that the previous provision advantageously insert the horizontal fan in the fuselage.
  • the aircraft may comprise fins and / or flaps mounted on the wings. All of these aerodynamic surfaces previously mentioned are referred to as "conventional control means”.
  • the nacelles have one or more flaps, which can be moved symmetrically or non-symmetrically.
  • the pods and their flap are arranged at the end of the wing, which allows to take advantage of a maximum lever for control and compensation of the aircraft, thereby limiting their size and the power absorbed by the organs of the aircraft. control.
  • the first and second flaps are rotatably mounted. They are mounted in rotation about axes substantially parallel to the tilting axes of the first and second nacelle respectively.
  • the flaps extend substantially over the entire inner section of the nacelle to increase its effectiveness.
  • the horizontal fan is integrated at the front or rear end of the fuselage and can be controlled independently of the two flaps to vary its thrust, by the variation of its pitch or rotation speed.
  • the horizontal fan is rotated by one or more electric motors.
  • the aircraft is equipped with control means and their transmission, coupled with the flaps, the moving surfaces of the tail tail, the wingtip rotors, and the horizontal fan.
  • the aircraft is configured such that the horizontal fan is located at the front end of the fuselage, in the nose, and the empennage is in T.
  • This empennage consists of a single drift and a single stabilizer mounted at the top of the drift, each equipped respectively with a rudder and elevators.
  • This type of empennage has the advantage of not being in the air flow generated by the nacelles, and therefore to be subject only to the air flow associated with the horizontal displacement of the aircraft. This empennage then generates a control source independent of that of the nacelles, adding thereto to reinforce the control of the aircraft.
  • the aircraft also includes two "duck" wings, located at the front and on either side of the fuselage, in order to balance the aerodynamic forces exerted on it in horizontal flight.
  • this type of three-plane configuration makes it possible to implant the wings, and thus the nacelles, further behind the cabin, thus freeing the lateral visibility of the passengers and the possibilities of operations in hovering for any type of mission, including civil security.
  • Figure 1 is a perspective view of an aircraft whose nacelles are oriented in airplane mode, according to a first embodiment of the invention.
  • FIG. 2 is a perspective view of the aircraft whose nacelles are oriented in helicopter mode, according to a first embodiment of the invention.
  • FIG. 3 is a view from above of the aircraft illustrated in FIG.
  • FIG. 4 is a side view of the aircraft illustrated in FIG. Figure 5 is a perspective view of an aircraft equipped with a T-tail and two duck wings, according to a second embodiment of the invention.
  • Figure 6 is a perspective view of a nacelle, according to an exemplary embodiment of the invention.
  • This aircraft comprises a fuselage F and two wings A1 and A2, disposed above the fuselage F.
  • the fuselage F extends mainly in a longitudinal direction defined by its nose and tail.
  • the aircraft further comprises a pair of nacelles N1 and N2 also disposed on either side of the fuselage F, and a horizontal fixed fan 1.
  • the aircraft is equipped with a stabilizer, consisting of a stabilizer S1 and two fins D1 and D2, respectively equipped with a elevator P1 and two rudders G1 and G2.
  • the aircraft is characterized in that two air inlets E1 and E2, as well as the exhaust H of the gases of the engine M are located on the top of the fuselage F.
  • This aircraft comprises a fuselage F and two wings A1 and A2, disposed above the fuselage F.
  • the fuselage F extends mainly in a longitudinal direction defined by its nose and tail.
  • the aircraft further comprises a pair of nacelles N1 and N2 also disposed on either side of the fuselage F, and a horizontal fixed fan 1.
  • the aircraft comprises a T-tail consisting of a drift D3 and a stabilizer S2 mounted at the top of the fin, each equipped respectively with a rudder G3 and elevators P2 and P3; the aircraft also includes two wings "duck" W1 and W2 located at the front and on both sides of the fuselage, between the horizontal fan 1 and the cabin.
  • each nacelle N1 and N2 constitutes a propulsion member of the aircraft. They each comprise an internal fairing C1 and C2, and at least one rotor R1 and R2, provided with blades and configured to rotate inside each inner fairing C1 and C2.
  • the nacelles N1 and N2 are mounted tilting relative to the fuselage F, and are rotated at the end of the wings A1 and A2 along an axis strictly orthogonal to the longitudinal axis of the fuselage F.
  • the wings A1 and A2 are fixed, extend in a direction substantially transverse to the fuselage F, as shown in Figures 1 to 5, and have a high implantation.
  • the nacelles N1 and N2 are located at the end of the wings A1 and A2. This makes it possible to position the axis of rotation of the rotors R1 and R2 as high as possible.
  • the aircraft according to the invention then offers improved accessibility to the access openings 2 and 3 of the passenger compartment, compared to a low-wing configuration. In addition, the visibility of the pilot and passengers is greatly improved.
  • this positioning of the nacelles offers a greater leverage compared to the center of gravity and considerably reduces the interactions of the airflow with the fuselage.
  • the aircraft is also configured so that in a first position of the nacelles, the rotors R1 and R2 rotate around a substantially horizontal direction. The aircraft then moves substantially horizontally and can reach its maximum speed.
  • the aircraft is configured so that, in a second position of the nacelles N1 and N2, the rotors R1 and R2 rotate around them. a substantially vertical direction.
  • the aircraft can then perform vertical take-offs or landings, stationary flights, or move horizontally at slow speeds for approach flights.
  • the nacelles N1 and N2 are steerable over an angular sector of about 95 ° between the helicopter mode and the airplane mode. They can be maintained in any intermediate position during any phase of flight.
  • FIG. 6 illustrates the configuration of the nacelle N1, identical to the nacelle N2.
  • the nacelle N1 comprises a casing 4 which contains the gearing gear of the engine power to the rotor R1, or the electric motors in the case of a hybrid generation of the propulsion.
  • the nacelle N1 has a rotor disk defined by inner walls of the fairing C1.
  • the casing 4 is integral with the fairing C1 by means of a cross member T1 whose two ends are fixed to the fairing C1.
  • the nacelle N1 comprises another cross T2 forming a cross inside the fairing C1 so as to stiffen the nacelle N1 and to support the rotor R1.
  • the power transmission shaft is housed in the crossbar T1.
  • the nacelle N1 admits only a single tilting movement relative to the wing A1, the axis of this tilt being fixed and orthogonal to the fuselage F. This greatly simplifies the kinematics of the nacelle, and therefore to increase the reliability of the aircraft and to limit the weight of its propulsion system.
  • the aircraft comprises at least two flaps V1 and V2 associated respectively with the nacelles N1 and N2, and arranged at the output of the flow through respectively the rotors R1 and R2.
  • Each flap V1 and V2 designate an aerodynamic surface that is mobile about a single axis, used to modify the air flow at the outlet of the nacelle.
  • the flaps V1 and V2 are pivotally mounted relative to the nacelles N1 and
  • the flaps V1 and V2 are mounted pivoting about an axis orthogonal to the fuselage F.
  • the pivot axis of the flap V1 is therefore substantially parallel to the axis of tilting of the N1 and N2 nacelles.
  • the flaps V1 and V2 located on either side of the fuselage F and respectively belonging to the pair of nacelles N1 and N2, are configured so that they can be asymmetrically driven. It is specified that in the context of the present invention asymmetry means non-symmetrical and does not impose or exclude an identical amplitude of movement. Thus only one of the flaps V1 and V2 can be moved and the other not, or the two flaps V1 and V2 can be moved with identical amplitudes in the same or opposite directions, or the two flaps V1 and V2 can be animated with different amplitudes in identical or opposite directions.
  • each flap V1 and V2 modifies the behavior of the aircraft.
  • the flaps V1 and V2 are configured to bring the aircraft from one equilibrium state to another, and thus contribute to the control and / or aerodynamic compensation of the aircraft.
  • the aircraft is provided with a heat engine M positioned inside the fuselage F, preferably close to the wings A1 and A2, and driving the rotors R1 and R2.
  • the aircraft is provided with an electric generator B coupled to the heat engine M, for generating electricity to supply electric motors integrated in the housings (J1, J2) pods (N1, N2).
  • an electric generator B coupled to the heat engine M, for generating electricity to supply electric motors integrated in the housings (J1, J2) pods (N1, N2).
  • the aircraft has a landing gear consisting of a nose landing gear 10 and a central landing gear train 11 composed of two undercarriages; specifically, the aircraft may have a fixed landing gear consisting of two metal pads.
  • the aircraft control strategy according to any one of the preceding features comprises at least any of the following:
  • the position of the nacelles (N1, N2) remains symmetrical on both sides of the fuselage (F).
  • the roll, pitch and yaw controls are effected by controlling the position of the flaps (V1, V2) in a differential or symmetrical manner, conventional control means (P1, P2, D1, D2, D3) of the empennage, as well as by modifying the thrust exerted by the horizontal fan (1).
  • the inertia of these control means being almost zero compared to what would be the inertia of a nacelle in rotation, the fineness of the control is greatly improved.
  • the yaw and the roll are produced by an asymmetry of the thrust generated by each nacelle (N1, N2).
  • N1, N2 the nacelle
  • a variation of the pitch of the rotors (R1, R2) associated with a constant rotational speed of the rotors (R1, R2) has the advantage of improving the reactivity of the control of the aircraft.
  • the two flaps (V1, V2) are moved in opposite directions or in the same direction with substantially equal amplitudes.
  • the pivoting of the flaps (V1, V2), the pitch or power delivered to the rotors (R1, R2), the horizontal fan (1), and the conventional control means (P1, P2, D1, D2, D3) are coupled by mechanical means, and / or electrical and / or electronic, thus ensuring a high quality of control and compensation of the aircraft in all phases of flight.
  • this coupling of all the control means makes it possible to reconcile the control of the aircraft at very low speed and at high speed.
  • the conventional control means P1, P2, D1, D2, D3 are ineffective because no air flows on their surface. But as soon as the aircraft translate at a sufficient speed, they add up to the action of the flaps (V1, V2), rotors (R1, R2) and the horizontal fan (1) to control it.
  • a flap (V1, V2) is pivoted rearward (upwards) when the position of its trailing edge after pivoting is shifted towards the empennage (the top) with respect to its position before pivoting. Conversely, a flap (V1, V2) is pivoted forward (down) when the position of its trailing edge after pivoting is shifted towards the nose (bottom) of the aircraft relative to its position before pivoting.
  • the nacelles go from a vertical orientation to a horizontal orientation.
  • a greater thrust of the nacelle N1 causes a yaw movement to the side of the nacelle N2.
  • the deflection of the flaps (V1, V2) as well as the dissymmetry of the thrust exerted by the rotors (R1, R2) are coupled with the rudder (D1, D2, D3) located on the empennage for control the aircraft in yaw during all phases of flight.
  • the flaps (V1, V2) always remain in symmetrical positions on either side of the fuselage F.
  • a flap of the flaps (V1, V2) upward generates a tilting torque, while a flap movement (V1, V2) downwards generates a piercing torque.
  • the deflection of the flaps (V1, V2) is coupled with the depth (P1, P2) located on the empennage to control the aircraft in pitch.
  • the horizontal fan may be coupled to the autopilot or any other electronic system to maintain a strictly zero aircraft attitude in the hover, and during the transition phase from helicopter mode to airplane mode. This allows greater driving comfort and better stability. Control during the transition phase
  • the "rotation angle" of the rotors (R1, R2) is that which is described between the axis of rotation of the rotors (R1, R2) in helicopter mode and the horizontal axis of the fuselage.
  • the effect generated by a pivoting of the flaps (V1, V2) depends on the orientation of the nacelles (N1, N2).
  • the angle of rotation of the nacelles (N1, N2) is greater than 45 °, it mainly induces a rolling movement accompanied by a yaw movement.
  • the angle of rotation is equal to 45 °, it induces as much roll as yaw.
  • the effect generated by an asymmetry of the thrust of the rotors depends on the orientation of the nacelles (N1, N2).
  • the angle of rotation is greater than 45 °, the dissymmetry of the thrust induces a majority of yaw movement accompanied by a roll motion.
  • the angle of rotation is less than 45 °, it induces a majority of rolling movement accompanied by a yaw movement.
  • the angle of rotation is equal to 45 °, it induces as much roll as yaw.
  • the nacelles (N1, N2) can be moved independently of one another.
  • the pilot can select an independence setting of the nacelles (N1, N2).
  • Their symmetrical or asymmetrical movement, in an actuation envelope of about 95 degrees with respect to the longitudinal axis of the fuselage (F), can control the aircraft on the same principle as the flaps (V1, V2). Compensation
  • any movement of the flaps (V1, V2), nacelles (N1, N2), any asymmetrical modification of the thrust of the rotors (R1, R2), or any modification of the horizontal fan thrust 1, as described above, can be used for aerodynamic compensation purposes, in order to keep the aircraft in stable equilibrium at any moment of the flight. Effects induced by nacelles (N1, N2)
  • the tilting of the nacelles (N1, N2) generates two undesirable effects, said induced, which it is necessary to compensate.
  • the first is the gyroscopic precession of the nacelles (N1, N2) during their tilting, which induces a biting moment when they are tilted from the rear to the front, and a tilting moment when they are tilted forward rearward.
  • the second is the lift variation of the nacelles (N1, N2) as a function of their tilt angle.
  • the air flow impacts the nacelles (N1, N2) and generates a lift that is variable in their angle of attack and the thrust produced.
  • the aircraft is configured to allow differential activation of the flaps (V1, V2), the thrust of the rotors (R1, R2), and the horizontal fan 1.
  • the aircraft can benefit from electronic assistance to optimize control.
  • the invention thus provides an aircraft that is both as fast and efficient as a cruising aircraft and as controllable as a hovering helicopter.
  • it is able to land and take off in helicopter mode, just like in airplane mode.
  • the aircraft also has the ability to maintain a constant speed downhill with a sharply inclined forward attitude, like an airplane. A helicopter would take speed and would be forced to change its trajectory quickly. This ability maintains visibility, speed and accuracy to the point of landing.
  • the nacelles offer the same power / thrust ratio when hovering, and therefore the same capacities when this phase of flight.
  • the aerodynamic configuration of the aircraft ensures its lift by the aerodynamic surfaces, and thus achieves comparable speeds at lower power, resulting in a better economy of use.
  • the orientation of the axis of the rotors forward in horizontal flight can achieve speeds much greater than those of a helicopter.
  • the aircraft Because of its configuration with three hovering thrust points, the aircraft is particularly stable. It also offers many means of control and compensation regardless of the flight phase, while presenting a great simplicity of construction and therefore better reliability compared to helicopters.
  • the aircraft according to the invention thus represents a particularly advantageous solution for all civil security applications, emergency, public or private transport, and generally for all missions usually involving helicopters and aircraft.
  • an aircraft according to the invention has a wingspan of 9 meters, a length of 8.50 meters, a curb weight of 1.1 tons and a driving power of 350 horses; it offers a payload of about 450 kilograms. Typically, it is configured to accommodate 1 pilot and 3 passengers, or 1 pilot and 1 cubic meter of freight. It covers a distance of about 800 nautical miles, at about 160 knots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)
  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Transmission Devices (AREA)
  • Emergency Lowering Means (AREA)

Abstract

L'invention concerne un aéronef convertible comprenant un fuselage (F), une paire d'ailes (A1, A2) disposées de part et d'autre du fuselage (F), au moins un rotor caréné (1) installé en position horizontale à l'une des extrémités du fuselage (F), et une première et une deuxième nacelles (N1, N2) disposées respectivement à l'extrémité de chaque aile (A1, A2), comprenant chacune un rotor (R1, R2) caréné, et montées basculantes par rapport au fuselage (F), en ce qu'elles comprennent au moins un premier et un deuxième volets mobiles (V1, V2), disposés respectivement à la sortie du rotor (R1) caréné de la première nacelle (N1) et à la sortie du rotor (R2) caréné de la deuxième nacelle (N2). L'aéronef selon l'invention représente ainsi une solution avantageuse pour toutes applications impliquant des hélicoptères et des avions, et particulièrement les missions de sécurité civile, de secours, de transports publics ou privés.

Description

Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage
La présente invention concerne des perfectionnements apportés aux aéronefs convertibles à rotors carénés.
Ces aéronefs sont pourvus de deux rotors carénés basculants, disposés de part et d'autre du fuselage, l'ensemble étant appelé « nacelle ». Selon la position de la nacelle, ces aéronefs ont la faculté à la fois de se déplacer à la verticale avec une vitesse de translation faible, comme les hélicoptères (qualifié de mode « hélicoptère >>), et à la fois de se translater à l'horizontal à des vitesses plus élevées, comme les avions (qualifié de mode « avion >>).
Ces aéronefs ont pour avantage de proposer une solution de propulsion polyvalente, d'être moins encombrants, plus silencieux, plus stables et moins complexes à fabriquer que les hélicoptères et les aéronefs convertibles à rotor sans carénage.
Mais bien que de nombreux prototypes d'aéronefs convertibles à rotors carénés aient été fabriqués, aucun d'eux n'a jamais accédé au stade de la production série, en raison de plusieurs facteurs techniques défavorables.
En effet, le contrôle de ces aéronefs est problématique, car les carénages de rotor génèrent une portance dès qu'un flux d'air vient les impacter. La variation de la position des carénages lors des phases de transition entre les modes hélicoptère et avion modifie ainsi substantiellement la répartition et l'intensité de la portance et de la traînée globale de l'aéronef. Son comportement varie alors significativement, rendant son contrôle délicat. Des systèmes de contrôle et de compensation ont déjà été imaginés. Dans la pratique, ces systèmes se sont avérés trop complexes et/ou insuffisamment efficaces pour dépasser le stade du prototype et atteindre la production série.
En outre, à partir d'une certaine vitesse d'avancement en mode avion, les surfaces des carénages génèrent inévitablement une traînée importante, qui limite les performances de ces aéronefs comparativement aux avions.
Enfin, le poids des nacelles et les forces aérodynamiques qui s'exercent sur elles, impactent défavorablement la structure et donc la masse de l'aéronef. Ainsi, il existe un besoin consistant à proposer un aéronef convertible à rotor caréné limitant ou résolvant au moins l'un des inconvénients mentionnés précédemment.
Plus précisément, la présente invention a pour objectif de proposer un aéronef convertible à rotors carénés dont le contrôle est amélioré en efficacité et en fiabilité, tout en se conformant aux normes de certification des aéronefs, permettant ainsi d'en envisager une production série et une exploitation de masse. De surcroît, sa configuration permet de dimensionner favorablement les nacelles afin d'améliorer ses performances dans toutes les phases de vol.
A cet effet, on prévoit selon l'invention un aéronef convertible comprenant un fuselage, au moins un rotor caréné horizontal fixe, appelé « fan horizontal », situé à l'extrémité avant ou arrière du fuselage, un empennage comprenant un stabilisateur et une dérive, au moins deux ailes disposées de part et d'autre du fuselage, et au moins une première et une deuxième nacelles disposées aux extrémités des ailes ; ces nacelles, montées basculantes autour d'un axe transversal au fuselage, comprennent chacune un rotor caréné et un volet disposé à la sortie de chaque rotor caréné afin d'assurer le contrôle de l'aéronef.
Les avantages d'une telle configuration sont multiples. Cela permet tout d'abord de proposer trois points d'appui lors de la sustentation en stationnaire de l'aéronef, grâce aux deux nacelles et au fan horizontal, assurant ainsi une parfaite stabilité dans le plan horizontal pendant cette phase de vol.
En outre, la présence du fan horizontal permet de faire varier dans une grande plage le centre de gravité de l'aéronef, facilitant ainsi grandement la répartition longitudinale des charges embarquées.
Durant toutes les phases de vol, les volets en sortie de carénage peuvent donc être mouvementés de manière différentielle. L'actionnement indépendant des volets combiné à l'action du fan horizontal, offrent des possibilités de contrôle et de compensation précis et particulièrement simples de l'aéronef en roulis, en lacet et en tangage, et ce quelle que soient les phases de vol. Notamment pendant la phase de transition, durant laquelle l'axe de rotation des rotors passe de la verticale à l'horizontale, le fan assure la stabilité de l'axe longitudinal de l'aéronef, alors que le centre de poussée des nacelles et le centre de gravité ne sont plus alignés.
La complexité du système de contrôle est réduite au minimum et sa fiabilité par conséquent améliorée. En effet, deux nacelles équipées chacune d'un volet de contrôle est la configuration à minima pour des aéronefs convertibles à rotor caréné, étant évident qu'une seule nacelle basculante ne peut être envisagée pour propulser et contrôler cette catégorie d'aéronef.
En outre, les volets placés en sortie de nacelle permettent de tirer partie d'un flux d'air généreux et disponible quelque soit les phases de vol. Le contrôle de l'aéronef peut donc être assuré de façon constante quelque soit sa vitesse d'avancement.
D'autre part, la présence de l'aile permet à la fois de loger les systèmes d'actionnement de la rotation des nacelles, la transmission de la puissance, et le carburant ou toute autre source d'énergie, sans obstruer l'espace cabine.
Au final, cette configuration générale, proche d'un avion classique, permet de réaliser des décollages et atterrissages verticaux mais également horizontaux à partir d'une piste, et assure une grande stabilité aérodynamique en vol horizontal.
Cette configuration se rapproche à de nombreux égards de solutions techniques classiques, à la fois financièrement maîtrisées et déjà certifiées par les autorités aéronautiques. L'invention offre ainsi la possibilité de produire en série un aéronef convertible qui répond aux exigences de fiabilité, de coût de revient, et de règles de certification. De manière facultative, l'invention comprend en outre au moins l'une quelconque des caractéristiques suivantes :
L'aéronef est pourvu d'un moteur thermique positionné dans le fuselage, de préférence en arrière des ailes, et entraînant par une transmission mécanique les rotors situés dans les nacelles.
Chaque nacelle comprend une boîte de renvoi de la puissance ainsi que les moyens de faire varier le pas du rotor, leur conférant ainsi la possibilité, à puissance absorbée égale, de faire varier la poussée qu'ils exercent. Optionnellement, l'aéronef est pourvu d'un générateur électrique accouplé au moteur thermique et d'un système de stockage de l'électricité, d'un système de transformation électrique et des moyens de transport de cette électricité vers des moteurs électriques intégrés dans chaque nacelle.
L'aéronef est caractérisé par le fait que les gaz d'échappement du moteur thermique sont éjectés sur le dessus du fuselage par une ouverture permettant de diffuser le bruit de l'échappement vers le haut, et ainsi de réduire significativement la signature sonore dudit aéronef pour un observateur au sol.
L'aéronef est équipé de deux entrées d'air situées sur le dessus du fuselage en avant des ailes, permettant d'alimenter en air le moteur thermique et d'assurer le refroidissement des systèmes embarqués.
Les ailes sont fixes et implantées au niveau supérieur du fuselage. De préférence, elles sont liées sur le dessus du fuselage. L'implantation haute des ailes permet d'augmenter la dimension des nacelles et par conséquent la poussée totale du système de propulsion à puissance constante. Elle permet également de faciliter l'accès à l'habitacle et de dégager la visibilité du pilote et des passagers.
Les ailes s'étendent dans une direction sensiblement perpendiculaire au fuselage de l'aéronef. Alternativement, elles peuvent présenter une flèche vers l'arrière.
L'aéronef comprend un empennage conventionnel. En particulier, il comprend un plan horizontal appelé stabilisateur, et un plan vertical appelé dérive. Avantageusement, le stabilisateur est équipé de gouvernes de profondeur, et la dérive est équipée d'une gouverne de direction.
De préférence, l'aéronef est muni d'un empennage comprenant un stabilisateur et deux dérives déportées à chaque extrémité du stabilisateur. Le stabilisateur est équipé de gouvernes de profondeur, et les dérives sont équipées de gouvernes de direction. Cette disposition permet l'insertion du fan horizontal en extrémité de fuselage, et par conséquent une meilleure efficience aérodynamique lors de son fonctionnement. De cette manière, l'empennage horizontal est soufflé par les nacelles pendant la phase de transition, le rendant fonctionnel lorsque le vent relatif ne le permet pas encore. En outre, le fan est disposé dans le flux d'air turbulent à l'extrémité arrière du fuselage, ce qui le rend moins pénalisant quant au bilan de traînée aérodynamique de l'aéronef.
Optionnellement, l'aéronef est muni d'un empennage en V dit « en papillon », où le stabilisateur et la dérive sont remplacés par deux surfaces formant un V, équipé de surfaces mobiles faisant office à la fois de gouverne de profondeur et de gouverne de direction. Cette disposition permet de la même manière que la disposition précédente d'insérer avantageusement le fan horizontal dans le fuselage.
En outre l'aéronef peut comprendre des ailerons et/ou des volets montés sur les ailes. Toutes ces surfaces aérodynamiques précédemment mentionnées sont appelées « moyens de contrôle conventionnels ».
Les nacelles possèdent un ou plusieurs volets, qui peuvent être mouvementés de manière symétrique ou non symétrique.
Les nacelles et leur volet sont disposés en bout d'aile, ce qui permet de profiter d'un bras de levier maximal pour le contrôle et la compensation de l'aéronef, limitant de ce fait leur dimension et la puissance absorbée par les organes de contrôle.
Les premier et deuxième volets sont montés en rotation. Ils sont montés en rotation autour d'axes sensiblement parallèles aux axes de basculement de la première et de la deuxième nacelle respectivement.
Les volets s'étendent sensiblement sur la totalité de la section intérieure de la nacelle afin d'en augmenter l'efficacité.
Le fan horizontal est intégré à l'extrémité avant ou arrière du fuselage et peut être commandé indépendamment des deux volets afin de faire varier sa poussée, par la variation de son pas ou de sa vitesse de rotation.
De préférence, le fan horizontal est mis en rotation par un ou plusieurs moteurs électriques.
L'aéronef est équipé de moyens de commande et de leur transmission, couplés aux volets, aux surfaces mobiles de l'empennage arrière, aux rotors en bout d'aile, et au fan horizontal. Dans un second mode de configuration, l'aéronef est configuré de telle façon que le fan horizontal est situé à l'extrémité avant du fuselage, dans le nez, et que l'empennage soit en T. Ledit empennage est constitué d'une seule dérive et d'un seul stabilisateur monté au sommet de la dérive, chacun équipés respectivement d'une gouverne de direction et de gouvernes de profondeur. Ce type d'empennage a pour avantage de ne pas se situer dans le flux d'air généré par les nacelles, et donc de n'être soumis qu'au flux d'air lié au déplacement horizontal de l'aéronef. Ledit empennage génère alors une source de contrôle indépendante de celle des nacelles, s'y ajoutant pour conforter le contrôle de l'aéronef.
L'aéronef comprend également deux ailes « canard », situées à l'avant et de part et d'autre du fuselage, afin d'équilibrer les forces aérodynamiques qui s'exercent sur lui en vol horizontal.
Avantageusement, ce type de configuration à trois plans (plan canard, ailes et stabilisateur) permet d'implanter les ailes, et donc les nacelles, plus en arrière de la cabine, libérant ainsi la visibilité latérale des passagers et les possibilités d'opérations en vol stationnaire pour tout type de mission, notamment de sécurité civile.
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui suit, et en regard des dessins annexés, donnés à titre d'exemples non limitatifs et sur lesquels :
La figure 1 est une vue en perspective d'un aéronef dont les nacelles sont orientées en mode avion, selon un premier exemple de réalisation de l'invention.
La figure 2 est une vue en perspective de l'aéronef dont les nacelles sont orientées en mode hélicoptère, selon un premier exemple de réalisation de l'invention.
La figure 3 est une vue de dessus de l'aéronef illustré en figure 1 .
La figure 4 est une vue de côté de l'aéronef illustré en figure 1. La figure 5 est une vue en perspective d'un aéronef muni d'un empennage en T et de deux ailes canard, selon un deuxième exemple de réalisation de l'invention.
La figure 6 est une vue en perspective d'une nacelle, selon un exemple de réalisation de l'invention.
Les mêmes éléments présents dans plusieurs figures distinctes sont affectés d'une seule et même référence.
En référence aux figures 1 à 4, l'aéronef selon un premier exemple de réalisation est illustré. Cet aéronef comprend un fuselage F et deux ailes A1 et A2, disposées au-dessus du fuselage F. Le fuselage F s'étend principalement selon une direction longitudinale délimitée par son nez et sa queue. L'aéronef comprend en outre une paire de nacelles N1 et N2 disposées également de part et d'autre du fuselage F, ainsi qu'un fan horizontal fixe 1 . L'aéronef est muni d'un empennage, constitué d'un stabilisateur S1 et de deux dérives D1 et D2, équipés respectivement d'une gouverne de profondeur P1 et de deux gouvernes de direction G1 et G2. L'aéronef est caractérisé par le fait que deux entrées d'air E1 et E2, ainsi que l'échappement H des gaz du moteur thermique M sont situés sur le dessus du fuselage F.
En référence à la figure 5, l'aéronef selon un deuxième exemple de réalisation est illustré. Cet aéronef comprend un fuselage F et deux ailes A1 et A2, disposées au-dessus du fuselage F. Le fuselage F s'étend principalement selon une direction longitudinale délimitée par son nez et sa queue. L'aéronef comprend en outre une paire de nacelles N1 et N2 disposées également de part et d'autre du fuselage F, ainsi qu'un fan horizontal fixe 1 . L'aéronef comprend un empennage en T, constitué d'une dérive D3 et d'un stabilisateur S2 monté au sommet de la dérive, équipés chacun respectivement d'une gouverne de direction G3 et de gouvernes de profondeur P2 et P3 ; l'aéronef comprend également deux ailes « canard >> W1 et W2 situées à l'avant et de part et d'autre du fuselage, entre le fan horizontal 1 et la cabine.
En référence aux figures 1 , 2, 3, 4, et 5, chaque nacelle N1 et N2 constitue un organe de propulsion de l'aéronef. Elles comprennent chacune un carénage interne C1 et C2, ainsi qu'au moins un rotor R1 et R2, muni de pales et configuré pour tourner à l'intérieur de chaque carénage interne C1 et C2.
Les nacelles N1 et N2 sont montées basculantes par rapport au fuselage F, et sont mises en rotation à l'extrémité des ailes A1 et A2 selon un axe strictement orthogonal à l'axe longitudinal du fuselage F.
Préférentiellement, les ailes A1 et A2 sont fixes, s'étendent dans une direction sensiblement transversale au fuselage F, comme illustré sur les figures 1 à 5, et présentent une implantation haute.
De manière avantageuse, les nacelles N1 et N2 sont situées à l'extrémité des ailes A1 et A2. Cela permet de positionner l'axe de rotation des rotors R1 et R2 le plus haut possible. La position haute des ailes A1 et A2 par rapport au fuselage, conjuguée au positionnement des nacelles N1 et N2 en bout d'aile, permet d'augmenter au maximum la dimension desdites nacelles, afin d'obtenir une plus grande poussée. L'aéronef selon l'invention offre alors une accessibilité améliorée aux ouvertures d'accès 2 et 3 de l'habitacle, par rapport à une configuration à aile basse. En outre, la visibilité du pilote et des passagers est grandement améliorée.
Du point de vue du contrôle, ce positionnement des nacelles offre un plus grand bras de levier par rapport au centre de gravité et réduit considérablement les interactions du flux d'air avec le fuselage.
Comme illustré en figure 1 , L'aéronef est également configuré de sorte que dans une première position des nacelles, les rotors R1 et R2 tournent autour d'une direction sensiblement horizontale. L'aéronef évolue alors sensiblement à l'horizontal et peut atteindre sa vitesse maximale.
Comme illustré en figure 2, l'aéronef est configuré de sorte que, dans une deuxième position des nacelles N1 et N2, les rotors R1 et R2 tournent autour d'une direction sensiblement verticale. L'aéronef peut alors effectuer des décollages ou des atterrissages verticaux, des vols stationnaires ou se déplacer horizontalement à vitesse lente pour réaliser des vols d'approche.
De préférence, les nacelles N1 et N2 sont orientables sur un secteur angulaire d'environ 95° entre le mode hélicoptère et le mode avion. Elles peuvent être maintenues dans toute position intermédiaire lors d'une quelconque phase de vol.
La figure 6 illustre la configuration de la nacelle N1 , identique à la nacelle N2. La nacelle N1 comprend un carter 4 qui contient l'engrenage de renvoi de la puissance moteur au rotor R1 , ou les moteurs électriques dans le cas d'une génération hybride de la propulsion. La nacelle N1 présente un disque rotor défini par des parois internes du carénage C1 . Le carter 4 est solidaire du carénage C1 par le moyen d'une traverse T1 dont les deux extrémités sont fixées au carénage C1 . Avantageusement, la nacelle N1 comprend une autre traverse T2 formant une croix à l'intérieur du carénage C1 de sorte à rigidifier la nacelle N1 et à soutenir le rotor R1 . L'arbre de transmission de la puissance est logé dans la traverse T1 .
La nacelle N1 n'admet qu'un mouvement unique de basculement par rapport à l'aile A1 , l'axe de ce basculement étant fixe et orthogonal par rapport au fuselage F. Cela permet de simplifier grandement la cinématique de la nacelle, et donc d'accroître la fiabilité de l'aéronef et de limiter le poids de son système de propulsion. En référence aux figures 1 , 2, 3, 4, et 5, l'aéronef comprend au moins deux volets V1 et V2 associés respectivement aux nacelles N1 et N2, et disposés en sortie du flux traversant respectivement les rotors R1 et R2. Chaque volet V1 et V2 désignent une surface aérodynamique mobile autour d'un seul axe, servant à modifier l'écoulement de l'air en sortie de nacelle.
Les volets V1 et V2 sont montés pivotant par rapport aux nacelles N1 et
N2. De préférence, les volets V1 et V2 sont montés pivotant autour d'un axe orthogonal au fuselage F. L'axe de pivotement du volet V1 est donc sensiblement parallèle à l'axe de basculement des nacelles N1 et N2.
De manière caractéristique, les volets V1 et V2, situés de part et d'autre du fuselage F et appartenant respectivement à la paire de nacelles N1 et N2, sont configurés de sorte à pouvoir être mouvementés de manière dissymétrique. On précise que dans le cadre de la présente invention dissymétrie signifie non symétrique et n'impose pas ou n'exclue pas une amplitude identique de mouvement. Ainsi l'un seulement des volets V1 et V2 peut être mouvementé et l'autre pas, ou les deux volets V1 et V2 peuvent être mouvementés avec des amplitudes identiques dans des sens identiques ou opposés, ou encore les deux volets V1 et V2 peuvent être mouvementés avec des amplitudes différentes dans des sens identiques ou opposés.
Le pivotement de chaque volet V1 et V2 modifie le comportement de l'aéronef. Les volets V1 et V2 sont configurés pour amener l'aéronef d'un état d'équilibre à un autre, et contribuer ainsi au contrôle et/ou à la compensation aérodynamique de l'aéronef.
Comme illustré par la figure 4, l'aéronef est pourvu d'un moteur thermique M positionné à l'intérieur du fuselage F, de préférence proche des ailes A1 et A2, et entraînant les rotors R1 et R2.
Optionnellement, l'aéronef est pourvu d'un générateur électrique B accouplé au moteur thermique M, permettant de générer de l'électricité afin d'alimenter des moteurs électriques intégrés dans les carters (J1 , J2) des nacelles (N1 , N2).
Comme illustré par les figures 1 , 2, 3, et 4, l'aéronef possède un train d'atterrissage composé d'un atterrisseur de nez 10 et d'un train central 11 composé de deux atterrisseurs ; spécifiquement, l'aéronef peut posséder un train d'atterrissage fixe composé de deux patins métalliques. De manière facultative, la stratégie de contrôle de l'aéronef selon l'une quelconque des caractéristiques précédentes comprend au moins l'une quelconque des caractéristiques suivantes :
La position des nacelles (N1 , N2) demeure toujours symétrique de part et d'autre du fuselage (F). Ainsi, les contrôles en roulis, en tangage et en lacet s'effectuent en commandant de manière différentielle ou symétrique la position des volets (V1 , V2), des moyens de contrôle conventionnels (P1 , P2, D1 , D2, D3) de l'empennage, ainsi qu'en modifiant la poussée exercée par le fan horizontal (1 ). L'inertie de ces moyens de contrôle étant quasi nulle par rapport à ce que serait l'inertie d'une nacelle en rotation, la finesse du contrôle s'en trouve grandement améliorée.
Selon les phases de vol, le lacet et le roulis sont produits par une dissymétrie de la poussée générée par chaque nacelle (N1 , N2). A cet effet, on peut soit induire une dissymétrie dans la vitesse de rotation des rotors (R1 , R2) situés de part et d'autre du fuselage (F), soit on peut induire une dissymétrie du pas des rotors (R1 , R2) situés de part et d'autre du fuselage (F). De manière spécifique, une variation du pas des rotors (R1 , R2) associée à une vitesse constante de rotation des rotors (R1 , R2) a pour avantage d'améliorer la réactivité du contrôle de l'aéronef.
Pour provoquer un mouvement en mobilisant le moins d'énergie possible, les deux volets (V1 , V2) sont mouvementés dans des sens opposés ou dans le même sens avec des amplitudes sensiblement égales.
Le pivotement des volets (V1 , V2), le pas ou la puissance délivrée aux rotors (R1 , R2), le fan horizontal (1 ), et les moyens de contrôle conventionnels (P1 , P2, D1 , D2, D3), sont couplés par des moyens mécaniques, et/ou électriques, et/ou électroniques, permettant ainsi d'assurer une grande qualité de contrôle et de compensation de l'aéronef dans toutes les phases de vol.
En particulier, ce couplage de tous les moyens de contrôle permet de concilier le contrôle de l'aéronef à très basse vitesse et à vitesse élevée. A très basse vitesse les moyens de contrôle conventionnels (P1 , P2, D1 , D2, D3) sont inefficaces car aucun air ne s'écoule sur leur surface. Mais dès que l'aéronef se translate à une vitesse suffisante, ils s'additionnent à l'action des volets (V1 , V2), des rotors (R1 , R2) et du fan horizontal (1 ) pour le contrôler.
De manière spécifique, le contrôle des trois axes de l'aéronef peut être assuré de la manière suivante :
Dans la présente demande, on considère qu'un volet (V1 , V2) est pivoté vers l'arrière (le haut) lorsque que la position de son bord de fuite après pivotement est décalée vers l'empennage (le haut) par rapport à sa position avant pivotement. Inversement, un volet (V1 , V2) est pivoté vers l'avant (le bas) lorsque que la position de son bord de fuite après pivotement est décalée vers le nez (bas) de l'aéronef par rapport à sa position avant pivotement.
Contrôle en lacet
L'activation dissymétrique des volets (V1 , V2), la dissymétrie de la poussée générée par les rotors (R1 , R2) et la gouverne de direction (D1 , D2, D3) de l'empennage, permettent de contrôler l'aéronef en lacet.
En mode hélicoptère, comme illustré par la figure 2, lorsque le volet de la nacelle N1 est pivoté vers l'arrière, tandis que le volet de la nacelle N2 est pivoté vers l'avant, le nez de l'aéronef s'oriente du côté de la nacelle N2.
En mode avion, comme illustré par la figure 1 , les nacelles passent d'une orientation verticale à une orientation horizontale. Ainsi, une poussée plus grande de la nacelle N1 provoque un mouvement de lacet vers le côté de la nacelle N2.
De manière particulièrement avantageuse, la déflexion des volets (V1 , V2) ainsi que la dissymétrie de la poussée exercée par les rotors (R1 , R2) sont couplés avec la gouverne de direction (D1 , D2, D3) située sur l'empennage pour contrôler l'aéronef en lacet lors de toutes les phases de vol.
Contrôle en roulis
L'activation dissymétrique des volets (V1 , V2) et la dissymétrie de la poussée générée par les rotors (R1 , R2) permettent de contrôler l'aéronef en roulis. En mode hélicoptère, une poussée plus grande de la nacelle N1 provoque un mouvement de roulis vers le côté de la nacelle N2, et réciproquement.
En mode avion, lorsque le volet V1 est pivoté vers le haut et que le volet V2 est pivoté vers le bas, l'aéronef effectue un mouvement de roulis du côté de la nacelle N2, tout comme un avion classique.
Contrôle en tangage
L'activation symétrique des volets (V1 , V2), la dissymétrie de la poussée générée par les rotors (R1 , R2), le fan horizontal (1 ) et la gouverne de profondeur (P1 , P2) de l'empennage permettent de contrôler l'aéronef en tangage.
Pour, cela les volets (V1 , V2) restent toujours dans des positions symétriques de part et d'autre du fuselage F.
En mode hélicoptère, une poussée plus grande du fan horizontal 1 et/ou un pivotement des deux volets (V1 , V2) vers l'arrière permet de générer un couple piqueur. A l'inverse, quand les volets (V1 , V2) sont mouvementés vers l'avant, ou que la poussée du fan horizontal 1 diminue, l'aéronef cabre.
En mode avion, un pivotement des volets (V1 , V2) vers le haut génère un couple cabreur, tandis qu'un mouvement des volets (V1 , V2) vers le bas génère un couple piqueur.
De manière particulièrement avantageuse, la déflexion des volets (V1 , V2) est couplée avec la profondeur (P1 , P2) située sur l'empennage pour contrôler l'aéronef en tangage.
De manière optionnelle, le fan horizontal peut être couplé au pilote automatique ou à tout autre système électronique afin de maintenir l'assiette de l'aéronef strictement nul en vol stationnaire, et pendant la phase de transition du mode hélicoptère vers le mode avion. Cela permet un plus grand confort de pilotage et une meilleure stabilité. Contrôle durant la phase de transition Pour la compréhension des descriptions suivantes, « l'angle de rotation >> des rotors (R1 , R2) est celui qui est décrit entre l'axe de rotation des rotors (R1 , R2) en mode hélicoptère et l'axe horizontal du fuselage F.
De manière générale, l'effet généré par un pivotement des volets (V1 , V2) dépend de l'orientation des nacelles (N1 , N2). Lorsque leur angle de rotation est inférieur à 45°, le mouvement des volets (V1 , V2) induit majoritairement un mouvement de lacet accompagné d'un mouvement de roulis. Lorsque l'angle de rotation des nacelles (N1 , N2) est supérieur à 45°, il induit majoritairement un mouvement de roulis accompagné d'un mouvement de lacet. Lorsque l'angle de rotation est égal à 45°, il induit autant de roulis que de lacet.
De manière générale, l'effet généré par une dissymétrie de la poussée des rotors (R1 , R2) dépend de l'orientation des nacelles (N1 , N2). Lorsque l'angle de rotation est supérieur à 45°, la dissymétrie de la poussée induit majoritairement un mouvement de lacet accompagné d'un mouvement de roulis. Lorsque l'angle de rotation est inférieur à 45°, elle induit majoritairement un mouvement de roulis accompagné d'un mouvement de lacet. Lorsque l'angle de rotation est égal à 45°, elle induit autant de roulis que de lacet.
Seul le couplage de l'ensemble des moyens de contrôle de l'aéronef peut permettre de compenser ou d'annuler les effets indésirables.
Contrôle en lacet, en roulis et en tangage par basculement des nacelles (N1 , N2)
Dans un mode alternatif, qui serait un mode secours, les nacelles (N1 , N2) peuvent être mouvementées de façon indépendante l'une de l'autre. Le pilote peut sélectionner une mise en indépendance des nacelles (N1 , N2). Leur mouvement symétrique ou dissymétrique, dans une enveloppe d'actionnement d'environ 95 degrés par rapport à l'axe longitudinal du fuselage (F), peut permettre de contrôler l'aéronef selon le même principe que les volets (V1 , V2). Compensation
Tout mouvement des volets (V1 , V2), des nacelles (N1 , N2), toute modification dissymétrique de la poussée des rotors (R1 , R2), ou toute modification de la poussée du fan horizontal 1 , tels que décrit ci-dessus, peuvent être utilisés à des fins de compensation aérodynamique, afin de maintenir l'aéronef en équilibre stable à tout moment du vol. Effets induits par les nacelles (N1 , N2)
Dans la présente configuration, le basculement des nacelles (N1 , N2) génère deux effets indésirables, dits induits, qu'il est nécessaire de compenser. Le premier est la précession gyroscopique des nacelles (N1 , N2) lors de leur basculement, qui induit un moment piqueur lorsqu'elles sont basculées de l'arrière vers l'avant, et un moment cabreur lorsqu'elles sont basculées de l'avant vers l'arrière. Le second est la variation de portance des nacelles (N1 , N2) en fonction de leur angle de basculement. Selon la vitesse d'avancement de l'aéronef, le flux d'air impacte les nacelles (N1 , N2) et génère une portance qui est variable de leur angle d'attaque et de la poussée produite.
Pour compenser ces deux effets induits, l'aéronef est configuré pour permettre une activation différentielle des volets (V1 , V2), de la poussée des rotors (R1 , R2), et du fan horizontal 1 . L'aéronef peut bénéficier d'une assistance électronique afin d'en optimiser le contrôle.
L'invention offre ainsi un aéronef à la fois sensiblement aussi rapide et efficient qu'un avion en croisière et aussi contrôlable qu'un hélicoptère en vol stationnaire. En outre, grâce à ses ailes hautes et ses nacelles carénées, il est capable d'atterrir et de décoller en mode hélicoptère, tout comme en mode avion.
L'aéronef possède également la faculté de maintenir une vitesse constante en descente avec une assiette fortement inclinée vers l'avant, comme un avion. Un hélicoptère prendrait lui de la vitesse et serait forcé de modifier rapidement sa trajectoire. Cette capacité permet de conserver de la visibilité, de la vitesse et de la précision jusqu'au point d'atterrissage.
Comparées au rotor d'un hélicoptère, les nacelles offrent le même rapport puissance/poussée en vol stationnaire, et donc les mêmes capacités lors de cette phase de vol. Contrairement à un hélicoptère, la configuration aérodynamique de l'aéronef assure sa sustentation par les surfaces aérodynamiques, et permet ainsi d'atteindre des vitesses comparables à plus faible puissance, entraînant de fait une meilleure économie d'utilisation. De plus, l'orientation de l'axe des rotors vers l'avant en vol horizontal permet d'atteindre des vitesses beaucoup plus grandes que celles d'un hélicoptère.
De par sa configuration à trois points de poussée en vol stationnaire, l'aéronef est particulièrement stable. Il offre par ailleurs de nombreux moyens de contrôle et de compensation quelles que soient les phases de vol, tout en présentant une grande simplicité de construction et donc une meilleure fiabilité en comparaison des hélicoptères.
En outre, ses émissions sonores sont très limitées, du fait de son échappement situé sur le haut du fuselage, et de ses hélices carénées émettant des sons haute fréquence rapidement dissipés dans l'air et peu perturbants pour l'oreille humaine.
L'aéronef selon l'invention représente ainsi une solution particulièrement avantageuse pour toutes les applications de sécurité civile, de secours, de transports publics ou privés, et de manière générale pour toutes missions impliquant habituellement des hélicoptères et des avions.
A titre d'exemple non limitatif, un aéronef selon l'invention présente une envergure de 9 mètres, une longueur de 8,50 mètres, un poids à vide de 1 ,1 tonne et une puissance motrice de 350 chevaux ; il offre une charge d'emport d'environ 450 kilogrammes. Typiquement, il est configuré pour accueillir 1 pilote et 3 passagers, ou 1 pilote et 1 mètre cube de fret. Il permet de couvrir une distance d'environ 800 miles nautiques, à environ 160 nœuds.
Bien évidemment, la présente invention n'est pas limitée aux modes de réalisation décrits, mais s'étend à tout mode de réalisation conforme à son esprit. 

Claims

REVENDICATIONS
1 . Aéronef convertible comprenant un fuselage (F), et une paire d'ailes (A1 , A2) de part et d'autre du fuselage (F), et une première et une deuxième nacelles (N1 , N2) disposées respectivement à l'extrémité de chaque aile (A1 , A2), comprenant chacune un rotor (R1 , R2) caréné, et montées basculantes par rapport au fuselage (F), les nacelles (N1 , N2) comprenant au moins un premier et un deuxième volets mobiles (V1 , V2) disposés respectivement à la sortie du rotor (R1 ) caréné de la première nacelle (N1 ) et à la sortie du rotor (R2) caréné de la deuxième nacelle (N2), les premier et deuxième volets (V1 , V2) étant montés en rotation autour d'axes sensiblement parallèles aux axes de basculement de la première et respectivement de la deuxième nacelle (N1 , N2), l'aéronef comprenant en outre un empennage comprenant au moins un stabilisateur (S1 ), caractérisé en ce que lesdites ailes (A1 , A2) sont en position haute et fixe, qu'il comprend au moins un rotor caréné (1 ) fixe, dont le pas est variable, installé en position horizontale dans le fuselage (F), que chaque nacelle comporte un carter (4, 5) solidaire du carénage par le moyen d'une traverse (T1 ), dont les deux extrémités sont fixées au carénage, et une autre traverse (T2) formant une croix avec la traverse (T1 ) à l'intérieur du carénage, chaque carter accueillant les moyens de faire varier le pas de chaque rotor (R1 , R2), chaque volet (V1 , V2) s'étendant sur sensiblement la totalité de la section intérieure de la nacelle (N1 , N2) où il est installé, l'aéronef étant configuré pour permettre une activation différentielle des volets (V1 , V2), de la poussée des rotors (R1 , R2) et du rotor caréné (1 ) horizontal.
2. Aéronef convertible selon la revendication 1 , comprenant un empennage muni d'un stabilisateur (S1 ) et de deux dérives (D1 , D2), équipés respectivement d'au moins une gouverne de profondeur (P1 ) et de deux gouvernes de direction (G1 , G2).
3. Aéronef convertible selon la revendication 1 , comprenant un empennage muni d'au moins un stabilisateur (S2) et d'au moins une dérive (D3), équipés respectivement d'au moins une gouverne de profondeur (P2) et d'au moins une gouverne de direction (G3).
4. Aéronef convertible selon l'une quelconque des revendications précédentes, comprenant deux ailes « canard >> (W1 , W2) situées à l'avant et de part et d'autre du fuselage.
5. Aéronef selon l'une quelconque des revendications précédentes, caractérisé en ce que le pivotement des volets (V1 , V2), le pas ou la puissance délivrée aux rotors (R1 , R2), le rotor caréné (1 ) horizontal et les moyens de contrôle conventionnels (P1 , P2, G1 , G2, G3) sont couplés par des moyens mécaniques et/ou électriques et/ou électroniques permettant ainsi d'assurer une grande qualité de contrôle et de compensation de l'aéronef dans toutes les phases de vol.
6. Aéronef selon la revendication 5, caractérisé en ce que les contrôles en roulis, en tangage et en lacet de l'aéronef s'effectuent en commandant de manière différentielle ou symétrique la position des volets (V1 , V2), des moyens de contrôle conventionnels (P1 , P2, G1 , G2, G3) de l'empennage, ainsi qu'en modifiant la poussée exercée par le rotor caréné (1 ) horizontal.
7. Aéronef selon l'une quelconque des revendications précédentes, caractérisé en ce que les nacelles (N1 , N2) sont orientables sur un secteur angulaire d'environ 95° entre un mode hélicoptère et un mode avion et maintenables dans toute position intermédiaire lors d'une quelconque phase de vol.
8. Aéronef convertible selon l'une quelconque des revendications précédentes, dans lequel au moins un moteur thermique (M) est positionné dans le fuselage (F) et entraîne, par transmission mécanique, les rotors (R1 , R2) situés dans les nacelles (N1 , N2).
9. Aéronef convertible selon la revendication 8, dans lequel au moins un générateur électrique (B) est accouplé au(x) moteur thermique (M) et à au moins un système de stockage de l'électricité, et possède les moyens d'alimenter en électricité des moteurs électriques intégrés dans les carters (4, 5).
10. Aéronef selon la revendication 8, caractérisé en ce que les gaz d'échappement du moteur thermique (M) sont éjectés sur le dessus du fuselage (F) par au moins une ouverture (H).
11 . Aéronef selon la revendication 8, caractérisé en ce que l'air alimente le moteur thermique par le dessus du fuselage (F) au moyen d'au moins une ouverture (E1 , E2).
12. Aéronef convertible selon l'une quelconque des revendications précédentes, dans lequel chaque carter (4, 5) accueille une boîte mécanique de renvoi de la puissance.
13. Aéronef selon l'une quelconque des revendications précédentes, caractérisé en ce que l'aéronef est équipé de moyens de commande et de leur transmission, couplés aux volets, aux surfaces mobiles de l'empennage arrière, aux rotors en bout d'aile, et au rotor caréné horizontal, tout mouvement des volets (V1 , V2), des nacelles (N1 , N2), toute modification dissymétrique de la poussée des rotors (R1 , R2), ou toute modification de la poussée du rotor caréné horizontal (1 ) pouvant être utilisés à des fins de compensation aérodynamique, afin de maintenir l'aéronef en équilibre stable à tout moment du vol.
14. Procédé de contrôle d'un aéronef selon l'une quelconque des revendications précédentes, dans lequel on mouvementé au moins l'un desdits volets (V1 , V2) de manière à ce qu'ils présentent des positions non symétriques de part et d'autre du fuselage (F).
15. Procédé de contrôle d'un aéronef selon la revendication 14, dans lequel on commande les rotors (R1 , R2) situés de part et d'autre du fuselage (F) de sorte à générer une poussée non symétrique de part et d'autre du fuselage (F).
16. Procédé de contrôle d'un aéronef selon la revendication 15, dans lequel la poussée non symétrique de part et d'autre du fuselage (F) est obtenue en créant une dissymétrie du pas des rotors (R1 , R2) situés de part et d'autre du fuselage (F)
17. Procédé de contrôle d'un aéronef selon l'une quelconque des revendications 14 à 16, dans lequel le basculement des nacelles (N1 , N2) demeure symétrique de part et d'autre du fuselage (F).
18. Procédé de contrôle d'un aéronef selon l'une quelconque des revendications 14 à 17, dans lequel, en mode hélicoptère, lorsque le volet de la nacelle N1 est pivoté vers l'arrière, tandis que le volet de la nacelle N2 est pivoté vers l'avant, le nez de l'aéronef s'oriente du côté de la nacelle N2, en mode avion, lorsque le volet V1 est pivoté vers le haut et que le volet V2 est pivoté vers le bas, l'aéronef effectue un mouvement de roulis du côté de la nacelle N2, tout comme un avion classique
19. Procédé de contrôle d'un aéronef selon l'une quelconque des revendications 14 à 18, dans lequel, en mode avion, une poussée plus grande de la nacelle N1 provoque un mouvement de lacet vers le côté de la nacelle N2 opposée, en mode hélicoptère, une poussée plus grande de la nacelle N1 provoque un mouvement de roulis vers le côté de la nacelle opposée N2, et réciproquement.
20. Procédé de contrôle d'un aéronef selon l'une quelconque des revendications 14 à 19, dans lequel, en mode hélicoptère, une poussée plus grande du rotor caréné horizontal (1 ) et/ou un pivotement des deux volets (V1 , V2) vers l'arrière permet de générer un couple piqueur. A l'inverse, quand les volets (V1 , V2) sont mouvementés vers l'avant, ou que la poussée du fan horizontal 1 diminue, l'aéronef cabre, en mode avion, un pivotement des volets (V1 , V2) vers le haut génère un couple cabreur, tandis qu'un mouvement des volets (V1 , V2) vers le bas génère un couple piqueur.
PCT/IB2016/054705 2012-12-10 2016-08-04 Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage WO2017021918A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1203351A FR2999150B1 (fr) 2012-12-10 2012-12-10 Aeronef convertible pourvu de deux rotors carenes en bout d'aile et d'un fan horizontal dans le fuselage
FR15/01679 2015-08-05
FR1501679A FR3024431A1 (fr) 2012-12-10 2015-08-05 Aeronef convertible pourvu de deux rotors carenes en bout d'aile et d'un fan horizontal dans le fuselage

Publications (1)

Publication Number Publication Date
WO2017021918A1 true WO2017021918A1 (fr) 2017-02-09

Family

ID=48237003

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2013/000326 WO2014091092A1 (fr) 2012-12-10 2013-12-09 Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage
PCT/IB2016/054705 WO2017021918A1 (fr) 2012-12-10 2016-08-04 Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/000326 WO2014091092A1 (fr) 2012-12-10 2013-12-09 Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage

Country Status (10)

Country Link
US (1) US20150314865A1 (fr)
JP (1) JP2016501773A (fr)
KR (1) KR20150086398A (fr)
CN (1) CN104918853A (fr)
AU (1) AU2013357155A1 (fr)
BR (1) BR112015013009A2 (fr)
CA (1) CA2894465A1 (fr)
FR (2) FR2999150B1 (fr)
RU (1) RU2015127645A (fr)
WO (2) WO2014091092A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108082466A (zh) * 2017-11-23 2018-05-29 北京航空航天大学 一种倾转涵道连接翼布局垂直起降飞行器
WO2019062256A1 (fr) * 2017-09-29 2019-04-04 清华大学 Aéronef à décollage et à atterrissage verticaux à force de sustentation unique canalisée fondé sur un canal d'inclinaison
EP3656669A1 (fr) 2018-11-26 2020-05-27 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Aéronef multirotor à décollage et atterrissage verticaux comportant au moins huit unités de production de poussée
EP3702277A1 (fr) 2019-02-27 2020-09-02 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Aéronef multirotor adapté pour décollage et atterrissage verticaux (adav)
EP3702276A1 (fr) 2019-02-27 2020-09-02 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Aéronef multirotor à aile jointe avec des capacités de décollage et atterrissage verticaux (adav)
DE102019001834A1 (de) * 2019-03-14 2020-09-17 Christhard Striebel 2- rotoriges Kipprotorflugzeug ohne Taumelscheiben

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999150B1 (fr) * 2012-12-10 2015-10-09 Bermond Gerome Maurice Paul Aeronef convertible pourvu de deux rotors carenes en bout d'aile et d'un fan horizontal dans le fuselage
ITRM20130473A1 (it) * 2013-08-12 2013-11-11 Unit 1 Srl Convertiplano con nuove soluzionitecniche ed aerodinamiche atte a rendere sicuro e fruibile il mezzo anche in soluzioni di velivolo ultraleggero
EP3140190B1 (fr) * 2014-05-07 2021-12-29 Xti Aircraft Company Aéronef à décollage et atterrissage verticaux
CN111572356B (zh) 2014-11-12 2022-06-10 深圳市大疆创新科技有限公司 回收可移动物体的电机功率的方法和系统
CN105775121A (zh) * 2014-12-26 2016-07-20 深圳智航无人机有限公司 一种变翼式无人机及其方法
JP2017015527A (ja) 2015-06-30 2017-01-19 株式会社トプコン 広域センサシステム、飛行検出方法およびプログラム
CH711670A2 (de) * 2015-10-21 2017-04-28 Niederberger-Engineering Ag Multikopter-Fluggerät mit mehreren Antriebsrotoren.
CN105270625A (zh) * 2015-10-23 2016-01-27 庆安集团有限公司 一种多用途垂直起降无人机
CN105346719B (zh) * 2015-11-18 2017-11-03 珠海磐磊智能科技有限公司 垂直起降飞行器
CN106934074B (zh) * 2015-12-29 2020-07-31 中国航发商用航空发动机有限责任公司 全局最优涡扇发动机进气道减噪设计方法
US10926874B2 (en) * 2016-01-15 2021-02-23 Aurora Flight Sciences Corporation Hybrid propulsion vertical take-off and landing aircraft
US10023309B2 (en) * 2016-04-15 2018-07-17 James Brown Remote controlled aircraft
US10392120B2 (en) * 2016-04-19 2019-08-27 General Electric Company Propulsion engine for an aircraft
CN105947192A (zh) * 2016-06-01 2016-09-21 中国航空工业集团公司西安飞机设计研究所 一种倾转双涵道无人机
CN107585294A (zh) * 2016-07-08 2018-01-16 袁洪跃 一种内旋翼飞行器结构
US10279900B2 (en) 2016-08-10 2019-05-07 Bell Helicopter Textron Inc. Rotorcraft variable thrust cross-flow fan systems
US10106253B2 (en) * 2016-08-31 2018-10-23 Bell Helicopter Textron Inc. Tilting ducted fan aircraft generating a pitch control moment
US10293931B2 (en) 2016-08-31 2019-05-21 Bell Helicopter Textron Inc. Aircraft generating a triaxial dynamic thrust matrix
US10252797B2 (en) * 2016-09-08 2019-04-09 General Electric Company Tiltrotor propulsion system for an aircraft
US10384774B2 (en) * 2016-09-08 2019-08-20 General Electric Company Tiltrotor propulsion system for an aircraft
US20180065739A1 (en) * 2016-09-08 2018-03-08 General Electric Company Tiltrotor propulsion system for an aircraft
CN106314794B (zh) * 2016-09-23 2018-09-21 嘉兴日昌汽车配件有限公司 一种医疗救护飞行器
CN107933894A (zh) * 2016-10-13 2018-04-20 赵蓝婷 一种提高飞行器飞行安全的装置及其方法
US11208207B2 (en) * 2016-10-31 2021-12-28 Textron Innovations Inc. Vertical takeoff and landing (VTOL) aircraft
KR101849246B1 (ko) * 2016-11-28 2018-04-16 한국항공우주연구원 틸트프롭 항공기
CN206511121U (zh) * 2016-12-14 2017-09-22 深圳市大疆创新科技有限公司 无人飞行器
US10392107B2 (en) * 2016-12-27 2019-08-27 Korea Advanced Institute Of Science And Technology Aerial vehicle capable of vertical take-off and landing, vertical and horizontal flight and on-air energy generation
US10370082B2 (en) 2016-12-27 2019-08-06 Korea Advanced Institute Of Science And Technology Aircraft capable of vertical take-off and landing, vertical and horizontal flight and on-air energy generation
CN106828885A (zh) * 2016-12-30 2017-06-13 上海牧羽航空科技有限公司 一种采用喷气形式控制偏航和俯仰的倾转旋翼机
CN106741933B (zh) * 2017-02-09 2023-04-18 金陵科技学院 一种两栖无人机
US10384776B2 (en) 2017-02-22 2019-08-20 Bell Helicopter Textron Inc. Tiltrotor aircraft having vertical lift and hover augmentation
USD853311S1 (en) * 2017-03-21 2019-07-09 Shenzhen Highgreat Innovation Technology Development Co., Ltd. Protective cover for unmanned aerial vehicle
CN107021208A (zh) * 2017-04-21 2017-08-08 陆艳辉 一种利用涵道的尾坐式垂直起降无人机及控制方法
TWI620688B (zh) * 2017-05-19 2018-04-11 林瑤章 輕量飛行載具
US10351235B2 (en) * 2017-05-22 2019-07-16 Karem Aircraft, Inc. EVTOL aircraft using large, variable speed tilt rotors
RU2656957C1 (ru) * 2017-05-22 2018-06-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калмыцкий государственный университет имени Б.Б. Городовикова" Трехвинтовой конвертоплан
US20180346112A1 (en) * 2017-05-31 2018-12-06 Hsun-Yin Chiang Simple pitch control device for dual-mode aircraft with vtol and fixed-wing flight
TWI627104B (zh) * 2017-05-31 2018-06-21 大鵬航太有限公司 可兼具垂直升降與定翼飛行之雙模式航空器簡易俯仰控制裝置
CN108974349A (zh) * 2017-05-31 2018-12-11 大鹏航太有限公司 可兼具垂直升降与定翼飞行的航空器简易俯仰控制装置
CN107499505A (zh) * 2017-07-07 2017-12-22 北京航空航天大学 三翼面无人飞行器
US10822101B2 (en) 2017-07-21 2020-11-03 General Electric Company Vertical takeoff and landing aircraft having a forward thrust propulsor
US10814967B2 (en) 2017-08-28 2020-10-27 Textron Innovations Inc. Cargo transportation system having perimeter propulsion
EP3704018B1 (fr) * 2017-11-03 2022-05-04 Uber Technologies, Inc. Configuration d'aile en m d'aéronef à décollage et atterrissage verticaux
CN107826247A (zh) * 2017-11-15 2018-03-23 江苏航空职业技术学院 一种带固定机翼两倾转涵道四旋翼无人飞行器
US11117657B2 (en) 2018-01-19 2021-09-14 Aerhart, LLC Aeronautical apparatus
CN108298069A (zh) * 2018-02-21 2018-07-20 江富余 可变升力中心位置直升机
CN108163191A (zh) * 2018-02-24 2018-06-15 金羽飞 飞行器
CN108298071A (zh) * 2018-03-14 2018-07-20 长沙市云智航科技有限公司 一种载人涵道多旋翼飞行车辆
FR3080605B1 (fr) * 2018-04-26 2020-05-29 Airbus Helicopters Giravion muni d'une voilure tournante et d'au moins deux helices et procede applique par ce giravion
KR102062726B1 (ko) * 2018-05-23 2020-02-20 한국항공우주연구원 비행체 및 비행체 자세 제어 시스템
KR102041203B1 (ko) 2018-06-20 2019-11-06 한국항공우주연구원 틸팅 덕티드 팬을 이용한 수직이착륙 항공기
CN109018321A (zh) * 2018-07-02 2018-12-18 寇冠 从动旋翼飞行器
DE102018116168A1 (de) * 2018-07-04 2020-01-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Luftfahrzeug
US11964756B2 (en) 2018-07-04 2024-04-23 Aerhart, LLC Aeronautical apparatus
US11156128B2 (en) 2018-08-22 2021-10-26 General Electric Company Embedded electric machine
WO2020121582A1 (fr) * 2018-12-14 2020-06-18 国立研究開発法人宇宙航空研究開発機構 Corps de vol
US11097838B2 (en) 2019-06-14 2021-08-24 Bell Textron Inc. Duct with optimized horizontal stator shape
US11091258B2 (en) 2019-06-14 2021-08-17 Bell Textron Inc. VTOL aircraft with tilting rotors and tilting ducted fans
DE102019210007A1 (de) * 2019-07-08 2021-01-14 Volkswagen Aktiengesellschaft Vertikal start- und landefähiges Flugobjekt und Mantelkörper
US11845534B2 (en) * 2019-12-31 2023-12-19 Textron Innovations Inc. Slanted duct stators
US11390371B2 (en) * 2019-12-31 2022-07-19 Textron Innovations Inc. Control vane orientation for ducted-rotor aircraft
JP2021123190A (ja) 2020-02-04 2021-08-30 株式会社Subaru 垂直離着陸機
KR20210115881A (ko) * 2020-03-16 2021-09-27 한화에어로스페이스 주식회사 블레이드-스테이터 시스템 및 이를 포함하는 수직 이착륙 비행 장치
CN111532428B (zh) * 2020-04-28 2021-12-28 北京航空航天大学 一种自由起降的倾转动力微型固定翼无人机
US11634233B2 (en) * 2020-06-22 2023-04-25 Textron Innovations Inc. Distributed battery bank for ducted-rotor aircraft
CN112046764B (zh) * 2020-09-07 2021-11-05 南京航空航天大学 一种旋转翼垂直起降混合动力无人机及其控制方法
US11634216B2 (en) * 2020-09-29 2023-04-25 Textron Innovations Inc. Ducted fan assembly for an aircraft
US11479338B2 (en) 2020-09-29 2022-10-25 Textron Innovations Inc. Ducted fan assembly with blade in leading edge
CN112429199B (zh) * 2020-11-18 2021-09-24 北京北航天宇长鹰无人机科技有限公司 一种采用全动升降舵的无人机
CN112829933A (zh) * 2021-02-23 2021-05-25 姜铁华 一种可展开涵道机翼的飞行器
CN113086175A (zh) * 2021-04-25 2021-07-09 东莞理工学院 一种新型圆筒式飞行器
CN113460297A (zh) * 2021-07-21 2021-10-01 成都纵横大鹏无人机科技有限公司 一种倾转动力结构及系统、一种飞行器
CN113697097B (zh) * 2021-09-01 2024-01-02 中国航空研究院 一种外翼与旋翼可倾转的固定翼飞机总体气动布局
CN114148516A (zh) * 2021-12-06 2022-03-08 浙江大学 一种分布式倾转涵道垂直起降飞行器及其控制方法
CN113978718B (zh) * 2021-12-24 2022-03-18 天津斑斓航空科技有限公司 一种飞行器主动倾转结构、控制方法及飞行器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091092A1 (fr) * 2012-12-10 2014-06-19 Bermond Gérome Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3061242A (en) * 1960-09-23 1962-10-30 Bell Aerospace Corp Automatic control apparatus
US3181810A (en) * 1961-02-27 1965-05-04 Curtiss Wright Corp Attitude control system for vtol aircraft
FR1406674A (fr) * 1964-06-12 1965-07-23 Nord Aviation Procédé pour décoller verticalement, sustenter et déplacer une machine volante à voilure fixe, et moyens pour la mise en oeuvre dudit procédé
US3360217A (en) * 1965-05-26 1967-12-26 John C Trotter Duct rotation system for vtol aircraft
US5085315A (en) * 1989-05-05 1992-02-04 Sambell Kenneth W Wide-range blade pitch control for a folding rotor
US5115996A (en) * 1990-01-31 1992-05-26 Moller International, Inc. Vtol aircraft
US20020104922A1 (en) * 2000-12-08 2002-08-08 Mikio Nakamura Vertical takeoff and landing aircraft with multiple rotors
US6450446B1 (en) * 2001-06-05 2002-09-17 Bill Holben Counter rotating circular wing for aircraft
US6808140B2 (en) * 2002-02-08 2004-10-26 Moller Paul S Vertical take-off and landing vehicles
US6719244B1 (en) * 2003-02-03 2004-04-13 Gary Robert Gress VTOL aircraft control using opposed tilting of its dual propellers or fans
US6745977B1 (en) * 2003-08-21 2004-06-08 Larry D. Long Flying car
US7472863B2 (en) * 2004-07-09 2009-01-06 Steve Pak Sky hopper
US20070018035A1 (en) * 2005-07-20 2007-01-25 Saiz Manuel M Lifting and Propulsion System For Aircraft With Vertical Take-Off and Landing
WO2008054234A1 (fr) * 2006-11-02 2008-05-08 Raposo Severino Manuel Oliveir Système et procédé de propulsion vectorielle avec commande indépendante de trois axes de translation et de trois axes de rotation
WO2008147484A2 (fr) * 2007-02-16 2008-12-04 Donald Orval Shaw Véhicule volant modulaire
CN101417707A (zh) * 2008-01-08 2009-04-29 上海大学 变姿飞行机器人
US8602348B2 (en) * 2008-02-01 2013-12-10 Ashley Christopher Bryant Flying-wing aircraft
FR2929591B1 (fr) * 2008-04-02 2010-12-24 Airbus France Avion a controle en tangage et en lacet par un ensemble propulsif.
CN201211928Y (zh) * 2008-05-29 2009-03-25 哈尔滨盛世特种飞行器有限公司 涵道单旋翼碟形无人飞行器
CN101423117A (zh) * 2008-12-05 2009-05-06 北京航空航天大学 采用推力尾桨和滑流舵进行操纵和推进的倾转旋翼飞机
IL199009A (en) * 2009-05-27 2013-11-28 Israel Aerospace Ind Ltd aircraft
CN101643116B (zh) * 2009-08-03 2012-06-06 北京航空航天大学 一种使用双螺旋桨垂直涵道控制的倾转旋翼飞机
US20110042510A1 (en) * 2009-08-24 2011-02-24 Bevirt Joeben Lightweight Vertical Take-Off and Landing Aircraft and Flight Control Paradigm Using Thrust Differentials
CN101875399B (zh) * 2009-10-30 2013-06-19 北京航空航天大学 一种采用并列式共轴双旋翼的倾转旋翼飞机
CN102126553B (zh) * 2010-01-12 2012-12-26 北京航空航天大学 一种垂直起降小型无人机
CN202080435U (zh) * 2011-05-12 2011-12-21 张思远 横列双旋翼垂直起降无人飞行器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091092A1 (fr) * 2012-12-10 2014-06-19 Bermond Gérome Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062256A1 (fr) * 2017-09-29 2019-04-04 清华大学 Aéronef à décollage et à atterrissage verticaux à force de sustentation unique canalisée fondé sur un canal d'inclinaison
CN108082466A (zh) * 2017-11-23 2018-05-29 北京航空航天大学 一种倾转涵道连接翼布局垂直起降飞行器
EP3656669A1 (fr) 2018-11-26 2020-05-27 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Aéronef multirotor à décollage et atterrissage verticaux comportant au moins huit unités de production de poussée
US11554862B2 (en) 2018-11-26 2023-01-17 Airbus Helicopters Deutschland GmbH Vertical take-off and landing multirotor aircraft with at least eight thrust producing units
EP3702277A1 (fr) 2019-02-27 2020-09-02 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Aéronef multirotor adapté pour décollage et atterrissage verticaux (adav)
EP3702276A1 (fr) 2019-02-27 2020-09-02 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Aéronef multirotor à aile jointe avec des capacités de décollage et atterrissage verticaux (adav)
US10981650B2 (en) 2019-02-27 2021-04-20 Airbus Helicopters Deutschland GmbH Multirotor joined-wing aircraft with VTOL capabilities
US11691722B2 (en) 2019-02-27 2023-07-04 Airbus Urban Mobility Gmbh Multirotor aircraft that is adapted for vertical take-off and landing
DE102019001834A1 (de) * 2019-03-14 2020-09-17 Christhard Striebel 2- rotoriges Kipprotorflugzeug ohne Taumelscheiben

Also Published As

Publication number Publication date
BR112015013009A2 (pt) 2017-07-11
RU2015127645A (ru) 2017-01-16
KR20150086398A (ko) 2015-07-27
FR2999150B1 (fr) 2015-10-09
FR2999150A1 (fr) 2014-06-13
JP2016501773A (ja) 2016-01-21
CN104918853A (zh) 2015-09-16
US20150314865A1 (en) 2015-11-05
WO2014091092A1 (fr) 2014-06-19
AU2013357155A1 (en) 2015-07-30
FR3024431A1 (fr) 2016-02-05
CA2894465A1 (fr) 2014-06-09

Similar Documents

Publication Publication Date Title
WO2017021918A1 (fr) Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage
EP3294624B1 (fr) Avion convertible a rotors découvrables
EP3615424B1 (fr) Aéronef à voilure rhomboédrique à décollage et/ou atterrissage vertical
EP3259183B1 (fr) Aerodyne vtol a soufflante(s) axiale(s) porteuse(s)
US9085355B2 (en) Vertical takeoff and landing aircraft
EP2507130B1 (fr) Dispositif de sustentation et propulsion, et aerodyne equipe d'un tel dispositif
CA2659499C (fr) Helicoptere hybride rapide a grande distance franchissable
EP0254605B1 (fr) Dispositif directionnel et stabilisateur à rotor anti-couple caréné et incliné et à empennage en "V" dissymétrique, et hélicoptère équipé d'un tel dispositif
FR2983171A1 (fr) Dispositif anti-couple a poussee longitudinale pour un giravion
FR2916420A1 (fr) Helicoptere hybride rapide a grande distance franchissable avec controle de l'assiette longitudinale.
FR2916418A1 (fr) Helicoptere hybride rapide a grande distance franchissable.
FR2952612A1 (fr) Aeronef a grande distance franchissable et a vitesse d'avancement elevee en vol de croisiere
WO2008145868A2 (fr) Helicoptere hybride rapide a grande distance franchissable et rotor de sustentation optimise
WO2021123540A1 (fr) Aéronef à propulsion électrique comportant une aile centrale et deux ailes latérales mobiles en rotation
EP3365226B1 (fr) Aeronef a voilure fixe et a stabilite statique accrue
EP3962814B1 (fr) Aéronef spatial à conception et architecture optimisées
WO2012022845A2 (fr) Aeronef pilote motorise sur deux axes avec pilotage lateral specifique
WO2024141531A1 (fr) Aéronef comprenant un dispositif de commande de vol et/ou de réduction de traînée par soufflage
FR3053955A1 (fr) Aeronef polyvalent a helice propulsive dote de trois surfaces portantes et de dispositifs permettant d’accueillir differentes rallonges d’ailes.
FR3123320A1 (fr) Aéronef ayant au moins une hélice et une voilure tournante munie de deux rotors portés par deux demi ailes
FR3074779A1 (fr) Aeronef
BE464896A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16763316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: CONSTATATION DE LA PERTE D'UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM 1205A EN DATE DU 01.06.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16763316

Country of ref document: EP

Kind code of ref document: A1