WO2017021003A1 - Verfahren zum abtrennen von kohlendioxid aus einer kohlenwasserstoff-reichen fraktion - Google Patents

Verfahren zum abtrennen von kohlendioxid aus einer kohlenwasserstoff-reichen fraktion Download PDF

Info

Publication number
WO2017021003A1
WO2017021003A1 PCT/EP2016/001330 EP2016001330W WO2017021003A1 WO 2017021003 A1 WO2017021003 A1 WO 2017021003A1 EP 2016001330 W EP2016001330 W EP 2016001330W WO 2017021003 A1 WO2017021003 A1 WO 2017021003A1
Authority
WO
WIPO (PCT)
Prior art keywords
rich
gas fraction
fraction
hydrocarbon
compressed
Prior art date
Application number
PCT/EP2016/001330
Other languages
English (en)
French (fr)
Inventor
Heinz Bauer
Claudia Gollwitzer
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to BR112018001717-5A priority Critical patent/BR112018001717B1/pt
Priority to AU2016304194A priority patent/AU2016304194B2/en
Priority to MYPI2018700384A priority patent/MY194111A/en
Publication of WO2017021003A1 publication Critical patent/WO2017021003A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/48Expanders, e.g. throttles or flash tanks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/545Washing, scrubbing, stripping, scavenging for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/80Quasi-closed internal or closed external carbon dioxide refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to a method for separating a C0 2 -rich liquid fraction from a hydrocarbon-rich, C0 2 -containing gas fraction.
  • Natural gas and associated gases contain acid gases - mainly C0 2 , in addition H 2 S and other sulfur compounds, such as COS and mercaptans - in various concentrations; these sour gases are usually removed by washing (eg.
  • membranes preferably polymer membranes, used to reduce the C0 2 content of the feed gas before amine washing to about 2 to 10 mol%, so that they can be optimally operated again.
  • Cryogenic decomposition is basically suitable for solving this problem.
  • Object of the present invention is to provide a generic method for separating a C0 2 -rich liquid fraction from a hydrocarbon-rich gas fraction, which makes it possible C0 2 in technically pure form - here below is a C0 2 -rich fraction having a C0 2 Content of at least 98 mol%, to be understood - and in the liquid state from a hydrocarbon-rich
  • the hydrocarbon-rich, C0 2 -containing gas fraction is permeatively separated into a C0 2 -arm gas fraction and a C0 2 -rich gas fraction, b) the C0 2 -rich gas fraction to a pressure which is at least 10% above the critical pressure the C0 2 -rich gas fraction is compressed,
  • the relaxed C0 2 -rich fraction is separated by means of a stripping process into a C0 2 -depleted gas fraction and a C ⁇ 2 -rich liquid fraction, and
  • Hydrocarbon-rich, C0 2 -containing gas fraction is supplied.
  • Separation of a C0 2 -rich liquid fraction from a hydrocarbon-rich, C0 2 -containing gas fraction are characterized in that the stripping process is operated such 'that the C0 2 liquid fraction rich in a C0 2 content of at least 98 mol%, preferably at least 99.5 mol%, the hydrocarbon-rich, C0 2 -containing gas fraction 10-85 Mol% C0 2 , preferably between 25 and 60 mol% C0 2 , the C0 2 -arm gas fraction contains at most 15 mol% C0 2 , preferably at most 10 mol% GQ 2 ⁇ - for the permeative separation (process step a) used membrane has a selectivity between C0 2 and CH 4 of at least 2, preferably at least 3, in the permeative separation (step a), the pressure on the permeate side by a factor of 4 to 10, preferably 5 to 8 lower than the pressure on the feed side, provided that the compression of the C0 2 -rich gas fraction takes place at least
  • the hydrocarbon-rich, C0 2 -containing gas fraction having a C0 2 content between 10 and 85 mol% and which under a pressure of 30 to 70 bar, preferably 40 to 60 bar is present, if necessary, first fed to a pretreatment in which C 5+ hydrocarbons and water are separated. If desired, these components can be dispensed together with the retentate to be described later.
  • a pretreatment in which C 5+ hydrocarbons and water are separated. If desired, these components can be dispensed together with the retentate to be described later.
  • Hydrocarbon-rich gas fraction is permeatively separated into a C0 2 -arm gas fraction (retentate) and a C0 2 -rich gas fraction (permeate).
  • This separation is preferably carried out by means of a polymer membrane.
  • This advantageously has a selectivity between C0 2 and CH 4 of at least 2, preferably at least 3. Furthermore, the pressure on the permeate side is a factor of 4 to 10,
  • the C0 2 -rich gas fraction is compressed to a pressure which is at least 10% above the critical pressure of this C0 2 -rich gas fraction.
  • the compression of the C0 2 -rich gas fraction takes place in two or more stages.
  • compressed C0 2 -rich gas fraction is preferably interim or post-cooled against cooling water and / or air.
  • the compressed C0 2 -rich gas fraction is cooled by means of a suitable refrigeration system and then relaxed. Here it is cooled to a temperature at which the formation of a solid, C0 2 -rich phase can be safely avoided after the relaxation; As a rule, a cooling takes place to a temperature which is at least 5 ° C, preferably
  • the relaxed C0 2 -rich fraction is separated by means of a stripping process into a C0 2 -depleted gas fraction and a C0 2 -rich liquid fraction. Since the liquid content of the relaxed C0 2 -rich fraction usually too rich
  • Hydrocarbons, in particular of methane is, in order to meet the requirements for the C0 2 - purity, the C0 2 - rich fraction fed to the stripping process or stripping column is purged of methane by boiling until the C0 withdrawn from the bottom of the stripping column 2 -rich liquid fraction - which represents the product stream - having the desired composition.
  • this C0 2 -rich liquid fraction has a C0 2 content of at least 98 mol%, preferably at least 99.5 mol%.
  • the pressure of the stripping process is advantageously selected such that the bottom temperature is at least 10 ° C., preferably at least 15 ° C is below the process temperature achievable during the intercooling of the C0 2 - rich gas fraction; As a rule, a pressure between 30 and 60 bar is therefore chosen.
  • Stripping column evaporating methane used at least partially to the
  • the C0 2 -depleted gas fraction obtained at the top of the stripping column is fed to the hydrocarbon-rich gas fraction to be separated permeatively.
  • the C0 2 -depleted gas fraction is preheated to ambient temperature. Normally, no additional compression is required before admixture.
  • the hydrocarbon-rich, C0 2 -containing gas fraction 1 which has a C0 2 content between 10 and 85 mol% and is usually present under a pressure of 30 to 70 bar, is a pretreatment P, shown only in the black box the C 5+ hydrocarbons and / or water are separated, fed. If a separation of C 5+ hydrocarbons and / or water is not required, this pre-treatment P can be omitted.
  • the optionally pretreated hydrocarbon-rich gas fraction 1 ' is now separated permeatively M into a low-C0 2 gas fraction 2 and a ⁇ C0 2 -rich gas fraction 3. This separation is preferably carried out by means of a polymer membrane.
  • the C0 2 -rich gas fraction 3 is compressed in the compressor stages C1, C2 and C3 to a pressure which is at least 10% above the critical pressure of the CQ 2 -rich gas fraction.
  • the intercooling of the Intermediate pressures of compressed C0 2 -rich gas fraction 4 and 5 takes place in the
  • the compressed in the compressor C3 to the desired final pressure C0 2 -rich gas fraction 6 is in
  • Heat exchanger E5 cooled against cooling water or air.
  • the compressed C0 2 - rich gas fraction 6 is in the heat exchanger E6 against a suitable refrigeration system R, which is shown in Figure 1 only as a black box, cooled; this is the
  • Refrigeration system R is coupled via the refrigeration circuit 12 to the heat exchanger E6. Subsequently, the cooled C0 2 -rich gas fraction 6 is expanded in the valve V1 and fed to the top of the stripping column T1.
  • the compressed C0 2 -rich gas fraction 6 is cooled down to a temperature in the heat exchanger E6, _ beräer after the relaxation in the valve V1, the formation of a solid, C0 2 -rich phase can be safely avoided. For this reason, it is cooled down to a temperature which is at least 5 ° C, preferably at least 10 ° C above the fixed point of carbon dioxide.
  • the T1 of the stripping column supplied C0 2 -rich fraction is separated C0 2 -depleted gas fraction 7 and a C0 2 -rich liquid fraction 8 in a.
  • the latter is delivered via the control valve V2. Since the liquid fraction of the relaxed C0 2 -rich fraction is generally too rich in hydrocarbons, in particular methane, to meet the requirements for the C0 2 purity of the C0 2 -rich liquid fraction 8, the C0 2 fed to the stripping column is rich fraction by boiling so far from methane purified until the C0 2 liquid fraction 8 has the desired purity, ie a C0 2 content of at least 98 mol%, preferably at least 99.5 mol%.
  • Partial stream 9 is heated in the heat exchangers E2 and E4 against the compressed and cooled C0 2 -rich gas fraction, at least partially vaporized and fed together with the warmed in the refrigeration system R and at least partially vaporized substream 9 'of the stripping column T1 as a stripping vapor.
  • the pressure within the stripping column T1 is selected so that its bottom temperature is at least 10 ° C, preferably at least 15 ° C below the process temperature, which can be achieved in the intermediate cooling of the compressed C0 2 -rich gas fraction in the heat exchangers E1 and E3 is. Therefore, the pressure within the stripping column T1 is usually 30 to 60 bar. through This procedure, the cooling capacity of the stripping column T1
  • vaporizing methane are at least partially used to the
  • FIGS. 2 to 4 show three different embodiments of the refrigeration system R, which is shown in FIG. 1 only as a black box, and serves to cool the compressed CO 2 -rich gas fraction 6.
  • Heat exchanger E2 deducted, increased by an additional compressor C4 in the pressure and then in the heat exchanger E7 against cooling water or air and in the
  • Liquid fraction 8 cooled. Subsequently, the cooled partial flow 21 in a expansion turbine X1, which is coupled to the above-described compressor C4, work expanded; the mechanical power of the expansion turbine X1 is used to drive the compressor C4. If necessary, this relaxation can also be carried out in several stages, possibly with an intermediate heating.
  • the additional heat exchanger E8 is analogous to the heat exchangers E2 and E4 to the,
  • the heat exchanger system E6 shown in FIG. 1 is divided into two heat exchangers E6 and E6 'arranged in parallel with the aim of optimizing the use of so-called wound heat exchangers. While the cooled C0 2 -rich gas fraction 6 is guided on the tube side due to their comparatively high pressure, the cold streams 7 and 21 are guided on the shell side. The warmed in the heat exchanger E6 ', as a refrigerant used partial stream 22 is the C0 2 -rich gas fraction 3 mixed before their compression.
  • Hydrocarbons from the group C to C 5 (methane, ethylene, ethane, propylene, propane, butane and pentane) consists.
  • the compressed in the compressor C4 refrigerant 31 is completely condensed in the heat exchangers E7 and E8 against cooling water or air or against the partial flow 9 of the C0 2 -rich liquid fraction 8.
  • the container D1 serves to store liquid refrigerant to enable various operating conditions.
  • the withdrawn from the container D1 refrigerant mixture 32 is in the heat exchanger E6 'subcooled, relaxed in the expansion valve V3, at
  • the cooling of the compressed C0 2 -rich gas fraction 6 by means of a pure refrigerant is carried out on at least two pressure stages in the heat exchangers E6 'and E6 " the refrigerant 43 withdrawn from the container D1 is first fed to the heat exchanger E6 'via the expansion valve V3, a portion of the refrigerant is vaporized therein and fed via line 40 to the intermediate stage of the compressor C4, while the remaining refrigerant partial stream is fed via the control valve V4 into the heat exchanger E6 " is relaxed.
  • the refrigerants for such a refrigerant refrigeration cycle are all substances that can be liquefied at ambient temperature, including but not limited to propane, propylene, R22, R134a and at low ambient temperatures also ethane as well as carbon dioxide.
  • the inventive method for separating a C0 2 -rich liquid fraction from a hydrocarbon-rich, C0 2 -containing gas fraction allows liquid C0 2 in technically pure form, ie with a C0 2 content of at least 98 mol%, from a raw gas with a wide range of C0 2 concentration to separate.
  • the C0 2 content of C0 2 low-gas fraction can be reduced to less than 10 mol%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Es wird ein Verfahren zum Abtrennen einer C02-reichen Flüssigfraktion aus einer Kohlenwasserstoff-reichen, C02-enthaltenden Gasfraktion beschrieben. Erfindungsgemäß a) wird die Kohlenwasserstoff-reiche, C02-enthaltende Gasfraktion (1, 1') permeativ (M) in eine C02-arme Gasfraktion (2) und eine C02-reiche Gasfraktion (3) aufgetrennt, b) die C02-reiche Gasfraktion (3) auf einen Druck, der wenigstens 10 % über dem kritischen Druck der C02-reichen Gasfraktion (3) liegt, verdichtet (C1, C2, C3), c) die verdichtete C02-reiche Gasfraktion (6) abgekühlt (E6, Ε6', E6") und entspannt (V1, VT), d) wobei die CO2-reiche Gasfraktion (6) auf eine Temperatur abgekühlt wird (E6, Ε6', E6"), bei der nach ihrer Entspannung (V1, V1') die Bildung einer festen, C02-reichen Phase vermieden wird, e) die entspannte C02-reiche Fraktion mittels eines Stripprozesses (T1 ) in eine C02-abgereicherte Gasfraktion (7) und eine C02-reiche Flüssigfraktion (8) aufgetrennt wird, und f) die C02-abgereicherte Gasfraktion (7) der permeativ (M) aufzutrennenden Kohlenwasserstoff-reichen, CO2-enthaltenden Gasfraktion (1, 1') zugeführt wird.

Description

Beschreibung
Verfahren zum Abtrennen von Kohlendioxid aus einer Kohlenwasserstoff-reichen
Fraktion
Die Erfindung betrifft ein Verfahren zum Abtrennen einer C02-reichen Flüssigfraktion aus einer Kohlenwasserstoff-reichen, C02-enthaltenden Gasfraktion.
Erdgas und Erdölbegleitgase enthalten Sauergase - im Wesentlichen C02, zudem H2S und andere Schwefelverbindungen, wie COS und Merkaptane - in verschiedenen Konzentrationen; diese Sauergase werden üblicherweise durch Wäschen (z. B.
Aminwäschen) bei Umgebungstemperatur abgetrennt. Ab einer C02-Konzentration von etwa 10 Mol-% wird dieses Vorgehen unwirtschaftlich, da die umlaufende
Waschmittelmenge und der Energiebedarf zur Waschmittelregenerierung stetig ansteigen. Daher werden seit einiger Zeit Membranen, vorzugsweise Polymermembranen, dazu verwendet, den C02-Gehalt des Einsatzgases vor einer Aminwäsche auf etwa 2 bis 10 Mol-% zu verringern, so dass diese wieder optimal betrieben werden kann.
Membranen alleine sind aber nicht geeignet, hohe Reinheiten und gleichzeitig hohe Ausbeuten zu erreichen. Die Kombination einer Membran mit einer
Tieftemperaturzerlegung ist vom Prinzip her geeignet, diese Aufgabe zu lösen.
Im US-Patent 5,414,190 wird eine Verfahrensführung offenbart, bei der eine Membran einer Tieftemperaturzerlegung des Retentates vorgeschaltet ist. Eine weitere
Aufarbeitung des C02-reichen Permeates, z. B. zur Erhöhung der
Kohlenwasserstoffausbeute, wird jedoch nicht offenbart. Aufgrund des
Kohlenwasserstoffgehalts des C02-reichen Permeates kommt es hierbei jedoch zu nicht akzeptablen Kohlenwasserstoffverlusten bezogen auf das Rohgas.
In der US-Patentanmeldung 2005/0092594 wird ein Verfahren beschrieben, bei dem C02-reiches Erdgas rektifikatorisch vorgetrennt und anschließend mittels einer Membran auf einen niedrigen C02-Gehalt eingestellt wird. Ein Betrieb dieses
Verfahrens ist jedoch erst ab etwa 25 Mol-% C02 durchführbar, da bei niedrigeren C02-Gehalten die vorgeschlagene Tieftemperaturzerlegung wirkungslos ist, da C02 unter den offenbarten Bedingungen nicht kondensiert und sich folglich nicht über Sumpf abtrennen lässt. Beide vorbeschriebenen Verfahren sind zudem nicht in der Lage, das abgetrennte C02 flüssig und in gewünschter Reinheit bereit zu stellen. Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Abtrennen einer C02-reichen Flüssigfraktion aus einer Kohlenwasserstoff-reichen Gasfraktion anzugeben, das es ermöglicht, C02 in technisch reiner Form - hierunter sei eine C02-reiche Fraktion, die einen C02-Gehalt von wenigstens 98 Mol-% aufweist, zu verstehen - und in flüssigem Zustand aus einem Kohlenwasserstoff-reichen
Gasgemisch, das zwischen 10 und 85 Mol-% C02 enthält, abzutrennen, wobei das Kohlenwasserstoff-reiche Gasgemisch nach der Trennung einen C02-Gehalt von höchstens 10 Mol-% aufweist. Zudem sollen die Kohlenwasserstoffverluste über die flüssige C02-Produktfraktion weniger als 2 % betragen. Zur Lösung dieser Aufgabe wird ein Verfahren zum Abtrennen einer C02-reichen Flüssigfraktion aus einer Kohlenwasserstoff-reichen, C02-enthaltenden Gasfraktion vorgeschlagen, das dadurch gekennzeichnet ist, dass
a) die Kohlenwasserstoff-reiche, C02-enthaltende Gasfraktion permeativ in eine C02-arme Gasfraktion und eine C02-reiche Gasfraktion aufgetrennt wird, b) die C02-reiche Gasfraktion auf einen Druck, der wenigstens 10 % über dem kritischen Druck der C02-reichen Gasfraktion liegt, verdichtet wird,
c) die verdichtete C02-reiche Gasfraktion abgekühlt und entspannt wird, d) wobei die C02-reiche Gasfraktion auf eine Temperatur abgekühlt wird, bei der nach ihrer Entspannung die Bildung einer festen, C02-reichen Phase vermieden wird,
e) die entspannte C02-reiche Fraktion mittels eines Stripprozesses in eine C02- abgereicherte Gasfraktion und eine CÖ2-reiche Flüssigfraktion aufgetrennt wird, und
f) die C02-abgereicherte Gasfraktion der permeativ aufzutrennenden
Kohlenwasserstoff-reichen, C02-enthaltenden Gasfraktion zugeführt wird.
Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zum
Abtrennen einer C02-reichen Flüssigfraktion aus einer Kohlenwasserstoff-reichen, C02-enthaltenden Gasfraktion, die Gegenstände der abhängigen Patentansprüche sind, sind dadurch gekennzeichnet, dass der Stripprozess derart betrieben wird', dass die C02-reiche Flüssigfraktion einen C02-Gehalt von wenigstens 98 Mol-%, vorzugsweise wenigstens 99,5 Mol-% aufweist, die Kohlenwasserstoff-reiche, C02-enthaltende Gasfraktion zwischen 10 und 85 Mol-% C02, vorzugsweise zwischen 25 und 60 Mol-% C02 enthält, die C02-arme Gasfraktion maximal 15 Mol-% C02, vorzugsweise maximal 10 Mol-% GQ2 enthält^ - die für die permeative Auftrennung (Verfahrensschritt a) verwendete Membran eine Selektivität zwischen C02 und CH4 von wenigstens 2, vorzugsweise wenigstens 3 aufweist, bei der permeativen Auftrennung (Verfahrensschritt a) der Druck auf der Permeatseite um den Faktor 4 bis 10, vorzugsweise 5 bis 8 niedriger ist als der Druck auf der Zuspeiseseite, sofern die Verdichtung der C02-reichen Gasfraktion wenigstens zweistufig und nach jeder Zwischenverdichterstufe eine Zwischenkühlung der verdichteten C02-reichen Gasfraktion erfolgt, der Druck des Stripprozesses so gewählt wird, dass die Sumpftemperatur um wenigstens 10 °C, vorzugsweise wenigstens 15 °C unterhalb der Prozesstemperatur liegt, die bei der Zwischenkühlung der C02-reichen Gasfraktion erreichbar ist, die Abkühlung der verdichteten C02-reichen Gasfraktion gegen einen offenen Expanderkreislauf erfolgt, wobei als Kältemittel ein Teilstrom der C02-reichen Gasfraktion verwendet wird, und/oder die Abkühlung der verdichteten C02-reichen Gasfraktion gegen einen geschlossenen Expanderkreislauf erfolgt.
Erfindungsgemäß wird die Kohlenwasserstoff-reiche, C02-enthaltende Gasfraktion, die einen C02-Gehalt zwischen 10 und 85 Mol-% aufweist und die unter einem Druck von 30 bis 70 bar, vorzugsweise 40 bis 60 bar vorliegt, sofern erforderlich, zunächst einer Vorbehandlung zugeführt, in der C5+-Kohlenwasserstoffe und Wasser abgetrennt werden. Diese Komponenten können bei Bedarf zusammen mit dem noch zu beschreibenden Retentat abgegeben werden. Die ggf. derart vorbehandelte
Kohlenwasserstoff-reiche Gasfraktion wird permeativ in eine C02-arme Gasfraktion (Retentat) und eine C02-reiche Gasfraktion (Permeat) aufgetrennt. Diese Auftrennung erfolgt vorzugsweise mittels einer Polymer-Membran. Diese weist in vorteilhafter Weise eine Selektivität zwischen C02 und CH4 von wenigstens 2, vorzugsweise wenigstens 3 auf. Des Weiteren ist der Druck auf der Permeatseite um den Faktor 4 bis 10,
- - vorzugsweise 5 bis 8~niedriger israls~def Drück"äQf der Züspeiseseite! Als Selektivität α wird das Verhältnis der molaren Konzentrationen von C02 und CH4 im Permeatstrom (y) und in der Zuspeisung (x) zur Membran verstanden:
er— γ ;
Anschließend wird die C02-reiche Gasfraktion auf einen Druck, der wenigstens 10 % über dem kritischen Druck dieser C02-reichen Gasfraktion liegt, verdichtet. Im Regelfall erfolgt die Verdichtung der C02-reichen Gasfraktion zwei- oder mehrstufig. Die
(zwischen)verdichtete C02-reiche Gasfraktion wird vorzugsweise gegen Kühlwasser und/oder Luft zwischen- bzw. nachgekühlt. Die verdichtete C02-reiche Gasfraktion wird mittels einer geeigneten Kälteanlage abgekühlt und anschließend entspannt. Hierbei wird sie auf eine Temperatur abgekühlt, bei der nach der Entspannung die Bildung einer festen, C02-reichen Phase sicher vermieden werden kann; im Regelfall erfolgt eine Abkühlung bis auf eine Temperatur, die wenigstens 5 °C, vorzugsweise
wenigstens 10 °C oberhalb des Festpunkts von Kohlendioxid liegt.
Die entspannte C02-reiche Fraktion wird mittels eines Stripprozesses in eine C02- abgereicherte Gasfraktion und eine C02-reiche Flüssigfraktion aufgetrennt. Da der Flüssiganteil der entspannten C02-reichen Fraktion in der Regel zu reich an
Kohlenwasserstoffen, insbesondere an Methan, ist, um die Anforderungen an die C02- Reinheit zu erfüllen, wird die dem Stripprozess bzw. der Stripkolonne zugeführte C02- reiche Fraktion durch Aufkochen soweit von Methan gereinigt, bis die aus dem Sumpf der Stripkolonne abgezogene C02-reiche Flüssigfraktion - die den Produktstrom darstellt - die gewünschte Zusammensetzung aufweist. In vorteilhafter Weise weist diese C02-reiche Flüssigfraktion einen C02-Gehalt von wenigstens 98 Mol-%, vorzugsweise wenigstens 99,5 Mol-% auf.
Sofern die Verdichtung der C02-reichen Gasfraktion wenigstens zweistufig und nach jeder Zwischenverdichterstufe eine Zwischenkühlung der verdichteten C02-reichen Gasfraktion erfolgt, wird in vorteilhafter Weise der Druck des Stripprozesses so gewählt, dass die Sumpftemperatur um wenigstens 10 °C, vorzugsweise wenigstens 15 °C unterhalb der Prozesstemperatur liegt, die bei der Zwischenkühlung der C02- reichen Gasfraktion erreichbar ist; im Regelfall wird daher ein Druck zwischen 30 und 60 bar gewählt. Mittels "dieser Verfahrensführü g" wird die" Kühlleistung des in der
Stripkolonne verdampfenden Methans zumindest teilweise genutzt, um die
Saugtemperaturen der Verdichterstufen und somit deren Energieverbräuche abzusenken. Die am Kopf der Stripkolonne gewonnene C02-abgereicherte Gasfraktion wird der permeativ aufzutrennenden Kohlenwasserstoff-reichen Gasfraktion zugeführt. Dazu wird die C02-abgereicherte Gasfraktion vorab auf Umgebungstemperatur angewärmt. Normalerweise ist vor der Zumischung keine zusätzliche Verdichtung erforderlich. Das erfindungsgemäße Verfahren zum Abtrennen einer C02-reichen Flüssigfraktion aus einer Kohlenwasserstoff-reichen, C02-enthaltenden Gasfraktion sowie weitere Ausgestaltungen desselben seien nachfolgend anhand der in den Figuren 1 bis 4 dargestellten Ausführungsbeispiele näher erläutert. Die Kohlenwasserstoff-reiche, C02-enhaltende Gasfraktion 1 , die einen C02-Gehalt zwischen 10 und 85 Mol-% aufweist und üblicherweise unter einem Druck von 30 bis 70 bar vorliegt, wird einer lediglich als Black-Box dargestellten Vorbehandlung P, in der C5+-Kohlenwasserstoffe und/oder Wasser abgetrennt werden, zugeführt. Sofern eine Abtrennung von C5+-Kohlenwasserstoffen und/oder Wasser nicht erforderlich ist, kann diese Vorbehandlung P entfallen. Die ggf. vorbehandelte Kohlenwasserstoff-reiche Gasfraktion 1' wird nunmehr permeativ M in eine C02-arme Gasfraktion 2 und eine · C02-reiche Gasfraktion 3 aufgetrennt. Diese Auftrennung erfolgt vorzugsweise mittels einer Polymer-Membrane. Die C02-reiche Gasfraktion 3 wird in den Verdichterstufen C1 , C2 und C3 auf einen Druck, der wenigstens 10 % über dem kritischen Druck der CQ2-reichen Gasfraktion liegt, verdichtet. Die Zwischenkühlung der auf Zwischendrücke verdichteten C02-reichen Gasfraktion 4 und 5 erfolgt in den
Wärmetauschern E1 und E3 gegen Kühlwasser oder Luft. Die im Verdichter C3 auf den gewünschten Enddruck verdichtete C02-reiche Gasfraktion 6 wird im
Wärmetauscher E5 gegen Kühlwasser oder Luft nachgekühlt. Die verdichtete C02- reiche Gasfraktion 6 wird im Wärmetauscher E6 gegen eine geeignete Kälteanlage R, die in der Figur 1 lediglich als Black-Box dargestellt ist, abgekühlt; dazu ist die
Kälteanlage R über den Kältekreislauf 12 mit dem Wärmetauscher E6 gekoppelt. Anschließend wird die abgekühlte C02-reiche Gasfraktion 6 im Ventil V1 entspannt und dem Kopf der Stripkolonne T1 zugeführt. Hierbei wird die verdichtete C02-reiche Gasfraktion 6 im Wärmetauscher E6 bis auf eine Temperatur abg^kuhlt,_beräer nach der- Entspannung im Ventil V1 die Bildung einer festen, C02-reichen Phase sicher vermieden werden kann. Aus diesem Grund erfolgt eine Abkühlung bis auf eine Temperatur, die wenigstens 5 °C, vorzugsweise wenigstens 10 °C oberhalb des Festpunktes von Kohlendioxid liegt.
Die der Stripkolonne T1 zugeführte C02-reiche Fraktion wird in eine C02-abgereicherte Gasfraktion 7 und eine C02-reiche Flüssigfraktion 8 aufgetrennt. Letztere wird über das Regelventil V2 abgegeben. Da der Flüssiganteil der entspannten C02-reichen Fraktion in der Regel zu reich an Kohlenwasserstoffen, insbesondere an Methan ist, um die Anforderungen an die C02-Reinheit der C02-reichen Flüssigfraktion 8 zu erfüllen, wird die der Stripkolonne zugeführte C02-reiche Fraktion durch Aufkochen soweit von Methan gereinigt, bis die C02-Flüssigfraktion 8 die gewünschte Reinheit aufweist, also einen C02-Gehalt von wenigstens 98 Mol-%, vorzugsweise wenigstens 99,5 Mol-% aufweist. Hierzu wird ein Teilstrom 9, der aus dem Sumpf der Stripkolonne T1 abgezogenen C02-reichen Flüssigfraktion abgezogen und in zwei Teilströme 9 und 9' aufgeteilt. Teilstrom 9 wird in den Wärmetauschern E2 und E4 gegen die verdichtete und abzukühlende C02-reiche Gasfraktion angewärmt, zumindest teilweise verdampft und gemeinsam mit dem in der Kälteanlage R angewärmten und zumindest teilweise verdampften Teilstrom 9' der Stripkolonne T1 als Stripdampf zugeführt.
In vorteilhafter Weise wird der Druck innerhalb der Stripkolonne T1 so gewählt, dass deren Sumpftemperatur um wenigstens 10 °C, vorzugsweise wenigstens 15 °C unterhalb der Prozesstemperatur liegt, die bei der Zwischenkühlung der verdichteten C02-reichen Gasfraktion in den Wärmetauschern E1 und E3 erreichbar ist. Daher beträgt der Druck innerhalb der Stripkolonne T1 im Regelfall 30 bis 60 bar. Mittels dieser Verfahrensführung kann die Kühlleistung des in der Stripkolonne T1
verdampfenden Methans zumindest teilweise genutzt werden, um die
Saugtemperaturen der Verdichterstufen C2 und C3 und somit deren
Energieverbräuche abzusenken.
Die am Kopf der Stripkolonne gewonnene C02-abgereicherte Gasfraktion 7 wird im Wärmetauscher E6 (auf Umgebungstemperatur) angewärmt und der permeativ aufzutrennenden Kohlenwasserstoff-reichen Gasfraktion 1' zugeführt. In den Figuren 2 bis 4 sind nunmehr drei unterschiedliche Ausführungsformen für die in der Figur 1 lediglich als Black-Box dargestellte Kälteanlage bzw. Kältebereitstellung R, die der Abkühlung der verdichteten C02-reichen Gasfraktion 6 dient, dargestellt.
Sofern ein vergleichsweise einfacher Betrieb und hohe Flexibilität den Vorrang vor niedrigem Energieverbrauch haben - dies ist beispielsweise bei Offshore-Anlagen der Fall - ist ein offener Expanderkreislauf vorzuziehen, wie er anhand des in der Figur 2 dargestellten Ausführungsbeispieles erläutert wird. Hierbei wird ein Teilstrom 20 der auf einen Zwischendruck verdichteten C02-reichen Gasfraktion 4 nach dem
Wärmetauscher E2 abgezogen, über einen zusätzlichen Verdichter C4 im Druck erhöht und anschließend im Wärmetauscher E7 gegen Kühlwasser oder Luft und im
Wärmetauscher E8 gegen den zu verdampfenden Teilstrom 9 der C02-reichen
Flüssigfraktion 8 gekühlt. Anschließend wird der abgekühlte Teilstrom 21 in einer Entspannungsturbine X1 , die mit dem vorbeschriebenen Verdichter C4 gekoppelt ist, arbeitsleistend entspannt; die mechanische Leistung der Entspannungsturbine X1 wird zum Antrieb des Verdichters C4 verwendet. Diese Entspannung kann bei Bedarf auch mehrstufig, ggf. mit einer Zwischenanwärmung ausgeführt werden. Der zusätzliche Wärmetauscher E8 dient analog zu den Wärmetauschern E2 und E4 dazu, die
Eintrittstemperatur der Entspannungsturbine X1 energiesparend abzusenken. Das in der Figur 1 dargestellte Wärmetauschersystem E6 ist bei dem in der Figur 2 dargestellten Ausführungsbeispiel in zwei parallel angeordnete Wärmetauscher E6 und E6' mit dem Ziel aufgeteilt, den Einsatz von sog. gewickelten Wärmetauschern zu optimieren. Während die abzukühlende C02-reiche Gasfraktion 6 aufgrund ihres vergleichsweise hohen Druckes rohrseitig geführt wird, werden die kalten Ströme 7 und 21 mantelseitig geführt. Der im Wärmetauscher E6' angewärmte, als Kältemittel verwendete Teilstrom 22 wird der C02-reichen Gasfraktion 3 vor deren Verdichtung zugemischt.
Sofern hohe Effizienz wichtiger ist als ein einfacher Betrieb, kommen vorzugsweise unterschiedliche Arten von geschlossenen Kältekreisläufen mit Phasenwechsel des Kältemittels zur Anwendung. Bei dem in der Figur 3 dargestellten Ausführungsbeispiel ist ein vergleichsweise einfacher Gemischkreislauf dargestellt, bei dem das in ihm zirkulierende Kältemittel aus einem Gemisch von mindestens zwei leichten
Kohlenwasserstoffen aus der Gruppe C: bis C5 (Methan, Ethylen, Ethan, Propylen, Propan, Butan und Pentan) besteht. Das im Verdichter C4 verdichtete Kältemittel 31 wird in den Wärmetauschern E7 und E8 gegen Kühlwasser oder Luft bzw. gegen den Teilstrom 9 der C02-reichen Flüssigfraktion 8 vollständig kondensiert. Der Behälter D1 dient der Speicherung von flüssigem Kältemittel, um verschiedene Betriebszustände zu ermöglichen. Das aus dem Behälter D1 abgezogene Kältemittelgemisch 32 wird im Wärmetauscher E6' unterkühlt, im Entspannungsventil V3 entspannt, bei
vergleichsweise niedrigem Druck auf der Mantelseite des Wärmetauschers E6', bei dem es sich vorzugsweise um einen gewickelten Wärmetauscher handelt, vollständig verdampft und anschließend erneut dem Verdichter C4 zugeführt. Durch die Wahl eines geschlossenen Gemischkreislaufs, wie er in der Figur 3 beispielhaft dargestellt ist, können gegenüber einem offenen Expanderkreislauf, wie er in der Figur 2 dargestellt ist, 20 bis 40 % Leistung eingespart werden. Allerdings erhöhen die Bereitstellung der Gemischkreislaufkomponenten und deren
bestimmungsgemäße Verwendung den Aufwand erheblich.
Bei dem in der Figur 4 dargestellten Ausführungsbeispiel erfolgt die Abkühlung der verdichteten C02-reichen Gasfraktion 6 mittels eines Reinstoffkältemittels. Um den Energieverbrauch ähnlich günstig wie bei dem anhand der Figur 3 beschriebenen Gemischkreislauf zu halten, wird die Verdampfung des im Verdichter C4 verdichteten und in den Wärmetauschern E7 und E8 verflüssigten Kältemittels auf mindestens zwei Druckstufen in den Wärmetauschern E6' und E6" vorgenommen. Hierzu wird das aus dem Behälter D1 abgezogene Kältemittel 43 über das Entspannungsventil V3 zunächst dem Wärmetauscher E6' zugeführt, ein Teil des Kältemittels in ihm verdampft und über Leitung 40 der Zwischenstufe des Verdichters C4 zugeführt, während der restliche Kältemittelteilstrom über das Regelventil V4 in den Wärmetauscher E6" entspannt wird. Der im Wärmetauscher E6" verdampfte Kältemittelteilstrom 41 wird der Saugseite des Verdichters C4 zugeführt. Als Kältemittel für einen derartigen Reinstoffkältekreislauf kommen alle Substanzen in Frage, die bei Umgebungstemperatur verflüssigt werden können. Hierzu zählen unter anderem Propan, Propylen, R22, R134a und bei niedriger Umgebungstemperatur auch Ethan sowie Kohlendioxid.
Das erfindungsgemäße Verfahren zum Abtrennen einer C02-reichen Flüssigfraktion aus einer Kohlenwasserstoff-reichen, C02-enthaltenden Gasfraktion ermöglicht es, flüssiges C02 in technisch reiner Form, also mit einem C02-Gehalt von wenigstens 98 Mol-%, aus einem Rohgas mit einer großen Bandbreite an C02-Konzentration abzutrennen. Zudem kann mit ihm der C02-Gehalt der C02-armen Gasfraktion auf weniger als 10 Mol-% verringert werden. Des Weiteren lassen sich die
Kohlenwasserstoffverluste über die flüssige C02-Produktfraktion auf weniger als 2 % reduzieren.

Claims

Patentansprüche
Verfahren zum Abtrennen einer C02-reichen Flüssigfraktion aus einer
Kohlenwasserstoff-reichen, C02-enthaltenden Gasfraktion, dadurch
gekennzeichnet, dass
a) die Kohlenwasserstoff-reiche, C02-enthaltende Gasfraktion (1 , 1') permeativ (M) in eine C02-arme Gasfraktion (2) und eine C02-reiche Gasfraktion (3) aufgetrennt wird,
b) die C02-reiche Gasfraktion (3) auf einen Druck, der wenigstens 10 % über dem kritischen Druck der C02-reichen Gasfraktion (3) liegt, verdichtet wird (C1 - C3), c) die verdichtete C02-reiche Gasfraktion (6) abgekühlt (E6, Ε6', E6") und
entspannt (V1 , V1') wird,
d) wobei die C02-reiche Gasfraktion (6) auf eine Temperatur abgekühlt wird (E6, Ε6', E6"), bei der nach ihrer Entspannung (V1 , V1') die Bildung einer festen, C02-reichen Phase vermieden wird,
e) die entspannte C02-reiche Fraktion mittels eines Stripprozesses (T1 ) in eine C02-abgereicherte Gasfraktion (7) und eine C02-reiche Flüssigfraktion (8) aufgetrennt wird, und
f) die C02-abgereicherte Gasfraktion (7) der permeativ (M) aufzutrennenden
Kohlenwasserstoff-reichen, CQ2-enthaltenden Gasfraktion (1 , 1') zugeführt wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Stripprozess (T1) derart betrieben wird, dass die C02-reiche Flüssigfraktion (8) einen C02-Gehalt von wenigstens 98 Mol-%, vorzugsweise wenigstens 99,5 Mol-% aufweist.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die
Kohlenwasserstoff-reiche, C02-enthaltende Gasfraktion (1 , 1') zwischen 10 und 85 Mol-% C02, vorzugsweise zwischen 25 und 60 Mol-% C02 enthält.
Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch
gekennzeichnet, dass die C02-arme Gasfraktion (2) maximal 15 Mol-% C02, vorzugsweise maximal 10 Mol-% C02 enthält. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 4, dadurch
gekennzeichnet, dass die für die permeative Auftrennung (Verfahrensschritt a) verwendete Membran eine Selektivität zwischen C02 und CH4 von wenigstens 2, vorzugsweise wenigstens 3 aufweist.
Verfahren nach einem der vorhergehenden Ansprüche 1 bis 5, dadurch
gekennzeichnet, dass bei der permeativen Auftrennung (Verfahrensschritt a) der Druck auf der Permeatseite um den Faktor 4 bis 10, vorzugsweise 5 bis 8 niedriger ist als der Druck auf der Zuspeiseseite.
Verfahren nach einem der vorhergehenden Ansprüche 1 bis 6, wobei die
Verdichtung (C1 - C3) der C02-reichen Gasfraktion (3) wenigstens zweistufig und nach jeder Zwischenverdichterstufe eine Zwischenkühlung (E1 , E3) der
verdichteten C02-reichen Gasfraktion (4, 5) erfolgt, dadurch gekennzeichnet, dass der Druck des Stripprozesses (T1) so gewählt wird, dass die Sumpftemperatur um wenigstens 10 °C, vorzugsweise wenigstens 15 °C unterhalb der
Prozesstemperatur liegt, die bei der Zwischenkühlung (E1 , E3) der C02-reichen Gasfraktion (4, 5) erreichbar ist.
Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Druck des
Stripprozesses (T1) zwischen 30 und 60 bar beträgt.
Verfahren nach einem der vorhergehenden Ansprüche 1 bis 8, dadurch
gekennzeichnet, dass die Abkühlung (E6, E6', E6") der verdichteten C02-reichen Gasfraktion (6) gegen einen offenen Expanderkreislauf erfolgt, wobei als
Kältemittel ein Teilstrom (20 - 22) der CQ2-reichen Gasfraktion (4) verwendet wird.
10. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 9, dadurch
gekennzeichnet, dass die Abkühlung (E6, E6', E6") der verdichteten C02
Gasfraktion (6) gegen einen geschlossenen Expanderkreislauf erfolgt.
PCT/EP2016/001330 2015-08-04 2016-08-02 Verfahren zum abtrennen von kohlendioxid aus einer kohlenwasserstoff-reichen fraktion WO2017021003A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112018001717-5A BR112018001717B1 (pt) 2015-08-04 2016-08-02 Processo para separar dióxido de carbono de uma fração rica em hidrocarboneto
AU2016304194A AU2016304194B2 (en) 2015-08-04 2016-08-02 Method for separating carbon dioxide from a hydrocarbon-rich fraction
MYPI2018700384A MY194111A (en) 2015-08-04 2016-08-02 Method for separating carbon dioxide from a hydrocarbon-rich fraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015010164.1A DE102015010164A1 (de) 2015-08-04 2015-08-04 Verfahren zum Abtrennen von Kohlendioxid aus einer Kohlenwasserstoff-reichen Fraktion
DE102015010164.1 2015-08-04

Publications (1)

Publication Number Publication Date
WO2017021003A1 true WO2017021003A1 (de) 2017-02-09

Family

ID=56740997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/001330 WO2017021003A1 (de) 2015-08-04 2016-08-02 Verfahren zum abtrennen von kohlendioxid aus einer kohlenwasserstoff-reichen fraktion

Country Status (4)

Country Link
AU (1) AU2016304194B2 (de)
DE (1) DE102015010164A1 (de)
MY (1) MY194111A (de)
WO (1) WO2017021003A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062397A1 (en) * 2019-09-27 2021-04-01 Wm Intellectual Property Holdings, L.L.C. System and process for recovering methane and carbon dioxide from biogas and reducing greenhouse gas emissions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4186583A1 (de) * 2021-11-24 2023-05-31 Linde GmbH Verfahren und vorrichtung zur abtrennung von kohlendioxid aus einem kohlendioxidhaltigen zustrom

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414190A (en) 1992-11-06 1995-05-09 Linde Aktiengesellschaft Process to recover liquid methane
US6301927B1 (en) * 1998-01-08 2001-10-16 Satish Reddy Autorefrigeration separation of carbon dioxide
US20050092594A1 (en) 2003-10-30 2005-05-05 Parro David L. Membrane/distillation method and system for extracting CO2 from hydrocarbon gas
FR2928720A1 (fr) * 2008-03-13 2009-09-18 Inst Francais Du Petrole Procede de pretraitement d'un gaz naturel pour retirer le dioxyde de carbone
US20110296867A1 (en) * 2010-06-03 2011-12-08 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20120111051A1 (en) * 2010-10-06 2012-05-10 L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Carbon Dioxide Removal Process
US20150013380A1 (en) * 2013-07-11 2015-01-15 Linde Aktiengesellschaft Method for separating off acid gases from natural gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639257A (en) * 1983-12-16 1987-01-27 Costain Petrocarbon Limited Recovery of carbon dioxide from gas mixture
JP5891848B2 (ja) * 2012-02-27 2016-03-23 ウシオ電機株式会社 ガラス基板もしくは水晶基板からなるワークの貼り合わせ方法および装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414190A (en) 1992-11-06 1995-05-09 Linde Aktiengesellschaft Process to recover liquid methane
US6301927B1 (en) * 1998-01-08 2001-10-16 Satish Reddy Autorefrigeration separation of carbon dioxide
US20050092594A1 (en) 2003-10-30 2005-05-05 Parro David L. Membrane/distillation method and system for extracting CO2 from hydrocarbon gas
FR2928720A1 (fr) * 2008-03-13 2009-09-18 Inst Francais Du Petrole Procede de pretraitement d'un gaz naturel pour retirer le dioxyde de carbone
US20110296867A1 (en) * 2010-06-03 2011-12-08 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20120111051A1 (en) * 2010-10-06 2012-05-10 L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Carbon Dioxide Removal Process
US20150013380A1 (en) * 2013-07-11 2015-01-15 Linde Aktiengesellschaft Method for separating off acid gases from natural gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062397A1 (en) * 2019-09-27 2021-04-01 Wm Intellectual Property Holdings, L.L.C. System and process for recovering methane and carbon dioxide from biogas and reducing greenhouse gas emissions
US10968151B1 (en) 2019-09-27 2021-04-06 Wm Intellectual Property Holdings, L.L.C. System and process for recovering methane and carbon dioxide from biogas and reducing greenhouse gas emissions
US11220470B2 (en) 2019-09-27 2022-01-11 Wm Intellectual Property Holdings, L.L.C. System and process for recovering methane and carbon dioxide from biogas and reducing greenhouse gas emissions
US11708313B2 (en) 2019-09-27 2023-07-25 Wm Intellectual Property Holdings, L.L.C. System and process for recovering methane and carbon dioxide from biogas and reducing greenhouse gas emissions

Also Published As

Publication number Publication date
MY194111A (en) 2022-11-14
AU2016304194B2 (en) 2021-10-28
AU2016304194A1 (en) 2018-02-22
DE102015010164A1 (de) 2017-02-09
BR112018001717A2 (pt) 2018-09-18

Similar Documents

Publication Publication Date Title
AT413598B (de) Verbesserter prozess zum verflüssigen von erdgas
EP0092770B1 (de) Verfahren zur Gewinnung von Kohlenmonoxid
DE3706733C2 (de)
EP2386814B1 (de) Stickstoff-Abtrennung aus Erdgas
WO2016128110A1 (de) Kombinierte abtrennung von schwer- und leichtsiedern aus erdgas
DE1226616B (de) Verfahren und Einrichtung zur Gewinnung von gasfoermigem Drucksauerstoff mit gleichzeitiger Erzeugung fluessiger Zerlegungsprodukte durch Tieftemperatur-Luftzerlegung
DE1007345B (de) Verfahren zum Zerlegen von verdichteter Luft durch Tiefkuehlen, Verfluessigen und Rektifizieren und Vorrichtung fuer das Verfahren
DE102013013883A1 (de) Kombinierte Abtrennung von Schwer- und Leichtsiedern aus Erdgas
DE102007010032A1 (de) Verfahren zum Abtrennen von Stickstoff aus verflüssigtem Erdgas
DE2646690A1 (de) Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
WO2006092266A1 (de) Verfahren zum gleichzeitigen gewinnen einer helium-und einer stickstoff-reinfraktion
DE2713359B2 (de) Verfahren zur Gewinnung von Äthylen aus Crackgasen durch Tieftemperaturtechnik
DE102009008230A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2017144151A1 (de) Verfahren und vorrichtung zur kryogenen synthesegaszerlegung
WO2017021003A1 (de) Verfahren zum abtrennen von kohlendioxid aus einer kohlenwasserstoff-reichen fraktion
DE3113093A1 (de) "kuehlverfahren zur rueckgewinnung oder fraktionierung eines hauptsaechlich aus butan und propan bestehenden, in erdgas enthaltenden gemisches"
WO2021023393A1 (de) Verfahren und anlage zur herstellung von flüssigerdgas
DE1960301A1 (de) Kuehleinrichtung zur Verfluessigung eines Verbrauchsgasstroms und Verfahren zur Verfluessigung
WO2007020252A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
WO2010094396A2 (de) Verfahren zum abtrennen von stickstoff
DE102014010103A1 (de) Verfahren zur LNG-Gewinnung aus N2-reichen Gasen
DE102006013686B3 (de) Verfahren zur Verflüssigung von Erdgas
WO2016155863A1 (de) Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion
DE102015007529A1 (de) Verfahren und Anlage zur Abtrennung von Methan aus einem methanhaltigen Synthesegasstrom
DE102008056196A1 (de) Verfahren zum Abtrennen von Stickstoff

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016304194

Country of ref document: AU

Date of ref document: 20160802

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018001717

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 16754188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018001717

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180126