WO2017020675A1 - 一种中压固体绝缘开关及用途与驱动装置 - Google Patents

一种中压固体绝缘开关及用途与驱动装置 Download PDF

Info

Publication number
WO2017020675A1
WO2017020675A1 PCT/CN2016/088621 CN2016088621W WO2017020675A1 WO 2017020675 A1 WO2017020675 A1 WO 2017020675A1 CN 2016088621 W CN2016088621 W CN 2016088621W WO 2017020675 A1 WO2017020675 A1 WO 2017020675A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage solid
medium
medium voltage
insulating body
Prior art date
Application number
PCT/CN2016/088621
Other languages
English (en)
French (fr)
Inventor
阿曼·斯蒂芬·罗伯特
Original Assignee
爱启(厦门)电气技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱启(厦门)电气技术有限公司 filed Critical 爱启(厦门)电气技术有限公司
Publication of WO2017020675A1 publication Critical patent/WO2017020675A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/02Bases, casings, or covers
    • H01H9/0271Bases, casings, or covers structurally combining a switch and an electronic component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/58Electric connections to or between contacts; Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements

Definitions

  • the present invention relates to a hybrid insulator device for a medium voltage distribution network, suitable for use in a power distribution network, and more particularly to a medium voltage solid insulated switch and use, a device for mechanically driving a medium voltage solid insulated switch.
  • the distribution network typically delivers power to consumers.
  • power can be distributed through more than one path within the power distribution network.
  • many distribution networks are configured to power users from two or more sources.
  • the recloser is a fault breaking device. By using it, current, voltage, and/or frequency can be detected, so faults or overload segments in the distribution network can be isolated. They are usually equipped with a controller, possibly electronically controlled.
  • the recloser can store energy in a short time to perform multiple joint operations, so it is called a "recloser".
  • the recloser eliminates transient faults caused by long power outages and causes users to dial unnecessary service calls.
  • the circuit breaker can be seen as a more simple recloser. Load switches are mostly used for opening and closing load circuits such as electric motors or capacitor banks.
  • Rogowski coils are another device used to monitor current in a power distribution network. It is a toroidal coil that is evenly wound around a non-magnetic material. The high voltage conductor to be tested needs to pass through the toroidal coil. The output signal of the Rogowski coil is a voltage that is proportional to the current flowing through the line mounted above it.
  • the problem is that the current represents a very small output voltage flowing through the load and needs to be amplified by an additional positive and negative power supply, and such small voltage is susceptible to interference.
  • additional precautions need to be taken so that even if the size of the Rogowski coil is smaller than a similar rated current transformer, the price/performance ratio is no longer higher than that of a conventional current transformer.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a recloser, a segmenter, and a circuit breaker. And medium voltage solid insulation switch for load switchgear, and a device for mechanically driving medium voltage solid insulation switch.
  • the medium-voltage solid insulation switch comprises an insulating body, a breaking element, a current sensor and a tie rod.
  • the middle of the insulating body is provided with a receiving groove, the opening of the receiving groove is arranged at the bottom of the insulating body, the breaking element is arranged in the receiving groove, and the insulating
  • the top surface of the main body is provided with an input terminal, the input terminal is connected with the input of the breaking element, and the outer wall of the insulating body is further provided with an output terminal, and the output of the breaking element is connected to the output terminal through the wall of the insulating body through the current carrying conductor;
  • the sensor is embedded in the position of the current-carrying conductor in the insulating body; the current sensor is extended and connected with a coil, the coil is embedded in the insulating body and arranged orthogonal to the current-carrying conductor; the top end of the tie rod is connected to the breaking element, and the bottom of the pull rod extends to accommodate groove.
  • the current sensor provides a voltage output signal that is proportional to the magnitude of the current through the current carrying conductor.
  • the current sensor is mounted at a distance of approximately 15 mm from the current carrying conductor, and after the current sensor is fixed, the current information is provided after calibration.
  • the current sensor and the coil cover are provided with a shield cover, the shield cover reduces partial discharge of the current sensor, and the voltage between the shield cover and the ground point is the working voltage of the medium voltage solid insulation switch.
  • a voltage sensor is further provided, and both ends of the voltage sensor are respectively connected to the input terminal and connected to the coil, and the voltage sensor is embedded in the insulating body at a position close to the input terminal.
  • the input terminal comprises an input connection terminal, an input connection support, the input connection support is embedded in the insulation main body, the input connection terminal is connected with the input connection support;
  • the output terminal comprises an output connection terminal, an output connection support, and the output connection support is an insulation main body
  • the outwardly extending support arm has a tail portion of the output connection terminal embedded in the output connection support, and a head portion of the output connection terminal extends outside the output connection support.
  • a spare output connection terminal is provided, reserved for mounting a mechanical switch for controlling conduction or isolation of the breaking element from the power grid.
  • the insulating body is formed by one-time casting of an insulating material.
  • a device for mechanically driving a medium-voltage solid-insulated switch for driving opening and closing of the medium-voltage solid-insulated switch comprising two exciters, and a linkage mechanism interlocking with an armature of the exciter, and a medium-voltage solid-insulation switch
  • the pull rod is connected with the linkage mechanism; the two exciters are connected in series and mechanically connected; wherein the armature of one of the exciters is provided with a return spring, when Applying a forward current to the exciter, the armature advances and drives the linkage mechanism to drive the medium-voltage solid-insulation switch to close, while the armature is held in an electromagnetic state to maintain the forward state and compresses the return spring, and the return spring generates a reset tendency; when the counter is applied to the exciter To the current, the electromagnetic action disappears, the return spring is reset, and the armature is pushed back, and at the same time, the linkage mechanism is driven to drive the medium-voltage solid insulation switch to open.
  • the electrical circuits of the windings of the two exciters are connected in parallel by connecting the leads of the two exciters in parallel.
  • a manual closing mechanism comprises a closing handle, a cam, a connecting rod and a shoulder bearing which are sequentially linked with the closing handle, and a driving spring coupled with the cam; the rotating closing handle drives the cam to rotate And storing energy for the driving spring.
  • the driving spring is released and drives the cam to rotate, and the cam pushes the shoulder bearing to move linearly, thereby driving the connecting rod to drive the armature of the exciter to advance, and the armature advances and Drive the linkage mechanism to drive the medium voltage solid insulation switch to close.
  • a manual opening mechanism is further provided, and the manual opening mechanism comprises an opening handle and a linkage mechanism, and the opening handle is connected with the armature of the exciter for retracting the armature, and at the same time driving the medium-pressure solid through the linkage mechanism The insulation switch is opened.
  • the exciter and the linkage mechanism are disposed between the two side plates, and the linkage mechanism comprises a vertically moving shoulder bearing and a horizontally movable shoulder bearing.
  • the side plate is provided with a vertical limit groove and a horizontal limit. The position groove and the shoulder of the shoulder bearing are respectively disposed in the vertical limit groove and the horizontal limit groove, and the shoulder bearing linearly moves under the limit action in the vertical limit groove and the horizontal limit groove.
  • the tops of the two side plates respectively extend outwardly from the mounting fins, and one end of the receiving groove of the medium-pressure solid insulated switch is connected to the mounting wings by screws.
  • the medium voltage solid insulated switch of the present invention is capable of monitoring voltage at two locations, is capable of monitoring current through a breaking element inside the insulating body, and has a reserved position to install a guillotine switch.
  • the medium voltage solid insulated switch can be cast from a single casting process.
  • Prior art devices are a technical challenge for monitoring the current in the insulated switch due to the high precision requirements of size and current measurement and manufacturing cost constraints.
  • the current sensor of the present invention is capable of detecting the current flowing through the insulating body and the breaking element, and has a considerable advantage over the prior art.
  • the invention can also be used to monitor grid operating conditions and to reflect reliable grid operating data.
  • Figure 3 is a schematic diagram of a current sensor
  • Figure 4 is a front elevational view of the drive unit
  • Figure 5 is a bottom plan view of the driving device
  • Figure 6 is a perspective view of the driving device
  • 10 is a medium-voltage solid insulation switch
  • 11 is an insulating body
  • 111 is a receiving groove
  • 12 is a breaking element
  • 13 is a current sensor
  • 131 is a coil
  • 132 is a shield
  • 133 is a mounting rod
  • 14 is a tie rod
  • 15 is an input terminal
  • 151 is an input connection terminal
  • 152 is an input connection support
  • 16 is an output terminal
  • 161 is an output connection terminal
  • 162 is an output connection support
  • 163 is a backup output connection terminal
  • 17 is a current carrying conductor
  • 18 is a voltage Sensor
  • 19 is the power line
  • 20 is the exciter
  • 201 is the armature
  • 202 is the lead
  • 21 is the return spring
  • 22 is the side plate
  • 221 is the mounting wing
  • 222 is the mounting hole
  • 223 is the vertical limiting slot
  • 224 is Horizontal limit slot
  • 231 is the closing handle
  • 232 is the cam
  • the top surface of the insulating body 11 is provided with an input terminal 14 (connected to an input line in the power distribution network), the input terminal 14 is connected to the input of the breaking element 12, and the outer wall of the insulating body 11 is further provided with an output terminal 16 (with The output lines are connected in the electrical network, and the power distribution network can provide power to the downstream of the medium voltage solid insulated switch 10.
  • the output of the breaking element 12 is connected to the output terminal 16 through the wall of the insulating body 11 through the current-carrying conductor 17 for breaking the current from the input terminal 14 to the output terminal 16. Current flows through the current-carrying conductor 17 and the breaking element 12 in the insulating body 11 between the input terminal 14 and the output terminal 16. Current is passed through input terminal 14 and breaking element 12, and then through breaking element 12 through current carrying conductor 17 to output terminal 16, which is the path of current in medium voltage solid insulated switch 10.
  • the input terminal 14 includes an input connection terminal 151 and an input connection support 152.
  • the input connection support 152 is embedded in the insulation main body 11, and the input connection terminal 151 is connected to the input connection support 152.
  • the output terminal 16 includes an output connection terminal 161.
  • the output connection support 162 is a support arm extending outward from the insulating body 11.
  • the tail of the output connection terminal 161 is embedded in the output connection support 162, and the head of the output connection terminal 161 extends outside the output connection support 162. .
  • the current sensor 13 is embedded in the insulating body 11 at a position close to the current carrying conductor 17 for detecting the operating current of the medium voltage solid insulated switch 10.
  • the current sensor 13 is mounted at a distance of approximately 15 mm from the current-carrying conductor 17. After the current sensor 13 is fixed, it can be calibrated to provide accurate current information.
  • the current sensor 13 is extended to be connected with a coil 131 which is embedded in the insulating body 11 and arranged orthogonal to the current-carrying conductor 17 for measuring the current passing through the breaking element 12 inside the insulating body 11. As shown in FIG. 3, the line of the power line 19 passes through the coil 131 of the current sensor 13.
  • the current carrying conductor 17 is located within the ground shield 132 and the mounting rod 133 extends from the coil 131 having the sensor therein. It can be seen that by embedding a current sensor 13 arranged orthogonally to the direction of current flow in the medium voltage solid insulated switch 10, there is considerable advantage over the prior art.
  • the current sensor 13 and the coil 131 are covered with a shield cover 132, and the shield cover 132 reduces the partial discharge of the current sensor 13.
  • the voltage between the shield 132 and the grounding point is the operating voltage of the medium voltage solid insulated switch 10.
  • the current sensor 13 is implemented in the following manner.
  • the current sensor 13 of the present invention includes an air-wound coil 131.
  • the coil 131 is formed by winding a copper wire having a diameter of about 2.5 cm and a length of about 5 cm and having a total cross-sectional area of about 0.05 to 0.10 mm 2 .
  • the current sensor 13 is cast in the insulating body 11 and placed at an orthogonal position of 1.5 cm of the current-carrying conductor 17.
  • the output signal of several volts can be output, and the voltage of the output signal is proportional to the current flowing through the current-carrying conductor 17. Based on the current sensor 13 of the present invention, the nature of the output of the coil 131 is often proportional to the current.
  • the manner and position of the current sensor 13 relative to the monitoring conductor is also very important. Therefore, the current sensor 13 needs to be placed in a proper position and orthogonal to the direction of the monitoring current, and the magnetic flux generated by the current of the nearby phase will be parallel to the current sensor 13 so as not to affect the output of the current sensor 13.
  • the current sensor 13 of the present invention induces an output voltage of 1 volt. If the current sensor 13 reads 100 volts because the current flowing through the current carrying conductor 17 increases, it can be determined that the current in the current carrying conductor 17 is increased to 5000 amps. Since the output signal is relatively stronger, the current sensor 13 of the present invention is applicable to the measurement of a current of 5A to 20000A. Therefore, if the output of the Rogowski coil 131 is said to be in the millivolt level, the current sensor 13 of the present invention will be able to generate a voltage similar to 100 volts, which can be directly transmitted to the microprocessor.
  • the coil 131 of the current sensor 13 is shielded by the non-magnetic ground shield 132, there is no problem that partial discharge occurs due to the proximity of the high voltage conductor.
  • the same shield for the Rogowski coil 131 to avoid partial discharge will require a large shield 132.
  • the current sensor 13 of the present invention provides a simple method to achieve this standard.
  • the current sensor 13 of the present invention does not require a voltage amplifier. And because the output voltage is high, there is little interference due to power noise. It can also be understood that a conventional voltage amplifier for the Rogowski coil 131 is an integral operator, and the voltage-amplified integral operator required for the Rogowski coil 131 requires an independent AC power source. The current sensor 13 in the present invention does not require an integral operator, and therefore, no additional power supply is required.
  • the current sensor 13 of the present invention is generally less expensive to manufacture. It is smaller in size than current transformers.
  • the miniaturized volume can reduce the cost of producing the medium voltage solid insulated switch 10, and thus, the present invention has the potential to open new markets and widely spread applications.
  • the current sensor 13 provides a voltage output signal proportional to the magnitude of the current through the current carrying conductor 17, and does not require an additional amplifier to amplify the output voltage.
  • the present invention is further provided with a backup output connection terminal 163, which is reserved for mounting a mechanical switch to isolate the output terminal 16 from the input terminal 14.
  • the mechanical switch can be a guillotine switch, and the opening and closing of the breaking element 12 and the power grid can be controlled by the opening and closing, so that a reliable isolation fracture can be realized even without SF6.
  • the insulating body 11 of the present invention is formed by one-time casting of an insulating material.
  • the casting material of the insulating body 11 may be an epoxy resin.
  • the epoxy resin may be a hydrophobic alicyclic epoxy (HCEP).
  • the medium voltage solid insulated switch 10 can be used as a recloser, segmenter, circuit breaker or load switch in a conventional power distribution network.
  • the medium voltage solid insulation switch 10 can be configured differently according to different usage requirements.
  • the insulating main body 11 of the medium-voltage solid insulated switch 10 is more economical, and the scheme for realizing current measurement by the current sensor 13 embedded in the insulating main body 11 is also more economical.
  • the current sensor 13 can also measure the power factor at the same time, thereby eliminating the additional current sensor 13 for capacitive breaking.
  • the equivalent of a recloser with two voltage sensors 18 provides the grid manager with more information about the state of the power network.
  • the recloser can optionally be powered by a low power device, such as a current transformer (but its actual current is still monitored by current sensor 13) or a solar panel. This is because the current sensor 13 can provide good power to the controller. Press the signal without the need for an op amp or a complex integration circuit.
  • the device for mechanically driving the medium voltage solid insulated switch 10 described below also requires only very low operating power.
  • the medium voltage solid insulated switch 10 does not require an SF6 gas insulating medium, so that the split operation of the breaking element 12 can be easily accomplished in milliseconds.
  • the medium voltage solid insulated switch 10 can open and close the fault current, and the conventional sectionalizer does not have this function.
  • the recloser disconnects the fault current and then waits for the segmenter to open before closing the circuit. It can be understood that a large cost can be saved by providing a segmenter that can disconnect the fault current. Because the guillotine switch not only provides 100% reliable electrical insulation, it also provides the operator with a visible disconnect indication.
  • the medium voltage solid insulated switch 10 not only has a low cost insulating body 11, but also measures the power flowing through the medium voltage solid insulated switch 10 to better monitor the condition of each phase. Therefore, it is possible to predict the failure before the failure occurs, thereby saving money.
  • the medium voltage solid insulated switch 10 of the present invention is particularly useful for medium voltage capacitor bank or/and motor circuit operation monitoring. Because it is possible to measure whether a device of a phase begins to fail by configuring a suitable controller, it is applicable to both the delta connection system and the star system.
  • medium voltage solid insulated switch 10 of the present invention can also be used to monitor the closing phase of the switch, thereby improving the power quality.
  • the present invention also provides a device for mechanically driving a medium voltage solid insulated switch 10 (hereinafter referred to as a driving device 30) for driving the opening and closing of the medium voltage solid insulated switch 10, as shown in FIGS. 4, 5, and 6. It is shown that the driving device 30 is used to operate the three-phase medium-voltage solid-insulated switch 10, and of course, it may be any one of single-phase, two-phase or three-phase.
  • a driving device 30 for mechanically driving a medium voltage solid insulated switch 10 for driving the opening and closing of the medium voltage solid insulated switch 10, as shown in FIGS. 4, 5, and 6. It is shown that the driving device 30 is used to operate the three-phase medium-voltage solid-insulated switch 10, and of course, it may be any one of single-phase, two-phase or three-phase.
  • the driving device 30 comprises two exciters 20 and a linkage mechanism interlocked with the armature 201 of the exciter 20, the tie rod 14 of the medium-voltage solid insulation switch 10 is connected with the linkage mechanism; the two exciters 20 are mounted in series and mechanically connected
  • the present invention replaces a relatively large actuator 20 with two relatively small actuators 20 for the purpose of increasing efficiency.
  • the breaking element 12 in the insulating body 11 is driven by a highly efficient direct current electromagnetic actuator 20.
  • the armature 201 of one of the exciters 20 is provided with a return spring 21.
  • the armature 201 advances and drives the linkage mechanism to drive the medium-voltage solid insulation switch 10 to be closed, and the armature 201 is electromagnetically
  • the action maintains the forward state and compresses the return spring 21, and the return spring 21 generates a reset tendency;
  • the electromagnetic action disappears, the return spring 21 is reset, the armature 201 is pushed back, and the linkage mechanism is driven to drive the medium-voltage solid insulation.
  • Switch 10 Open
  • the DC electromagnetic actuator 20 operates as follows: When a DC low voltage electrical pulse passes through the copper winding of the exciter 20, the copper winding produces a magnetic field that drives the linear motion of the internal armature 201 of the exciter 20.
  • the armature 201 moves to a preset position and is held by a permanent magnet. In the present invention, the armature 201 moves forward to compress the return spring 21. The energy stored by the return spring 21 for compression will be used for the opening of the medium voltage solid insulated switch 10.
  • the actuator 20 drives the link 24 to move up and down by the mechanical connection of the linkage mechanism.
  • the link 24 is coupled to the tie rod 14 inside the insulating body 11 and moves together.
  • the exciter 20 and the linkage mechanism are disposed between the two side plates 22, and since the force in the side plates 22 can be better controlled, the two exciters 20 are separated and mechanically connected by the connecting rods 27, the driving device 30 can be lightened. weight.
  • the operating speed of the drive unit 30 to the medium voltage solid insulated switch 10 is about 1 m/s.
  • the action time is approximately 15 milliseconds. Therefore, the lighter the drive unit 30, the better the controllability.
  • the same type of switch in the prior art generally uses a large actuator 20, which is less controllable.
  • the two relatively small actuators 20 move faster relative to a large actuator 20 and require less work for operation.
  • the reason is that the magnetic field is inversely proportional to the square of the diameter. If the large exciter 20 is twice as large as the small exciter 20, the operating magnetic field required to achieve the same motion needs to be four times larger, i.e., required for a small exciter 20.
  • the operating magnetic field is 25% of the large actuator 20. Therefore, the same operating force is output, and the operation power required for the two small actuators 20 is 50% of that of a large actuator 20.
  • This is very advantageous for the overall design of the controller as well as the low voltage control element, so that the present invention provides both the medium voltage solid insulation switch 10 closing holding force by the two small actuators 20. Further, the application of the small actuator 20 can also reduce permanent magnet and machining costs.
  • the leads 202 of the two exciters 20 By connecting the leads 202 of the two exciters 20 in parallel, the electrical circuits of the windings of the two exciters are brought into parallel.
  • the leads 202 of the two exciters 20 are connected in parallel, the total driving voltage is lower, and the diameter of the copper windings inside the exciter 20 can be smaller. Thin copper wound air gaps are less than thick lines, which also increases work efficiency and reduces the power required for operation.
  • the driving device 30 of the present invention is further provided with a manual closing mechanism and a manual opening mechanism.
  • the manual closing mechanism includes a closing handle 231, a cam 232, a connecting rod 24, a shoulder bearing 25, and a driving spring 233 that are interlocked with the cam 232 in conjunction with the closing handle 231; the rotating closing handle 231 drives the cam 232 to rotate, and The drive spring 233 is stored.
  • the cam 232 is rotated past the balance point, the drive spring 233 is released and the cam 232 is rotated.
  • the cam 232 pushes the shoulder bearing 25 to move linearly, thereby driving the link 24 to drive the armature of the actuator 20.
  • 201 advances, the armature 201 advances and drives the linkage mechanism to drive the medium voltage solid insulation switch 10 to close.
  • the drive device 30 does not need to use any gear to achieve a quick closing
  • the solid insulated switch 10 is pressed.
  • the manual opening mechanism includes a trip handle 26 and a linkage mechanism, and the opening handle 26 is connected to the armature 201 of the exciter 20 for retracting the armature 201, and simultaneously driving the medium-voltage solid insulation switch 10 to be opened by the linkage mechanism.
  • the closing of the manual opening mechanism is achieved by closing the handle 231.
  • Rotating the closing handle 231 can compress the drive spring 233 and drive the spring 233 for energy storage.
  • two one-way bearings are also installed to ensure that the driving spring 233 does not drive the closing movement of the closing handle 231, so that the closing handle 231 can be rotated stepwise without continuously applying the rotating force to the manual.
  • the closing operation is completed.
  • the operation closing handle 231 drives the cam 232 to rotate, and the driving spring 233 performs energy storage. When the cam 232 moves beyond the equilibrium point, the drive spring 233 is released and causes the cam 232 to rotate rapidly.
  • the cam 232 pushes the shoulder bearing 25 to move linearly, and drives the connecting rod 27 to drive the actuator 20 to quickly move to close the medium voltage solid insulated switch 10.
  • the cam 232 contour it is possible to control the medium voltage solid insulation switch 10 during the closing process, and the actuator 20 has no closing rebound.
  • the armature 201 of the exciter 20 reaches the position required for the medium voltage solid insulation switch 10 to be closed, the permanent magnet maintains the armature 201 at a preset position, thereby maintaining the medium voltage solid insulation switch 10 in place. Brake status.
  • the actuator 20 and the linkage mechanism are disposed between the two side plates 22.
  • the linkage mechanism includes a vertically moving shoulder bearing 25 and a horizontally movable shoulder bearing 25.
  • the side plate 22 is provided with a vertical limiting slot 223.
  • the horizontal limiting slot 224 and the shoulder of the shoulder bearing 25 are respectively disposed in the vertical limiting slot 223 and the horizontal limiting slot 224, and the shoulder bearing 25 is in the vertical limiting slot 223 and the horizontal limiting slot 224.
  • the linkage mechanism is provided with two cams 232 and two shoulder bearings 25, which ensures that the shoulder bearing 25 does not slide laterally when moving, and also reduces the pressure of the contact surface and achieves uniformity.
  • an arm 234 is further disposed, and the arm 234 is connected in parallel with the cam 232 for indicating whether the driving spring 233 is stored.
  • the mounting fins 221 are respectively disposed on the tops of the two side plates 22, and the mounting holes 221 are provided with mounting holes 222.
  • the receiving slots 111 of the medium-voltage solid insulated switch 10 are provided with the ends of the openings connected to the mounting fins 221 by screws. All parts of the drive unit 30, as well as the medium voltage solid insulated switch 10, and their connections do not require soldering.
  • the implementation of the actuator 20 of the driving device 30 and the side plate 22 allows the main components of the entire driving device 30 to be separately assembled, and can be disposed without the medium-pressure solid insulated switch 10 and assembled into the two side plates 22.
  • the test can be performed before the process. All operating forces are between the medium voltage solid insulated switch 10 and the two side plates 22.
  • the driving device 30 since the driving device 30 is already an independent function as a whole, the force of the insulating body 11 of the medium-voltage solid insulated switch 10 is very small, so the material selection requirement is relatively low, because the insulating body 11 only requires a certain degree of protection, and Sufficient strength to support the medium voltage solid insulation switch 10 itself.
  • the manual opening mechanism and the manual closing mechanism are independent of each other. If the manual closing function is not required, the manual closing mechanism is not provided, and the electric operation of the driving device 30 and the manual opening operation are not affected.
  • the return spring 21 is used to store the operating energy required for the medium voltage solid insulated switch 10 to open.
  • a reverse current is applied to the exciter 20, the switch closing keeps the magnetic force disappearing, and the return spring 21 drives the medium voltage solid insulated switch 10 to open.
  • the drive unit 30 is very compact, the adjustment of the tie rod 14 is very easy.
  • the cooperation of the vertical limiting groove 223 and the shoulder bearing 25 ensures linear movement of the tie rod 14.
  • the cooperation of the horizontal limiting slot 224 and the shoulder bearing 25 ensures linear movement of the armature 201 of the exciter 20.
  • the manual closing mechanism further includes a limit switch 235.
  • the high voltage current is monitored by the current sensor 13 of the medium voltage solid insulation switch 10, and the power source is taken from the high voltage side by the current transformer for driving the actuator 20.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Abstract

一种中压固体绝缘开关(10)以及驱动装置,开关包括绝缘主体(11)、开断元件(12)、电流传感器(13)、拉杆(14),电流传感器埋设在绝缘主体内接近载流导体(17)的位置;电流传感器延长连接有线圈(131),线圈埋设在绝缘主体内,并正交于载流导体布置;驱动装置包括两个激励器(20),以及与激励器的电枢(201)联动的联动机构,中压固体绝缘开关的拉杆与联动机构连接;两个激励器串联,并且进行机械连接;电流传感器能够检测流经绝缘主体和开断元件的电流,与现有技术相比,具有相当大的优势。还可以用于监控电网运行状态以及反映可靠电网运行数据。机械驱动中压固体绝缘开关的装置,通过高效的直流电磁机构驱动中压固体绝缘开关的开断元件。使用直流电磁激励器来操作的开关机构,并可选地具备手动快速合分闸功能,快速手动合闸操作功能是这类开关中绝无仅有的。并且在手动操作后,机构能够使用主回路的电流进行自动储能。

Description

一种中压固体绝缘开关及用途与驱动装置 技术领域
本发明涉及用于中压配电网络的混合绝缘子装置,适用于配电网络,更具体地说,涉及一种中压固体绝缘开关以及用途,一种机械驱动中压固体绝缘开关的装置。
背景技术
通过使用相连接的传输线、配电母线、配电馈线等,配电网络通常将电力输送给消费者。一般而言,因为在配电网络内可以通过多于一种的路径将电力进行配送。取决于区域性和电力资源的可用性,许多配电网络的配置能对用户从两个或多个电源进行供电。
配电网络需要面对一个常见问题:如果电网某处出现瞬时短路,电力服务也许会出现短暂的中断。导致这类故障的原因有:高架电线由于大风而瞬间短路、树木或动物掉落在裸露的电线上造成相间短路、雷击等。通常情况下,大多数配电网在配置时都会减少因单点故障而导致大量用户无电力的可能性。
许多情况下,瞬时短路产生的原因通常是因为瞬态的电弧故障而非配电网络中永久性的故障,因此不要求永久的保险丝或断路器的保护。为解决此类供应问题,电力供应网路通常配有专门设备,检测此类故障,并相应的管理配电网络,确保在可能的情况下保持最大电力供应。这些专用设备有重合器、分段器和负荷开关。
重合器是一个故障开断装置。通过使用它可以检测电流、电压、和/或频率,因此可以隔离配电网络中的故障或超负荷段。它们通常配有一个控制器,可能是通过电子控制。重合器能够在短时间能进行储能,以便进行多次合分操作,所以称其为“重合器”。重合器可以消除长时间停电引起的瞬态故障,而导致用户拨打不必要的服务电话。
许多现用的油重合器不需要额外的电源进行操作,而是使用油作为绝缘介质和操作动力。但是,油重合器需要定期的维修并有造成火灾的危险。另外此类装置的控制并不是准确的,因为设备的油压会随着外界温度和油粘度变化。
分段器通常是安装在一个重合器的下游,其功能是让线路的某一部分从配电网络中隔离。 在这一方面而言,分段器类似于重合器,但它仅仅是在无负荷的状态下进行开合,并不能开断故障电流。目前大多数的分段器都以SF6作为绝缘介质,而SF6是一种很严重的温室气体。
断路器可以看作一个功能更加简单的重合器。负荷开关多数用于开合诸如电动机或者电容器组负载回路。
可以这样认为,更好的电网管理可以带来更高的系统运作效率,从而直接降低电的成本。因此越来越多的电网通过计算机实现智能管理。而要实现智能管理,电网管理者就需要掌握电网任何分段里更多关于电压、电流以及功率因素的信息。
另外随着更多的私有机构参与公共配电运作,这要求更强大的电力设备,诸如重合器、分段器、断路器以及负荷开关等,来保证供电质量和电网的可靠性。
现有电流传感器通常有两种,即电流互感器或罗氏线圈。
传统的电流互感器是一个体积大、较重并昂贵的装置。一个传统的电流互感器在高电流下或过电的情况下会饱和,并且此类装置的输出并不总是线形的。传统的电流互感器通常由一个大型铁核心和绕线组成。想将电流互感器和开断元件一次浇注成型产品是非常困难的,通常需要二次,甚至是3次浇注,这将增加产品的制造费用。再者,传统的电流互感器的输出是电流信号的,然后再转成用于监测开关状态的电压信号传递给控制器。目前而言,测量配电网络应用中电流的最常用的装置仍然是电流互感器。
罗氏线圈是配电网络中用于监控电流的另一种装置。它是均匀缠绕在非磁铁性材料上的环形线圈。被测高压导体需要穿过环形线圈。罗氏线圈的输出信号是一个电压,而电压与流经安装在其之上的线路的电流成正比。
在罗氏线圈被用作电流互感器替代装置的情况下,问题是电流代表流经负荷的输出电压非常小,并需要通过额外的正负电力供应进行放大,再者此类小电压容易受到干扰。为了在高电压环境中避免这些干扰,需要采取额外的预防措施,从而即使罗氏线圈的尺寸小于一个相似的额定电流互感器,其性价比不再高于普通的电流互感器。
发明内容
本发明的目的在于克服现有技术的不足,提供一种可以用作重合器、分段器、断路器以 及负荷开关设备的中压固体绝缘开关,以及一种机械驱动中压固体绝缘开关的装置。
本发明的技术方案如下:
一种中压固体绝缘开关,包括绝缘主体、开断元件、电流传感器、拉杆,绝缘主体中部设置有容纳槽,容纳槽的开口设置在绝缘主体的底部,开断元件设置在容纳槽内,绝缘主体的顶面设置有输入端子,输入端子与开断元件的输入相连,绝缘主体的外壁还设置有输出端子,开断元件的输出通过载流导体穿过绝缘主体的壁与输出端子相连;电流传感器埋设在绝缘主体内接近载流导体的位置;电流传感器延长连接有线圈,线圈埋设在绝缘主体内,并正交于载流导体布置;拉杆的顶端连接开断元件,拉杆的底部延伸出容纳槽。
作为优选,电流传感器提供正比于经过载流导体的电流大小的电压输出信号。
作为优选,电流传感器安装在距离载流导体大体为15毫米处,电流传感器位置固定后,经过校准后提供电流信息。
作为优选,电流传感器与线圈罩设有屏蔽罩,屏蔽罩减小电流传感器的局部放电,屏蔽罩与接地点之间的电压为中压固体绝缘开关的工作电压。
作为优选,还设置有电压传感器,电压传感器的两端分别连接输入端子与线圈相连,电压传感器埋设在绝缘主体内接近输入端子的位置。
作为优选,输入端子包括输入连接端子、输入连接支撑,输入连接支撑嵌装在绝缘主体内,输入连接端子与输入连接支撑相连;输出端子包括输出连接端子、输出连接支撑,输出连接支撑为绝缘主体向外延伸的支撑臂,输出连接端子的尾部嵌装在输出连接支撑内,输出连接端子的头部延伸至输出连接支撑外。
作为优选,设置有备用输出连接端子,预留于安装机械开关,用于控制开断元件与电网的导通或者隔离。
作为优选,绝缘主体为绝缘材质一次浇注成型。
所述的中压固体绝缘开关,作为重合器、分段器、断路器或负荷开关的用途。
一种机械驱动中压固体绝缘开关的装置,用于驱动所述的中压固体绝缘开关的开合,包括两个激励器,以及与激励器的电枢联动的联动机构,中压固体绝缘开关的拉杆与联动机构连接;两个激励器串联,并且进行机械连接;其中一个激励器的电枢上设置有复位弹簧,当 对激励器施加正向电流,电枢前进并带动联动机构驱动中压固体绝缘开关合闸,同时电枢受电磁作用保持前进状态并压缩复位弹簧,复位弹簧产生复位趋势;当对激励器施加反向电流,电磁作用消失,复位弹簧复位,推回电枢,同时带动联动机构驱动中压固体绝缘开关分闸。
作为优选,通过将两个激励器的引线并联,使得两个激动器的绕线的电气回路实现并联。
作为优选,还设置有手动合闸机构,手动合闸机构包括合闸手柄,与合闸手柄依次联动的凸轮、连杆、凸肩轴承,与凸轮联动的驱动弹簧;转动合闸手柄带动凸轮旋转,并对驱动弹簧进行储能,当凸轮转动至越过平衡点,驱动弹簧被释放并带动凸轮转动,凸轮推动凸肩轴承直线运动,进而驱动连杆带动激励器的电枢前进,电枢前进并带动联动机构驱动中压固体绝缘开关合闸。
作为优选,还设置有手动分闸机构,手动分闸机构包括分闸手柄、联动机构,分闸手柄与激励器的电枢连接,用于回退电枢,同时通过联动机构构驱动中压固体绝缘开关分闸。
作为优选,激励器与联动机构设置在两个侧板间,联动机构包括竖直运动的凸肩轴承、水平运动的凸肩轴承,对应的,侧板上开设有竖直限位槽、水平限位槽,凸肩轴承的轴肩分别设置在竖直限位槽、水平限位槽内,凸肩轴承在竖直限位槽、水平限位槽内的限位作用下进行直线运动。
作为优选,两个侧板顶部分别向外延伸出安装翅,中压固体绝缘开关的容纳槽设置开口的一端通过螺丝连接在安装翅上。
作为优选,通过中压固体绝缘开关的电流传感器监控高电压电流,通过电流互感器从高压侧获取电源,用于驱动激励器。
本发明的有益效果如下:
本发明所述的中压固体绝缘开关能够在两个位置监控电压,能够监控通过绝缘主体内部的开断元件的电流,并设备有预留位置可安装闸刀式开关。所述的中压固体绝缘开关可以由一个单一的铸造工艺铸造而成。受尺寸、电流测量的高精度要求以及制造成本制约,现有技术的装置对于监控绝缘开关内的电流是一个技术难题。本发明中的电流传感器能够检测流经绝缘主体和开断元件的电流,与现有技术相比,具有相当大的优势。本发明还可以用于监控电网运行状态以及反映可靠电网运行数据。
本发明所述的机械驱动中压固体绝缘开关的装置,通过高效的直流电磁机构驱动中压固体绝缘开关的开断元件。使用直流电磁激励器来操作的开关机构,并可选地具备手动快速合分闸功能,快速手动合闸操作功能是这类开关中绝无仅有的。并且在手动操作后,机构能够使用主回路的电流进行自动储能。这一功能让本发明所述的开关在没有额外电源供应的情况下也能实现重合器的功能,这将打开新的市场和应用领域。所述的机械驱动中压固体绝缘开关的装置可以同时操作多极开关。
上述高效、快速驱动装置和独特、高精度的电流传感器和电压传感器的结合,也为本领域带来新的发展趋势。
附图说明
图1是中压固体绝缘开关的剖视图;
图2是中压固体绝缘开关的侧视图;
图3中电流传感器的示意图;
图4是驱动装置的主视图;
图5是驱动装置的仰视图;
图6是驱动装置的立体图;
图中:10是中压固体绝缘开关,11是绝缘主体,111是容纳槽,12是开断元件,13是电流传感器,131是线圈,132是屏蔽罩,133是安装杆,14是拉杆,15是输入端子,151是输入连接端子,152是输入连接支撑,16是输出端子,161是输出连接端子,162是输出连接支撑,163是备用输出连接端子,17是载流导体,18是电压传感器,19是电力线,20是激励器,201是电枢,202是引线,21是复位弹簧,22是侧板,221是安装翅,222是安装孔,223是竖直限位槽,224是水平限位槽,231是合闸手柄,232是凸轮,233是驱动弹簧,234是拐臂,235是限位开关,24是连杆,25是凸肩轴承,26是分闸手柄,27是连接杆。
具体实施方式
以下结合附图及实施例对本发明进行进一步的详细说明。
本发明为配电网络提供一种中压固体绝缘开关10,如图1、图2所示,包括绝缘主体11、开断元件12(如真空灭弧室)、电流传感器13、拉杆14。绝缘主体11中部设置有容纳槽111,容纳槽111的开口设置在绝缘主体11的底部,开断元件12设置在容纳槽111内,开断元件12通过后装的形式装入容纳槽111。拉杆14的顶端连接开断元件12,拉杆14的底部延伸出容纳槽111。
绝缘主体11的顶面设置有输入端子14(与配电网络中输入线路相连接的),输入端子14与开断元件12的输入相连,绝缘主体11的外壁还设置有输出端子16(与配电网络中输出线路相连接),配电网络能够为中压固体绝缘开关10的下游提供电力。开断元件12的输出通过载流导体17穿过绝缘主体11的壁与输出端子16相连,用于开断从输入端子14向输出端子16的电流。电流通过载流导体17和开断元件12在输入端子14和输出端子16之间的绝缘主体11内流通。电流通过输入端子14和开断元件12,再由开断元件12流经载流导体17到达输出端子16,为电流在中压固体绝缘开关10中的路径。
本实施例中,输入端子14包括输入连接端子151、输入连接支撑152,输入连接支撑152嵌装在绝缘主体11内,输入连接端子151与输入连接支撑152相连;输出端子16包括输出连接端子161、输出连接支撑162,输出连接支撑162为绝缘主体11向外延伸的支撑臂,输出连接端子161的尾部嵌装在输出连接支撑162内,输出连接端子161的头部延伸至输出连接支撑162外。
电流传感器13埋设在绝缘主体11内接近载流导体17的位置,用于检测中压固体绝缘开关10的工作电流。本实施例中,电流传感器13安装在距离载流导体17大体为15毫米处,电流传感器13位置固定后,经过校准后便可提供精确的电流信息。电流传感器13延长连接有线圈131,线圈131埋设在绝缘主体11内,并正交于载流导体17布置,用于测量通过绝缘主体11内部的开断元件12的电流。如图3所示,电力线19的线路通过电流传感器13的线圈131。载流导体17位于接地屏蔽罩132之内,安装杆133从位于此处具有传感器的线圈131开始延伸。可以看出,通过在中压固体绝缘开关10内嵌入一个与电流方向正交布置的电流传感器13,相比于现有技术,具有相当大的优势。
电流传感器13与线圈131罩设有屏蔽罩132,屏蔽罩132减小电流传感器13的局部放 电,屏蔽罩132与接地点之间的电压为中压固体绝缘开关10的工作电压。
为了克服传统的电流互感器或罗氏线圈131存在的不足,本发明的电流传感器13采用更简单的电流测量法,并可以输出一个更高的与测量电流成正比电压信号。输出电压信号越高,允许控制器的安装距离越远。上述的高输出电压信号,即便控制器距离电流传感器13数米远同样能够正常工作。而由于罗氏线圈131输出的信号很微弱且容易受干扰,所以控制器(或者运算器)必须距罗氏线圈131很近。
具体的,电流传感器13通过以下方式实现。
本发明的电流传感器13包含一个空绕线圈131。线圈131直径约为2.5厘米和长度约为5厘米,共有约3000匝截面积为0.05~0.10mm2左右的铜线绕制成。为此,电流传感器13被浇注在绝缘主体11中,并且放置位于载流导体17的1.5厘米的正交位置。采用所述的电流传感器13的结构,可以输出数伏输出信号,输出信号的电压与流经载流导体17的电流成正比。基于本发明的电流传感器13,线圈131输出的本质经常与电流成比率。电流传感器13相对于监测导体的方式和位置方式亦非常重要。因此,将电流传感器13需要放在合适的位置,并与监测电流方向正交,附近相的电流所产生的磁力线将于电流传感器13平行,从而不会影响电流传感器13的输出。
例如,在50安倍电流穿过中压固体绝缘开关10的情况下,本发明的电流传感器13感应出1伏特的输出电压。如果因为流经载流导体17的电流增加,使得电流传感器13的读数为100伏特,那么可以确定载流导体17内的电流增加到了5000安培。由于输出信号相对更强,所以本发明的电流传感器13可适用于对5A~20000A电流的测量。因此,如果说罗氏线圈131的输出属于毫伏级别,本发明中的电流传感器13将能产生类似于100伏的电压,而这完全可以直接传送给微型处理器。而且,电流传感器13的线圈131是通过非磁性接地屏蔽罩132所屏蔽,因此,不会有因距离高电压导体近而产生局部放电的问题。而相同的为了屏蔽罗氏线圈131避免局部放电,将需要一个巨大的屏蔽罩132。
值得注意的是,在“验证测试”或“类型测试”中,组件的潜在放电需被测量,并且每一中压的开关标准的测试标准需被确定从而使其通过标准测试。因此,本发明的电流传感器13提供了一种简单的方法可以实现这一标准。
因此,与罗氏线圈131解决方案不同,本发明的电流传感器13并不需要电压放大器。并且由于输出的电压较高,从而有很少的因电力噪音而产生的干扰。也可以理解为,一个用于罗氏线圈131的普通电压放大器是一个积分运算器,罗氏线圈131需要的电压放大的积分运算器需要一个独立的交流电源。本发明中的电流传感器13并不需要积分运算器,因此,不需要额外的电力供应。
本发明的电流传感器13整体造价成本更低。与电流互感器相比,其体积更小。小型化的体积能够降低生产中压固体绝缘开关10的费用,因此,本发明更具有打开新市场以及广泛推广应用的潜力。
电流传感器13提供正比于经过载流导体17的电流大小的电压输出信号,且不需要额外放大器来放大输出电压。
所述的中压固体绝缘开关10还设置有电压传感器18,用于检测中压固体绝缘开关10的工作电压,电压传感器18的两端分别连接输入端子14与线圈131相连,电压传感器18埋设在绝缘主体11内接近输入端子14的位置。
本发明还设置有备用输出连接端子163,预留于安装机械开关,实现输出端子16和输入端子14的隔离。所述的机械开关可以是一个闸刀式开关,通过合分闸实现控制开断元件12与电网的导通或者隔离,可以实现即便在无SF6的情况下也具备可靠的隔离断口。
本发明的绝缘主体11为绝缘材质一次浇注成型。本实施例中,绝缘主体11的浇注材料可以为环氧树脂,进一步,所述环氧树脂可以为疏水脂环族环氧(HCEP)。
所述的中压固体绝缘开关10可以在传统配电网络中被当作重合器、分段器、断路器或负荷开关使用。而根据不同使用要求,中压固体绝缘开关10可以进行不同配置。
作为重合器,中压固体绝缘开关10的绝缘主体11更经济,并且适用于嵌入在绝缘主体11中的电流传感器13实现电流测量的方案也更加经济。电流传感器13同时还能测量功率因数,从而取消额外的用于容性开断的电流传感器13。就其本质而言,等同于重合器配有两个电压传感器18,能够为电网管理者提供更多有关电力网络状态的信息。作为可选形式,重合器可以选择由一个低功率的装置进行供电,比如一个电流互感器(但其实际电流还是仍由电流传感器13监控)或者一块太阳能板。这是因为电流传感器13能够给控制器提供良好的电 压信号,而不需要运放或者一个复杂的积分电路。下述的机械驱动中压固体绝缘开关10的装置也仅需要非常低的操作功率。
作为一个分段器,中压固体绝缘开关10并不需要SF6气体绝缘介质,从而使开断元件12的合分操作可以很容易的在毫秒内完成。与传统的SF6分段器需要数秒时间完成关合相比,有数千倍的提高。再者,当中压固体绝缘开关10被作为分段器使用时,能开合故障电流,而传统分段器则不具备此功能。现有技术中,重合器断开故障电流然后在闭合电路之前等待分段器断开。可以这样理解,通过提供可以断开故障电流的分段器可以节省一大笔费用。因为闸刀式开关不仅可以提供100%可靠的电气绝缘,还能够给操作者提供可见断开指示。
作为一个负荷开关,中压固体绝缘开关10不仅有一个低成本的绝缘主体11,而且还能够测量流经中压固体绝缘开关10的功率,更好地监测每一相的情况。因此,能在故障出现之前进行预测故障,从而节省开支。对于中压电容器组或/和电机回路运行情况监测,本发明所述的中压固体绝缘开关10特别有用。因为通过配置合适的控制器,能够测量出某一相的设备是否开始失效,对于三角连接系统和星型系统都适用。
另外,本发明所述的中压固体绝缘开关10还可用于监控开关的关合相位,从而改进电力质量。
本发明还提供一种机械驱动中压固体绝缘开关10的装置(下称驱动装置30),用于驱动所述的中压固体绝缘开关10的开合,如图4、图5、图6所示,所述的驱动装置30用于操作三相的中压固体绝缘开关10,当然也可以是单相、两相或者三相中的任何一种。驱动装置30包括两个激励器20,以及与激励器20的电枢201联动的联动机构,中压固体绝缘开关10的拉杆14与联动机构连接;两个激励器20串联安装,并且进行机械连接;本发明用两个相对小的激励器20代替一个相对大的激励器20,目的在于提高效率。绝缘主体11中的开断元件12通过高效的直流电磁激励器20驱动。
其中一个激励器20的电枢201上设置有复位弹簧21,当对激励器20施加正向电流,电枢201前进并带动联动机构驱动中压固体绝缘开关10合闸,同时电枢201受电磁作用保持前进状态并压缩复位弹簧21,复位弹簧21产生复位趋势;当对激励器20施加反向电流,电磁作用消失,复位弹簧21复位,推回电枢201,同时带动联动机构驱动中压固体绝缘开关10 分闸。
直流电磁激励器20的工作原理如下:当一个直流低压电脉冲通过激励器20的铜绕线,铜绕线产生驱动激励器20内部电枢201直线运动的磁场。电枢201运动到预设的位置,并被永磁体保持住。本发明中,电枢201向前运动压缩复位弹簧21。复位弹簧21被压缩储存的能量将用于中压固体绝缘开关10的分闸。激励器20通过联动机构的机械连接带动连杆24作上下运动。连杆24与绝缘主体11内部的拉杆14连接,并一起进行运动。
激励器20与联动机构设置在两个侧板22间,由于在侧板22中的力可以更好地控制,将两个激励器20分开并且用连接杆27机械连接,可以减轻驱动装置30的重量。驱动装置30对中压固体绝缘开关10的操作速度约为1m/s。动作时间约为15毫秒。因此,驱动装置30越轻,可控性就越好。现有技术中的同类开关普遍用一个大型的激励器20,则可控性较差。
两个相对小的激励器20相对一个大型激励器20来说,运动更快,并且需要的用于操作的功更小。原因是磁场与直径的平方成反比,如果大型激励器20直径比小的激励器20大2倍,则实现相同运动需要的操作磁场需要大4倍,即,一个小的激励器20所需的操作磁场为大型激励器20的25%。所以输出相同操作力,两个小的激励器20所需的操作功为一个大型激励器20的50%。这对控制器的总体设计以及低压控制元件来说是非常有利的,因此,本发明由两个小的激励器20同时提供中压固体绝缘开关10合闸保持力。进一步,小的激励器20的应用还能降低永磁铁和机加工成本。
通过将两个激励器20的引线202并联,使得两个激动器的绕线的电气回路实现并联。两个激励器20的引线202并联连接,则驱动总电压较低,激励器20内部铜绕线的直径可以更小。细铜绕线的空气间隙相对粗线来说更少,也能提高工作效率,并且减少操作所需功率。
本发明所述的驱动装置30还设置有手动合闸机构和手动分闸机构。手动合闸机构包括合闸手柄231,与合闸手柄231依次联动的凸轮232、连杆24、凸肩轴承25,与凸轮232联动的驱动弹簧233;转动合闸手柄231带动凸轮232旋转,并对驱动弹簧233进行储能,当凸轮232转动至越过平衡点,驱动弹簧233被释放并带动凸轮232转动,凸轮232推动凸肩轴承25直线运动,进而驱动连杆24带动激励器20的电枢201前进,电枢201前进并带动联动机构驱动中压固体绝缘开关10合闸。驱动装置30不需要使用用任何齿轮来实现快速关合中 压固体绝缘开关10。
手动分闸机构包括分闸手柄26、联动机构,分闸手柄26与激励器20的电枢201连接,用于回退电枢201,同时通过联动机构构驱动中压固体绝缘开关10分闸。
手动分闸机构进行关合是通过合闸手柄231来实现的。转动合闸手柄231可以压缩驱动弹簧233,驱动弹簧233进行储能。本实施例中,还安装有两个单向轴承,以保证驱动弹簧233不会驱动合闸手柄231反向转动,进而可以逐步转动合闸手柄231,而不用一次性持续施加转动的力直至手动合闸的操作完成。操作合闸手柄231带动凸轮232旋转,驱动弹簧233进行储能。当凸轮232一旦运动至超过平衡点时,驱动弹簧233被释放并带动凸轮232快速转动。凸轮232推动凸肩轴承25直线运动,并驱动连接杆27带动激励器20快速运动闭合中压固体绝缘开关10。通过对凸轮232轮廓设计,可以控制中压固体绝缘开关10在关合过程中,激励器20无合闸反跳。当激励器20的电枢201到达中压固体绝缘开关10合闸状态下所需要的位置时,永磁体将电枢201保持在预设的位置,进而便将中压固体绝缘开关10保持在合闸状态。
激励器20与联动机构设置在两个侧板22间,联动机构包括竖直运动的凸肩轴承25、水平运动的凸肩轴承25,对应的,侧板22上开设有竖直限位槽223、水平限位槽224,凸肩轴承25的轴肩分别设置在竖直限位槽223、水平限位槽224内,凸肩轴承25在竖直限位槽223、水平限位槽224内的限位作用下进行直线运动。本实施例中,联动机构设置有两个凸轮232和两个凸肩轴承25,保证了凸肩轴承25在运动时不会发生侧向滑动,也使得接触面的压力减少并达到均匀。本实施例中,还设置有拐臂234,拐臂234与凸轮232连接并联动,用于指示驱动弹簧233是否储能。
凸肩轴承25可以在侧板22的竖直限位槽223与水平限位槽224内滚动和滑动。现有技术对凸肩轴承25的定准通常通过开口销或者垫圈。本发明中,凸肩轴承25位于侧板22内侧的直径更大,保证凸肩轴承25不会横向滑出侧板22,也将提高装配效率,减少零件总数以及提供横向滑动自由度。装配方法是,先将侧板22固定在工作平台,将所有零件放在相应位置后装配另一侧板22,最后通过螺母固定。机构装配好后,可以对驱动弹簧233以及各个零件的连接处进行调整。由于所有的零件都通过两个侧板22固定,所以对齐和装配的过程简单 和高效,省去焊接和预装配的过程。现有技术的装配方法则首先需要在安装支架上焊接一些零件,然后再安装。
两个侧板22顶部分别向外延伸出安装翅221,安装翅221上设置有安装孔222,中压固体绝缘开关10的容纳槽111设置开口的一端通过螺丝连接在安装翅221上。驱动装置30的所有零件以及中压固体绝缘开关10,及其连接均不需要焊接。
驱动装置30的激励器20以及侧板22的技术方案的实施,可以使整个驱动装置30的主要组件单独装配,并且可以在不设置中压固体绝缘开关10,以及组装至两个侧板22内的工序之前,就可以进行测试。所有的操作力都在中压固体绝缘开关10和两个侧板22之间。另外,由于驱动装置30已是一个独立功能整体,所以中压固体绝缘开关10的绝缘主体11的受力非常小,故选材要求相对较低,因为绝缘主体11只要求达到一定防护等级,并且有足够的强度支撑中压固体绝缘开关10本身即可。
手动分闸机构与手动合闸机构相互独立,如果不需要手动合闸功能,不设置手动合闸机构,并不会影响驱动装置30的电动操作以及手动分闸操作。
复位弹簧21用于存储中压固体绝缘开关10分闸所需的操作能量。对激励器20施加一个反向电流,开关合闸保持磁力便会消失,复位弹簧21驱动中压固体绝缘开关10分闸。虽然驱动装置30非常紧凑,但对拉杆14的调整非常容易。竖直限位槽223与凸肩轴承25的配合,保证拉杆14进行直线运动。同理,水平限位槽224与凸肩轴承25的配合,保证激励器20的电枢201进行直线运动。为了达到进一步准确定位的效果,手动合闸机构还包括限位开关235。
将驱动装置30与中压固体绝缘开关10连接后,通过中压固体绝缘开关10的电流传感器13监控高电压电流,通过电流互感器从高压侧获取电源,用于驱动激励器20。
上述实施例仅是用来说明本发明,而并非用作对本发明的限定。只要是依据本发明的技术实质,对上述实施例进行变化、变型等都将落在本发明的权利要求的范围内。

Claims (16)

  1. 一种中压固体绝缘开关,其特征在于,包括绝缘主体、开断元件、电流传感器、拉杆,绝缘主体中部设置有容纳槽,容纳槽的开口设置在绝缘主体的底部,开断元件设置在容纳槽内,绝缘主体的顶面设置有输入端子,输入端子与开断元件的输入相连,绝缘主体的外壁还设置有输出端子,开断元件的输出通过载流导体穿过绝缘主体的壁与输出端子相连;电流传感器埋设在绝缘主体内接近载流导体的位置;电流传感器延长连接有线圈,线圈埋设在绝缘主体内,并正交于载流导体布置;拉杆的顶端连接开断元件,拉杆的底部延伸出容纳槽。
  2. 根据权利要求1所述的中压固体绝缘开关,其特征在于,电流传感器提供正比于经过载流导体的电流大小的电压输出信号。
  3. 根据权利要求1所述的中压固体绝缘开关,其特征在于,电流传感器安装在距离载流导体大体为15毫米处,电流传感器位置固定后,经过校准后提供电流信息。
  4. 根据权利要求1所述的中压固体绝缘开关,其特征在于,电流传感器与线圈罩设有屏蔽罩,屏蔽罩减小电流传感器的局部放电,屏蔽罩与接地点之间的电压为中压固体绝缘开关的工作电压。
  5. 根据权利要求1所述的中压固体绝缘开关,其特征在于,还设置有电压传感器,电压传感器的两端分别连接输入端子与线圈相连,电压传感器埋设在绝缘主体内接近输入端子的位置。
  6. 根据权利要求4所述的中压固体绝缘开关,其特征在于,输入端子包括输入连接端子、输入连接支撑,输入连接支撑嵌装在绝缘主体内,输入连接端子与输入连接支撑相连;输出端子包括输出连接端子、输出连接支撑,输出连接支撑为绝缘主体向外延伸的支撑臂,输出连接端子的尾部嵌装在输出连接支撑内,输出连接端子的头部延伸至输出连接支撑外。
  7. 根据权利要求1所述的中压固体绝缘开关,其特征在于,设置有备用输出连接端子,预留于安装机械开关,用于控制开断元件与电网的导通或者隔离。
  8. 根据权利要求1所述的中压固体绝缘开关,其特征在于,绝缘主体为绝缘材质一次浇注成型。
  9. 权利要求1到8任一项所述的中压固体绝缘开关,作为重合器、分段器、断路器或负荷开关。
  10. 一种机械驱动中压固体绝缘开关的装置,其特征在于,用于驱动权利要求1到8任一项所述的中压固体绝缘开关的开合,包括两个激励器,以及与激励器的电枢联动的联动机构,中压固体绝缘开关的拉杆与联动机构连接;两个激励器串联,并且进行机械连接;其中一个激励器的电枢上设置有复位弹簧,当对激励器施加正向电流,电枢前进并带动联动机构驱动中压固体绝缘开关合闸,同时电枢受电磁作用保持前进状态并压缩复位弹簧,复位弹簧产生复位趋势;当对激励器施加反向电流,电磁作用消失,复位弹簧复位,推回电枢,同时带动联动机构驱动中压固体绝缘开关分闸。
  11. 根据权利要求10所述的机械驱动中压固体绝缘开关的装置,其特征在于,通过将两个激励器的引线并联,使得两个激动器的绕线的电气回路实现并联。
  12. 根据权利要求10所述的机械驱动中压固体绝缘开关的装置,其特征在于,还设置有手动合闸机构,手动合闸机构包括合闸手柄,与合闸手柄依次联动的凸轮、连杆、凸肩轴承,与凸轮联动的驱动弹簧;转动合闸手柄带动凸轮旋转,并对驱动弹簧进行储能,当凸轮转动至越过平衡点,驱动弹簧被释放并带动凸轮转动,凸轮推动凸肩轴承直线运动,进而驱动连杆带动激励器的电枢前进,电枢前进并带动联动机构驱动中压固体绝缘开关合闸。
  13. 根据权利要求10所述的机械驱动中压固体绝缘开关的装置,其特征在于,还设置有手动分闸机构,手动分闸机构包括分闸手柄、联动机构,分闸手柄与激励器的电枢连接,用于回退电枢,同时通过联动机构构驱动中压固体绝缘开关分闸。
  14. 根据权利要求10所述的机械驱动中压固体绝缘开关的装置,其特征在于,激励器与联动机构设置在两个侧板间,联动机构包括竖直运动的凸肩轴承、水平运动的凸肩轴承,对应的,侧板上开设有竖直限位槽、水平限位槽,凸肩轴承的轴肩分别设置在竖直限位槽、水平限位槽内,凸肩轴承在竖直限位槽、水平限位槽内的限位作用下进行直线运动。
  15. 根据权利要求14所述的机械驱动中压固体绝缘开关的装置,其特征在于,两个侧板顶部分别向外延伸出安装翅,中压固体绝缘开关的容纳槽设置开口的一端通过螺丝连接在安装翅上。
  16. 根据权利要求10所述的机械驱动中压固体绝缘开关的装置,其特征在于,通过中压固体绝缘开关的电流传感器监控高电压电流,通过电流互感器从高压侧获取电源,用于驱动 激励器。
PCT/CN2016/088621 2015-08-04 2016-07-05 一种中压固体绝缘开关及用途与驱动装置 WO2017020675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510469649.2A CN105097320B (zh) 2015-08-04 2015-08-04 一种中压固体绝缘开关及用途与驱动装置
CN201510469649.2 2015-08-04

Publications (1)

Publication Number Publication Date
WO2017020675A1 true WO2017020675A1 (zh) 2017-02-09

Family

ID=54577527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088621 WO2017020675A1 (zh) 2015-08-04 2016-07-05 一种中压固体绝缘开关及用途与驱动装置

Country Status (2)

Country Link
CN (1) CN105097320B (zh)
WO (1) WO2017020675A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400054A (zh) * 2018-04-04 2018-08-14 广西配网电力技术有限公司 一种户外真空断路器控制系统
CN111403969A (zh) * 2020-04-17 2020-07-10 宁波奥克斯电气股份有限公司 一种插座及插座自动开合控制方法
CN111834103A (zh) * 2020-08-26 2020-10-27 成都大互电器有限公司 一种智能保护组合互感器
CN112164567A (zh) * 2020-10-27 2021-01-01 衡阳华瑞电气有限公司 一种户外型电流互感器用快装机构及其快装方法
CN117012570A (zh) * 2023-10-07 2023-11-07 中宝电气有限公司 一种配电开关监控终端的取电装置及其取电装置固封极柱
CN117878568A (zh) * 2024-03-11 2024-04-12 泰兴市东盛通讯器材有限公司 一种稳定性高的天线装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097320B (zh) * 2015-08-04 2017-10-03 爱启(厦门)电气技术有限公司 一种中压固体绝缘开关及用途与驱动装置
CN111863508A (zh) * 2020-06-18 2020-10-30 上海置信智能电气有限公司 一种一二次深度融合的联络柱上断路器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287796A (ja) * 1995-04-18 1996-11-01 Mitsubishi Electric Corp 真空電磁接触器
CN1856855A (zh) * 2003-09-22 2006-11-01 伊顿公司 中压真空断续器
CN101162659A (zh) * 2006-10-13 2008-04-16 Abb技术有限公司 用于电力系统中的开关设备
CN105097320A (zh) * 2015-08-04 2015-11-25 爱启(厦门)电气技术有限公司 一种中压固体绝缘开关及用途与驱动装置
CN204857503U (zh) * 2015-08-04 2015-12-09 爱启(厦门)电气技术有限公司 一种中压固体绝缘开关及驱动装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201918307U (zh) * 2011-01-28 2011-08-03 湖北网安科技有限公司 缓冲式固封绝缘永磁户外高压真空断路器
CN202268288U (zh) * 2011-09-28 2012-06-06 江苏中成辉锐电气有限公司 户外固封极柱
CN202363347U (zh) * 2011-11-03 2012-08-01 北京电研华源电力技术有限公司 一种户外真空断路器用固封极柱
CN202534582U (zh) * 2012-04-25 2012-11-14 上海东自电气有限公司 内置电压传感器的固封极柱
CN105097146A (zh) * 2014-05-07 2015-11-25 澳大利亚电气制造有限公司 中压混合绝缘子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287796A (ja) * 1995-04-18 1996-11-01 Mitsubishi Electric Corp 真空電磁接触器
CN1856855A (zh) * 2003-09-22 2006-11-01 伊顿公司 中压真空断续器
CN101162659A (zh) * 2006-10-13 2008-04-16 Abb技术有限公司 用于电力系统中的开关设备
CN105097320A (zh) * 2015-08-04 2015-11-25 爱启(厦门)电气技术有限公司 一种中压固体绝缘开关及用途与驱动装置
CN204857503U (zh) * 2015-08-04 2015-12-09 爱启(厦门)电气技术有限公司 一种中压固体绝缘开关及驱动装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400054A (zh) * 2018-04-04 2018-08-14 广西配网电力技术有限公司 一种户外真空断路器控制系统
CN111403969A (zh) * 2020-04-17 2020-07-10 宁波奥克斯电气股份有限公司 一种插座及插座自动开合控制方法
CN111834103A (zh) * 2020-08-26 2020-10-27 成都大互电器有限公司 一种智能保护组合互感器
CN112164567A (zh) * 2020-10-27 2021-01-01 衡阳华瑞电气有限公司 一种户外型电流互感器用快装机构及其快装方法
CN117012570A (zh) * 2023-10-07 2023-11-07 中宝电气有限公司 一种配电开关监控终端的取电装置及其取电装置固封极柱
CN117012570B (zh) * 2023-10-07 2024-01-09 中宝电气有限公司 一种配电开关监控终端的取电装置及其取电装置固封极柱
CN117878568A (zh) * 2024-03-11 2024-04-12 泰兴市东盛通讯器材有限公司 一种稳定性高的天线装置
CN117878568B (zh) * 2024-03-11 2024-05-07 泰兴市东盛通讯器材有限公司 一种稳定性高的天线装置

Also Published As

Publication number Publication date
CN105097320B (zh) 2017-10-03
CN105097320A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2017020675A1 (zh) 一种中压固体绝缘开关及用途与驱动装置
US7724489B2 (en) Circuit breaker with high speed mechanically-interlocked grounding switch
CN203466123U (zh) 一种基于电磁推力致动的单相真空断路器
CN104779549B (zh) 智能全封闭永磁真空断路器
CN207164213U (zh) 一种gis开关机械特性测试辅助装置
CN103823179A (zh) 一种非接触式空间高频高压断路器动作特性测量方法
CN104569725A (zh) 一种可精确控制短路时刻的电力系统短路故障试验装置
CN202444259U (zh) 一种新型中压配电系统综合接地保护及选线装置
AU2021352409B2 (en) Voltage readings using high voltage resistor across vacuum interrupter
CN114899033A (zh) 一种小型化深度一二次融合柱上断路器
CN103441032A (zh) 一种基于电磁推力致动的单相真空断路器
CN203588916U (zh) 一种户外高压智能真空断路器
KR102316659B1 (ko) 수동 폐쇄 보조 제어 메커니즘
CN106124946B (zh) 高压断路器的控制线圈匝间绝缘故障检测装置及检测方法
CN112017905A (zh) 一种速动型磁控真空断路器
CN201936800U (zh) 户外高压智能型永磁真空开关
CN204857503U (zh) 一种中压固体绝缘开关及驱动装置
JP6811906B1 (ja) 漏電遮断器
CN112782439B (zh) 一种小电流接地系统中单相接地故障检测用特征电流的制造方法
CN203799951U (zh) 单相磁操作机构真空断路器及智能真空断路器系统
CN201853644U (zh) 全控式高压真空接触器
CN201266571Y (zh) 一种新型的铁道相控永磁机构真空断路器
CN110853990B (zh) 单相重合器和三相联动装置及方法
CN104124102A (zh) 一种新型电气化铁道交流高压真空断路器
CN212517024U (zh) 一种速动型磁控真空断路器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832163

Country of ref document: EP

Kind code of ref document: A1