WO2017020644A1 - 减少隔离ups旁路导通的变压器励磁电流的方法及装置 - Google Patents

减少隔离ups旁路导通的变压器励磁电流的方法及装置 Download PDF

Info

Publication number
WO2017020644A1
WO2017020644A1 PCT/CN2016/083986 CN2016083986W WO2017020644A1 WO 2017020644 A1 WO2017020644 A1 WO 2017020644A1 CN 2016083986 W CN2016083986 W CN 2016083986W WO 2017020644 A1 WO2017020644 A1 WO 2017020644A1
Authority
WO
WIPO (PCT)
Prior art keywords
ups
zero
bypass
crossing
frequency
Prior art date
Application number
PCT/CN2016/083986
Other languages
English (en)
French (fr)
Inventor
曹振华
黄振民
陈君
Original Assignee
漳州科华技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 漳州科华技术有限责任公司 filed Critical 漳州科华技术有限责任公司
Publication of WO2017020644A1 publication Critical patent/WO2017020644A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P13/00Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output

Definitions

  • the present invention relates to the field of UPS, and more particularly to a method and apparatus for reducing the excitation current of a transformer that isolates a UPS bypass.
  • UPS With the continuous development of UPS applications, the isolation requirements of UPS systems are constantly being proposed.
  • the application of fully isolated UPS can effectively ensure the safety and reliability of user equipment systems. From the design structure, the fully isolated system and the traditional non-isolated The difference in the system is the addition of an output or input isolation transformer that isolates the entire UPS system from the load system to ensure that the load system is unaffected by interfering signals at the input.
  • the application of the isolation transformer must consider the influence of the excitation current on the UPS system.
  • the transformer According to the characteristics of the transformer, the transformer can be regarded as an inductor. It is known from the excitation characteristics of the inductor that the voltage applied to the inductor will cause it to be reversed. Excitation current, the magnitude of the excitation current can be very high depending on the inductance characteristics, which may far exceed the voltage or current limit that the device in the UPS system can withstand, resulting in UPS failure caused by device damage.
  • the object of the present invention is to provide a method for reducing the excitation current of a transformer that isolates the bypass of the UPS, in order to avoid the above-mentioned deficiencies, and to avoid the phenomenon that the excitation current of the isolation transformer is large when the bypass output occurs.
  • the solution adopted by the present invention to solve the technical problem is: a method for reducing the excitation current of a transformer that isolates the UPS bypass, including the following steps:
  • Step S1 real-time acquisition of the zero-crossing point of the UPS input alternating current, and obtaining the frequency f of the UPS input alternating current according to the time difference between two adjacent zero-crossing points;
  • Step S2 determining whether the frequency f of the UPS input AC power satisfies f min ⁇ f ⁇ f max , where f min and f max are respectively a minimum threshold and a maximum threshold of the UPS bypass output normal range AC frequency, and if yes, proceed to step S3 Otherwise, return to step S1;
  • Step S3 taking an initial value of a, where a is a positive integer
  • Step S4 During the current ith half sine wave period of the AC input by the UPS, the UPS control bypass thyristor SCR is in an on state from the time t ip to the next adjacent zero crossing point t i1 , wherein:
  • N is a positive integer
  • t i0 is the first zero crossing of the current ith half sine wave period
  • t ip is the conduction time between the first zero crossing point t i0 to the next zero crossing point, 1 ⁇ i ⁇ N
  • i is a positive integer
  • Step S5 incrementing the value of a, determining whether a is less than or equal to N-1, and if yes, returning to step S5, otherwise ending the detection.
  • step S5 the following steps are further included:
  • Step S50 determining whether a is less than or equal to N-1, and if yes, proceeding to step S4, otherwise ending the detection;
  • the zero-crossing point is further subjected to hysteresis compensation, and the time of the actual zero-crossing point is calculated.
  • the on-time of the i-th half-wave period is the time from t ip to the adjacent next zero-crossing point.
  • the present invention also provides a device for reducing the excitation current of a transformer that isolates the UPS bypass, including a UPS module, wherein the AC input end of the UPS module is connected to a zero-crossing acquisition unit for real-time acquisition of the input AC power of the UPS module.
  • the zero-point acquisition unit passes through a frequency determination unit and a slow-start control unit for calculating the startup execution time of the UPS bypass thyristor SCR, and the slow-start control unit passes through a PWM signal generation unit and a control bypass.
  • the input of the drive unit of the thyristor SCR switch is electrically connected, and the output of the drive unit is electrically connected to the bypass thyristor SCR of the UPS module.
  • a zero-crossing compensation unit is further included, one end of the zero-crossing compensation unit is electrically connected to the zero-crossing acquisition unit, and the other end is electrically connected to the slow-start control unit.
  • the present invention has the following beneficial effects:
  • the control method of the present invention uses the slow start control in the isolated UPS during the power-on process, in the UPS Under normal AC frequency, the SCR on-time is gradually increased at the zero-crossing point of the 1st to Nth half-wave periods, so that the voltage value of the output isolation transformer is gradually increased to ensure the minimum excitation current of the output isolation transformer. Damage to the bypass thyristor SCR device.
  • the isolated UPS operates stably in the bypass state, the bypass is restored to normal by the abnormality, and the bypass thyristor SCR is turned off and turned on to ensure the minimum excitation current of the output isolation transformer and not damage the bypass circuit. Silicon controlled SCR.
  • FIG. 1 is a schematic flow chart of a method provided by an embodiment of the present invention.
  • FIG. 2 is a waveform diagram of a control process of a slow start control unit of an embodiment of the present invention
  • FIG. 3 is a block diagram showing the circuit structure of the apparatus for providing the embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a UPS module in an embodiment of the present invention.
  • a method for reducing the excitation current of a transformer that isolates the UPS bypass conduction includes the following steps:
  • Step S1 real-time acquisition of the zero-crossing point of the UPS input alternating current, and obtaining the frequency f of the UPS input alternating current according to the time difference between two adjacent zero-crossing points;
  • Step S2 determining whether the frequency f of the UPS input alternating current satisfies f min ⁇ f ⁇ f max , where f min and f max are respectively a minimum threshold and a maximum threshold of the UPS bypass output normal range alternating current frequency, and if yes, proceed to step S3 Otherwise, return to step S1;
  • Step S3 taking an initial value of a, where a is a positive integer
  • Step S4 During the current ith half sine wave period of the AC input by the UPS, the UPS control bypass thyristor SCR is in a conducting state from the time t ip to the next adjacent zero crossing point t i1 , wherein :
  • N is a positive integer
  • t i0 is the first zero crossing of the current ith half sine wave period
  • t ip is the first zero crossing point t i0 to the next zero crossing point in the ith half sine period
  • the conduction time between t i1 , 1 ⁇ i ⁇ N, and i is a positive integer
  • Step S5 incrementing the value of a, determining whether a is less than or equal to N-1, and if yes, returning to step S5, otherwise ending the detection.
  • step S5 the following steps are further included:
  • Step S50 determining whether a is less than or equal to N-1, and if yes, proceeding to step S4, otherwise ending the detection;
  • the zero-crossing point is further subjected to hysteresis compensation, and the time of the actual zero-crossing point is calculated.
  • the on-time of the ith half-wave period is from t ip to the next adjacent zero-crossing point.
  • the embodiment of the invention further provides a device for reducing the excitation current of the transformer that isolates the UPS bypass, including a UPS module, wherein the AC input end of the UPS module is connected to a zero-crossing acquisition unit for real-time acquisition of the input AC power of the UPS module.
  • the zero-crossing acquisition unit passes through a frequency determination unit and a slow-start control unit for calculating a startup start time of the UPS bypass thyristor SCR, and the slow-start control unit is controlled by a PWM signal generation unit and a control unit.
  • the input of the drive unit of the bypass thyristor SCR switch is electrically connected, the output of the drive unit being electrically connected to the bypass thyristor SCR of the UPS module.
  • a zero-crossing compensation unit is further included, one end of the zero-crossing compensation unit is electrically connected to the zero-crossing acquisition unit, and the other end is electrically connected to the slow-start control unit.
  • the UPS module includes a UPS main circuit, an input capacitor C1, an output capacitor C2, an output relay RLY, a bypass thyristor SCR, and an isolation transformer T.
  • the AC input terminal of the UPS module is connected for real-time. Obtaining a zero-crossing acquisition unit of the UPS module input AC power, the output end of the driving unit being electrically connected to the bypass thyristor SCR of the UPS module.
  • the invention provides a device for reducing the excitation current of a transformer that isolates the UPS bypass conduction, wherein the zero-crossing capture unit is configured to capture a zero-crossing point of the UPS alternating current, and the zero-crossing compensation unit is configured to delay the hardware zero-crossing point.
  • the frequency determining unit calculates the frequency of the UPS alternating current according to the adjacent two zero-crossing points of the zero-crossing capturing unit, and determines whether the frequency of the UPS alternating current is within a normal range, and the slow-start control
  • the unit is used to calculate the execution time of the bypass thyristor SCR slow start, and the bypass thyristor SCR is turned on at the zero crossing point of the first to Nth half-wave periods in the normal range of the UPS alternating current frequency.
  • the zero-crossing conduction time of the ith half-wave period is from the time t 1 of the ith half-wave period to the time of the adjacent next zero-crossing point, and the PWM signal generating unit converts the time calculation result according to the slow start to The output drive is occupied; the drive unit is used to control the opening and closing of the bypass thyristor SCR.
  • Uin is a voltage waveform diagram of the input AC power of the isolated UPS
  • the SCR drive is a driving waveform diagram of the bypass thyristor SCR
  • the PWM drive signal is zero crossing every half wave period. Before opening, it is turned off at the zero crossing of the input AC of the UPS.
  • the PWM pulse width is gradually widened from the first to the Nth half-cycle.
  • U T is the input voltage waveform of the primary side of the isolation transformer T. It can be seen that the isolation transformer T The amplitude of the input voltage waveform on the primary side is also gradually increasing.
  • bypass thyristor SCR Avoiding the transient conduction of the bypass thyristor SCR causes a sudden change in the input voltage of the primary side of the isolation transformer T, resulting in a large excitation current, and the actual shutdown timing is not exceeded. The zero is caused by the semi-controlled nature of the bypass thyristor SCR.
  • the bypass thyristor SCR is turned off by its reverse voltage. When the reverse voltage reaches a certain threshold, the thyristor can be turned off.
  • the present invention provides a method and apparatus for reducing the excitation current of an isolated UPS bypass to ensure that the excitation current of the output isolation transformer is minimized while the UPS system is operating under bypass and inverter, and the system is reliably operated. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Protection Of Transformers (AREA)

Abstract

一种减少隔离UPS旁路导通的变压器励磁电流的方法及装置。该方法包括步骤S1:实时获取UPS输入交流电的过零点,根据相邻两个过零点的时间差获取UPS输入交流电的频率f;步骤S2:判断UPS输入交流电的频率是否满足f min ≤f≤f max ,若满足,则进入步骤S3,否则返回步骤S1;步骤S3:取a的初值为1,其中a为正整数;步骤S4:在UPS输入的交流电的当前第i个半个正弦波周期,UPS控制旁路可控硅SCR在 t ip 时刻至相邻的下一个过零点t i1 处于导通状态,其中:t ip =t i0 +(N-a)/2Nf ,N为正整数, t i0 为当前第i个半个正弦波周期的第一过零点时刻,1≤i≤N,且i为正整数;步骤S5:递增a的值,判断a是否小于等于N-1,若是,则返回步骤S4,否则结束。该方法及装置保证输出隔离变压器的励磁电流最小,不损坏旁路可控硅SCR。

Description

减少隔离UPS旁路导通的变压器励磁电流的方法及装置 技术领域
本发明涉及UPS领域,尤其涉及一种减少隔离UPS旁路导通的变压器励磁电流的方法及装置。
背景技术
随着UPS的应用不断发展,对UPS系统隔离性要求也不断的被提出,全隔离UPS的应用可有效地保证用户设备系统的安全和可靠,从设计结构上看全隔离系统和传统的非隔离系统的差别在于增加了输出或是输入隔离变压器,其将整个UPS系统和负载系统隔离以保证负载系统不受输入端的干扰信号的影响。但隔离变压器的应用必须要考虑励磁电流的对UPS系统的影响,根据变压器的特性,可把变压器看作是一个电感,由电感的励磁特性可知,对电感突加电压会使其产生反方向的励磁电流,励磁电流的大小根据电感特性不同可以达到很高,可能会远远超过UPS系统中器件可承受的电压或电流限值,导致器件损坏引起UPS故障。
目前为保证全隔离UPS系统在旁路态和逆变态下都能正常工作,在这两种状态下减小变压器励磁电流的方法主要有两种:
(1)先保证旁路态下旁路无输出,通过逆变缓启动方法使输出电压缓慢变大以减小变压器励磁电流,待缓启动结束电压稳定后,即可实现两种状态的切换,此种方法虽然可以减小旁路输出时变压器的励磁电流,但旁路工作时刻受到限制,机器会存在无输出的一个时间段,在输出稳定性要求较高的场合是不允许出现此种情况的。
(2)旁路工作时,在旁路电压的峰值处开通旁路,由于电感电流滞后电压90°,使得旁路电压在过零处时的变压器励磁电流最小,一旦变压器两端的电压稳定,即可实现旁路和逆变的正常切换,但实测中不同变压器产生的励磁电流也会有几十安,因此还需要选用规格较高的器件才能满足设计要求。由此可见,这两种方法从实际应用的角度都存在一定的缺陷。
发明内容
本发明的目的是针对以上不足之处,提供了一种减少隔离UPS旁路导通的变压器励磁电流的方法,避免出现旁路输出时隔离变压器励磁电流较大的现象。
本发明解决技术问题所采用的方案是:一种减少隔离UPS旁路导通的变压器励磁电流的方法,包括以下步骤:
步骤S1:实时获取UPS输入交流电的过零点,根据相邻两个过零点的时间差获取UPS输入交流电的频率f;
步骤S2:判断UPS输入交流电的频率f是否满足fmin≤f≤fmax,其中fmin和fmax分别为UPS旁路输出正常范围交流电频率的最小阈值和最大阈值,若满足,则进入步骤S3,否则返回步骤S1;
步骤S3:取a的初值为1,其中a为正整数;
步骤S4:在UPS输入的交流电的当前第i个半个正弦波周期,UPS控制旁路可控硅SCR在tip时刻至相邻的下一个过零点ti1处于导通状态,其中:
Figure PCTCN2016083986-appb-000001
其中,N为正整数;ti0为当前第i个半个正弦波周期的第一过零点时刻,tip为第一个过零点ti0至下一个过零点之间的导通时刻,1≤i≤N,且i为正整数;
步骤S5:递增a的值,判断a是否小于等于N-1,若是,则返回步骤S5,否则结束检测。
进一步的,在步骤S5中,还包括以下步骤:
步骤S50:判断a是否小于等于N-1,若是,则转至步骤S4,否则结束检测;
步骤S51:取a=a+1,转至步骤S50。
进一步的,在所述步骤S1中,还将过零点进行滞后补偿,计算实际过零点的时刻。
进一步的,在所述步骤S4中,第i个半波周期的导通时间为从tip至相邻的下一个过零点的时间。
本发明还提供一种减少隔离UPS旁路导通的变压器励磁电流的装置,包括一UPS模块,所述UPS模块的交流电输入端连接一用于实时获取UPS模块输入交流电的过零点获取单元,所述过零点获取单元经一频率判断单元与一用于计算UPS旁路可控硅SCR启动执行时间的缓启动控制单元,所述缓启动控制单元经一PWM信号产生单元与一用于控制旁路可控硅SCR开关的驱动单元的输入端电连接,所述驱动单元的输出端与所述UPS模块的旁路可控硅SCR电连接。
进一步的,还包括一过零点补偿单元,所述过零点补偿单元的一端与所述过零点获取单元电连接,另一端与所述缓启动控制单元电连接。
与现有技术相比,本发明有以下有益效果:
1)针对目前隔离UPS旁路导通变压器励磁电流的控制方法,存在无法完全消除励磁电流及操作复杂等问题,本发明控制方法采用缓启动控制在隔离型UPS在上电过程中,在UPS的交流电频率正常情况下,在第1至第N个半波周期的过零点处逐渐加大SCR导通时间,使得通过输出隔离变压器的电压值逐步增大,保证输出隔离变压器的励磁电流最小,不损坏旁路可控硅SCR器件。
2)隔离型UPS稳定工作在旁路态下,旁路由异常恢复到正常,旁路可控硅SCR关断和导通过程,保证输出隔离变压器的励磁电流最小,不损坏旁路回路中的可控硅SCR。
3)利用简单的算法得到旁路可控硅SCR的PWM开关控制信号,对旁路可控硅SCR直接控制,使输出电压缓慢增大,有效地减小变压器励磁电流,改善了隔离变压器励磁电流较大问题,保证开关控制器件可靠工作,提高了UPS系统的稳定性。
附图说明
下面结合附图对本发明专利进一步说明。
图1为本发明的实施例所提供方法的流程原理图;
图2本发明的实施例的缓启动控制单元控制过程的波形图;
图3本发明的实施例所述提供装置的电路结构框图;
图4本发明的实施例中的UPS模块电路图。
具体实施方式
下面结合附图和具体实施方式对本发明进一步说明。
如图1~4所示,本发明实施的一种减少隔离UPS旁路导通的变压器励磁电流的方法,包括以下步骤:
步骤S1:实时获取UPS输入交流电的过零点,根据相邻两个过零点的时间差获取UPS输入交流电的频率f;
步骤S2:判断UPS输入交流电的频率f是否满足fmin≤f≤fmax,其中fmin和fmax分别为UPS旁路输出正常范围交流电频率的最小阈值和最大阈值,若满足, 则进入步骤S3,否则返回步骤S1;
步骤S3:取a的初值为1,其中a为正整数;
步骤S4:在UPS输入的交流电的当前第i个半个正弦波周期,UPS控制旁路可控硅SCR在tip时刻至相邻的下一个过零点ti1时刻之间处于导通状态,其中:
Figure PCTCN2016083986-appb-000002
其中,N为正整数;ti0为当前第i个半个正弦波周期的第一过零点时刻,tip为第i个半个正弦周期内的第一个过零点ti0至下一个过零点ti1之间的导通时刻,1≤i≤N,且i为正整数;
步骤S5:递增a的值,判断a是否小于等于N-1,若是,则返回步骤S5,否则结束检测。
进一步的,在步骤S5中,还包括以下步骤:
步骤S50:判断a是否小于等于N-1,若是,则转至步骤S4,否则结束检测;
步骤S51:取a=a+1,转至步骤S50。
进一步的,在所述步骤S1中,还将过零点进行滞后补偿,计算实际过零点的时刻。
进一步的,第i个半波周期的导通时间为从tip至相邻的下一个过零点。
本发明实施例还提供一种减少隔离UPS旁路导通的变压器励磁电流的装置,包括一UPS模块,所述UPS模块的交流电输入端连接一用于实时获取UPS模块输入交流电的过零点获取单元,所述过零点获取单元经一频率判断单元与一用于计算UPS旁路可控硅SCR启动执行时间的缓启动控制单元,所述缓启动控制单元经一PWM信号产生单元与一用于控制旁路可控硅SCR开关的驱动单元的输入端电连接,所述驱动单元的输出端与所述UPS模块的旁路可控硅SCR电连接。
进一步的,还包括一过零点补偿单元,所述过零点补偿单元的一端与所述过零点获取单元电连接,另一端与所述缓启动控制单元电连接。
如图4所述,其中UPS模块包括UPS主电路,输入电容C1、输出电容C2、输出继电器RLY、旁路可控硅SCR和隔离变压器T,所述UPS模块的交流电输入端连接一用于实时获取UPS模块输入交流电的过零点获取单元,所述驱动单元的输出端与所述UPS模块的旁路可控硅SCR电连接。
本发明提供的一种减少隔离UPS旁路导通的变压器励磁电流的装置中,所述过零点捕获单元用于捕获UPS交流电的过零点,所述过零点补偿单元用于对硬件过零点进行滞后补偿,计算UPS交流电的实际过零点;所述频率判断单元根据过零点捕获单元的相邻两个过零点计算UPS交流电的频率,并判断UPS交流电的频率是否属于正常范围内,所述缓启动控制单元用于计算旁路可控硅SCR缓启动执行的时间,在UPS交流电的频率正常范围内的第1至第N半波周期的过零点依次加大过零点处旁路可控硅SCR导通的时间,第i半波周期的过零点导通时刻从第i半波周期的t1时刻至相邻的下一个过零点时刻,所述PWM信号产生单元根据缓启动执行的时间计算结果转换为输出驱动占空;所述驱动单元用于控制旁路可控硅SCR的开启和关断。
本发明实现的缓启动控制过程如图2所示,Uin为隔离UPS的输入交流电的电压波形图,SCR驱动为旁路可控硅SCR的驱动波形图,PWM驱动信号在每半波周期过零点前开通,在UPS的输入交流电的过零点处关闭,PWM脉宽从第一至第N半波周期逐步展宽,图中UT为隔离变压器T初级侧的输入电压波形,可以看出隔离变压器T初级侧的输入电压波形的幅值也是逐渐变大的过程,避免旁路可控硅SCR瞬间导通导致隔离变压器T初级侧的输入电压突变,产生较大的励磁电流,实际关断时刻不在过零处是由于旁路可控硅SCR半控特性引起,旁路可控硅SCR关断要靠通过它的反向电压,反向电压达到一定阈值后便可关断可控硅。
综上所述,本发明提供的减少隔离UPS旁路导通的变压器励磁电流的方法及装置,保证UPS系统在旁路和逆变下工作时输出隔离变压器的励磁电流最小,同时保证系统可靠运行。
本发明提供的上列较佳实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种减少隔离UPS旁路导通的变压器励磁电流的方法,其特征在于,包括以下步骤:
    步骤S1:实时获取UPS输入交流电的过零点,根据相邻两个过零点的时间差获取UPS输入交流电的频率f;
    步骤S2:判断UPS输入交流电的频率f是否满足fmin≤f≤fmax,其中fmin和fmax分别为UPS旁路输出正常范围交流电频率的最小阈值和最大阈值,若满足,则进入步骤S3,否则返回步骤S1;
    步骤S3:取a的初值为1,其中a为正整数;
    步骤S4:在UPS输入的交流电的当前第i个半个正弦波周期,UPS控制旁路可控硅SCR在tip时刻至相邻的下一个过零点ti1时刻之间处于导通状态,其中:
    Figure PCTCN2016083986-appb-100001
    其中,N为正整数;ti0为当前第i个半个正弦波周期的第一过零点时刻,tip为第一个过零点ti0至下一个过零点之间的导通时刻,1≤i≤N,且i为正整数;
    步骤S5:递增a的值,判断a是否小于等于N-1,若是,则返回步骤S4,否则结束。
  2. 根据权利要求1所述的减少隔离UPS旁路导通的变压器励磁电流的方法,其特征在于:在步骤S5中,还包括以下步骤:
    步骤S50:判断a是否小于等于N-1,若是,则转至步骤S4,否则结束;
    步骤S51:取a=a+1,转至步骤S50。
  3. 根据权利要求1所述的减少隔离UPS旁路导通的变压器励磁电流的方法,其特征在于:在所述步骤S1中,还将过零点进行滞后补偿,计算实际过零点的时刻。
  4. 一种减少隔离UPS旁路导通的变压器励磁电流的装置,包括一UPS模块,其特征在于:所述UPS模块的交流电输入端连接一用于实时获取UPS模块输入交流电的过零点获取单元,所述过零点获取单元经一频率判断单元与一用于计算UPS旁路可控硅SCR启动执行时间的缓启动控制单元,所述缓启动控制单元经一PWM信号产生单元与一用于控制旁路可控硅SCR开关的驱动单元的输入端电连接,所述驱动单元的输出端与所述UPS模块的旁路可控硅SCR电连接,所述频率判断单元根据过零点捕获单元的相邻两个过零点计算UPS交流电的频率,并判断UPS 交流电的频率是否属于正常范围内,所述缓启动控制单元用于计算旁路可控硅SCR缓启动执行的时间,在UPS交流电的频率正常范围内的第1个至第N个半波周期的过零点依次加大过零点处旁路可控硅SCR导通的时间。
  5. 根据权利要求4所述的一种减少隔离UPS旁路导通的变压器励磁电流的装置,还括一过零点补偿单元,所述过零点补偿单元的一端与所述过零点获取单元电连接,另一端与所述缓启动控制单元电连接。
PCT/CN2016/083986 2015-08-01 2016-05-31 减少隔离ups旁路导通的变压器励磁电流的方法及装置 WO2017020644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510464939.8A CN105141209B (zh) 2015-08-01 2015-08-01 减少隔离ups旁路导通的变压器励磁电流的方法及装置
CN201510464939.8 2015-08-01

Publications (1)

Publication Number Publication Date
WO2017020644A1 true WO2017020644A1 (zh) 2017-02-09

Family

ID=54726452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083986 WO2017020644A1 (zh) 2015-08-01 2016-05-31 减少隔离ups旁路导通的变压器励磁电流的方法及装置

Country Status (2)

Country Link
CN (1) CN105141209B (zh)
WO (1) WO2017020644A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421754A (zh) * 2020-10-23 2021-02-26 科华恒盛股份有限公司 励磁控制电路及ups
WO2023273047A1 (zh) * 2021-06-29 2023-01-05 中车株洲电力机车研究所有限公司 一种供电制式识别方法、系统及相关组件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105141209B (zh) * 2015-08-01 2017-12-08 漳州科华技术有限责任公司 减少隔离ups旁路导通的变压器励磁电流的方法及装置
CN106154925A (zh) * 2016-08-09 2016-11-23 深圳市新国都技术股份有限公司 高性能智能开关控制系统及其方法
CN112039352B (zh) * 2020-07-31 2021-10-01 漳州科华技术有限责任公司 Ups控制方法
CN112421760B (zh) * 2020-11-26 2023-10-27 科华恒盛股份有限公司 一种ups隔离变压器的励磁电流的控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060164782A1 (en) * 2005-01-27 2006-07-27 Silvio Colombi Control system, method and product for uninterruptible power supply
CN101088201A (zh) * 2004-12-22 2007-12-12 Abb技术有限公司 电力潮流控制
CN203554334U (zh) * 2013-11-06 2014-04-16 温州大学 低谐波软启动器
CN104037730A (zh) * 2013-03-04 2014-09-10 艾默生网络能源有限公司 一种抑制变压器空载合闸励磁涌流的装置和方法
CN105141209A (zh) * 2015-08-01 2015-12-09 漳州科华技术有限责任公司 减少隔离ups旁路导通的变压器励磁电流的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8553439B2 (en) * 2010-02-09 2013-10-08 Power Integrations, Inc. Method and apparatus for determining zero-crossing of an AC input voltage to a power supply
NZ586526A (en) * 2010-06-30 2012-12-21 Auckland Uniservices Ltd Inductive power transfer system with ac-ac converter and two-way power transmission ability
CN203205760U (zh) * 2013-03-13 2013-09-18 天津水利电力机电研究所 一种水轮发电机组综合控制柜
CN103368280B (zh) * 2013-07-05 2015-04-22 重庆大学 Ipt系统频率稳定闭环控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088201A (zh) * 2004-12-22 2007-12-12 Abb技术有限公司 电力潮流控制
US20060164782A1 (en) * 2005-01-27 2006-07-27 Silvio Colombi Control system, method and product for uninterruptible power supply
CN104037730A (zh) * 2013-03-04 2014-09-10 艾默生网络能源有限公司 一种抑制变压器空载合闸励磁涌流的装置和方法
CN203554334U (zh) * 2013-11-06 2014-04-16 温州大学 低谐波软启动器
CN105141209A (zh) * 2015-08-01 2015-12-09 漳州科华技术有限责任公司 减少隔离ups旁路导通的变压器励磁电流的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421754A (zh) * 2020-10-23 2021-02-26 科华恒盛股份有限公司 励磁控制电路及ups
WO2023273047A1 (zh) * 2021-06-29 2023-01-05 中车株洲电力机车研究所有限公司 一种供电制式识别方法、系统及相关组件

Also Published As

Publication number Publication date
CN105141209A (zh) 2015-12-09
CN105141209B (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2017020644A1 (zh) 减少隔离ups旁路导通的变压器励磁电流的方法及装置
CN110048597B (zh) 功率因数校正电路的控制方法、控制器及系统
WO2021253876A1 (zh) 光伏快速关断系统的控制方法及其应用装置和系统
TWI670919B (zh) 具有諧振轉換器的電源暨其控制方法
US11159160B2 (en) AC switch, and uninterruptible power supply and voltage sag compensator including AC switch
TWI683513B (zh) 電源轉換器及其控制方法
TWI646760B (zh) 電轉換裝置
JP6930214B2 (ja) 電源装置
CN112713755A (zh) 一种双向晶闸管快速关断方法及系统
US9590484B2 (en) Inverter device and power converting method thereof
KR101920843B1 (ko) 히터 제어용 scr 전력 제어 장치
JP4893113B2 (ja) 整流回路の制御装置
KR20200071616A (ko) 전력 변환 효율이 개선된 전력 변환 장치
RU2426218C2 (ru) Способ управления работой электродвигателя
JP2001314085A (ja) 電源装置と、インバータ装置および空気調和機
Costa et al. Retrofitting technique to improve voltage sags ride-through capability of ASD using SEPIC rectifiers
JP2008289217A (ja) 電力変換装置
JP2015023650A (ja) 電力変換器
US20150117069A1 (en) Power supply apparatus and method of controlling the same
Mansor et al. Phase angle analysis for three-phase PWM-switched autotransformer voltage-sag compensator
US11482946B2 (en) Electric power conversion device
US20230076274A1 (en) Short-Circuit Protection Apparatus, Short-Circuit Protection Method for Target Circuit, and Power Conversion Device
Tallam et al. Voltage sag and unbalance generator for power quality testing of adjustable speed drives
JP2008161004A (ja) 無停電電源装置
KR20170004664A (ko) 역률 보상 장치 및 이의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832132

Country of ref document: EP

Kind code of ref document: A1