WO2017020544A1 - 一种气相沉积设备 - Google Patents

一种气相沉积设备 Download PDF

Info

Publication number
WO2017020544A1
WO2017020544A1 PCT/CN2016/070139 CN2016070139W WO2017020544A1 WO 2017020544 A1 WO2017020544 A1 WO 2017020544A1 CN 2016070139 W CN2016070139 W CN 2016070139W WO 2017020544 A1 WO2017020544 A1 WO 2017020544A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
gas
ventilation duct
reaction chamber
deposition apparatus
Prior art date
Application number
PCT/CN2016/070139
Other languages
English (en)
French (fr)
Inventor
张锐
李端明
廖国华
朴范求
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/327,024 priority Critical patent/US10329666B2/en
Publication of WO2017020544A1 publication Critical patent/WO2017020544A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Definitions

  • the present invention relates to the field of display device fabrication, and more particularly to a vapor deposition apparatus for coating a glass substrate.
  • Vapor deposition is a commonly used coating process.
  • a substrate such as a glass substrate
  • a reaction chamber it is often necessary to employ a plurality of plasma chemical vapor deposition processes to coat a substrate (such as a glass substrate) in a reaction chamber to form a functional pattern.
  • a substrate such as a glass substrate
  • an excess film is deposited on the inner wall of the reaction chamber of the vapor deposition apparatus, which affects the yield of the product.
  • the process gas and the cleaning gas are respectively merged from the respective gas sources through the two pipes at the ionization device into a path into the reaction chamber, and the process gas and the cleaning gas are selected by the control of the valve as needed.
  • the interior of the ionization device also has a small chamber, and the inner wall of the chamber is coated with an oxide film, and as the ionization device ages, the oxide film inside the chamber wall will fall off and become a falling particle. If the process gas passes through the chamber of the ionization device and then reaches the reaction chamber, the detached particles in the chamber of the ionization device may enter the reaction chamber with the process gas, thereby affecting the product yield.
  • a vapor deposition apparatus is provided.
  • a vapor deposition apparatus includes: a reaction device having a reaction chamber; a first vent line connected to the reaction chamber for introducing a process gas for deposition into the reaction chamber; a gas ionization device Connected to the reaction apparatus and used to ionize the purge gas; and a second vent line connected to the gas ionization apparatus for introducing a purge gas for cleaning the reaction chamber into the gas ionization apparatus.
  • the vapor deposition apparatus further includes a common venting conduit, wherein the process gas sequentially enters the reaction chamber through the first venting conduit and the common venting conduit, the cleaning gas The reaction chamber is entered through the second venting conduit, the gas ionization device, and the common venting conduit in sequence.
  • the reaction apparatus further has a first port and a second port, the process gas entering the reaction chamber from the first port through the first ventilation duct, the cleaning gas sequentially passing The second venting conduit and the gas ionization device enter the reaction chamber from the second port.
  • the vapor deposition apparatus further includes a common venting duct and a three-way control mechanism, wherein: the common venting duct has one end in communication with the reaction chamber and the other end in communication with the first vent of the three-way control mechanism; The first ventilation duct and the gas ionization device are connected in one-to-one correspondence with the second vent and the third vent of the three-way control mechanism; and the three-way control mechanism is configured to control the common ventilation duct and The first venting conduit is in communication with or in communication with the gas ionization device or simultaneously blocks communication of the common venting conduit with the first venting conduit and the gas ionization device.
  • the three-way control mechanism is a double vacuum system (DVS) having a switching mechanism.
  • the switching mechanism is a dual vacuum system valve (DVS valve); the gas ionization device is a remote plasma source (RPS).
  • a first vacuum chamber in communication with the first venting conduit; a second vacuum chamber in communication with the gas ionization device; and the switching mechanism configured to cause the common venting conduit to The first vacuum chamber is in communication with or in communication with the second vacuum chamber or simultaneously blocks communication of the common venting conduit with the first vacuum chamber and the second vacuum chamber.
  • the vapor deposition apparatus further includes: a first control mechanism disposed in the first ventilation duct for opening or closing the first ventilation duct; and/or a first passage disposed in the second ventilation duct a second control mechanism for opening or closing the second ventilation duct.
  • the vapor deposition apparatus further includes a process gas source for providing a process gas and a purge gas source for providing a purge gas.
  • the common ventilation duct is made of a ceramic material.
  • the reaction apparatus includes upper and lower electrodes disposed opposite each other disposed within the reaction chamber for forming an electric field that electrolyzes the process gas into a plasma in the reaction chamber.
  • the reaction device includes a matching box for matching a radio frequency voltage applied to the upper electrode to achieve a minimum reflected power.
  • a vapor deposition apparatus includes: a reaction apparatus having a reaction chamber; a first ventilation duct connected to the reaction chamber for introducing a process gas for deposition into the reaction chamber; An ionization device coupled to the reaction device and for ionizing the purge gas; and a second vent line connected to the gas ionization device for introducing a purge gas for cleaning the reaction chamber into the gas ionization device. Since the process gas does not pass through the gas ionization device during introduction into the reaction chamber, the detached particles inside the chamber of the gas ionization device do not enter the reaction chamber with the process gas, thereby improving product yield. Specifically, the detached particles inside the chamber enter the reaction chamber only with the cleaning gas, and the cleaning process ends. It is then pumped away with the purge gas using a vacuum pump so as not to affect the product yield of the process (eg coating process).
  • a vacuum pump so as not to affect the product yield of the process (eg coating process).
  • FIG. 1 shows a schematic structural view of a vapor deposition apparatus provided in accordance with some embodiments of the present invention
  • FIG. 2 shows a schematic structural view of a vapor deposition apparatus provided in accordance with some embodiments of the present invention
  • FIG. 3 is a schematic structural view showing an example of a three-way control mechanism
  • FIG. 4 shows a schematic structural view of a vapor deposition apparatus provided in accordance with some embodiments of the present invention.
  • connection may mean that two members are directly connected, or that two members are indirectly connected via a third member in the middle; the term “connected” may mean the internal passage of two members. Direct connection may also mean that two members are indirectly connected via a third member in the middle.
  • FIG. 1 shows a schematic structural view of a vapor deposition apparatus provided in accordance with some embodiments of the present invention.
  • a vapor deposition apparatus includes: a reaction apparatus 1 having a reaction chamber; a first ventilation duct 5 connected to the reaction chamber for introducing a process gas for deposition into the reaction chamber; An ionization device 3 connected to the reaction device 1 and for ionizing the cleaning gas; and a second ventilation duct 6 connected to the gas ionization device for introducing the cleaning gas of the cleaning reaction chamber into the gas ionization Device 3.
  • the reaction chamber needs to be cleaned by dry etching to remove the film on the inner wall.
  • the dry etching process usually uses an ionization device (for example, a remote plasma source (RPS), etc.) to dissociate the cleaning gas (for example, nitrogen trifluoride), and then the dissociated ions are introduced into the reaction chamber and the inner wall.
  • the film components are chemically reacted to effect the cleaning process.
  • the vapor deposition apparatus provided according to some embodiments shown in FIG. 1, it can be used for coating a workpiece or a substrate, and can also be used for cleaning the reaction chamber after the coating process is finished to clean the inner wall of the reaction chamber. Plating.
  • the process gas enters the reaction chamber through the first vent line without passing through the gas ionization device.
  • the cleaning gas enters the gas ionization device through the second ventilation duct, and after ionization, enters the reaction chamber without passing through the first ventilation duct.
  • the detached particles that fall off due to aging or other reasons inside the chamber of the gas ionization device do not enter the reaction chamber with the process gas, thereby improving the product yield.
  • the detached particles inside the chamber enter the reaction chamber only with the purge gas, after the cleaning process is completed. It is pumped away with the cleaning gas by a vacuum pump so as not to affect the product yield of the process (such as the coating process).
  • the vapor deposition apparatus shown in FIG. 1 may be a plasma chemical vapor deposition apparatus for performing a plasma chemical vapor deposition process, or may also be used for a vapor deposition apparatus for performing physical, chemical or other types of vapor deposition processes. .
  • the reaction apparatus shown in FIG. 1 is a plasma chemical vapor deposition apparatus performing a plasma chemical vapor deposition process
  • the reaction apparatus may further include upper and lower electrodes disposed opposite to each other disposed in the reaction chamber (not shown in the drawing) ) for forming an electric field in the reaction chamber that electrolyzes the process gas into a plasma.
  • the reaction device further includes a matching box (not shown) for matching the RF voltage applied to the upper electrode to achieve the lowest reflected power.
  • the RF voltage used is a radio frequency voltage of 13.56 MHz.
  • the reaction apparatus may include an upper electrode and a lower electrode, and an electric field may be generated therebetween.
  • the process gas entering the reaction chamber is ionized to form a plasma state by the electric field generated by the upper electrode and the lower electrode, and then combined with the reacted atoms to form a desired film. Thereby, ion chemical vapor deposition can be achieved.
  • the process gas and the purge gas are ultimately connected to an intake port of the process chamber through a common vent line or gas feedthrough through, however in other embodiments Process gases and purge gases can also be introduced into different inlet ports of the process chamber, respectively.
  • the vapor deposition apparatus includes: a reaction device 1 having a reaction chamber; a first ventilation duct 5 connected to the reaction chamber for introducing a process gas for deposition into the reaction chamber; An ionization device 3 connected to the reaction device 1 and for ionizing the cleaning gas; and a second ventilation duct 6 connected to the gas ionization device for introducing the cleaning gas of the cleaning reaction chamber into the gas ionization Device 3.
  • the vapor deposition apparatus further includes a common ventilation duct 4 and a three-way control mechanism 2.
  • one end of the common ventilation duct 4 communicates with the reaction chamber, and the other end is connected with the first vent of the three-way control mechanism 2 (the vent of the left side of the three-way control mechanism 2 in FIG. 2);
  • the first ventilation The duct 5 and the gas ionization device 3 are respectively connected to the second vent of the three-way control mechanism 2 (the vent of the lower side of the three-way control mechanism 2 in Fig. 2) and the third vent (the three-way in Fig. 2)
  • the vent of the right side of the control mechanism 2 is in communication; and the three-way control mechanism 2 is configured to control the common venting duct 4 to communicate with or communicate with the first venting duct 5.
  • the reaction chamber of the reaction apparatus is in a vacuum and a high temperature state during the working process (coating process), in the vapor deposition apparatus according to FIGS. 1 and 2, And reaction
  • the conduits to which the chambers are directly connected typically need to be made of a material that is resistant to high temperatures.
  • these pipes are made of a ceramic material to prevent damage to the pipe by high temperatures.
  • a common venting duct may be made of a high temperature resistant material, such as ceramic, such that the first venting duct and/or the second venting duct may be provided or fabricated at a lower cost.
  • the three-way control mechanism 2 is a dual vacuum system (DVS, Dual Vacuum System) having a switching mechanism.
  • Figure 3 shows a schematic view of the structure of a double vacuum system DVS.
  • the double vacuum system may include a first vacuum chamber 21 in communication with the first ventilation duct 5, a second vacuum chamber 22 in communication with the gas ionization device 3, and a switching mechanism 23.
  • the switching mechanism 23 can communicate the common ventilation duct 4 with the first vacuum chamber 21 by a switching operation, or connect the common ventilation duct 4 with the second vacuum chamber 22, or simultaneously block the common ventilation duct 4 and the first vacuum. The communication between the chamber 21 and the second vacuum chamber 22 is achieved.
  • the double vacuum system 2 is provided between the reaction chamber and the gas ionization apparatus, vacuum isolation is provided between the reaction chamber and the gas ionization apparatus, so that when it is necessary to replace or maintain the gas ionization apparatus There is no need to cool and fill the entire vapor deposition apparatus, only the switching mechanism of the double vacuum system needs to be operated, the communication between the common ventilation duct and the second vacuum chamber is blocked, and the second ventilation duct is closed.
  • the gas ionization structure can be separated from the entire vapor deposition apparatus, allowing gas ionization equipment to be replaced and maintained without the need to cool and fill the reaction chamber.
  • the replacement or maintenance operation of the gas ionization apparatus can be prevented from being affected by the reaction chamber, and the vacuum environment of the reaction chamber can be maintained during the replacement or maintenance operation of the gas ionization apparatus, thereby enabling The marrying rate of the vapor deposition equipment is remarkably improved, thereby increasing productivity.
  • the switching mechanism is a dual vacuum system valve (DVS valve); the gas ionization device is a remote plasma source (RPS).
  • DVS valve dual vacuum system valve
  • RPS remote plasma source
  • the vapor deposition apparatus according to some embodiments shown in FIG. 4 further includes: a first control mechanism 7 disposed in the first ventilation duct 5 for opening or closing the first ventilation duct , thereby causing the first ventilation duct to be in a connected state or a non-connected state such that the process gas can or cannot pass through the first ventilation duct; and a second control mechanism 8 disposed in the second ventilation duct 6 for opening or closing the The second ventilation duct is such that the first ventilation duct is in a connected state or a non-connected state, so that the cleaning gas can or cannot pass through the second ventilation duct.
  • the first control mechanism When the process gas is required to flow into the reaction chamber, the first control mechanism can be operated to bring the first ventilation duct into communication.
  • the first control mechanism is operable to place the first venting conduit in a closed state when no process gas is required to flow into the reaction chamber. In this way, it is possible to effectively prevent the problems associated with the coating caused by the introduction of the process gas into the reaction chamber when the process gas is not required to pass.
  • the second control mechanism can be operated to bring the second ventilation duct into communication state, so that the cleaning gas can be introduced into the gas ionization device and passed into the reaction chamber after being ionized to perform the cleaning operation.
  • the second control mechanism can be operated to bring the second ventilation duct into a closed state, so that the cleaning gas can be prevented from being accidentally introduced into the gas ionization device and carrying the gas ionization device.
  • the detached particles in the chamber enter the reaction chamber and have an adverse effect on the coating process.
  • the vapor deposition apparatus may further include a process gas source 9 connected to the first ventilation duct 5 for supplying a process gas and connected to the second ventilation duct 6 for supplying a purge gas.
  • the process gas source 9 and/or the purge gas source 10 may be field set or remotely located, depending on the needs of the process.
  • the process gas source 9 and/or the purge gas source 10 may be a gas source specifically provided for a plasma chemical vapor deposition apparatus, or may be a gas source that supplies a process gas and/or a cleaning gas to a plurality of plasma chemical vapor deposition apparatuses.
  • first control mechanism and the second control mechanism may also be disposed at the process gas source and the purge gas source, respectively.
  • the switching mechanism 23, the first control mechanism 7, and the second control mechanism 8 can each be constructed of a suitable valve, for example, a pneumatic valve as a control mechanism is shown in FIG.
  • these switching mechanisms and control mechanisms can also be hydraulic valves or other types of valves.
  • these valves can be controlled by different controllers or can be controlled by the same controller.
  • the coating process mainly includes the following steps:
  • the process gas of the process gas source (such as the reaction gas) enters the reaction chamber of the reaction device 1 through the first ventilation pipe 5, the double vacuum system 2, and the common ventilation pipe 4 in sequence.
  • the electric field is used to ionize the gas entering the reaction chamber to generate a plasma, and a desired film is formed on the workpiece or component to be coated through a chemical vapor deposition process.
  • the cleaning process mainly includes: a cleaning gas (for example, nitrogen trifluoride (NF 3 ) gas) is introduced from the cleaning gas source into the remote plasma source (RPS) 3 via the second ventilation duct 7 and dissociated into the fluoride ion F+ in the RPS 3 , F + ions enter the reaction chamber of the reaction device 1 through the double vacuum system 2 and the common ventilation duct 4, react with excess thin film (mainly Si compound) on the inner wall of the reaction chamber, and generate gaseous SiF 4 , It is then pumped away by a vacuum pump to achieve the effect of cleaning the reaction chamber.
  • a cleaning gas for example, nitrogen trifluoride (NF 3 ) gas
  • RPS remote plasma source
  • the replacement of the RPS mainly includes: when the RPS 3 is down, the switching mechanism of the double vacuum system 2, the first control mechanism 7 and the second control mechanism 8 are controlled, so that the paths in these mechanisms are all blocked, so that the RPS is Isolation is carried out throughout the plasma chemical vapor deposition equipment.
  • the RPS can then be removed from the plasma chemical vapor deposition apparatus and a new RPS installed. In this process, there is no need to cool down the entire plasma chemical vapor deposition equipment, which can greatly shorten the downtime.
  • a dual vacuum system is provided between the reaction chamber (or gas supply through the line) and a remote plasma source (RPS) that provides a vacuum between the reaction chamber and the remote plasma source. Isolation, so that when the RPS needs to be replaced or cleaned, there is no need to cool down the reaction chamber and fill the atmosphere. It is only necessary to close the double vacuum system and close the first ventilation duct and the second ventilation duct to replace the RPS. Significantly reduce the downtime of RPS, increase the grafting rate of plasma chemical vapor deposition equipment, and increase productivity.
  • RPS remote plasma source
  • the supply passage of the process gas (the first ventilation duct 7) is directly connected to the double vacuum system without passing through the RPS, so that the disassembly of the RPS is more convenient, and since the process gas does not pass the RPS, Therefore, the debris falling off the oxide film on the inner wall of the RPS does not cause the product yield to decrease as the process gas enters the reaction chamber.

Abstract

一种气相沉积设备,包括:具有反应腔室的反应设备(1);连接到反应腔室的第一通气管道(5),用于将沉积用的工艺气体导入反应腔室;气体电离设备(3),其连接到反应设备(1)并用于对清洗气体进行电离;和连接到气体电离设备(3)的第二通气管道(6),用于将清洗反应腔室的清洗气体导入气体电离设备(3)。

Description

一种气相沉积设备
本申请要求于2015年7月31日递交中国专利局的、申请号为201510465152.3的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本发明涉及显示器件制造领域,并且尤其涉及一种用于对玻璃基板镀膜的气相沉积设备。
背景技术
气相沉积是常用的镀膜工艺。例如,在显示技术领域,往往需要采用多次等离子化学气相沉积过程,在反应腔室内对衬底基板(如玻璃基板)进行镀膜,形成功能图案。然而,在对玻璃基板进行一段时间的镀膜后,气相沉积设备的反应腔室的内壁上沉积有多余的薄膜,影响产品良率。
在现有技术中,通常,工艺气体和清洗气体分别从各自的气源经过两支管道在电离设备处汇合为一个路径进入反应腔室,根据需要通过阀门的控制选择工艺气体和清洗气体中的一支。
现有技术存在以下缺陷:电离设备的内部也具有一个小腔室,该腔室内壁都镀有氧化膜,而随着电离设备的老化,其腔室内壁的氧化膜会脱落,成为脱落颗粒物,若工艺气体通过该电离设备的腔室再到达反应腔室时,可能会将电离设备的腔室内的脱落颗粒物随着工艺气体进入反应腔室,从而影响产品良率。
发明内容
本发明的目的在于提供一种气相沉积设备,其能够避免由于电离设备内部腔室的膜层脱落导致对产品良率的影响。
根据本发明的第一个方面,提供了一种气相沉积设备。
在一些实施方式中,气相沉积设备包括:具有反应腔室的反应设备;连接到所述反应腔室的第一通气管道,用于将沉积用的工艺气体导入所述反应腔室;气体电离设备,其连接到所述反应设备并用于对清洗气体进行电离;和连接到所述气体电离设备的第二通气管道,用于将清洗反应腔室的清洗气体导入所述气体电离设备。
根据一些实施方式,气相沉积设备还包括公共通气管道,其中,所述工艺气体依次通过所述第一通气管道和所述公共通气管道而进入所述反应腔室中,所述清洗气体 依次通过所述第二通气管道、所述气体电离设备和所述公共通气管道而进入所述反应腔室中。
根据一些实施方式,所述反应设备还具有第一端口和第二端口,所述工艺气体通过所述第一通气管道从所述第一端口进入所述反应腔室中,所述清洗气体依次通过所述第二通气管道和所述气体电离设备从所述第二端口进入所述反应腔室中。
根据一些实施方式,气相沉积设备还包括公共通气管道和三通控制机构,其中:所述公共通气管道的一端与反应腔室相连通,另一端与三通控制机构的第一通气口相连通;所述第一通气管道和所述气体电离设备与所述三通控制机构的第二通气口和第三通气口一一对应相连;并且所述三通控制机构配置为控制所述公共通气管道与所述第一通气管道相连通或与所述气体电离设备相连通,或同时阻断所述公共通气管道与所述第一通气管道和所述气体电离设备的连通。
根据一些实施方式,三通控制机构为具有切换机构的二重真空系统(DVS)。根据进一步一些实施方式,所述切换机构为二重真空系统阀(DVS valve);所述气体电离设备为远程等离子体源(RPS)。
根据一些实施方式,与第一通气管道连通的第一真空腔室;与气体电离设备连通的第二真空腔室;和所述切换机构,所述切换机构配置为使得所述公共通气管道与所述第一真空腔室连通,或与所述第二真空腔室连通,或同时阻断所述公共通气管道与所述第一真空腔室和所述第二真空腔室的连通。
根据一些实施方式,所述气相沉积设备还包括:设置在第一通气管道中的第一控制机构,用于打开或关闭所述第一通气管道;和/或设置在第二通气管道中的第二控制机构,用于打开或关闭所述第二通气管道。
根据一些实施方式,气相沉积设备还包括用于提供工艺气体的工艺气体源和用于提供清洗气体的清洗气体源。
根据一些实施方式,公共通气管道由陶瓷材料制成。
根据一些实施方式,反应设备包括设置在反应腔室内的彼此相对的上部电极和下部电极,用于在反应腔室中形成将工艺气体电解为等离子的电场。在进一步的示例性实施方式中,反应设备包括还包括匹配箱,用于匹配施加到上部电极的射频电压以实现最低的反射功率。
根据本发明实施方式提供的气相沉积设备,包括:具有反应腔室的反应设备;连接到所述反应腔室的第一通气管道,用于将沉积用的工艺气体导入所述反应腔室;气体电离设备,其连接到所述反应设备并用于对清洗气体进行电离;和连接到所述气体电离设备的第二通气管道,用于将清洗反应腔室的清洗气体导入所述气体电离设备。由于工艺气体在被导入反应腔室的过程中不经过气体电离设备,因此,气体电离设备的腔室内部的脱落颗粒物不会随着工艺气体进入反应腔室,因而能够提高产品良率。具体的,腔室内部的脱落颗粒物只随着清洗气体进入反应腔室,可在清洗过程结束之 后与清洗气体一起用真空泵抽走,从而不会对工艺过程(例如镀膜过程)的产品良率产生影响。
附图说明
现在将通过举例的方式结合附图对本发明的优选实施方式进行描述,其中:
图1示出了根据本发明的一些实施方式提供的气相沉积设备的结构示意图;
图2示出了根据本发明的一些实施方式提供的气相沉积设备的结构示意图;
图3示出了三通控制机构的一个示例的结构示意图;
图4示出了根据本发明的一些实施方式提供的气相沉积设备的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚,以下将结合附图及具体实施方式对本发明进行进一步详细说明。应当理解的是,本发明不仅限于下文提出或在附图中图示的细节。这些细节是出于说明而非限定的目的,以使本领域技术人员更透彻地理解本发明。本领域的技术人员应当清楚,本发明的技术方案在不具有某些具体细节的情况下也是可以实现的。
需要说明的是,本说明书中,术语“连接”既可以表示两个构件直接连接,也可以表示两个构件经由中间的第三构件间接连接;术语“连通”既可以表示两个构件的内部通道直接连接,也可以表示两个构件经由中间的第三构件间接连通。
图1示出了根据本发明的一些实施方式提供的气相沉积设备的结构示意图。如图1所示,气相沉积设备包括:具有反应腔室的反应设备1;连接到所述反应腔室的第一通气管道5,用于将沉积用的工艺气体导入所述反应腔室;气体电离设备3,其连接到所述反应设备1并用于对清洗气体进行电离;和连接到所述气体电离设备的第二通气管道6,用于将清洗反应腔室的清洗气体导入所述气体电离设备3。
一般地,需要通过干法刻蚀清洗反应腔室以去除内壁上的薄膜。干法刻蚀过程通常采用电离设备(例如,远程等离子源(RPS)等)对清洗气体(例如三氟化氮)进行解离,然后将解离得到的离子通入反应腔室,与内壁上的薄膜成分进行化学反应以实现清洗过程。在图1所示的根据一些实施方式提供的气相沉积设备中,可用于对工件或基板进行镀膜,还可用于在镀膜工艺结束后对反应腔室进行清洗,以清洗掉反应腔室内壁上的镀层。在镀膜时,工艺气体通过第一通气管道进入反应腔室,而不经过气体电离设备。在清洗时,清洗气体经过第二通气管道进入气体电离设备,电离后进入反应腔室,而不经过第一通气管道。这样,气体电离设备的腔室内部因老化或其他原因而脱落的脱落颗粒物,不会随着工艺气体进入反应腔室,因而能够提高产品良率。另外,腔室内部的脱落颗粒物只随着清洗气体进入反应腔室,可在清洗过程结束之后 与清洗气体一起用真空泵抽走,从而不会对工艺过程(例如镀膜过程)的产品良率产生影响。
需要说明的是,图1所示的气相沉积设备可以是用于执行等离子化学气相沉积工艺的等离子化学气相沉积设备,或者也可以用于执行物理、化学或其他类型的气相沉积工艺的气相沉积设备。
当图1所示的气相沉积设备是执行等离子化学气相沉积工艺的等离子化学气相沉积设备时,其反应设备还可包括设置在反应腔室内的彼此相对的上部电极和下部电极(图中未示出),用于在反应腔室中形成将工艺气体电解为等离子的电场。在一些实施方式中,反应设备还包括匹配箱(图中未示出),用于匹配施加到上部电极的射频电压以实现最低的反射功率。根据一个示例,所使用的射频电压为13.56MHZ的射频电压。
反应设备可包括上部电极和下部电极,二者之间可产生电场。进入反应腔室的工艺气体在上部电极和下部电极产生的电场的作用下电离生成等离子体状态,然后与反应的原子结合,生成所需要的薄膜。由此,可实现离子化学气相沉积。
在图1所示的气相沉积设备中,工艺气体和清洗气体最终通过一个公共的通气管道或气体供应通过管道(Gas Feeding Through)连接到工艺腔室的一个进气端口,然而在其他实施方式中,工艺气体和清洗气体也可以分别导入工艺腔室的不同的进气端口。
图2示出了根据本发明的一些实施方式提供的气相沉积设备的结构示意图。如图2所示,气相沉积设备包括:具有反应腔室的反应设备1;连接到所述反应腔室的第一通气管道5,用于将沉积用的工艺气体导入所述反应腔室;气体电离设备3,其连接到所述反应设备1并用于对清洗气体进行电离;和连接到所述气体电离设备的第二通气管道6,用于将清洗反应腔室的清洗气体导入所述气体电离设备3。
此外,气相沉积设备还包括公共通气管道4和三通控制机构2。其中:公共通气管道4的一端与反应腔室相连通,另一端与三通控制机构2的第一通气口(图2中三通控制机构2的左侧的通气口)相连通;第一通气管道5和所述气体电离设备3分别与所述三通控制机构2的第二通气口(图2中三通控制机构2的下侧的通气口)和第三通气口(图2中三通控制机构2的右侧的通气口)相连通;并且三通控制机构2配置为控制所述公共通气管道4与所述第一通气管道5相连通或与所述气体电离设备3相连通。
在图2所示的根据一些实施方式提供的气相沉积设备中,由于工艺气体与清洗气体最终通过一个公共通气管道与反应腔室连接,因此无需对现有的反应腔室进行改造,从而有效地降低了气相沉积设备的制造成本。
在图1和图2所示的实施方式中,由于反应设备的反应腔室在工作过程(镀膜过程)中处于真空和高温状态,因此在根据图1和图2所示的气相沉积设备中,与反应 腔室直接连接的管道(第一通气管道、第二通气管道和/或公共通气管道)通常需要由耐高温的材料制成。
例如,作为一个示例,这些管道由陶瓷材料制成,这样可以防止高温对管道的破坏。在使用公共通气管道的情况下,可以仅公共通气管道由耐高温的材料(例如陶瓷)制成,这样可以以较低的成本提供或制造第一通气管道和/或第二通气管道。
在一个示例中,三通控制机构2为具有切换机构的二重真空系统(DVS,Dual Vacuum System)。图3示出了二重真空系统DVS的结构示意图。
如图3所示,二重真空系统可包括:第一真空腔室21,与第一通气管道5连通;第二真空腔室22,与气体电离设备3连通;和切换机构23。切换机构23能够通过切换操作使公共通气管道4与第一真空腔室21连通,或使所述公共通气管道4与第二真空腔室22连通,或者同时阻断公共通气管道4与第一真空腔室21和第二真空腔室22的连通。
如上文所述,由于在反应腔室与气体电离设备之间提供了二重真空系统2,因此在反应腔室与气体电离设备之间提供了真空隔离,使得在需要更换或维护气体电离设备时,无需对整个气相沉积设备进行降温和充大气,只需要对该二重真空系统的切换机构进行操作,阻断公共通气管道与第二真空腔室之间的连通,并且关闭第二通气管道,即可将气体电离结构从整个气相沉积设备中隔开出来,从而可以在无需对反应腔室进行降温和充大气的情况下对气体电离设备进行更换和维护。
通过采用上述配置,对气体电离设备进行的更换或维护操作能够不受反应腔室的影响,并且在对气体电离设备进行更换或维护操作的过程中也能够维持反应腔室的真空环境,因而能够显著地提高气相沉积设备的嫁动率,进而提高生产率。
在一些实施方式中,所述切换机构为二重真空系统阀(DVS valve);所述气体电离设备为远程等离子体源(RPS,Remote Plasma Source)。
在另一些实施方式中,图4所示的根据一些实施方式提供的气相沉积设备还包括:设置在第一通气管道5中的第一控制机构7,用于打开或关闭所述第一通气管道,从而使第一通气管道处于连通状态或非连通状态,使得工艺气体能够或不能通过第一通气管道;和设置在第二通气管道6中的第二控制机构8,用于打开或关闭所述第二通气管道,从而使第一通气管道处于连通状态或非连通状态,使得清洗气体能够或不能通过第二通气管道。
需要说明的是,在未示出的其他实施方式中,可以仅提供第一控制机构或仅提供第二控制机构。
在需要工艺气体流入反应腔室时,可操作第一控制机构,使第一通气管道处于连通状态。在不需要工艺气体流入反应腔室时,可操作第一控制机构,使第一通气管道处于关闭状态。这样,可以有效地防止在不需要工艺气体通入时,工艺气体通入反应腔室引起的与镀膜有关的问题。
在需要对反应腔室进行清洗时,可操作第二控制机构,使第二通气管道处于连通状态,这样,清洗气体可通入气体电离设备并在被电离后通入反应腔室以执行清洗操作。在不需要对反应腔室进行清洗时,可操作第二控制机构,使第二通气管道处于关闭状态,这样,可以有效地防止因清洗气体被意外地通入气体电离设备并携带气体电离设备的腔室内的脱落颗粒物进入反应腔室而对镀膜工艺产生的不良影响。
此外,在图4所示的示例性实施方式中,气相沉积设备还可包括连接到第一通气管道5用于提供工艺气体的工艺气体源9和连接到第二通气管道6用于提供清洗气体的清洗气体源10。在未示出的各种实施方式中,工艺气体源9和/或清洗气体源10可以是现场设置的,也可以是远程设置的,这取决于工艺过程的需要。工艺气体源9和/或清洗气体源10可以是专门针对一个等离子化学气相沉积设备设置的气体源,也可以是为多个等离子化学气相沉积设备提供工艺气体和/或清洁气体的气体源。
在其他未示出的实施方式中,第一控制机构和第二控制机构也可以分别设置在工艺气体源和清洗气体源处。
在一些实施方式中,切换机构23、第一控制机构7和第二控制机构8均可由适当的阀构成,例如,图4中示出了作为控制机构的气动阀。然而,这些切换机构和控制机构也可以是液压阀或其他类型的阀。此外,这些阀可分别由不同的控制器控制,或可由同一个控制器控制。
下面将以气相沉积设备为等离子化学气相沉积设备为例,结合附图和具体实施方式对根据本发明实施方式的气相沉积的设备的工作原理进行详细的说明。
假设通过本发明提供的气相沉积设备执行等离子化学气相沉积工艺,在反应腔室内进行镀膜,然后对反应腔室进行清洗。
镀膜工艺过程主要包括以下步骤:
1、操作第一控制机构7使第一通气管道5打开,从而工艺气体能够通过第一通气管道5;操作第二控制机构8使第二通气管道6关闭,从而清洗气体不能通过第二通气管道6。
2、工艺气体源的工艺气体(如反应气体)依次经由第一通气管道5、二重真空系统2、公共通气管道4,进入反应设备1的反应腔室。
3、将射频电压(13.56MHz)经过匹配器(图中未示出)传到反应设备的上部电极,并在反应腔室中形成电场;
4、利用所述电场将进入反应腔室的气体电离生成等离子,经过化学气相沉积工艺过程,在待镀膜的工件或部件上形成需要的薄膜。
清洗过程主要包括:清洗气体(例如,三氟化氮(NF3)气体)由清洗气体源经由第二通气管道7进入远程等离子源(RPS)3,并在RPS 3中解离成氟离子F+,F+离子经由二重真空系统2和公共通气管道4进入反应设备1的反应腔室,与反应腔室内壁 上的多余的薄膜(主要是Si的化合物)进行反应,并生成气态的SiF4,然后被真空泵抽走,以达到反应腔室清洗的效果。
RPS的更换主要包括:在RPS 3宕机时,控制二重真空系统2的切换机构、第一控制机构7和第二控制机构8,使这些机构中的通路均处于阻断状态,从而RPS从整个等离子化学气相沉积设备中隔离出来。然后,可以将RPS从等离子化学气相沉积设备中移除,并安装新的RPS。在此过程中,无需对整个等离子化学气相沉积设备进行降温充气,从而能够大大缩短宕机时间。
根据上述实施方式的等离子化学气相沉积设备能够提供以下优点:
首先,提供了设置在反应腔室(或气体供给通过管路)与远程等离子源(RPS)之间的二重真空系统,该二重真空系统能够在反应腔室与远程等离子源之间提供真空隔离,从而在需要更换或清洗RPS时,无需对反应腔室降温和充大气,只需要关闭二重真空系统,并且关闭第一通气管道和第二通气管道,即可对RPS进行更换,从而能够显著地降低RPS的宕机时间,提高等离子化学气相沉积设备的嫁动率,提高生产率。
其次,在上述等离子化学气相沉积设备中,工艺气体的供给通道(第一通气管道7)直接连接到二重真空系统而不经过RPS,从而RPS的拆卸更加方便,并且由于工艺气体不通过RPS,因此RPS内壁上氧化膜层脱落的碎屑不会随着工艺气体进入反应腔室导致产品良率下降。
再次,在DVS的基础上,结合DVS本身所具有的接口,不改动设备其它部件,只需要重新制作工艺气体至DVS段的管路,仍然可以使用原有控制系统,这样便无需对现有的系统进行大规模的改造。
至此,已经通过举例的方式详细地描述了认为本公开的优选实施方式,但是本领域的技术人员将认识到:在不背离本公开物的精神的情况下,可以对其进行进一步的修改和变化,并且所有这些修改和变化都应当落入本发明的保护范围内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种气相沉积设备,包括:
    具有反应腔室的反应设备;
    连接到所述反应腔室的第一通气管道,用于将沉积用的工艺气体导入所述反应腔室;
    气体电离设备,其连接到所述反应设备并用于对清洗气体进行电离;和
    连接到所述气体电离设备的第二通气管道,用于将清洗反应腔室的清洗气体导入所述气体电离设备。
  2. 根据权利要求1所述的气相沉积设备,所述气相沉积设备还包括公共通气管道,其中,所述工艺气体依次通过所述第一通气管道和所述公共通气管道而进入所述反应腔室中,所述清洗气体依次通过所述第二通气管道、所述气体电离设备和所述公共通气管道而进入所述反应腔室中。
  3. 根据权利要求1所述的气相沉积设备,其中,所述反应设备还具有第一端口和第二端口,所述工艺气体通过所述第一通气管道从所述第一端口进入所述反应腔室中,所述清洗气体依次通过所述第二通气管道和所述气体电离设备从所述第二端口进入所述反应腔室中。
  4. 根据权利要求1所述的气相沉积设备,所述气相沉积设备还包括公共通气管道和三通控制机构,其中:
    所述公共通气管道的一端与反应腔室相连通,另一端与三通控制机构的第一通气口相连通;
    所述第一通气管道和所述气体电离设备与所述三通控制机构的第二通气口和第三通气口一一对应相连;并且
    所述三通控制机构配置为控制所述公共通气管道与所述第一通气管道相连通或与所述气体电离设备相连通,或同时阻断所述公共通气管道与所述第一通气管道和所述气体电离设备的连通。
  5. 根据权利要求4所述的气相沉积设备,其中,所述三通控制机构为具有切换机构的二重真空系统。
  6. 根据权利要求4所述的气相沉积设备,其中,所述切换机构为二重真空系统阀;并且
    所述气体电离设备为远程等离子体源。
  7. 根据权利要求5所述的气相沉积设备,其中,所述二重真空系统包括:
    与第一通气管道连通的第一真空腔室;
    与气体电离设备连通的第二真空腔室;和
    所述切换机构,所述切换机构配置为使得所述公共通气管道与所述第一真空腔室连通,或与所述第二真空腔室连通,或同时阻断所述公共通气管道与所述第一真空腔室和所述第二真空腔室的连通。
  8. 根据权利要求1至7中任一项所述的气相沉积设备,所述气相沉积设备还包括:
    设置在第一通气管道中的第一控制机构,用于打开或关闭所述第一通气管道;和/或
    设置在第二通气管道中的第二控制机构,用于打开或关闭所述第二通气管道。
  9. 根据权利要求1至7中任一项所述的气相沉积设备,所述气相沉积设备还包括用于提供工艺气体的工艺气体源和用于提供清洗气体的清洗气体源。
  10. 根据权利要求2和4-7中任一项所述的气相沉积设备,其中,所述公共通气管道由陶瓷材料制成。
  11. 根据权利要求1至7中任一项所述的气相沉积设备,其中,所述反应设备包括位于反应腔室内相对而置的上部电极和下部电极,用于在反应腔室中形成将工艺气体电解为等离子的电场。
  12. 根据权利要求11所述的气相沉积设备,其中,所述反应设备还包括匹配箱,用于匹配施加到上部电极的射频电压以实现最低的反射功率。
PCT/CN2016/070139 2015-07-31 2016-01-05 一种气相沉积设备 WO2017020544A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/327,024 US10329666B2 (en) 2015-07-31 2016-01-05 Vapor deposition apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510465152.3 2015-07-31
CN201510465152.3A CN104962880B (zh) 2015-07-31 2015-07-31 一种气相沉积设备

Publications (1)

Publication Number Publication Date
WO2017020544A1 true WO2017020544A1 (zh) 2017-02-09

Family

ID=54216960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070139 WO2017020544A1 (zh) 2015-07-31 2016-01-05 一种气相沉积设备

Country Status (3)

Country Link
US (1) US10329666B2 (zh)
CN (1) CN104962880B (zh)
WO (1) WO2017020544A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962880B (zh) * 2015-07-31 2017-12-01 合肥京东方光电科技有限公司 一种气相沉积设备
CN108729025B (zh) * 2018-04-03 2020-02-11 齐鲁工业大学 一种基于氨基改性聚苯乙烯的荧光传感器及其制备方法
CN111468473A (zh) * 2020-03-27 2020-07-31 通鼎互联信息股份有限公司 一种vad喷灯清洁装置及其清洁方法
CN114574837B (zh) * 2022-03-07 2023-03-21 苏州迈为科技股份有限公司 等离子体工艺设备中用于解决寄生等离子体的结构及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1565046A (zh) * 2002-07-01 2005-01-12 财团法人地球环境产业技术研究机构 具有使用氟气的清洗装置的cvd设备以及在cvd设备中使用氟气的清洗方法
JP2009194006A (ja) * 2008-02-12 2009-08-27 Soken Kogyo Kk ガス輸送路およびこれを利用した半導体処理装置
CN103572253A (zh) * 2012-07-30 2014-02-12 北京北方微电子基地设备工艺研究中心有限责任公司 反应腔室和具有它的半导体设备
CN103732972A (zh) * 2012-02-29 2014-04-16 株式会社富士金 清洗管线变更用通路块接头以及流体控制装置
CN104962880A (zh) * 2015-07-31 2015-10-07 合肥京东方光电科技有限公司 一种气相沉积设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919975A (en) * 1974-08-05 1975-11-18 Lloyd P Duncan Milker unit
US5141403A (en) * 1990-12-07 1992-08-25 Cornell Research Foundation, Inc. Two-level vacuum system controller with adjustable speed drive
US6194038B1 (en) * 1998-03-20 2001-02-27 Applied Materials, Inc. Method for deposition of a conformal layer on a substrate
US20030101938A1 (en) * 1998-10-27 2003-06-05 Applied Materials, Inc. Apparatus for the deposition of high dielectric constant films
KR100767762B1 (ko) * 2000-01-18 2007-10-17 에이에스엠 저펜 가부시기가이샤 자가 세정을 위한 원격 플라즈마 소스를 구비한 cvd 반도체 공정장치
US7204886B2 (en) * 2002-11-14 2007-04-17 Applied Materials, Inc. Apparatus and method for hybrid chemical processing
US6825126B2 (en) * 2002-04-25 2004-11-30 Hitachi Kokusai Electric Inc. Manufacturing method of semiconductor device and substrate processing apparatus
CN101736326B (zh) * 2008-11-26 2011-08-10 中微半导体设备(上海)有限公司 电容耦合型等离子体处理反应器
US8017527B1 (en) * 2008-12-16 2011-09-13 Novellus Systems, Inc. Method and apparatus to reduce defects in liquid based PECVD films
CN102094186B (zh) * 2009-12-15 2013-03-13 财团法人工业技术研究院 气体供应设备
WO2013074369A1 (en) * 2011-11-15 2013-05-23 Applied Materials, Inc. Method and apparatus for selective nitridation process
CN203794981U (zh) * 2014-03-31 2014-08-27 上海华力微电子有限公司 远程等离子体系统与化学气相沉积设备之间的连接装置
KR102323392B1 (ko) * 2014-06-13 2021-11-05 어플라이드 머티어리얼스, 인코포레이티드 Epi 챔버 상의 이중 보조 도펀트 유입구들

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1565046A (zh) * 2002-07-01 2005-01-12 财团法人地球环境产业技术研究机构 具有使用氟气的清洗装置的cvd设备以及在cvd设备中使用氟气的清洗方法
JP2009194006A (ja) * 2008-02-12 2009-08-27 Soken Kogyo Kk ガス輸送路およびこれを利用した半導体処理装置
CN103732972A (zh) * 2012-02-29 2014-04-16 株式会社富士金 清洗管线变更用通路块接头以及流体控制装置
CN103572253A (zh) * 2012-07-30 2014-02-12 北京北方微电子基地设备工艺研究中心有限责任公司 反应腔室和具有它的半导体设备
CN104962880A (zh) * 2015-07-31 2015-10-07 合肥京东方光电科技有限公司 一种气相沉积设备

Also Published As

Publication number Publication date
US20170204517A1 (en) 2017-07-20
CN104962880A (zh) 2015-10-07
US10329666B2 (en) 2019-06-25
CN104962880B (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
TWI688726B (zh) 氣體供給系統之閥體洩漏的檢查方法
WO2017020544A1 (zh) 一种气相沉积设备
TWI758786B (zh) 具有法拉第遮罩裝置的電漿處理系統
US8496756B2 (en) Methods for processing substrates in process systems having shared resources
CN101620972B (zh) 等离子体处理装置
TW201812083A (zh) 用於控制氣體流至製程腔室的方法及裝置
KR102469751B1 (ko) 재차 들어간 플로우 경로를 통한 밸브 매니폴드 데드레그 제거
TWI690616B (zh) 氣體供給系統、電漿處理裝置及電漿處理裝置之運用方法
TW201733697A (zh) 使用基於電漿的程序消除基板處理腔室中的氟殘留物之系統與方法
US10607819B2 (en) Cleaning method and processing apparatus
TWI760438B (zh) 遠端電漿流動性cvd腔室的方法及設備
US20130239889A1 (en) Valve purge assembly for semiconductor manufacturing tools
US10679827B2 (en) Method and apparatus for semiconductor processing chamber isolation for reduced particles and improved uniformity
CN108231632A (zh) 喷头和气体供应系统
JP2012169409A (ja) 半導体製造装置および半導体装置の製造方法
TW201535568A (zh) 基板處理裝置
TWI421369B (zh) 氣體供應設備
KR20160082550A (ko) 증착 장치 및 그 구동 방법
KR20140123905A (ko) 진공 장치 및 밸브 제어 방법
CN109402608A (zh) 一种原子层沉积设备的气路系统及其控制方法
US20230126058A1 (en) Dielectric window for substrate processing chamber
US20190206659A1 (en) Deposition apparatus including cleaning gas valve unit and deposition method including the same
TWI545222B (zh) The cleaning method of the plasma processing chamber
TWI550134B (zh) 用於電漿處理的製程方法以及光罩板材
US20220319821A1 (en) Sorption chamber walls for semiconductor equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15327024

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832037

Country of ref document: EP

Kind code of ref document: A1