WO2017020394A1 - 一种基于介电泳力场的药效检测方法及其系统 - Google Patents

一种基于介电泳力场的药效检测方法及其系统 Download PDF

Info

Publication number
WO2017020394A1
WO2017020394A1 PCT/CN2015/088948 CN2015088948W WO2017020394A1 WO 2017020394 A1 WO2017020394 A1 WO 2017020394A1 CN 2015088948 W CN2015088948 W CN 2015088948W WO 2017020394 A1 WO2017020394 A1 WO 2017020394A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
odep
chip
microchannel
light
Prior art date
Application number
PCT/CN2015/088948
Other languages
English (en)
French (fr)
Inventor
李志�
张光烈
李文荣
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2017020394A1 publication Critical patent/WO2017020394A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the invention relates to the technical field of pharmacodynamic research, in particular to a method and system for detecting a drug effect based on a dielectrophoretic force field.
  • Cell culture experiment It is an experimental method for studying the action of a drug at a cellular level and analyzing the mechanism of action. According to certain characteristics of the cell, the drug is added in a targeted manner, and the drug effect is analyzed by a visible phenomenon.
  • Immunopharmacological research methods The immune function changes are also observed at the cellular level, and the immune state is adjusted by enhancing or inhibiting the functions of various immunocompetent cells.
  • the target of the drug is still macroscopic and cannot be accurately applied to a single cell. Moreover, it relies on the judgment of the effect of the action of the drug on the visible macroscopic phenomenon. The operation of the experiment is also too complicated, which greatly reduces the efficiency of repeated experiments.
  • the electron microscope required for the third method is expensive, and the experimental cost is too high to be popularized.
  • the target of the drug is also macroscopic, and the role of the microscope is limited to observation.
  • the object of the present invention is to provide a method and system for detecting a drug effect based on a dielectrophoretic force field, which aims to solve the inaccurate effect of the pharmacodynamic analysis at the cellular level in the prior art. In a single cell, relying on macroscopic phenomena to make judgments.
  • a method for detecting a potency based on a dielectrophoretic force field comprises: Constructing a light-induced dielectrophoresis platform; injecting target cells and culture substrate into the ODEP chip of the light-induced dielectrophoresis platform; placing a drug to be detected at a microchannel end of the ODEP chip; The chip is coupled with alternating current to form a non-uniform electric field; the projected light is moved to control the movement of the target cell to the end of the microchannel to react with the drug to be detected; and the change of the target cell is recorded by a high speed CCD.
  • the method for detecting a drug efficacy wherein the step of "putting a drug to be detected at a microchannel end of the ODEP chip" specifically includes: One end of the microchannel of the ODEP chip forms a plurality of bifurcated channels; a specific drug to be tested is placed at the end of each bifurcation channel.
  • the method for detecting a pharmacodynamic effect wherein the step of 'moving the projection light to control the target cell to move to the end of the microchannel to react with the drug to be detected' is specifically: controlling the target cell to move to the bifurcation channel by moving the projection light The end of the reaction is reacted with the corresponding drug to be tested.
  • the method for detecting a pharmacodynamic effect wherein the bifurcation channel is set to six, and the diameter of the bifurcation channel is set to 0.5 mm.
  • the method for detecting a pharmacodynamic effect wherein the step of constructing the photoinduced dielectrophoresis platform specifically comprises: preparing an ODEP of a three-layer structure The chip is placed on the stage of the microscope; the computer is connected to the projector through the data line; and the lens of the projector is connected to the incident light path of the microscope through the switching device.
  • a pharmacodynamic detection system based on a dielectrophoretic force field comprising: a light-induced dielectrophoresis platform and a high speed for recording changes of target cells CCD;
  • the light-induced dielectrophoresis platform includes an ODEP chip for accommodating target cells and a culture substrate, a peripheral AC power supply for supplying an alternating current to the ODEP chip, and a projection light control device;
  • the ODEP The chip includes a microchannel, the end of the microchannel is used to place a drug to be detected, and the projection light device is used to move the projection light to control the movement of the target cell to the end of the microchannel to react with the drug to be detected.
  • the drug efficacy detecting system wherein the ODEP One end of the microchannel of the chip is provided with a plurality of bifurcation channels for placing different drugs to be detected.
  • the pharmacodynamic detection system wherein the projection light control device is specifically configured to: move the projection light to control the target cells to move to the end of the bifurcation channel and react with the corresponding drug to be tested.
  • the pharmacodynamic detecting system wherein the bifurcation channel is six, and the bifurcation channel has a diameter of 0.5 mm.
  • the pharmacodynamic detection system wherein the light-induced dielectrophoresis platform specifically comprises: an ODEP having a three-layer structure Chip, microscope, computer, and projector; said ODEP The chip is disposed on the stage of the microscope; the computer and the projector are connected by a data line to form the projection light control device; the lens of the projector is connected to the incident light path of the microscope through the switching device.
  • the present invention provides a method and system for detecting a drug effect based on a dielectrophoretic force field, and controls the movement of a target cell by means of light-induced dielectrophoresis, thereby realizing the action of the drug on a single cell, excluding other factors.
  • the operation is simple, and only after injecting the cultured target cells, other processes can be completely completed by software to realize automatic operation. Compared with the prior art research methods for observing cell changes using a transmission electron microscope, the cost is significantly reduced and the possibility of parallel operation is possible.
  • FIG. 1 is a flow chart of a method for detecting a drug effect based on a dielectrophoretic force field according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a micro-channel forming a 'harpoon' in the method for detecting a drug effect according to a specific embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a light-induced dielectrophoresis platform in a method for detecting a potency according to a specific embodiment of the present invention.
  • Fig. 4 is a flow chart showing the method of step S4 in the method for detecting efficacy of a specific embodiment of the present invention.
  • FIG. 5 is a schematic structural view of an ODEP chip in a method for detecting efficacy of a specific embodiment of the present invention.
  • the invention provides a method and system for detecting a drug effect based on a dielectrophoretic force field.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 it is a specific embodiment of the method for detecting the efficacy of a dielectrophoretic force field based on the present invention.
  • the method includes:
  • Dielectrophoresis refers to the translational motion of neutral particles located in a non-symmetric electric field due to the action of dielectric polarization.
  • the light-induced dielectrophoresis is a technique for realizing manipulation of small objects by using this principle as a micro-manipulation technique, with real-time reconfigurability of light control, flexibility of single-particle manipulation, and positioning accuracy. And the characteristics of multi-particle massive parallel processing capabilities.
  • the ODEP chip consists of a three-layer structure comprising: ITO glass coated with a 1 ⁇ m thick hydrogenated amorphous silicon (a-Si:H) coating as a substrate, common ITO The topmost layer of glass, and the PDMS or double-sided tape between the substrate and the uppermost layer encapsulates a microfluidic channel that is essentially 100 microns high.
  • a-Si:H hydrogenated amorphous silicon
  • the target cells are determined by the specific objectives of the experiment, and may be any suitable type of cells, and cultured using corresponding cell culture standard specifications.
  • the drug to be detected is placed at the end of the microchannel of the chip. Similar to the target cells, the drug to be detected may also be determined by a specific target of the experiment, and may be any suitable type of drug or a substance that exerts a physiological effect on cells.
  • the applied alternating current is 20 Vp-p. 25-300kHz AC.
  • step S5 moving the projected light to control the target cell to move to the end of the microchannel to react with the drug to be detected.
  • step S4 After the formation of a non-uniform electric field, the cells outside the spot begin to accelerate toward the spot due to the action of the forward dielectrophoretic force. Accordingly, by moving the projected light, it is possible to control the cells in the vicinity of the spot to follow the spot movement. In the above manner, the micromanipulation of the target cells can be achieved, and the single cells interact with the drug to be tested at the end of the microchannel, which provides great convenience for pharmacodynamic research.
  • the obtained target cell change image can be further processed and analyzed by other suitable functional modules to obtain corresponding pharmacodynamic analysis conclusions. This process can usually be determined by specific experimental objectives.
  • step S4 specifically includes:
  • the microchannel of the chip forms a plurality of bifurcation channels. Even if the microchannel forms a 'harpoon-like shape, the main microchannel is divided into a plurality of bifurcated channels at one end to form a plurality of microchannel ends for use as a reaction site for the drug to be detected and the target cells. Of course, for further expansion, the bifurcated channel may further form a bifurcation of the next level to form more microchannel ends.
  • the microchannel forming the 'harpoon shape' may specifically be as shown in the figure. 2 The structure shown.
  • the size of the base layer 110 is 35 mm by 20 mm; the size of the uppermost layer 120 is 40 mm by 15 mm; the main body microchannel 130
  • the bifurcation forms six symmetrical bifurcation channels, each of which has a diameter of 0.5 mm; the angle between the first bifurcated inclined section and the end is 5 °; the second bifurcation is between the inclined section and the end The angle is 14.63 °; the angle between the third bifurcated inclined section and the end is 23.6 °; the distance between the ends of the bifurcated channel is 2 mm.
  • the specific parameters of other specific ODEP chips are shown in Figure 2.
  • the step S5 Specifically, the target cells are moved to the end of the bifurcation channel by moving the projection light to react with the corresponding drug to be tested.
  • the step of constructing the light-induced dielectrophoresis platform may specifically include:
  • a three-layer ODEP chip was prepared and placed on the stage of the microscope.
  • the computer and the projector are connected through the data line, and the lens of the projector and the incident light path of the microscope are connected through the switching device.
  • the projector can be controlled by the computer to realize the control of the movement of the projected light.
  • the computer may be specifically implemented by any electronic computing device or operating platform having a computing power that satisfies the needs, such as a personal computer, a mobile computer, an all-in-one, and the like.
  • the control of the movement of the projected light can be controlled by a program in a preset computer, thereby realizing the automation of the drug effect detection, simplifying the operation and improving the efficiency of the repeated experiment.
  • the invention also provides a pharmacodynamic detection system based on a dielectrophoretic force field.
  • the system comprises: a light-induced dielectrophoresis platform and a high-speed CCD for recording changes of target cells.
  • the light-induced dielectrophoresis platform includes an ODEP chip for accommodating target cells and a culture substrate, and is ODEP
  • the chip provides AC external peripheral AC power and projection light control.
  • the ODEP The chip includes a microchannel, and the end of the microchannel is used to place a drug to be detected as a place where the target cell reacts with the drug to be detected.
  • the projection light device is configured to move the projection light to control the movement of the target cell to the end of the microchannel to react with the drug to be detected.
  • the ODEP One end of the microchannel of the chip is provided with a plurality of bifurcation channels for placing different drugs to be detected.
  • the projection light control device is specifically configured to: move the projection light to control the target cells to move to the end of the bifurcation channel and react with the corresponding drug to be tested.
  • FIG. 1 A specific embodiment of a light-induced dielectrophoresis platform for carrying out the methods and systems of the present invention is shown.
  • the light-induced dielectrophoresis platform specifically includes:
  • the ODEP chip 100 having a three-layer structure (i.e., the above substrate 110, the uppermost layer 120, and the intermediate microchannel 130) Where the substrate comprises a 1 micron thick hydrogenated amorphous silicon (a-Si:H) coating 11 ), a microscope 200 (only the microscope objective is shown), a computer 500 and a projector 300 .
  • the ODEP chip 100 is disposed on a stage of the microscope, and the computer 300 and the projector 400 pass through the data line 10 Connecting constitutes the projection light control device; the lens of the projector is connected to the incident optical path of the microscope through an adapter device (shown as A in FIG. 3), thereby hitting the spot B generated by the projector on the ODEP On the chip 100.
  • the projector can be controlled manually or by a preset program to control the movement of the spot (ie, projected light).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种基于介电泳力场的药效检测方法及其系统。其中,所述方法包括:构建光诱导介电泳平台;将靶细胞及培养基质注入所述光诱导介电泳平台的ODEP芯片(100)中;在所述ODEP芯片(100)的微通道(130)末端放置待检测药物;在所述ODEP芯片(100)加上交流电以形成非均匀电场;移动投射光以控制靶细胞移动至微通道(130)末端与待检测药物反应;通过高速CCD记录靶细胞的变化。

Description

一种基于介电泳力场的药效检测方法及其系统
技术领域
本发明涉及药效学研究技术领域,尤其涉及一种基于介电泳力场的药效检测方法及其系统。
背景技术
现有的药效学研究方法可分综合和分析法。综合法是指在整体动物身上进行,是在若干其它因素综合参与下考察药物作用。而分析法是指采用离体脏器,单一地考察药物对某一部分的作用。深入研究还可以包括细胞水平、分子水平的分析研究。其中,细胞水平的药效检测技术有以下三种:
1. 细胞培养实验:是在细胞水平研究药物作用并分析作用机理的实验方法,根据细胞的某些特性,针对性的加入药物,并通过可见的现象分析药效。
2. 免疫药理学研究方法:也是在细胞水平观察免疫功能改变,通过增强或抑制各种免疫活性细胞的功能来调整免疫状态。
3. 利用透射式电子显微镜观察细胞变化:主要用于抗生素作用机理的研究中,通过观察细胞在抗生素作用下发生的细胞形态及细胞结构的变化,分析药物对细胞的作用机理。
上述技术的前两种虽然能达到细胞水平的药效检测,但是药物的作用对象仍是宏观的,不能做到精确地作用于单个细胞。而且依赖于对可见宏观现象来进行药物的作用效果的判断。实验的操作也过于复杂,大大降低了实验重复操作的效率。第三种方法所需的电子显微镜价格昂贵,实验成本过高,无法普及。而且药物的作用对象也是宏观的,显微镜的作用仅限于观察。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种基于介电泳力场的药效检测方法及其系统,旨在解决现有技术中细胞水平的药效学分析无法精确的作用于单个细胞,依赖宏观现象来进行判断的问题。
为了达到上述目的,本发明采取了以下技术方案:
一种基于介电泳力场的药效检测方法,其中,所述方法包括 : 构建光诱导介电泳平台;将靶细胞及培养基质注入所述光诱导介电泳平台的 ODEP 芯片中;在所述 ODEP 芯片的微通道末端放置待检测药物;在所述 ODEP 芯片加上交流电以形成非均匀电场;移动投射光以控制靶细胞移动至微通道末端与待检测药物反应;通过高速 CCD 记录靶细胞的变化。
所述的药效检测方法,其中,所述“在所述 ODEP 芯片的微通道末端放置待检测药物'的步骤具体包括:使所述 ODEP 芯片的微通道一端形成若干分叉通道;在每一分叉通道的末端放置一种特定的待测药物。
所述的药效检测方法,其中,所述'移动投射光控制靶细胞移动至微通道末端与待检测药物反应'的步骤具体为:通过移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
所述的药效检测方法,其中,将所述分叉通道设置为 6 个,分叉通道的直径设置为 0.5mm 。
所述的药效检测方法,其中,所述构建光诱导介电泳平台的步骤具体包括:制备三层结构的 ODEP 芯片并置于显微镜的载物台上;将电脑与投影仪通过数据线连接;将所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连。
一种基于介电泳力场的药效检测系统,其中,所述系统包括:光诱导介电泳平台以及用于记录靶细胞的变化的高速 CCD ;所述光诱导介电泳平台包括用于容纳靶细胞及培养基质的 ODEP 芯片、为 ODEP 芯片提供交流电的外设交流电源以及投射光控制装置;所述 ODEP 芯片包括微通道,所述微通道的末端用于放置待检测药物;所述投射光装置用于移动投射光以控制靶细胞移动至微通道末端与待检测药物反应。
所述的药效检测系统,其中,所述 ODEP 芯片的微通道一端设置有若干个用于放置不同待检测药物的分叉通道。
所述的药效检测系统,其中,所述投射光控制装置具体用于:移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
所述的药效检测系统,其中,所述分叉通道为 6 个,分叉通道的直径为 0.5mm 。
所述的药效检测系统,其中,所述光诱导介电泳平台具体包括:具有三层结构的 ODEP 芯片、显微镜、电脑以及投影仪;所述 ODEP 芯片设置于所述显微镜的载物台上;所述电脑与投影仪通过数据线连接构成所述投射光控制装置;所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连。
有益效果:本发明提供的一种基于介电泳力场的药效检测方法及其系统,通过光诱导介电泳的方法控制靶细胞移动,真正的实现了药物作用于单个细胞,排除了其他因素对实验结果的影响。而且操作简单,只需注入培养好的靶细胞后,其他过程可以全部由软件完成,实现自动化操作。相较于现有技术中利用透射式电子显微镜观察细胞变化的研究方法,成本显著的降低而且具备了并行操作的可能。
附图说明
图 1 为本发明具体实施例的基于介电泳力场的药效检测方法的方法流程图。
图 2 为本发明具体实施例的药效检测方法中形成'鱼叉状'的微通道的结构示意图。
图 3 为本发明具体实施例的药效检测方法中的光诱导介电泳平台的示意图。
图 4 为本发明具体实施例的药效检测方法中的步骤 S4 的方法流程图。
图 5 为本发明具体实施例的药效检测方法中的 ODEP 芯片的结构示意图。
具体实施方式
本发明提供一种基于介电泳力场的药效检测方法及其系统。为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。 应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图 1 所示,为本发明的基于介电泳力场的药效检测方法的具体实施例。所述方法包括:
S1 、构建光诱导介电泳平台。其中介电泳是指位于非匀称电场的中性微粒由于介电极化的作用而产生的平移运动。所述光诱导介电泳是利用这一原理来实现对微小物体操纵的技术,其作为一种微操纵技术,具有其操作功能的光控实时可重构性、单粒子操控的灵活性与定位精度以及多粒子大规模并行处理能力的特点。
S2 、将靶细胞及培养基质注入所述光诱导介电泳平台的 ODEP 芯片中。其中,如图 3 及图 5 所示,所述 ODEP 芯片由三层结构构成,包括:涂有一层 1 微米厚的氢化非晶硅( a-Si:H )涂层的 ITO 玻璃作为基底,普通 ITO 玻璃的最上层,以及基底与最上层之间利用 PDMS 或是双面胶封装出一个基本为 100 微米高的微流体通道。
所述靶细胞由实验的具体目标所决定,具体可以为任何合适类型的细胞,并采用相应的细胞培养标准规范来进行培养。
S3 、在所述 ODEP 芯片的微通道末端放置待检测药物。与所述靶细胞类似,所述待检测药物也可以由实验的具体目标所决定,可以为任何合适的类型的药物或者是对细胞产生生理作用的物质。
S4 、在所述 ODEP 芯片加上交流电以形成非均匀电场。在本实施例中,所述外加的交流电为 20 Vp-p 、 25-300kHz 的交流电。
S5 、移动投射光以控制靶细胞移动至微通道末端与待检测药物反应。在步骤 S4 形成非均匀电场后,由于正向介电泳力的作用,光斑外的细胞开始加速向光斑移动。据此,通过移动投射光,便可以控制光斑附近的细胞会跟随光斑移动。通过上述方式,可以实现靶细胞的微操纵,使单个细胞与待测药物在微通道的末端发生相互作用,为药效学研究提供了极大的便利。
S6 、通过高速 CCD 记录靶细胞的变化。获得的靶细胞变化图像可以交由其他合适的功能模块进行进一步的运算处理与分析,从而获得相应的药效学分析结论。这一过程通常可以由具体的实验目标所决定。
通过上述光诱导介电泳这一微操纵技术,能够便捷的将单个靶细胞与待检测药物在微通道的末端进行反应,并观察靶细胞的变化,实现了真正意义的细胞水平检测,而不依赖于任何宏观现象。
在本发明的较佳实施中,如图 4 所述,步骤 S4 具体包括:
S41 、使所述 ODEP 芯片的微通道一端形成若干分叉通道。亦即使微通道形成'鱼叉状'的形状,将主体微通道在一端分成若干分叉通道从而形成多个微通道末端用于作为待检测药物与靶细胞的反应场所。当然,为进一步拓展,所述分叉通道也可以进一步形成下一层次的分叉以形成更多的微通道末端。在本发明的一具体实施例中,所述形成'鱼叉状'的微通道具体可以为如图 2 所示的结构。其中,所述基底层 110 的尺寸为 35mm 乘以 20mm ;最上层 120 的尺寸为 40mm 乘以 15mm ;所述主体微通道 130 分叉形成 6 个对称的分叉通道,每个通道的直径均为 0.5mm ;第一分叉倾斜段与末端之间的夹角为 5 °;第二分叉倾斜段与末端之间的夹角为 14.63 °;第三分叉倾斜段与末端的夹角为 23.6 °;分叉通道末端之间的距离为 2mm 。其他具体 ODEP 芯片具体参数如图 2 所示。
S42 、在每一分叉通道的末端放置一种特定的待测药物。
相对应地,所述步骤 S5 具体为:通过移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
由于在 ODEP 芯片内存在多条分叉微管道,因此,通过在不同管道末端放置多种不同药物,可实现多种药物的并行检测。这一方法极大的提高了药效检测的效率,能在短时间完成多种药物的药效检测,对实现高通量药物筛选具有很好的应用价值。
具体的,所述构建光诱导介电泳平台的步骤具体可以包括:
首先、制备三层结构的 ODEP 芯片并置于显微镜的载物台上。
然后、将电脑与投影仪通过数据线连接,并将所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连。由此,可以通过电脑控制投影仪进而实现投射光移动的控制。
所述电脑具体可以由任何具有满足需要的计算能力的电子运算设备或者运行平台完成,例如个人电脑、移动电脑、一体机等等。所述投射光移动的控制可以通过预先设置的电脑中的程序予以控制,从而实现药效检测的自动化,简化操作并提升重复实验效率。
本发明还提供了一种基于介电泳力场的药效检测系统。其中,所述系统包括:光诱导介电泳平台以及用于记录靶细胞的变化的高速 CCD 。
所述光诱导介电泳平台包括用于容纳靶细胞及培养基质的 ODEP 芯片、为 ODEP 芯片提供交流电的外设交流电源以及投射光控制装置。
所述 ODEP 芯片包括微通道,所述微通道的末端用于放置待检测药物,作为靶细胞与待检测药物反应的场所。所述投射光装置用于移动投射光以控制靶细胞移动至微通道末端与待检测药物反应。
较佳的是,所述 ODEP 芯片的微通道一端设置有若干个用于放置不同待检测药物的分叉通道。所述投射光控制装置具体用于:移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
通过上述方式以实现多种药物的并行检测,有效的提高药效检测的效率。
如图 1 所示,为实现本发明所述方法及其系统的光诱导介电泳平台的具体实施例。所述光诱导介电泳平台具体包括:
具有三层结构的 ODEP 芯片 100 (即上述基底 110 、最上层 120 以及中间的微通道 130 ,其中基底包含一层 1 微米厚的氢化非晶硅( a-Si:H )涂层 11 )、显微镜 200 (图中仅显示出显微镜的物镜)、电脑 500 以及投影仪 300 。所述 ODEP 芯片 100 设置于所述显微镜的载物台上、所述电脑 300 与投影仪 400 通过数据线 10 连接构成所述投射光控制装置;所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连(图 3 中 A 所示),从而将投影仪产生的光斑 B 打在所述 ODEP 芯片 100 上。可以通过电脑手动或者依据预设程序,控制投影仪从而控制光斑(即投射光)移动。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及本发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种基于介电泳力场的药效检测方法,其特征在于,所述方法包括 :
    构建光诱导介电泳平台;
    将靶细胞及培养基质注入所述光诱导介电泳平台的 ODEP 芯片中;
    在所述 ODEP 芯片的微通道末端放置待检测药物;
    在所述 ODEP 芯片加上交流电以形成非均匀电场;
    移动投射光以控制靶细胞移动至微通道末端与待检测药物反应;
    通过高速 CCD 记录靶细胞的变化。
  2. 根据权利要求 1 所述的药效检测方法,其特征在于,所述“在所述 ODEP 芯片的微通道末端放置待检测药物”的步骤具体包括:
    使所述 ODEP 芯片的微通道一端形成若干分叉通道;
    在每一分叉通道的末端放置一种特定的待测药物。
  3. 根据权利要求 2 所述的药效检测方法,其特征在于,将所述分叉通道设置为 6 个,分叉通道的直径设置为 0.5mm 。
  4. 根据权利要求 2 所述的药效检测方法,其特征在于,所述“移动投射光控制靶细胞移动至微通道末端与待检测药物反应”的步骤具体为:
    通过移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
  5. 根据权利要求 1 所述的药效检测方法,其特征在于,所述构建光诱导介电泳平台的步骤具体包括:
    制备三层结构的 ODEP 芯片并置于显微镜的载物台上;
    将电脑与投影仪通过数据线连接;
    将所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连。
  6. 一种基于介电泳力场的药效检测系统,其特征在于,所述系统包括:光诱导介电泳平台以及用于记录靶细胞的变化的高速 CCD ;所述光诱导介电泳平台包括用于容纳靶细胞及培养基质的 ODEP 芯片、为 ODEP 芯片提供交流电的外设交流电源以及投射光控制装置;所述 ODEP 芯片包括微通道,所述微通道的末端用于放置待检测药物;所述投射光装置用于移动投射光以控制靶细胞移动至微通道末端与待检测药物反应。
  7. 根据权利要求 6 所述的药效检测系统,其特征在于,所述 ODEP 芯片的微通道一端设置有若干个用于放置不同待检测药物的分叉通道。
  8. 根据权利要求 7 所述的药效检测系统,其特征在于,所述投射光控制装置具体用于:移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
  9. 根据权利要求 7 所述的药效检测系统,其特征在于,所述分叉通道有 6 个,分叉通道的直径为 0.5mm 。
  10. 根据权利要求 6 所述的药效检测系统,其特征在于,所述光诱导介电泳平台具体包括:具有三层结构的 ODEP 芯片、显微镜、电脑以及投影仪;所述 ODEP 芯片设置于所述显微镜的载物台上;所述电脑与投影仪通过数据线连接构成所述投射光控制装置;所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连。
PCT/CN2015/088948 2015-08-05 2015-09-06 一种基于介电泳力场的药效检测方法及其系统 WO2017020394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015104731621 2015-08-05
CN201510473162.1A CN105241940B (zh) 2015-08-05 2015-08-05 一种基于介电泳力场的药效检测方法及其系统

Publications (1)

Publication Number Publication Date
WO2017020394A1 true WO2017020394A1 (zh) 2017-02-09

Family

ID=55039663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088948 WO2017020394A1 (zh) 2015-08-05 2015-09-06 一种基于介电泳力场的药效检测方法及其系统

Country Status (2)

Country Link
CN (1) CN105241940B (zh)
WO (1) WO2017020394A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156100A (zh) * 2021-04-29 2021-07-23 南阳理工学院 一种基于人工智能的肿瘤耐药性检测装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092679B (zh) * 2015-08-14 2018-07-03 深圳大学 一种基于光诱导介电泳技术的单细胞控制方法
CN107304405A (zh) * 2016-04-22 2017-10-31 昆山科技大学 细胞分选装置及其方法
CN111908421B (zh) * 2020-07-31 2024-01-05 江南大学 基于光诱导介电泳的微纳自组装操作方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1337580A (zh) * 2000-08-08 2002-02-27 清华大学 微流体系统中实体分子的操纵方法
WO2012065075A2 (en) * 2010-11-12 2012-05-18 The Regents Of The University Of California Electrokinetic devices and methods for high conductance and high voltage dielectrophoresis (dep)
CN104328084A (zh) * 2013-07-22 2015-02-04 中国科学院沈阳自动化研究所 一种快速无模板的细胞图形化方法
WO2015017729A1 (en) * 2013-07-31 2015-02-05 Virginia Tech Intellectual Properties, Inc. Dielectrophoresis methods for determining a property of a plurality of cancer cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070095667A1 (en) * 2005-10-27 2007-05-03 Applera Corporation Optoelectronic Separation of Biomolecules
US8186913B2 (en) * 2007-04-16 2012-05-29 The General Hospital Corporation Systems and methods for particle focusing in microchannels
CN101135680B (zh) * 2007-07-13 2011-04-20 东南大学 光诱导介电泳辅助单细胞介电谱自动测试装置及测试方法
US9149806B2 (en) * 2012-01-10 2015-10-06 Biopico Systems Inc Microfluidic devices and methods for cell sorting, cell culture and cells based diagnostics and therapeutics
CN103257213B (zh) * 2012-02-20 2015-11-18 中科信生物科技(大连)有限公司 一种全集成高通量细胞水平微流控芯片药物评价系统
CN102866193B (zh) * 2012-09-04 2015-04-01 吴传勇 基于介电泳来操控液体中的粒子的器件及方法
CN102876570A (zh) * 2012-10-29 2013-01-16 重庆科技学院 一种高通量药物筛选微流控芯片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1337580A (zh) * 2000-08-08 2002-02-27 清华大学 微流体系统中实体分子的操纵方法
WO2012065075A2 (en) * 2010-11-12 2012-05-18 The Regents Of The University Of California Electrokinetic devices and methods for high conductance and high voltage dielectrophoresis (dep)
CN104328084A (zh) * 2013-07-22 2015-02-04 中国科学院沈阳自动化研究所 一种快速无模板的细胞图形化方法
WO2015017729A1 (en) * 2013-07-31 2015-02-05 Virginia Tech Intellectual Properties, Inc. Dielectrophoresis methods for determining a property of a plurality of cancer cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, SHUE ET AL.: "Automatic Manipulation of Polystyrene Beads via Optically-Induced Dielectrophoresis", MICRONANOELECTRONIC TECHNOLOGY, vol. 48, 28 February 2011 (2011-02-28), pages 132 - 137, ISSN: 1671-4776 *
ZHU, XIAOLU ET AL.: "Experimental Study on Filtering, Transporting, Concentrating and Focusing of Microparticles Based on Optically Induced Dielectrophoresis", SCIENCE CHINA TECHNOLOGICAL SCIENCES, vol. 41, no. 3, 31 March 2011 (2011-03-31), pages 334 - 341, XP055362806, ISSN: 1674-7259 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156100A (zh) * 2021-04-29 2021-07-23 南阳理工学院 一种基于人工智能的肿瘤耐药性检测装置

Also Published As

Publication number Publication date
CN105241940A (zh) 2016-01-13
CN105241940B (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
WO2017020394A1 (zh) 一种基于介电泳力场的药效检测方法及其系统
CN101135680B (zh) 光诱导介电泳辅助单细胞介电谱自动测试装置及测试方法
WO2014101281A1 (zh) 检测设备中镜头的光轴偏移的装置和方法
WO2014071642A1 (zh) 一种微流体细胞捕获芯片及其制备方法
CN101344518B (zh) 微纳生物粒子的多模式集成化介电表征装置及方法
CN103235407B (zh) 倒置显微镜自动移动的多样品载物台
WO2015012554A1 (ko) 나노 트랜스퍼 프린팅을 이용한 적층 구조의 3차원 메타물질의 제조 방법, 이를 이용하여 제조된 메타물질 구조 필름 및 이를 포함하는 광학 이미징 시스템
CN206627336U (zh) 一种单细胞全自动连续捕获与收集装置
CN201247242Y (zh) 微纳生物粒子介电表征装置
CN100394172C (zh) 显微毛细管电泳仪
CN104362108B (zh) 光电测试装置
WO2015129979A1 (en) Airborne microbial measurement apparatus and measurement method thereof
CN102586092B (zh) 动态监测伤口愈合的细胞阻抗成像系统及方法
Shakoor et al. A high-precision robot-aided single-cell biopsy system
CN106754312A (zh) 基因测序芯片、基因测序设备及基因测序方法
WO2015183030A1 (ko) 재사용이 가능한 화학적 또는 생물학적 센서 및 그 사용방법
CN110988102A (zh) 一种可视化无鞘流的单细胞质谱分析系统
CN219203126U (zh) 一种小尺寸芯片的装载工装
WO2014081109A1 (ko) 자유지지형 나노박막의 기계적 특성 측정 장치 및 방법
WO2019151574A1 (ko) 마이크로 소자를 타겟 오브젝트에 전사하는 방법 및 장치
WO2004027040A3 (en) Devices and methods for isolating and recovering target cells
CN105126940B (zh) 复合结构体和用于分析微粒子的微芯片
CN109060607B (zh) 一种基于视觉反馈的柔顺操作装置和液桥力自动检测方法
WO2018120312A1 (zh) 一种柔性衬底的检测方法、检测系统及检测装置
CN2782040Y (zh) 一种显微诊断分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900168

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11/07/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15900168

Country of ref document: EP

Kind code of ref document: A1