CN105241940A - 一种基于介电泳力场的药效检测方法及其系统 - Google Patents

一种基于介电泳力场的药效检测方法及其系统 Download PDF

Info

Publication number
CN105241940A
CN105241940A CN201510473162.1A CN201510473162A CN105241940A CN 105241940 A CN105241940 A CN 105241940A CN 201510473162 A CN201510473162 A CN 201510473162A CN 105241940 A CN105241940 A CN 105241940A
Authority
CN
China
Prior art keywords
target cell
microchannel
composition analyzed
projection light
odep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510473162.1A
Other languages
English (en)
Other versions
CN105241940B (zh
Inventor
李志�
张光烈
李文荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201510473162.1A priority Critical patent/CN105241940B/zh
Priority to PCT/CN2015/088948 priority patent/WO2017020394A1/zh
Publication of CN105241940A publication Critical patent/CN105241940A/zh
Application granted granted Critical
Publication of CN105241940B publication Critical patent/CN105241940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种基于介电泳力场的药效检测方法及其系统。其中,所述方法包括:构建光诱导介电泳平台;将靶细胞及培养基质注入所述光诱导介电泳平台的ODEP芯片中;在所述ODEP芯片的微通道末端放置待检测药物;在所述ODEP芯片加上交流电以形成非均匀电场;移动投射光以控制靶细胞移动至微通道末端与待检测药物反应;通过高速CCD记录靶细胞的变化。

Description

一种基于介电泳力场的药效检测方法及其系统
技术领域
本发明涉及药效学研究技术领域,尤其涉及一种基于介电泳力场的药效检测方法及其系统。
背景技术
现有的药效学研究方法可分综合和分析法。综合法是指在整体动物身上进行,是在若干其它因素综合参与下考察药物作用。而分析法是指采用离体脏器,单一地考察药物对某一部分的作用。深入研究还可以包括细胞水平、分子水平的分析研究。其中,细胞水平的药效检测技术有以下三种:
1.细胞培养实验:是在细胞水平研究药物作用并分析作用机理的实验方法,根据细胞的某些特性,针对性的加入药物,并通过可见的现象分析药效。
2.免疫药理学研究方法:也是在细胞水平观察免疫功能改变,通过增强或抑制各种免疫活性细胞的功能来调整免疫状态。
3.利用透射式电子显微镜观察细胞变化:主要用于抗生素作用机理的研究中,通过观察细胞在抗生素作用下发生的细胞形态及细胞结构的变化,分析药物对细胞的作用机理。
上述技术的前两种虽然能达到细胞水平的药效检测,但是药物的作用对象仍是宏观的,不能做到精确地作用于单个细胞。而且依赖于对可见宏观现象来进行药物的作用效果的判断。实验的操作也过于复杂,大大降低了实验重复操作的效率。第三种方法所需的电子显微镜价格昂贵,实验成本过高,无法普及。而且药物的作用对象也是宏观的,显微镜的作用仅限于观察。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种基于介电泳力场的药效检测方法及其系统,旨在解决现有技术中细胞水平的药效学分析无法精确的作用于单个细胞,依赖宏观现象来进行判断的问题。
为了达到上述目的,本发明采取了以下技术方案:
一种基于介电泳力场的药效检测方法,其中,所述方法包括:构建光诱导介电泳平台;将靶细胞及培养基质注入所述光诱导介电泳平台的ODEP芯片中;在所述ODEP芯片的微通道末端放置待检测药物;在所述ODEP芯片加上交流电以形成非均匀电场;移动投射光以控制靶细胞移动至微通道末端与待检测药物反应;通过高速CCD记录靶细胞的变化。
所述的药效检测方法,其中,所述“在所述ODEP芯片的微通道末端放置待检测药物”的步骤具体包括:使所述ODEP芯片的微通道一端形成若干分叉通道;在每一分叉通道的末端放置一种特定的待测药物。
所述的药效检测方法,其中,所述“移动投射光控制靶细胞移动至微通道末端与待检测药物反应”的步骤具体为:通过移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
所述的药效检测方法,其中,将所述分叉通道设置为6个,分叉通道的直径设置为0.5mm。
所述的药效检测方法,其中,所述构建光诱导介电泳平台的步骤具体包括:制备三层结构的ODEP芯片并置于显微镜的载物台上;将电脑与投影仪通过数据线连接;将所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连。
一种基于介电泳力场的药效检测系统,其中,所述系统包括:光诱导介电泳平台以及用于记录靶细胞的变化的高速CCD;所述光诱导介电泳平台包括用于容纳靶细胞及培养基质的ODEP芯片、为ODEP芯片提供交流电的外设交流电源以及投射光控制装置;所述ODEP芯片包括微通道,所述微通道的末端用于放置待检测药物;所述投射光装置用于移动投射光以控制靶细胞移动至微通道末端与待检测药物反应。
所述的药效检测系统,其中,所述ODEP芯片的微通道一端设置有若干个用于放置不同待检测药物的分叉通道。
所述的药效检测系统,其中,所述投射光控制装置具体用于:移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
所述的药效检测系统,其中,所述分叉通道为6个,分叉通道的直径为0.5mm。
所述的药效检测系统,其中,所述光诱导介电泳平台具体包括:具有三层结构的ODEP芯片、显微镜、电脑以及投影仪;所述ODEP芯片设置于所述显微镜的载物台上;所述电脑与投影仪通过数据线连接构成所述投射光控制装置;所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连。
有益效果:本发明提供的一种基于介电泳力场的药效检测方法及其系统,通过光诱导介电泳的方法控制靶细胞移动,真正的实现了药物作用于单个细胞,排除了其他因素对实验结果的影响。而且操作简单,只需注入培养好的靶细胞后,其他过程可以全部由软件完成,实现自动化操作。相较于现有技术中利用透射式电子显微镜观察细胞变化的研究方法,成本显著的降低而且具备了并行操作的可能。
附图说明
图1为本发明具体实施例的基于介电泳力场的药效检测方法的方法流程图。
图2为本发明具体实施例的药效检测方法中形成“鱼叉状”的微通道的结构示意图。
图3为本发明具体实施例的药效检测方法中的光诱导介电泳平台的示意图。
图4为本发明具体实施例的药效检测方法中的步骤S4的方法流程图。
图5为本发明具体实施例的药效检测方法中的ODEP芯片的结构示意图。
具体实施方式
本发明提供一种基于介电泳力场的药效检测方法及其系统。为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,为本发明的基于介电泳力场的药效检测方法的具体实施例。所述方法包括:
S1、构建光诱导介电泳平台。其中介电泳是指位于非匀称电场的中性微粒由于介电极化的作用而产生的平移运动。所述光诱导介电泳是利用这一原理来实现对微小物体操纵的技术,其作为一种微操纵技术,具有其操作功能的光控实时可重构性、单粒子操控的灵活性与定位精度以及多粒子大规模并行处理能力的特点。
S2、将靶细胞及培养基质注入所述光诱导介电泳平台的ODEP芯片中。其中,如图3及图5所示,所述ODEP芯片由三层结构构成,包括:涂有一层1微米厚的氢化非晶硅(a-Si:H)涂层的ITO玻璃作为基底,普通ITO玻璃的最上层,以及基底与最上层之间利用PDMS或是双面胶封装出一个基本为100微米高的微流体通道。
所述靶细胞由实验的具体目标所决定,具体可以为任何合适类型的细胞,并采用相应的细胞培养标准规范来进行培养。
S3、在所述ODEP芯片的微通道末端放置待检测药物。与所述靶细胞类似,所述待检测药物也可以由实验的具体目标所决定,可以为任何合适的类型的药物或者是对细胞产生生理作用的物质。
S4、在所述ODEP芯片加上交流电以形成非均匀电场。在本实施例中,所述外加的交流电为20Vp-p、25-300kHz的交流电。
S5、移动投射光以控制靶细胞移动至微通道末端与待检测药物反应。在步骤S4形成非均匀电场后,由于正向介电泳力的作用,光斑外的细胞开始加速向光斑移动。据此,通过移动投射光,便可以控制光斑附近的细胞会跟随光斑移动。通过上述方式,可以实现靶细胞的微操纵,使单个细胞与待测药物在微通道的末端发生相互作用,为药效学研究提供了极大的便利。
S6、通过高速CCD记录靶细胞的变化。获得的靶细胞变化图像可以交由其他合适的功能模块进行进一步的运算处理与分析,从而获得相应的药效学分析结论。这一过程通常可以由具体的实验目标所决定。
通过上述光诱导介电泳这一微操纵技术,能够便捷的将单个靶细胞与待检测药物在微通道的末端进行反应,并观察靶细胞的变化,实现了真正意义的细胞水平检测,而不依赖于任何宏观现象。
在本发明的较佳实施中,如图4所述,步骤S4具体包括:
S41、使所述ODEP芯片的微通道一端形成若干分叉通道。亦即使微通道形成“鱼叉状”的形状,将主体微通道在一端分成若干分叉通道从而形成多个微通道末端用于作为待检测药物与靶细胞的反应场所。当然,为进一步拓展,所述分叉通道也可以进一步形成下一层次的分叉以形成更多的微通道末端。在本发明的一具体实施例中,所述形成“鱼叉状”的微通道具体可以为如图2所示的结构。其中,所述基底层110的尺寸为35mm乘以20mm;最上层120的尺寸为40mm乘以15mm;所述主体微通道130分叉形成6个对称的分叉通道,每个通道的直径均为0.5mm;第一分叉倾斜段与末端之间的夹角为5°;第二分叉倾斜段与末端之间的夹角为14.63°;第三分叉倾斜段与末端的夹角为23.6°;分叉通道末端之间的距离为2mm。其他具体ODEP芯片具体参数如图2所示。
S42、在每一分叉通道的末端放置一种特定的待测药物。
相对应地,所述步骤S5具体为:通过移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
由于在ODEP芯片内存在多条分叉微管道,因此,通过在不同管道末端放置多种不同药物,可实现多种药物的并行检测。这一方法极大的提高了药效检测的效率,能在短时间完成多种药物的药效检测,对实现高通量药物筛选具有很好的应用价值。
具体的,所述构建光诱导介电泳平台的步骤具体可以包括:
首先、制备三层结构的ODEP芯片并置于显微镜的载物台上。
然后、将电脑与投影仪通过数据线连接,并将所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连。由此,可以通过电脑控制投影仪进而实现投射光移动的控制。
所述电脑具体可以由任何具有满足需要的计算能力的电子运算设备或者运行平台完成,例如个人电脑、移动电脑、一体机等等。所述投射光移动的控制可以通过预先设置的电脑中的程序予以控制,从而实现药效检测的自动化,简化操作并提升重复实验效率。
本发明还提供了一种基于介电泳力场的药效检测系统。其中,所述系统包括:光诱导介电泳平台以及用于记录靶细胞的变化的高速CCD。
所述光诱导介电泳平台包括用于容纳靶细胞及培养基质的ODEP芯片、为ODEP芯片提供交流电的外设交流电源以及投射光控制装置。
所述ODEP芯片包括微通道,所述微通道的末端用于放置待检测药物,作为靶细胞与待检测药物反应的场所。所述投射光装置用于移动投射光以控制靶细胞移动至微通道末端与待检测药物反应。
较佳的是,所述ODEP芯片的微通道一端设置有若干个用于放置不同待检测药物的分叉通道。所述投射光控制装置具体用于:移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
通过上述方式以实现多种药物的并行检测,有效的提高药效检测的效率。
如图1所示,为实现本发明所述方法及其系统的光诱导介电泳平台的具体实施例。所述光诱导介电泳平台具体包括:
具有三层结构的ODEP芯片100(即上述基底110、最上层120以及中间的微通道130,其中基底包含一层1微米厚的氢化非晶硅(a-Si:H)涂层11)、显微镜200(图中仅显示出显微镜的物镜)、电脑500以及投影仪300。所述ODEP芯片100设置于所述显微镜的载物台上、所述电脑300与投影仪400通过数据线10连接构成所述投射光控制装置;所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连(图3中A所示),从而将投影仪产生的光斑B打在所述ODEP芯片100上。可以通过电脑手动或者依据预设程序,控制投影仪从而控制光斑(即投射光)移动。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及本发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (10)

1.一种基于介电泳力场的药效检测方法,其特征在于,所述方法包括:
构建光诱导介电泳平台;
将靶细胞及培养基质注入所述光诱导介电泳平台的ODEP芯片中;
在所述ODEP芯片的微通道末端放置待检测药物;
在所述ODEP芯片加上交流电以形成非均匀电场;
移动投射光以控制靶细胞移动至微通道末端与待检测药物反应;
通过高速CCD记录靶细胞的变化。
2.根据权利要求1所述的药效检测方法,其特征在于,所述“在所述ODEP芯片的微通道末端放置待检测药物”的步骤具体包括:
使所述ODEP芯片的微通道一端形成若干分叉通道;
在每一分叉通道的末端放置一种特定的待测药物。
3.根据权利要求2所述的药效检测方法,其特征在于,将所述分叉通道设置为6个,分叉通道的直径设置为0.5mm。
4.根据权利要求2所述的药效检测方法,其特征在于,所述“移动投射光控制靶细胞移动至微通道末端与待检测药物反应”的步骤具体为:
通过移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
5.根据权利要求1所述的药效检测方法,其特征在于,所述构建光诱导介电泳平台的步骤具体包括:
制备三层结构的ODEP芯片并置于显微镜的载物台上;
将电脑与投影仪通过数据线连接;
将所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连。
6.一种基于介电泳力场的药效检测系统,其特征在于,所述系统包括:光诱导介电泳平台以及用于记录靶细胞的变化的高速CCD;所述光诱导介电泳平台包括用于容纳靶细胞及培养基质的ODEP芯片、为ODEP芯片提供交流电的外设交流电源以及投射光控制装置;所述ODEP芯片包括微通道,所述微通道的末端用于放置待检测药物;所述投射光装置用于移动投射光以控制靶细胞移动至微通道末端与待检测药物反应。
7.根据权利要求6所述的药效检测系统,其特征在于,所述ODEP芯片的微通道一端设置有若干个用于放置不同待检测药物的分叉通道。
8.根据权利要求7所述的药效检测系统,其特征在于,所述投射光控制装置具体用于:移动投射光控制靶细胞分别移动至所述分叉通道的末端与相应的待测药物进行反应。
9.根据权利要求7所述的药效检测系统,其特征在于,所述分叉通道有6个,分叉通道的直径为0.5mm。
10.根据权利要求6所述的药效检测系统,其特征在于,所述光诱导介电泳平台具体包括:具有三层结构的ODEP芯片、显微镜、电脑以及投影仪;所述ODEP芯片设置于所述显微镜的载物台上;所述电脑与投影仪通过数据线连接构成所述投射光控制装置;所述投影仪的镜头与所述显微镜的入射光路通过转接装置相连。
CN201510473162.1A 2015-08-05 2015-08-05 一种基于介电泳力场的药效检测方法及其系统 Active CN105241940B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510473162.1A CN105241940B (zh) 2015-08-05 2015-08-05 一种基于介电泳力场的药效检测方法及其系统
PCT/CN2015/088948 WO2017020394A1 (zh) 2015-08-05 2015-09-06 一种基于介电泳力场的药效检测方法及其系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510473162.1A CN105241940B (zh) 2015-08-05 2015-08-05 一种基于介电泳力场的药效检测方法及其系统

Publications (2)

Publication Number Publication Date
CN105241940A true CN105241940A (zh) 2016-01-13
CN105241940B CN105241940B (zh) 2018-04-27

Family

ID=55039663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510473162.1A Active CN105241940B (zh) 2015-08-05 2015-08-05 一种基于介电泳力场的药效检测方法及其系统

Country Status (2)

Country Link
CN (1) CN105241940B (zh)
WO (1) WO2017020394A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028340A1 (zh) * 2015-08-14 2017-02-23 深圳大学 一种基于光诱导介电泳技术的单细胞控制方法
CN107304405A (zh) * 2016-04-22 2017-10-31 昆山科技大学 细胞分选装置及其方法
CN111908421A (zh) * 2020-07-31 2020-11-10 江南大学 基于光诱导介电泳的微纳自组装操作方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156100B (zh) * 2021-04-29 2022-04-26 南阳理工学院 一种基于人工智能的肿瘤耐药性检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070095669A1 (en) * 2005-10-27 2007-05-03 Applera Corporation Devices and Methods for Optoelectronic Manipulation of Small Particles
CN101135680A (zh) * 2007-07-13 2008-03-05 东南大学 光诱导介电泳辅助单细胞介电谱自动测试装置及测试方法
WO2008130977A2 (en) * 2007-04-16 2008-10-30 The General Hospital Corporation D/B/A Massachusetts General Hospital Systems and methods for particle focusing in microchannels
CN102866193A (zh) * 2012-09-04 2013-01-09 吴传勇 基于介电泳来操控液体中的粒子的器件及方法
CN102876570A (zh) * 2012-10-29 2013-01-16 重庆科技学院 一种高通量药物筛选微流控芯片
CN103257213A (zh) * 2012-02-20 2013-08-21 中国科学院大连化学物理研究所 一种全集成高通量细胞水平微流控芯片药物评价系统
US20140248621A1 (en) * 2012-01-10 2014-09-04 John Collins Microfluidic devices and methods for cell sorting, cell culture and cells based diagnostics and therapeutics

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181337C (zh) * 2000-08-08 2004-12-22 清华大学 微流体系统中实体分子的操纵方法及相关试剂盒
WO2012065075A2 (en) * 2010-11-12 2012-05-18 The Regents Of The University Of California Electrokinetic devices and methods for high conductance and high voltage dielectrophoresis (dep)
CN104328084A (zh) * 2013-07-22 2015-02-04 中国科学院沈阳自动化研究所 一种快速无模板的细胞图形化方法
WO2015017729A1 (en) * 2013-07-31 2015-02-05 Virginia Tech Intellectual Properties, Inc. Dielectrophoresis methods for determining a property of a plurality of cancer cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070095669A1 (en) * 2005-10-27 2007-05-03 Applera Corporation Devices and Methods for Optoelectronic Manipulation of Small Particles
WO2008130977A2 (en) * 2007-04-16 2008-10-30 The General Hospital Corporation D/B/A Massachusetts General Hospital Systems and methods for particle focusing in microchannels
CN101135680A (zh) * 2007-07-13 2008-03-05 东南大学 光诱导介电泳辅助单细胞介电谱自动测试装置及测试方法
US20140248621A1 (en) * 2012-01-10 2014-09-04 John Collins Microfluidic devices and methods for cell sorting, cell culture and cells based diagnostics and therapeutics
CN103257213A (zh) * 2012-02-20 2013-08-21 中国科学院大连化学物理研究所 一种全集成高通量细胞水平微流控芯片药物评价系统
CN102866193A (zh) * 2012-09-04 2013-01-09 吴传勇 基于介电泳来操控液体中的粒子的器件及方法
CN102876570A (zh) * 2012-10-29 2013-01-16 重庆科技学院 一种高通量药物筛选微流控芯片

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028340A1 (zh) * 2015-08-14 2017-02-23 深圳大学 一种基于光诱导介电泳技术的单细胞控制方法
CN107304405A (zh) * 2016-04-22 2017-10-31 昆山科技大学 细胞分选装置及其方法
CN111908421A (zh) * 2020-07-31 2020-11-10 江南大学 基于光诱导介电泳的微纳自组装操作方法及系统
CN111908421B (zh) * 2020-07-31 2024-01-05 江南大学 基于光诱导介电泳的微纳自组装操作方法及系统

Also Published As

Publication number Publication date
CN105241940B (zh) 2018-04-27
WO2017020394A1 (zh) 2017-02-09

Similar Documents

Publication Publication Date Title
CN105241940A (zh) 一种基于介电泳力场的药效检测方法及其系统
CN103235407B (zh) 倒置显微镜自动移动的多样品载物台
Lu et al. Single cell deposition and patterning with a robotic system
Yang et al. A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction
Lee et al. A microfluidic system for dynamic yeast cell imaging
CN104140927A (zh) 一种细胞位姿调节芯片、装置和方法
Jorgolli et al. Nanoscale integration of single cell biologics discovery processes using optofluidic manipulation and monitoring
Tseng et al. Flexible and stretchable micromagnet arrays for tunable biointerfacing
Liu et al. Direct interface between digital microfluidics and high performance liquid chromatography–mass spectrometry
Salánki et al. Automated single cell sorting and deposition in submicroliter drops
Hu et al. Large-area electronics-enabled high-resolution digital microfluidics for parallel single-cell manipulation
Witte et al. Spatially selecting single cell for lysis using light induced electric fields
Toone et al. Investigation of unique carbon nanotube cell restraint compliant mechanisms
Yu et al. Smart Droplet Microfluidic System for Single-Cell Selective Lysis and Real-Time Sorting Based on Microinjection and Image Recognition
Lee et al. Continuous medium exchange and optically induced electroporation of cells in an integrated microfluidic system
Shakoor et al. A high-precision robot-aided single-cell biopsy system
Millet et al. Separating beads and cells in multi-channel microfluidic devices using dielectrophoresis and laminar flow
CN103055974A (zh) 一种高效药物筛选的微流控芯片及其制备方法
CN109557068B (zh) 一种用于单细胞拉曼测量和激光显微切割的一体化分选装置
KR20040041999A (ko) 단일 셀 조작을 위한 바이오 자동 조작 시스템
Wang et al. A fully automated robotic system for three-dimensional cell rotation
Hegner The light fantastic
US9939353B2 (en) Apparatus for cell observation and method for cell collection using the same
CN103041878A (zh) 一种新型药物筛选的微流控芯片及其制备方法
Zhang et al. Multi-functional single cell manipulation method based on a multichannel micropipette

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant