WO2017020344A1 - 互电容触控单元、触控液晶面板及驱动方法 - Google Patents

互电容触控单元、触控液晶面板及驱动方法 Download PDF

Info

Publication number
WO2017020344A1
WO2017020344A1 PCT/CN2015/086973 CN2015086973W WO2017020344A1 WO 2017020344 A1 WO2017020344 A1 WO 2017020344A1 CN 2015086973 W CN2015086973 W CN 2015086973W WO 2017020344 A1 WO2017020344 A1 WO 2017020344A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
scan
sensing
electrodes
electrode layer
Prior art date
Application number
PCT/CN2015/086973
Other languages
English (en)
French (fr)
Inventor
徐向阳
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2017020344A1 publication Critical patent/WO2017020344A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer

Definitions

  • the present invention relates to the field of liquid crystal display devices, and in particular, to a mutual capacitance touch unit, a touch liquid crystal panel, and a driving method.
  • touch devices such as the touch screen Touch Screen Panel
  • the touch screen can be divided into an external touch screen, a covered surface touch screen, and an in-cell touch screen according to the composition structure.
  • the in-cell touch panel is favored by people because it can be embedded in the interior of the liquid crystal display to reduce the thickness and manufacturing cost of the liquid crystal display.
  • the in-cell touch panel mainly uses the principle of self-capacitance or mutual capacitance to identify the position of the touch.
  • the capacitance of the respective capacitance or mutual capacitance set inside the liquid crystal screen is a fixed value.
  • the respective capacitance or mutual capacitance set inside the liquid crystal screen will be at the original fixed capacitance value. Based on the superimposed body capacitance, the position of the touch can be judged by measuring the change of the capacitance value.
  • the touch action of the human body has a great influence on the accuracy of the detection of the capacitive touch screen.
  • the touch target is the position where the A point is located, but due to the influence of the touch capacitor array and the traces of the electrode leads forming the touch capacitors, when it is desired to implement the trigger at the A point,
  • the value of the touch capacitor at the position where the B point is located may also change, which may cause misjudgment and affect the touch effect.
  • One of the technical problems to be solved by the present invention is to provide a new touch solution to reduce interference. Improve the accuracy of detection.
  • the embodiment of the present application first provides a mutual capacitance touch unit, including a scan electrode layer, an insulation layer, a sensing electrode layer, and a touch driving circuit; the scanning electrode layer is provided with multiple scans.
  • Each of the scan electrodes is electrically connected to the touch driving circuit through a touch scan line;
  • the sensing electrode layer is provided with a plurality of sensing electrodes, and each of the sensing electrodes passes through a touch sensing line and
  • the touch driving circuit is electrically connected; each of the sensing electrodes is disposed between two adjacent scanning electrodes and does not overlap with a scanning electrode adjacent thereto; the touch sensing line is at least partially The scanning electrode is covered; a touch capacitance is formed between each of the sensing electrodes and a scanning electrode adjacent thereto; the insulating layer is disposed between the scanning electrode layer and the sensing electrode layer;
  • the touch driving circuit senses a change of the touch capacitance through the touch sensing line and the touch scan line.
  • the touch capacitors are distributed in a matrix, and the scan electrodes forming the same column of touch capacitors are electrically connected in sequence, and are electrically connected to the touch drive circuit through the same touch scan line.
  • each of the scanning electrodes located in the same column is provided as a planar electrode of a unitary structure.
  • the scan electrodes corresponding to the respective touch capacitors cover the touch sensing lines of another touch capacitor adjacent thereto.
  • An embodiment of the present application further provides a driving method of a mutual capacitance touch unit, including: dividing a driving period into at least two driving periods, and dividing the mutual capacitance touch unit into the at least two driving periods Corresponding at least two touch regions; respectively, respectively driving corresponding touch regions in each driving period, wherein each touch region each includes a plurality of sets of touch capacitors, so that touches corresponding to two consecutive driving periods
  • the groups of touch capacitors in the area are spatially spaced apart to prevent the touch signal from causing interference in adjacent touch areas.
  • the driving period is divided into a first driving period and a second driving period, and the first driving period is equal to the second driving period; dividing the mutual capacitance touch unit into the first touch area and the first In the two touch regions, the plurality of scan electrodes and the plurality of sensing electrodes are distributed in a matrix, thereby forming a plurality of touch capacitors arranged in a row and a row; the first touch region includes all odd column touch capacitors.
  • the second touch area includes all the even columns of touch capacitors; during the first driving period, the touch scan lines of the odd column touch capacitors are simultaneously turned on, and the touch sensing lines are scanned to obtain the first touch period.
  • the amount of change of the touch capacitance in a touch area during the second driving period, the touch scan lines of the even-numbered touch capacitors are simultaneously turned on, and each touch sensing line is scanned to obtain the second touch The amount of change in the touch capacitance in the area.
  • a mutual-capacitive touch liquid crystal panel which is provided with a mutual-capacitive touch unit, and the mutual-capacitive touch unit includes a scan electrode layer, an insulating layer, a sensing electrode layer, and a touch driving circuit;
  • the scanning electrode layer is provided with a plurality of scanning electrodes, and each of the scanning electrodes is electrically connected to the touch driving circuit through a touch scanning line;
  • the sensing electrode layer is provided with a plurality of sensing electrodes, each of which is provided Each of the sensing electrodes is electrically connected to the touch driving circuit through a touch sensing line; each of the sensing electrodes is disposed between two adjacent scanning electrodes and does not overlap with a scanning electrode adjacent thereto;
  • the touch sensing line is at least partially covered by the scan electrode; a touch capacitance is formed between each of the sensing electrodes and a scan electrode adjacent thereto; and the insulating layer is disposed on the scan electrode Between the layer and the sensing electrode layer; the touch driving circuit senses a
  • the scan electrode layer, the sensing electrode layer and the insulating layer are disposed between the polarizer of the filter substrate and the black matrix, and the touch driving circuit is bound above and/or below the display area of the array substrate.
  • the scan electrodes are disposed in the same layer as the touch scan lines, and the sensing electrodes are disposed in the same layer as the touch sensing lines.
  • the touch capacitors are distributed in a matrix, and the scan electrodes forming the same column of touch capacitors are electrically connected in sequence, and are electrically connected to the touch drive circuit through the same touch scan line, and corresponding to each The scanning electrodes of the touch capacitor cover the touch sensing lines of another touch capacitor adjacent thereto.
  • the sensitivity of the touch unit is improved by increasing the edge capacitance.
  • FIG. 1 is a schematic diagram of a misjudgment of a touch screen in the prior art
  • 2(a)-(b) are schematic structural diagrams of a mutual-capacitive touch unit according to an embodiment of the present application, wherein 2(b) is a schematic view of the I-I' of FIG. 2(a);
  • 3(a)-(b) are schematic diagrams showing changes in the distribution of electric field lines of the touch capacitor when a touch action occurs;
  • FIG. 4 is a waveform diagram of signals connected to a touch scan line of a mutual capacitance touch unit according to another embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a filter substrate of a mutual capacitance touch liquid crystal panel according to still another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an array substrate of a mutual capacitance touch liquid crystal panel according to still another embodiment of the present application.
  • FIG. 2(a)-(b) are schematic diagrams showing the structure of a mutual-capacitive touch unit according to an embodiment of the present invention, wherein FIG. 2(b) is a schematic view taken along line II' of FIG. 2(a).
  • the mutual capacitance touch unit includes a scan electrode layer on which a plurality of scan electrodes 21 are arranged, a sensing electrode layer on which a plurality of sensing electrodes 22 are arranged, an insulating layer 23, and a touch driving circuit 24.
  • the mutual-capacitive touch unit of the embodiment of the present application has a three-layer structure, wherein the scan electrode layer is located on the top layer of the three-layer structure, the sensing electrode layer is located on the bottom layer of the three-layer structure, and the insulating layer is passed between the scan electrode layer and the sensing electrode layer. Separated from each other.
  • the scan electrode 21 and the sensing electrode 22 are both made of ITO material, and the insulating layer 23 can be made of SiO 2 or the like.
  • the scan electrode 21 and the sensing electrode 22 do not overlap in a direction perpendicular to the scan electrode layer or the sensing electrode layer, and there is a gap between the scan electrode 21 and the sensing electrodes 22 on the left and right sides thereof, and adjacent scanning electrodes 21 and the sensing electrode 22 and the gap therebetween form a capacitance arranged in a matrix.
  • a plurality of capacitors may be formed between each of the sensing electrodes 21 and a scanning electrode 22 adjacent thereto, and in the embodiment of the present application, one of them is used as a touch capacitor for sensing a touch action. For example, as shown in the rectangular dashed box in FIG.
  • the sensing electrodes 22 in the same column can form two columns of capacitances respectively with the two rows of scanning electrodes 21 on the left and right sides.
  • the sensing electrodes 22 are The capacitor formed by the scan electrode 21 located on the left side of the sensing electrode 22 serves as a touch capacitor.
  • FIG. 3(a)-(b) are schematic diagrams showing changes in the distribution of the electric field lines of the touch capacitor when the touch action occurs, as can be seen from the figure, when the area where the touch capacitance is formed is touched with a finger The electric field between the coupling capacitors is more constrained to the original position, while the electric field of the edge capacitance is more susceptible.
  • Fig. 3(a)-(b) are schematic diagrams showing changes in the distribution of the electric field lines of the touch capacitor when the touch action occurs, as can be seen from the figure, when the area where the touch capacitance is formed is touched with a finger The electric field between the coupling capacitors is more constrained to the original position, while the electric field of the edge capacitance is more susceptible.
  • the electric field lines at the edges are redistributed, and a part is concentrated at the position where the fingers touch, and an electric field is formed with the fingers.
  • the foregoing process shows that the edge capacitance can more easily reflect the change of the capacitance. Therefore, the embodiment of the present application is advantageous for improving the detection capability of the touch capacitor and improving the sensitivity of the touch unit.
  • the touch driving circuit 24 provides a pulse excitation signal to the scan electrode 21 , and processes the detected signal of the received sensing electrode 22 to sense the change of the touch capacitance.
  • the capacitive reactance of the circuit under test changes, and the position of the touch point can be calculated by detecting the changed data and comparing the measured data with the reference data.
  • the scan electrode 21 is electrically connected to the touch drive circuit 24 via the touch scan line 25
  • the sensing electrode 22 is electrically connected to the touch drive circuit 24 via the touch sense line 26 .
  • the touch scan line 25 and the touch sensing line 26 are respectively disposed on the scan electrode layer and the sensing electrode layer, and need to occupy a large range of wiring areas.
  • the touch sensing electrode 26 is at least partially covered by the scan electrode 21, and the electrostatic shielding effect of the scan electrode 21 is used to eliminate the adjacent columns introduced by the touch action. The impact of another touch capacitor.
  • the touch sensing line 26 of another touch capacitor adjacent to the touch electrode 21 of each touch capacitor is covered by a finger touching the circular dotted frame.
  • the area is actually used to trigger the position of the touch capacitor formed by the sensing electrode 22 and the scan electrode 21 in the area, but when the scan electrode 21 cannot block the touch sensing line 26 on the left side of the area, the finger will Interacting with a plurality of touch sensing lines 26, thereby introducing a plurality of additional capacitors (including a capacitance formed between the finger and the plurality of touch sensing lines) into the circuit under test in the area, so that the measurement result is inaccurate, even Produce misjudgment.
  • the touch of the finger can only cause a change in the coupling capacitances C 1 and C 2 due to the electrostatic shielding effect of the scan electrode 21 (as shown in FIG. 2(b)).
  • the coupling capacitors C 1 and C 2 are the detection targets of the circuit under test, so that the touch action can be correctly detected.
  • the scan electrode 21 shields the external electric field, and the human body electric field does not affect the touch sensing line 26 covered by the scan electrode 21, thereby improving the accuracy of the touch unit detection.
  • the scanning electrodes 21 forming the same column of touch capacitances are electrically connected to each other in sequence, so that the scanning electrodes 21 located on the same column are integrally connected.
  • an excitation signal can be applied to the scan electrodes 21 of the same column through one touch scan line 25, which enhances the shielding effect of the scan electrodes 21 while saving wiring space and reducing electromagnetic interference.
  • a planar electrode having a monolithic structure is directly used as the scan electrode 21 to form a column of touch capacitors (as shown in FIG. 2(a)), and the effect of electrostatic shielding is more remarkable.
  • the integrated structure of the scan electrodes 21 refers to an integrated state in which the scan electrodes 21 located in the same row are kept in communication with each other during the same mask process by the design of the mask. Therefore, the scan electrode 21 of the one-piece structure is simple to manufacture, which is advantageous for improving the yield of the product.
  • one scan electrode 21 is adjacent to the plurality of sensing electrodes 22 and correspondingly disposed to form a plurality of touch capacitors.
  • the one-to-many form is not used to limit the present invention, and the scan electrode 21 can also be used.
  • the setting is performed in a one-to-one correspondence with the sensing electrodes 21.
  • FIG. 2( a ) It can also be seen from FIG. 2( a ) that separate sensing lines 26 are provided for the sensing electrodes 22 forming the same row or column of touch capacitors, which is advantageous for further simplifying the design of the touch driving circuit 24 and improving The stability of the touch unit.
  • the mutual-capacitive touch unit of the embodiment of the present invention can effectively shield the interference of the external touch action on the adjacent touch capacitor and the connection line of the touch capacitor, thereby improving the detection accuracy.
  • the sensitivity of the touch unit is improved by increasing the edge capacitance.
  • the scheme of the present invention is explained only by the structure of the scanning electrode and the sensing electrode having a rectangular pattern, but this does not constitute a limitation on the structure of the scanning electrode and the sensing electrode in the present invention.
  • the scan electrodes and/or the sensing electrodes may also be other shapes that match each other, such as a diamond electrode, a triangular electrode, or the like.
  • a driving method for driving the mutual-capacitive touch unit is further provided.
  • the time-division driving and the sub-space driving are combined with each other to divide the driving period into at least two driving periods, and the touch is performed.
  • the unit is correspondingly divided into at least two touch areas, and each touch area includes multiple sets of touch capacitors.
  • the corresponding touch regions are respectively driven in different driving periods, so that the groups of touch capacitors corresponding to the touch regions in two consecutive driving periods are spatially spaced, and the touch regions that are not driven during the current driving period are utilized. Isolate the touch area that has been driven during the current driving period to prevent the touch signal pair Adjacent touch areas cause interference.
  • the driving period of the mutual capacitance touch unit is divided into a first driving period and a second driving period, and the first driving period is equal to the second driving period.
  • the second touch area includes all the even columns (or all odd columns) of touch capacitors, that is, each group of touch capacitors in the first touch area and each group of touch capacitors in the second touch area are Space separated from each other.
  • the first touch area and the second touch area of the mutual capacitance touch unit are respectively driven in the first driving period and the second driving period.
  • the odd-numbered columns (or even-numbered columns) of touch scan lines are simultaneously turned on, and the touch sensing lines are scanned to obtain the amount of change of the touch capacitance in the first touch area.
  • the even-numbered columns (or odd-numbered columns) of touch scan lines are simultaneously turned on, and each touch sensing line is scanned to obtain the amount of change of the touch capacitance in the second touch area.
  • FIG. 4 is a waveform diagram of a signal connected to a touch scan line of a mutual-capacitive touch unit according to another embodiment of the present invention, wherein the scan signal 1 is an excitation signal connected to the touch scan line during the first driving period, and the scan signal is 2 is an excitation signal connected to the touch scan line during the second driving period.
  • the scan signal 1 is an excitation signal connected to the touch scan line during the first driving period
  • the scan signal is 2 is an excitation signal connected to the touch scan line during the second driving period.
  • the touch capacitance formed by the sensing electrode 22 on the right side is divided into a first touch area, and the touch capacitance formed by the second column, the fourth column, the scan electrode 21 and the sensing electrode 22 on the right side thereof is divided into the second touch. region.
  • the touch scan lines 25 connected to the scan electrodes 21 of the first column, the third column, the fifth column, ... are simultaneously connected to the high-level scan signal. 1.
  • the touch scan line 25 connected to the second column, the fourth column, ... the scan electrode 21 is simultaneously connected to the scan signal 2 of the low level, and during the period in which the scan signal 1 is kept at the high level, A touch sensing line 26 connected to the sensing electrodes 22 in a touch area is detected to determine the position of the changed capacitance.
  • a fixed low level signal is applied to the touch scan line 25 located in the second touch area, which is equivalent to each odd column.
  • the shield line is added between the two, so that the touch action can be effectively prevented from interfering with the touch capacitance on the adjacent even columns.
  • the touch sensing line 26 is covered by the scan electrode 21 to shield the external electric field, when the touch scan line 25 and the touch sensing line 26 are simultaneously applied with signals, the scan electrode is applied. 21
  • the touch sensing line 26 covered by it may cause interference, that is, self-interference.
  • the driving method of the embodiment of the present invention can prevent the scanning electrode from receiving signals at the same time as the touch sensing line covered by the scanning electrode, and can effectively prevent self-interference. This is also the reason why the capacitance formed by the scan electrode 21 and the sensing electrode 22 located on the right side of the scan electrode 21 is used as the touch capacitance in the present invention.
  • the average touch response time of each touch point is t, which greatly shortens the average touch response time of the touch unit compared to the prior art method of detecting rows or columns.
  • the driving method in the embodiment of the present invention performs time-division and sub-region driving on the touch unit, which can effectively prevent the touch action from interfering with the touch capacitance on the adjacent column, and shorten the average touch response time of the touch unit. Improve the response speed of the touch unit.
  • FIG. 5 and FIG. 6 are schematic diagrams showing the structure of a filter substrate and an array substrate of a mutual-capacitive touch liquid crystal panel according to another embodiment of the present application, wherein the main sensing component of the mutual-capacitive touch liquid crystal panel is a mutual-capacitance touch unit.
  • the specific structure of the mutual capacitance touch unit will not be described here.
  • the mutual capacitance touch unit is generally integrated on the filter substrate.
  • 51 is a polarizer
  • 52 is a scan electrode layer
  • 53 is an insulating layer
  • 54 is a sensing electrode layer
  • 55 is a black matrix
  • 56 is a color filter
  • 57 is a flat layer.
  • the touch scan line is disposed in the same layer as the scan electrode
  • the touch sensing line is disposed in the same layer as the sensing electrode.
  • the scan electrode layer, the sensing electrode layer, and the insulating layer are disposed between the polarizer of the filter substrate and the black matrix.
  • the scanning electrode and the sensing electrode can be formed by patterning an ITO film layer, and the insulating layer is formed by coating with a PECVD device.
  • the above process steps can be implemented by referring to the existing process flow, and will not be described again.
  • the mutual-capacitive touch panel in the embodiment of the present application can be completed by adding a few steps to the process of the existing filter substrate without a special processing process, and the process is simple, and the production cost is reduced.
  • the touch driving circuit of the mutual capacitance touch unit is directly bonded above and/or below the display area of the array substrate, as shown in FIG. 6 .
  • 61 is an array substrate
  • 62 is a display area on the array substrate
  • 63 is a binding area of the touch driving circuit
  • 64 is a binding area of the driving circuit of the array substrate, wherein the touch driving circuit and the driving circuit of the array substrate are exchangeable Location settings.
  • the touch driving circuit that has been tested is connected to the bonding region 63 of the array substrate 61 by a gold wire, and then the touch driving circuit is covered with an organic material having a protective function after melting.
  • the touch liquid crystal panel in the embodiment of the present application has simple process and stable performance, and the touch driving circuit is adopted.
  • the whole is bound to the upper and/or lower sides of the display area of the array substrate, and the width of both sides of the display area can be reduced to realize a narrow bezel design.

Abstract

一种互电容触控单元、触控液晶面板及驱动方法,该互电容触控单元的触控感应线(26)至少部分地被扫描电极(21)覆盖;每一感应电极(22)和与其相邻的一扫描电极(21)之间形成一触控电容。该互电容触控单元能够有效地屏蔽掉外部触碰动作对临近的触控电容以及触控电容的连接线的干扰,提高探测的准确性。

Description

互电容触控单元、触控液晶面板及驱动方法
相关申请的交叉引用
本申请要求享有2015年08月04日提交的名称为“互电容触控单元、触控液晶面板及驱动方法”的中国专利申请CN201510472849.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及液晶显示设备领域,尤其涉及一种互电容触控单元、触控液晶面板及驱动方法。
背景技术
随着液晶显示技术的飞速发展,触控设备(例如触摸屏Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触摸屏按照组成结构可以分为外挂式触摸屏、覆盖表面式触摸屏以及内嵌式触摸屏。其中,内嵌式触摸屏因其可以内嵌在液晶显示屏的内部使液晶显示屏的厚度和制作成本得以降低而受到人们的青睐。
内嵌式触摸屏主要利用自电容或互电容的原理对触碰的位置进行识别。当人体未触碰液晶屏幕时,液晶屏幕内部设置的各自电容或互电容的电容为一固定值,当人体触碰液晶屏幕时,液晶屏幕内部设置的各自电容或互电容会在原固定的电容值的基础上叠加人体电容,通过测量电容值的变化可以判断出触控的位置。
现有技术中,人体的触碰动作对电容式触摸屏的探测的准确性的影响很大。具体的,如图1所示,触控目标是A点所在的位置,但由于触控电容阵列以及形成各触控电容的电极引线的走线的影响,当想在A点实现触发时,很可能同时导致B点所在的位置处的触控电容的值也发生变化,进而产生误判断,影响触控效果。
综上,亟需一种新的触控方案以降低干扰,提高探测的准确性。
发明内容
本发明所要解决的技术问题之一是需要提供一种新的触控方案以降低干扰, 提高探测的准确性。
为了解决上述技术问题,本申请的实施例首先提供了一种互电容触控单元,包括扫描电极层、绝缘层、感应电极层以及触控驱动电路;所述扫描电极层上设置有多个扫描电极,每一所述扫描电极均通过触控扫描线与所述触控驱动电路电连接;所述感应电极层上设置有多个感应电极,每一所述感应电极均通过触控感应线与所述触控驱动电路电连接;每一所述感应电极均设置在两相邻的所述扫描电极之间,且和与其相邻的扫描电极不重叠;所述触控感应线至少部分地被所述扫描电极覆盖;每一所述感应电极和与其相邻的一所述扫描电极之间形成一触控电容;所述绝缘层设置在所述扫描电极层与所述感应电极层之间;所述触控驱动电路通过所述触控感应线与所述触控扫描线感应所述触控电容的变化。
优选地,触控电容呈矩阵状分布,形成同一列触控电容的各扫描电极依次电性连接,并通过同一条所述触控扫描线与所述触控驱动电路电连接。
优选地,位于同一列的各扫描电极设置为一体式结构的平面电极。
优选地,对应于各触控电容的扫描电极均覆盖与其临近的另一触控电容的触控感应线。
本申请的实施例还提供了一种互电容触控单元的驱动方法,包括:将驱动周期划分为至少两个驱动期间,将所述互电容触控单元划分为与所述至少两个驱动期间相对应的至少两个触控区域;依次在各驱动期间内分别驱动对应的触控区域,其中,每个触控区域各自包含多组触控电容,使对应于连续两个驱动期间的触控区域的各组触控电容在空间上相互间隔以防止触碰信号在相邻的触控区域产生干扰。
优选地,将驱动周期划分为第一驱动期间与第二驱动期间,且所述第一驱动期间等于所述第二驱动期间;将所述互电容触控单元划分为第一触控区域与第二触控区域,所述多个扫描电极和所述多个感应电极均呈矩阵状分布,从而形成行列分布的多个触控电容;所述第一触控区域包括所有奇数列触控电容,所述第二触控区域包括所有偶数列触控电容;在所述第一驱动期间内,同时接通奇数列触控电容的触控扫描线,并扫描各触控感应线以获得所述第一触控区域内触控电容的变化量;在所述第二驱动期间内,同时接通偶数列触控电容的触控扫描线,并扫描各触控感应线以获得所述第二触控区域内触控电容的变化量。
另一方面,还提供了一种互电容触控液晶面板,设置有互电容触控单元,所述互电容触控单元包括扫描电极层、绝缘层、感应电极层以及触控驱动电路;所 述扫描电极层上设置有多个扫描电极,每一所述扫描电极均通过触控扫描线与所述触控驱动电路电连接;所述感应电极层上设置有多个感应电极,每一所述感应电极均通过触控感应线与所述触控驱动电路电连接;每一所述感应电极均设置在两相邻的所述扫描电极之间,且和与其相邻的扫描电极不重叠;所述触控感应线至少部分的被所述扫描电极覆盖;每一所述感应电极和与其相邻的一所述扫描电极之间形成一触控电容;所述绝缘层设置在所述扫描电极层与所述感应电极层之间;所述触控驱动电路通过所述触控感应线与所述触控扫描线感应所述触控电容的变化。
优选地,扫描电极层、感应电极层以及绝缘层设置在滤光片基板的的偏光片与黑色矩阵之间,触控驱动电路绑定在阵列基板的显示区域的上方和/或下方。
优选地,扫描电极与触控扫描线同层设置,感应电极与触控感应线同层设置。
优选地,触控电容呈矩阵状分布,形成同一列触控电容的各扫描电极依次电性连接,并通过同一条所述触控扫描线与所述触控驱动电路电连接,且对应于各触控电容的扫描电极均覆盖与其临近的另一触控电容的触控感应线。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
通过以扫描电极部分地覆盖触控感应线,有效地屏蔽掉外部触碰动作对临近的触控电容以及触控电容的连接线的干扰,提高了探测的准确性。同时,通过增大边缘电容,提升了触控单元的灵敏度。
本发明的其他优点、目标,和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书,权利要求书,以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请的技术方案或现有技术的进一步理解,并且构成说明书的一部分。其中,表达本申请实施例的附图与本申请的实施例一起用于解释本申请的技术方案,但并不构成对本申请技术方案的限制。
图1为现有技术中触摸屏产生误判断的示意图;
图2(a)-(b)为本申请一实施例的互电容触控单元的结构示意图,其中图 2(b)为图2(a)的Ⅰ-Ⅰ'向示意图;
图3(a)-(b)为触碰动作发生时触控电容的电场线的分布的变化示意图;
图4为本申请另一实施例的互电容触控单元的触控扫描线所接信号的波形图;
图5为本申请又一实施例的互电容触控液晶面板的滤光片基板的结构示意图;
图6为本申请又一实施例的互电容触控液晶面板的阵列基板的结构示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成相应技术效果的实现过程能充分理解并据以实施。本申请实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。
图2(a)-(b)为本申请一实施例的互电容触控单元的结构示意图,其中图2(b)为图2(a)的Ⅰ-Ⅰ'向示意图。该互电容触控单元包括扫描电极层(其上排布有多个扫描电极21)、感应电极层(其上排布有多个感应电极22)、绝缘层23以及触控驱动电路24。
本申请实施例的互电容触控单元具有三层结构,其中,扫描电极层位于三层结构的顶层,感应电极层位于三层结构的底层,扫描电极层与感应电极层之间通过绝缘层23相互隔开。扫描电极21与感应电极22均采用ITO材料制成,绝缘层23可以采用SiO2等材料制成。进一步地,扫描电极21与感应电极22在垂直于扫描电极层或感应电极层的方向上不重叠,扫描电极21与位于其左右两侧的感应电极22之间均存在间隙,由临近的扫描电极21和感应电极22与它们之间的间隙形成呈矩阵状排布的电容。需要注意的是,每一感应电极21和与其相邻的一扫描电极22之间可以形成多个电容,而在本申请的实施例中,以其中一个作为感知触碰动作的触控电容。举例而言,如图2中矩形虚线框所示出的区域,位于同一列的感应电极22可分别与其左右两侧的两列扫描电极21形成两列电容,本实施例中以感应电极22以及位于感应电极22左侧的扫描电极21所形成的电容作为触控电容。
在现有技术中,扫描电极与感应电极通过搭桥形成触控电容,在相互重叠的 电极之间存在耦合电容,而耦合电容不利于触控信号的产生。在本申请的实施例中,触控电容以边缘电容为主,可以提升触控单元的灵敏度。具体的,图3(a)-(b)为触碰动作发生时触控电容的电场线的分布的变化示意图,从图中可以看出,当用手指触碰形成有触控电容的区域时,耦合电容之间的电场更多地被束缚在原来的位置,而边缘电容的电场则更易受到影响。在图3(b)中,边缘处的电场线重新分布,一部分集中在手指触碰的位置,与手指之间形成了电场。上述过程说明边缘电容更易反映出电容的变化,因此,本申请的实施例有利于提高触控电容的探测能力,提升触控单元的灵敏度。
进一步如图2(a)所示,触控驱动电路24为扫描电极21提供脉冲激励信号,同时对接收到的感应电极22的检测信号进行处理来感应触控电容的变化。当触碰触控单元上的某一点时,被测回路的容抗将发生变化,通过检测变化后的数据,并将测量数据与基准数据进行比较可以计算出触碰点的位置。在本申请的实施例中,扫描电极21经由触控扫描线25与触控驱动电路24电连接,感应电极22经由触控感应线26与触控驱动电路24电连接。触控扫描线25与触控感应线26分别设置于扫描电极层与感应电极层,且需要占据较大范围的布线区域。在触控扫描线25与触控感应线26之间,以及上述两类触控连接线与扫描电极21和/或感应电极22之间存在耦合电容,在触控扫描线25和触控感应线26与地之间存在寄生电容。当触碰触控单元上的某一点时,有可能导致上述耦合电容或寄生电容发生变化,若这些变化接入了触控单元的被测回路,将使检测结果不准确,进而产生误判断,导致误操作。
为了解决上述问题,在本申请的实施例中,利用扫描电极21至少部分地覆盖触控感应线26,利用扫描电极21的静电屏蔽作用来消除由于触碰动作所引入的对相邻的列上的另一触控电容的影响。
具体的,如图2(a)所示,以各触控电容的扫描电极21覆盖与其临近的另一触控电容的触控感应线26,当用手指触碰圆形虚线框所围成的区域时,实际上是为了触发该区域内由感应电极22与扫描电极21所形成的触控电容所在的位置,但当扫描电极21不能遮挡该区域左侧的触控感应线26时,手指将会与多条触控感应线26相互作用,进而将多个附加的电容(包括手指与多条触控感应线之间形成的电容)引入该区域的被测回路,使测量结果不准确,甚至产生误判断。当以扫描电极21覆盖上述触控感应线26后,由于扫描电极21的静电屏蔽作用,手指的触碰只能引起耦合电容C1和C2的变化(如图2(b)所示),而耦合电容 C1和C2是被测回路的检测对象,因此可以正确探测到触碰动作。同时,扫描电极21屏蔽了外部电场,人体电场不会对扫描电极21覆盖下的触控感应线26造成影响,提高了触控单元探测的准确性。
为了增强扫描电极的屏蔽效果,在本申请的其他实施例中,将形成同一列触控电容的各扫描电极21相互之间依次电性连接,使位于同一列上的扫描电极21连为一体。此时,可以通过一条触控扫描线25对同一列的扫描电极21施加激励信号,在增强扫描电极21的屏蔽效果的同时节省了布线空间,降低了电磁干扰。进一步地,在另一个实施例中,直接采用一体式结构的平面电极作为扫描电极21来形成一列触控电容(如图2(a)所示),其静电屏蔽的效果会更加显著。
需要说明的是,扫描电极21的一体式结构是指在同一光罩制程中,通过掩模板的设计,使位于同一列的扫描电极21在成型时即保持相互连通的一体式状态。因此,一体式结构的扫描电极21制作简单,有利于提高产品的良品率。
本实施例中,一个扫描电极21与多个感应电极22相邻且相对应设置,从而形成多个触控电容,这种一对多的形式并不用于限定本发明,扫描电极21还可以采用与感应电极21一一对应的方式进行设置。
从图2(a)中还可以看出,为形成同一行或列触控电容的感应电极22分别设置了独立的触控感应线26,这样有利于进一步简化触控驱动电路24的设计,提高触控单元的稳定性。
本申请实施例的互电容触控单元,可以有效地屏蔽外部触碰动作对临近的触控电容以及触控电容的连接线的干扰,提高探测的准确性。同时,通过增大边缘电容,提升了触控单元的灵敏度。
可以理解的是,在上述实施例中,仅以具有矩形图案的扫描电极与感应电极的结构来说明本发明的方案,但这并不构成对本发明中扫描电极和感应电极的结构的限定。在本申请的其他实施例中,扫描电极和/或感应电极还可以为相互匹配的其他形状,例如菱形电极、三角形电极等。
在本申请的另一实施例中还提供了一种驱动上述互电容触控单元的驱动方法,采用分时驱动与分空间驱动相互结合,将驱动周期划分为至少两个驱动期间,将触控单元对应地划分为至少两个触控区域,且每个触控区域各自包含多组触控电容。在不同的驱动期间内分别驱动对应的触控区域,使对应于连续两个驱动期间的触控区域的各组触控电容在空间上形成间隔,利用当前驱动期间内未被驱动的触控区域对当前驱动期间内已被驱动的触控区域进行隔离,以防止触碰信号对 相邻的触控区域产生干扰。
具体的,在该实施例中,将互电容触控单元的驱动周期划分为第一驱动期间与第二驱动期间,且第一驱动期间等于第二驱动期间。将互电容触控单元划分为第一触控区域与第二触控区域,每个触控区域各自包含多组触控电容,其中,第一触控区域包括所有奇数列(或所有偶数列)触控电容,第二触控区域包括所有偶数列(或所有奇数列)触控电容,即第一触控区域内的各组触控电容与第二触控区域内的各组触控电容在空间上相互间隔。进一步地,依次在第一驱动期间和第二驱动期间内分别驱动互电容触控单元的第一触控区域和第二触控区域。举例而言,在第一驱动期间内,同时接通奇数列(或偶数列)触控扫描线,并扫描各触控感应线以获得第一触控区域内触控电容的变化量,在第二驱动期间内,同时接通偶数列(或奇数列)触控扫描线,并扫描各触控感应线以获得第二触控区域内触控电容的变化量。
图4为本申请另一实施例的互电容触控单元的触控扫描线所接信号的波形图,其中,扫描信号1为第一驱动期间内触控扫描线所接的激励信号,扫描信号2为第二驱动期间内触控扫描线所接的激励信号。触控区域的划分可以参见图2(a),假设图中左起第一列扫描电极21位于奇数列上,则将第一列、第三列、第五列……扫描电极21与位于其右边的感应电极22形成的触控电容划分为第一触控区域,以第二列、第四列……扫描电极21与位于其右边的感应电极22形成的触控电容划分为第二触控区域。
根据图4所示的驱动时序,在第一驱动期间内,使与第一列、第三列、第五列……扫描电极21相连接的触控扫描线25同时接高电平的扫描信号1,使与第二列、第四列……扫描电极21相连接的触控扫描线25同时接低电平的扫描信号2,在扫描信号1保持高电平的期间内,对所有与第一触控区域内的感应电极22相连接的触控感应线26进行检测以确定发生变化的电容的位置。由于在对第一触控区域内的触控感应线26进行检测的同时,对位于第二触控区域内的触控扫描线25施加了固定的低电平信号,相当于在各奇数列之间增加了屏蔽线,因此可以有效地防止触碰动作对临近的偶数列上的触控电容产生干扰。在结束第一驱动期间的扫描后,进入第二驱动期间,其扫描过程与第一驱动期间类似,不再赘述。
需要注意的是,尽管利用扫描电极21覆盖触控感应线26可以起到屏蔽外电场的作用,但当对触控扫描线25和触控感应线26同时施加信号时,扫描电极 21对其覆盖的触控感应线26会产生干扰,即自干扰。而采用本申请实施例的驱动方法,能够使扫描电极与其覆盖的触控感应线不在同一时间接收信号,能够有效防止自干扰。这也是本发明中以扫描电极21以及位于扫描电极21右侧的感应电极22形成的电容作为触控电容的原因。
还需要说明的是,在第一触控期间t内,可以完成对触控单元的一半的触控电容的检测,同样的,另一半触控单元的触控电容在第二触控期间t内进行检测,因此,每个触碰点的平均触控响应时间为t,相比于现有技术中按照行或列进行检测的方式,大大缩短了触控单元的平均触控响应时间。
本申请实施例中的驱动方法,对触控单元进行分时分区域驱动,可以有效地防止触碰动作对临近列上的触控电容产生干扰,同时缩短了触控单元的平均触控响应时间,提高了触控单元的响应速度。
此外,将前述实施例中的互电容触控单元集成在液晶显示面板的基板上,可以得到互电容触控液晶面板。图5和图6分别为本申请又一实施例的互电容触控液晶面板的滤光片基板和阵列基板的结构示意图,互电容触控液晶面板的主要传感部件为互电容触控单元,互电容触控单元的具体结构此处不再赘述。
为了简化基板的工艺制程,一般将互电容触控单元集成在滤光片基板上,如图5所示,51为偏光片,52为扫描电极层,53为绝缘层,54为感应电极层,55为黑矩阵,56为彩色滤光片,57为平坦层。进一步地,将触控扫描线与扫描电极同层设置,将触控感应线与感应电极同层设置。在该实施例中,将扫描电极层、感应电极层以及绝缘层设置在滤光片基板的偏光片与黑色矩阵之间。其中,扫描电极和感应电极可通过图案化ITO膜层形成,绝缘层采用PECVD设备涂覆形成,上述工艺步骤均可参见现有的工艺流程进行实施,不再赘述。本申请实施例中的互电容触控面板,无需特殊的加工工艺,仅在现有滤光片基板的制程上增加若干步骤就可以制作完成,工艺简单,降低了生产的成本。
进一步地,互电容触控单元的触控驱动电路直接绑定(bonding)在阵列基板的显示区域的上方和/或下方,如图6所示。61为阵列基板,62为阵列基板上的显示区域,63为触控驱动电路的绑定区,64为阵列基板的驱动电路的绑定区,其中触控驱动电路与阵列基板的驱动电路可交换位置设置。将已经测试好的触控驱动电路用金线连接到阵列基板61的绑定区63内,再利用融化后具有保护功能的有机材料覆盖上述触控驱动电路进行封装。
本申请实施例中的触控液晶面板工艺简单、性能稳定、由于将触控驱动电路 整体绑定于阵列基板显示区域的上方和/或下方,可以减小显示区域两侧的宽度,实现窄边框设计。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (12)

  1. 一种互电容触控单元,包括扫描电极层、绝缘层、感应电极层以及触控驱动电路;
    所述扫描电极层上设置有多个扫描电极,每一所述扫描电极均通过触控扫描线与所述触控驱动电路电连接;
    所述感应电极层上设置有多个感应电极,每一所述感应电极均通过触控感应线与所述触控驱动电路电连接;每一所述感应电极均设置在两相邻的所述扫描电极之间,且和与其相邻的扫描电极不重叠;所述触控感应线至少部分地被所述扫描电极覆盖;每一所述感应电极和与其相邻的一所述扫描电极之间形成一触控电容;
    所述绝缘层设置在所述扫描电极层与所述感应电极层之间;
    所述触控驱动电路通过所述触控感应线与所述触控扫描线感应所述触控电容的变化。
  2. 根据权利要求1所述的互电容触控单元,其中,所述触控电容呈矩阵状分布,形成同一列触控电容的各扫描电极依次电性连接,并通过同一条所述触控扫描线与所述触控驱动电路电连接。
  3. 根据权利要求1所述的互电容触控单元,其中,位于同一列的各扫描电极设置为一体式结构的平面电极。
  4. 根据权利要求1所述的互电容触控单元,其中,对应于各触控电容的扫描电极均覆盖与其临近的另一触控电容的触控感应线。
  5. 根据权利要求1所述的互电容触控单元,其中,一所述扫描电极与多个所述感应电极相邻设置,从而形成多个所述触控电容。
  6. 一种互电容触控单元的驱动方法,所述互电容触控单元包括扫描电极层、绝缘层、感应电极层以及触控驱动电路;
    所述扫描电极层上设置有多个扫描电极,每一所述扫描电极均通过触控扫描线与所述触控驱动电路电连接;
    所述感应电极层上设置有多个感应电极,每一所述感应电极均通过触控感应线与所述触控驱动电路电连接;每一所述感应电极均设置在两相邻的所述扫描电极之间,且和与其相邻的扫描电极不重叠;所述触控感应线至少部分地被所述扫描电极覆盖;每一所述感应电极和与其相邻的一所述扫描电极之间形成一触控电 容;
    所述绝缘层设置在所述扫描电极层与所述感应电极层之间;
    所述触控驱动电路通过所述触控感应线与所述触控扫描线感应所述触控电容的变化;
    该方法包括:
    将驱动周期划分为至少两个驱动期间,将所述互电容触控单元划分为与所述至少两个驱动期间相对应的至少两个触控区域;
    依次在各驱动期间内分别驱动对应的触控区域,其中,
    每个触控区域各自包含多组触控电容,且对应于连续两个驱动期间的触控区域的各组触控电容在空间上相互间隔以防止触碰信号在相邻的触控区域产生干扰。
  7. 根据权利要求6所述的驱动方法,其中,
    将驱动周期划分为第一驱动期间与第二驱动期间,且所述第一驱动期间等于所述第二驱动期间;
    将所述互电容触控单元划分为第一触控区域与第二触控区域,所述多个扫描电极和所述多个感应电极均呈矩阵状分布,从而形成行列分布的多个触控电容;所述第一触控区域包括所有奇数列触控电容,所述第二触控区域包括所有偶数列触控电容;
    在所述第一驱动期间内,同时接通奇数列触控电容的触控扫描线,并扫描各触控感应线以获得所述第一触控区域内触控电容的变化量;
    在所述第二驱动期间内,同时接通偶数列触控电容的触控扫描线,并扫描各触控感应线以获得所述第二触控区域内触控电容的变化量。
  8. 一种互电容触控液晶面板,设置有互电容触控单元,所述互电容触控单元包括扫描电极层、绝缘层、感应电极层以及触控驱动电路;
    所述扫描电极层上设置有多个扫描电极,每一所述扫描电极均通过触控扫描线与所述触控驱动电路电连接;
    所述感应电极层上设置有多个感应电极,每一所述感应电极均通过触控感应线与所述触控驱动电路电连接;每一所述感应电极均设置在两相邻的所述扫描电极之间,且和与其相邻的扫描电极不重叠;所述触控感应线至少部分的被所述扫描电极覆盖;每一所述感应电极和与其相邻的一所述扫描电极之间形成一触控电容;
    所述绝缘层设置在所述扫描电极层与所述感应电极层之间;
    所述触控驱动电路通过所述触控感应线与所述触控扫描线感应所述触控电容的变化。
  9. 根据权利要求8所述的互电容触控液晶面板,其中,所述扫描电极层、所述感应电极层以及所述绝缘层设置在滤光片基板的的偏光片与黑色矩阵之间,所述触控驱动电路绑定在阵列基板的显示区域的上方和/或下方。
  10. 根据权利要求8所述的互电容触控液晶面板,其中,所述扫描电极与所述触控扫描线同层设置,所述感应电极与所述触控感应线同层设置。
  11. 根据权利要求8所述的互电容触控液晶面板,其中,所述触控电容呈矩阵状分布,形成同一列触控电容的各扫描电极依次电性连接,并通过同一条所述触控扫描线与所述触控驱动电路电连接,且对应于各触控电容的扫描电极均覆盖与其临近的另一触控电容的触控感应线。
  12. 根据权利要求8所述的互电容触控液晶面板,其特征在于,
    所述互电容触控单元的驱动周期分为第一驱动期间与第二驱动期间;
    所述互电容触控单元包括第一触控区域与第二触控区域,所述第一触控区域包括所有奇数列触控电容,所述第二触控区域包括所有偶数列触控电容;
    在所述第一驱动期间内,所述奇数列触控电容的触控扫描线同时接通,并通过扫描各触控感应线以获得所述第一触控区域内每一触控电容的变化量;
    在所述第二驱动期间内,所述偶数列触控电容的触控扫描线同时接通,并通过扫描各触控感应线以获得所述第二触控区域内每一触控电容的变化量。
PCT/CN2015/086973 2015-08-04 2015-08-14 互电容触控单元、触控液晶面板及驱动方法 WO2017020344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510472849.3 2015-08-04
CN201510472849.3A CN105094485B (zh) 2015-08-04 2015-08-04 互电容触控单元、触控液晶面板及驱动方法

Publications (1)

Publication Number Publication Date
WO2017020344A1 true WO2017020344A1 (zh) 2017-02-09

Family

ID=54575084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086973 WO2017020344A1 (zh) 2015-08-04 2015-08-14 互电容触控单元、触控液晶面板及驱动方法

Country Status (2)

Country Link
CN (1) CN105094485B (zh)
WO (1) WO2017020344A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068020A1 (en) * 2017-09-29 2019-04-04 Apple Inc. TOUCH SENSOR PANEL ARCHITECTURE WITH MULTIPLE DETECTION MODE CAPABILITIES
CN111142709A (zh) * 2019-12-27 2020-05-12 上海摩软通讯技术有限公司 一种触控面板及显示装置
US10739904B2 (en) 2017-08-15 2020-08-11 Apple Inc. Self-capacitance and mutual capacitance touch-sensor panel architecture
US11079882B2 (en) 2018-09-28 2021-08-03 Apple Inc. Diamond based touch sensor panel architectures
WO2022179465A1 (zh) * 2021-02-26 2022-09-01 维沃移动通信有限公司 电子设备及其盖板、控制方法、控制装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105653100B (zh) * 2016-03-31 2018-09-21 上海天马微电子有限公司 一种阵列基板及其制作方法、显示面板
CN106648271B (zh) * 2016-12-27 2019-06-14 厦门天马微电子有限公司 触控显示面板、触控显示装置和应用于触控显示面板的驱动方法
TWI629621B (zh) * 2017-02-22 2018-07-11 友達光電股份有限公司 觸控陣列及驅動方法
CN107256106B (zh) * 2017-07-26 2020-10-09 武汉天马微电子有限公司 阵列基板、液晶显示面板、触控显示装置及触控驱动方法
JP6954314B2 (ja) * 2017-08-14 2021-10-27 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 相互容量タッチ基板、表示装置、タッチパネル、相互容量タッチ基板の駆動方法及び駆動回路
CN109656412A (zh) * 2018-12-18 2019-04-19 武汉华星光电半导体显示技术有限公司 触控面板及其制作方法、电子装置
CN113745294B (zh) * 2021-08-27 2022-11-08 武汉华星光电半导体显示技术有限公司 Oled显示面板和oled显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103049157A (zh) * 2012-12-14 2013-04-17 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN103293780A (zh) * 2012-08-10 2013-09-11 上海天马微电子有限公司 触控液晶显示装置
TW201349058A (zh) * 2012-05-18 2013-12-01 Psd Technology Co Ltd 雙面觸控面板
US20140176481A1 (en) * 2012-12-26 2014-06-26 Gan Zhou. Dpt-Technology Co., Ltd. Capacitive Touch Screen
CN104503643A (zh) * 2014-12-25 2015-04-08 上海天马微电子有限公司 一种触控结构、触控检测方法及触摸显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423107B (zh) * 2011-04-07 2014-01-11 Raydium Semiconductor Corp 觸控輸入裝置的偵測方法
KR102082265B1 (ko) * 2013-11-28 2020-02-27 엘지디스플레이 주식회사 터치센서 일체형 표시장치
CN103941916B (zh) * 2014-04-09 2017-06-09 京东方科技集团股份有限公司 一种触摸屏及其驱动方法、显示装置
CN204143419U (zh) * 2014-10-10 2015-02-04 敦泰科技有限公司 电子设备及其电容式触摸板
CN104793800A (zh) * 2015-05-04 2015-07-22 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201349058A (zh) * 2012-05-18 2013-12-01 Psd Technology Co Ltd 雙面觸控面板
CN103293780A (zh) * 2012-08-10 2013-09-11 上海天马微电子有限公司 触控液晶显示装置
CN103049157A (zh) * 2012-12-14 2013-04-17 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
US20140176481A1 (en) * 2012-12-26 2014-06-26 Gan Zhou. Dpt-Technology Co., Ltd. Capacitive Touch Screen
CN104503643A (zh) * 2014-12-25 2015-04-08 上海天马微电子有限公司 一种触控结构、触控检测方法及触摸显示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739904B2 (en) 2017-08-15 2020-08-11 Apple Inc. Self-capacitance and mutual capacitance touch-sensor panel architecture
US11347366B2 (en) 2017-08-15 2022-05-31 Apple Inc. Self-capacitance and mutual capacitance touch-sensor panel architecture
WO2019068020A1 (en) * 2017-09-29 2019-04-04 Apple Inc. TOUCH SENSOR PANEL ARCHITECTURE WITH MULTIPLE DETECTION MODE CAPABILITIES
US11733801B2 (en) 2017-09-29 2023-08-22 Apple Inc. Touch sensor panel architecture with multiple sensing mode capabilities
US11079882B2 (en) 2018-09-28 2021-08-03 Apple Inc. Diamond based touch sensor panel architectures
CN111142709A (zh) * 2019-12-27 2020-05-12 上海摩软通讯技术有限公司 一种触控面板及显示装置
CN111142709B (zh) * 2019-12-27 2024-02-23 上海摩软通讯技术有限公司 一种触控面板及显示装置
WO2022179465A1 (zh) * 2021-02-26 2022-09-01 维沃移动通信有限公司 电子设备及其盖板、控制方法、控制装置

Also Published As

Publication number Publication date
CN105094485B (zh) 2018-12-18
CN105094485A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2017020344A1 (zh) 互电容触控单元、触控液晶面板及驱动方法
US10788914B2 (en) Touch panel, method for driving same and touch display device
US9075490B2 (en) Display with dual-function capacitive elements
US8866787B2 (en) Integrated touch panel for a TFT display
US10108063B2 (en) In-cell touch liquid crystal panel and array substrate thereof
US10691235B2 (en) On-cell touch architecture
EP3295284B1 (en) Touch substrate, touch display device having the same, and method of manufacturing thereof
EP3153956B1 (en) Capacitive touch structure, embedded touchscreen, display device and scanning method therefor
TWI541712B (zh) 觸控螢幕、觸控板及其驅動方法
US20140362034A1 (en) Touch display device
CN104951143B (zh) 一种阵列基板、触控面板及显示装置
KR20180063175A (ko) 인-셀 터치 액정 패널 및 그 어레이 기판
EP3183637A1 (en) Electrode arrangement for gesture detection and tracking
TW201715375A (zh) 電容式壓力感測觸控面板
CN107422910B (zh) 一种触控显示装置
JP7111742B2 (ja) タッチパネル、アレイ基板、及び表示装置
TWM510495U (zh) 電容式觸控裝置
KR101500330B1 (ko) 터치 패널
AU2013201154A1 (en) Display with dual-function capacitive elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900118

Country of ref document: EP

Kind code of ref document: A1