WO2017020205A1 - 一种动态合并小区方法、装置、网络设备及系统 - Google Patents

一种动态合并小区方法、装置、网络设备及系统 Download PDF

Info

Publication number
WO2017020205A1
WO2017020205A1 PCT/CN2015/085810 CN2015085810W WO2017020205A1 WO 2017020205 A1 WO2017020205 A1 WO 2017020205A1 CN 2015085810 W CN2015085810 W CN 2015085810W WO 2017020205 A1 WO2017020205 A1 WO 2017020205A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
speed mobile
mobile state
target cell
speed
Prior art date
Application number
PCT/CN2015/085810
Other languages
English (en)
French (fr)
Inventor
顾紫龙
李松涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15899980.5A priority Critical patent/EP3310096B1/en
Priority to CN201580065957.7A priority patent/CN107113678A/zh
Priority to PCT/CN2015/085810 priority patent/WO2017020205A1/zh
Publication of WO2017020205A1 publication Critical patent/WO2017020205A1/zh
Priority to US15/883,969 priority patent/US10142907B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, a network device, and a system for dynamically combining cells.
  • LTE cell merging is a commonly used technology for high-speed rail coverage. It is a technology that combines multiple physical cells into one logical cell to realize high-speed non-switching of high-speed rail.
  • the LTE cell merging technology expands the coverage of the cell, reduces the number of handovers and handover delay when the LTE network is used by the high-speed rail user, and further reduces the phenomenon that the information transmission temporarily disconnected from the network when the user switches the network is temporarily interrupted.
  • the total capacity of the combined cells is far less than the total capacity of each cell when not merged, thereby causing a problem of limited cell capacity.
  • the number of users increases, even some users cannot access the network.
  • the technical problem to be solved by the embodiments of the present invention is to provide a method, a device, a network device and a system for dynamically combining cells, which solves the problem of capacity limitation after cell combination in the prior art, and improves the cell capacity.
  • the embodiment of the present invention provides a method for dynamically combining cells, which may include:
  • a number of user equipment UEs in a high-speed mobile state in a target cell where the target cell is capable of performing cell merging with a neighboring cell, and the target cell and the neighboring cell are cells that are distributed along a high-speed mobile route,
  • the UE in the high-speed mobile state is the UE in the connected mode and the moving speed is greater than a preset threshold;
  • the target cell is merged with the neighboring cell, and the merged cell is used.
  • the UE in the high speed mobile state transmits data.
  • the method further includes:
  • the target cell is The neighboring cell performs cell splitting.
  • the number of UEs in a high-speed mobile state in the target cell is greater than the first pre- In the case of a number, the target cell is merged with the neighboring cell, including:
  • the target cell is merged with a neighboring cell that the UE in the high-speed mobile state is about to enter.
  • the determining, by the determining, the moving direction of the UE in the high-speed mobile state includes:
  • the determining, by the determining, the moving direction of the UE in the high-speed mobile state includes:
  • the step of acquiring the number of user equipment UEs in the high-speed mobile state in the target cell is performed according to the preset time interval;
  • the neighboring cells that are about to enter are merged, including:
  • the target cell is merged with the neighboring neighboring cell.
  • the target cell and the neighboring cell support the first a carrier frequency and a second carrier frequency
  • the method further includes:
  • the UE in the low-speed mobile state is switched to the first carrier frequency for data transmission and reception, and the UE in the high-speed mobile state is switched to the second carrier frequency for data transmission and reception.
  • the method further includes:
  • the target cell is The neighboring cell performs cell splitting
  • At least one UE in a low-speed mobile state is switched to the second carrier frequency for data transmission and reception.
  • the performing the cell merging the target cell with the neighboring cell includes:
  • Parameter configuration is performed on the target cell and the neighboring cell according to a preset cell merging principle.
  • the method further includes:
  • the preset PCI is modified.
  • the target cell is restored to the PCI before the cell merge;
  • the target cell configured according to the preset cell merging principle is restored to the parameter before the cell merging.
  • Sending data to the UE in the high-speed mobile state by using the merged cell including:
  • the target cell and the neighboring cell in the merged cell cooperate to transmit data to the UE in the high-speed mobile state.
  • the seventh possible implementation manner, or the eighth possible implementation manner of the first aspect, or the ninth possible implementation manner of the first aspect The cells distributed along the high-speed mobile route adopt an IP-based mobile backhaul network IPRAN networking mode;
  • Transmitting, by the merged cell, the data to the UE in a high-speed mobile state including:
  • the target cell and the neighboring cell synchronously send data to the UE in the high-speed mobile state
  • the target cell delays the corresponding time according to the transmission delay information, and sends data to the UE in the high-speed mobile state synchronously with the neighboring cell.
  • the Before the UE in the high-speed mobile state sends data it also includes:
  • the high-speed cell is a cell in which a number of UEs in a high-speed mobile state is greater than a second preset number of cells;
  • the transmission time interval TTI of the merged cell dynamically allocate the time domain resources to the UE in the high-speed mobile state in combination with the preset allocation rule, so that And performing the step of transmitting data to the UE in the high-speed mobile state by using the merged cell on the allocated time domain resource.
  • the embodiment of the present invention provides a dynamic merge cell device, which may include:
  • An acquiring module configured to acquire a number of user equipment UEs in a high-speed mobile state in a target cell, where the target cell can perform cell merging with a neighboring cell, and the target cell and the neighboring cell are distributed along a high-speed mobile route
  • the UE in the high-speed mobile state is a UE in a connected mode and the moving speed is greater than a preset threshold;
  • a merging module configured to perform cell merging with the neighboring cell if the number of UEs in a high-speed mobile state in the target cell is greater than a first preset number
  • a sending module configured to send data to the UE in a high-speed mobile state by using the merged cell.
  • the device further includes:
  • a first splitting module where the number of UEs in a high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state In the case, the target cell and the neighboring cell are subjected to cell splitting.
  • the merging module includes:
  • a first determining unit configured to determine, in a case where the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, determine a moving direction of the UE in the high-speed mobile state
  • a first merging unit configured to perform cell merging between the target cell and the neighboring cell that the UE in the high-speed mobile state is about to enter according to the moving direction.
  • the first determining unit includes:
  • a first acquiring subunit configured to acquire a history record of the UE switching in the high-speed mobile state
  • the first determining subunit is configured to determine, according to the history record of the cell handover, a moving direction of the UE in the high speed mobile state.
  • the first determining unit includes:
  • a second acquiring sub-unit configured to acquire a unique identifier of a neighboring cell that performs cell merging in the target cell, where the unique identifier is a digital identifier that sequentially marks the cells distributed along the high-speed moving route in sequence;
  • a second determining sub-unit configured to determine, according to the unique identifier of the target cell and the obtained unique identifier of the neighboring cell, a prediction direction of the UE in the high-speed mobile state.
  • the acquiring module is specifically configured to: perform, according to a preset time interval, a step of acquiring a number of user equipment UEs in a high-speed mobile state in a target cell;
  • the first merging unit includes:
  • a third determining sub-unit configured to determine, according to the moving direction, whether the target cell and the neighboring cell that the UE in the high-speed mobile state are about to enter have been merged;
  • a first merging unit configured to perform cell merging with the upcoming neighboring cell if the merging is not performed.
  • the target cell and the neighboring cell support the first a carrier frequency and a second carrier frequency
  • the merging module includes:
  • a detecting unit configured to detect, if the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, whether the UE in the low-speed mobile state exists in the target cell, where the low-speed mobile state
  • the UE is a UE in a connected mode and the moving speed is less than a preset threshold
  • a switching unit configured to: YES, the UE in the low-speed mobile state is switched to the first carrier frequency for data transmission and reception, and the UE in the high-speed mobile state is switched to the second carrier Data transmission and reception on the frequency;
  • a second merging unit configured to perform cell merging with the target cell and the neighboring cell.
  • the device further includes:
  • a second splitting module where the number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state And performing cell splitting on the target cell and the neighboring cell;
  • the switching module is configured to: when it is determined that the UE in the low-speed mobile state exists on the first carrier frequency in the target cell, switch the at least one UE in the low-speed mobile state to the second carrier frequency for data transmission and reception.
  • the merging module includes:
  • a modifying unit configured to: in the case that the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, the physical cell identifier of each of the target cell and the neighboring cell PCI is modified to preset PCI;
  • a configuration unit configured to perform parameter configuration on the target cell and the neighboring cell according to a preset cell merging principle.
  • the device further includes:
  • a first recovery module where the number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state Reverting the target cell modified to the preset PCI to the PCI before the cell combination;
  • the second recovery module is configured to restore the target cell configured according to the preset cell merging principle to a parameter before the cell merging.
  • the sending module is specifically configured to:
  • the target cell and the neighboring cell in the merged cell cooperate to transmit data to the UE in the high-speed mobile state.
  • the seventh possible implementation manner, or the eighth possible implementation manner of the second aspect, or the ninth possible implementation manner of the second aspect The cells distributed along the high-speed mobile route adopt an IP-based mobile backhaul network IPRAN networking mode;
  • the sending module includes:
  • a second determining unit configured to determine between the target cell and the neighboring cell in the merged cell Whether it is the same site cell
  • a first synchronization unit configured to: if the determination result is yes, the target cell and the neighboring cell synchronously send data to the UE in the high-speed mobile state;
  • An acquiring unit configured to acquire transmission delay information between the target cell and a neighboring cell if the determination result is no;
  • a second synchronization unit configured to delay, by the target cell, the data according to the transmission delay information, and send data to the UE in the high-speed mobile state in synchronization with the neighboring cell.
  • the apparatus further includes:
  • a statistic module when it is determined that the number of the high-speed cells in the merged cell is greater than 1, the number of the UEs in the high-speed mobile state in each of the merged cells is obtained, and the high-speed mobile state is counted.
  • a total number of UEs wherein the high-speed cell is a cell in a cell that is in a high-speed mobile state, and the number of UEs is greater than a second preset number of cells;
  • An allocating module configured to dynamically perform time domain for the UE in the high-speed mobile state according to the total number of UEs in the high-speed mobile state, in a transmission time interval TTI of the merged cell, in combination with a preset allocation rule The allocation of resources to facilitate performing, on the allocated time domain resources, a step of transmitting data to the UE in the high speed mobile state by the merged cell.
  • the number of the user equipment UEs in the high-speed mobile state in the target cell is obtained, and when it is determined that the number of the UEs in the high-speed mobile state is greater than the first preset number, the target cell and the neighboring cell are adjacent to each other.
  • the cell performs cell merging, and sends the data to the UE in the high-speed mobile state by using the merged cell, that is, the embodiment of the present invention detects the busy state of the cell in real time, and dynamically merges the cell according to the busy state to merge.
  • the cell provides a non-handover service for the UE in the high-speed mobile state, and the uncombined cell can continue to be compatible with the ground user, that is, the UE in the low-speed mobile state, and solves the problem that the super cell turns the high-speed line cell into a cell in the prior art.
  • the problem that the cell capacity is limited and cannot be compatible with the terrestrial users effectively increases the capacity of the cells along the high-speed line while ensuring the communication quality of the UE in the high-speed mobile state.
  • the merged cell may be dynamically split, so that when the UE in the high-speed mobile state becomes less, the resource is released, and the capacity of the high-speed line cell is further improved.
  • 1 is a schematic diagram of a network structure of a super cell
  • FIG. 2 is a schematic flowchart of a method for dynamically combining cells provided by the present invention
  • FIG. 3 is a schematic flowchart of another method for dynamically combining cells provided by the present invention.
  • FIG. 4 is a schematic flowchart of still another method for dynamically combining cells provided by the present invention.
  • FIG. 5 is a schematic flowchart diagram of still another method for dynamically combining cells according to the present invention.
  • FIG. 6 is a schematic flowchart of still another method for dynamically combining cells provided by the present invention.
  • FIG. 7 is a schematic flow chart of still another method for dynamically combining cells provided by the present invention.
  • FIG. 8 is a schematic flowchart diagram of still another method for dynamically combining cells according to the present invention.
  • FIG. 9 is a schematic flowchart of still another method for dynamically combining cells provided by the present invention.
  • FIG. 10 is a schematic flowchart of still another method for dynamically combining cells provided by the present invention.
  • FIG. 11 and FIG. 12 are schematic diagrams showing a specific application scenario of a dynamically merged cell according to an embodiment of the present invention.
  • FIG. 13 and FIG. 14 are schematic diagrams showing another specific application scenario of a dynamically merged cell according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an embodiment of a dynamic merge cell device provided by the present invention.
  • 16 is a schematic structural diagram of another embodiment of a dynamic merge cell device provided by the present invention.
  • FIG. 17 is a schematic structural diagram of another embodiment of a merging module provided by the present invention.
  • FIG. 18 is a schematic structural diagram of another embodiment of a first determining unit provided by the present invention.
  • FIG. 19 is a schematic structural diagram of still another embodiment of a first determining unit provided by the present invention.
  • FIG. 20 is a schematic structural diagram of another embodiment of a first merging unit provided by the present invention.
  • 21 is a schematic structural diagram of still another embodiment of a merging module provided by the present invention.
  • FIG. 22 is a schematic structural diagram of still another embodiment of a dynamic merge cell device provided by the present invention.
  • FIG. 23 is a schematic structural diagram of still another embodiment of a merging module provided by the present invention.
  • FIG. 24 is a schematic structural diagram of still another embodiment of a dynamic merge cell device provided by the present invention.
  • 25 is a schematic structural diagram of another embodiment of a transmitting module provided by the present invention.
  • 26 is a schematic structural diagram of still another embodiment of a dynamic merge cell device provided by the present invention.
  • FIG. 27 is a schematic structural diagram of an embodiment of a network device provided by the present invention.
  • FIG. 28 is a schematic structural diagram of a dynamic merge cell system provided by the present invention.
  • FIG. 1 is a schematic diagram of a network structure of a super cell.
  • Cell 1 to Cell 6 are coverage areas corresponding to base stations disposed along a high-speed railway, and may be implemented by using a distributed base station architecture, such as a baseband processing unit (Building).
  • a distributed base station consisting of a base band unit (BBU) and a radio remote unit (RRU).
  • BBU base band unit
  • RRU radio remote unit
  • the BBU mainly performs the functions of baseband signal processing, transmission, main control and clock; RRU mainly completes the filtering, signal amplification and up-conversion processing of the RF signal, and uses digital intermediate frequency technology to realize the conversion from the intermediate frequency analog signal to the baseband digital signal. .
  • the super cell is a single frequency network (SFN)-based technology
  • the SFN refers to a radio transmitting station in a synchronized state from a plurality of different locations
  • the same signal is transmitted at the same frequency at the same time.
  • the high-speed line cell in the embodiment of the present invention may also be based on the SFN, that is, the SFN of the same frequency and clock synchronization must be met between the target cell and the neighboring cell in the embodiment of the present invention. Characteristics.
  • the foregoing network architecture is only one of the preferred embodiments of the present invention.
  • the network architecture in the embodiment of the present invention includes, but is not limited to, the foregoing network architecture, as long as the network architecture capable of implementing cell merging belongs to the present invention.
  • the scope of protection and coverage is only one of the preferred embodiments of the present invention.
  • the user equipment UE in the embodiment of the present invention includes, but is not limited to, a smart phone, a tablet computer, a media player, a smart TV, a smart bracelet, a smart wearable device, which can communicate with a network device such as a base station.
  • a network device such as a base station.
  • MP3 player Motion Picture Experts Group Audio Layer III, motion picture expert compresses standard audio layer 3
  • MP4 Motion Picture Experts Group Audio Layer IV
  • PDA personal digital assistant
  • Specific application scenarios of the embodiments of the present invention include, but are not limited to, highways, railways, high-speed rails, tunnels, etc., and the embodiments of the present invention will be mainly explained and illustrated in the high-speed rail application scenario.
  • FIG. 2 is a schematic flowchart of a method for dynamically merging cells according to an embodiment of the present invention. The following description is made from the network device side in conjunction with FIG. 2. As shown in FIG. 2, the method may include the following steps S201-S202. .
  • Step S201 Acquire the number of user equipment UEs in the target cell that are in a high-speed mobile state.
  • the target cell in the embodiment of the present invention can perform cell merging with its neighboring cell, and the target cell and the neighboring cell are cells that are distributed along the high-speed moving route, that is, linear rather than star-shaped, for example, a cell along the high-speed railway, and a high-speed Areas along the highway or along the railway.
  • the UE in the high-speed mobile state is the UE in the connected mode and the moving speed is greater than the preset threshold, and the preset threshold may be based on the actual application scenario, because only the UE in the connection mode is required to perform the cell handover. Make reasonable settings, such as a UE that makes a call on a high-speed train with a certain speed, or a UE that is on the Internet or a short message.
  • each cell in the cell that is distributed along the high-speed mobile route in the present invention is a target cell, and is not limited to a specific cell. Therefore, the description from the network device side in the embodiment of the present invention can be understood as A description is made from the network device side of each target cell, that is, the base station side corresponding to the target cell.
  • the Doppler frequency offset value of the UE in the high-speed driving condition may be changed, the Doppler frequency offset value of the UE may be acquired to determine whether the UE is in a high-speed moving state when the moving speed is greater than a preset threshold.
  • UE the Doppler frequency offset value of the UE in the connected mode in the target cell may be obtained; when it is determined that the Doppler frequency offset value is greater than the preset threshold, determining that the UE is in the UE in a high-speed moving state; calculating the determination to be in a high-speed movement The number of UEs in the state, thereby finally obtaining the number of user equipment UEs in the target cell that are in a high-speed mobile state.
  • the Doppler frequency offset value is greater than a preset threshold
  • the merged cells form a logical cell, and the physical cell identifiers (PCIs) are the same, but each has a separate global cell identifier (CGI), the switch record can be based on the high speed.
  • the mobile UE accesses different CGIs of different cells.
  • Step S202 If the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, the target cell and the neighboring cell are merged by the cell, and the merged cell is used.
  • the UE in the high speed mobile state transmits data.
  • the relationship between the number of UEs in the high-speed mobile state and the first preset number in the target cell is determined.
  • the target cell and the neighboring cell are performed.
  • the target cell and the neighboring cell are in a linear relationship, that is, each target cell has two neighboring cells adjacent to each other.
  • the target cell in the embodiment of the present invention merges with the neighboring cell, and may be The neighboring two adjacent cells are merged at the same time, or may be merged only with the neighboring cells to which the train is going to go, and the combined cells may be regarded as the same logical cell.
  • the UEs in the high-speed mobile state do not need to perform cell handover in the merged cell by using the cells in the merged cell to transmit data to the UE in the high-speed mobile state;
  • the cells to be reached are merged in advance, so that the cell merger is completed before the train arrives, so that the train is in the process of traveling, as if it is always in the same logical cell, and the high-speed rail has no switching effect.
  • it is equivalent to reducing only the capacity of the combined cell, and for the cell that has not been merged, the ground user can continue to be absorbed, and the original cell capacity is maintained, thereby increasing the capacity of the cell along the high-speed line and avoiding the super cell.
  • the capacity bottleneck caused by the merger of all the high-speed lines along the entire process is 0, that is, when it is determined that there is a UE in the high-speed mobile state in the target cell, the cell merging is triggered, so that the UE in the high-speed mobile state enjoys the high-speed railway after the cell merging. Switch service.
  • the combined cell may perform timing splitting, periodic splitting, or triggering splitting. For example, when the high-speed rail idle state, that is, the number of UEs in a high-speed mobile state is reduced to a certain extent, The cells that have been merged are subjected to conditional triggering splitting, and resource release is performed to further increase the capacity of the cells along the high speed.
  • the number of the user equipment UEs in the high-speed mobile state in the target cell is obtained, and when it is determined that the number of the UEs in the high-speed mobile state is greater than the first preset number, the target cell and the neighboring cell are adjacent to each other.
  • the cell performs cell merging, and sends the data to the UE in the high-speed mobile state by using the merged cell, that is, the embodiment of the present invention detects the busy state of the cell in real time, and dynamically merges the cell according to the busy state to merge.
  • the cell provides a non-handover service for the UE in the high-speed mobile state, and the uncombined cell can continue to be compatible with the ground user, that is, the UE in the low-speed mobile state, and solves the problem that the super cell turns the high-speed line cell into a cell in the prior art.
  • the problem that the cell capacity is limited and cannot be compatible with the terrestrial users effectively increases the capacity of the cells along the high-speed line while ensuring the communication quality of the UE in the high-speed mobile state.
  • the merged cell may be dynamically split, so that when the UE in the high-speed mobile state becomes less, the resource is released, and the capacity of the high-speed line cell is further improved.
  • FIG. 3 is a schematic flowchart of another method for dynamically merging cells in the embodiment of the present invention. The following description will be made from the network device side in conjunction with FIG. 3. As shown in FIG. 3, the method may include the following steps S301- Step S303.
  • Step S301 Acquire the number of user equipment UEs in the target cell that are in a high-speed mobile state.
  • Step S302 If the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, the target cell is merged with the neighboring cell, and the merged cell is used. The UE in the high speed mobile state transmits data.
  • step S301 to step S302 may refer to step S201 to step S202 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • Step S303 If the number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state, the The target cell performs cell splitting with the neighboring cell.
  • step S303 may be performed after step S302, or may be performed before S202. For example, if the initial state between the cells in the high-speed line cell or between the target cell and the neighboring cell is already merged, then the network device corresponding to each target cell, such as the base station, judges separately, when it is determined.
  • the condition that the number of the UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number it may be determined that the target cell and the neighboring cell do not need to be in the merged state at this time, and the corresponding target cell can be controlled.
  • the neighboring cell is split to release the cell resource, and the ordinary user compatible with the ground, that is, the UE in the low-speed mobile state, further increases the capacity of the cell along the high-speed line.
  • the number of the user equipment UEs in the high-speed mobile state in the target cell is obtained, and when it is determined that the number of the UEs in the high-speed mobile state is greater than the first preset number, the target cell and the neighboring cell are adjacent to each other.
  • the cell performs cell merging, and sends the data to the UE in the high-speed mobile state by using the merged cell, that is, the embodiment of the present invention detects the busy state of the cell in real time, and dynamically merges the cell according to the busy state to merge.
  • the cell provides a non-handover service for the UE in the high-speed mobile state, and the uncombined cell can continue to be compatible with the ground user, that is, the UE in the low-speed mobile state, and solves the problem that the super cell turns the high-speed line cell into a cell in the prior art.
  • the problem that the cell capacity is limited and cannot be compatible with the terrestrial users effectively increases the capacity of the cells along the high-speed line while ensuring the communication quality of the UE in the high-speed mobile state.
  • the merged cell may be dynamically split, so that when the UE in the high-speed mobile state becomes less, the resource is released, and the capacity of the high-speed line cell is further improved.
  • FIG. 4 is a schematic flowchart of still another method for dynamically merging cells according to an embodiment of the present invention. The following description is made from the network device side in conjunction with FIG. 4. As shown in FIG. 4, the method may include the following steps S401-step. S404.
  • Step S401 Acquire the number of user equipment UEs in the target cell that are in a high-speed mobile state.
  • step S401 can refer to step S201 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • Step S402 In a case where the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, determine a moving direction of the UE in the high-speed mobile state.
  • the traveling direction of the train that is, the user equipment on the train, that is, the moving direction of the UE in the high-speed moving state.
  • the moving direction of the UE in the high-speed mobile state may be determined according to the history of the cell handover or the history of the cell merged by the UE in the high-speed mobile state.
  • determining the moving direction of the UE in the high-speed mobile state obtaining a history record of the cell handover by acquiring the UE in the high-speed mobile state; determining the moving direction of the UE according to the historical record of the cell handover .
  • the unique identifier of the neighboring cell that performs the cell merging in the target cell is obtained, where the unique identifier is a digital identifier that sequentially marks each high-speed line cell in sequence; according to the unique identifier of the target cell And obtaining the unique identifier of the neighboring cell, and determining, by using the UE, the moving direction of the UE in the high-speed mobile state.
  • the UE in the high-speed mobile state may not have formed the cell handover history or the cell merge history, so it is necessary to ignore the case when there is no history until the UE generates the cell handover or the cell merge history.
  • the above step of determining the moving direction can be performed.
  • Step S403 Perform cell merging between the target cell and the neighboring cell that the UE in the high-speed mobile state is about to enter according to the moving direction, and send data to the UE in the high-speed mobile state by using the merged cell. .
  • the target cell is merged with the neighboring cell that the UE in the high-speed mobile state is about to enter.
  • the merging manner may be performed by uniformly modifying a physical cell identifier of the target cell and the neighboring cell into a preset PCI; performing the target cell and the neighboring cell according to a preset cell merging principle.
  • Parameter configuration More specifically, the switch that is mutually exclusive with the feature algorithm of the super cell can be closed, and the fixed parameters of the merged cell are configured according to the requirements of the super cell.
  • the preset PCI in the embodiment of the present invention needs to be pre-set, that is, the full-time cell merging uses the preset PCI, and since the number of PCIs is limited, it is necessary to repeatedly conflict with the PCI of the high-speed line cell. As a principle, otherwise there may be an error in cell merging.
  • Step S404 The number of UEs in the high-speed mobile state in the target cell is less than or equal to And performing, in the case that the first preset number, and the target cell and the neighboring cell are in a cell merge state, performing cell splitting on the target cell and the neighboring cell.
  • the target cell modified to the preset PCI is restored.
  • the PCI before the cell combination is restored; the target cell configured according to the preset cell merging principle is restored to the parameter before the cell merging. Further, the relevant algorithm and fixed parameters are restored to the state before the cell merge.
  • the number of the user equipment UEs in the high-speed mobile state in the target cell is obtained, and when it is determined that the number of the UEs in the high-speed mobile state is greater than the first preset number, the target cell and the neighboring cell are adjacent to each other.
  • the cell performs cell merging, and sends the data to the UE in the high-speed mobile state by using the merged cell, that is, the embodiment of the present invention detects the busy state of the cell in real time, and dynamically merges the cell according to the busy state to merge.
  • the cell provides a non-handover service for the UE in the high-speed mobile state, and the uncombined cell can continue to be compatible with the ground user, that is, the UE in the low-speed mobile state, and solves the problem that the super cell turns the high-speed line cell into a cell in the prior art.
  • the problem that the cell capacity is limited and cannot be compatible with the terrestrial users effectively increases the capacity of the cells along the high-speed line while ensuring the communication quality of the UE in the high-speed mobile state.
  • the merged cell may be dynamically split, so that when the UE in the high-speed mobile state becomes less, the resource is released, and the capacity of the high-speed line cell is further improved.
  • FIG. 5 is a schematic flowchart of still another method for dynamically merging cells in the embodiment of the present invention. The following description is made from the network device side in conjunction with FIG. 5. As shown in FIG. 5, the method may include the following steps S501-step. S505.
  • Step S501 Obtain the number of user equipment UEs in the target cell that are in the high-speed mobile state according to the preset time interval.
  • the number of UEs in the high-speed mobile state in the target cell is periodically acquired in real time or according to a preset time interval, so as to perform the steps of subsequent cell merging or cell splitting in the embodiment of the present invention in a loop.
  • the preset time interval can be adjusted according to different application scenarios, or can be dynamically adjusted according to the schedule of the train on the railway. For example, when busy, the preset time interval is reduced; , you can adjust the preset time interval appropriately to better Save money.
  • step S201 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • Step S502 In a case where the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, determine a moving direction of the UE in the high-speed mobile state.
  • step S502 can refer to step S402 in the foregoing embodiment of FIG. 4, and details are not described herein again.
  • Step S503 Determine, according to the moving direction, whether the target cell and the neighboring cell that the UE in the high-speed mobile state are about to enter have been merged.
  • the target cell and the neighboring cell that the UE in the high-speed mobile state are about to enter have been merged, and if the merge has been performed, the subsequent cell merging operation is not performed.
  • Step S504 If the merging is not performed, the target cell is merged with the neighboring neighboring cell, and the merged cell is used to send data to the UE in the high-speed mobile state.
  • the target cell is merged with the neighboring cell that is about to enter according to the moving direction determined in step S502.
  • step S403 in the foregoing embodiment of FIG. 4, and details are not described herein again.
  • Step S505 If the number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state, the The target cell performs cell splitting with the neighboring cell.
  • step S505 can refer to step S404 in the foregoing embodiment of FIG. 4, and details are not described herein again.
  • the number of the user equipment UEs in the high-speed mobile state in the target cell is obtained, and when it is determined that the number of the UEs in the high-speed mobile state is greater than the first preset number, the target cell and the neighboring cell are adjacent to each other.
  • the cell performs cell merging, and sends the data to the UE in the high-speed mobile state by using the merged cell, that is, the embodiment of the present invention detects the busy state of the cell in real time, and dynamically merges the cell according to the busy state to merge.
  • the cell provides a non-handover service for the UE in the high-speed mobile state, and the uncombined cell can continue to be compatible with the ground user, that is, the UE in the low-speed mobile state, and solves the problem that the super cell turns the high-speed line cell into a cell in the prior art.
  • the problem that the cell capacity is limited and cannot be compatible with the terrestrial users effectively increases the capacity of the cells along the high-speed line while ensuring the communication quality of the UE in the high-speed mobile state.
  • the merged cell may be dynamically split, so that the UE in the high-speed mobile state changes. When there is little time, resource release is performed, which further increases the capacity of the cell along the high speed.
  • FIG. 6 is a schematic flowchart of still another method for dynamically merging cells according to an embodiment of the present invention. The following description will be made from the network device side in conjunction with FIG. 6. As shown in FIG. 6, the method may include the following steps S601-step. S608.
  • Step S601 Acquire the number of user equipment UEs in the target cell that are in the high-speed mobile state according to the preset time interval.
  • step S601 can refer to step S501 in the foregoing embodiment of FIG. 5, and details are not described herein again.
  • Step S602 If the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, detect whether there is a UE in the low-speed mobile state in the target cell.
  • the method for determining whether the UE is in the low-speed moving state may correspond to the method for determining the speed of the UE in the connected mode in step 201 in the embodiment of FIG. 2, and details are not described herein again.
  • Step S603 If yes, the UE in the low-speed mobile state is switched to the first carrier frequency to perform data transmission and reception, and the UE in the high-speed mobile state is switched to the second carrier frequency to perform data transmission and reception. .
  • the target cell and the neighboring cell support the first carrier frequency and the second carrier frequency, that is, the target cell and the neighboring cell are both dual carrier frequency coverage cells, and the data transmission and reception and the second carrier on the first carrier frequency are performed.
  • the data transmission and reception on the frequency does not affect each other.
  • the ground user in the merged cell that is, the UE in the low-speed mobile state, may not be affected by the merged cell, and still perform data transmission and reception according to the transmission mode before the cell is not merged.
  • the uncombined cells can be compatible with the ground users, that is, the UEs in the low-speed mobile state, but also the merged cells are switched to the carrier frequency different from the UEs in the high-speed mobile state by the UEs in the low-speed mobile state. Therefore, the transmission of the UE in the high-speed mobile state and the UE in the low-speed mobile state does not interfere with each other, and is compatible with the UE in the high-speed mobile state and the UE in the low-speed mobile state, that is, by performing this step S603, the entire high-speed can be realized.
  • the UEs in the high-speed mobile state and the UEs in the low-speed mobile state can be simultaneously compatible on the cells along the line.
  • Step S604 determining the moving direction of the UE in the high speed moving state.
  • Step S605 Determine, according to the moving direction, whether the target cell and the neighboring cell that the UE in the high-speed mobile state are about to enter have been merged.
  • Step S606 If the merging is not performed, the target cell is merged with the neighboring neighboring cell, and the merged cell is used to send data to the UE in the high-speed mobile state.
  • Step S607 If the number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state, the The target cell performs cell splitting with the neighboring cell.
  • step S604 to step S607 may refer to step S502 to step S505 in the foregoing embodiment of FIG. 5, and details are not described herein again.
  • Step S608 When it is determined that there is a UE in a low-speed mobile state on the first carrier frequency in the target cell, at least one UE in a low-speed mobile state is switched to the second carrier frequency for data transmission and reception.
  • the second carrier frequency of the target cell is considered to be idle at this time.
  • some users who perform data transmission and reception on the first carrier frequency can be switched to the second carrier frequency to reduce the load of the first carrier frequency and fully utilize the carrier frequency resources.
  • the number of the user equipment UEs in the high-speed mobile state in the target cell is obtained, and when it is determined that the number of the UEs in the high-speed mobile state is greater than the first preset number, the target cell and the neighboring cell are adjacent to each other.
  • the cell performs cell merging, and sends the data to the UE in the high-speed mobile state by using the merged cell, that is, the embodiment of the present invention detects the busy state of the cell in real time, and dynamically merges the cell according to the busy state to merge.
  • the cell provides a non-handover service for the UE in the high-speed mobile state, and the uncombined cell can continue to be compatible with the ground user, that is, the UE in the low-speed mobile state, and solves the problem that the super cell turns the high-speed line cell into a cell in the prior art.
  • the problem that the cell capacity is limited and cannot be compatible with the terrestrial users effectively increases the capacity of the cells along the high-speed line while ensuring the communication quality of the UE in the high-speed mobile state.
  • the merged cell may be dynamically split, so that when the UE in the high-speed mobile state becomes less, the resource is released, and the capacity of the high-speed line cell is further improved.
  • FIG. 7 is a schematic flowchart of still another method for dynamically merging cells according to an embodiment of the present invention. The following description will be made from the network device side in conjunction with FIG. 7. As shown in FIG. 7, the method may include the following steps S701-step. S708.
  • Step S701 Obtain the number of user equipment UEs in the target cell that are in the high-speed mobile state according to the preset time interval.
  • Step S702 If the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, detect whether there is a UE in the low-speed mobile state in the target cell.
  • Step S703 If yes, the UE in the low-speed mobile state is switched to the first carrier frequency to perform data transmission and reception, and the UE in the high-speed mobile state is switched to the second carrier frequency to perform data transmission and reception. .
  • Step S704 Determine the moving direction of the UE in the high speed moving state.
  • Step S705 Determine, according to the moving direction, whether the target cell and the neighboring cell that the UE in the high-speed mobile state are about to enter have been merged.
  • step S701 to step S705 can refer to step S601 to step S605 in the foregoing embodiment of FIG. 6, and details are not described herein again.
  • Step S706 If the merging is not performed, the target cell is merged with the neighboring neighboring cell, and the target cell and the neighboring cell in the merged cell cooperate to move to the high speed.
  • the state of the UE sends data.
  • step S705 if the result of the determination in step S705 is that the merging is not performed, the target cell is merged with the neighboring neighboring cell, and the target cell and the neighboring cell in the merged cell are used.
  • Coordinated transmission of data to the UE in a high speed mobile state The method of transmitting data to the UE in the high-speed mobile state is to transmit data to the UE in the high-speed mobile state by using a Coordinated Multiple Point (CoMP) transmission mode, and the CoMP includes the target cell and the neighboring cell.
  • CoMP Coordinated Multiple Point
  • the antennas of the multiple cell sites are received or transmitted in a coordinated manner to improve the received signal quality of the UE or the network device, so that the UE has no handover in the merged cell.
  • Step S707 The number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state. In the case, the target cell and the neighboring cell are subjected to cell splitting.
  • Step S708 When it is determined that there is a UE in a low-speed mobile state on the first carrier frequency in the target cell, at least one UE in a low-speed mobile state is switched to the second carrier frequency for data transmission and reception.
  • step S707 to step S708 can refer to step S607 to step S608 in the foregoing embodiment of FIG. 6, and details are not described herein again.
  • the number of the user equipment UEs in the high-speed mobile state in the target cell is obtained, and when it is determined that the number of the UEs in the high-speed mobile state is greater than the first preset number, the target cell and the neighboring cell are adjacent to each other.
  • the cell performs cell merging, and sends the data to the UE in the high-speed mobile state by using the merged cell, that is, the embodiment of the present invention detects the busy state of the cell in real time, and dynamically merges the cell according to the busy state to merge.
  • the cell provides a non-handover service for the UE in the high-speed mobile state, and the uncombined cell can continue to be compatible with the ground user, that is, the UE in the low-speed mobile state, and solves the problem that the super cell turns the high-speed line cell into a cell in the prior art.
  • the problem that the cell capacity is limited and cannot be compatible with the terrestrial users effectively increases the capacity of the cells along the high-speed line while ensuring the communication quality of the UE in the high-speed mobile state.
  • the merged cell may be dynamically split, so that when the UE in the high-speed mobile state becomes less, the resource is released, and the capacity of the high-speed line cell is further improved.
  • FIG. 8 is a schematic flowchart of still another method for dynamically merging cells according to an embodiment of the present invention. The following description will be made from the network device side in conjunction with FIG. 8. As shown in FIG. 8, the method may include the following steps S801-step. S812.
  • Step S801 Acquire the number of user equipment UEs in the target cell that are in a high-speed mobile state according to a preset time interval.
  • Step S802 If the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, detect whether there is a UE in the low-speed mobile state in the target cell.
  • Step S803 If yes, the UE in the low-speed mobile state is switched to the first carrier frequency for data transmission and reception, and the UE in the high-speed mobile state is switched to the second carrier frequency for data transmission and reception. .
  • Step S804 determining the moving direction of the UE in the high speed moving state.
  • Step S805 Determine, according to the moving direction, whether the target cell and the neighboring cell that the UE in the high-speed mobile state are about to enter have been merged.
  • Step S806 If the merging is not performed, the target cell is merged with the neighboring neighboring cell.
  • step S801 to step S806 may refer to step S701 to step S706 in the foregoing embodiment of FIG. 7, and details are not described herein again.
  • Step S807 Determine whether the target cell and the neighboring cell in the merged cell are co-site cells.
  • the transmission delay of the networking mode is relatively large, and When the target cell and the neighboring cell in the succeeding cell cannot simultaneously transmit data to the UE in the high-speed mobile state, the transmission data is incorrect, the cell handover fails, and the like, and therefore, the merged cell is in the high-speed mobile state.
  • IPRAN IP-based mobile radio backhaul network
  • the delay factor should be fully considered, and the data transmission time between cells of different sites is relatively large. Therefore, it is necessary to determine whether the target cell and the neighboring cell are the same site cell.
  • the embodiment of the present invention when the network architecture of the BBU and the RRU is applied, the cells corresponding to the RRUs in different BBUs are different site cells, and the different cells corresponding to the RRUs in the same BBU are co-site cells. It can be understood that the embodiment of the present invention is not limited to the networking mode using the IPRAN, and any method of the network in which the transmission delay is large or the delay factor is considered in the data transmission may be the method steps in this embodiment.
  • Step S808 If yes, the target cell and the neighboring cell synchronously send data to the UE in the high-speed mobile state.
  • the target cell and the neighboring cell can synchronously send data to the UE in the high-speed mobile state. More specifically, reference may be made to FIG. 7 Step S706 in the embodiment, and details are not described herein again.
  • Step S809 If no, acquiring transmission delay information between the target cell and the neighboring cell.
  • the delay information needs to be acquired in order to allow the target cell and the neighboring cell to jointly transmit data to the UE.
  • Step S810 The target cell delays the corresponding time according to the transmission delay information, and the The neighboring cell synchronizes transmission of data to the UE in the high speed mobile state.
  • the target cell may delay the delay time acquired in step S809, and transmit data to the UE in the high-speed mobile state in synchronization with the neighboring cell.
  • Step S811 If the number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state, the The target cell performs cell splitting with the neighboring cell.
  • Step S812 When it is determined that there is a UE in a low-speed mobile state on the first carrier frequency in the target cell, at least one UE in a low-speed mobile state is switched to the second carrier frequency for data transmission and reception.
  • step S811 to step S812 can refer to step S707 to step S708 in the foregoing embodiment of FIG. 7, and details are not described herein again.
  • the number of the user equipment UEs in the high-speed mobile state in the target cell is obtained, and when it is determined that the number of the UEs in the high-speed mobile state is greater than the first preset number, the target cell and the neighboring cell are adjacent to each other.
  • the cell performs cell merging, and sends the data to the UE in the high-speed mobile state by using the merged cell, that is, the embodiment of the present invention detects the busy state of the cell in real time, and dynamically merges the cell according to the busy state to merge.
  • the cell provides a non-handover service for the UE in the high-speed mobile state, and the uncombined cell can continue to be compatible with the ground user, that is, the UE in the low-speed mobile state, and solves the problem that the super cell turns the high-speed line cell into a cell in the prior art.
  • the problem that the cell capacity is limited and cannot be compatible with the terrestrial users effectively increases the capacity of the cells along the high-speed line while ensuring the communication quality of the UE in the high-speed mobile state.
  • the merged cell may be dynamically split, so that when the UE in the high-speed mobile state becomes less, the resource is released, and the capacity of the high-speed line cell is further improved.
  • FIG. 9 is a schematic flowchart of still another method for dynamically combining cells in the embodiment of the present invention. The following description will be made from the network device side in conjunction with FIG. 9. As shown in FIG. 9, the method may include the following steps S901-step. S912.
  • Step S901 Acquire the number of user equipment UEs in the target cell that are in the high-speed mobile state according to the preset time interval.
  • Step S902 If the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, detect whether there is a UE in the low-speed mobile state in the target cell.
  • Step S903 If yes, switching the UE in the low-speed mobile state to the first carrier frequency for data transmission and reception, and switching the UE in the high-speed mobile state to the second carrier frequency for data transmission and reception. .
  • Step S904 Determine the moving direction of the UE in the high speed moving state.
  • Step S905 Determine, according to the moving direction, whether the target cell and the neighboring cell that the UE in the high-speed mobile state are about to enter have been merged.
  • Step S906 If the merging is not performed, the target cell is merged with the neighboring neighboring cell.
  • step S901 to step S906 can refer to step S801 to step S806 in the foregoing embodiment of FIG. 8 , and details are not described herein again.
  • Step S907 When it is determined that the number of high-speed cells in the merged cell is greater than 1, the number of UEs in the high-speed mobile state in each of the merged cells is obtained, and the high-speed mobile state is counted. The total number of UEs.
  • the high-speed cell is that the number of UEs in the high-speed mobile state in the cell is greater than the second preset number of cells, when the train spans multiple cells, and more than one cell is distributed in a cell that is greater than the second preset number.
  • the mobile state UE since each cell in the merged cell needs to send the same data to the same UE at the same time, but the merged cells cannot know each other in the high-speed cell that is determined to be in the high-speed mobile state.
  • the existence of the UE may cause a collision in the allocation of the channel resources, such as a collision between a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Shared Channel (PDSCH), so the channel needs to be performed at this time.
  • the overall allocation of resources such as a collision between a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Shared Channel (PDSCH), so the channel needs to be performed at this time.
  • the overall allocation of resources such as a collision between a Physical Downlink Control Channel
  • the number of UEs in the high-speed mobile state in the current cell may be reported to be counted and reported to the preset network device, for example, reported to the cell with the largest or smallest CGI of the cell.
  • the corresponding network device performs total statistics.
  • the second predetermined number is zero.
  • Step S908 Dynamically perform time domain resources for the UE in the high-speed mobile state according to the preset allocation rule in the transmission time interval TTI of the merged cell according to the total number of the UEs in the high-speed mobile state. Allocating to facilitate execution by merging on the allocated time domain resources The subsequent cell sends a step of transmitting data to the UE in a high speed mobile state.
  • the TTI is dynamically placed in conjunction with the preset allocation rule.
  • the UE in the high-speed mobile state allocates time-domain resources according to the principle that the number of UEs with a large number of UEs in the high-speed mobile state is preferentially allocated, or the order of the cells is sequentially assigned according to the order of the size of the unique identifier of the cell.
  • the step of transmitting data to the UE in the high speed mobile state by the merged cell is performed on the allocated time domain resource.
  • Step S909 The target cell and the neighboring cell in the merged cell cooperate to send data to the UE in the high-speed mobile state on the allocated time domain resource.
  • the target cell and the neighboring cell in the merged cell cooperate to send data to the UE in the high speed mobile state, and more specifically, refer to the foregoing embodiment in FIG. 7 Step S706, and details are not described herein again.
  • Step S910 When it is determined that the number of high-speed cells in the merged cell is equal to 1, the target cell and the neighboring cell in the merged cell cooperate to send data to the UE in the high-speed mobile state.
  • step S910 can refer to step S706 in the foregoing embodiment of FIG. 7, and details are not described herein again.
  • Step S911 If the number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state, the The target cell performs cell splitting with the neighboring cell.
  • Step S912 When it is determined that there is a UE in a low-speed mobile state on the first carrier frequency in the target cell, at least one UE in a low-speed mobile state is switched to the second carrier frequency for data transmission and reception.
  • step S911 to step S912 can refer to step S811 to step S812 in the foregoing embodiment of FIG. 8 , and details are not described herein again.
  • the number of the user equipment UEs in the high-speed mobile state in the target cell is obtained, and when it is determined that the number of the UEs in the high-speed mobile state is greater than the first preset number, the target cell and the neighboring cell are adjacent to each other.
  • the cell performs cell merging, and sends data to the UE in the high-speed mobile state by using the merged cell, that is, the embodiment of the present invention detects the busy state of the cell in real time, and The cells are dynamically merged according to the busy state, so that the merged cell provides a non-handover service for the UE in the high-speed mobile state, and the uncombined cell can continue to be compatible with the ground user, that is, the UE in the low-speed mobile state, which solves the prior art.
  • the super cell turns the whole high-speed cell into a cell, which leads to the problem that the cell capacity is limited and cannot be compatible with the ground user, which effectively increases the capacity of the cell along the high-speed line and ensures the communication quality of the UE in the high-speed mobile state.
  • the merged cell may be dynamically split, so that when the UE in the high-speed mobile state becomes less, the resource is released, and the capacity of the high-speed line cell is further improved.
  • FIG. 10 is a schematic flowchart of still another method for dynamically merging cells according to an embodiment of the present invention. The following description will be made from the network device side in conjunction with FIG. 10, as shown in FIG. 10, the method may include the following steps S1001-step. S1018.
  • Step S1001 Obtain the number of user equipment UEs in the target cell that are in a high-speed mobile state according to a preset time interval.
  • Step S1002 If the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, detect whether there is a UE in the low-speed mobile state in the target cell.
  • Step S1003 If yes, switching the UE in the low-speed mobile state to the first carrier frequency for data transmission and reception, and switching the UE in the high-speed mobile state to the second carrier frequency for data transmission and reception. .
  • Step S1004 Determine the moving direction of the UE in the high-speed moving state.
  • Step S1005 Determine, according to the moving direction, whether the target cell and the neighboring cell that the UE in the high-speed mobile state are about to enter have been merged.
  • Step S1006 If the merging is not performed, the target cell is merged with the neighboring cell that is about to enter.
  • Step S1007 When it is determined that the number of high-speed cells in the merged cell is greater than 1, the number of UEs in the high-speed mobile state in each of the merged cells is obtained, and the high-speed mobile state is counted. The total number of UEs.
  • Step S1008 Dynamically perform time domain resources for the UE in the high-speed mobile state according to the total number of UEs in the high-speed mobile state, in the transmission time interval TTI of the merged cell, in combination with a preset allocation rule. distribution.
  • step S1001 to step S1008 may refer to step S901 to step S908 in the foregoing embodiment of FIG. 9, and details are not described herein again.
  • Step S1009 Determine whether the target cell and the neighboring cell in the merged cell are co-site cells.
  • Step S1010 If yes, on the allocated time domain resource, the target cell and the neighboring cell synchronously send data to the UE in the high speed mobile state.
  • Step S1011 If no, acquiring transmission delay information between the target cell and the neighboring cell.
  • Step S1012 On the allocated time domain resource, the target cell delays the corresponding time according to the transmission delay information, and sends data to the UE in the high-speed mobile state synchronously with the neighboring cell.
  • step S1009 to step S1012 may refer to step S807 to step S810 in the foregoing embodiment of FIG. 8, and details are not described herein again.
  • Step S1013 When it is determined that the number of high-speed cells in the merged cell is equal to 1, it is determined whether the target cell and the neighboring cell in the merged cell are co-site cells.
  • Step S1014 If yes, the target cell and the neighboring cell synchronously send data to the UE in the high speed mobile state.
  • Step S1015 If no, acquiring transmission delay information between the target cell and the neighboring cell.
  • Step S1016 The target cell delays the corresponding time according to the transmission delay information, and sends data to the UE in the high-speed mobile state synchronously with the neighboring cell.
  • step S1013 to step S1016 may refer to step S807 to step S810 in the foregoing embodiment of FIG. 8 , and details are not described herein again.
  • Step S1017 If the number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state, the The target cell performs cell splitting with the neighboring cell.
  • Step S1018 When it is determined that there is a UE in a low-speed mobile state on the first carrier frequency in the target cell, at least one UE in a low-speed mobile state is switched to the second carrier frequency for data transmission and reception.
  • step S1017 to step S1018 may refer to step S911 to step S912 in the foregoing embodiment of FIG. 9, and details are not described herein again.
  • FIG. 11 and FIG. 12 it is a schematic diagram of a specific application scenario of the method for dynamically combining cells in the embodiment of the present invention.
  • the target cell Cell2 has more UEs in a high-speed mobile state.
  • the train direction at this time is from left to right in the figure, so Cell2 and Cell3 are merged at this time; in FIG. 12, when the train travels to Cell3, the network device corresponding to the target cell Cell3 at this time detects the cell in Cell3.
  • the direction of the train is obtained according to the cell handover record or the cell merge record of the UE in the high-speed mobile state, thereby combining Cell3 and Cell4, and more specific implementation details, please refer to the above.
  • the method embodiments in FIG. 2 to FIG. 10 are not described herein again.
  • FIG. 13 is a schematic diagram of another specific application scenario of the method for dynamically merging cells in the embodiment of the present invention.
  • both the target cell Cell 2 and the target cell Cell 6 are located in FIG. 13 .
  • the UE in high-speed mobile state, that is, there are two trains that are in the wrong direction from different directions.
  • One train is in Cell2 from left to right, and Cell2 and Cell3 are combined in the same cell; the other train is in Cell6 from right to left.
  • Cell5 and Cell6 are merged; the next time period can be predicted, and the scenario in FIG.
  • a merged cell exists, and among the multiple cells in the merged cell, there are UEs in a high-speed mobile state, and there are cells of different sites, that is, the time domain resources need to be uniformly allocated, and the delay information is calculated.
  • FIG. 2 to FIG. 10 please refer to the method embodiments in FIG. 2 to FIG. 10 above, which are not explained here.
  • the number of the user equipment UEs in the high-speed mobile state in the target cell is obtained, and when it is determined that the number of the UEs in the high-speed mobile state is greater than the first preset number, the target cell and the neighboring cell are adjacent to each other.
  • the cell performs cell merging, and sends the data to the UE in the high-speed mobile state by using the merged cell, that is, the embodiment of the present invention detects the busy state of the cell in real time, and dynamically merges the cell according to the busy state to merge.
  • the cell provides a non-handover service for the UE in the high-speed mobile state, and the uncombined cell can continue to be compatible with the ground user, that is, the UE in the low-speed mobile state, and solves the problem that the super cell turns the high-speed line cell into a cell in the prior art.
  • the problem that the cell capacity is limited and cannot be compatible with the terrestrial users effectively increases the capacity of the cells along the high-speed line while ensuring the communication quality of the UE in the high-speed mobile state.
  • the merged cell may be dynamically split, so that when the UE in the high-speed mobile state becomes less, the resource is released, and the capacity of the high-speed line cell is further improved.
  • the apparatus 10 can include an acquisition module 101, a merge module 102, and a transmission module 103.
  • the obtaining module 101 is configured to acquire the number of user equipment UEs in a high-speed mobile state in the target cell, where the target cell can perform cell merging with the neighboring cell, and the target cell and the neighboring cell are moving along the high-speed path.
  • the UE in a high-speed mobile state is a UE in a connected mode and the moving speed is greater than a preset threshold;
  • the merging module 102 is configured to perform cell merging with the neighboring cell if the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number;
  • the sending module 103 is configured to send data to the UE in the high-speed mobile state by using the merged cell.
  • the dynamic merging cell device may further include: a first splitting module 104, where
  • the first splitting module 104 is configured to: the number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state. In the case, the target cell and the neighboring cell are subjected to cell splitting.
  • the merging module 102 may include: a first judging unit 1021 and a first merging unit 1022, wherein
  • the first determining unit 1021 is configured to determine, in a case where the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, determine a moving direction of the UE in the high-speed mobile state;
  • the first merging unit 1022 is configured to perform cell merging between the target cell and the neighboring cell that the UE in the high-speed mobile state is about to enter according to the moving direction.
  • the first determining unit 1021 may include: a first obtaining subunit 1211 and a first determining subunit. 1212, where
  • the first obtaining sub-unit 1211 is configured to acquire a history record of the cell handover performed by the UE in the high-speed mobile state;
  • the first determining sub-unit 1212 is configured to determine, according to the history record of the cell handover, a moving direction of the UE in the high-speed mobile state.
  • the first determining unit may further include: a second obtaining subunit 1213 and a second judging subunit 1214. ,among them
  • a second obtaining sub-unit 1213 configured to acquire a unique identifier of a neighboring cell that performs cell merging in the target cell, where the unique identifier is a digital identifier that sequentially marks the cells that are distributed along the high-speed moving route in order ;
  • the second determining sub-unit 1214 is configured to determine, according to the unique identifier of the target cell and the obtained unique identifier of the neighboring cell, a prediction of a moving direction of the UE in the high-speed mobile state.
  • the obtaining module 101 is specifically configured to: perform a user in a high-speed moving state in the target cell according to a preset time interval. a step of the number of devices UE;
  • the first merging unit 1022 may include: a third judging subunit 1221 and a first merging subunit 1222, wherein
  • the third determining sub-unit 1221 is configured to determine, according to the moving direction, whether the target cell and the neighboring cell that the UE in the high-speed mobile state are about to enter have been merged;
  • the first merging sub-unit 1222 is configured to perform cell merging with the upcoming neighboring cell if the merging is not performed.
  • the target cell and the neighboring cell support the first carrier frequency and the second carrier frequency;
  • the merging module 102 And may include: a detecting unit 1023, a switching unit 1024, and a second merging unit 1025, wherein
  • the detecting unit 1023 is configured to detect, if the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, whether there is a UE in a low-speed mobile state in the target cell, where the mobile device is in a low-speed mobile state
  • the UE in the state is the UE in the connected mode and the moving speed is less than the preset threshold;
  • the switching unit 1024 is configured to: when the determination result is yes, switch the UE in the low speed mobile state to the first carrier frequency to perform data transmission and reception, and switch the UE in the high speed mobile state to the second Data transmission and reception on the carrier frequency;
  • the second merging unit 1025 is configured to perform cell merging with the target cell and the neighboring cell.
  • the dynamic merging cell device 10 may further include: a second splitting module 105 and a switching module 106, wherein
  • the second splitting module 105 is configured to: the number of UEs in the high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state. In the case, the target cell and the neighboring cell are subjected to cell splitting;
  • the switching module 106 is configured to: when it is determined that the UE in the low-speed mobile state exists on the first carrier frequency in the target cell, switch at least one UE in the low-speed mobile state to the second carrier frequency to perform data transmission and reception. .
  • the merging module 102 may include: a modifying unit 1026 and a configurable unit 1027, wherein
  • the modifying unit 1026 is configured to modify, when the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, the physical cell identifiers of the target cells and the neighboring cells are all modified to Preset PCI;
  • the configuration unit 1027 is configured to perform parameter configuration on the target cell and the neighboring cell according to a preset cell merging principle.
  • the dynamic merging cell device 10 may further include: a first recovery module 107 and a second recovery module 108, wherein
  • a first recovery module 107 in a case where the number of UEs in a high-speed mobile state in the target cell is less than or equal to the first preset number, and the target cell and the neighboring cell are in a cell merge state, Reverting the target cell modified to the preset PCI to the PCI before the cell combination;
  • the second recovery module 108 is configured to restore the target cell configured according to a preset cell merging principle to a parameter before cell merging.
  • the sending module 103 is specifically configured to:
  • the target cell and the neighboring cell in the merged cell cooperate to transmit data to the UE in the high-speed mobile state.
  • the high-speed line cell adopts an IP-based mobile backhaul network IPRAN networking mode
  • the sending module 103 may further include: a second determining unit 1031, a first synchronization unit 1032, a second obtaining unit 1033, and a second Synchronization unit 1034, wherein
  • the second determining unit 1031 is configured to determine whether the target cell and the neighboring cell in the merged cell are co-site cells;
  • the first synchronization unit 1032 is configured to: if the determination result is yes, the target cell and the neighboring cell synchronously send data to the UE in the high-speed mobile state;
  • the second obtaining unit 1033 is configured to: if the determination result is no, acquire transmission delay information between the target cell and the neighboring cell;
  • the second synchronization unit 1034 is configured to delay, by the target cell, the data according to the transmission delay information, and send data to the UE in the high-speed mobile state in synchronization with the neighboring cell.
  • FIG. 26 a schematic structural diagram of still another embodiment of the dynamic merging cell device provided by the present invention, as shown in FIG. 26, may further include: a statistic module 109 and an allocating module 110, wherein
  • the statistics module 109 is configured to: when it is determined that the number of the high-speed cells in the merged cell is greater than 1, obtain the number of UEs in the high-speed mobile state in each of the merged cells, and collect the high-speed mobile state a total number of UEs in a mobile state, wherein the high-speed cell is a cell in a cell that is in a high-speed mobile state, and the number of UEs is greater than a second preset number of cells;
  • the allocating module 110 is configured to dynamically perform time for the UE in the high-speed mobile state in the transmission time interval TTI of the merged cell according to the total number of the UEs in the high-speed mobile state in combination with the preset allocation rule.
  • the present invention also provides related equipment for implementing the above solution.
  • the following is a detailed description of the structure of the embodiment of the network device provided by the present invention shown in FIG. 27:
  • the network device 20 includes an input device 201, an output device 202, a memory 203, and a processor 204 (the number of processors 204 in the network device 20 may be one or more, one in FIG. 27) For example, the processor).
  • the input device 201, the output device 202, the memory 203, and the processor 204 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the memory 203 is configured to store program code
  • the processor 204 is configured to invoke the program code stored in the memory 203 to perform the following steps:
  • the input device 201 Acquiring, by the input device 201, the number of user equipment UEs in a high-speed mobile state in the target cell, the target cell being able to perform cell merging with the neighboring cell, and the target cell and the neighboring cell are moving along the high-speed route a distributed cell, the UE in a high-speed mobile state is a UE in a connected mode and the moving speed is greater than a preset threshold;
  • the target cell If the number of UEs in the high-speed mobile state in the target cell is greater than the first preset number, the target cell is merged with the neighboring cell, and the merged cell passes the output device. 202 transmits data to the UE in a high speed mobile state.
  • the method further includes:
  • the target cell is The neighboring cell performs cell splitting.
  • the processor 204 merges the target cell with the neighboring cell, including :
  • the target cell is merged with a neighboring cell that the UE in the high-speed mobile state is about to enter.
  • the processor 204 determines the moving direction of the UE in the high-speed mobile state, including:
  • the processor 204 determines the moving direction of the UE in the high-speed mobile state, including:
  • the input device 201 Acquiring, by the input device 201, a unique identifier of a neighboring cell that performs cell merging on the target cell, where the unique identifier is a digital identifier that sequentially marks the cells distributed along the high-speed mobile route in sequence;
  • the processor 204 combines the target cell with the neighboring cell that the UE in the high-speed mobile state is about to enter, including:
  • the target cell is merged with the neighboring neighboring cell.
  • the target cell and the neighboring cell support the first carrier frequency and the second carrier frequency
  • the method further includes:
  • the UE in the low-speed mobile state is switched to the first carrier frequency for data transmission and reception, and the UE in the high-speed mobile state is switched to the second carrier frequency for data transmission and reception.
  • the method further includes:
  • the target cell is The neighboring cell performs cell splitting
  • At least one UE in a low-speed mobile state is switched to the second carrier frequency for data transmission and reception.
  • the processor 204 combines the target cell with the neighboring cell, including:
  • Parameter configuration is performed on the target cell and the neighboring cell according to a preset cell merging principle.
  • the method further includes:
  • the preset PCI is modified.
  • the target cell is restored to the PCI before the cell merge;
  • the target cell configured according to the preset cell merging principle is restored to the parameter before the cell merging.
  • the processor 204 sends data to the UE in the high-speed mobile state by using the output device 202 by using the merged cell, including:
  • the target cell and the neighboring cell in the merged cell jointly transmit data to the UE in the high-speed mobile state through the output device 202.
  • the cell distributed along the high-speed mobile route adopts an IP-based mobile backhaul network IPRAN networking mode
  • the processor 204 sends data to the UE in the high-speed mobile state by using the output device 202 by using the merged cell, including:
  • the target cell and the neighboring cell synchronously send data to the UE in the high-speed mobile state by using the output device 202;
  • the target cell delays the corresponding time according to the transmission delay information, and sends data to the UE in the high-speed mobile state by the neighboring cell through the output device 202.
  • the processor 204 sends the data to the UE in the high-speed mobile state by using the output device 202, the processor 204 further includes:
  • the number of UEs in the high-speed mobile state in each of the merged cells is acquired by the input device 201, and the high-speed mobile is counted.
  • the transmission time interval TTI of the merged cell dynamically allocate the time domain resources to the UE in the high-speed mobile state in combination with the preset allocation rule, so that And transmitting, by the output device 202, the data in the high-speed mobile state by using the merged cell on the allocated time domain resource.
  • FIG. 28 is a schematic structural diagram of a dynamic merge cell system provided by the present invention, where the system 30 includes: a network device 301 and a user equipment 302, where
  • Network device 301 can be network device 20 in the embodiment of Figure 27 above. It can be understood that the system 30 in the embodiment of the present invention may further include a server and a service center.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种动态合并小区方法、装置、网络设备及系统,其中的方法可包括:获取目标小区中处于高速移动状态的用户设备UE的数目,所述目标小区能够与其相邻小区进行小区合并,且所述目标小区和所述相邻小区为沿高速移动路线分布的小区,所述处于高速移动状态的UE为处于连接模式且移动速度大于预设阈值的UE;在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据。采用本发明可动态地进行小区合并,在实现高速移动路线分布的小区无切换的同时,提升了小区的容量。

Description

一种动态合并小区方法、装置、网络设备及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种动态合并小区方法、装置、网络设备及系统。
背景技术
在3GPP长期演进(Long term evolution,LTE)中,LTE小区合并是高铁覆盖常用的一种技术,是将多个物理小区合并为一个逻辑小区从而实现高铁的全程无切换的技术。LTE小区合并技术扩大了小区的覆盖范围,减少了高铁用户使用LTE网络时的切换次数和切换时延,进而减少用户在切换网络时与网络断开产生的信息传输暂时中断的现象。
但是,合并后的小区的总容量却远远小于未合并时各个小区的总容量,从而产生小区容量受限的问题,当用户数量增多时,甚至使得部分用户无法接入网络。
发明内容
本发明实施例所要解决的技术问题在于,提供一种动态合并小区方法、装置、网络设备及系统,解决现有技术中小区合并后的容量受限问题,提高小区容量。
第一方面,本发明实施例提供了一种动态合并小区方法,可包括:
获取目标小区中处于高速移动状态的用户设备UE的数目,所述目标小区能够与其相邻小区进行小区合并,且所述目标小区和所述相邻小区为沿高速移动路线分布的小区,所述处于高速移动状态的UE为处于连接模式且移动速度大于预设阈值的UE;
在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并,并通过合并后的小区向 所述处于高速移动状态的UE发送数据。
结合第一方面,在第一种可能的实现方式中,所述方法,还包括:
在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
结合第一方面,或者,结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并,包括:
在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,判断所述处于高速移动状态的UE的移动方向;
根据所述移动方向,将所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区进行小区合并。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述判断所述处于高速移动状态的UE的移动方向,包括:
获取所述处于高速移动状态的UE进行小区切换的历史记录;
根据所述小区切换的历史记录,判断所述处于高速移动状态的UE的移动方向。
结合第一方面的第二种可能的实现方式,在第四种可能的实现方式中,所述判断所述处于高速移动状态的UE的移动方向,包括:
获取所述目标小区上一次进行小区合并的相邻小区的唯一标识,所述唯一标识为将所述沿高速移动路线分布的小区按照顺序依次进行标记的数字标识;
根据所述目标小区的唯一标识以及获取的所述相邻小区的唯一标识,判断预测所述处于高速移动状态的UE的移动方向。
结合第一方面的第二种可能的实现方式,或者,结合第一方面的第三种可能的实现方式,或者,结合第一方面的第四种可能的实现方式,在第五种可能的实现方式中,按照预设时间间隔执行获取目标小区中处于高速移动状态的用户设备UE的数目的步骤;
所述根据所述移动方向,将所述目标小区与所述处于高速移动状态的UE 即将进入的相邻小区进行小区合并,包括:
根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并;
若未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并。
结合第一方面,或者结合第一方面的第一种可能的实现方式,或者,结合第一方面的第二种可能的实现方式,或者,结合第一方面的第三种可能的实现方式,或者,结合第一方面的第四种可能的实现方式,或者,结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,所述目标小区和相邻小区均支持第一载频和第二载频;
所述将所述目标小区与所述相邻小区进行小区合并之前,还包括:
检测所述目标小区中是否存在处于低速移动状态的UE,所述处于低速移动状态的UE为处于连接模式且移动速度小于预设阈值的UE;
若是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发。
结合第一方面的第六种可能的实现方式,在第七种可能的实现方式中,所述获取目标小区中处于高速移动状态的用户设备UE的数目之后,还包括:
在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分;
当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
结合第一方面,或者结合第一方面的第一种可能的实现方式,或者,结合第一方面的第二种可能的实现方式,或者,结合第一方面的第三种可能的实现方式,或者,结合第一方面的第四种可能的实现方式,或者,结合第一方面的第五种可能的实现方式,或者,结合第一方面的第六种可能的实现方式,或者,结合第一方面的第七种可能的实现方式,在第八种可能的实现方式中,所述将所述目标小区与所述相邻小区进行小区合并,包括:
将所述目标小区和所述相邻小区各自的物理小区标识PCI均修改为预设 PCI;
根据预设小区合并原则对所述目标小区和所述相邻小区进行参数配置。
结合第一方面的第八种可能的实现方式,在第九种可能的实现方式中,所述获取目标小区中处于高速移动状态的用户设备UE的数目之后,还包括:
在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将修改为预设PCI的所述目标小区恢复成小区合并之前的PCI;
将根据预设小区合并原则进行参数配置的所述目标小区恢复成小区合并之前的参数。
结合第一方面,或者结合第一方面的第一种可能的实现方式,或者,结合第一方面的第二种可能的实现方式,或者,结合第一方面的第三种可能的实现方式,或者,结合第一方面的第四种可能的实现方式,或者,结合第一方面的第五种可能的实现方式,或者,结合第一方面的第六种可能的实现方式,或者,结合第一方面的第七种可能的实现方式,或者,结合第一方面的第八种可能的实现方式,或者,结合第一方面的第九种可能的实现方式,在第十种可能的实现方式中,所述通过合并后的小区向所述处于高速移动状态的UE发送数据,包括:
通过合并后的小区中的所述目标小区和相邻小区协同向所述处于高速移动状态的UE发送数据。
结合第一方面,或者结合第一方面的第一种可能的实现方式,或者,结合第一方面的第二种可能的实现方式,或者,结合第一方面的第三种可能的实现方式,或者,结合第一方面的第四种可能的实现方式,或者,结合第一方面的第五种可能的实现方式,或者,结合第一方面的第六种可能的实现方式,或者,结合第一方面的第七种可能的实现方式,或者,结合第一方面的第八种可能的实现方式,或者,结合第一方面的第九种可能的实现方式,在第十一种可能的实现方式中,所述沿高速移动路线分布的小区采用IP化的移动回传网IPRAN组网方式;
所述通过合并后的小区向所述处于高速移动状态的UE发送数据,包括:
判断合并后的小区中的所述目标小区和相邻小区之间是否为同站址小区;
若是,所述目标小区和相邻小区同步向所述处于高速移动状态的UE发送数据;
若否,则获取所述目标小区和相邻小区之间的传输时延信息;
所述目标小区根据所述传输时延信息延迟相应时间,与所述相邻小区同步向所述处于高速移动状态的UE发送数据。
结合第一方面的第十种可能的实现方式,或者,结合第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述通过合并后的小区向所述处于高速移动状态的UE发送数据之前,还包括:
当判断出合并后的小区中高速小区的数目大于1时,获取所述合并后的小区中的各个小区中的处于高速移动状态的UE的数目,并统计所述处于高速移动状态的UE的总数,其中所述高速小区为小区中处于高速移动状态的UE的数目大于第二预设数目的小区;
根据所述处于高速移动状态的UE的总数,在所述合并后的小区的传输时间间隔TTI内,结合预设分配规则动态地为所述处于高速移动状态的UE进行时域资源的分配,以便于在所述分配的时域资源上执行通过合并后的小区向所述处于高速移动状态的UE发送数据的步骤。
第二方面,本发明实施例提供了一种动态合并小区装置,可包括:
获取模块,用于获取目标小区中处于高速移动状态的用户设备UE的数目,所述目标小区能够与其相邻小区进行小区合并,且所述目标小区和所述相邻小区为沿高速移动路线分布的小区,所述处于高速移动状态的UE为处于连接模式且移动速度大于预设阈值的UE;
合并模块,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并;
发送模块,用于通过合并后的小区向所述处于高速移动状态的UE发送数据。
结合第二方面,在第一种可能的实现方式中,所述装置,还包括:
第一拆分模块,在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的 情况下,将所述目标小区与所述相邻小区进行小区拆分。
结合第二方面,或者,结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述合并模块,包括:
第一判断单元,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,判断所述处于高速移动状态的UE的移动方向;
第一合并单元,用于根据所述移动方向,将所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区进行小区合并。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述第一判断单元,包括:
第一获取子单元,用于获取所述处于高速移动状态的UE进行小区切换的历史记录;
第一判断子单元,用于根据所述小区切换的历史记录,判断所述处于高速移动状态的UE的移动方向。
结合第二方面的第二种可能的实现方式,在第四种可能的实现方式中,所述第一判断单元,包括:
第二获取子单元,用于获取所述目标小区上一次进行小区合并的相邻小区的唯一标识,所述唯一标识为将所述沿高速移动路线分布的小区按照顺序依次进行标记的数字标识;
第二判断子单元,用于根据所述目标小区的唯一标识以及获取的所述相邻小区的唯一标识,判断预测所述处于高速移动状态的UE的移动方向。
结合第二方面的第二种可能的实现方式,或者,结合第二方面的第三种可能的实现方式,或者,结合第二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述获取模块具体用于:按照预设时间间隔执行获取目标小区中处于高速移动状态的用户设备UE的数目的步骤;
所述第一合并单元,包括:
第三判断子单元,用于根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并;
第一合并子单元,用于若未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并。
结合第二方面,或者结合第二方面的第一种可能的实现方式,或者,结合第二方面的第二种可能的实现方式,或者,结合第二方面的第三种可能的实现方式,或者,结合第二方面的第四种可能的实现方式,或者,结合第二方面的第五种可能的实现方式,在第六种可能的实现方式中,所述目标小区和相邻小区均支持第一载频和第二载频;
所述合并模块,包括:
检测单元,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,检测所述目标小区中是否存在处于低速移动状态的UE,所述处于低速移动状态的UE为处于连接模式且移动速度小于预设阈值的UE;
切换单元,用于判断结果为是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发;
第二合并单元,用于将所述目标小区与所述相邻小区进行小区合并。
结合第二方面的第六种可能的实现方式,在第七种可能的实现方式中,所述装置,还包括:
第二拆分模块,用于在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分;
切换模块,用于当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
结合第二方面,或者结合第二方面的第一种可能的实现方式,或者,结合第二方面的第二种可能的实现方式,或者,结合第二方面的第三种可能的实现方式,或者,结合第二方面的第四种可能的实现方式,或者,结合第二方面的第五种可能的实现方式,或者,结合第二方面的第六种可能的实现方式,或者,结合第二方面的第七种可能的实现方式,在第八种可能的实现方式中,所述合并模块,包括:
修改单元,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区和所述相邻小区各自的物理小区标识 PCI均修改为预设PCI;
配置单元,用于根据预设小区合并原则对所述目标小区和所述相邻小区进行参数配置。
结合第二方面的第八种可能的实现方式,在第九种可能的实现方式中,所述装置,还包括:
第一恢复模块,用于在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将修改为预设PCI的所述目标小区恢复成小区合并之前的PCI;
第二恢复模块,用于将根据预设小区合并原则进行参数配置的所述目标小区恢复成小区合并之前的参数。
结合第二方面,或者结合第二方面的第一种可能的实现方式,或者,结合第二方面的第二种可能的实现方式,或者,结合第二方面的第三种可能的实现方式,或者,结合第二方面的第四种可能的实现方式,或者,结合第二方面的第五种可能的实现方式,或者,结合第二方面的第六种可能的实现方式,或者,结合第二方面的第七种可能的实现方式,或者,结合第二方面的第八种可能的实现方式,或者,结合第二方面的第九种可能的实现方式,在第十种可能的实现方式中,其特征在于,所述发送模块,具体用于:
通过合并后的小区中的所述目标小区和相邻小区协同向所述处于高速移动状态的UE发送数据。
结合第二方面,或者结合第二方面的第一种可能的实现方式,或者,结合第二方面的第二种可能的实现方式,或者,结合第二方面的第三种可能的实现方式,或者,结合第二方面的第四种可能的实现方式,或者,结合第二方面的第五种可能的实现方式,或者,结合第二方面的第六种可能的实现方式,或者,结合第二方面的第七种可能的实现方式,或者,结合第二方面的第八种可能的实现方式,或者,结合第二方面的第九种可能的实现方式,在第十一种可能的实现方式中,所述沿高速移动路线分布的小区采用IP化的移动回传网IPRAN组网方式;
所述发送模块,包括:
第二判断单元,用于判断合并后的小区中的所述目标小区和相邻小区之间 是否为同站址小区;
第一同步单元,用于若判断结果为是,所述目标小区和相邻小区同步向所述处于高速移动状态的UE发送数据;
获取单元,用于若判断结果为否,则获取所述目标小区和相邻小区之间的传输时延信息;
第二同步单元,用于所述目标小区根据所述传输时延信息延迟相应时间,与所述相邻小区同步向所述处于高速移动状态的UE发送数据。
结合第二方面的第十种可能的实现方式,或者,结合第二方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述装置,还包括:
统计模块,当判断出合并后的小区中高速小区的数目大于1时,获取所述合并后的小区中的各个小区中的处于高速移动状态的UE的数目,并统计所述处于高速移动状态的UE的总数,其中所述高速小区为小区中处于高速移动状态的UE的数目大于第二预设数目的小区;
分配模块,用于根据所述处于高速移动状态的UE的总数,在所述合并后的小区的传输时间间隔TTI内,结合预设分配规则动态地为所述处于高速移动状态的UE进行时域资源的分配,以便于在所述分配的时域资源上执行通过合并后的小区向所述处于高速移动状态的UE发送数据的步骤。
本发明实施例,通过获取目标小区中处于高速移动状态的用户设备UE的数目,当判断出所述处于高速移动状态的UE的数目大于第一预设数目时,将所述目标小区与相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据,即本发明实施例通过实时检测小区的忙闲状态,并根据忙闲状态对小区进行动态合并,使得合并的小区为处于高速移动状态的UE提供无切换服务,未合并的小区还可以继续兼容地面用户即处于低速移动状态的UE,解决了现有技术中超级小区把高速沿线小区全程变为一个小区,导致小区容量受限且不能兼容地面用户的问题,有效地提高了高速沿线小区的容量,同时保证了处于高速移动状态的UE的通信质量。此外,本发明实施例中,还可以对合并后的小区进行动态拆分,从而在处于高速移动状态的UE变少时,进行资源释放,进一步使得高速沿线小区的容量得到提升。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是超级小区的网络构架示意图;
图2是本发明提供的一种动态合并小区方法的流程示意图;
图3是本发明提供的另一种动态合并小区方法流程示意图;
图4是本发明提供的又一种动态合并小区方法的流程示意图;
图5是本发明提供的又一种动态合并小区方法的流程示意图;
图6是本发明提供的又一种动态合并小区方法的流程示意图;
图7是本发明提供的又一种动态合并小区方法的流程示意图;
图8是本发明提供的又一种动态合并小区方法的流程示意图;
图9是本发明提供的又一种动态合并小区方法的流程示意图;
图10是本发明提供的又一种动态合并小区方法的流程示意图;
图11和图12是本发明实施例中动态合并小区的一个具体应用场景示意图;
图13和图14是本发明实施例中动态合并小区的另一个具体应用场景示意图;
图15是本发明提供的动态合并小区装置的一实施例的结构示意图;
图16是本发明提供的动态合并小区装置另一实施例的结构示意图;
图17是本发明提供的合并模块的另一实施例的结构示意图;
图18是本发明提供的第一判断单元的另一实施例的结构示意图;
图19是本发明提供的第一判断单元的又一实施例的结构示意图;
图20是本发明提供的第一合并单元的另一实施例的结构示意图;
图21是本发明提供的合并模块的又一实施例的结构示意图;
图22是本发明提供的动态合并小区装置的又一实施例的结构示意图;
图23是本发明提供的合并模块的又一实施例的结构示意图;
图24是本发明提供的动态合并小区装置的又一实施例的结构示意图;
图25是本发明提供的发送模块的另一实施例的结构示意图;
图26是本发明提供的动态合并小区装置的又一实施例的结构示意图;
图27是本发明提供的网络设备的实施例的结构示意图;
图28是本发明提供的动态合并小区系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了便于理解本发明实施例,下面先对本发明实施例所基于的超级小区的的网络架构进行描述。请参阅图1,图1是超级小区的网络构架示意图,如图1所示,Cell1到Cell6是高铁沿线设置的基站对应的覆盖小区,可以通过使用分布式基站架构,如由基带处理单元(Building Base band Unit,BBU)和射频拉远模块(Radio Remote Unit,RRU)组成的分布式基站,BBU和RRU通过光纤进行连接,一个BBU可以支持多个RRU。其中BBU主要完成基带信号处理、传输、主控和时钟等功能;RRU主要完成对射频信号的滤波、信号放大和上下变频处理,并采用数字中频技术来实现从中频模拟信号到基带数字信号的转换。
由于超级小区是一种以单频网(Single Frequency Network,SFN)为基础的技术,而SFN是指由多个不同地点的处于同步状态的无线电发射台,在同一时间,以同一频率发射同一信号,以实现对一定服务区的可靠覆盖,所以本发明实施例中的高速沿线小区同样可以基于SFN,即本发明实施例中的目标小区和相邻小区之间必须满足同频率和时钟同步等SFN的特性。
可以理解的是,以上网络架构只是本发明实施例中较优的一种实施方式,本发明实施例中的网络架构包括但不仅限于以上网络架构,只要能够实现小区合并的网络架构均属于本发明所保护和涵盖的范围。
还需要说明的是,本发明实施例中的用户设备UE包括但不限于可以与基站等网络设备进行通信交互的智能手机、平板电脑、媒体播放器、智能电视、智能手环、智能穿戴设备、MP3播放器(Moving Picture Experts Group Audio  Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面3)播放器、个人数字助理(Personal Digital Assistant,PDA)膝上型便携计算机和台式计算机等通信设备。
本发明实施例具体的应用场景包括但不仅限于高速公路、铁路、高铁或隧道等,本发明实施例中将主要以高铁应用场景进行详细阐述和说明。
参见图2,是本发明实施例中的一种动态合并小区方法的流程示意图,下面将结合附图2从网络设备侧进行描述,如图2所示,该方法可以包括以下步骤S201-步骤S202。
步骤S201:获取目标小区中处于高速移动状态的用户设备UE的数目。
具体地,本发明实施例中的目标小区能够与其相邻小区进行小区合并,且目标小区和相邻小区为沿高速移动路线分布的小区,即为线性而非星型,例如高铁沿线小区、高速公路沿线小区或铁路沿线小区等。由于只有与网络设备例如基站处于连接模式的UE才需要进行小区切换,所以处于高速移动状态的UE为处于连接模式且移动速度大于预设阈值的UE,其中的预设阈值可根据实际的应用场景进行合理设定,例如在行驶速度达到一定大小的高铁上进行通话的UE或者正在上网或短信等业务的UE。需要说明的是,由于列车长度的原因,一般情况下一列列车的长度不超过三个小区覆盖的范围,一个小区的覆盖范围一般为200m左右,一辆列车的长度大概为300m左右,普通情况下一列列车不会横跨超过三个小区。可以理解的是,本发明中的沿高速移动路线分布的小区中的每一个小区都是目标小区,并不局限于某一个特定的小区,所以本发明实施例从网络设备侧进行描述可以理解为从每一个目标小区的网络设备侧,即目标小区相对应的基站侧进行的描述。
进一步地,由于在高速行驶条件下的UE的多普勒频偏值会产生一定的变化,可以通过获取UE的多普勒频偏值判断UE是否为移动速度大于预设阈值的处于高速移动状态的UE。具体地,可以通过获取所述目标小区中处于连接模式的UE的多普勒频偏值;当判断出所述多普勒频偏值大于预设门限值时,则判定所述UE为处于高速移动状态的UE;计算所述判定为处于高速移动状 态的UE的数目,从而最终获取目标小区中处于高速移动状态的用户设备UE的数目。
再进一步地,当判断出所述多普勒频偏值大于预设门限值时,继续判断所述UE是否从所述目标小区的相邻小区中切换进入,若是,则判定所述UE为处于高速移动状态的UE,从而避免将在高铁附近进行短暂快速移动地UE误判为处于高速移动状态的UE。由于合并后的小区组成了一个逻辑小区,其物理小区标识(Physical Cell Identity,PCI)是相同的,但各自配置独立的全球小区识别码(Cell Global Identifier,CGI),所以切换记录可根据处于高速移动状态的UE接入不同小区的不同CGI得到。
步骤S202:在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据。
具体地,判断目标小区中处于高速移动状态的UE的数目与第一预设数目的关系,当目标小区中处于高速移动状态的UE的数目大于预设数目时,将目标小区与相邻小区进行小区合并。由于目标小区和相邻小区是线性关系,即每个目标小区都有左右相邻的两个相邻小区,本发明实施例中的目标小区与相邻小区进行小区合并,既可以是与左右相邻的两个相邻小区同时进行合并,也可以是只与列车即将前往的相邻小区进行合并,合并后的小区可以视为同一个逻辑小区。通过合并后的小区中的各个小区协同向处于高速移动状态的UE发送数据使得处于高速移动状态的UE在合并的小区内无需进行小区切换;通过将处于高速移动状态的UE当前所在的小区和即将要达到的的小区提前进行合并,从而达到小区合并赶在列车到达之前完成,进而实现列车在行驶的过程中,如同一直处于同一个逻辑小区内,达到高铁全程无切换的效果。而此时,相当于只减小了合并后的小区的容量,而对于没有进行合并的小区则可以继续吸收地面用户,保持原有的小区容量,从而提升高速沿线小区的容量,避免了超级小区中将全程的高速沿线小区全部进行合并所导致的容量瓶颈。优选地,当预设数目为0时,即只要判断出目标小区中存在处于高速移动状态的UE时,则触发进行小区合并,以使得该处于高速移动状态的UE享受小区合并后的高铁全程无切换服务。
进一步地,合并后的小区可以进行定时的拆分、周期性的拆分或者触发性的拆分,例如在高铁闲时,即处于高速移动状态的UE的数目减少到一定程度时,则可以将已经进行过合并的小区进行条件触发性拆分,进行资源释放,进一步地提升高速沿线小区的容量。
本发明实施例,通过获取目标小区中处于高速移动状态的用户设备UE的数目,当判断出所述处于高速移动状态的UE的数目大于第一预设数目时,将所述目标小区与相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据,即本发明实施例通过实时检测小区的忙闲状态,并根据忙闲状态对小区进行动态合并,使得合并的小区为处于高速移动状态的UE提供无切换服务,未合并的小区还可以继续兼容地面用户即处于低速移动状态的UE,解决了现有技术中超级小区把高速沿线小区全程变为一个小区,导致小区容量受限且不能兼容地面用户的问题,有效地提高了高速沿线小区的容量,同时保证了处于高速移动状态的UE的通信质量。此外,本发明实施例中,还可以对合并后的小区进行动态拆分,从而在处于高速移动状态的UE变少时,进行资源释放,进一步使得高速沿线小区的容量得到提升。
参见图3,是本发明实施例中的另一种动态合并小区方法的流程示意图,下面将结合附图3从即网络设备侧进行描述,如图3所示,该方法可以包括以下步骤S301-步骤S303。
步骤S301:获取目标小区中处于高速移动状态的用户设备UE的数目。
步骤S302:在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据。
具体地,步骤S301至步骤S302可参考上述图2实施例中的步骤S201至步骤S202,这里不再赘述。
步骤S303:在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
具体地,当目标小区中处于高速移动状态的UE的数目小于或等于第一预 设数目,且目标小区与相邻小区进行了小区合并时,将目标小区与相邻小区进行小区拆分,可以理解的是步骤S303可以是在步骤S302之后才执行,也可以是在S202之前执行,例如高速沿线小区中的各小区之间或者是目标小区与相邻小区之间的初始状态为已经合并,则此时通过各个目标小区相对应的网络设备如基站,分别进行判断,当判断出满足目标小区中处于高速移动状态的UE的数目小于或等于第一预设数目的条件时,则可以判定为此时目标小区与相邻小区无需再处于合并的状态,即可控制对应的目标小区与相邻小区进行拆分,以释放小区资源,兼容地面的普通用户即处于低速移动状态的UE,进一步地提升高速沿线小区的容量。
本发明实施例,通过获取目标小区中处于高速移动状态的用户设备UE的数目,当判断出所述处于高速移动状态的UE的数目大于第一预设数目时,将所述目标小区与相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据,即本发明实施例通过实时检测小区的忙闲状态,并根据忙闲状态对小区进行动态合并,使得合并的小区为处于高速移动状态的UE提供无切换服务,未合并的小区还可以继续兼容地面用户即处于低速移动状态的UE,解决了现有技术中超级小区把高速沿线小区全程变为一个小区,导致小区容量受限且不能兼容地面用户的问题,有效地提高了高速沿线小区的容量,同时保证了处于高速移动状态的UE的通信质量。此外,本发明实施例中,还可以对合并后的小区进行动态拆分,从而在处于高速移动状态的UE变少时,进行资源释放,进一步使得高速沿线小区的容量得到提升。
参见图4,是本发明实施例中的又一种动态合并小区方法的流程示意图,下面将结合附图4从网络设备侧进行描述,如图4所示,该方法可以包括以下步骤S401-步骤S404。
步骤S401:获取目标小区中处于高速移动状态的用户设备UE的数目。
具体地,步骤S401可参考上述图2实施例中的步骤S201,这里不再赘述。
步骤S402:在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,判断所述处于高速移动状态的UE的移动方向。
具体地,当检测到目标小区中处于高速移动状态的UE的数目大于第一预 设数目时,即此时已满足小区合并的触发条件,但由于目标小区有左右两个相邻小区,而一辆列车在同一时间只能朝一个方向行驶,所以若将两个相邻小区都进行合并会造成列车不到达到的相邻小区的资源浪费,因此需要判断列车的行驶方向,即判断处于列车上的用户设备即处于高速移动状态的UE的移动方向。其中,处于高速移动状态的UE的移动方向,可以根据处于高速移动状态的UE进行小区切换的历史记录或小区进行合并的历史记录进行判断。
进一步地,判断所述处于高速移动状态的UE的移动方向,可以通过获取所述处于高速移动状态的UE进行小区切换的历史记录;根据所述小区切换的历史记录,判断所述UE的移动方向。或者,也可以通过获取所述目标小区上一次进行小区合并的相邻小区的唯一标识,所述唯一标识为将各个高速沿线小区按照顺序依次进行标记的数字标识;根据所述目标小区的唯一标识以及获取的所述相邻小区的唯一标识,判断预测所述处于高速移动状态的UE的移动方向。可以理解的是,在初始状态时,处于高速移动状态的UE可能还未形成小区切换历史记录或者小区合并历史记录,所以需要忽略没有历史记录时的情况,直到UE产生小区切换或小区合并历史记录才可进行上述的判断移动方向的步骤。
步骤S403:根据所述移动方向,将所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据。
具体地,根据步骤S402中判断出的移动方向,将目标小区与处于高速移动状态的UE即将进入的相邻小区进行小区合并。优选地,合并的方式可通过将所述目标小区和所述相邻小区各自的物理小区标识PCI统一修改为预设PCI;根据预设小区合并原则对所述目标小区和所述相邻小区进行参数配置。更具体地,可以将与超级小区的特性算法互斥的开关进行关闭,并按照超级小区的要求配置合并后的小区的固定参数。需要说明的是,本发明实施例中的预设PCI需要进行预先设定,即全程的小区合并均使用该预设PCI,由于PCI的数目有限,因此需要以不与高速沿线小区的PCI重复冲突为原则,否则可能会造成小区合并出现错误。
步骤S404:在所述目标小区中处于高速移动状态的UE的数目小于或等 于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
具体地,当目标小区中处于高速移动状态的UE的数目小于或等于第一预设数目,且目标小区与相邻小区处于小区合并状态时,将修改为预设PCI的所述目标小区恢复成小区合并之前的PCI;将根据预设小区合并原则进行参数配置的所述目标小区恢复成小区合并之前的参数。进一步地,将相关的算法和固定参数均恢复到小区合并之前的状态。
本发明实施例,通过获取目标小区中处于高速移动状态的用户设备UE的数目,当判断出所述处于高速移动状态的UE的数目大于第一预设数目时,将所述目标小区与相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据,即本发明实施例通过实时检测小区的忙闲状态,并根据忙闲状态对小区进行动态合并,使得合并的小区为处于高速移动状态的UE提供无切换服务,未合并的小区还可以继续兼容地面用户即处于低速移动状态的UE,解决了现有技术中超级小区把高速沿线小区全程变为一个小区,导致小区容量受限且不能兼容地面用户的问题,有效地提高了高速沿线小区的容量,同时保证了处于高速移动状态的UE的通信质量。此外,本发明实施例中,还可以对合并后的小区进行动态拆分,从而在处于高速移动状态的UE变少时,进行资源释放,进一步使得高速沿线小区的容量得到提升。
参见图5,是本发明实施例中的又一种动态合并小区方法的流程示意图,下面将结合附图5从网络设备侧进行描述,如图5所示,该方法可以包括以下步骤S501-步骤S505。
步骤S501:按照预设时间间隔获取目标小区中处于高速移动状态的用户设备UE的数目。
具体地,实时地或者按照预设的时间间隔周期性的获取目标小区中处于高速移动状态的UE的数目,以便于循环连贯地执行本发明实施例中的后续小区合并或小区拆分的步骤。可以理解的是,预设时间间隔可以根据不同的应用场景作相应的调整,也可以结合铁路上的列车的时刻表进行动态的调整,例如忙时,将该预设时间间隔调小;闲时,则可适当将预设时间间隔调大,以更好的 节省开销。更具体地,可参考上述图2实施例中的步骤S201,这里不再赘述。
步骤S502:在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,判断所述处于高速移动状态的UE的移动方向。
具体地,步骤S502可参考上述图4实施例中的步骤S402,这里不再赘述。
步骤S503:根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并。
具体地,在进行小区合并之前,根据移动方向具体判断目标小区与处于高速移动状态的UE即将进入的相邻小区是否已经进行合并,若已经进行合并则不执行后续的小区合并操作的步骤。
步骤S504:若未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据。
具体地,若判断结果为未进行小区合并,则根据步骤S502中判断出的移动方向,将目标小区与该即将进入的相邻小区进行合并。更具体地,可参考上述图4实施例中的步骤S403,这里不再赘述。
步骤S505:在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
具体地,步骤S505可参考上述图4实施例中的步骤S404,这里不再赘述。
本发明实施例,通过获取目标小区中处于高速移动状态的用户设备UE的数目,当判断出所述处于高速移动状态的UE的数目大于第一预设数目时,将所述目标小区与相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据,即本发明实施例通过实时检测小区的忙闲状态,并根据忙闲状态对小区进行动态合并,使得合并的小区为处于高速移动状态的UE提供无切换服务,未合并的小区还可以继续兼容地面用户即处于低速移动状态的UE,解决了现有技术中超级小区把高速沿线小区全程变为一个小区,导致小区容量受限且不能兼容地面用户的问题,有效地提高了高速沿线小区的容量,同时保证了处于高速移动状态的UE的通信质量。此外,本发明实施例中,还可以对合并后的小区进行动态拆分,从而在处于高速移动状态的UE变 少时,进行资源释放,进一步使得高速沿线小区的容量得到提升。
参见图6,是本发明实施例中的又一种动态合并小区方法的流程示意图,下面将结合附图6从网络设备侧进行描述,如图6所示,该方法可以包括以下步骤S601-步骤S608。
步骤S601:按照预设时间间隔获取目标小区中处于高速移动状态的用户设备UE的数目。
具体地,步骤S601可参考上述图5实施例中的步骤S501,这里不再赘述。
步骤S602:在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,检测所述目标小区中是否存在处于低速移动状态的UE。
具体地,在目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,检测目标小区中是否存在处于低速移动状态的UE,其中处于低速移动状态的UE为处于连接模式且移动速度小于预设阈值的UE。更具体地,判定是否处于低速移动状态的UE的方法可以对应参照图2实施例中步骤201中判断处于连接模式的UE的速度的方法,这里不再赘述。
步骤S603:若是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发。
具体地,所述目标小区和相邻小区均支持第一载频和第二载频,即目标小区和相邻小区均为双载频覆盖小区,第一载频上的数据收发和第二载频上的数据收发互不影响。当执行了后续的小区合并之后,在该合并后的小区中的地面用户即处于低速移动状态的UE可以不受合并后的小区的影响,仍然按照小区未合并之前的传输方式进行数据的收发。此种情况下,不仅未合并的小区可以兼容地面用户即处于低速移动状态的UE,而且合并后的小区由于通过将处于低速移动状态的UE切换到与处于高速移动状态的UE不同的载频上,从而使得处于高速移动状态的UE和处于低速移动状态的UE的传输互不干扰,同时兼容处于高速移动状态的UE和处于低速移动状态的UE,即通过执行本步骤S603,可以实现在整个高速沿线小区上都能同时兼容处于高速移动状态的UE和处于低速移动状态的UE。
步骤S604:判断所述处于高速移动状态的UE的移动方向。
步骤S605:根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并。
步骤S606:若未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据。
步骤S607:在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
具体地,步骤S604至步骤S607可参考上述图5实施例中的步骤S502至步骤S505,这里不再赘述。
步骤S608:当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
具体地,当合并后的小区由于处于高速移动状态的UE的数目的减少,达到了小区拆分的条件并进行了小区拆分之后,则可以认为此时目标小区的第二载频上为空闲状态,则可以将在第一载频上进行数据收发的部分用户切换到第二载频上,以减少第一载频的负荷,充分利用载频资源。
本发明实施例,通过获取目标小区中处于高速移动状态的用户设备UE的数目,当判断出所述处于高速移动状态的UE的数目大于第一预设数目时,将所述目标小区与相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据,即本发明实施例通过实时检测小区的忙闲状态,并根据忙闲状态对小区进行动态合并,使得合并的小区为处于高速移动状态的UE提供无切换服务,未合并的小区还可以继续兼容地面用户即处于低速移动状态的UE,解决了现有技术中超级小区把高速沿线小区全程变为一个小区,导致小区容量受限且不能兼容地面用户的问题,有效地提高了高速沿线小区的容量,同时保证了处于高速移动状态的UE的通信质量。此外,本发明实施例中,还可以对合并后的小区进行动态拆分,从而在处于高速移动状态的UE变少时,进行资源释放,进一步使得高速沿线小区的容量得到提升。
参见图7,是本发明实施例中的又一种动态合并小区方法的流程示意图,下面将结合附图7从网络设备侧进行描述,如图7所示,该方法可以包括以下步骤S701-步骤S708。
步骤S701:按照预设时间间隔获取目标小区中处于高速移动状态的用户设备UE的数目。
步骤S702:在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,检测所述目标小区中是否存在处于低速移动状态的UE。
步骤S703:若是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发。
步骤S704:判断所述处于高速移动状态的UE的移动方向。
步骤S705:根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并。
具体地,步骤S701至步骤S705可参考上述图6实施例中的步骤S601至步骤S605,这里不再赘述。
步骤S706:若未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并,并通过合并后的小区中的所述目标小区和相邻小区协同向所述处于高速移动状态的UE发送数据。
具体地,若步骤S705中的判断结果为未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并,并通过合并后的小区中的所述目标小区和相邻小区协同向所述处于高速移动状态的UE发送数据。其中协同向所述处于高速移动状态的UE发送数据为通过多点协作(Coordinated Multiple Point,CoMP)的传输方式向处于高速移动状态的UE发送数据,CoMP通过将包括目标小区和相邻小区在内的多个小区站点的天线以一种协作的方式进行接收或发射,改善UE或网络设备的接收信号质量,从而实现UE在合并后的小区中无切换。
步骤S707:在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情 况下,将所述目标小区与所述相邻小区进行小区拆分。
步骤S708:当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
具体地,步骤S707至步骤S708可参考上述图6实施例中的步骤S607至步骤S608,这里不再赘述。
本发明实施例,通过获取目标小区中处于高速移动状态的用户设备UE的数目,当判断出所述处于高速移动状态的UE的数目大于第一预设数目时,将所述目标小区与相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据,即本发明实施例通过实时检测小区的忙闲状态,并根据忙闲状态对小区进行动态合并,使得合并的小区为处于高速移动状态的UE提供无切换服务,未合并的小区还可以继续兼容地面用户即处于低速移动状态的UE,解决了现有技术中超级小区把高速沿线小区全程变为一个小区,导致小区容量受限且不能兼容地面用户的问题,有效地提高了高速沿线小区的容量,同时保证了处于高速移动状态的UE的通信质量。此外,本发明实施例中,还可以对合并后的小区进行动态拆分,从而在处于高速移动状态的UE变少时,进行资源释放,进一步使得高速沿线小区的容量得到提升。
参见图8,是本发明实施例中的又一种动态合并小区方法的流程示意图,下面将结合附图8从网络设备侧进行描述,如图8所示,该方法可以包括以下步骤S801-步骤S812。
步骤S801:按照预设时间间隔获取目标小区中处于高速移动状态的用户设备UE的数目。
步骤S802:在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,检测所述目标小区中是否存在处于低速移动状态的UE。
步骤S803:若是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发。
步骤S804:判断所述处于高速移动状态的UE的移动方向。
步骤S805:根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并。
步骤S806:若未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并。
具体地,步骤S801至步骤S806可参考上述图7实施例中的步骤S701至步骤S706,这里不再赘述。
步骤S807:判断合并后的小区中的所述目标小区和相邻小区之间是否为同站址小区。
具体地,当本发明实施例中的高速沿线小区采用IP化的移动回传网(IP Radio Access Network,IPRAN)的组网方式时,由于该组网方式的传输时延比较大,而当合并后的小区中的目标小区和相邻小区不能同步向处于高速移动状态的UE发送数据时,会造成传输数据错误,小区切换失败等问题,因此在通过合并后的小区向所述处于高速移动状态的UE发送数据的过程中,应当充分考虑时延的因素,而不同站址的小区之间传输数据时延较大,所以需要判断目标小区和相邻小区之间是否为同站址小区,当本发明实施例应用BBU和RRU的网络架构时,则不同的BBU下的RRU对应的小区之间为不同站址小区,同一个BBU下的RRU对应的不同小区之间为同站址小区。可以理解的是本发明实施例中不局限于采用IPRAN的组网方式,任何传输时延较大或数据传输中需考虑时延因素的组网方式均可采用本实施例中的方法步骤。
步骤S808:若是,所述目标小区和相邻小区同步向所述处于高速移动状态的UE发送数据。
具体地,若判断出为同站址小区,则可认为没有传输时延,此时目标小区和相邻小区可以同步向处于高速移动状态的UE发送数据,更具体地,可以对应参考上述图7实施例中的步骤S706,这里不再赘述。
步骤S809:若否,则获取所述目标小区和相邻小区之间的传输时延信息。
具体地,由于不同站址的小区之间传输数据会造成一定的时延,因此为了可以让目标小区和相邻小区之间可以协同向UE发送数据,需要获取该时延信息。
步骤S810:所述目标小区根据所述传输时延信息延迟相应时间,与所述 相邻小区同步向所述处于高速移动状态的UE发送数据。
具体地,针对目标小区中的处于高速移动状态的UE,目标小区可以延迟步骤S809中获取的时延时间,与相邻小区同步向处于高速移动状态的UE发送数据。
步骤S811:在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
步骤S812:当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
具体地,步骤S811至步骤S812可参考上述图7实施例中的步骤S707至步骤S708,这里不再赘述。
本发明实施例,通过获取目标小区中处于高速移动状态的用户设备UE的数目,当判断出所述处于高速移动状态的UE的数目大于第一预设数目时,将所述目标小区与相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据,即本发明实施例通过实时检测小区的忙闲状态,并根据忙闲状态对小区进行动态合并,使得合并的小区为处于高速移动状态的UE提供无切换服务,未合并的小区还可以继续兼容地面用户即处于低速移动状态的UE,解决了现有技术中超级小区把高速沿线小区全程变为一个小区,导致小区容量受限且不能兼容地面用户的问题,有效地提高了高速沿线小区的容量,同时保证了处于高速移动状态的UE的通信质量。此外,本发明实施例中,还可以对合并后的小区进行动态拆分,从而在处于高速移动状态的UE变少时,进行资源释放,进一步使得高速沿线小区的容量得到提升。
参见图9,是本发明实施例中的又一种动态合并小区方法的流程示意图,下面将结合附图9从网络设备侧进行描述,如图9所示,该方法可以包括以下步骤S901-步骤S912。
步骤S901:按照预设时间间隔获取目标小区中处于高速移动状态的用户设备UE的数目。
步骤S902:在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,检测所述目标小区中是否存在处于低速移动状态的UE。
步骤S903:若是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发。
步骤S904:判断所述处于高速移动状态的UE的移动方向。
步骤S905:根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并。
步骤S906:若未进行合并,将所述目标小区与所述即将进入的相邻小区进行小区合并。
具体地,步骤S901至步骤S906可参考上述图8实施例中的步骤S801至步骤S806,这里不再赘述。
步骤S907:当判断出合并后的小区中高速小区的数目大于1时,获取所述合并后的小区中的各个小区中的处于高速移动状态的UE的数目,并统计所述处于高速移动状态的UE的总数。
具体地,其中高速小区为小区中处于高速移动状态的UE的数目大于第二预设数目的小区,当列车横跨多个小区,且超过一个小区内分布有大于第二预设数目的处于高速移动状态的UE时,由于合并后的小区中的各个小区都需要在同一时间给同一个UE发送相同数据,但合并后的小区中彼此不能获知其它被判定为高速小区中的处于高速移动状态的UE的存在,因此会在信道资源的分配上产生冲突,如物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的冲突,所以此时需要进行信道资源的统筹分配。优选地,可以指示合并后的小区中的各个小区将在本小区内的处于高速移动状态的UE的数目进行统计,并统一上报给预设的网络设备,例如上报给小区CGI最大或者最小的小区对应的网络设备进行总数统计。优选地,第二预设数目为0。
步骤S908:根据所述处于高速移动状态的UE的总数,在所述合并后的小区的传输时间间隔TTI内,结合预设分配规则动态地为所述处于高速移动状态的UE进行时域资源的分配,以便于在所述分配的时域资源上执行通过合并 后的小区向所述处于高速移动状态的UE发送数据的步骤。
具体地,根据步骤S907中统计的处于高速移动状态的UE的总数,并根据合并后的小区的传输时间间隔(Transmission Time Interval,TTI),在该TTI内,结合预设分配规则动态地为处于高速移动状态的UE进行时域资源的分配,例如按照处于高速移动状态的UE数目较多的小区优先分配,或者按照小区唯一标识的大小顺序进行先后顺序的分配等原则进行时域资源的分配,以便于在所述分配的时域资源上执行通过合并后的小区向所述处于高速移动状态的UE发送数据的步骤。
步骤S909:在所述分配的时域资源上通过合并后的小区中的所述目标小区和相邻小区协同向所述处于高速移动状态的UE发送数据。
具体地,在步骤S908中分配的时域资源上通过合并后的小区中的目标小区和相邻小区协同向处于高速移动状态的UE发送数据,更具体地,可参考上述图7实施例中的步骤S706,这里不再赘述。
步骤S910:当判断出合并后的小区中高速小区的数目等于1时,通过合并后的小区中的所述目标小区和相邻小区协同向所述处于高速移动状态的UE发送数据。
具体地,步骤S910可参考上述图7实施例中的步骤S706,这里不再赘述。
步骤S911:在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
步骤S912:当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
具体地,步骤S911至步骤S912可参考上述图8实施例中的步骤S811至步骤S812,这里不再赘述。
本发明实施例,通过获取目标小区中处于高速移动状态的用户设备UE的数目,当判断出所述处于高速移动状态的UE的数目大于第一预设数目时,将所述目标小区与相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据,即本发明实施例通过实时检测小区的忙闲状态,并 根据忙闲状态对小区进行动态合并,使得合并的小区为处于高速移动状态的UE提供无切换服务,未合并的小区还可以继续兼容地面用户即处于低速移动状态的UE,解决了现有技术中超级小区把高速沿线小区全程变为一个小区,导致小区容量受限且不能兼容地面用户的问题,有效地提高了高速沿线小区的容量,同时保证了处于高速移动状态的UE的通信质量。此外,本发明实施例中,还可以对合并后的小区进行动态拆分,从而在处于高速移动状态的UE变少时,进行资源释放,进一步使得高速沿线小区的容量得到提升。
参见图10,是本发明实施例中的又一种动态合并小区方法的流程示意图,下面将结合附图10从网络设备侧进行描述,如图10所示,该方法可以包括以下步骤S1001-步骤S1018。
步骤S1001:按照预设时间间隔获取目标小区中处于高速移动状态的用户设备UE的数目。
步骤S1002:在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,检测所述目标小区中是否存在处于低速移动状态的UE。
步骤S1003:若是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发。
步骤S1004:判断所述处于高速移动状态的UE的移动方向。
步骤S1005:根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并。
步骤S1006:若未进行合并,将所述目标小区与所述即将进入的相邻小区进行小区合并。
步骤S1007:当判断出合并后的小区中高速小区的数目大于1时,获取所述合并后的小区中的各个小区中的处于高速移动状态的UE的数目,并统计所述处于高速移动状态的UE的总数。
步骤S1008:根据所述处于高速移动状态的UE的总数,在所述合并后的小区的传输时间间隔TTI内,结合预设分配规则动态地为所述处于高速移动状态的UE进行时域资源的分配。
具体地,步骤S1001至步骤S1008可参考上述图9实施例中的步骤S901至步骤S908,这里不再赘述。
步骤S1009:判断合并后的小区中的所述目标小区和相邻小区之间是否为同站址小区。
步骤S1010:若是,在所述分配的时域资源上,所述目标小区和相邻小区同步向所述处于高速移动状态的UE发送数据。
步骤S1011:若否,则获取所述目标小区和相邻小区之间的传输时延信息。
步骤S1012:在所述分配的时域资源上,所述目标小区根据所述传输时延信息延迟相应时间,与所述相邻小区同步向所述处于高速移动状态的UE发送数据。
具体地,步骤S1009至步骤S1012可参考上述图8实施例中的步骤S807至步骤S810,这里不再赘述。
步骤S1013:当判断出合并后的小区中高速小区的数目等于1时,判断合并后的小区中的所述目标小区和相邻小区之间是否为同站址小区。
步骤S1014:若是,所述目标小区和相邻小区同步向所述处于高速移动状态的UE发送数据。
步骤S1015:若否,则获取所述目标小区和相邻小区之间的传输时延信息。
步骤S1016:所述目标小区根据所述传输时延信息延迟相应时间,与所述相邻小区同步向所述处于高速移动状态的UE发送数据。
具体地,步骤S1013至步骤S1016可参考上述图8实施例中的步骤S807至步骤S810,这里不再赘述。
步骤S1017:在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
步骤S1018:当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
具体地,步骤S1017至步骤S1018可参考上述图9实施例中的步骤S911至步骤S912,这里不再赘述。
在具体的应用场景中,如图11和12所示,是本发明实施例中动态合并小区方法的一个具体应用场景示意图,图11中,目标小区Cell2中有较多处于高速移动状态的UE,而此时的列车方向是图中的从左到右,所以此时将Cell2和Cell3进行合并;图12中,列车行驶到Cell3时,此时的目标小区Cell3对应的网络设备检测到Cell3中的处于高速移动状态的UE大于一定数目时,根据处于高速移动状态的UE的小区切换记录或者小区合并记录,获知了列车的方向,从而将Cell3和Cell4进行合并,更具体的实现细节,请参照上述图2-图10中的方法实施例,这里不再赘述。
在具体的应用场景中,如图13和14所示,是本发明实施例中动态合并小区方法的另一个具体应用场景示意图,图13中,目标小区Cell2和目标小区Cell6中均有较多处于高速移动状态的UE,即此时为有两列列车从不同的方向进行错车,一列车从左往右处于Cell2中,且Cell2与Cell3进行了小区合并;另一列车从右往左处于Cell6中,且Cell5与Cell6进行了合并;可以预测下一时段,会出现图14中的场景,即两个合并后的小区往中间靠拢,此时Cell2、Cell3、Cell4、Cell5和Cell6进行了合并,形成了一个合并后的小区,而其中合并后的小区中多个小区中存在处于高速移动状态的UE,且存在不同站址的小区,即需要对时域资源进行统筹分配,并计算时延信息进行同步发送数据,更具体的实现细节,请参照上述图2-图10中的方法实施例,这里不一一阐述。
本发明实施例,通过获取目标小区中处于高速移动状态的用户设备UE的数目,当判断出所述处于高速移动状态的UE的数目大于第一预设数目时,将所述目标小区与相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据,即本发明实施例通过实时检测小区的忙闲状态,并根据忙闲状态对小区进行动态合并,使得合并的小区为处于高速移动状态的UE提供无切换服务,未合并的小区还可以继续兼容地面用户即处于低速移动状态的UE,解决了现有技术中超级小区把高速沿线小区全程变为一个小区,导致小区容量受限且不能兼容地面用户的问题,有效地提高了高速沿线小区的容量,同时保证了处于高速移动状态的UE的通信质量。此外,本发明实施例中,还可以对合并后的小区进行动态拆分,从而在处于高速移动状态的UE变少时,进行资源释放,进一步使得高速沿线小区的容量得到提升。
参见图15,对本发明实施例中的动态合并小区装置的的一实施例的结构示意图进行详细介绍。该装置10可包括:获取模块101、合并模块102和发送模块103。
获取模块101,用于获取目标小区中处于高速移动状态的用户设备UE的数目,所述目标小区能够与其相邻小区进行小区合并,且所述目标小区和所述相邻小区为沿高速移动路线分布的小区,所述处于高速移动状态的UE为处于连接模式且移动速度大于预设阈值的UE;
合并模块102,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并;
发送模块103,用于通过合并后的小区向所述处于高速移动状态的UE发送数据。
具体地,如图16所示的本发明提供的动态合并小区装置的另一实施例的结构示意图,动态合并小区装置,还可以包括:第一拆分模块104,其中
第一拆分模块104,用于在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
进一步地,如图17所示的本发明提供的合并模块的另一实施例的结构示意图,所述合并模块102,可包括:第一判断单元1021和第一合并单元1022,其中
第一判断单元1021,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,判断所述处于高速移动状态的UE的移动方向;
第一合并单元1022,用于根据所述移动方向,将所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区进行小区合并。
再进一步地,如图18所示的本发明提供的第一判断单元的另一实施例的结构示意图,所述第一判断单元1021,可包括:第一获取子单元1211和第一判断子单元1212,其中
第一获取子单元1211,用于获取所述处于高速移动状态的UE进行小区切换的历史记录;
第一判断子单元1212,用于根据所述小区切换的历史记录,判断所述处于高速移动状态的UE的移动方向。
再进一步地,如图19所示的本发明提供的第一判断单元的又一实施例的结构示意图,所述第一判断单元,可包括:第二获取子单元1213和第二判断子单元1214,其中
第二获取子单元1213,用于获取所述目标小区上一次进行小区合并的相邻小区的唯一标识,所述唯一标识为将所述沿高速移动路线分布的小区按照顺序依次进行标记的数字标识;
第二判断子单元1214,用于根据所述目标小区的唯一标识以及获取的所述相邻小区的唯一标识,判断预测所述处于高速移动状态的UE的移动方向。
再进一步地,如图20所示的本发明提供的第一合并单元的另一实施例的结构示意图,获取模块101具体用于:按照预设时间间隔执行获取目标小区中处于高速移动状态的用户设备UE的数目的步骤;
所述第一合并单元1022,可包括:第三判断子单元1221和第一合并子单元1222,其中
第三判断子单元1221,用于根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并;
第一合并子单元1222,用于若未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并。
再进一步地,如图21所示的本发明提供的合并模块的又一实施例的结构示意图,所述目标小区和相邻小区均支持第一载频和第二载频;所述合并模块102,可包括:检测单元1023、切换单元1024和第二合并单元1025,其中
检测单元1023,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,检测所述目标小区中是否存在处于低速移动状态的UE,所述处于低速移动状态的UE为处于连接模式且移动速度小于预设阈值的UE;
切换单元1024,用于判断结果为是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发;
第二合并单元1025,用于将所述目标小区与所述相邻小区进行小区合并。
再进一步地,如图22所示的本发明提供的动态合并小区装置的又一实施例的结构示意图,动态合并小区装置10,还可以包括:第二拆分模块105和切换模块106,其中
第二拆分模块105,用于在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分;
切换模块106,用于当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
再进一步地,如图23所示的本发明提供的合并模块的又一实施例的结构示意图,所述合并模块102,可包括:修改单元1026和配置单元1027,其中
修改单元1026,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区和所述相邻小区各自的物理小区标识PCI均修改为预设PCI;
配置单元1027,用于根据预设小区合并原则对所述目标小区和所述相邻小区进行参数配置。
再进一步地,如图24所示的本发明提供的动态合并小区装置的又一实施例的结构示意图,动态合并小区装置10,还可包括:第一恢复模块107和第二恢复模块108,其中
第一恢复模块107,在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将修改为预设PCI的所述目标小区恢复成小区合并之前的PCI;
第二恢复模块108,用于将根据预设小区合并原则进行参数配置的所述目标小区恢复成小区合并之前的参数。
再进一步地,所述发送模块103,具体用于:
通过合并后的小区中的所述目标小区和相邻小区协同向所述处于高速移动状态的UE发送数据。
再进一步地,如图25所示的本发明提供的发送模块的另一实施例的结构 示意图,所述高速沿线小区采用IP化的移动回传网IPRAN组网方式;所述发送模块103,还可包括:第二判断单元1031、第一同步单元1032、第二获取单元1033和第二同步单元1034,其中
第二判断单元1031,用于判断合并后的小区中的所述目标小区和相邻小区之间是否为同站址小区;
第一同步单元1032,用于若判断结果为是,所述目标小区和相邻小区同步向所述处于高速移动状态的UE发送数据;
第二获取单元1033,用于若判断结果为否,则获取所述目标小区和相邻小区之间的传输时延信息;
第二同步单元1034,用于所述目标小区根据所述传输时延信息延迟相应时间,与所述相邻小区同步向所述处于高速移动状态的UE发送数据。
再进一步地,如图26所示的本发明提供的动态合并小区装置的又一实施例的结构示意图,所述装置,还可包括:统计模块109和分配模块110,其中
统计模块109,用于当判断出合并后的小区中高速小区的数目大于1时,获取所述合并后的小区中的各个小区中的处于高速移动状态的UE的数目,并统计所述处于高速移动状态的UE的总数,其中所述高速小区为小区中处于高速移动状态的UE的数目大于第二预设数目的小区;
分配模块110,用于根据所述处于高速移动状态的UE的总数,在所述合并后的小区的传输时间间隔TTI内,结合预设分配规则动态地为所述处于高速移动状态的UE进行时域资源的分配,以便于在所述分配的时域资源上执行通过合并后的小区向所述处于高速移动状态的UE发送数据的步骤。
可理解的是,小区动态合并装置10中各模块的功能可对应参考上述图2至图10中的各方法实施例中的具体实现方式,这里不再赘述。
为了便于更好地实施本发明实施例的上述方案,本发明还提供了用于配合实施上述方案的相关设备。下面结合图27所示的本发明提供的网络设备的实施例的结构示意图,进行详细说明:
网络设备20包括:输入装置201、输出装置202、存储器203和处理器204(网络设备20中的处理器204的数量可以一个或多个,图27中以一个处 理器为例)。在本发明的一些实施例中,输入装置201、输出装置202、存储器203和处理器204可通过总线或者其它方式连接,其中,图27中以通过总线连接为例。
其中,所述存储器203用于存储程序代码,所述处理器204用于调用所述存储器203存储的程序代码执行如下步骤:
通过所述输入装置201获取目标小区中处于高速移动状态的用户设备UE的数目,所述目标小区能够与其相邻小区进行小区合并,且所述目标小区和所述相邻小区为沿高速移动路线分布的小区,所述处于高速移动状态的UE为处于连接模式且移动速度大于预设阈值的UE;
在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并,并通过合并后的小区通过所述输出装置202向所述处于高速移动状态的UE发送数据。
具体地,所述方法,还包括:
在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
进一步地,所述在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,所述处理器204将所述目标小区与所述相邻小区进行小区合并,包括:
在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,判断所述处于高速移动状态的UE的移动方向;
根据所述移动方向,将所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区进行小区合并。
再进一步地,所述处理器204判断所述处于高速移动状态的UE的移动方向,包括:
通过所述输入装置201获取所述处于高速移动状态的UE进行小区切换的历史记录;
根据所述小区切换的历史记录,判断所述处于高速移动状态的UE的移动方向。
再进一步地,所述处理器204判断所述处于高速移动状态的UE的移动方向,包括:
通过所述输入装置201获取所述目标小区上一次进行小区合并的相邻小区的唯一标识,所述唯一标识为将所述沿高速移动路线分布的小区按照顺序依次进行标记的数字标识;
根据所述目标小区的唯一标识以及获取的所述相邻小区的唯一标识,判断预测所述处于高速移动状态的UE的移动方向。
再进一步地,按照预设时间间隔执行获取目标小区中处于高速移动状态的用户设备UE的数目的步骤;
所述根据所述移动方向,所述处理器204将所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区进行小区合并,包括:
根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并;
若未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并。
再进一步地,所述目标小区和相邻小区支持第一载频和第二载频;
所述处理器204将所述目标小区与所述相邻小区进行小区合并之前,还包括:
检测所述目标小区中是否存在处于低速移动状态的UE,所述处于低速移动状态的UE为处于连接模式且移动速度小于预设阈值的UE;
若是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发。
再进一步地,所述处理器204通过所述输入装置获取目标小区中处于高速移动状态的用户设备UE的数目之后,还包括:
在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分;
当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
再进一步地,所述处理器204将所述目标小区与所述相邻小区进行小区合并,包括:
将所述目标小区和所述相邻小区各自的物理小区标识PCI均修改为预设PCI;
根据预设小区合并原则对所述目标小区和所述相邻小区进行参数配置。
再进一步地,所述处理器204通过所述输入装置201获取目标小区中处于高速移动状态的用户设备UE的数目之后,还包括:
在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将修改为预设PCI的所述目标小区恢复成小区合并之前的PCI;
将根据预设小区合并原则进行参数配置的所述目标小区恢复成小区合并之前的参数。
再进一步地,所述处理器204通过合并后的小区通过所述输出装置202向所述处于高速移动状态的UE发送数据,包括:
通过合并后的小区中的所述目标小区和相邻小区通过所述输出装置202协同向所述处于高速移动状态的UE发送数据。
再进一步地,所述沿高速移动路线分布的小区采用IP化的移动回传网IPRAN组网方式;
所述处理器204通过合并后的小区通过所述输出装置202向所述处于高速移动状态的UE发送数据,包括:
判断合并后的小区中的所述目标小区和相邻小区之间是否为同站址小区;
若是,所述目标小区和相邻小区通过所述输出装置202同步向所述处于高速移动状态的UE发送数据;
若否,则通过所述输入装置201获取所述目标小区和相邻小区之间的传输时延信息;
所述目标小区根据所述传输时延信息延迟相应时间,与所述相邻小区通过所述输出装置202同步向所述处于高速移动状态的UE发送数据。
再进一步地,所述处理器204通过合并后的小区通过所述输出装置202向所述处于高速移动状态的UE发送数据之前,还包括:
当判断出合并后的小区中高速小区的数目大于1时,通过所述输入装置201获取所述合并后的小区中的各个小区中的处于高速移动状态的UE的数目并统计所述处于高速移动状态的UE的总数,其中所述高速小区为小区中处于高速移动状态的UE的数目大于第二预设数目的小区;
根据所述处于高速移动状态的UE的总数,在所述合并后的小区的传输时间间隔TTI内,结合预设分配规则动态地为所述处于高速移动状态的UE进行时域资源的分配,以便于在所述分配的时域资源上通过合并后的小区通过所述输出装置202向所述处于高速移动状态的UE发送数据。
可以理解的是,网络设备20中各功能模块的功能可对应参考上述图2至图10中的各方法实施例中的具体实现方式,这里不再赘述。
如图28所示的本发明提供的动态合并小区系统的结构示意图,系统30包括:网络设备301和用户设备302,其中
网络设备301可以为上述图27实施例中的网络设备20。可理解的是,本发明实施例中的系统30还可以包括服务器和业务中心等设备。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (26)

  1. 一种动态合并小区方法,其特征在于,包括:
    获取目标小区中处于高速移动状态的用户设备UE的数目,所述目标小区能够与其相邻小区进行小区合并,且所述目标小区和所述相邻小区为沿高速移动路线分布的小区,所述处于高速移动状态的UE为处于连接模式且移动速度大于预设阈值的UE;
    在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并,并通过合并后的小区向所述处于高速移动状态的UE发送数据。
  2. 如权利要求1所述的方法,其特征在于,所述方法,还包括:
    在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
  3. 如权利要求1或2所述的方法,其特征在于,所述在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并,包括:
    在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,判断所述处于高速移动状态的UE的移动方向;
    根据所述移动方向,将所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区进行小区合并。
  4. 如权利要求3所述的方法,其特征在于,所述判断所述处于高速移动状态的UE的移动方向,包括:
    获取所述处于高速移动状态的UE进行小区切换的历史记录;
    根据所述小区切换的历史记录,判断所述处于高速移动状态的UE的移动方向。
  5. 如权利要求3所述的方法,其特征在于,所述判断所述处于高速移动状态的UE的移动方向,包括:
    获取所述目标小区上一次进行小区合并的相邻小区的唯一标识,所述唯一标识为将所述沿高速移动路线分布的小区按照顺序依次进行标记的数字标识;
    根据所述目标小区的唯一标识以及获取的所述相邻小区的唯一标识,判断预测所述处于高速移动状态的UE的移动方向。
  6. 如权利要求3-5任意一项所述的方法,其特征在于,按照预设时间间隔执行获取目标小区中处于高速移动状态的用户设备UE的数目的步骤;
    所述根据所述移动方向,将所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区进行小区合并,包括:
    根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并;
    若未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并。
  7. 如权利要求1-6任意一项所述的方法,其特征在于,所述目标小区和相邻小区均支持第一载频和第二载频;
    所述将所述目标小区与所述相邻小区进行小区合并之前,还包括:
    检测所述目标小区中是否存在处于低速移动状态的UE,所述处于低速移动状态的UE为处于连接模式且移动速度小于预设阈值的UE;
    若是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发。
  8. 如权利要求7所述的方法,其特征在于,所述获取目标小区中处于高速移动状态的用户设备UE的数目之后,还包括:
    在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分;
    当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
  9. 如权利要求1-8任意一项所述的方法,其特征在于,所述将所述目标小区与所述相邻小区进行小区合并,包括:
    将所述目标小区和所述相邻小区各自的物理小区标识PCI均修改为预设PCI;
    根据预设小区合并原则对所述目标小区和所述相邻小区进行参数配置。
  10. 如权利要求9所述的方法,其特征在于,所述获取目标小区中处于高速移动状态的用户设备UE的数目之后,还包括:
    在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将修改为预设PCI的所述目标小区恢复成小区合并之前的PCI;
    将根据预设小区合并原则进行参数配置的所述目标小区恢复成小区合并之前的参数。
  11. 如权利要求1-10任意一项所述的方法,其特征在于,所述通过合并后的小区向所述处于高速移动状态的UE发送数据,包括:
    通过合并后的小区中的所述目标小区和相邻小区协同向所述处于高速移动状态的UE发送数据。
  12. 如权利要求1-10任意一项所述的方法,其特征在于,所述沿高速移动路线分布的小区采用IP化的移动回传网IPRAN组网方式;
    所述通过合并后的小区向所述处于高速移动状态的UE发送数据,包括:
    判断合并后的小区中的所述目标小区和相邻小区之间是否为同站址小区;
    若是,所述目标小区和相邻小区同步向所述处于高速移动状态的UE发送数据;
    若否,则获取所述目标小区和相邻小区之间的传输时延信息;
    所述目标小区根据所述传输时延信息延迟相应时间,与所述相邻小区同步 向所述处于高速移动状态的UE发送数据。
  13. 如权利要求11或12所述的方法,其特征在于,所述通过合并后的小区向所述处于高速移动状态的UE发送数据之前,还包括:
    当判断出合并后的小区中高速小区的数目大于1时,获取所述合并后的小区中的各个小区中的处于高速移动状态的UE的数目,并统计所述处于高速移动状态的UE的总数,其中所述高速小区为小区中处于高速移动状态的UE的数目大于第二预设数目的小区;
    根据所述处于高速移动状态的UE的总数,在所述合并后的小区的传输时间间隔TTI内,结合预设分配规则动态地为所述处于高速移动状态的UE进行时域资源的分配,以便于在所述分配的时域资源上执行通过合并后的小区向所述处于高速移动状态的UE发送数据的步骤。
  14. 一种动态合并小区装置,其特征在于,包括:
    获取模块,用于获取目标小区中处于高速移动状态的用户设备UE的数目,所述目标小区能够与其相邻小区进行小区合并,且所述目标小区和所述相邻小区为沿高速移动路线分布的小区,所述处于高速移动状态的UE为处于连接模式且移动速度大于预设阈值的UE;
    合并模块,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区与所述相邻小区进行小区合并;
    发送模块,用于通过合并后的小区向所述处于高速移动状态的UE发送数据。
  15. 如权利要求14所述的装置,其特征在于,所述装置,还包括:
    第一拆分模块,用于在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分。
  16. 如权利要求14或15所述的装置,其特征在于,所述合并模块,包括:
    第一判断单元,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,判断所述处于高速移动状态的UE的移动方向;
    第一合并单元,用于根据所述移动方向,将所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区进行小区合并。
  17. 如权利要求16所述的装置,其特征在于,所述第一判断单元,包括:
    第一获取子单元,用于获取所述处于高速移动状态的UE进行小区切换的历史记录;
    第一判断子单元,用于根据所述小区切换的历史记录,判断所述处于高速移动状态的UE的移动方向。
  18. 如权利要求16所述的装置,其特征在于,所述第一判断单元,包括:
    第二获取子单元,用于获取所述目标小区上一次进行小区合并的相邻小区的唯一标识,所述唯一标识为将所述沿高速移动路线分布的小区按照顺序依次进行标记的数字标识;
    第二判断子单元,用于根据所述目标小区的唯一标识以及获取的所述相邻小区的唯一标识,判断预测所述处于高速移动状态的UE的移动方向。
  19. 如权利要求16-18任意一项所述的装置,其特征在于,所述获取模块具体用于:按照预设时间间隔执行获取目标小区中处于高速移动状态的用户设备UE的数目的步骤;
    所述第一合并单元,包括:
    第三判断子单元,用于根据所述移动方向,判断所述目标小区与所述处于高速移动状态的UE即将进入的相邻小区是否已经进行合并;
    第一合并子单元,用于若未进行合并,则将所述目标小区与所述即将进入的相邻小区进行小区合并。
  20. 如权利要求14-19任意一项所述的装置,其特征在于,所述目标小区和相邻小区均支持第一载频和第二载频;
    所述合并模块,包括:
    检测单元,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,检测所述目标小区中是否存在处于低速移动状态的UE,所述处于低速移动状态的UE为处于连接模式且移动速度小于预设阈值的UE;
    切换单元,用于判断结果为是,则将所述处于低速移动状态的UE切换到所述第一载频上进行数据收发,并将所述处于高速移动状态的UE切换到所述第二载频上进行数据收发;
    第二合并单元,用于将所述目标小区与所述相邻小区进行小区合并。
  21. 如权利要求20所述的装置,其特征在于,所述装置,还包括:
    第二拆分模块,用于在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将所述目标小区与所述相邻小区进行小区拆分;
    切换模块,用于当判断出所述目标小区中的第一载频上存在处于低速移动状态的UE,则将至少一个处于低速移动状态的UE切换到所述第二载频上进行数据收发。
  22. 如权利要求14-21任意一项所述的装置,其特征在于,所述合并模块,包括:
    修改单元,用于在所述目标小区中处于高速移动状态的UE的数目大于第一预设数目的情况下,将所述目标小区和所述相邻小区各自的物理小区标识PCI均修改为预设PCI;
    配置单元,用于根据预设小区合并原则对所述目标小区和所述相邻小区进行参数配置。
  23. 如权利要求22所述的装置,其特征在于,所述装置,还包括:
    第一恢复模块,用于在所述目标小区中处于高速移动状态的UE的数目小于或等于所述第一预设数目,且所述目标小区与所述相邻小区处于小区合并状态的情况下,将修改为预设PCI的所述目标小区恢复成小区合并之前的PCI;
    第二恢复模块,用于将根据预设小区合并原则进行参数配置的所述目标小区恢复成小区合并之前的参数。
  24. 如权利要求14-23任意一项所述的装置,其特征在于,所述发送模块,具体用于:
    通过合并后的小区中的所述目标小区和相邻小区协同向所述处于高速移动状态的UE发送数据。
  25. 如权利要求14-23任意一项所述的装置,其特征在于,所述沿高速移动路线分布的小区采用IP化的移动回传网IPRAN组网方式;
    所述发送模块,包括:
    第二判断单元,用于判断合并后的小区中的所述目标小区和相邻小区之间是否为同站址小区;
    第一同步单元,用于若判断结果为是,所述目标小区和相邻小区同步向所述处于高速移动状态的UE发送数据;
    获取单元,用于若判断结果为否,则获取所述目标小区和相邻小区之间的传输时延信息;
    第二同步单元,用于所述目标小区根据所述传输时延信息延迟相应时间,与所述相邻小区同步向所述处于高速移动状态的UE发送数据。
  26. 如权利要求24或25所述的装置,其特征在于,所述装置,还包括:
    统计模块,当判断出合并后的小区中高速小区的数目大于1时,获取所述合并后的小区中的各个小区中的处于高速移动状态的UE的数目,并统计所述处于高速移动状态的UE的总数,其中所述高速小区为小区中处于高速移动状态的UE的数目大于第二预设数目的小区;
    分配模块,用于根据所述处于高速移动状态的UE的总数,在所述合并后的小区的传输时间间隔TTI内,结合预设分配规则动态地为所述处于高速移动状态的UE进行时域资源的分配,以便于在所述分配的时域资源上执行通过合并后的小区向所述处于高速移动状态的UE发送数据的步骤。
PCT/CN2015/085810 2015-07-31 2015-07-31 一种动态合并小区方法、装置、网络设备及系统 WO2017020205A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15899980.5A EP3310096B1 (en) 2015-07-31 2015-07-31 Method and apparatus for dynamically combining cells
CN201580065957.7A CN107113678A (zh) 2015-07-31 2015-07-31 一种动态合并小区方法、装置、网络设备及系统
PCT/CN2015/085810 WO2017020205A1 (zh) 2015-07-31 2015-07-31 一种动态合并小区方法、装置、网络设备及系统
US15/883,969 US10142907B2 (en) 2015-07-31 2018-01-30 Method and apparatus for dynamically combining cells, network device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/085810 WO2017020205A1 (zh) 2015-07-31 2015-07-31 一种动态合并小区方法、装置、网络设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/883,969 Continuation US10142907B2 (en) 2015-07-31 2018-01-30 Method and apparatus for dynamically combining cells, network device, and system

Publications (1)

Publication Number Publication Date
WO2017020205A1 true WO2017020205A1 (zh) 2017-02-09

Family

ID=57942153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085810 WO2017020205A1 (zh) 2015-07-31 2015-07-31 一种动态合并小区方法、装置、网络设备及系统

Country Status (4)

Country Link
US (1) US10142907B2 (zh)
EP (1) EP3310096B1 (zh)
CN (1) CN107113678A (zh)
WO (1) WO2017020205A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505665A (zh) * 2019-08-08 2019-11-26 武汉绿色网络信息服务有限责任公司 一种高铁移动终端用户小区切换方法和系统
US11218945B2 (en) * 2017-03-24 2022-01-04 Huawei Technologies Co., Ltd. Access control method, terminal, and access network device
CN115022888A (zh) * 2022-05-27 2022-09-06 中国电信股份有限公司 小区合并处理方法、装置、网络侧设备以及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105873084A (zh) * 2016-06-12 2016-08-17 朱兰英 一种动态整合重选小区系统
CN105848163A (zh) * 2016-06-12 2016-08-10 朱兰英 一种动态整合重选小区方法
CN112218231B (zh) * 2019-07-11 2023-10-10 中兴通讯股份有限公司 一种无线资源管理方法及装置
CN112235804B (zh) * 2020-10-12 2021-08-20 江苏亨鑫科技有限公司 基站远端单元动态划归方法和装置、小区组网方法和系统
US11470520B2 (en) * 2021-03-03 2022-10-11 T-Mobile Usa, Inc. Parallel routing for wireless handoffs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873566A (zh) * 2009-04-24 2010-10-27 中兴通讯股份有限公司 一种既定线路沿线用户终端的移动性管理方法及系统
JP2013135282A (ja) * 2011-12-26 2013-07-08 Kddi Corp ハンドオーバパラメータ調整制御装置、ハンドオーバパラメータ調整制御方法およびコンピュータプログラム
CN103703821A (zh) * 2013-09-02 2014-04-02 华为技术有限公司 扇区的切换方法、装置和设备
CN104105145A (zh) * 2013-04-01 2014-10-15 电信科学技术研究院 一种基站配置变更时的用户设备切换方法、装置及系统
US20150065147A1 (en) * 2013-09-05 2015-03-05 Hitachi, Ltd. Wireless communication system, wireless communication method, and base station

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201230707A (en) * 2010-08-31 2012-07-16 Corning Inc Broadband wireless mobile communications system with distributed antenna system using interleaving intra-cell handovers
US8605668B2 (en) * 2011-04-28 2013-12-10 Renesas Mobile Corporation Common channel configuration for multipoint communications
WO2012119426A1 (zh) * 2011-08-30 2012-09-13 华为技术有限公司 自动频率控制的鉴频结果获取方法、装置与设备
US9414276B2 (en) * 2011-12-31 2016-08-09 Telefonaktiebolaget L M Ericsson (Publ) Mobility management method and apparatus in high speed railway
EP2843997B1 (de) * 2013-08-30 2016-06-15 Swisscom AG Mobile virtuelle basisstation
WO2015077933A1 (en) * 2013-11-27 2015-06-04 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for optimizing ue identification
CN104244269B (zh) * 2014-09-23 2017-11-24 中国联合网络通信集团有限公司 一种小区组网的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873566A (zh) * 2009-04-24 2010-10-27 中兴通讯股份有限公司 一种既定线路沿线用户终端的移动性管理方法及系统
JP2013135282A (ja) * 2011-12-26 2013-07-08 Kddi Corp ハンドオーバパラメータ調整制御装置、ハンドオーバパラメータ調整制御方法およびコンピュータプログラム
CN104105145A (zh) * 2013-04-01 2014-10-15 电信科学技术研究院 一种基站配置变更时的用户设备切换方法、装置及系统
CN103703821A (zh) * 2013-09-02 2014-04-02 华为技术有限公司 扇区的切换方法、装置和设备
US20150065147A1 (en) * 2013-09-05 2015-03-05 Hitachi, Ltd. Wireless communication system, wireless communication method, and base station

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11218945B2 (en) * 2017-03-24 2022-01-04 Huawei Technologies Co., Ltd. Access control method, terminal, and access network device
CN110505665A (zh) * 2019-08-08 2019-11-26 武汉绿色网络信息服务有限责任公司 一种高铁移动终端用户小区切换方法和系统
CN115022888A (zh) * 2022-05-27 2022-09-06 中国电信股份有限公司 小区合并处理方法、装置、网络侧设备以及存储介质

Also Published As

Publication number Publication date
US10142907B2 (en) 2018-11-27
EP3310096A1 (en) 2018-04-18
EP3310096B1 (en) 2019-09-11
US20180152876A1 (en) 2018-05-31
EP3310096A4 (en) 2018-05-30
CN107113678A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2017020205A1 (zh) 一种动态合并小区方法、装置、网络设备及系统
CN113179540B (zh) 一种移动切换方法及相关设备
EP3229442B1 (en) Wireless communication apparatus
EP2914035B1 (en) Base station handover method and system for communications system
EP2461624A1 (en) System, apparatus and methods for highly scalable continuous roaming within a wireless network
US10154443B2 (en) Cross radio access technology handoff using caching
US20190045005A1 (en) Method for replicating data in a network and a network component
JP6095785B2 (ja) 無線通信システム、その制御方法及び基地局装置
CN111866971A (zh) 一种通信方法及装置
KR101328170B1 (ko) 차량통신 핸드오버 지원을 위한 채널 접근 방법
CN108777875B (zh) 一种业务处理方法及装置
JP2019510409A (ja) 同期化を実現する方法及び装置
KR20200019043A (ko) 이동통신 시스템에서 핸드오버 방법 및 장치
WO2015062478A1 (zh) 一种进行通信的方法、系统和设备
CN107635294B (zh) 基站子系统、信号传输方法、基站设备和存储介质
CN104902490A (zh) 一种高速列车通信中用户迁移的方法
Dou et al. Improvement and queuing analysis of the handover mechanism in the high-speed railway communication
CN108984558A (zh) 一种用户设备数据通信方法及设备
CN108471617B (zh) 用户设备的移动性管理方法、用户设备及测量控制点基站
US20240163968A1 (en) Apparatus, method, and computer program
US20240163766A1 (en) Apparatus, method, and computer program
WO2023206577A1 (en) Method and apparatus related to reference signal symbols for uplink transmissions
US20230362675A1 (en) Dual mode wi-fi operation in shared and non-shared channels
US20230388890A1 (en) Handover of a communication session
Nyandika et al. Handover Enhancement in Wireless Communication-Based Train Control Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015899980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE