WO2017018363A1 - 放射線測定装置及び放射線測定方法 - Google Patents

放射線測定装置及び放射線測定方法 Download PDF

Info

Publication number
WO2017018363A1
WO2017018363A1 PCT/JP2016/071642 JP2016071642W WO2017018363A1 WO 2017018363 A1 WO2017018363 A1 WO 2017018363A1 JP 2016071642 W JP2016071642 W JP 2016071642W WO 2017018363 A1 WO2017018363 A1 WO 2017018363A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
measurement data
pixel electrode
electrode measurement
scatterer
Prior art date
Application number
PCT/JP2016/071642
Other languages
English (en)
French (fr)
Inventor
大介 松浦
能克 黒田
恵 玄蕃
忠幸 高橋
伸 渡辺
武田 伸一郎
洋夫 山本
和正 小杉
山村 和久
Original Assignee
三菱重工業株式会社
国立研究開発法人宇宙航空研究開発機構
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 国立研究開発法人宇宙航空研究開発機構, 浜松ホトニクス株式会社 filed Critical 三菱重工業株式会社
Priority to EP16830468.1A priority Critical patent/EP3316003B1/en
Priority to US15/735,389 priority patent/US10088579B2/en
Publication of WO2017018363A1 publication Critical patent/WO2017018363A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/241Electrode arrangements, e.g. continuous or parallel strips or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/244Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2907Angle determination; Directional detectors; Telescopes

Definitions

  • the present invention relates to a radiation measuring apparatus and a radiation measuring method, and more particularly to a technique for detecting electromagnetic radiation such as X-rays and gamma rays using a semiconductor detector.
  • a radiation measuring device used to detect electromagnetic radiation such as X-rays and gamma rays can specify the incident direction of electromagnetic radiation when an event occurs in which electromagnetic radiation is incident on a detector of the radiation measuring device. May be configured as follows. By specifying the incident direction of electromagnetic radiation, it becomes possible to specify the spatial distribution of the radiation source, which is extremely useful in practice.
  • One of the radiation measurement devices configured to identify the incident direction of electromagnetic radiation is a Compton camera.
  • a Compton camera is a radiation measurement device that images the spatial distribution of a radiation source using Compton scattering.
  • the Compton camera identifies the incident direction of electromagnetic radiation (for example, X-rays and gamma rays) using Compton scattering, and generates an image representing the spatial distribution of the radiation source from the identified incident direction.
  • FIG. 1 is a diagram for explaining the outline of Compton scattering of gamma rays.
  • the photons of the incident gamma rays collide with electrons in the material and scatter.
  • the electrons collided by the photons are bounced off (the bounced electrons are called “recoil electrons”), and the energy of a part of the photons of the incident gamma ray is given to the electrons.
  • the energy of the photons of the scattered gamma rays is lower than the energy of the incident gamma rays.
  • FIG. 2 is a diagram showing the principle of the Compton camera, particularly the specific principle of the incident direction of electromagnetic radiation.
  • the detection unit of the Compton camera typically includes a scatterer and an absorber.
  • the scattering angle ⁇ of the electromagnetic radiation (In other words, the angle formed by the line segment connecting the radiation source and the position X1 with the straight line passing through the positions X1 and X2) is given by the following equation (2).
  • me is the static mass of electrons
  • c is the speed of light
  • E 1 is the energy obtained by recoil electrons by Compton scattering in the scatterer
  • E 2 is the energy of photons absorbed by the absorber.
  • the Compton camera estimates the spatial distribution of the radiation source based on the information on the scattering angle ⁇ of the electromagnetic radiation thus obtained, and images the spatial distribution of the radiation source. More specifically, the Compton cone of each event (where the radiation source is located) is determined from the information on the position X1 where Compton scattering occurs in each event, the position X2 where photoelectric absorption is performed, and the scattering angle ⁇ of electromagnetic radiation in Compton scattering. A conical surface composed of a set of obtained points) is reconstructed, and an image corresponding to the superposition of the Compton cone of each event is generated as a source distribution image showing the spatial distribution of the source.
  • the electromagnetic radiation Only the scattering angle ⁇ can be calculated, and the position of the radiation source is specified only as a point on the ring where it can exist.
  • the recoil direction of recoil electrons the direction in which recoil electrons are bounced off
  • another ring conical surface
  • the incident direction of electromagnetic radiation can be specified as a direction passing through a point where two circular rings intersect.
  • the incident direction of electromagnetic radiation is specified as an arc due to fluctuations in the energy of recoil electrons.
  • Such a method is disclosed in, for example, International Publication No. 2007/145154 (Patent Document 1).
  • a Compton camera that narrows down the incident direction of electromagnetic radiation based on the recoil direction of recoil electrons may be hereinafter referred to as an electronic tracking type Compton camera.
  • Patent Document 2 discloses a gamma ray direction detection device including a detector having a plurality of detection pixels for detecting gamma rays. .
  • Patent Document 1 a gas chamber type detector is used as a detector that generates Compton scattering.
  • the gas chamber type detector needs to be made large in order to ensure sufficient detection efficiency for gamma rays, and accordingly the detector in the surrounding absorption section must be made large.
  • a high energy resolution is required, but the gas chamber type detector has a lower energy resolution than a semiconductor detector.
  • an object of the present invention is to realize an electronic tracking type Compton camera that narrows down the incident direction of electromagnetic radiation using the recoil direction of recoil electrons in a Compton camera using a semiconductor detector.
  • the radiation measurement apparatus includes at least one scatterer detector that functions as a scatterer that scatters electromagnetic radiation to be measured, and at least one absorber that functions as an absorber that absorbs electromagnetic radiation.
  • a detector and an arithmetic unit are provided.
  • Each of the scatterer detector and the absorber detector includes a semiconductor substrate and a plurality of pixel electrodes arranged in a matrix on the first main surface of the semiconductor substrate. The plurality of pixel electrodes are arranged such that the distance between the centers of two adjacent pixel electrodes is smaller than the mean free path of recoil electrons generated by Compton scattering of electromagnetic radiation.
  • Compton scattering occurs in any of the scatterer detectors, recoil electrons generated by Compton scattering in any of the scatterer detectors, the semiconductor substrate inside the scatterer detector where Compton scattering has occurred Scatter detector and absorber detection event where photoelectric absorption occurs in which photons scattered by Compton scattering are absorbed in any of the absorber detectors. Extraction is performed based on the signal obtained from the vessel, and the incident direction of electromagnetic radiation is specified based on the recoil direction in which recoil electrons are bounced off for each of the extracted events.
  • the pixel electrode of the scatterer detector and the absorber detector has a distance between the centers of two adjacent pixel electrodes of 10 to It is preferable to arrange so as to be in the range of 20 ⁇ m.
  • the scatterer detector further includes a plurality of back electrodes disposed on the second main surface opposite to the first main surface of the semiconductor substrate, and the plurality of back surfaces of the scatterer detector.
  • Each of the electrodes is arranged to face a plurality of pixel electrodes of the scatterer detector.
  • the number of the plurality of back surface electrodes is smaller than the number of the plurality of pixel electrodes.
  • the radiation measurement apparatus further includes a first signal processing unit that generates first pixel electrode measurement data from the first analog signal read from the plurality of pixel electrodes of the scatterer detector, and a first pixel electrode measurement.
  • the data processing unit reads the selected pixel electrode measurement data selected according to the back surface electrode measurement data from the first pixel electrode measurement data from the temporary storage area and transfers the selected pixel electrode measurement data to the arithmetic device. It is preferable to extract an event and specify the incident direction of electromagnetic radiation based on the electrode measurement data.
  • it further includes a third signal processing unit that generates second pixel electrode measurement data from the third analog signal read from the plurality of pixel electrodes of the absorber detector, and the data processing unit includes the selected pixel electrode.
  • the measurement data is preferably selected according to the back electrode measurement data and the second pixel electrode measurement data.
  • the data processing unit obtains the first pixel electrode measurement data obtained in the frame period.
  • the second pixel electrode measurement data and the back electrode measurement data are transferred to the arithmetic device, and the arithmetic device is based on the first pixel electrode measurement data, the second pixel electrode measurement data, and the back electrode measurement data obtained in the frame period. It is preferable to extract the event and specify the incident direction of the electromagnetic radiation.
  • each of the plurality of pixel electrodes of the scatterer detector is preferably connected to a pad provided in the signal processing IC via a bump.
  • the plurality of pixel electrodes of the scatterer detector are arranged side by side in a first direction parallel to the first main surface and a second direction parallel to the first main surface and perpendicular to the first direction.
  • Each of the plurality of back electrodes is formed so as to extend in the first direction, and the plurality of back electrodes are arranged side by side in the second direction.
  • each of the scatterer detector and the absorber detector further includes a plurality of back electrodes disposed on a second main surface facing the first main surface of the semiconductor substrate, Each of the back electrodes is arranged to face a plurality of the plurality of pixel electrodes, and in each of the scatterer detector and the absorber detector, the number of the plurality of back electrodes is smaller than the number of the plurality of pixel electrodes. .
  • the radiation measurement apparatus further includes a first signal processing unit that generates pixel electrode measurement data from first analog signals read from the plurality of pixel electrodes of the scatterer detector and the absorber detector; Temporary storage area for temporarily storing electrode measurement data, and a second signal processing unit for generating back electrode measurement data from second analog signals read from a plurality of back electrodes of the scatterer detector and absorber detector And a data processing unit.
  • the data processing unit reads out the selected pixel electrode measurement data selected according to the back electrode measurement data from the pixel electrode measurement data from the temporary storage area and transfers the selected pixel electrode measurement data to the arithmetic device.
  • the arithmetic device is based on the selected pixel electrode measurement data. Event extraction and identification of the incident direction of electromagnetic radiation.
  • a semiconductor detector used for radiation detection includes a semiconductor substrate, a plurality of pixel electrodes arranged in a matrix on the first main surface of the semiconductor substrate, and a first of the semiconductor substrate.
  • a plurality of back electrodes disposed on a second main surface opposite to the one main surface.
  • Each of the plurality of back electrodes is disposed to face the plurality of pixel electrodes, and the number of the plurality of back electrodes is smaller than the number of the plurality of pixel electrodes.
  • a radiation measurement apparatus includes the above-described semiconductor detector, a first signal processing unit that generates pixel electrode measurement data from first analog signals read from a plurality of pixel electrodes, and a pixel.
  • a temporary storage area for temporarily storing electrode measurement data
  • a second signal processing unit for generating back electrode measurement data from second analog signals read from a plurality of back electrodes, and a back electrode of pixel electrode measurement data
  • a data processing unit that reads out selected pixel electrode measurement data selected according to the measurement data from the temporary storage area and transfers it to the arithmetic unit, and measures electromagnetic radiation based on the pixel electrode measurement data read out from the temporary storage area
  • an arithmetic unit that performs an operation for the purpose.
  • the calculation device performs a calculation for measuring electromagnetic radiation based on the back electrode measurement data in addition to the pixel electrode measurement data read from the temporary storage area.
  • the scatterer detector includes a scatterer detector that functions as a scatterer that scatters electromagnetic radiation to be measured, and an absorber detector that functions as an absorber that absorbs electromagnetic radiation.
  • the absorber detector each include a semiconductor substrate and a plurality of pixel electrodes arranged in a matrix on the main surface of the semiconductor substrate, and each of the plurality of pixels of the scatterer detector and the absorber detector
  • a radiation measurement method is provided for implementation.
  • Compton scattering occurs in any of the scatterer detectors, and recoil electrons generated in the Compton scattering in any of the scatterer detectors cause a semiconductor inside the scatterer detector in which the Compton scattering occurs.
  • a technique for realizing an electronic tracking type Compton camera that narrows down the incident direction of electromagnetic radiation using the recoil direction of recoil electrons is provided. Can do.
  • FIG. 4 is a block diagram illustrating a device configuration of the Compton camera 20 according to the first embodiment of the present invention.
  • the Compton camera 20 of this embodiment includes a plurality of detector modules 11 ⁇ / b> A and 11 ⁇ / b> B, an arithmetic device 12, and a display device 13 that are stacked.
  • the detector module 11A is a module including a semiconductor detector that functions as a scatterer
  • the detector module 11B is a module including a semiconductor detector that functions as an absorber.
  • the semiconductor detector that functions as a scatterer is referred to as a scatterer detector 10A
  • the semiconductor detector that functions as an absorber may be referred to as an absorber detector 10B
  • the scatterer detector 10A and the absorber detector 10B may be collectively referred to as a semiconductor detector 10.
  • the detector module 11A is located on the incident side of electromagnetic radiation (for example, gamma rays or X-rays) to be measured, and the detector module 11B is located behind the detector module 11A.
  • the arithmetic unit 12 performs data processing on the measurement data obtained from the analog signals read from the scatterer detector 10A and the absorber detector 10B, and calculates the spatial distribution of the radiation source.
  • the arithmetic device 12 has a storage device 12a, and stores measurement data and other data necessary for data processing in the storage device 12a.
  • the display device 13 is used as a user interface of the Compton camera 20. The display device 13 is used, for example, to display the spatial distribution of the radiation source calculated by the arithmetic device 12.
  • FIG. 5 is a block diagram showing a configuration of a detector module 11A including the scatterer detector 10A.
  • the detector module 11B including the absorber detector 10B has the same configuration as the detector module 11A except that the scatterer detector 10A is replaced with the absorber detector 10B.
  • the detector module 11 ⁇ / b> A includes a signal processing IC (integrated circuit) 21 and an interface 22 in addition to the scatterer detector 10 ⁇ / b> A.
  • FIGS. 6 to 8 are diagrams conceptually showing the configuration of the scatterer detector 10A and the absorber detector 10B in one embodiment of the present invention.
  • FIG. 6 is a top view showing the configuration of the semiconductor detector 10
  • FIG. 7 is a bottom view showing the configurations of the scatterer detector 10A and the absorber detector 10B.
  • FIG. 8 is a cross-sectional view showing the configuration of the scatterer detector 10A and the absorber detector 10B in the AA cross section (see FIGS. 6 and 7).
  • description will be made using the XYZ orthogonal coordinate system, and the direction may be indicated as the direction of the coordinate axis of the XYZ orthogonal coordinate system.
  • each of the scatterer detector 10A and the absorber detector 10B includes a semiconductor substrate 1.
  • the semiconductor substrate 1 is formed of a semiconductor such as CdTe or silicon, for example.
  • the semiconductor substrate 1 is formed of a material having a small atomic number (for example, silicon) so as to easily cause Compton scattering.
  • the absorber detector 10B the semiconductor substrate 1 is formed of a material having a large atomic number (for example, CdTe).
  • the configurations of the scatterer detector 10A and the absorber detector 10B are the same except that the material of the semiconductor substrate 1 is different.
  • a plurality of pixel electrodes 2 are formed on the front main surface 1a of the semiconductor substrate 1, and a back electrode 3 is formed on the back main surface 1b.
  • the front-side main surface 1a and the back-side main surface 1b are two surfaces having the largest area among the surfaces of the semiconductor substrate 1, and face each other.
  • the front main surface 1a and the back main surface 1b are parallel to the XZ plane.
  • the pixel electrodes 2 are arranged in a matrix and constitute a so-called “pixel type” detector.
  • each of the pixel electrodes 2 has a rectangular planar shape, more specifically, a square planar shape.
  • the back electrode 3 is provided to face the plurality of pixel electrodes 2.
  • Each part of the semiconductor substrate 1 sandwiched between each pixel electrode 2 and the back electrode 3 constitutes a pixel.
  • An analog signal corresponding to the amount of charge generated in each pixel is obtained from each pixel electrode 2.
  • 6 to 8 show a configuration in which a single back electrode 3 is bonded to the back main surface 1b of the semiconductor substrate 1, but as will be discussed in detail later, a plurality of back electrodes 3 are shown. A configuration in which the electrode 3 is formed is also possible.
  • the signal processing IC 21 operates as a signal processing unit that processes the analog signal read from each pixel electrode 2 of the scatterer detector 10A or the absorber detector 10B.
  • the signal processing IC 21 simultaneously reads analog signals from all the pixel electrodes 2 of the scatterer detector 10A or the absorber detector 10B in each frame period.
  • the “frame period” is a period in which analog signals are once read from all the pixel electrodes 2 of the scatterer detector 10A and the absorber detector 10B.
  • the length of each frame period is a cycle for reading an analog signal from each pixel electrode 2.
  • the signal processing IC 21 further performs analog-digital conversion on the analog signal read from the pixel electrode 2 to generate measurement data indicating the signal level of the analog signal.
  • each signal processing IC 21 is read from the pixel electrode measurement data obtained from the scatterer detector 10A or the absorber detector 10B (more strictly, from the pixel electrode 2 of the scatterer detector 10A or the absorber detector 10B).
  • the pixel electrode measurement data generated from the analog signal is transmitted to the arithmetic unit 12 via the interface 22.
  • the signal processing IC 21 further has a function of driving the back electrode 3 of the scatterer detector 10A or the absorber detector 10B to a desired potential.
  • the interface 22 has a function of exchanging data between the signal processing IC 21 and the arithmetic unit 12. Specifically, the interface 22 transfers pixel electrode measurement data from the signal processing IC 21 to the arithmetic device 12, and transfers control data for controlling the signal processing IC 21 from the arithmetic device 12 to the signal processing IC 21.
  • the incident direction of electromagnetic radiation (for example, gamma rays and X-rays) is specified using the recoil direction of recoil electrons generated by Compton scattering, that is, the direction in which recoil electrons are bounced off. And is configured to calculate a spatial distribution of the radiation source. More specifically, in the Compton camera 20 of the present embodiment, Compton scattering occurs in any of the scatterer detectors 10A from the pixel electrode measurement data obtained from the scatterer detectors 10A and the absorber detectors 10B.
  • the recoil electrons generated by the Compton scattering were jumped in a direction having a component in the in-plane direction of the semiconductor substrate 1 inside the scatterer detector 10A where the Compton scattering occurred and scattered by the Compton scattering.
  • An event in which photoelectric absorption occurs in which a photon is absorbed in any of the absorber detectors 10B is extracted.
  • the incident direction of electromagnetic radiation is specified using the recoil direction of recoil electrons, and the spatial distribution of the radiation source is calculated.
  • the pitch of the pixel electrodes 2 of each scatterer detector 10A and each absorber detector 10B that is, adjacent to each other.
  • the distance between the centers of the pixel electrodes 2 is adjusted according to the mean free path of recoil electrons generated by Compton scattering of electromagnetic radiation to be measured.
  • the pitch of the pixel electrodes 2 is illustrated as a symbol d PIXEL .
  • the center of the pixel electrode 2 means the center of gravity in the planar shape, and when the pixel electrode 2 is rectangular (or square), it coincides with the intersection of the diagonal lines.
  • the pixel electrodes 2 of the scatterer detector 10A and the absorber detector 10B are arranged so that the pitch of the pixel electrodes 2 is smaller than the mean free path of recoil electrons.
  • the pitch of the pixel electrodes 2 is preferably sufficiently smaller than the mean free process of recoil electrons, more specifically, 1/5 or less, more preferably 1/10 or less of the mean free process of recoil electrons.
  • the mean free path of recoil electrons is a parameter determined by the energy of incident electromagnetic radiation (for example, gamma rays or X-rays).
  • the mean free path of recoil electrons is 100 ⁇ m to several hundreds of ⁇ m, and the pitch of the pixel electrodes 2 is preferably 20 ⁇ m or less. A range of 10 to 20 ⁇ m is preferable.
  • FIG. 9 is a flowchart showing a procedure for calculating the spatial distribution of the radiation source in the Compton camera 20 of the present embodiment.
  • Step S01 By each detector module 11A, 11B, pixel electrode measurement data of a frame period in which electromagnetic radiation is incident is sequentially acquired and stored in the storage device 12a of the arithmetic device 12. Specifically, pixel electrode measurement data is acquired as follows.
  • the signal processing IC 21 of each detector module 11A, 11B reads out an analog signal from each pixel electrode 2 of the scatterer detector 10A or each absorber detector 10B in each frame period, and analog-digital for the read analog signal. Conversion is performed to generate pixel electrode measurement data.
  • the signal processing IC 21 transfers the generated pixel electrode measurement data to the arithmetic device 12 via the interface 22.
  • the pixel electrode measurement data sent from the signal processing IC 21 to the arithmetic device 12 is stored in the storage device 12 a of the arithmetic device 12.
  • Step S02 From the pixel electrode measurement data obtained from the detector module 11A on which the scatterer detector 10A is mounted, a track of recoil electrons generated by Compton scattering is specified. For example, as shown in FIG. 10, from the pixel electrode measurement data, recoil electrons are continuously located in a certain scatterer detector 10A in a certain frame period, for example, the pixel electrode 2a in FIG. It is possible to detect passing through the pixels formed by 2b and 2c. In this case, it is possible to specify that the track of recoil electrons in the scatterer detector 10A is a track that reaches the pixel electrode 2c from the pixel electrode 2a.
  • the track of recoil electrons within a certain scatterer detector 10A in a certain frame period is completed within a single pixel (for example, recoil electrons are associated with the pixel). To the outside of the scatterer detector 10A).
  • Step S03 From the pixel electrode measurement data stored in the storage device 12a of the arithmetic unit 12, an event for which the reconstruction of the Compton cone, that is, the determination of the incident direction of electromagnetic radiation is to be performed is extracted. More specifically, in step S03, (1) Compton scattering of a photon of electromagnetic radiation occurs in a certain scatterer detector 10A, and then the photon scattered by the Compton scattering is absorbed by photoelectric absorption in the absorber detector 10B, and (2) An event is extracted in which the recoil direction of recoil electrons generated by the Compton scattering has a component in the in-plane direction of the semiconductor substrate 1 inside the scatterer detector 10A.
  • the track of the recoil electrons calculated in step S02 is referred to.
  • the recoil direction of the recoil electrons is a direction having a component in the in-plane direction of the semiconductor substrate 1. Can be specified.
  • a trigger is generated and measurement data collection is temporarily stopped. Thereafter, the measurement data is read and data processing is performed, and the collection of measurement data is resumed after the data processing system is reset. In such a procedure, a dead time (a time during which electromagnetic radiation cannot be measured) occurs, and the efficiency of measuring electromagnetic radiation decreases.
  • the present invention it is possible to easily specify the pixel electrode measurement data corresponding to the same event by using the information of the recoil electron track. For this reason, it is possible to measure electromagnetic radiation while continuously acquiring pixel electrode measurement data.
  • referring to the track of recoil electrons is useful for reducing noise in the case where the Compton camera 20 is used in an environment where much neutrons are incident, for example, in outer space.
  • the incident neutrons are elastically scattered by the atomic nuclei of the material constituting the semiconductor substrate 1, so that recoil electrons are not generated. Therefore, noise can be reduced by excluding events in which there are no tracks of recoil electrons.
  • Step S04 For the event extracted in step S03, the Compton cone is reconstructed, that is, the incident direction of electromagnetic radiation is specified.
  • the reconstruction of the Compton cone is performed based on the pixel electrode measurement data stored in the storage device 12a of the arithmetic device 12. First, at each extracted event, the position X1 where Compton scattering occurred in the scatterer detector 10A, the energy E 1 obtained by recoil electrons in the Compton scattering, and photoelectric absorption occurred in the absorber detector 10B. position X2, and the energy E 2 of the photons absorbed by the photoelectric absorption is calculated.
  • the scattering angle ⁇ of electromagnetic radiation in the Compton scattering is calculated.
  • the scattering angle ⁇ of electromagnetic radiation is calculated based on the above formulas (1) and (2) or the formulas equivalent to the formulas (1) and (2).
  • the second Compton cone is reconfigured based on the recoil direction of recoil electrons inside the scatterer detector 10A.
  • the recoil direction of recoil electrons can be obtained from the trajectory of recoil electrons calculated in step S02.
  • the computing device 12 specifies the incident direction of electromagnetic radiation as an arc from the first Compton cone and the second Compton cone reconstructed for each event.
  • the arithmetic device 12 generates incident direction data including information on the incident direction of the electromagnetic radiation specified in this way, and stores the incident direction data in the storage device 12a of the arithmetic device 12.
  • Step S05 The computing device 12 calculates the spatial distribution of the radiation source based on the incident direction data obtained in step S04, and further generates a radiation source distribution image indicating the spatial distribution of the radiation source.
  • the arithmetic device 12 displays the generated source distribution image on the display device 13 in accordance with a user operation on the user interface of the arithmetic device 12.
  • the track of recoil electrons generated by Compton scattering is calculated, and the incident direction of electromagnetic radiation is specified using the recoil electron recoil direction.
  • the incident direction of electromagnetic radiation is specified using the recoil electron recoil direction.
  • Compton scattering occurs in any of the scatterer detectors 10A, and recoil electrons generated by the Compton scattering are generated inside the scatterer detector 10A in which Compton scattering has occurred.
  • recoil electrons generated by the Compton scattering are generated inside the scatterer detector 10A in which Compton scattering has occurred.
  • photons that are jumped in a direction having a component in the in-plane direction of the semiconductor substrate 1 and scattered by Compton scattering are absorbed in any of the absorber detectors 10B.
  • the incident direction of electromagnetic radiation can be specified.
  • the pitch of the pixel electrodes 2 of each scatterer detector 10A and each absorber detector 10B that is, The distance between the centers of adjacent pixel electrodes 2 is selected according to the mean free path of recoil electrons generated by Compton scattering of electromagnetic radiation to be measured.
  • the spatial resolution required for specifying the recoil direction of recoil electrons can be realized in each scatterer detector 10A and each absorber detector 10B.
  • a pixel type detector including pixel electrodes 2 arranged in a matrix is used as each scatterer detector 10A and each absorber detector 10B.
  • One problem with using a pixel-type detector is that increasing the number of pixel electrodes 2 increases the amount of data to be processed by the arithmetic unit 12.
  • the number of pixel electrodes increases, the amount of data to be processed increases.
  • each scatterer detector 10A and each absorber detector 10B is determined in order to specify the track of recoil electrons (recoil electron recoil direction).
  • the number of pixel electrodes 2 needs to be increased.
  • a configuration for dealing with the problem of an increase in data amount accompanying an increase in the number of pixel electrodes 2 of each scatterer detector 10A and / or each absorber detector 10B is presented.
  • FIGS. 11 to 14 are diagrams conceptually showing the configuration of each scatterer detector 10A in the second embodiment.
  • FIG. 11 is a perspective view showing the configuration of each scatterer detector 10A in the second embodiment
  • FIG. 12 is a top view showing the configuration of each scatterer detector 10A.
  • FIG. 13 is a bottom view showing the configuration of each scatterer detector 10A
  • FIG. 14 is a cross-sectional view showing a cross-sectional configuration taken along the line BB of FIGS.
  • the direction may be indicated as the direction of the coordinate axis of the XYZ orthogonal coordinate system.
  • the configuration of the scatterer detector 10A of the second embodiment is substantially the same as that of the first embodiment, but a plurality of scatterer detectors 10A are formed on the back main surface 1b of the semiconductor substrate 1 as shown in FIGS. This is different in that the back electrode 3 is formed. It should be noted that in the scatterer detector 10A of the first embodiment, only a single back electrode 3 is provided on the back main surface 1b. Similar to the first embodiment, the pixel electrodes 2 are arranged in a matrix.
  • the back electrode 3 is configured as a stripe-type electrode extending in the X-axis direction (first direction), and the Y-axis direction (first (Second direction perpendicular to one direction).
  • Each of the back electrodes 3 is provided so as to face the plurality of pixel electrodes 2.
  • each of the back electrodes 3 faces the plurality of pixel electrodes 2 arranged in a line in the X-axis direction.
  • the number of back electrodes 3 is smaller than the number of pixel electrodes 2 in the arrangement in which each of the back electrodes 3 faces the plurality of pixel electrodes 2. Further, in the configuration of the present embodiment illustrated in FIGS.
  • each of the pixel electrodes 2 faces one back electrode 3 of the plurality of back electrodes 3 and faces the other back electrode 3. Arranged not to.
  • Each portion of the semiconductor substrate 1 sandwiched between each pixel electrode 2 and the corresponding back electrode 3 constitutes a pixel.
  • An analog signal corresponding to the amount of charge generated in each pixel is obtained from each pixel electrode 2.
  • the scatterer detector 10A having such a configuration, it is possible to detect that radiation has entered one of the pixels from the signal obtained from the back electrode 3, and the pixel electrode measurement data obtained from the pixel electrode 2 can be detected.
  • pixel electrode measurement data at the time when electromagnetic radiation is incident on the scatterer detector 10A can be selected. Specifically, when electromagnetic radiation is incident on a certain pixel, electric charges are generated in the pixel, and a signal is generated in the pixel electrode 2 of the pixel and the back electrode 3 facing the pixel electrode 2. It can be detected from the signal generated on the back electrode 3 that electromagnetic radiation has entered one of the pixels of the plurality of pixel electrodes 2 facing the back electrode 3.
  • the calculation load for processing the signal generated on the back electrode 3 can be reduced, and the trigger for obtaining the signal from the back electrode 3 can be reduced. Note that generation is also easy.
  • the pixel electrode measurement data corresponding to the time when electromagnetic radiation is incident is selected from the pixel electrode measurement data obtained from the pixel electrode 2 of the scatterer detector 10 ⁇ / b> A. By analyzing the pixel electrode measurement data and detecting the radiation, the amount of pixel electrode measurement data to be processed can be reduced.
  • each of the back electrodes 3 is disposed so as to face the plurality of pixel electrodes 2, and the back electrode If the number of 3 is smaller than the number of pixel electrodes 2, the arrangement of the back electrode 3 can be variously changed.
  • FIG. 15 and 16 illustrate the configuration of a scatterer detector 10A in which the arrangement of the back electrode 3 is different.
  • FIG. 15 is a bottom view showing the configuration of the scatterer detector 10A
  • FIG. 16 is a cross-sectional view showing the configuration of the scatterer detector 10A in the CC cross section shown in FIG.
  • the back surface electrodes 3 are arranged in a matrix (in the example of FIG. 15, in 3 rows and 3 columns).
  • each of the back surface electrodes 3 is disposed so as to face the pixel electrodes 2 disposed in 4 rows and 4 columns.
  • each of the pixel electrodes 2 is disposed so as to face one of the plurality of back electrodes 3 and not to face the other back electrode 3.
  • FIG. 17 is a block diagram showing an example of the configuration of a Compton camera 20A of the second embodiment that uses the scatterer detector 10A described above.
  • the configuration of the Compton camera 20A of the second embodiment is similar to the configuration of the Compton camera 20 of the first embodiment. Similar to the Compton camera 20 of the first embodiment, the Compton camera 20A of the second embodiment also includes a plurality of detector modules 11A and 11B, an arithmetic device 12, and a display device 13. However, in the Compton camera 20A of the second embodiment, the configuration of the detector module 11A on which the scatterer detector 10A is mounted is changed with the change of the configuration of the scatterer detector 10A, and the data transfer device 14 is further changed. Provided.
  • the data transfer device 14 temporarily stores the pixel electrode measurement data obtained from the pixel electrode 2 of the scatterer detector 10A, and the effective pixel electrode among the stored pixel electrode measurement data. It has a function of selectively transferring measurement data (that is, pixel electrode measurement data used for calculating the spatial distribution of the radiation source) to the arithmetic unit 12.
  • FIG. 18 is a block diagram illustrating the configuration of the detector module 11A including the scatterer detector 10A and the detector module 11B including the absorber detector 10B and the configuration of the data transfer device 14 in the second embodiment. is there.
  • the detector module 11A of the second embodiment includes signal processing ICs 21 and 23 and interfaces 22 and 24.
  • the signal processing IC 21 functions as a signal processing unit that processes an analog signal read from each pixel electrode 2 of the scatterer detector 10A. Specifically, the signal processing IC 21 simultaneously reads out analog signals from all the pixel electrodes 2 of the scatterer detector 10A in each frame period, and further performs analog-digital conversion on the read analog signals to perform the analog signal conversion. Pixel electrode measurement data indicating the signal level is generated. The signal processing IC 21 transmits the generated pixel electrode measurement data to the data transfer device 14 via the interface 22.
  • the signal processing IC 23 functions as a signal processing unit that processes an analog signal read from each back electrode 3 of the scatterer detector 10A. Specifically, the signal processing IC 23 performs analog-digital conversion on the analog signal read from each back electrode 3 and generates measurement data indicating the signal level of the analog signal.
  • the measurement data obtained from the analog signal read from each back electrode 3 may be referred to as “back electrode measurement data”.
  • the signal processing IC 23 transmits the generated back electrode measurement data to the data transfer device 14 via the interface 24. As will be described later, the back electrode measurement data obtained by each detector module 11A is used by the data transfer device 14 to select the pixel electrode measurement data that is finally transferred to the arithmetic device 12.
  • the configurations of the absorber detector 10B and the detector module 11B are the same as those in the first embodiment (that is, the absorber detector 10B has a single back electrode 3).
  • the absorber detector 10B it is also possible for the absorber detector 10B to have a plurality of back surface electrodes 3 as in the case of the scatterer detector 10A (such a modification will be described later).
  • the data transfer device 14 transfers pixel electrode measurement data and back electrode measurement data obtained from each scatterer detector 10A, and pixel electrode measurement data obtained from each absorber detector 10B to the arithmetic device 12. It has a function.
  • the data transfer device 14 includes pixel electrode measurement data (for example, a pixel corresponding to the time when electromagnetic radiation is incident) necessary for measurement of electromagnetic radiation among the pixel electrode measurement data obtained from each scatterer detector 10A. Electrode measurement data) is selected and transferred to the arithmetic unit 12. This selection is performed based on the back electrode measurement data obtained from each scatterer detector 10A and the pixel electrode measurement data obtained from each absorber detector 10B. By sending only the selected pixel electrode measurement data to the arithmetic device 12, the amount of pixel electrode measurement data to be processed by the arithmetic device 12 can be reduced.
  • the data transfer device 14 includes a data processing unit 15, a memory 16, a data processing unit 17, and an interface 18.
  • the data processing unit 15, the memory 16, the data processing unit 17, and the interface 18 may each be implemented as individual integrated circuits (ICs). Further, an integrated circuit in which a plurality of the data processing unit 15, the memory 16, the data processing unit 17, and the interface 18 are monolithically integrated may be used.
  • the data processing unit 15 receives the pixel electrode measurement data obtained from each scatterer detector 10 ⁇ / b> A from the corresponding detector module 11 ⁇ / b> A and stores it in the memory 16. At this time, the data processing unit 15 generates time information synchronized with the generation of the pixel electrode measurement data (that is, time information synchronized with the time when the pixel electrode measurement data is generated), and the generated time information is The data is stored in the memory 16 together with the pixel electrode measurement data. In the present embodiment, time information indicating the time when the data processing unit 15 receives the pixel electrode measurement data from the detector module 11A is stored in the memory 16 together with the pixel electrode measurement data.
  • the memory 16 provides a temporary storage area 16a for temporarily storing pixel electrode measurement data obtained from each scatterer detector 10A and time information corresponding to the pixel electrode measurement data.
  • the data processing unit 17 processes the back electrode measurement data obtained from each scatterer detector 10A and the pixel electrode measurement data obtained from each absorber detector 10B. Specifically, the data processing unit 17 is time information synchronized with the generation of the back electrode measurement data obtained from each of the scatterer detectors 10A (that is, the time of the content synchronized with the time when the back electrode measurement data is generated). Information) and time information synchronized with the generation of the pixel electrode measurement data obtained from each absorber detector 10B (that is, time information having contents synchronized with the time when the pixel electrode measurement data was generated). Generate.
  • the time information corresponding to the back electrode measurement data obtained from the scatterer detector 10A is generated so as to indicate the time when the data processing unit 17 receives the back electrode measurement data from each scatterer detector 10A.
  • the time information corresponding to the pixel electrode measurement data obtained from the absorber detector 10B is generated to indicate the time when the data processing unit 17 receives the pixel electrode measurement data from each absorber detector 10B.
  • the data processing unit 17 obtains pixel electrode measurement data and back electrode measurement data obtained from each scatterer detector 10A in each frame period and pixel electrode measurement data obtained from each absorber detector 10B in each frame period. It is determined whether or not to transfer to the arithmetic unit 12.
  • the data processing unit 17 transfers the pixel electrode measurement data and the back electrode measurement data obtained from each scatterer detector 10A and the pixel electrode measurement data obtained from each absorber detector 10B to the arithmetic unit 12. To do. In this transfer, the data processing unit 17 includes pixel electrode measurement data and back electrode measurement data obtained from each scatterer detector 10A and pixel electrode measurement data obtained from each absorber detector 10B, and time information corresponding to them. Is transferred to the arithmetic unit 12. The pixel electrode measurement data, the back electrode measurement data and the corresponding time information transferred to the arithmetic device 12 are stored in the storage device 12a and used for specifying the incident direction of electromagnetic radiation and calculating the spatial distribution of the radiation source. It is done.
  • the data processing unit 17 determines that the back electrode measurement data obtained from each scatterer detector 10A and the pixel electrode measurement data obtained from each absorber detector 10B in a certain frame period have predetermined conditions. (Hereinafter, sometimes referred to as “data acquisition conditions”), the pixel electrode measurement data and the back electrode measurement data obtained from each scatterer detector 10A in the frame period, and the absorption in the frame period.
  • the pixel electrode measurement data obtained from the body detector 10B and the time information corresponding thereto are transferred to the arithmetic unit 12.
  • the pixel electrode measurement data obtained from each scatterer detector 10A is stored in the temporary storage area 16a of the memory 16 together with the time information.
  • the data processing unit 17 refers to the time information, and among the pixel electrode measurement data obtained from each scatterer detector 10A, the pixel electrode measurement data corresponding to the frame period satisfying the data acquisition condition and the corresponding time information Is selected and read from the temporary storage area 16a, and the pixel electrode measurement data and time information read from the temporary storage area 16a are transmitted to the arithmetic unit 12. Transfer of pixel electrode measurement data, back electrode measurement data, and time information to the arithmetic unit 12 is performed via the interface 18.
  • the scatterer detector 10A and absorber detection in the frame period For example, from the back surface electrode measurement data obtained from each scatterer detector 10A in a certain frame period and the pixel electrode measurement data obtained from each absorber detector 10B, the scatterer detector 10A and absorber detection in the frame period.
  • the pixel electrode measurement data and back electrode measurement data obtained from each scatterer detector 10A in the frame period, and each absorber detector in each frame period The pixel electrode measurement data obtained from 10B may be transferred to the arithmetic unit 12.
  • the pixel electrode measurement data corresponding to the frame period that satisfies the data acquisition condition is selected with reference to the time information, and the selected pixel electrode is selected.
  • the measurement data is transferred to the arithmetic unit 12.
  • the pixel electrode measurement data and back electrode measurement data obtained from each scatterer detector 10A in the frame period and the pixel electrode measurement data obtained from each absorber detector 10B in each frame period are transferred to the arithmetic unit 12. May be.
  • the pixel electrode measurement data obtained from each scatterer detector 10A the pixel electrode measurement data corresponding to the frame period satisfying the data acquisition condition is selected and selected with reference to the time information.
  • the measured pixel electrode data is read from the temporary storage area 16a and transferred to the arithmetic unit 12.
  • the arithmetic device 12 performs data processing on the pixel electrode measurement data and the back electrode measurement data transferred from the data transfer device 14 to calculate the spatial distribution of the radiation source.
  • the computing device 12 generates Compton scattering from the pixel electrode measurement data obtained from the scatterer detector 10A in a certain frame period and the pixel electrode measurement data obtained from the absorber detector 10B in the frame period.
  • Position X1 energy E 1 obtained by recoil electrons by Compton scattering, track of recoil electrons (that is, recoil direction), position X2 where photoelectric absorption occurs, energy E 2 of photons absorbed by photoelectric absorption, And the scattering angle ⁇ of electromagnetic radiation is calculated.
  • the arithmetic unit 12 further calculates the incident direction of the electromagnetic radiation and the spatial distribution of the radiation source from these pieces of information. At this time, the computing device 12 may improve the calculation accuracy of the energy E 1 obtained by recoil electrons by Compton scattering by referring to the back electrode measurement data obtained from the scatterer detector 10A.
  • FIG. 19 is a cross-sectional view showing an example of mounting of the scatterer detector 10A in the detector module 11A.
  • the detector module 11 ⁇ / b> A includes a printed wiring board 25.
  • the scatterer detector 10 ⁇ / b> A and the signal processing IC 23 are bonded to the wiring formed on the printed wiring board 25.
  • the scatterer detector 10 ⁇ / b> A is bonded onto the wiring 26 formed on the printed wiring board 25.
  • the wiring 26 is a wiring for electrically connecting the back electrode 3 of the scatterer detector 10 ⁇ / b> A and the signal processing IC 23. That is, the back electrode 3 of the scatterer detector 10 ⁇ / b> A is bonded to the wiring 26.
  • the signal processing IC 23 is bonded onto the wirings 26 and 27.
  • the wiring 27 is a wiring that electrically connects the signal processing IC 23 and the interface 22.
  • the pixel electrode 2 of the scatterer detector 10A and the signal processing IC 21 are connected by flip-chip connection.
  • the signal processing IC 21 includes a pad 21a, and a bump 28 is bonded to each of the pads 21a.
  • the bump 28 is connected to the pixel electrode 2 of the scatterer detector 10A.
  • the analog signal generated in each pixel electrode 2 is read out to the pad 21 a of the signal processing IC 21 through the bump 28.
  • the plurality of pixel electrodes 2 are connected in parallel to the signal processing IC 21 with such a configuration. Connecting a plurality of pixel electrodes 2 in parallel to the signal processing IC 21 is effective in improving time resolution.
  • interfaces 22 and 24 are not shown in FIG. 19, the interfaces 22 and 24 may also be mounted on the printed wiring board 25.
  • the procedure for calculating the spatial distribution of the radiation source in the Compton camera 20A of the present embodiment is generally the same as that of the Compton camera 20 of the first embodiment (see FIG. 9).
  • Measurement data pixel electrode measurement data and back electrode measurement data
  • a track of recoil electrons is calculated (step S02).
  • An event is extracted using the recoil electron track calculated in step S02 (step S03), and the reconstruction of the Compton cone, that is, the incident direction of electromagnetic radiation is specified for the extracted event (step S04).
  • the spatial distribution of the radiation source is calculated using the specified incident direction of electromagnetic radiation, and a radiation source distribution image indicating the spatial distribution of the radiation source is generated and displayed (step S05).
  • the back electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B in each frame period are obtained.
  • pixel electrode measurement data and back electrode measurement data obtained from each scatterer detector 10A in the frame period, and each absorber detection in each frame period It differs from the Compton camera 20 of the first embodiment in that pixel electrode measurement data obtained from the instrument 10B and time information corresponding thereto are transferred to the arithmetic unit 12.
  • FIG. 20 is a timing chart showing the operation of acquiring measurement data in this embodiment.
  • FIG. 20 illustrates operations in the (N ⁇ 1) th to (N + 1) th frame periods.
  • the signal processing IC 21 of each detector module 11A reads an analog signal from each pixel electrode 2 of the scatterer detector 10A in each frame period, performs analog-digital conversion on the read analog signal, and outputs pixel electrode measurement data. Generate.
  • the pixel electrode measurement data is data indicating the signal level of the analog signal read from each pixel electrode 2.
  • the pixel electrode measurement data obtained from the scatterer detector 10 ⁇ / b> A in this way is transferred to the data processing unit 15 of the data transfer device 14 and further stored in the temporary storage area 16 a of the memory 16. At this time, together with the pixel electrode measurement data obtained from the scatterer detector 10A, time information corresponding to the pixel electrode measurement data (time information synchronized with the generation of the pixel electrode measurement data) is stored in the temporary storage area of the memory 16. 16a.
  • each detector module 11A reads an analog signal from each back electrode 3 of the absorber detector 10B in each frame period, performs analog-digital conversion on the read analog signal, and measures the back electrode. Generate data.
  • the back electrode measurement data obtained from the scatterer detector 10A in this way is transferred to the data processing unit 17 of the data transfer device 14.
  • each detector module 11B reads an analog signal from each pixel electrode 2 of the absorber detector 10B in each frame period, performs analog-digital conversion on the read analog signal, and performs pixel electrode measurement. Generate data.
  • the pixel electrode measurement data obtained from the absorber detector 10B in this way is transferred to the data processing unit 17 of the data transfer device 14.
  • pixel electrode measurement data obtained in the kth frame period (more precisely, analog read out from each pixel electrode 2 of the scatterer detector 10A and the absorber detector 10B in the kth frame period).
  • the pixel electrode measurement data generated from the signal is indicated by the symbol D PIXEL (k).
  • back electrode measurement data obtained in the kth frame period (more precisely, back electrode measurement data generated from analog signals read from each back electrode 3 of the scatterer detector 10A in the kth frame period. ) Is indicated by the symbol D R (k).
  • the back electrode measurement data obtained from each scatterer detector 10A and the pixel electrode measurement data obtained from each absorber detector 10B in each frame period satisfy predetermined data acquisition conditions.
  • the pixel electrode measurement data obtained from each scatterer detector 10A in the frame period and the corresponding time information are read from the memory 16, and the pixel electrode measurement data obtained from each scatterer detector 10A in the frame period.
  • the back electrode measurement data, the pixel electrode measurement data obtained from each absorber detector 10B in the frame period, and the time information corresponding thereto are transferred to the arithmetic unit 12.
  • the scatterer detector 10A and absorber detection in the frame period For example, from the back surface electrode measurement data obtained from each scatterer detector 10A in a certain frame period and the pixel electrode measurement data obtained from each absorber detector 10B, the scatterer detector 10A and absorber detection in the frame period.
  • the pixel electrode measurement data and back electrode measurement data obtained from each scatterer detector 10A in the frame period, and each absorber detector in each frame period The pixel electrode measurement data obtained from 10B may be transferred to the arithmetic unit 12.
  • the pixel electrode measurement data and back electrode measurement data obtained from each scatterer detector 10A in the frame period and the pixel electrode measurement data obtained from each absorber detector 10B in each frame period are transferred to the arithmetic unit 12. May be.
  • the pixel electrode measurement data and back electrode measurement data sent from the data processing unit 17 to the arithmetic device 12 are stored in the storage device 12a of the arithmetic device 12.
  • the back electrode measurement data obtained from each scatterer detector 10A and the pixel electrode measurement data obtained from each absorber detector 10B in the Nth frame period are predetermined Assume that it is determined that the data acquisition conditions are satisfied (for example, it is determined that electromagnetic radiation has entered one of the scatterer detector 10A and the absorber detector 10B).
  • the data processing unit 17 is obtained from the pixel electrode measurement data D PIXEL (N) obtained from each scatterer detector 10A and each absorber detector 10B and each absorber detector 10B in the Nth frame period.
  • the back electrode measurement data D R (N) and the time information corresponding thereto are transferred to the arithmetic unit 12.
  • the pixel electrode measurement data D PIXEL (N) obtained from each scatterer detector 10A the pixel electrode measurement data corresponding to the frame period that satisfies the data acquisition condition is selected with reference to the time information, The selected pixel electrode measurement data and corresponding time information are read from the temporary storage area 16a and transferred to the arithmetic unit 12.
  • pixel electrode measurement data D PIXEL (N) obtained from each scatterer detector 10A and each absorber detector 10B and the back electrode obtained from each absorber detector 10B in the Nth frame period.
  • the measurement data D R (N) is transferred to the arithmetic unit 12 in the next frame period ((N + 1) th frame period).
  • the timing of transferring the pixel electrode measurement data and back electrode measurement data obtained in the Nth frame period to the arithmetic unit 12 can be selected as appropriate as long as it is after the detection of the incidence of electromagnetic radiation. I want.
  • the arithmetic unit 12 calculates the recoil electron track described above based on the pixel electrode measurement data, the back electrode measurement data, and the time information corresponding thereto stored in the storage device 12a (step S02), Event extraction (step S03), Compton cone reconstruction (step S04), and generation and display of a source distribution image (step S05) are performed.
  • the arithmetic unit 12 uses the back electrode measurement data obtained from the scatterer detector 10A together with the pixel electrode measurement data obtained from each scatterer detector 10A. it is used, it may recoil to improve the calculation accuracy of the energy E 1 was obtained by Compton scattering.
  • the scatterer detector 10A is configured to have a plurality of back surface electrodes 3 as shown in FIGS. 11 to 16, but the Compton camera 20B of the third embodiment. Then, the above-described structure having the plurality of back surface electrodes 3 is also adopted for the absorber detector 10B.
  • FIG. 21 is a block diagram illustrating an example of the configuration of a Compton camera 20B according to the third embodiment.
  • the configuration of the Compton camera 20B of the third embodiment is similar to the configuration of the Compton camera 20A of the second embodiment.
  • the configuration of the detector module 11B in which the absorber detector 10B is mounted is a detection in which the scatterer detector 10A is mounted.
  • the configuration is changed to the same as that of the instrument module 11A.
  • FIG. 22 is a block diagram showing the configuration of the detector modules 11A and 11B and the configuration of the data transfer device 14 in the Compton camera 20B of the third embodiment.
  • the detector module 11A includes a scatterer detector 10A, signal processing ICs 21 and 23, and interfaces 22 and 24 in the third embodiment.
  • the detector module 11B includes an absorber detector 10B, signal processing ICs 21 and 23, and interfaces 22 and 24.
  • the configuration of the detector module 11B is the same as that of the detector module 11A except that the scatterer detector 10A is replaced with the absorber detector 10B.
  • pixel electrode measurement data obtained from the scatterer detector 10A and the absorber detector 10B are both transferred to the data processing unit 15 and temporarily stored in the memory 16. While being stored in the region 16a, the back electrode measurement data obtained from the scatterer detector 10A and the absorber detector 10B are all transferred to the data processing unit 17.
  • the data processor 17 processes back electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B.
  • the data processing unit 17 stores pixel electrode measurement data and back electrode image data obtained from each scatterer detector 10A and each absorber detector 10B in each frame period, and time information corresponding to them. It is determined whether or not to transfer to the arithmetic unit 12. In this embodiment, this determination is made based on back electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B.
  • the pixel electrode measurement data and back electrode measurement data transferred to the arithmetic unit 12 are stored in the storage unit 12a together with time information corresponding to them, and are used for specifying the incident direction of electromagnetic radiation and calculating the spatial distribution of the radiation source.
  • the data processing unit 17 determines that when the back electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B in a certain frame period satisfies a predetermined data acquisition condition, The pixel electrode measurement data and back electrode measurement data obtained from each scatterer detector 10A in the frame period and the pixel electrode measurement data obtained from each absorber detector 10B in the frame period are transferred to the arithmetic unit 12.
  • pixel electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B is stored in the temporary storage area 16a of the memory 16 together with time information.
  • the data processing unit 17 refers to the time information, and the pixel electrode corresponding to the frame period satisfying the data acquisition condition among the pixel electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B.
  • the measurement data is selected and read from the temporary storage area 16a, and the pixel electrode measurement data read from the temporary storage area 16a is transmitted to the arithmetic unit 12. Transfer of the pixel electrode measurement data and the back electrode measurement data to the arithmetic unit 12 is performed via the interface 18.
  • the procedure for calculating the spatial distribution of the radiation source in the Compton camera 20A of the present embodiment is generally the same as that of the Compton cameras 20 and 20A of the first and second embodiments (see FIG. 9).
  • Measurement data pixel electrode measurement data and back electrode measurement data
  • a track of recoil electrons is calculated (step S02).
  • An event is extracted using the recoil electron track calculated in step S02 (step S03), and the reconstruction of the Compton cone, that is, the incident direction of electromagnetic radiation is specified for the extracted event (step S04).
  • the spatial distribution of the radiation source is calculated using the specified incident direction of electromagnetic radiation, and a radiation source distribution image indicating the spatial distribution of the radiation source is generated and displayed (step S05).
  • the back electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B in each frame period is predetermined.
  • the pixel electrode measurement data and the back electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B in the frame period when the data acquisition conditions are satisfied are transferred to the arithmetic unit 12, This is different from the Compton camera 20 of the second embodiment.
  • necessary data among the pixel electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B is selectively transferred to the arithmetic unit 12. As a result, the amount of pixel electrode measurement data to be processed by the arithmetic unit 12 can be further reduced than in the second embodiment.
  • the data processing unit 17 When the back electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B in each frame period satisfies a predetermined data acquisition condition, the data processing unit 17 performs each scatterer in the frame period.
  • the pixel electrode measurement data obtained from the detector 10A and each absorber detector 10B is read from the memory 16, and the pixel electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B in the frame period. And the back electrode measurement data and the time information corresponding to them are transferred to the arithmetic unit 12.
  • pixel electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B is stored in the temporary storage area 16a of the memory 16 together with time information.
  • the data processing unit 17 refers to the time information, and the pixel electrode corresponding to the frame period satisfying the data acquisition condition among the pixel electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B.
  • the measurement data is selected and read from the temporary storage area 16a, and the pixel electrode measurement data read from the temporary storage area 16a is transmitted to the arithmetic unit 12.
  • the pixel electrode measurement data and the back electrode measurement data obtained from each of the scatterer detectors 10A and each of the absorber detectors 10B in the frame period may be transferred to the arithmetic unit 12.
  • the pixel electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B the pixel electrode measurement data corresponding to the frame period that satisfies the data acquisition condition is selected with reference to the time information.
  • the selected pixel electrode measurement data is transferred to the arithmetic unit 12.
  • electromagnetic waves are transmitted to one scatterer detector 10A and one absorber detector 10B.
  • the pixel electrode measurement data and the back electrode measurement data obtained from each scatterer detector 10A and each absorber detector 10B may be transferred to the arithmetic unit 12.
  • the pixel electrode measurement data and back electrode measurement data sent from the data processing unit 17 to the arithmetic device 12 are stored in the storage device 12a of the arithmetic device 12.
  • the pixel electrode measurement data corresponding to the frame period satisfying the data acquisition condition refers to the time information.
  • the selected pixel electrode measurement data is transferred to the arithmetic unit 12.
  • the arithmetic unit 12 calculates the recoil electron tracks (step S02) and extracts the events (step S03).
  • Compton cone reconstruction (step S04) and generation and display of a source distribution image (step S05) are performed.
  • the arithmetic unit 12 uses the back electrode measurement data obtained from the scatterer detector 10A together with the pixel electrode measurement data obtained from each scatterer detector 10A. it is used, it may recoil to improve the calculation accuracy of the energy E 1 was obtained by Compton scattering.
  • the arithmetic unit 12 uses the back electrode measurement data obtained from the absorber detector 10B together with the pixel electrode measurement data obtained from each absorber detector 10B, so that photons absorbed by photoelectric absorption are used. calculation accuracy of the energy E 2 of may of improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

放射線測定装置(20)が、散乱体検出器(10A)と吸収体検出器(10B)と演算装置(12)とを具備する。散乱体検出器(10A)と吸収体検出器(10B)の画素電極(2)は、隣接する2つの画素電極(2)の中心の距離が、電磁放射線のコンプトン散乱で発生する反跳電子の平均自由工程よりも小さくなるように配置されている。演算装置(12)は、反跳電子が跳ね飛ばされる反跳方向に基づいて電磁放射線の入射方向を特定する。こうして、半導体検出器を利用したコンプトンカメラにおいて、反跳電子の反跳方向を用いて電磁放射線の入射方向の絞り込みを行う電子トラッキング型コンプトンカメラを実現する。

Description

放射線測定装置及び放射線測定方法
 本発明は、放射線測定装置及び放射線測定方法に関し、特に、半導体検出器を用いてX線やガンマ線のような電磁放射線を検出するための技術に関する。
 X線やガンマ線のような電磁放射線を検出するために用いられる放射線測定装置は、電磁放射線が放射線測定装置の検出器に入射するイベントが発生した場合に該電磁放射線の入射方向を特定可能であるように構成されることがある。電磁放射線の入射方向を特定することで線源の空間的分布を特定することが可能になり、これは、実用上極めて有用である。
 電磁放射線の入射方向を特定するように構成される放射線測定装置の一つが、コンプトンカメラである。コンプトンカメラとは、コンプトン散乱を利用して放射線源の空間的分布を画像化する放射線測定装置である。コンプトンカメラは、コンプトン散乱を利用して電磁放射線(例えば、X線、ガンマ線)の入射方向を特定し、特定された入射方向から放射線源の空間的分布を表す画像を生成する。
 図1は、ガンマ線のコンプトン散乱の概要について説明する図である。物質にガンマ線が入射すると、入射ガンマ線の光子が物質中の電子に衝突して散乱する。このとき、光子が衝突した電子は跳ね飛ばされ(跳ね飛ばされた電子は、「反跳電子」と呼ばれる。)、入射ガンマ線の光子の一部のエネルギーが電子に与えられる。これにより、散乱ガンマ線の光子のエネルギーは、入射ガンマ線のエネルギーよりも低くなる。入射ガンマ線の光子のエネルギーをE、反跳電子が得たエネルギーをE、散乱ガンマ線のエネルギーをEとすると、下記式(1)が成立する:
 E=E+E      ・・・(1)
 図2は、コンプトンカメラの原理、特に、電磁放射線の入射方向の特定の原理を示す図である。コンプトンカメラの検出部は、典型的には、散乱体と、吸収体とを備えている。ある線源から入射した電磁放射線の光子が散乱体においてコンプトン散乱によって散乱され、コンプトン散乱によって散乱された光子が吸収体で光電吸収によって吸収されるイベントが発生した場合、該電磁放射線の散乱角θ(言い換えれば、線源と位置X1とを結ぶ線分が、位置X1、X2を通過する直線となす角)は、下記式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000001
ここで、mは、電子の静止質量であり、cは、光速である。また、Eは、散乱体におけるコンプトン散乱で反跳電子が得たエネルギーであり、Eは、吸収体に吸収された光子のエネルギーである。
 コンプトンカメラでは、このようにして得られた電磁放射線の散乱角θの情報に基づいて線源の空間的分布を推定し、線源の空間的分布を画像化する。より具体的には、各イベントにおけるコンプトン散乱が発生した位置X1、光電吸収が行われた位置X2及びコンプトン散乱における電磁放射線の散乱角θの情報から、各イベントのコンプトンコーン(線源が位置し得る点の集合で構成される円錐面)が再構成され、各イベントのコンプトンコーンの重ね合わせに対応する画像が、線源の空間的分布を示す線源分布画像として生成される。
 上記から理解されるように、各イベントにおけるコンプトン散乱が発生した位置X1、コンプトン散乱で反跳電子が得たエネルギーE、及び、吸収体に吸収された光子のエネルギーEからは電磁放射線の散乱角θしか算出できず、線源の位置はそれが存在し得る円環上の点としてしか特定されない。しかしながら、反跳電子の反跳方向(反跳電子が跳ね飛ばされる方向)を特定できれば、反跳電子の反跳方向に基づいてもう一つの円環(円錐面)を規定でき、原理的には、電磁放射線の入射方向は、2つの円環が交差する点を通過する方向として特定可能である。ただし、現実には、図3に図示されているように、反跳電子のエネルギーの揺らぎに起因して、電磁放射線の入射方向は、円弧として特定されることになる。このような手法は、例えば、国際公開第2007/145154号(特許文献1)に開示されている。反跳電子の反跳方向に基づいて電磁放射線の入射方向の絞り込みを行うコンプトンカメラを、以下では、電子トラッキング型コンプトンカメラということがある。
 なお、本発明に関連し得る技術として、国際公開第2011/001610号(特許文献2)は、ガンマ線を検出する複数の検出ピクセルを備えた検出器を備えたガンマ線方向検出装置を開示している。
国際公開第2007/145154号 国際公開第2011/001610号
 しかしながら、半導体検出器を利用したコンプトンカメラでは、一般に、反跳電子の反跳方向を用いて電磁放射線の入射方向の絞り込みを行う手法は、その実用的な実現方法が確立されていないために採用されていない。半導体検出器としてCCD(charge coupled device)を利用して反跳電子の反跳方向を測定する試験結果は存在する。
 しかし、CCDは、データの読み出し時間が非常に長いため、デッドタイムが非常に大きくなり、実用的なコンプトンカメラの実現は難しい。実際、国際公開第2007/145154号(特許文献1)においても、コンプトン散乱を発生させる検出器としてガスチャンバー型検出器が用いられている。ただし、ガスチャンバー型検出器は、ガンマ線に対して十分な検出効率を確保するために大型にする必要があり、それにともなって取り囲む吸収部の検出器も大型にせざるをえない。また、高い角度分解能を得るためには高いエネルギー分解能が必要であるが、ガスチャンバー型検出器は、エネルギー分解能についても半導体検出器に比べて低い。
 したがって、本発明の目的は、半導体検出器を利用したコンプトンカメラにおいて、反跳電子の反跳方向を用いて電磁放射線の入射方向の絞り込みを行う電子トラッキング型コンプトンカメラを実現することにある。
 本発明の他の目的及び新規な特徴は、下記の開示から理解されるであろう。
 本発明の一の観点では、放射線測定装置が、測定対象の電磁放射線を散乱する散乱体として機能する少なくとも一の散乱体検出器と、電磁放射線を吸収する吸収体として機能する少なくとも一の吸収体検出器と、演算装置とを具備する。散乱体検出器と吸収体検出器のそれぞれは、半導体基板と、半導体基板の第1主面上に行列に並んで配置された複数の画素電極とを含む。複数の画素電極は、隣接する2つの画素電極の中心の距離が、電磁放射線のコンプトン散乱で発生する反跳電子の平均自由工程よりも小さくなるように配置されている。演算装置は、散乱体検出器のいずれかでコンプトン散乱が発生し、散乱体検出器のいずれかにおけるコンプトン散乱で発生した反跳電子が、コンプトン散乱が発生した散乱体検出器の内部において半導体基板の面内方向の成分を有するような方向に跳ね飛ばされ、コンプトン散乱によって散乱された光子が吸収体検出器のいずれかにおいて吸収される光電吸収が発生するイベントを散乱体検出器と吸収体検出器から得られる信号に基づいて抽出し、抽出されたイベントのそれぞれについて反跳電子が跳ね飛ばされる反跳方向に基づいて電磁放射線の入射方向を特定する。
 測定対象の電磁放射線の光子のエネルギーが、0.3~2.0MeVである場合、散乱体検出器及び吸収体検出器の画素電極は、隣接する2つの画素電極の中心の距離が、10~20μmの範囲にあるように配置されることが好ましい。
 好適な実施形態では、散乱体検出器が、更に、半導体基板の第1主面に対向する第2主面上に配置された複数の裏面電極を備えており、散乱体検出器の複数の裏面電極のそれぞれは、散乱体検出器の複数の画素電極の複数に対向するように配置される。ここで、散乱体検出器それぞれにおいて、複数の裏面電極の数が複数の画素電極の数よりも少ない。この場合、放射線測定装置が、更に、散乱体検出器の複数の画素電極から読み出された第1アナログ信号から第1画素電極測定データを生成する第1信号処理部と、第1画素電極測定データを一時的に保存する一時保存領域と、散乱体検出器の複数の裏面電極から読み出された第2アナログ信号から裏面電極測定データを生成する第2信号処理部と、データ処理部とを具備していてもよい。この場合、データ処理部は、第1画素電極測定データのうち裏面電極測定データに応じて選択された選択画素電極測定データを一時保存領域から読み出して演算装置に転送し、演算装置は、選択画素電極測定データに基づいてイベントの抽出と電磁放射線の入射方向の特定とを行うことが好ましい。
 この場合、更に、吸収体検出器の複数の画素電極から読み出された第3アナログ信号から第2画素電極測定データを生成する第3信号処理部を具備し、データ処理部は、選択画素電極測定データを、裏面電極測定データと第2画素電極測定データとに応じて選択することが好ましい。
 一実施形態では、データ処理部は、あるフレーム期間において得られた裏面電極測定データ及び第2画素電極測定データが所定の条件を満足する場合、該フレーム期間において得られた第1画素電極測定データ、第2画素電極測定データ及び裏面電極測定データを演算装置に転送し、演算装置は、該フレーム期間において得られた第1画素電極測定データ、第2画素電極測定データ及び裏面電極測定データに基づいてイベントの抽出と電磁放射線の入射方向の特定とを行うことが好ましい。
 第1信号処理部が、信号処理ICに集積化される場合、散乱体検出器の複数の画素電極のそれぞれは、信号処理ICに設けられたパッドにバンプを介して接続されることが好ましい。
 好適な実施形態では、散乱体検出器の複数の画素電極は、第1主面に平行な第1方向、及び、第1主面に平行で第1方向に垂直な第2方向に並んで配置され、複数の裏面電極のそれぞれが、第1方向に延伸するように形成され、複数の裏面電極は、第2方向に並んで配置される。
 一実施形態では、散乱体検出器と吸収体検出器のそれぞれは、更に、半導体基板の第1主面に対向する第2主面上に配置された複数の裏面電極を備えており、複数の裏面電極のそれぞれは、複数の画素電極の複数に対向するように配置され、散乱体検出器及び吸収体検出器のそれぞれにおいて、複数の裏面電極の数が、複数の画素電極の数よりも少ない。この場合、当該放射線測定装置が、更に、散乱体検出器及び吸収体検出器の複数の画素電極から読み出された第1アナログ信号から画素電極測定データを生成する第1信号処理部と、画素電極測定データを一時的に保存する一時保存領域と、散乱体検出器及び吸収体検出器の複数の裏面電極から読み出された第2アナログ信号から裏面電極測定データを生成する第2信号処理部と、データ処理部とを具備することが好ましい。データ処理部は、画素電極測定データのうち裏面電極測定データに応じて選択された選択画素電極測定データを一時保存領域から読み出して演算装置に転送し、演算装置は、選択画素電極測定データに基づいてイベントの抽出と電磁放射線の入射方向の特定とを行う。
 本発明の他の観点では、放射線の検出に用いられる半導体検出器が、半導体基板と、半導体基板の第1主面の上に行列に並んで配置された複数の画素電極と、半導体基板の第1主面に対向する第2主面上に配置された複数の裏面電極とを具備する。複数の裏面電極のそれぞれは、複数の画素電極の複数に対向するように配置され、複数の裏面電極の数が、複数の画素電極の数よりも少ない。
 本発明の更に他の観点では、放射線測定装置が、上述の半導体検出器と、複数の画素電極から読み出された第1アナログ信号から画素電極測定データを生成する第1信号処理部と、画素電極測定データを一時的に保存する一時保存領域と、複数の裏面電極から読み出された第2アナログ信号から裏面電極測定データを生成する第2信号処理部と、画素電極測定データのうち裏面電極測定データに応じて選択された選択画素電極測定データを一時保存領域から読み出して演算装置に転送するデータ処理部と、一時保存領域から読み出された画素電極測定データに基づいて電磁放射線を測定するための演算を行う演算装置とを具備する。
 演算装置は、一時保存領域から読み出された画素電極測定データに加え、裏面電極測定データに基づいて電磁放射線を測定するための演算を行うことが好ましい。
 本発明の更に他の観点では、測定対象の電磁放射線を散乱する散乱体として機能する散乱体検出器と、電磁放射線を吸収する吸収体として機能する吸収体検出器とを備え、散乱体検出器と吸収体検出器のそれぞれが、半導体基板と、半導体基板の主面上に行列に並んで配置された複数の画素電極とを含み、散乱体検出器と吸収体検出器のそれぞれの複数の画素電極が、隣接する2つの画素電極の中心の距離が電磁放射線のコンプトン散乱で発生する反跳電子の平均自由工程よりも小さくなるように配置された放射線測定装置を用いて電子トラッキング型コンプトンカメラを実現するための放射線測定方法が提供される。当該放射線測定方法は、散乱体検出器のいずれかでコンプトン散乱が発生し、散乱体検出器のいずれかにおけるコンプトン散乱で発生した反跳電子がコンプトン散乱が発生した散乱体検出器の内部において半導体基板の面内方向の成分を有するような方向に跳ね飛ばされ、コンプトン散乱によって散乱された光子が吸収体検出器のいずれかにおいて吸収される光電吸収が発生するイベントを散乱体検出器と吸収体検出器とから得られる信号に基づいて抽出するステップと、抽出されたイベントのそれぞれについて、反跳電子が跳ね飛ばされる反跳方向に基づいて電磁放射線の入射方向を特定するステップとを具備する。
 本発明によれば、半導体検出器を利用したコンプトンカメラにおいて、反跳電子の反跳方向を用いて電磁放射線の入射方向の絞り込みを行う電子トラッキング型コンプトンカメラを実現するための技術を提供することができる。
ガンマ線のコンプトン散乱を示す概念図である。 コンプトンカメラの原理を示す概念図である。 反跳電子が跳ね飛ばされる方向に基づいてガンマ線の入射方向の絞り込みを行うことができることを示す概念図である。 第1の実施形態におけるコンプトンカメラの構成を示す図である。 第1の実施形態のコンプトンカメラの検出器モジュールの構成の一例を示すブロック図である。 第1の実施形態における半導体検出器(散乱体検出器及び吸収体検出器)の構成の一例を示す上面図である。 第1の実施形態における半導体検出器の構成の一例を示す下面図である。 第1の実施形態における半導体検出器の構成の一例を示す断面図である。 第1の実施形態におけるコンプトンカメラの動作を示すフローチャートである。 反跳電子の飛跡の特定の一例を示す図である。 本発明の第2の実施形態における散乱体検出器の構成を示す斜視図である。 第2の実施形態における散乱体検出器の構成を示す上面図である。 第2の実施形態における散乱体検出器の構成を示す下面図である。 第2の実施形態における散乱体検出器の構成を示す断面図である。 第2の実施形態における散乱体検出器の構成の変形例を示す下面図である。 第2の実施形態における散乱体検出器の構成の変形例を示す断面図である。 第2の実施形態におけるコンプトンカメラの構成の一例を示すブロック図である。 第2の実施形態のコンプトンカメラの検出器モジュールの構成の一例を示すブロック図である。 検出器モジュールにおける散乱体検出器の実装の一例を示す断面図である。 第2の実施形態における測定データの取得の動作を示すタイミングチャートである。 第3の実施形態におけるコンプトンカメラの構成の一例を示すブロック図である。 第3の実施形態のコンプトンカメラの検出器モジュールの構成の一例を示すブロック図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。以下の説明において、同一又は類似する構成要素は、同一又は対応する参照符号を用いて参照されることに留意されたい。
[第1の実施形態]
 図4は、本発明の第1の実施形態におけるコンプトンカメラ20の装置構成を示すブロック図である。図4に示されているように、本実施形態のコンプトンカメラ20は、積層された複数の検出器モジュール11A、11Bと、演算装置12と、表示装置13とを備えている。
 検出器モジュール11Aは、散乱体として機能する半導体検出器を備えたモジュールであり、検出器モジュール11Bは、吸収体として機能する半導体検出器を備えたモジュールである。以下において、散乱体として機能する半導体検出器は、散乱体検出器10Aといい、吸収体として機能する半導体検出器は、吸収体検出器10Bということがある。また、散乱体検出器10A及び吸収体検出器10Bを総称して半導体検出器10ということがある。検出器モジュール11Aは、測定しようとする電磁放射線(例えば、ガンマ線やX線)の入射側に位置しており、検出器モジュール11Bは、検出器モジュール11Aの後方に位置している。
 演算装置12は、散乱体検出器10A及び吸収体検出器10Bから読み出されたアナログ信号から得られる測定データに対してデータ処理を行い、線源の空間的分布を算出する。演算装置12は、記憶装置12aを有しており、測定データその他のデータ処理に必要なデータを記憶装置12aに記憶する。表示装置13は、コンプトンカメラ20のユーザインタフェースとして用いられる。表示装置13は、例えば、演算装置12によって算出された線源の空間的分布を表示するために用いられる。
 図5は、散乱体検出器10Aを備える検出器モジュール11Aの構成を示すブロック図である。なお、吸収体検出器10Bを備える検出器モジュール11Bは、散乱体検出器10Aが吸収体検出器10Bに置換されていることを除き、検出器モジュール11Aと同様の構成を有している。図5に図示されているように、検出器モジュール11Aは、散乱体検出器10Aに加え、信号処理IC(integrated circuit)21と、インターフェース22とを備えている。
 図6~図8は、本発明の一実施形態における散乱体検出器10A及び吸収体検出器10Bの構成を概念的に示す図である。ここで、図6は、半導体検出器10の構成を示す上面図であり、図7は、散乱体検出器10A及び吸収体検出器10Bの構成を示す下面図である。また、図8は、A-A断面(図6、図7参照)における散乱体検出器10A及び吸収体検出器10Bの構成を示す断面図である。なお、以下では、XYZ直交座標系を用いて説明を行い、方向をXYZ直交座標系の座標軸の方向として示すことがある。
 図6~図8に図示されているように、散乱体検出器10A及び吸収体検出器10Bのそれぞれは、半導体基板1を備えている。半導体基板1は、例えば、CdTeやシリコンのような半導体で形成される。ここで、散乱体検出器10Aでは、コンプトン散乱を起こしやすくなるように、半導体基板1が原子番号の小さい材料(例えば、シリコン)で形成される。一方、吸収体検出器10Bでは、半導体基板1が、原子番号が大きい材料(例えば、CdTe)で形成される。なお、本実施形態では、散乱体検出器10A及び吸収体検出器10Bの構成は、半導体基板1の材料が異なる点以外、同一である。
 半導体基板1の表側主面1aには、複数の画素電極2が形成されており、裏側主面1bには、裏面電極3が形成されている。ここで、表側主面1a、裏側主面1bは、半導体基板1の有する面のうち、面積が最も大きい2つの面であり、互いに対向している。本実施形態では、表側主面1a、裏側主面1bは、XZ平面に平行である。
 図6に図示されているように、画素電極2は、行列に並んで配置されており、いわゆる「ピクセル型」検出器を構成している。本実施形態では、画素電極2のそれぞれは、矩形、より具体的には正方形の平面形状を有している。裏面電極3は、該複数の画素電極2に対向するように設けられている。半導体基板1の、各画素電極2と裏面電極3とで挟まれた部分のそれぞれは、画素を構成している。各画素において発生した電荷の量に対応するアナログ信号が各画素電極2から得られる。なお、図6~図8には、単一の裏面電極3が半導体基板1の裏側主面1bに接合されている構成が図示されているが、後に詳細に議論されるように、複数の裏面電極3が形成される構成も可能である。
 図5に戻り、信号処理IC21は、散乱体検出器10A又は吸収体検出器10Bの各画素電極2から読み出したアナログ信号を処理する信号処理部として動作する。信号処理IC21は、各フレーム期間において散乱体検出器10A又は吸収体検出器10Bの全ての画素電極2からアナログ信号を同時に読み出す。「フレーム期間」とは、散乱体検出器10A及び吸収体検出器10Bの全ての画素電極2からアナログ信号が一度読み出される期間である。各フレーム期間の長さが、各画素電極2からアナログ信号を読み出す周期となる。信号処理IC21は、更に、画素電極2から読み出したアナログ信号に対してアナログ-デジタル変換を行って該アナログ信号の信号レベルを示す測定データを生成する。散乱体検出器10A又は吸収体検出器10Bの各画素電極2から読み出されたアナログ信号から得られた測定データを、以下、「画素電極測定データ」ということがある。各信号処理IC21は、散乱体検出器10A又は吸収体検出器10Bから得られた画素電極測定データ(より厳密には、散乱体検出器10A又は吸収体検出器10Bの画素電極2から読み出されたアナログ信号から生成された画素電極測定データ)を、インターフェース22を介して演算装置12に送信する。信号処理IC21は、更に、散乱体検出器10A又は吸収体検出器10Bの裏面電極3を所望の電位に駆動する機能も有している。
 インターフェース22は、信号処理IC21と演算装置12との間でデータのやり取りを行う機能を有している。詳細には、インターフェース22は、信号処理IC21から演算装置12に画素電極測定データを転送し、また、信号処理IC21を制御する制御データを演算装置12から信号処理IC21に転送する。
 本実施形態のコンプトンカメラ20では、コンプトン散乱で発生する反跳電子の反跳方向、即ち、反跳電子が跳ね飛ばされる方向を用いて電磁放射線(例えば、ガンマ線及びX線)の入射方向を特定し、線源の空間的分布を算出するように構成される。より具体的には、本実施形態のコンプトンカメラ20では、散乱体検出器10A及び吸収体検出器10Bから得られた画素電極測定データから、散乱体検出器10Aのいずれかでコンプトン散乱が発生し、該コンプトン散乱で発生した反跳電子が、コンプトン散乱が発生した散乱体検出器10Aの内部において半導体基板1の面内方向の成分を有するような方向に跳ね飛ばされ、コンプトン散乱によって散乱された光子が吸収体検出器10Bのいずれかにおいて吸収される光電吸収が発生するイベントが抽出される。このようなイベントについて、反跳電子の反跳方向を用いて電磁放射線の入射方向が特定され、更に、線源の空間的分布が算出される。
 反跳電子の反跳方向を用いて電磁放射線の入射方向の絞り込みを行う手法を採用する場合、各散乱体検出器10A及び各吸収体検出器10Bの空間分解能を向上させることが求められる。反跳電子の反跳方向を特定するために求められる空間分解能を実現するために、本実施形態では、各散乱体検出器10A及び各吸収体検出器10Bの画素電極2のピッチ、即ち、隣接する画素電極2の中心の間の距離が、測定しようとする電磁放射線のコンプトン散乱で発生する反跳電子の平均自由工程に応じて調節される。図6では、画素電極2のピッチが記号dPIXELとして図示されている。ここで、「画素電極2の中心」とは、平面形状における重心を意味しており、画素電極2が矩形(又は正方形)である場合には、対角線の交点と一致する。
 詳細には、散乱体検出器10A及び吸収体検出器10Bそれぞれの画素電極2は、画素電極2のピッチが、反跳電子の平均自由工程よりも小さくなるように配置される。画素電極2のピッチは、反跳電子の平均自由工程よりも十分小さいことが好ましく、より具体的には、反跳電子の平均自由工程の1/5以下、より好適には、1/10以下であることが好ましい。ここで、反跳電子の平均自由工程は、入射する電磁放射線(例えば、ガンマ線又はX線)のエネルギーによって定まるパラメータである。0.3~2.0MeVのエネルギーのガンマ線の測定を行う場合、反跳電子の平均自由工程は、100μm~数百μmであり、画素電極2のピッチは、20μm以下であることが好ましく、特に、10~20μmの範囲であることが好ましい。
 続いて、本実施形態のコンプトンカメラ20の動作について説明する。図9は、本実施形態のコンプトンカメラ20において線源の空間的分布を算出する手順を示すフローチャートである。
ステップS01:
 各検出器モジュール11A、11Bにより、電磁放射線が入射したフレーム期間の画素電極測定データが逐次に取得され、演算装置12の記憶装置12aに格納される。詳細には、下記のようにして画素電極測定データが取得される。
 各検出器モジュール11A、11Bの信号処理IC21は、各フレーム期間において散乱体検出器10A又は各吸収体検出器10Bの各画素電極2からアナログ信号を読み出し、読み出したアナログ信号に対してアナログ-デジタル変換を行って画素電極測定データを生成する。信号処理IC21は、生成した画素電極測定データをインターフェース22を介して演算装置12に転送する。信号処理IC21から演算装置12に送られた画素電極測定データは、演算装置12の記憶装置12aに格納される。
ステップS02:
 散乱体検出器10Aを搭載する検出器モジュール11Aから得られた画素電極測定データから、コンプトン散乱により発生した反跳電子の飛跡が特定される。例えば、図10に図示されているように、画素電極測定データから、反跳電子が、あるフレーム期間において、ある散乱体検出器10Aの連続して位置する画素、例えば、図10では画素電極2a、2b、2cで形成される画素を通過したことを検出することができる。この場合、散乱体検出器10Aの内部における反跳電子の飛跡が、画素電極2aから画素電極2cに到達する飛跡であると特定することができる。また、画素電極測定データから、あるフレーム期間における、ある散乱体検出器10Aの内部での反跳電子の飛跡が、単一の画素の内部で完結している(例えば、反跳電子が当該画素から散乱体検出器10Aの外部に飛び出した場合が該当する)ことを検出することもできる。
ステップS03:
 演算装置12の記憶装置12aに格納されている画素電極測定データから、コンプトンコーンの再構成、即ち、電磁放射線の入射方向の特定が行われるべきイベントが抽出される。より詳細には、ステップS03では、
(1)ある散乱体検出器10Aにおいて電磁放射線の光子のコンプトン散乱が発生し、その後、該コンプトン散乱で散乱された光子がある吸収体検出器10Bに光電吸収によって吸収され、且つ、
(2)該コンプトン散乱で発生した反跳電子の反跳方向が、該散乱体検出器10Aの内部において半導体基板1の面内方向の成分を有するような方向であるイベント
が抽出される。このようなイベントの抽出には、ステップS02で算出された反跳電子の飛跡が参照される。例えば、反跳電子の飛跡が、複数の連続して位置する複数の画素を通過していれば、反跳電子の反跳方向が半導体基板1の面内方向の成分を有するような方向であると特定することができる。
 ステップS03におけるイベントの抽出においてステップS02において算出された反跳電子の飛跡を参照することは、画素電極測定データのイベントへの対応付けの容易化の観点でも好ましい。現在、一般的な電磁放射線(ガンマ線、X線等)の測定手法では、測定データのイベントへの対応付けに困難性が存在する。特に、電磁放射線の強度が非常に強い環境では、複数の電磁放射線が同時に入射する事態が発生し得るので、測定データのイベントへの対応付けの問題は一層に深刻化する。このため、一般的な電磁放射線の測定手法では、電磁放射線の入射を検出する毎に電磁放射線の測定が停止される。即ち、電磁放射線の入射を検出するとトリガが発生され、測定データの収集が一時的に停止される。その後、測定データを読み出してデータ処理が行われ、更に、データ処理の処理系をリセットした後で測定データの収集が再開される。このような手順では、デッドタイム(電磁放射線を測定できない時間)が発生し、電磁放射線の測定の効率が低下する。
 一方、本願発明では、反跳電子の飛跡の情報を用いることにより、同一イベントに対応する画素電極測定データの特定を容易に行うことができる。このため、画素電極測定データを連続的に取得しながら電磁放射線の測定を行うことができる。
 加えて、反跳電子の飛跡を参照することは、中性子の入射が多い環境、例えば、宇宙空間においてコンプトンカメラ20を用いる場合におけるノイズ低減に有用である。中性子が散乱体検出器10A又は吸収体検出器10Bに入射した場合、入射した中性子は、半導体基板1を構成する材料の原子核により弾性散乱されるので、反跳電子は発生しない。よって、反跳電子の飛跡が存在しないイベントを除外することでノイズを低減することができる。
ステップS04:
 ステップS03において抽出されたイベントについて、コンプトンコーンの再構成、即ち、電磁放射線の入射方向の特定が行われる。コンプトンコーンの再構成は、演算装置12の記憶装置12aに格納されている画素電極測定データに基づいて行われる。まず、抽出された各イベントにおける、当該散乱体検出器10Aにおいてコンプトン散乱が発生した位置X1、該コンプトン散乱で反跳電子が得たエネルギーE、当該吸収体検出器10Bにおいて光電吸収が発生した位置X2、及び、光電吸収によって吸収された光子のエネルギーEが算出される。
 更に、抽出された各イベントについて、該コンプトン散乱における電磁放射線の散乱角θが算出される。電磁放射線の散乱角θの算出は、上記の式(1)、(2)、又は、式(1)、(2)と等価な式に基づいて行われる。
 このようにして得られたコンプトン散乱が発生した位置X1、該コンプトン散乱で反跳電子が得たエネルギーE、光電吸収が発生した位置X2、光電吸収によって吸収された光子のエネルギーE、及び、電磁放射線の散乱角θから、各イベントについて第1のコンプトンコーンを再構成することができる。
 更に、抽出された各イベントについて、当該散乱体検出器10Aの内部における反跳電子の反跳方向に基づいて第2のコンプトンコーンが再構成される。ここで、反跳電子の反跳方向は、ステップS02で算出された反跳電子の飛跡から得ることができる。演算装置12は、各イベントについて再構成された第1のコンプトンコーン及び第2のコンプトンコーンから、電磁放射線の入射方向を円弧として特定する。演算装置12は、このようにして特定した電磁放射線の入射方向に関する情報を含む入射方向データを生成し、演算装置12の記憶装置12aに格納する。
ステップS05:
 演算装置12は、ステップS04において得られた入射方向データに基づいて線源の空間的分布を算出し、更に、線源の空間的分布を示す線源分布画像を生成する。演算装置12は、生成した線源分布画像を、演算装置12のユーザインタフェースに対するユーザによる操作に応じて、表示装置13に表示する。
 以上に説明されているように、本実施形態のコンプトンカメラ20では、コンプトン散乱で発生する反跳電子の飛跡が算出され、反跳電子の反跳方向を用いて電磁放射線の入射方向が特定される。上述のように、反跳電子の反跳方向を用いて電磁放射線の入射方向を特定することで、電磁放射線の入射方向の範囲の絞り込みを行うことができる。
 ここで、本実施形態のコンプトンカメラ20では、散乱体検出器10Aのいずれかでコンプトン散乱が発生し、該コンプトン散乱で発生した反跳電子が、コンプトン散乱が発生した散乱体検出器10Aの内部において半導体基板1の面内方向の成分を有するような方向に跳ね飛ばされ、コンプトン散乱によって散乱された光子が吸収体検出器10Bのいずれかにおいて吸収される光電吸収が発生するイベントが抽出される。このようなイベントを抽出し、該イベントに対応する画素電極測定データについてデータ処理を行うことにより、電磁放射線の入射方向を特定することができる。
 加えて、本実施形態のコンプトンカメラ20では、反跳電子の反跳方向の特定を可能にするために、各散乱体検出器10A及び各吸収体検出器10Bの画素電極2のピッチ、即ち、隣接する画素電極2の中心の間の距離が、測定しようとする電磁放射線のコンプトン散乱で発生する反跳電子の平均自由工程に応じて選択される。これにより、反跳電子の反跳方向の特定に必要な空間分解能を、各散乱体検出器10A及び各吸収体検出器10Bにおいて実現することができる。
[第2の実施形態]
 第1の実施形態のコンプトンカメラ20では、各散乱体検出器10A及び各吸収体検出器10Bとして行列に配置された画素電極2を備えるピクセル型検出器が使用される。ピクセル型検出器を使用することの一つの問題点は、画素電極2の数を増大させると、演算装置12が処理すべきデータの量が増大してしまうことである。ピクセル型検出器を用いて電磁放射線の検出を行う場合、各画素電極から得られたデータを処理する必要がある。しかしながら、画素電極の数が増大すると、処理すべきデータの量が増大してしまう。
 特に、第1の実施形態のコンプトンカメラ20では、反跳電子の飛跡(反跳電子の反跳方向)を特定するために、各散乱体検出器10A及び各吸収体検出器10Bの空間分解能を高くする必要があり、このためには、画素電極2の数を増大させる必要がある。処理すべきデータの量の増大に対応するためには、高い能力の演算装置12を用いる必要があるが、これは、コストを不所望に増大させる。第2の実施形態では、各散乱体検出器10A及び/又は各吸収体検出器10Bの画素電極2の数の増大に伴うデータ量の増大の問題に対応するための構成が提示される。
 より具体的には、第2の実施形態では、各散乱体検出器10Aの構成が変更される。図11~図14は、第2の実施形態における各散乱体検出器10Aの構成を概念的に示す図である。ここで、図11は、第2の実施形態における各散乱体検出器10Aの構成を示す斜視図であり、図12は、各散乱体検出器10Aの構成を示す上面図である。また、図13は、各散乱体検出器10Aの構成を示す下面図であり、更に、図14は、図12、13のB-B断面における断面構成を示す断面図である。なお、以下の説明では、方向をXYZ直交座標系の座標軸の方向として示すことがある。
 第2の実施形態の散乱体検出器10Aの構成は、第1の実施形態とほぼ同様であるが、図11~図13に図示されているように、半導体基板1の裏側主面1bに複数の裏面電極3が形成されている点で相違する。第1の実施形態の散乱体検出器10Aでは、裏側主面1bに単一の裏面電極3しか設けられていないことに留意されたい。なお、第1の実施形態と同様に、画素電極2は、行列に並んで配置されている。
 より具体的には、第2の実施形態の散乱体検出器10Aでは、裏面電極3が、X軸方向(第1方向)に延伸するストライプ型の電極として構成されており、Y軸方向(第1方向に垂直な第2方向)に並んで配置されている。裏面電極3のそれぞれは、複数の画素電極2に対向するように設けられており、本実施形態では、裏面電極3のそれぞれは、X軸方向に一列に並んだ複数の画素電極2に対向するように配置される。裏面電極3のそれぞれが複数の画素電極2に対向する配置では、裏面電極3の数が画素電極2の数よりも小さいことに留意されたい。また、図11~図14に図示された本実施形態の構成では、画素電極2のそれぞれが、複数の裏面電極3のうちの一の裏面電極3に対向し、他の裏面電極3には対向しないように配置されている。半導体基板1の、各画素電極2と、それに対応する裏面電極3とで挟まれた部分のそれぞれは、画素を構成している。各画素において発生した電荷の量に対応するアナログ信号が各画素電極2から得られる。
 このような構成の散乱体検出器10Aでは、裏面電極3から得られる信号から、いずれかの画素に放射線が入射したことを検知することができ、画素電極2から得られた画素電極測定データのうち散乱体検出器10Aに電磁放射線が入射した時点における画素電極測定データを選択することができる。詳細には、ある画素に電磁放射線が入射した場合、当該画素において電荷が発生し、当該画素の画素電極2と、該画素電極2に対向する裏面電極3とに信号が発生する。裏面電極3に発生した信号から、当該裏面電極3に対向する複数の画素電極2の画素のいずれかに電磁放射線が入射したことを検出することができる。ここで、裏面電極3の数は画素電極2の数よりも少ないから、裏面電極3に発生した信号を処理するための演算負荷は小さくでき、また、裏面電極3から信号を得るためのトリガーの生成も容易であることに留意されたい。そして、裏面電極3から得られる信号に基づいて散乱体検出器10Aの画素電極2から得られた画素電極測定データのうち電磁放射線が入射した時点に対応する画素電極測定データを選択し、選択された画素電極測定データを分析して放射線の検出を行うことにより、処理すべき画素電極測定データの量を低減することができる。
 図11~図14に図示された構成では、ストライプ型の裏面電極3を有する構成が図示されているが、裏面電極3のそれぞれが、複数の画素電極2に対向するように配置され、裏面電極3の数が画素電極2の数よりも少ないような配置であれば、裏面電極3の配置は様々に変更され得る。
 図15、図16は、裏面電極3の配置が異なる散乱体検出器10Aの構成を図示している。ここで、図15は、散乱体検出器10Aの構成を示す下面図であり、図16は、図15に図示されたC-C断面における散乱体検出器10Aの構成を示す断面図である。
 図15、図16に図示された構成では、裏面電極3が、行列に(図15の例では、3行3列に)配置されている。ここで、裏面電極3のそれぞれは、4行4列に配置された画素電極2に対向するように配置されている。ただし、画素電極2のそれぞれが、複数の裏面電極3のうちの一の裏面電極3に対向し、他の裏面電極3には対向しないように配置されていることに留意されたい。
 このような構成でも、裏面電極3から得られる信号を用いることで、全ての画素電極2から得られた画素電極測定データのうち、散乱体検出器10Aに電磁放射線が入射した位置及びその近傍の画素電極2から得られた画素電極測定データを選択することができる。ただし、図11~図14に図示されているような、ストライプ型の裏面電極3を用いる構成は、裏面電極3から信号を得るための実装が容易であるため、ストライプ型の裏面電極3を用いる構成が好ましい。
 図17は、上述された散乱体検出器10Aを用いる第2の実施形態のコンプトンカメラ20Aの構成の一例を示すブロック図である。第2の実施形態のコンプトンカメラ20Aの構成は、第1の実施形態のコンプトンカメラ20の構成と類似している。第2の実施形態のコンプトンカメラ20Aも、第1の実施形態のコンプトンカメラ20と同様に、複数の検出器モジュール11A、11Bと、演算装置12と、表示装置13とを備えている。ただし、第2の実施形態のコンプトンカメラ20Aでは、散乱体検出器10Aの構成の変更に伴い、散乱体検出器10Aを搭載する検出器モジュール11Aの構成が変更され、更に、データ転送装置14が設けられる。後述されるように、データ転送装置14は、散乱体検出器10Aの画素電極2から得られた画素電極測定データを一時的に格納すると共に、格納した画素電極測定データのうち、有効な画素電極測定データ(即ち、線源の空間的分布を算出するために用いられる画素電極測定データ)を選択的に演算装置12に転送する機能を有している。
 図18は、第2の実施形態における、散乱体検出器10Aを備える検出器モジュール11A及び吸収体検出器10Bを備える検出器モジュール11Bの構成、及び、データ転送装置14の構成を示すブロック図である。
 第2の実施形態の検出器モジュール11Aは、信号処理IC21、23と、インターフェース22、24とを備えている。信号処理IC21は、散乱体検出器10Aの各画素電極2から読み出したアナログ信号を処理する信号処理部として機能する。詳細には、信号処理IC21は、各フレーム期間において散乱体検出器10Aの全ての画素電極2からアナログ信号を同時に読み出し、更に、読み出したアナログ信号に対してアナログ-デジタル変換を行って該アナログ信号の信号レベルを示す画素電極測定データを生成する。信号処理IC21は、生成した画素電極測定データを、インターフェース22を介してデータ転送装置14に送信する。
 一方、信号処理IC23は、散乱体検出器10Aの各裏面電極3から読み出したアナログ信号を処理する信号処理部として機能する。詳細には、信号処理IC23は、各裏面電極3から読み出したアナログ信号に対してアナログ-デジタル変換を行い、該アナログ信号の信号レベルを示す測定データを生成する。各裏面電極3から読み出されたアナログ信号から得られた測定データを、以下、「裏面電極測定データ」ということがある。信号処理IC23は、生成した裏面電極測定データを、インターフェース24を介してデータ転送装置14に送信する。後述されるように、各検出器モジュール11Aで得られた裏面電極測定データは、データ転送装置14において、演算装置12に最終的に転送される画素電極測定データを選択するために用いられる。
 なお、以下においては、吸収体検出器10B及び検出器モジュール11Bの構成は、第1の実施形態と同様である(即ち、吸収体検出器10Bが単一の裏面電極3を有している)として説明するが、吸収体検出器10Bが散乱体検出器10Aと同様に複数の裏面電極3を有する構成も可能である(このような変形例については後述する)。
 データ転送装置14は、各散乱体検出器10Aから得られた画素電極測定データ及び裏面電極測定データ、並びに、各吸収体検出器10Bから得られた画素電極測定データを、演算装置12に転送する機能を有している。ここで、データ転送装置14は、各散乱体検出器10Aから得られた画素電極測定データのうち、電磁放射線の測定に必要な画素電極測定データ(例えば、電磁放射線が入射した時点に対応する画素電極測定データ)を選択して演算装置12に転送するように構成されている。この選択は、各散乱体検出器10Aから得られた裏面電極測定データ及び各吸収体検出器10Bから得られた画素電極測定データに基づいて行われる。選択された画素電極測定データのみが演算装置12に送られることにより、演算装置12が処理すべき画素電極測定データの量を低減することができる。
 詳細には、データ転送装置14は、データ処理部15と、メモリ16と、データ処理部17と、インターフェース18とを備えている。データ処理部15、メモリ16、データ処理部17、インターフェース18は、それぞれが個別の集積回路(IC)として実装されてもよい。また、データ処理部15、メモリ16、データ処理部17、インターフェース18のうちの複数がモノリシックに集積化された集積回路が用いられてもよい。
 データ処理部15は、各散乱体検出器10Aから得られた画素電極測定データを対応する検出器モジュール11Aから受け取り、メモリ16に保存する。このとき、データ処理部15は、画素電極測定データの生成に同期した時刻情報(即ち、画素電極測定データが生成された時刻に同期した内容の時刻情報)を生成し、生成した時刻情報を該画素電極測定データと共にメモリ16に保存する。本実施形態では、データ処理部15が画素電極測定データを検出器モジュール11Aから受け取った時刻を示す時刻情報が、該画素電極測定データと共にメモリ16に保存される。メモリ16は、各散乱体検出器10Aから得られた画素電極測定データ及び該画素電極測定データに対応する時刻情報を一時的に保存するための一時保存領域16aを提供する。
 データ処理部17は、各散乱体検出器10Aから得られた裏面電極測定データと、各吸収体検出器10Bから得られた画素電極測定データとを処理する。詳細には、データ処理部17は、各散乱体検出器10Aから得られた裏面電極測定データの生成に同期した時刻情報(即ち、該裏面電極測定データが生成された時刻に同期した内容の時刻情報)を生成すると共に、各吸収体検出器10Bから得られた画素電極測定データの生成に同期した時刻情報(即ち、該画素電極測定データが生成された時刻に同期した内容の時刻情報)を生成する。本実施形態では、散乱体検出器10Aから得られた裏面電極測定データに対応する時刻情報は、データ処理部17が各散乱体検出器10Aから裏面電極測定データを受け取った時刻を示すように生成され、吸収体検出器10Bから得られた画素電極測定データに対応する時刻情報は、データ処理部17が各吸収体検出器10Bから画素電極測定データを受け取った時刻を示すように生成される。更に、データ処理部17は、各フレーム期間において各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ並びに各フレーム期間において各吸収体検出器10Bから得られる画素電極測定データを、演算装置12に転送すべきか否かを判断する。この判断は、各散乱体検出器10Aから得られる裏面電極測定データ及び各吸収体検出器10Bから得られる画素電極測定データに基づいて行われる。転送すると判断した場合、データ処理部17は、各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ並びに各吸収体検出器10Bから得られる画素電極測定データを演算装置12に転送する。この転送において、データ処理部17は、各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ並びに各吸収体検出器10Bから得られる画素電極測定データと共に、それらに対応する時刻情報を演算装置12に転送する。演算装置12に転送された画素電極測定データ、裏面電極測定データ及びそれらに対応する時刻情報は、記憶装置12aに保存され、電磁放射線の入射方向の特定及び線源の空間的分布の算出に用いられる。
 より具体的には、データ処理部17は、あるフレーム期間において各散乱体検出器10Aから得られた裏面電極測定データ及び各吸収体検出器10Bから得られた画素電極測定データが、所定の条件(以下では、「データ取得条件」ということがある。)を満たしている場合、当該フレーム期間において各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ、当該フレーム期間において各吸収体検出器10Bから得られる画素電極測定データ、並びにそれらに対応する時刻情報を演算装置12に転送する。ここで、各散乱体検出器10Aから得られる画素電極測定データは、時刻情報と共にメモリ16の一時保存領域16aに格納されていることに留意されたい。データ処理部17は、該時刻情報を参照して、各散乱体検出器10Aから得られる画素電極測定データのうちデータ取得条件を満たしているフレーム期間に対応する画素電極測定データ及び対応する時刻情報を選択して一時保存領域16aから読み出し、一時保存領域16aから読み出した画素電極測定データ及び時刻情報を演算装置12に送信する。演算装置12への画素電極測定データ、裏面電極測定データ及び時刻情報の転送は、インターフェース18を介して行われる。
 例えば、あるフレーム期間において各散乱体検出器10Aから得られた裏面電極測定データ及び各吸収体検出器10Bから得られた画素電極測定データから、当該フレーム期間において散乱体検出器10A、吸収体検出器10Bのいずれかに電磁放射線が入射したと判断される場合に、当該フレーム期間において各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ並びに各フレーム期間において各吸収体検出器10Bから得られる画素電極測定データを演算装置12に転送してもよい。このとき、各散乱体検出器10Aから得られる画素電極測定データについては、データ取得条件を満たしているフレーム期間に対応する画素電極測定データが時刻情報を参照しながら選択され、選択された画素電極測定データが演算装置12に転送される。他の例としては、あるフレーム期間において各散乱体検出器10Aから得られた裏面電極測定データ及び各吸収体検出器10Bから得られた画素電極測定データから、一の散乱体検出器10A及び一の吸収体検出器10Bに電磁放射線が入射したと判断される場合に(一の散乱体検出器10Aでコンプトン散乱が発生し、一の吸収体検出器10Bで光電吸収が発生した場合が想定されている)、当該フレーム期間において各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ並びに各フレーム期間において各吸収体検出器10Bから得られる画素電極測定データを演算装置12に転送してもよい。この場合も同様に、各散乱体検出器10Aから得られる画素電極測定データについては、データ取得条件を満たしているフレーム期間に対応する画素電極測定データが時刻情報を参照しながら選択され、選択された画素電極測定データが一時保存領域16aから読み出されて演算装置12に転送される。
 演算装置12は、データ転送装置14から転送された画素電極測定データと裏面電極測定データとに対してデータ処理を行い、線源の空間的分布を算出する。例えば、演算装置12は、あるフレーム期間において散乱体検出器10Aから得られた画素電極測定データ、及び該フレーム期間において吸収体検出器10Bから得られた画素電極測定データから、コンプトン散乱が発生した位置X1、該コンプトン散乱で反跳電子が得たエネルギーE、反跳電子の飛跡(即ち、反跳方向)、光電吸収が発生した位置X2、光電吸収によって吸収された光子のエネルギーE、及び、電磁放射線の散乱角θを算出する。演算装置12は、更に、これらの情報から電磁放射線の入射方向及び線源の空間的分布を算出する。このとき、演算装置12は、該散乱体検出器10Aから得られた裏面電極測定データを参照することにより、コンプトン散乱で反跳電子が得たエネルギーEの算出精度を向上させてもよい。
 図19は、検出器モジュール11Aにおける散乱体検出器10Aの実装の一例を示す断面図である。一実施形態では、検出器モジュール11Aは、プリント配線基板25を備えている。散乱体検出器10A及び信号処理IC23は、プリント配線基板25の上に形成された配線に接合される。詳細には、散乱体検出器10Aは、プリント配線基板25の上に形成された配線26の上に接合される。ここで、配線26は、散乱体検出器10Aの裏面電極3と信号処理IC23とを電気的に接続するための配線である。即ち、散乱体検出器10Aの裏面電極3が、配線26に接合される。一方、信号処理IC23は、配線26、27の上に接合される。ここで、配線27は、信号処理IC23とインターフェース22とを電気的に接続する配線である。
 一方、散乱体検出器10Aの画素電極2と信号処理IC21とは、フリップチップ接続によって接続される。詳細には、信号処理IC21は、パッド21aを備えており、該パッド21aのそれぞれにはバンプ28が接合される。該バンプ28が、散乱体検出器10Aの画素電極2に接続される。各画素電極2に生成されたアナログ信号は、バンプ28を介して信号処理IC21のパッド21aに読み出される。本実施形態のコンプトンカメラ20Aでは、このような構成により、複数の画素電極2が信号処理IC21に並列に接続される。複数の画素電極2が信号処理IC21に並列に接続されることは、時間分解能の向上に有効である。
 なお、図19には、インターフェース22、24は図示されていないが、インターフェース22、24もプリント配線基板25の上に実装されてもよい。
 続いて、本実施形態のコンプトンカメラ20Aの動作について説明する。本実施形態のコンプトンカメラ20Aにおいて線源の空間的分布を算出する手順は、概ね、第1の実施形態のコンプトンカメラ20と同様である(図9参照)。測定データ(画素電極測定データ及び裏面電極測定データ)が取得され(ステップS01)、更に、反跳電子の飛跡が算出される(ステップS02)。ステップS02で算出された反跳電子の飛跡を用いてイベントが抽出され(ステップS03)、抽出されたイベントについて、コンプトンコーンの再構成、即ち、電磁放射線の入射方向が特定される(ステップS04)。更に、特定された電磁放射線の入射方向を用いて線源の空間的分布が算出され、線源の空間的分布を示す線源分布画像の生成及び表示が行われる(ステップS05)。
 ただし、第2の実施形態のコンプトンカメラ20Aでは、測定データの取得(ステップS01)において、各フレーム期間において各散乱体検出器10Aから得られた裏面電極測定データ及び各吸収体検出器10Bから得られた画素電極測定データが所定のデータ取得条件を満たしている場合に、当該フレーム期間において各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ、各フレーム期間において各吸収体検出器10Bから得られる画素電極測定データ、それらに対応する時刻情報が演算装置12に転送される点において、第1の実施形態のコンプトンカメラ20と相違する。このような動作により、第2の実施形態では、各散乱体検出器10Aから得られた画素電極測定データのうち必要なデータが選択的に演算装置12に転送され、これにより、演算装置12で処理すべき画素電極測定データの量を低減することができる。
 図20は、本実施形態における測定データの取得の動作を示すタイミングチャートである。図20には、第(N-1)乃至第(N+1)フレーム期間における動作が図示されている。
 各検出器モジュール11Aの信号処理IC21は、各フレーム期間において散乱体検出器10Aの各画素電極2からアナログ信号を読み出し、読み出したアナログ信号に対してアナログ-デジタル変換を行って画素電極測定データを生成する。上述のように、画素電極測定データは、各画素電極2から読み出されたアナログ信号の信号レベルを示すデータである。このようにして散乱体検出器10Aから得られた画素電極測定データは、データ転送装置14のデータ処理部15に転送され、更に、メモリ16の一時保存領域16aに格納される。このとき、散乱体検出器10Aから得られた画素電極測定データと共に、該画素電極測定データに対応する時刻情報(該画素電極測定データの生成に同期した時刻情報)が、メモリ16の一時保存領域16aに格納される。
 一方、各検出器モジュール11Aの信号処理IC23は、各フレーム期間において吸収体検出器10Bの各裏面電極3からアナログ信号を読み出し、読み出したアナログ信号に対してアナログ-デジタル変換を行って裏面電極測定データを生成する。このようにして散乱体検出器10Aから得られた裏面電極測定データは、データ転送装置14のデータ処理部17に転送される。
 更に、各検出器モジュール11Bの信号処理IC21は、各フレーム期間において吸収体検出器10Bの各画素電極2からアナログ信号を読み出し、読み出したアナログ信号に対してアナログ-デジタル変換を行って画素電極測定データを生成する。このようにして吸収体検出器10Bから得られた画素電極測定データは、データ転送装置14のデータ処理部17に転送される。
 図20においては、第kフレーム期間に得られた画素電極測定データ(より厳密には、第kフレーム期間において散乱体検出器10A及び吸収体検出器10Bの各画素電極2から読み出されたアナログ信号から生成された画素電極測定データ)が、記号DPIXEL(k)で示されている。また、第kフレーム期間に得られた裏面電極測定データ(より厳密には、第kフレーム期間において散乱体検出器10Aの各裏面電極3から読み出されたアナログ信号から生成された裏面電極測定データ)が、記号D(k)で示されている。
 データ処理部17は、各フレーム期間において各散乱体検出器10Aから得られた裏面電極測定データ及び各吸収体検出器10Bから得られた画素電極測定データが、所定のデータ取得条件を満たしている場合、当該フレーム期間において各散乱体検出器10Aから得られた画素電極測定データ及び対応する時刻情報をメモリ16から読み出し、更に、当該フレーム期間において各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ、当該フレーム期間において各吸収体検出器10Bから得られる画素電極測定データ、並びに、それらに対応する時刻情報を演算装置12に転送する。
 例えば、あるフレーム期間において各散乱体検出器10Aから得られた裏面電極測定データ及び各吸収体検出器10Bから得られた画素電極測定データから、当該フレーム期間において散乱体検出器10A、吸収体検出器10Bのいずれかに電磁放射線が入射したと判断される場合に、当該フレーム期間において各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ並びに各フレーム期間において各吸収体検出器10Bから得られる画素電極測定データを演算装置12に転送してもよい。他の例としては、あるフレーム期間において各散乱体検出器10Aから得られた裏面電極測定データ及び各吸収体検出器10Bから得られた画素電極測定データから、一の散乱体検出器10A及び一の吸収体検出器10Bに電磁放射線が入射したと判断される場合に(一の散乱体検出器10Aでコンプトン散乱が発生し、一の吸収体検出器10Bで光電吸収が発生した場合が想定されている)、当該フレーム期間において各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ並びに各フレーム期間において各吸収体検出器10Bから得られる画素電極測定データを演算装置12に転送してもよい。データ処理部17から演算装置12に送られた画素電極測定データ及び裏面電極測定データは、演算装置12の記憶装置12aに格納される。
 例えば、図20に図示されているように、第Nフレーム期間において各散乱体検出器10Aから得られた裏面電極測定データ及び各吸収体検出器10Bから得られた画素電極測定データが、所定のデータ取得条件を満たしていると判断された(例えば、散乱体検出器10A、吸収体検出器10Bのいずれかに電磁放射線が入射したと判断された)とする。この場合、データ処理部17は、第Nフレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られた画素電極測定データDPIXEL(N)及び各吸収体検出器10Bから得られた裏面電極測定データD(N)、及び、それらに対応する時刻情報を演算装置12に転送する。このとき、各散乱体検出器10Aから得られる画素電極測定データDPIXEL(N)については、データ取得条件を満たしているフレーム期間に対応する画素電極測定データが時刻情報を参照しながら選択され、選択された画素電極測定データ及び対応する時刻情報が一時保存領域16aから読み出されて演算装置12に転送される。
 図20の動作では、第Nフレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られた画素電極測定データDPIXEL(N)及び各吸収体検出器10Bから得られた裏面電極測定データD(N)が、次のフレーム期間(第(N+1)フレーム期間)において演算装置12に転送されている。ただし、第Nフレーム期間において得られた画素電極測定データ及び裏面電極測定データの演算装置12への転送のタイミングは、電磁放射線の入射の検出以後であれば、適宜に選択され得ることに留意されたい。
 演算装置12は、記憶装置12aに格納された画素電極測定データ、裏面電極測定データ及びそれらに対応する時刻情報とに基づいて、上述されている、反跳電子の飛跡の算出(ステップS02)、イベントの抽出(ステップS03)、コンプトンコーンの再構成(ステップS04)、及び、線源分布画像の生成と表示(ステップS05)を行う。ここで、ステップS04のコンプトンコーンの再構成においては、演算装置12は、各散乱体検出器10Aから得られた画素電極測定データと共に、当該散乱体検出器10Aから得られた裏面電極測定データを用いることで、コンプトン散乱で反跳電子が得たエネルギーEの算出精度を向上させてもよい。
 以上に説明された動作によれば、散乱体検出器10Aから得られた画素電極測定データのうち必要なデータを選択的に演算装置12に転送することができる。不必要な画素電極測定データは演算装置12に転送されず、したがって、演算装置12が処理すべきデータの量を低減させることができる。このような利点は、特に、散乱体検出器10Aに設けられた画素電極2の数が多い場合に顕著である。
[第3の実施形態]
 第2の実施形態では、散乱体検出器10Aが、図11~図16に図示されているような複数の裏面電極3を有する構造に構成されていたが、第3の実施形態のコンプトンカメラ20Bでは、吸収体検出器10Bについても複数の裏面電極3を有する上述の構造が採用される。
 図21は、第3の実施形態のコンプトンカメラ20Bの構成の一例のブロック図である。第3の実施形態のコンプトンカメラ20Bの構成は、第2の実施形態のコンプトンカメラ20Aの構成と類似している。ただし、第3の実施形態のコンプトンカメラ20Bでは、吸収体検出器10Bの構成の変更に伴い、吸収体検出器10Bを搭載する検出器モジュール11Bの構成が、散乱体検出器10Aを搭載する検出器モジュール11Aと同様の構成に変更される。
 図22は、第3の実施形態のコンプトンカメラ20Bにおける検出器モジュール11A、11Bの構成、並びに、データ転送装置14の構成を示すブロック図である。検出器モジュール11Aは、第3の実施形態においても第2の実施形態と同様に、散乱体検出器10Aと、信号処理IC21、23と、インターフェース22、24とを備えている。同様に、検出器モジュール11Bは、吸収体検出器10Bと、信号処理IC21、23と、インターフェース22、24とを備えている。検出器モジュール11Bの構成は、散乱体検出器10Aが吸収体検出器10Bに置換されている点を除き、検出器モジュール11Aと同様である。
 ただし、第3の実施形態のコンプトンカメラ20Bでは、散乱体検出器10A及び吸収体検出器10Bから得られた画素電極測定データが、いずれも、データ処理部15に転送され、メモリ16の一時保存領域16aに保存される一方で、散乱体検出器10A及び吸収体検出器10Bから得られた裏面電極測定データが、いずれも、データ処理部17に転送される。データ処理部17は、各散乱体検出器10A及び各吸収体検出器10Bから得られた裏面電極測定データを処理する。
 詳細には、データ処理部17は、各フレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データ及び裏面電極画像データ、並びに、それらに対応する時刻情報を、演算装置12に転送すべきか否かを判断する。本実施形態では、この判断は、各散乱体検出器10A及び各吸収体検出器10Bから得られる裏面電極測定データに基づいて行われる。演算装置12に転送された画素電極測定データ及び裏面電極測定データそれらに対応する時刻情報と共に記憶装置12aに保存され、電磁放射線の入射方向の特定及び線源の空間的分布の算出に用いられる。
 より具体的には、データ処理部17は、あるフレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られた裏面電極測定データが、所定のデータ取得条件を満たしている場合、当該フレーム期間において各散乱体検出器10Aから得られる画素電極測定データ及び裏面電極測定データ並びに当該フレーム期間において各吸収体検出器10Bから得られる画素電極測定データを演算装置12に転送する。ここで、各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データは、時刻情報と共にメモリ16の一時保存領域16aに格納されていることに留意されたい。データ処理部17は、該時刻情報を参照して、各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データのうちデータ取得条件を満たしているフレーム期間に対応する画素電極測定データを選択して一時保存領域16aから読み出し、一時保存領域16aから読み出した画素電極測定データを演算装置12に送信する。演算装置12への画素電極測定データ及び裏面電極測定データの転送は、インターフェース18を介して行われる。
 続いて、第3の実施形態のコンプトンカメラ20Bの動作について説明する。本実施形態のコンプトンカメラ20Aにおいて線源の空間的分布を算出する手順は、概ね、第1及び第2の実施形態のコンプトンカメラ20、20Aと同様である(図9参照)。測定データ(画素電極測定データ及び裏面電極測定データ)が取得され(ステップS01)、更に、反跳電子の飛跡が算出される(ステップS02)。ステップS02で算出された反跳電子の飛跡を用いてイベントが抽出され(ステップS03)、抽出されたイベントについて、コンプトンコーンの再構成、即ち、電磁放射線の入射方向が特定される(ステップS04)。更に、特定された電磁放射線の入射方向を用いて線源の空間的分布が算出され、線源の空間的分布を示す線源分布画像の生成及び表示が行われる(ステップS05)。
 ただし、第3の実施形態のコンプトンカメラ20Bでは、測定データの取得(ステップS01)において、各フレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られた裏面電極測定データが所定のデータ取得条件を満たしている場合に当該フレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データ及び裏面電極測定データが演算装置12に転送される点において、第2の実施形態のコンプトンカメラ20と相違する。このような動作により、第3の実施形態では、各散乱体検出器10A及び各吸収体検出器10Bから得られた画素電極測定データのうち必要なデータが選択的に演算装置12に転送されることにより、演算装置12で処理すべき画素電極測定データの量を第2の実施形態よりも一層に低減することができる。
 データ処理部17は、各フレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られた裏面電極測定データが所定のデータ取得条件を満たしている場合、当該フレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られた画素電極測定データをメモリ16から読み出し、更に、当該フレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データ及び裏面電極測定データ、並びに、それらに対応する時刻情報を演算装置12に転送する。ここで、各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データは、時刻情報と共にメモリ16の一時保存領域16aに格納されていることに留意されたい。データ処理部17は、該時刻情報を参照して、各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データのうちデータ取得条件を満たしているフレーム期間に対応する画素電極測定データを選択して一時保存領域16aから読み出し、一時保存領域16aから読み出した画素電極測定データを演算装置12に送信する。
 例えば、あるフレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られた裏面電極測定データから、当該フレーム期間において散乱体検出器10A、吸収体検出器10Bのいずれかに電磁放射線が入射したと判断される場合に、当該フレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データ及び裏面電極測定データを演算装置12に転送してもよい。このとき、各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データについては、データ取得条件を満たしているフレーム期間に対応する画素電極測定データが時刻情報を参照しながら選択され、選択された画素電極測定データが演算装置12に転送される。他の例としては、あるフレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られた裏面電極測定データから、一の散乱体検出器10A及び一の吸収体検出器10Bに電磁放射線が入射したと判断される場合に(一の散乱体検出器10Aでコンプトン散乱が発生し、一の吸収体検出器10Bで光電吸収が発生した場合が想定されている)、当該フレーム期間において各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データ及び裏面電極測定データを演算装置12に転送してもよい。データ処理部17から演算装置12に送られた画素電極測定データ及び裏面電極測定データは、演算装置12の記憶装置12aに格納される。この場合も同様に、各散乱体検出器10A及び各吸収体検出器10Bから得られる画素電極測定データについては、データ取得条件を満たしているフレーム期間に対応する画素電極測定データが時刻情報を参照しながら選択され、選択された画素電極測定データが演算装置12に転送される。
 演算装置12は、記憶装置12aに格納された画素電極測定データと裏面電極測定データとに基づいて、上述されている、反跳電子の飛跡の算出(ステップS02)、イベントの抽出(ステップS03)、コンプトンコーンの再構成(ステップS04)、及び、線源分布画像の生成と表示(ステップS05)を行う。ここで、ステップS04のコンプトンコーンの再構成においては、演算装置12は、各散乱体検出器10Aから得られた画素電極測定データと共に、当該散乱体検出器10Aから得られた裏面電極測定データを用いることで、コンプトン散乱で反跳電子が得たエネルギーEの算出精度を向上させてもよい。加えて、演算装置12は、各吸収体検出器10Bから得られた画素電極測定データと共に、当該吸収体検出器10Bから得られた裏面電極測定データを用いることで、光電吸収によって吸収された光子のエネルギーEの算出精度を向上させてもよい。
 以上に説明された動作によれば、散乱体検出器10A及び吸収体検出器10Bから得られた画素電極測定データのうち必要なデータを選択的に演算装置12に転送することができる。不必要な画素電極測定データは演算装置12に転送されず、したがって、演算装置12が処理すべきデータの量を低減させることができる。このような利点は、特に、散乱体検出器10A及び吸収体検出器10Bに設けられた画素電極2の数が多い場合に顕著である。
 以上には、本発明の実施形態が様々に記載されているが、本発明は、上記の実施形態には限定されない。本発明が、様々な変更と共に実施され得ることは、当業者には自明的であろう。
20、20A、20B:コンプトンカメラ
1    :半導体基板
1a   :表側主面
1b   :裏側主面
2、2a、2b、2c:画素電極
3    :裏面電極
10   :半導体検出器
10A  :散乱体検出器
10B  :吸収体検出器
11、11A、11B:検出器モジュール
12   :演算装置
12a  :記憶装置
13   :表示装置
14   :データ転送装置
15   :データ処理部
16   :メモリ
16a  :一時保存領域
17   :データ処理部
18   :インターフェース
21、23:信号処理IC
21a  :パッド
22、24:インターフェース
25   :プリント配線基板
26   :配線
27   :配線
28   :バンプ
 

Claims (10)

  1.  測定対象の電磁放射線を散乱する散乱体として機能する、少なくとも一の散乱体検出器と、
     前記電磁放射線を吸収する吸収体として機能する、少なくとも一の吸収体検出器と、
     演算装置と
    を具備し、
     前記散乱体検出器と前記吸収体検出器のそれぞれは、
      半導体基板と、
      前記半導体基板の第1主面上に行列に並んで配置された複数の画素電極と
    を含み、
     前記複数の画素電極は、隣接する2つの画素電極の中心の距離が、前記電磁放射線のコンプトン散乱で発生する反跳電子の平均自由工程よりも小さくなるように配置されており、
     前記演算装置が、前記散乱体検出器のいずれかでコンプトン散乱が発生し、前記散乱体検出器のいずれかにおけるコンプトン散乱で発生した反跳電子が、コンプトン散乱が発生した前記散乱体検出器の内部において前記半導体基板の面内方向の成分を有するような方向に跳ね飛ばされ、前記コンプトン散乱によって散乱された光子が前記吸収体検出器のいずれかにおいて吸収される光電吸収が発生するイベントを前記散乱体検出器及び前記吸収体検出器から得られる信号に基づいて抽出し、抽出された前記イベントのそれぞれについて前記反跳電子が跳ね飛ばされる反跳方向に基づいて前記電磁放射線の入射方向を特定する
     放射線測定装置。
  2.  請求項1に記載の放射線測定装置であって、
     前記測定対象の前記電磁放射線の光子のエネルギーは、0.3~2.0MeVであり、
     前記散乱体検出器及び前記吸収体検出器の前記複数の画素電極は、隣接する2つの画素電極の中心の距離が20μm以下になるように配置される
     放射線測定装置。
  3.  請求項1又は2に記載の放射線測定装置であって、
     前記散乱体検出器は、更に、前記半導体基板の前記第1主面に対向する第2主面上に配置された複数の裏面電極を備えており、
     前記散乱体検出器の前記複数の裏面電極のそれぞれは、前記散乱体検出器の前記複数の画素電極の複数に対向するように配置され、
     前記散乱体検出器それぞれにおいて、前記複数の裏面電極の数が前記複数の画素電極の数よりも少なく、
     当該放射線測定装置が、更に、
     前記散乱体検出器の前記複数の画素電極から読み出された第1アナログ信号から第1画素電極測定データを生成する第1信号処理部と、
     前記第1画素電極測定データを一時的に保存する一時保存領域と、
     前記散乱体検出器の前記複数の裏面電極から読み出された第2アナログ信号から裏面電極測定データを生成する第2信号処理部と、
     データ処理部と
    を具備し、
     前記データ処理部は、前記第1画素電極測定データのうち前記裏面電極測定データに応じて選択された選択画素電極測定データを前記一時保存領域から読み出して前記演算装置に転送し、
     前記演算装置は、前記選択画素電極測定データに基づいて前記イベントの抽出と前記電磁放射線の入射方向の特定とを行う
     放射線測定装置。
  4.  請求項3に記載の放射線測定装置であって、
     前記第1信号処理部は、前記第1画素電極測定データの生成に同期して生成された時刻情報を前記第1画素電極測定データと共に前記一時保存領域に保存し、
     前記データ処理部は、前記時刻情報を参照して前記第1画素電極測定データのうちから前記選択画素電極測定データを選択する
     放射線測定装置。
  5.  請求項3に記載の放射線測定装置であって、
     更に、
     前記吸収体検出器の前記複数の画素電極から読み出された第3アナログ信号から第2画素電極測定データを生成する第3信号処理部を具備し、
     前記データ処理部は、前記選択画素電極測定データを、前記裏面電極測定データと前記第2画素電極測定データとに応じて選択する
     放射線測定装置。
  6.  請求項5に記載の放射線測定装置であって、
     前記データ処理部は、あるフレーム期間において得られた前記裏面電極測定データ及び前記第2画素電極測定データが所定の条件を満足する場合、前記フレーム期間において得られた前記第1画素電極測定データ、前記第2画素電極測定データ及び前記裏面電極測定データを前記演算装置に転送し、
     前記演算装置は、前記フレーム期間において得られた前記第1画素電極測定データ、前記第2画素電極測定データ及び前記裏面電極測定データに基づいて前記イベントの抽出と前記電磁放射線の入射方向の特定とを行う
     放射線測定装置。
  7.  請求項3乃至6のいずれかに記載の放射線測定装置であって、
     前記第1信号処理部は、信号処理ICに集積化され、
     前記散乱体検出器の前記複数の画素電極のそれぞれは、前記信号処理ICに設けられたパッドにバンプを介して接続されている
     放射線測定装置。
  8.  請求項3乃至6のいずれかに記載の放射線測定装置であって、
     前記散乱体検出器の前記複数の画素電極は、前記第1主面に平行な第1方向、及び、前記第1主面に平行で前記第1方向に垂直な第2方向に並んで配置され、
     前記複数の裏面電極のそれぞれが、前記第1方向に延伸するように形成され、
     前記複数の裏面電極は、前記第2方向に並んで配置された
     放射線測定装置。
  9.  請求項1又は2に記載の放射線測定装置であって、
     前記散乱体検出器と前記吸収体検出器のそれぞれは、更に、前記半導体基板の前記第1主面に対向する第2主面上に配置された複数の裏面電極を備えており、
     前記複数の裏面電極のそれぞれは、前記複数の画素電極の複数に対向するように配置され、
     前記散乱体検出器及び前記吸収体検出器のそれぞれにおいて、前記複数の裏面電極の数が、前記複数の画素電極の数よりも少なく、
     当該放射線測定装置が、更に、
     前記散乱体検出器及び前記吸収体検出器の前記複数の画素電極から読み出された第1アナログ信号から画素電極測定データを生成する第1信号処理部と、
     前記画素電極測定データを一時的に保存する一時保存領域と、
     前記散乱体検出器及び前記吸収体検出器の前記複数の裏面電極から読み出された第2アナログ信号から裏面電極測定データを生成する第2信号処理部と、
     データ処理部と
    を具備し、
     前記データ処理部は、前記画素電極測定データのうち前記裏面電極測定データに応じて選択された選択画素電極測定データを前記一時保存領域から読み出して前記演算装置に転送し、
     前記演算装置は、前記選択画素電極測定データに基づいて前記イベントの抽出と前記電磁放射線の入射方向の特定とを行う
     放射線測定装置。
  10.  測定対象の電磁放射線を散乱する散乱体として機能する散乱体検出器と、前記電磁放射線を吸収する吸収体として機能する吸収体検出器とを備え、前記散乱体検出器と前記吸収体検出器のそれぞれが、半導体基板と前記半導体基板の主面上に行列に並んで配置された複数の画素電極とを含み、前記散乱体検出器と前記吸収体検出器のそれぞれの前記複数の画素電極が、隣接する2つの画素電極の中心の距離が前記電磁放射線のコンプトン散乱で発生する反跳電子の平均自由工程よりも小さくなるように配置された放射線測定装置を用いた放射線測定方法であって、
     前記散乱体検出器のいずれかでコンプトン散乱が発生し、前記散乱体検出器のいずれかにおけるコンプトン散乱で発生した反跳電子がコンプトン散乱が発生した前記散乱体検出器の内部において前記半導体基板の面内方向の成分を有するような方向に跳ね飛ばされ、前記コンプトン散乱によって散乱された光子が前記吸収体検出器のいずれかにおいて吸収される光電吸収が発生するイベントを前記散乱体検出器と前記吸収体検出器とから得られる信号に基づいて抽出するステップと、
     抽出された前記イベントのそれぞれについて、前記反跳電子が跳ね飛ばされる反跳方向に基づいて前記電磁放射線の入射方向を特定するステップと
    を具備する
     放射線測定方法。
PCT/JP2016/071642 2015-07-24 2016-07-22 放射線測定装置及び放射線測定方法 WO2017018363A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16830468.1A EP3316003B1 (en) 2015-07-24 2016-07-22 Radiation measuring apparatus
US15/735,389 US10088579B2 (en) 2015-07-24 2016-07-22 Radiation measuring apparatus and radiation measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-147025 2015-07-24
JP2015147025A JP6551003B2 (ja) 2015-07-24 2015-07-24 放射線測定装置及び放射線測定方法

Publications (1)

Publication Number Publication Date
WO2017018363A1 true WO2017018363A1 (ja) 2017-02-02

Family

ID=57885094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071642 WO2017018363A1 (ja) 2015-07-24 2016-07-22 放射線測定装置及び放射線測定方法

Country Status (4)

Country Link
US (1) US10088579B2 (ja)
EP (1) EP3316003B1 (ja)
JP (1) JP6551003B2 (ja)
WO (1) WO2017018363A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057674A1 (ja) * 2015-09-30 2017-04-06 大日本印刷株式会社 放射線画像形成装置
EP3232229A1 (en) * 2016-04-13 2017-10-18 Nokia Technologies Oy Apparatus for sensing radiation
JP7068082B2 (ja) * 2018-07-18 2022-05-16 三菱電機株式会社 ガンマカメラ
JP7182930B2 (ja) 2018-07-24 2022-12-05 キヤノン株式会社 放射線検出器
CN112512424B (zh) * 2018-08-07 2023-07-04 美国西门子医疗系统股份有限公司 多模态康普顿和单光子发射计算机断层摄影医学成像系统
ES2823949B2 (es) * 2019-11-07 2022-02-02 Consejo Superior Investigacion Dispositivo y metodo de deteccion de fotones y particulas cargadas y uso de los mismos
US11397269B2 (en) * 2020-01-23 2022-07-26 Rapiscan Systems, Inc. Systems and methods for compton scatter and/or pulse pileup detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357661A (ja) * 2001-05-30 2002-12-13 Japan Science & Technology Corp ライン・プロジェクション導出型コンプトン・カメラ
JP2008232641A (ja) * 2007-03-16 2008-10-02 Hitachi Medical Corp 核医学診断装置
JP2014185852A (ja) * 2013-03-21 2014-10-02 Toshiba Corp 放射線検出装置及び放射線の検出方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821541A (en) * 1996-02-02 1998-10-13 Tuemer; Tuemay O. Method and apparatus for radiation detection
JPWO2007145154A1 (ja) 2006-06-14 2009-10-29 株式会社日立メディコ コンプトンカメラ装置
US8063379B2 (en) * 2006-06-21 2011-11-22 Avraham Suhami Radiation cameras
WO2011001610A1 (ja) 2009-07-03 2011-01-06 株式会社 日立製作所 ガンマ線方向検出装置および方法
JP6607576B2 (ja) * 2014-09-05 2019-11-20 国立研究開発法人理化学研究所 画像化装置及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357661A (ja) * 2001-05-30 2002-12-13 Japan Science & Technology Corp ライン・プロジェクション導出型コンプトン・カメラ
JP2008232641A (ja) * 2007-03-16 2008-10-02 Hitachi Medical Corp 核医学診断装置
JP2014185852A (ja) * 2013-03-21 2014-10-02 Toshiba Corp 放射線検出装置及び放射線の検出方法

Also Published As

Publication number Publication date
EP3316003A1 (en) 2018-05-02
EP3316003B1 (en) 2020-07-08
JP2017026524A (ja) 2017-02-02
EP3316003A4 (en) 2018-08-15
JP6551003B2 (ja) 2019-07-31
US20180180747A1 (en) 2018-06-28
US10088579B2 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2017018363A1 (ja) 放射線測定装置及び放射線測定方法
US10032813B2 (en) Active pixel radiation detector array and use thereof
JP4486623B2 (ja) コンプトン撮像カメラ
US9182506B2 (en) Methods and systems for signal communication in gamma ray detectors
JP2008232971A (ja) 核医学診断装置、及び光子測定装置
JP6257928B2 (ja) ガンマ線検出器
WO2017018362A1 (ja) 放射線測定装置及び放射線測定方法
US20140348290A1 (en) Apparatus and Method for Low Capacitance Packaging for Direct Conversion X-Ray or Gamma Ray Detector
JP2011059099A (ja) 異なるサイズの光電子増倍管を使用したPET(陽電子放射トモグラフィ:positronemissiontomography)検出器素子
US10353083B2 (en) Monolithic digital x-ray detector stack with energy resolution
JP2007271400A (ja) 多重分割水平ミュオン検出手段を用いて構造物の内部構造情報を得る方法
JP2005208057A (ja) ガンマ線検出器及びガンマ線撮像装置
EP3163326B1 (en) Detector for compton camera and compton camera
JP4934826B2 (ja) 放射線画像検出モジュールおよび放射線画像検出装置
JPH09101371A (ja) ガンマ線検出方法及び検出装置
CN109668918A (zh) 处理装置、方法以及记录介质
Cerbone et al. Monte Carlo and experimental evaluation of a Timepix4 compact gamma camera for coded aperture nuclear medicine imaging with depth resolution
TW569030B (en) Radiation image detector
Hoover et al. Gamma-ray imaging with a Si/CsI (Tl) Compton detector
Iizuka et al. Spatial resolution improvement for point light source detection in scintillator cube using SPAD array with multi pinholes
WO2022147812A1 (en) Imaging methods using multiple radiation beams
JP2011099813A (ja) 2次元読み出し回路
KR20210045766A (ko) 컴프턴 영상 장치 및 이를 포함하는 단일 광자 및 양전자 단층 촬영 시스템
TW202319778A (zh) 成像系統、減少成像系統中的特徵影響的成像方法及電腦程式產品
KR20230150225A (ko) 비집속식 이중 방식 방사선 영상화 장비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15735389

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016830468

Country of ref document: EP