WO2017017811A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2017017811A1
WO2017017811A1 PCT/JP2015/071500 JP2015071500W WO2017017811A1 WO 2017017811 A1 WO2017017811 A1 WO 2017017811A1 JP 2015071500 W JP2015071500 W JP 2015071500W WO 2017017811 A1 WO2017017811 A1 WO 2017017811A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
electrode
main body
photoelectric conversion
imaging device
Prior art date
Application number
PCT/JP2015/071500
Other languages
English (en)
French (fr)
Inventor
智和 酒井
一到 酒村
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2015/071500 priority Critical patent/WO2017017811A1/ja
Publication of WO2017017811A1 publication Critical patent/WO2017017811A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/26Image pick-up tubes having an input of visible light and electric output
    • H01J31/28Image pick-up tubes having an input of visible light and electric output with electron ray scanning the image screen
    • H01J31/34Image pick-up tubes having an input of visible light and electric output with electron ray scanning the image screen having regulation of screen potential at cathode potential, e.g. orthicon
    • H01J31/38Tubes with photoconductive screen, e.g. vidicon

Definitions

  • the present invention relates to an imaging apparatus.
  • the image sensor is, for example, a photoelectric conversion device that divides an image to be imaged into a plurality of pixels and converts light received for each pixel into an electric signal (current).
  • Patent Document 1 discloses a planar imaging device having a photoelectric conversion target and a field emission cathode array.
  • Patent Document 2 discloses a flat-type imaging device having an electron emission source and a photoelectric conversion element.
  • Patent Document 3 discloses an imaging device having a photoconductive portion, an electron beam source, and a housing that forms a vacuum space in which electrons travel between the photoconductive portion and the electron beam source. .
  • the imaging device performs a photoelectric conversion operation by applying a relatively high voltage to an electron source, a photoelectric conversion member, or the like.
  • the electron source and the photoelectric conversion member are arranged in a housing that forms a vacuum space.
  • the electrical signal converted by the photoelectric conversion member is taken out from the vacuum space using the electrode.
  • the extracted electric signal has a signal intensity (that is, a current value) corresponding only to the intensity of light of the corresponding pixel.
  • the problem of increasing the electrical signal intensity of adjacent pixels is an example.
  • the current flowing through the other electrode is superimposed as noise on the extracted electric signal, a problem that the image quality is deteriorated is given as an example.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an image pickup apparatus that can extract an electric signal with low noise and has high image quality.
  • the invention according to claim 1 includes an electron source that emits electrons, a photoelectric conversion unit that receives an input light and electrons from the outside to generate an electric signal, a main body, and a translucent cover, and a surface of the translucent cover
  • a first region that is a part of the first region and a second region that is a part of the surface of the main body are arranged opposite to each other, and a housing having an internal space for accommodating an electron source and a photoelectric conversion unit
  • the connection electrode sandwiched between at least a part of the region and the second region and connected to the photoelectric conversion unit, and connected to the first region, the connection electrode, and the second region, and seals the internal space from the outside. And a sealing electrode to be stopped.
  • FIG. 1 is sectional drawing of the imaging device which concerns on Example 1
  • FIG. 2A and 2B are a circuit diagram and an operation explanatory diagram of the image pickup apparatus according to Embodiment 1.
  • 2 is a cross-sectional view illustrating a detailed structure of a sealing electrode of the imaging apparatus according to Embodiment 1.
  • FIG. (A) is a top view of the electron source of the imaging apparatus according to the first embodiment
  • (b) is a cross-sectional view and an operation explanatory diagram of the electron-emitting device of the imaging apparatus according to the first embodiment.
  • FIG. (A) is sectional drawing which shows the detailed structure of the sealing electrode of the imaging device which concerns on Example 2
  • (b) is a top view of the housing main body of the imaging device which concerns on Example 2.
  • FIG. (A) is sectional drawing of the imaging device which concerns on Example 3
  • (b) is a top view of the imaging device which concerns on Example 3.
  • FIG. (A) And (b) is sectional drawing which shows the manufacturing method of the imaging device which concerns on Example 3.
  • FIG. (A) is a figure which shows the equipotential line in the imaging device which concerns on Example 3
  • (b) is a figure which shows the equipotential line in the imaging device which concerns on a comparative example.
  • FIG. 1A is a cross-sectional view of the imaging apparatus 10 according to the first embodiment.
  • the imaging apparatus 10 includes an electron source 20 that emits electrons, and a photoelectric conversion film (photoelectric conversion unit) 30 that receives an input light from the outside and electrons from the electron source 20 to generate an electric signal.
  • the imaging device 10 includes a housing HS having an internal space IS that houses the electron source 20 and the photoelectric conversion film 30.
  • the housing HS includes a housing main body (hereinafter simply referred to as a main body) 11 and a translucent cover (hereinafter simply referred to as a cover) 12.
  • the internal space IS is kept in a vacuum state.
  • the main body 11 includes a main body bottom portion (hereinafter simply referred to as a bottom portion) 11A, a main body base portion (hereinafter simply referred to as a base portion) 11B, and a main body upper portion (hereinafter simply referred to as an upper portion) 11C.
  • the main body 11 has a structure in which a bottom portion 11A and an upper portion 11C are joined so as to sandwich a flat plate-like base portion 11B.
  • the main body 11 is made of an insulating material such as glass or ceramics.
  • the cover 12 has translucency.
  • the cover 12 has a flat plate shape.
  • the cover 12 is made of, for example, borosilicate glass, metal beryllium, quartz, or the like. Note that in this specification, translucency refers to a property of transmitting at least part of photons.
  • a transparent electrode film (connection electrode) 13 is formed on the cover 12.
  • the translucent electrode film 13 has translucency and is formed in a film shape on the main surface of the cover 13.
  • the translucent electrode film 13 is made of, for example, ITO or IZO.
  • the photoelectric conversion film 30 is formed in a film shape on the translucent electrode film 13.
  • the photoelectric conversion film 30 is made of, for example, a HARP (High-gain Avalanche Rushing amorphous Photoconductor) photoelectric conversion film.
  • the main body 11 and the cover 12 have surface regions RS1 and RS2 arranged to face each other with the translucent electrode film 13 interposed therebetween. That is, the housing HS is composed of a main body 11 and a cover 12 that are arranged with their surface regions RS1 and RS2 facing each other.
  • the first region (first surface region) RS1 which is a part of the surface of the cover 12
  • the second region (second surface region) RS2 which is a part of the surface of the main body 11 are used. Are arranged opposite to each other.
  • the upper end surface (surface outer peripheral portion) of the upper portion 11C of the main body 11 and the outer edge portion (surface outer peripheral portion) of the main surface of the cover 12 are abutted with each other with the translucent electrode film 13 interposed therebetween. Yes.
  • the translucent electrode film 13 is sandwiched between at least a part of the main region 11 and the cover 12 between the first region RS1 and the second region RS2 facing each other.
  • the translucent electrode film 13 is connected to the photoelectric conversion film 30.
  • the imaging device 10 also includes a sealing electrode 14 that seals the internal space IS from the outside of the first region RS1 and the second region RS2 of the main body 11 and the cover 12 facing each other. Further, the sealing electrode 14 is connected to the translucent electrode film 13 outside the first region RS1 and the second region RS2 facing each other. Further, the sealing electrode 14 is connected (bonded) to the first region RS1, the translucent electrode film 13, and the second region RS2.
  • the sealing electrode 14 functions as an electrode for taking out an electric signal generated by the photoelectric conversion film 30 to the outside.
  • the sealing electrode 14 is made of a conductive material such as indium, for example.
  • a ring 15 is provided on the outer side of the sealing electrode 14.
  • the ring 15 is made of, for example, a metal material or a resin material.
  • the ring 15 protects the outer portion of the sealing electrode 14.
  • the inner surface of the ring 15 has a tapered shape.
  • the electron source 20 is disposed opposite to the photoelectric conversion film 30 in the housing HS. More specifically, the base portion 11B is disposed to face the photoelectric conversion film 30, and the electron source 20 is formed on the base portion 11B.
  • the imaging apparatus 10 includes an acceleration electrode 16 formed between the electron source 20 and the photoelectric conversion film 30. The acceleration electrode 16 is formed in a mesh shape in the housing HS. The acceleration electrode 16 accelerates the electrons emitted from the electron source 20.
  • a getter 17 that adsorbs gas in the internal space IS is provided on the bottom 11A of the main body 11.
  • the getter 17 adsorbs the active gas in the internal space IS and maintains the vacuum state of the internal space IS.
  • the internal space IS in the housing HS includes a bottom space formed by the bottom portion 11A and the base portion 11B of the main body 11, and an upper space formed by the base portion 11B, the upper portion 11C, and the cover 12.
  • the base 11B is provided with a through hole that connects the bottom space and the top space.
  • the getter 17 adsorbs gas in the bottom space and the top space.
  • the bottom space of the internal space IS functions as a getter room where the getter 17 adsorbs the gas in the internal space IS.
  • FIG. 1B is a schematic top view of the imaging apparatus 10.
  • 1A is a cross-sectional view taken along the line VV in FIG. 1B.
  • the housing HS the main body 11 and the cover 12
  • the sealing electrode 14 and the ring 15 have a circular outer shape in a top view.
  • the electron source 20 and the photoelectric conversion film 30 have a rectangular shape in a top view.
  • FIG. 2 is a diagram illustrating a circuit diagram of the imaging apparatus 10.
  • a circuit and an imaging operation of the imaging apparatus 10 will be described with reference to FIG.
  • a case where the ring 15 is made of a metal material (has conductivity) will be described. That is, the electrical signal generated by the photoelectric conversion film 30 is taken out through the translucent electrode film 13, the sealing electrode 14, and the ring 15.
  • the ring 15 is made of an insulating material such as a resin
  • the following elements connected to the ring 15 may be connected to the sealing electrode 14 instead of the ring 15.
  • the ring 15 is connected to one end of the capacitor C1, and the other end of the capacitor C1 is connected to an external terminal.
  • One end of the capacitor C1 is connected to the power source S1 through a resistor.
  • One end of the capacitor C1 is connected to one end of the capacitor C2.
  • the ring 15 is connected to one end of the capacitor C2.
  • the other end of the capacitor C2 is connected to the acceleration electrode 16.
  • the other end of the capacitor C2 is connected to the power source S2 via a resistor.
  • the electron source 20 is connected to the power source S3 via a resistor.
  • the electron EL emitted from the electron source 20 is accelerated by the acceleration electrode 16 and enters the photoelectric conversion film 30.
  • photons PH are incident on the photoelectric conversion film 30 through the cover 12 and the translucent electrode film 13 from the outside.
  • the photoelectric conversion film 30 receives the photons PH and generates hole HO.
  • the signal current SC is generated by combining the electron EL and the hole HO.
  • This signal current SC is taken out from an external terminal as an electric signal through the translucent electrode film 13, the sealing electrode 14, and the ring 15.
  • the main body 11 and the cover 12 have a first region RS1 and a second region RS2 that are arranged to face each other with the translucent electrode film 13 interposed therebetween.
  • the sealing electrode 14 seals the internal space IS of the housing HS outside the first region RS1 and the second region RS2 of the main body 11 and the cover 12 facing each other. Further, the sealing electrode 14 is connected to the translucent electrode film 13 (that is, the photoelectric conversion film 30) outside the first region RS1 and the second region RS2 facing each other. That is, the sealing electrode 14 that is an extraction electrode for the electric signal (signal current SC) is not exposed to the internal space IS (in the vacuum space).
  • the sealing electrode 14 has a lower hardness than the main body 11, the cover 12, and the translucent electrode film 13.
  • the distance between the electron source 20 and the photoelectric conversion film 30 can be cited as a parameter for condensing the electron EL from the electron source 20 to the photoelectric conversion film 30. If the main body 11 and the cover 12 are brought into contact with each other via the sealing electrode 14, the sealing electrode 14 is easily deformed, and the position of the cover 12 with respect to the main body 11 becomes unstable.
  • the sealing electrode 14 is formed only outside the first region RS1 and the second region RS2, and the main body 11 and the cover 12 that are rigid bodies are light-transmissive electrode films that are rigid bodies. It is faced through only 13. Therefore, the main body 11 and the cover 12 are reliably positioned. Thereby, the electron EL can be reliably condensed on the photoelectric conversion film 30, and the photoelectric conversion accuracy, that is, the image quality is improved.
  • FIG. 3 is a cross-sectional view showing the detailed structure of the sealing electrode 14.
  • FIG. 3 is a partially enlarged cross-sectional view showing a portion surrounded by a broken line in FIG.
  • the translucent electrode film (connection electrode) 13 is in direct contact with both the first and second surface regions RS1 and RS2.
  • the cover 12 has a chamfered portion (first chamfered portion) CH1 at the outer edge portion of the first surface region RS1.
  • the translucent electrode film 13 is formed over the chamfered portion CH1 provided in the first surface region RS1.
  • the sealing electrode 14 is formed by filling a region R1 between the translucent electrode film 13 and the second surface region RS2 on the chamfered portion CH1. That is, a gap is formed between the surface of the translucent electrode film 13 on the chamfered portion CH1 and the second surface region RS2.
  • the sealing electrode 14 is in contact with the surface of the translucent electrode film 13 formed on the chamfered portion CH1 by filling the gap region (space) R1.
  • the sealing electrode 14 is connected to the side surface of the translucent electrode film 13 and a part of the surface. Therefore, the sealing electrode 14 and the translucent electrode film 13 are reliably connected. As a result, an electric signal can be stably taken out.
  • the cover 12 has the chamfered portion CH1
  • the cover 12 is not limited to the case where the cover 12 has the chamfered portion CH1.
  • the sealing electrode 14 seals the internal space IS outside the first region RS1 and the second region RS2, and is connected to the translucent electrode film 13 outside the first region RS1 and the second region RS2. It only has to be done. For example, even if the sealing electrode 14 is connected only to the side surface of the translucent electrode film 13, it is possible to sufficiently ensure the electrical connection between them. For example, when the film thickness of the translucent electrode film 13 is reduced, a sufficient contact portion with the sealing electrode 14 may not be formed on the side surface. In this case, it is preferable that the sealing electrode 14 is formed after the chamfered portion CH1 is provided as in this embodiment, and the connection region with the translucent electrode film 13 is substantially enlarged.
  • the main body 11 has an outer portion (first outer portion) 11S that is tapered toward the first region RS1 and the second region RS2 (second region RS2).
  • the cover 12 includes an outer portion (second outer portion) 12S having a shape that inherits the tapered shape of the outer portion 11S.
  • the ring 15 has a tapered inner side surface 15S that fits with the outer portions 11S and 12S.
  • the sealing electrode 14 is formed so as to enter between the outer portions 11S and 12S and the inner side surface 15S.
  • the outer portion 11S of the main body 11 has a tapered shape toward the first region RS1 and the second region RS2, so that the position of the high voltage member (for example, the acceleration electrode 16 and the electron source 20) in the main body 11 can be reduced.
  • the distance between the sealing electrode 14 can be increased. Therefore, for example, the distance between the sealing electrode 14 and the acceleration electrode 16 is increased, and stray capacitance that may be generated between the two is suppressed. Therefore, it is possible to reduce noise superposition on the electric signal (signal current SC).
  • the outer portion 12S of the cover 12 has a shape that inherits the tapered shape of the outer portion 11S of the main body 11. Further, the ring 15 has a tapered inner side surface 15S that fits with the outer portions 11S and 12S. Therefore, the alignment in the direction parallel to 1st area
  • the housing HS has a circular outer shape when viewed from above. Accordingly, the first and second outer portions 11S and 12S in the main body 11 and the cover 12 have a truncated cone-shaped taper shape. Thereby, alignment (alignment) of the main body 11 and the cover 12 in a plane parallel to the first region RS1 and the second region RS2 is performed reliably and accurately.
  • FIG. 4A is a diagram showing the upper surface of the electron source 20 together with the drive circuit of the electron source 20.
  • the electron source 20 includes an electron source array including a plurality of electron-emitting devices 21 arranged in a matrix.
  • the electron-emitting device 21 is, for example, a cold cathode type electron-emitting device having a HEED (High-efficiency Electron Emission Device) structure. That is, the electron source 20 includes a HEED cold cathode array.
  • HEED High-efficiency Electron Emission Device
  • the electron source 20 is connected to an X scanning driver (horizontal scanning circuit) DX and a Y scanning driver (vertical scanning circuit) DY that drive each of the electron-emitting devices 21 by active matrix driving.
  • a controller CO is connected to the X scan driver DX and the Y scan driver DY.
  • FIG. 4B is a cross-sectional view showing the structure of the electron-emitting device 21.
  • the electron emitter 21 includes an electron emission source 21A and a switch 21B.
  • the switch 21B is connected to the X scan driver DX and the Y scan driver DY, and switches between electron emission and electron emission stop of the electron emission source 21A.
  • the switch 21B includes a MOS transistor including a gate electrode G connected to the X scan driver DX, a source electrode S connected to the Y scan driver DY, and a drain electrode D connected to the electron emission source 21A.
  • the electron emission source 21A includes, for example, a lower electrode BE connected to the switch 21B, a silicon (Si) layer L1, a silicon oxide (SiO x ) layer L2, for example, an upper electrode UE made of tungsten (W), and a carbon (C) layer.
  • This is a MIS (Metal Insulator Semiconductor) type cold cathode electron emission source having a laminated structure of L3.
  • One electron-emitting device 21 emits electrons EL toward the region of the photoelectric conversion film 30 corresponding to one pixel.
  • An emission site ES that is an opening for electron emission is provided on the surface of the electron emitter 21.
  • the electron EL is emitted from the emission site ES, accelerated by the acceleration electrode 16, and enters the photoelectric conversion film 30.
  • the case where the ring 15 and the acceleration electrode 16 are provided has been described.
  • the ring 15 and the acceleration electrode 16 may not be provided.
  • the shape of the outer side parts 11S and 12S of the main body 11 and the cover 12 is not limited to this.
  • the outer portions 11S and 12S may have a cylindrical shape or may have a step shape.
  • the sealing electrode 14 should just be formed so that the area
  • the imaging device 10 having a structure for extracting an electric signal with low noise.
  • FIG. 5A is a cross-sectional view illustrating the structure of the imaging device 40 of the second embodiment.
  • FIG. 5A is a cross-sectional view similar to FIG.
  • the imaging device 40 has the same configuration as that of the imaging device 10 except for the structure of the main body 41 and the sealing electrode 44.
  • FIG. 5B is a top view of the main body 41.
  • the main body 41 has a chamfered portion (second chamfered portion) CH2 in at least a part of the outer edge portion of the second region RS2.
  • the chamfered portion CH2 is formed (partially) in four locations on the outer edge portion of the second region RS2.
  • chamfer part CH2 may be partially formed in the outer edge part of 2nd area
  • the sealing electrode 44 is formed so as to fill a region R2 between the translucent electrode film 13 and the second chamfered portion CH2 on the first chamfered portion CH1.
  • a region RS2 between the translucent electrode film 13 and the second chamfered portion CH2 on the first chamfered portion CH1 is illustrated.
  • a region R1 (see FIG. 3) is provided between the first chamfered portion CH1 and the portion of the second region RS2 where the second chamfered portion CH2 is not formed. That is, in this embodiment, the sealing electrode 44 is provided so as to fill both the gap regions R1 and R2.
  • 2nd chamfer part CH2 is formed in the whole outer edge of 2nd area
  • the sealing electrode 44 fills the gap region R2 between the translucent electrode film 13 and the second chamfered portion CH2 on the first chamfered portion CH1. That is, the sealing electrode 44 fills both the gap regions R1 and R2.
  • the contact area between the sealing electrode 44 and the translucent electrode film 13 is enlarged. Further, the contact surface (bonding surface) between the sealing electrode 44 and the main body 41 is enlarged. This increases the bonding strength between the sealing electrode 44 and the main body 41.
  • FIG. 6A is a cross-sectional view illustrating the structure of the imaging device 50 according to the third embodiment.
  • FIG. 6B is a top view of the imaging device 50.
  • FIG. 6A is a cross-sectional view taken along the line WW in FIG. 6B.
  • illustration of the sealing electrode 14 is omitted for easy understanding.
  • the imaging device 50 has the same configuration as the imaging device 10 except for the structure of the translucent electrode film (connection electrode) 53 and the accompanying photoelectric conversion film 30A.
  • the translucent electrode film 53 is formed only in a partial region between the first region RS1 and the second region RS2. That is, the translucent electrode film 53 is not formed on the entire (all circumferences) of the first region RS1 and the second region RS2.
  • the connection region with the sealing electrode 14 can be reduced.
  • the stray capacitance in the internal space IS compared to the case where the translucent electrode film 53 and the sealing electrode 14 are connected all around the first region RS1 and the second region RS2. Is reduced.
  • wiring is performed so that a voltage is concentratedly applied to a connection portion between the partially formed translucent electrode film 53 and the sealing electrode 14, so that another sealing electrode 14 can be applied.
  • Application of a high voltage to the region is suppressed. Therefore, the increase in stray capacitance, that is, the possibility of noise superposition can be reduced.
  • FIGS. 7A and 7B are cross-sectional views illustrating the manufacturing process of the imaging device 50.
  • FIGS. FIG. 7A is a diagram illustrating a state in which the main body 11, the cover 12, and the ring 15 are temporarily formed
  • FIG. 7B is a diagram illustrating a state in which the imaging device 50 is completed.
  • the imaging device 50 can be manufactured, for example, by temporarily forming parts on the main body 11, the cover 12, and the ring 15 and combining them. First, for the main body 11, the getter 17 is formed on the bottom surface of the bottom portion 11A.
  • the base portion 11B having a through hole is joined to the upper opening of the bottom portion 11A.
  • the electron source 20 is formed on the base 11B.
  • a ring-shaped upper portion 11C having an inner surface having a stepped portion and a tapered outer portion 11S is prepared.
  • the upper portion 11C is joined to the base portion 11B so that one of the openings of the upper portion 11C is disposed around the electron source 20.
  • the acceleration electrode 16 is formed on the step portion on the inner side surface of the upper portion 11C.
  • a translucent electrode film 53 is formed on the main surface of the cover 12 having the tapered outer portion 12S.
  • the translucent electrode film 53 is formed by leaving a portion where the main surface of the translucent cover 12 is exposed on the outer peripheral portion of the main surface of the cover 12.
  • the photoelectric conversion film 30 is formed on the translucent electrode film 53.
  • a ring 15 having a tapered inner side surface 15S is prepared.
  • the sealing electrode 14 is formed on the inner side surface 15 ⁇ / b> S of the ring 15.
  • the imaging device 50 can be manufactured as shown in FIG.
  • the translucent electrode film 53 is partially formed on the first region RS1 of the cover 12. Therefore, immediately after the cover 12 is brought into contact with the main body 11, the first region RS1 is slightly inclined with respect to the second region RS2. However, by fitting the ring 15, the first and second regions RS1 and RS2 become parallel. Therefore, the main body 11 and the cover 12 are reliably aligned.
  • the imaging device 50 is manufactured has been described.
  • the imaging device 10 or 40 can be manufactured in the same process.
  • the translucent electrode film 13 can be formed by forming the translucent electrode film so as to cover the entire main surface of the cover 12.
  • sealing electrode 44 can be produced by forming chamfer CH1 or CH2 in 1st or 2nd area
  • FIGS. 8A and 8B are diagrams showing equipotential lines in the imaging device 50 (Example 3) and the imaging device 100 (Comparative Example), respectively.
  • the imaging apparatus 100 is different from the imaging device 100 except that the sealing electrode 114 is formed on the mating surface of the main body 11 and the cover 12 and that the translucent electrode film 113 is connected to the sealing electrode 114 in the housing.
  • the configuration is the same as that of the imaging device 50.
  • 8A and 8B show cross sections of the imaging devices 50 and 100, respectively, but hatching is omitted for clarity of illustration.
  • the equipotential lines at the end of the acceleration electrode 16 in the imaging device 50 are at the end of the acceleration electrode 16 in the imaging device 100. As shown in FIG. It is sparser than equipotential lines.
  • the interval between the sealing electrode 14 and the acceleration electrode 16 can be increased. Further, the stray capacitance between the sealing electrode 14 and the acceleration electrode 16 can be reduced. Therefore, for example, bending, disturbance, or concentration of equipotential lines at the end of the photoelectric conversion film 30 (end of the image sensor) as shown in FIG. 8B can be suppressed. Thereby, the imaging device 50 with high image quality can be provided.
  • the equipotential line between the acceleration electrode 16 and the sealing electrode 14 is sparser than the equipotential line between the acceleration electrode 16 and the photoelectric conversion film 30. It has become. That is, it can be seen that in the imaging device 50, the disturbance of the electric field is greatly suppressed. Thus, in the imaging device 50, the signal current SC with lower noise can be taken out as an electric signal.
  • the translucent electrode film (connection electrode) 53 is formed only in a partial region between the regions RS1 and RS2. Therefore, noise superimposed on the electric signal generated by the photoelectric conversion film 30 is reduced. Therefore, the imaging device 50 with high image quality can be provided.
  • chamfered portions CH1 and CH2 may be formed in the first and second regions RS1 and RS2 in the imaging device 50.
  • Imaging device 20 Electron source 30 Photoelectric conversion film (photoelectric conversion unit) 11 Housing Body 12 Translucent Cover HS Housing 13 Translucent Electrode Film (Connection Electrode) 14 sealing electrode RS1 1st field RS2 2nd field CH1 1st chamfering part CH2 2nd chamfering part

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

低ノイズで電気信号を取り出すことが可能で画像品質の高い撮像装置を提供する。電子を放出する電子源(20)と、外部からの入力光及び電子を受けて電気信号を生成する光電変換部(30)と、本体(11)及び透光カバー(12)を含み、透光カバー(12)の表面の一部である第1の領域(RS1)と本体(11)の表面の一部である第2の領域(RS2)とが互いに対向して配され、電子源(20)及び光電変換部(30)を収容する内部空間を有するハウジング(HS)と、第1の領域(RS1)及び第2の領域(RS2)間の少なくとも一部の領域に挟まれて光電変換部(30)に接続された接続電極(13)と、第1の領域(RS1)、接続電極(13)及び第2の領域(RS2)に接続され、外側から内部空間を封止する封止電極(14)と、を有する撮像装置。

Description

撮像装置
 本発明は、撮像装置に関する。
 撮像素子は、例えば、撮像対象となる画像を複数の画素に区画し、画素毎に受光した光を電気信号(電流)に変換する光電変換装置である。例えば、特許文献1には、光電変換ターゲット及び電界放出型陰極アレイを有する平面型撮像装置が開示されている。特許文献2には、電子放出源及び光電変換素子を有する平面型撮像装置が開示されている。また、特許文献3には、光導電部と、電子ビーム源と、光導電部と電子ビーム源との間に電子が走行する真空空間を形成する筐体とを有する撮像デバイスが開示されている。
特開2000-48743号公報 特開2002-270122号公報 特開2009-123423号公報
 例えば、撮像装置は、電子源や光電変換部材などに対して比較的高い電圧を印加して光電変換動作を行う。また、例えば、電子源や光電変換部材は、真空空間を形成する筐体内に配置される。光電変換部材によって変換された電気信号は、電極を用いて真空空間から外部に取出される。一般に、画像品質を考慮すると、取出される電気信号は、対応する画素の光の強度のみに応じた信号強度(すなわち電流値)を有することが好ましい。例えば、電子源から供給される電子が隣接する画素領域に供給されると、隣接する画素の電気信号強度を大きくしてしまうという課題が一例として挙げられる。また、例えば、取出される電気信号に対し、他の電極に流れている電流がノイズとして重畳されると、画像品質が低下するという課題が一例として挙げられる。
 本発明は上記した点に鑑みてなされたものであり、低ノイズで電気信号を取り出すことが可能で画像品質の高い撮像装置を提供することを課題の1つとしている。
 請求項1に記載の発明は、電子を放出する電子源と、外部からの入力光及び電子を受けて電気信号を生成する光電変換部と、本体及び透光カバーを含み、透光カバーの表面の一部である第1の領域と本体の表面の一部である第2の領域とが互いに対向して配され、電子源及び光電変換部を収容する内部空間を有するハウジングと、第1の領域及び第2の領域間の少なくとも一部の領域に挟まれて光電変換部に接続された接続電極と、第1の領域、接続電極及び第2の領域に接続され、外側から内部空間を封止する封止電極と、を有することを特徴としている。
(a)は、実施例1に係る撮像装置の断面図であり、(b)は、実施例1に係る撮像装置の上面図である。 実施例1に係る撮像装置の回路図及び動作説明図である。 実施例1に係る撮像装置の封止電極の詳細構造を示す断面図である。 (a)は、実施例1に係る撮像装置の電子源の上面図であり、(b)は、実施例1に係る撮像装置の電子放出素子の断面図及び動作説明図である。 (a)は、実施例2に係る撮像装置の封止電極の詳細構造を示す断面図であり、(b)は、実施例2に係る撮像装置のハウジング本体の上面図である。 (a)は、実施例3に係る撮像装置の断面図であり、(b)は、実施例3に係る撮像装置の上面図である。 (a)及び(b)は、実施例3に係る撮像装置の製造方法を示す断面図である。 (a)は、実施例3に係る撮像装置における等電位線を示す図であり、(b)は、比較例に係る撮像装置における等電位線を示す図である。
 以下、本発明の実施例について詳細に説明する。
 図1(a)は、実施例1に係る撮像装置10の断面図である。撮像装置10は、電子を放出する電子源20と、外部からの入力光及び電子源20からの電子を受けて電気信号を生成する光電変換膜(光電変換部)30と、を有する。また、撮像装置10は、電子源20及び光電変換膜30を収容する内部空間ISを有するハウジングHSを有する。ハウジングHSは、ハウジング本体(以下、単に本体と称する)11及び透光カバー(以下、単にカバーと称する)12を含む。本実施例においては、内部空間ISは真空状態に保たれている。
 本実施例においては、本体11は、本体底部(以下、単に底部と称する)11A、本体基部(以下、単に基部と称する)11B及び本体上部(以下、単に上部と称する)11Cからなる。本体11は、平板形状の基部11Bを挟むように底部11A及び上部11Cが接合された構造を有する。本体11は、例えば、ガラスやセラミックスなどの絶縁材料からなる。
 カバー12は、透光性を有する。本実施例においては、カバー12は、平板形状を有する。カバー12は、例えば、硼ケイ酸ガラス、金属ベリリウム、石英などからなる。なお、本明細書においては、透光性とは、少なくとも一部の光子を透過させる特性をいう。
 カバー12上には、透光性電極膜(接続電極)13が形成されている。本実施例においては、透光性電極膜13は、透光性を有し、カバー13の主面上に膜状に形成されている。透光性電極膜13は、例えばITO又はIZOからなる。光電変換膜30は、透光性電極膜13上に膜状に形成されている。光電変換膜30は、例えば、HARP(High-gain Avalanche Rushing amorphous Photoconductor)光電変換膜からなる。
 本体11及びカバー12は、透光性電極膜13を挟んで互いに対向して配された表面領域RS1及びRS2を有する。すなわち、ハウジングHSは、各々の表面領域RS1及びRS2を互いに対向させて配された本体11及びカバー12からなる。本実施例においては、カバー12の表面の一部である第1の領域(第1の表面領域)RS1と、本体11の表面の一部である第2の領域(第2の表面領域)RS2とが互いに対向して配されている。また、本実施例においては、本体11の上部11Cの上端面(表面外周部)とカバー12の主面の外縁部(表面外周部)とが透光性電極膜13を挟んで互いに突き合わされている。透光性電極膜13は、本体11及びカバー12の互いに対向する第1の領域RS1及び第2の領域RS2間の少なくとも一部の領域に挟まれている。また透光性電極膜13は光電変換膜30に接続されている。
 また、撮像装置10は、本体11及びカバー12の互いに対向する第1の領域RS1及び第2の領域RS2の外側から内部空間ISを封止する封止電極14を有する。また、封止電極14は、互いに対向する第1の領域RS1及び第2の領域RS2の外側において透光性電極膜13に接続されている。また、封止電極14は、第1の領域RS1、透光性電極膜13及び第2の領域RS2に接続(接合)されている。
 封止電極14は、光電変換膜30によって生成された電気信号の外部への取り出し電極として機能する。封止電極14は、例えば、インジウムなどの導電材料からなる。また、封止電極14の外側部には、リング15が設けられている。リング15は、例えば、金属材料や樹脂材料からなる。リング15は、封止電極14の外側部を保護する。本実施例においては、リング15の内側面は、テーパ形状を有する。
 電子源20は、ハウジングHS内において光電変換膜30に対向して配置されている。より具体的には、基部11Bは光電変換膜30に対向して配置され、電子源20は基部11B上に形成されている。また、撮像装置10は、電子源20及び光電変換膜30間に形成された加速電極16を有する。加速電極16は、ハウジングHS内においてメッシュ状に形成されている。加速電極16は、電子源20から放出された電子を加速させる。
 本体11の底部11Aには、内部空間IS内のガスを吸着するゲッタ17が設けられている。例えば、ゲッタ17は、内部空間IS内の活性ガスを吸着し、内部空間ISの真空状態を保つ。本実施例においては、ハウジングHS内の内部空間ISは、本体11の底部11A及び基部11Bによって形成された底部空間と、基部11B、上部11C及びカバー12によって形成された上部空間とからなる。また、基部11Bには、底部空間及び上部空間を接続する貫通孔が設けられている。ゲッタ17は、底部空間及び上部空間のガスを吸着する。内部空間ISの底部空間は、ゲッタ17が内部空間IS内のガスを吸着するゲッタールームとして機能する。
 図1(b)は、撮像装置10の模式的な上面図である。なお、図1(a)は、図1(b)におけるV-V線に沿った断面図である。図1(b)に示すように、ハウジングHS(本体11及びカバー12)、封止電極14及びリング15は、上面視において円形の外形を有する。また、電子源20及び光電変換膜30は、上面視において矩形形状を有している。
 図2は、撮像装置10の回路図を示す図である。図2を用いて撮像装置10の回路及び撮像動作について説明する。ここでは、リング15が金属材料からなる(導電性を有する)場合について説明する。すなわち、光電変換膜30によって生成された電気信号は、透光性電極膜13、封止電極14及びリング15を介して外部に取出される。なお、リング15が樹脂などの絶縁材料からなる場合、以下のリング15に接続された素子を、リング15ではなく封止電極14に接続すればよい。
 リング15は、キャパシタC1の一端に接続され、キャパシタC1の他端は外部端子に接続されている。また、キャパシタC1の一端は、抵抗を介して電源S1に接続されている。キャパシタC1の一端は、キャパシタC2の一端に接続されている。また、リング15は、キャパシタC2の一端に接続されている。キャパシタC2の他端は、加速電極16に接続されている。また、キャパシタC2の他端は、抵抗を介して電源S2に接続されている。また、電子源20は、抵抗を介して電源S3に接続されている。
 次に、撮像装置10の概略的な撮像動作について説明する。電子源20から放出された電子ELは、加速電極16によって加速され、光電変換膜30に入射する。一方、光電変換膜30には、外部からカバー12及び透光性電極膜13を介して、光子PHが入射する。光電変換膜30は、光子PHを受けて正孔HOを生成する。ここで、光電変換膜30内では、電子EL及び正孔HOが結合することで、信号電流SCが発生する。この信号電流SCは、電気信号として、透光性電極膜13、封止電極14及びリング15を介して外部端子から取出される。この動作を光電変換膜30における複数の画素領域に対して順次行うことで、画素毎の電気信号の集合である画像データが生成される。
 本実施例においては、本体11及びカバー12は、透光性電極膜13を挟んで互いに対向して配された第1の領域RS1及び第2の領域RS2を有する。また、封止電極14は、本体11及びカバー12の互いに対向する第1の領域RS1及び第2の領域RS2の外側でハウジングHSの内部空間ISを封止する。また、封止電極14は、互いに対向する第1の領域RS1及び第2の領域RS2の外側で透光性電極膜13(すなわち光電変換膜30)に接続されている。すなわち、電気信号(信号電流SC)の取り出し電極である封止電極14は、内部空間IS(真空空間内)に露出していない。これによって、封止電極14に高電圧が印加された場合でも、高電圧が印加された他の導電部材(例えば電子源20や加速電極16)との間に浮遊容量が生成されにくい。従って、封止電極14上において信号電流SCにノイズが重畳されることが抑制される。
 また、例えば、封止電極14としてのインジウムは、本体11、カバー12及び透光性電極膜13に比べて硬度が小さい。ここで、電子ELを電子源20から光電変換膜30に集光させるパラメータとして電子源20及び光電変換膜30間の距離が挙げられる。仮に封止電極14を介して本体11及びカバー12を突き合わせると、封止電極14が容易に変形し、本体11に対するカバー12の位置が不安定になる。これに対し、本実施例においては、封止電極14は第1の領域RS1及び第2の領域RS2の外側のみに形成し、剛体である本体11及びカバー12が剛体である透光性電極膜13のみを介して突き合わせられている。従って、本体11及びカバー12が確実に位置決めされる。これによって、電子ELを光電変換膜30に確実に集光させることができ、光電変換精度、すなわち画像品質が向上する。
 図3は、封止電極14の詳細構造を示す断面図である。図3は、図1(a)の破線で囲まれた部分を拡大して示す部分拡大断面図である。図3に示すように、まず、本実施例においては、カバー12の第1の表面領域RS1と、本体11の第2の表面領域RS2とが互いに対向して配されている。また、透光性電極膜(接続電極)13は、第1及び第2の表面領域RS1及びRS2の両方に直接に接触している。また、カバー12は、第1の表面領域RS1の外縁部に面取り部(第1の面取り部)CH1を有する。
 透光性電極膜13は、第1の表面領域RS1に設けられた面取り部CH1上に渡って形成されている。また、封止電極14は、面取り部CH1上の透光性電極膜13と第2の表面領域RS2との間の領域R1を充填して形成されている。つまり、面取り部CH1上の透光性電極膜13の表面と第2の表面領域RS2との間に隙間が形成される。封止電極14は、この隙間領域(空間)R1を充填することで、面取り部CH1上に形成された透光性電極膜13の表面に接触している。換言すれば、封止電極14は、透光性電極膜13の側面と、表面の一部とに接続されている。従って、封止電極14と透光性電極膜13とが確実に接続される。これによって、安定して電気信号を取り出すことができる。
 なお、本実施例においては、カバー12が面取り部CH1を有する場合について説明したが、カバー12は面取り部CH1を有する場合に限定されない。封止電極14は、第1の領域RS1及び第2の領域RS2の外側で内部空間ISを封止し、第1の領域RS1及び第2の領域RS2の外側で透光性電極膜13に接続されていればよい。例えば、封止電極14は、透光性電極膜13の側面のみに接続されていても、十分に両者の電気的接続を確保することができる。なお、例えば、透光性電極膜13は、膜厚を小さくした場合、その側面には封止電極14との十分なコンタクト部分が形成されない場合がある。この場合、本実施例のように面取り部CH1を設けた上で封止電極14を形成し、透光性電極膜13との接続領域を実質的に拡大することが好ましい。
 また、図3に示すように、本体11は、第1の領域RS1及び第2の領域RS2(第2の領域RS2)に向かってテーパ形状をなす外側部(第1の外側部)11Sを有する。また、カバー12は、外側部11Sのテーパ形状を引き継いだ形状の外側部(第2の外側部)12Sを有する。また、リング15は、外側部11S及び12Sに嵌め合うテーパ形状の内側面15Sを有する。また、封止電極14は、外側部11S及び12Sと内側面15Sとの間に入り込むように形成されている。
 まず、本体11の外側部11Sが第1の領域RS1及び第2の領域RS2に向かってテーパ形状を有することで、本体11内の高電圧部材(例えば加速電極16及び電子源20)の位置と封止電極14との間の距離を大きくすることができる。従って、例えば、封止電極14及び加速電極16間の距離が大きくなり、両者間に生じ得る浮遊容量が抑制される。従って、電気信号(信号電流SC)へのノイズの重畳を低減することができる。
 また、カバー12の外側部12Sは、本体11の外側部11Sのテーパ形状を引き継いだ形状を有する。また、リング15は、外側部11S及び12Sに嵌め合うテーパ形状の内側面15Sを有する。従って、本体11及びカバー12間の第1の領域RS1及び第2の領域RS2に平行な方向における位置合わせを容易に行うことができる。より具体的には、リング15を本体11及びカバー12にはめ込むことで、本体11及びカバー12の位置が自己整合的に定まる。従って、電子源20及び光電変換膜30の位置が容易にかつ正確に定まる。これによって、設計上の画素領域のみに正確に電子を供給することができる。従って、正確な信号電流SCを取り出すことができ、画像品質が向上する。
 また、図1(b)などに示すように、本実施例においては、ハウジングHSが上面視において円形の外形を有する。従って、本体11及びカバー12における第1及び第2の外側部11S及び12Sは、円錐台形のテーパ形状を有している。これによって、第1の領域RS1及び第2の領域RS2に平行な面内における本体11及びカバー12の位置合わせ(アライメント)が確実にかつ正確に行われる。
 図4(a)及び(b)を用いて、電子源20の一例について説明する。図4(a)は、電子源20の上面を電子源20の駆動回路と共に示す図である。図4(a)に示すように、本実施例においては、電子源20は、マトリクス状に並置された複数の電子放出素子21からなる電子源アレイを含む。電子放出素子21は、例えば、HEED(High-efficiency Electron Emission Device)構造の冷陰極型電子放出素子である。すなわち、電子源20は、HEED冷陰極アレイを含む。また、電子源20には、電子放出素子21の各々をアクティブマトリクス駆動によって駆動するX走査ドライバ(水平走査回路)DX及びY走査ドライバ(垂直走査回路)DYが接続されている。また、X走査ドライバDX及びY走査ドライバDYにはコントローラCOが接続されている。
 図4(b)は、電子放出素子21の構造を示す断面図である。図4(b)に示すように、電子放出素子21は、電子放出源21A及びスイッチ21Bを有する。スイッチ21Bは、X走査ドライバDX及びY走査ドライバDYに接続され、電子放出源21Aの電子放出及び電子放出停止を切替える。例えば、スイッチ21Bは、X走査ドライバDXに接続されたゲート電極G、Y走査ドライバDYに接続されたソース電極S及び電子放出源21Aに接続されたドレイン電極Dを含むMOSトランジスタからなる。
 電子放出源21Aは、例えば、スイッチ21Bに接続された下部電極BE、シリコン(Si)層L1、酸化シリコン(SiOx)層L2、例えばタングステン(W)からなる上部電極UE、炭素(C)層L3の積層構造からなるMIS(Metal Insulator Semiconductor)型の冷陰極電子放出源である。1つの電子放出素子21が1つの画素に対応した光電変換膜30の領域に向けて電子ELを放出する。電子放出素子21の表面部には、電子放出のための開口部であるエミッションサイトESが設けられている。電子ELは、エミッションサイトESから放出され、加速電極16によって加速されて光電変換膜30に入射する。
 なお、本実施例においては、リング15及び加速電極16が設けられる場合について説明したが、リング15及び加速電極16は設けられていなくてもよい。また、本体11及びカバー12がテーパ形状の外側部11S及び12Sを有する場合について説明したが、本体11及びカバー12の外側部11S及び12Sの形状はこれに限定されない。例えば、外側部11S及び12Sが円柱形状を有していてもよく、また、段差形状を有していてもよい。
 また、本実施例においては、第1の領域RS1の外縁部に面取り部CH1が形成される場合について説明したが、第1の領域RS1に代えて第2の領域RS2の外縁部に面取り部が形成されていてもよい。この場合、透光性電極膜13と第2の領域RS2に設けられた面取り部との間の領域を充填するように封止電極14が形成されていればよい。
 本実施例においては、第1の領域RS1、接続電極13及び第2の領域RS2に接続され、外側から内部空間ISを封止する封止電極14を有する。従って、低ノイズで電気信号を取り出す構造を有する撮像装置10を提供することができる。
 図5(a)は、実施例2の撮像装置40の構造を示す断面図である。図5(a)は、撮像装置40における図3と同様の断面図である。撮像装置40は、本体41及び封止電極44の構造を除いては撮像装置10と同様の構成を有している。図5(b)は、本体41の上面図である。本実施例においては、本体41は、第2の領域RS2の外縁部の少なくとも一部に面取り部(第2の面取り部)CH2を有する。本実施例においては、面取り部CH2は、図5(b)に示すように、第2の領域RS2の外縁部の4箇所に点在して(部分的に)形成されている。なお、面取り部CH2は、図5(b)に示すように第2の領域RS2の外縁部に部分的に形成されていてもよく、全体に形成されていてもよい。
 また、封止電極44は、第1の面取り部CH1上の透光性電極膜13と第2の面取り部CH2との間の領域R2を充填するように形成されている。なお、図5(a)においては、第1の面取り部CH1上の透光性電極膜13と第2の面取り部CH2との間の領域RS2を図示している。しかし、第2の面取り部CH2が形成されていない第2の領域RS2の部分には、第1の面取り部CH1との間に領域R1(図3参照)が設けられている。すなわち、本実施例においては、封止電極44は、隙間領域R1及びR2の両方を充填するように設けられている。なお、第2の領域RS2の外縁全体に第2の面取り部CH2が形成される場合、隙間領域R2のみが形成される。
 本実施例においては、カバー12のみならず、本体41にも面取り部CH2が設けられている。また、第1の面取り部CH1上の透光性電極膜13と第2の面取り部CH2との間の隙間領域R2を封止電極44が充填している。すなわち、封止電極44は、隙間領域R1及びR2の両方を充填している。本体41が第2の面取り部CH2を有することによって、封止電極44と透光性電極膜13との接触領域が拡大される。また、封止電極44と本体41との接触面(接合面)が拡大される。これによって、封止電極44と本体41との接合強度が増大する。従って、封止電極44と透光性電極膜13との間の良好な電気的接続を得るのみならず、封止電極44と本体41(及びカバー12)との強固な機械的接続を得ることができる。従って、確実にかつ安定して信号電流SCを取り出すことが可能となる。
 図6(a)は、実施例3に係る撮像装置50の構造を示す断面図である。図6(b)は、撮像装置50の上面図である。なお、図6(a)は、図6(b)のW-W線に沿った断面図である。図6(b)においては、理解の容易さのため、封止電極14の図示を省略している。撮像装置50は、透光性電極膜(接続電極)53及びこれに付随する光電変換膜30Aの構造を除いては、撮像装置10と同様の構成を有している。
 図6(a)及び図6(b)に示すように、透光性電極膜53は、第1の領域RS1及び第2の領域RS2間の一部の領域のみに形成されている。つまり、透光性電極膜53は、第1の領域RS1及び第2の領域RS2の全体(全周)には形成されていない。このように透光性電極膜53を形成すると、封止電極14との接続領域を小さくすることができる。本実施例においては、第1の領域RS1及び第2の領域RS2の全周において透光性電極膜53及び封止電極14が接続されている場合に比べて、内部空間IS内での浮遊容量が低減される。より具体的には、例えば、部分的に形成された透光性電極膜53と封止電極14との接続部分に集中的に電圧を印加するように配線することで、他の封止電極14の領域に高電圧が印加されることが抑制される。従って、浮遊容量の増加、すなわちノイズ重畳の可能性を低減することができる。
 図7(a)及び(b)を用いて、撮像装置50の製造過程を示す断面図である。図7(a)は、本体11、カバー12及びリング15が仮形成された状態を示す図であり、図7(b)は、撮像装置50が完成した状態を示す図である。撮像装置50は、例えば、本体11、カバー12及びリング15に大きく部品を分けて仮形成し、これらを組み合わせることで作製することができる。まず、本体11については、底部11Aの底面にゲッタ17を形成する。
 次に、底部11Aの上部開口に、貫通孔を有する基部11Bを接合する。次に、基部11B上に電子源20を形成する。続いて、段差部を有する内側面及びテーパ形状の外側部11Sを有するリング状の上部11Cを準備する。次に、上部11Cの開口の一方が電子源20の周囲に配置されるように、基部11Bに上部11Cを接合する。続いて、上部11Cの内側面の段差部に加速電極16を形成する。
 次に、テーパ形状の外側部12Sを有するカバー12の主面上に透光性電極膜53を形成する。本実施例においては、カバー12の主面の外周部に透光カバー12の主面が露出する部分を残すことで、透光性電極膜53を形成した。次に、透光性電極膜53上に光電変換膜30を形成する。次に、テーパ形状の内側面15Sを有するリング15を準備する。続いて、リング15の内側面15S上に封止電極14を形成する。
 続いて、本体11の上部11Cの上端面(第2の領域RS2)にカバー12の主面の外周部(第1の領域RS1)を突き合わせる。次に、本体11の外側部11S及びカバー12の外側部12Sにはめ合うようにリング15の内側面15Sを押し当て、加圧する。このようにして、図7(b)に示すように、撮像装置50を作製することができる。
 ここで、透光性電極膜53はカバー12の第1の領域RS1上に部分的に形成されている。従って、カバー12を本体11に突き合わせた直後は、第2の領域RS2に対して第1の領域RS1は、わずかに傾斜した状態となる。しかし、リング15をはめ合わせることで第1及び第2の領域RS1及びRS2は平行になる。従って、本体11及びカバー12は確実に位置合わせされる。
 また、透光性電極膜53が形成されていない第1の領域RS1は、第2の領域RS2からわずかに離間した位置で位置決めされる。しかし、わずかに隙間が形成されていても、その外側で封止電極14が確実に内部空間ISを封止することが可能である。従って、本体11及びカバー12の位置、すなわち電子源20及び光電変換膜30の位置は確定される。
 なお、本実施例においては、撮像装置50を作製する場合について説明したが、同様の工程で撮像装置10又は40を作製することができる。例えば、カバー12の主面全体を覆うように透光性電極膜を形成することで、透光性電極膜13を形成することができる。また、第1及び第2の領域RS1及びRS2を配置する前に、第1又は第2の領域RS1又はRS2に面取り部CH1又はCH2を形成することで、封止電極44を作製することができる。
 図8(a)及び図8(b)は、それぞれ撮像装置50(実施例3)及び撮像装置100(比較例)における等電位線を示す図である。撮像装置100は、封止電極114が本体11とカバー12との合わせ面に形成されている点及び透光性電極膜113がハウジング内で封止電極114に接続されている点を除いては、撮像装置50と同様の構成を有している。なお、図8(a)及び図8(b)は、それぞれ撮像装置50及び100の断面を示しているが、図の明確さのため、ハッチングを省略している。
 図8(a)及び図8(b)の破線で囲まれた部分に示すように、撮像装置50における加速電極16の端部における等電位線は、撮像装置100における加速電極16の端部における等電位線よりも疎になっている。本実施例においては、封止電極14と加速電極16との間の間隔を大きくすることができる。また、封止電極14及び加速電極16間の浮遊容量を小さくすることができる。従って、例えば図8(b)に示すような光電変換膜30の端部(撮像素子の端部)における等電位線の曲がり、乱れ又は集中を抑制することができる。これにより、高い画像品質の撮像装置50を提供することができる。
 なお、本実施例においては、図8(a)に示すように、加速電極16及び封止電極14間の等電位線は、加速電極16及び光電変換膜30間の等電位線よりも疎になっている。すなわち、撮像装置50においては、電場の乱れが大きく抑制されていることがわかる。このように、撮像装置50においては、より低ノイズな信号電流SCを電気信号として取出すことができる。
 本実施例においては、透光性電極膜(接続電極)53が領域RS1及びRS2間の一部の領域のみに形成されている。従って、光電変換膜30によって生成された電気信号にノイズが重畳されることが低減される。従って、画像品質の高い撮像装置50を提供することができる。
 なお、上記した実施例は、互いに組み合わせることができる。例えば、撮像装置50における第1及び第2の領域RS1及びRS2に面取り部CH1及びCH2が形成されていてもよい。
10、40、50 撮像装置
20 電子源
30 光電変換膜(光電変換部)
11 ハウジング本体
12 透光カバー
HS ハウジング
13 透光性電極膜(接続電極)
14 封止電極
RS1 第1の領域
RS2 第2の領域
CH1 第1の面取り部
CH2 第2の面取り部

Claims (6)

  1.  電子を放出する電子源と、
     外部からの入力光及び前記電子を受けて電気信号を生成する光電変換部と、
     本体及び透光カバーを含み、前記透光カバーの表面の一部である第1の領域と前記本体の表面の一部である第2の領域とが互いに対向して配され、前記電子源及び前記光電変換部を収容する内部空間を有するハウジングと、
     前記第1の領域及び前記第2の領域間の少なくとも一部の領域に挟まれて前記光電変換部に接続された接続電極と、
     前記第1の領域、前記接続電極及び前記第2の領域に接続され、外側から前記内部空間を封止する封止電極と、を有することを特徴とする撮像装置。
  2.  前記透光カバーは、前記第1の領域の外縁部に第1の面取り部を有し、
     前記接続電極は前記第1の面取り部上に渡って形成され、
     前記封止電極は、前記第1の面取り部上の前記接続電極と前記第2の領域との間の領域を充填して形成されていることを特徴とする請求項1に記載の撮像装置。
  3.  前記本体は、前記第2の領域の外縁部の少なくとも一部に第2の面取り部を有し、
     前記封止電極は、前記第1の面取り部上の前記接続電極と前記第2の面取り部との間の領域を充填して形成されていることを特徴とする請求項2に記載の撮像装置。
  4.  前記接続電極は、前記第1の領域及び前記第2の領域間の一部の領域のみに形成されていることを特徴とする請求項1乃至3のいずれか1つに記載の撮像装置。
  5.  前記封止電極の外側部に形成されたリングと、
     前記電子源及び前記光電変換部間に設けられた加速電極と、を有し、
     前記本体は、前記第2の領域に向かってテーパ形状を有する第1の外側部を有し、
     前記透光カバーは、前記第1の外側部の形状を引き継いだテーパ形状を有する第2の外側部を有し、
     前記リングは、前記第1及び第2の外側部に嵌め合う内側面を有することを特徴とする請求項2乃至4のいずれか1つに記載の撮像装置。
  6.  前記第1及び第2の外側部は、円錐台形のテーパ形状を有することを特徴とする請求項5に記載の撮像装置。
PCT/JP2015/071500 2015-07-29 2015-07-29 撮像装置 WO2017017811A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071500 WO2017017811A1 (ja) 2015-07-29 2015-07-29 撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071500 WO2017017811A1 (ja) 2015-07-29 2015-07-29 撮像装置

Publications (1)

Publication Number Publication Date
WO2017017811A1 true WO2017017811A1 (ja) 2017-02-02

Family

ID=57884317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071500 WO2017017811A1 (ja) 2015-07-29 2015-07-29 撮像装置

Country Status (1)

Country Link
WO (1) WO2017017811A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129972A1 (de) 2018-11-27 2020-05-28 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
DE102018132473A1 (de) 2018-12-17 2020-06-18 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung eines Objekts
EP3839556A1 (de) 2019-12-17 2021-06-23 Sick Ag Optoelektronischer sensor und verfahren zur erfassung eines objekts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369518A (en) * 1976-12-03 1978-06-21 Hitachi Ltd Manufacture of pickup tube
JPS57103251A (en) * 1980-12-17 1982-06-26 Hitachi Ltd Image pickup tube
JPH10241622A (ja) * 1997-02-21 1998-09-11 Hamamatsu Photonics Kk 電子管
JP2010103097A (ja) * 2008-10-23 2010-05-06 Hamamatsu Photonics Kk 電子管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369518A (en) * 1976-12-03 1978-06-21 Hitachi Ltd Manufacture of pickup tube
JPS57103251A (en) * 1980-12-17 1982-06-26 Hitachi Ltd Image pickup tube
JPH10241622A (ja) * 1997-02-21 1998-09-11 Hamamatsu Photonics Kk 電子管
JP2010103097A (ja) * 2008-10-23 2010-05-06 Hamamatsu Photonics Kk 電子管

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129972A1 (de) 2018-11-27 2020-05-28 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
EP3660539A1 (de) 2018-11-27 2020-06-03 Sick Ag Optoelektronischer sensor und verfahren zur erfassung von objekten
DE102018132473A1 (de) 2018-12-17 2020-06-18 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung eines Objekts
EP3671276A1 (de) 2018-12-17 2020-06-24 Sick Ag Optoelektronischer sensor und verfahren zur erfassung eines objekts
DE102018132473B4 (de) 2018-12-17 2020-07-30 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung eines Objekts
EP3839556A1 (de) 2019-12-17 2021-06-23 Sick Ag Optoelektronischer sensor und verfahren zur erfassung eines objekts

Similar Documents

Publication Publication Date Title
KR100796089B1 (ko) 화상 표시 장치
WO2017017811A1 (ja) 撮像装置
US7755268B2 (en) Electron emission display device having alignment marks to align substrates
KR101917742B1 (ko) 메쉬 전극 접합 구조체, 전자 방출 소자, 및 전자 방출 소자를 포함하는 전자 장치
JP2008203636A (ja) アレイ基板の製造方法、表示装置の製造方法、アレイ基板及び表示装置
JP4689234B2 (ja) 光電子増倍管及び放射線検出装置
JP4744707B2 (ja) 平面型撮像装置および平面型撮像装置の製造方法
JP6600244B2 (ja) 撮像装置
CN101060057B (zh) 真空包封和使用该真空包封的电子发射显示器
JP5221761B2 (ja) 撮像装置
JP5563865B2 (ja) 平面型撮像素子
JP6697304B2 (ja) 撮像装置
US7615918B2 (en) Light emission device with heat generating member
WO2013150562A1 (ja) 電子放出素子アレイおよびこれを備えた撮像装置
US7880383B2 (en) Electron emission display
US20080088220A1 (en) Electron emission device
JP5303646B2 (ja) 撮像装置
WO2016139724A1 (ja) 撮像装置
JP2007299549A (ja) 画像装置
JP6250313B2 (ja) イメージ管
WO2016157332A1 (ja) 撮像装置
JP2010231904A (ja) 電子源アレイ並びにそれを備えた撮像装置及び表示装置
JP2007059121A (ja) 電子源装置およびそれを備えた撮像装置
CN1495842A (zh) 显示设备
WO2015186198A1 (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15899644

Country of ref document: EP

Kind code of ref document: A1