WO2017017801A1 - 超音波探触子、超音波診断装置、及び方法 - Google Patents

超音波探触子、超音波診断装置、及び方法 Download PDF

Info

Publication number
WO2017017801A1
WO2017017801A1 PCT/JP2015/071451 JP2015071451W WO2017017801A1 WO 2017017801 A1 WO2017017801 A1 WO 2017017801A1 JP 2015071451 W JP2015071451 W JP 2015071451W WO 2017017801 A1 WO2017017801 A1 WO 2017017801A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
element group
ultrasonic probe
transmission
unused
Prior art date
Application number
PCT/JP2015/071451
Other languages
English (en)
French (fr)
Inventor
一雄 大津賀
鱒沢 裕
慎太 高野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/071451 priority Critical patent/WO2017017801A1/ja
Publication of WO2017017801A1 publication Critical patent/WO2017017801A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, and more particularly to a technique for reducing power consumption and improving image quality.
  • the ultrasonic diagnostic apparatus is composed of an ultrasonic probe called a probe and an apparatus main body, and images an internal structure of a living body or the like using ultrasonic waves.
  • the ultrasonic probe incorporates an ultrasonic transducer, and transmits and receives an ultrasonic signal to the subject.
  • an ultrasonic transducer In an ultrasonic probe, an ultrasonic transducer is usually divided into a number of elements (hereinafter referred to as channels) and is arrayed. At the time of imaging, an appropriate delay time is given to the transmission / reception signal of each channel, and an ultrasonic beam focused on a certain point is created. Also, at the time of reception, since the reception time of the echo signal received by each channel of the ultrasonic transducer varies depending on the distance from the focus point, the delay signal in the ultrasonic probe or in the apparatus main body causes each channel to receive the echo signal. Each signal whose phase is adjusted by giving a delay time corresponding to the propagation time difference to the received signal is added by an addition circuit in the ultrasonic probe or in the apparatus main body, so that the received signal is focused on one point. It is taken out.
  • the ultrasonic probe moves the focus point by changing the above delay time, and acquires the signal of the entire imaging region.
  • the obtained signal is displayed as an image on the display of the ultrasonic diagnostic apparatus through weighting processing, detection processing, filtering processing, and the like.
  • a matrix array in which channels are two-dimensionally arranged has been put into practical use.
  • the number of channels to be handled by the ultrasonic probe may increase to the order of several thousand channels. Therefore, the number of channels of the main body beam former (hereinafter referred to as the main beam former) is overwhelmingly insufficient with respect to the number of channels of the probe.
  • Patent Documents 1, 2, and 3 as prior art documents related to such an ultrasonic diagnostic apparatus.
  • Medical ultrasonic probes need to ensure safety because the surface of the probe body is in direct contact with the subject. For this reason, in medical ultrasonic probes, various standards such as the upper limit of temperature and the rate of increase are legally defined.
  • a device for reducing the power consumption of the circuit, or a heat dissipation technique and a cooling technique for releasing generated heat to the outside of the probe are required.
  • One of the methods for reducing the power consumption of the circuit is to reduce (thinning out) the number of channels used during ultrasonic transmission / reception operations. If the number of channels used is reduced, the power consumption of the circuit is reduced, and the temperature rise of the ultrasonic probe can be suppressed. However, if the number of channels to be used is reduced, the image quality of an ultrasonic image that can be acquired deteriorates. Therefore, it is necessary to determine channels that are not used (hereinafter referred to as unused channels) so as not to affect the image quality as much as possible.
  • Patent Document 2 shows a configuration in which a part of transmission channels is thinned out in order to reduce transmission sound pressure with a deflection angle of around 0 degrees in a one-dimensional array ultrasonic probe.
  • a configuration and method for thinning out unused transmission elements in a two-dimensional array probe are not disclosed.
  • Patent Document 3 in the 1.5-dimensional array ultrasonic probe, when transmitting and receiving ultrasonic waves to a deep focus point, a configuration of thinning out channel groups in rows parallel to the scanning direction is clarified. Since the number of circuits that transmit and receive is small relative to the number of channels, the connection method between them is fixed, and the degree of freedom in selecting the channels that can be used is low, so depending on the power consumption of the ultrasound probe , The number of channels to be used cannot be flexibly changed at every transmission / reception.
  • An object of the present invention is to solve the above-described problems and provide an ultrasonic probe capable of achieving both low power consumption and high image quality, an ultrasonic diagnostic apparatus using the same, and a driving method thereof. .
  • an ultrasonic probe comprising a plurality of ultrasonic elements arranged two-dimensionally in a matrix direction, and in units of rows or columns according to the ultrasonic scanning direction.
  • an ultrasonic probe configured to dynamically determine an unused element group of ultrasonic elements is provided.
  • an ultrasonic diagnostic apparatus that transmits and receives ultrasonic waves, and a plurality of ultrasonic elements that are two-dimensionally arranged in a matrix direction, and a drive that drives the ultrasonic elements.
  • An ultrasonic probe having a section and a control section for controlling the ultrasonic probe, and the control section does not use ultrasonic elements in units of rows or columns according to the scanning direction of the ultrasonic waves.
  • An ultrasonic diagnostic apparatus configured to dynamically determine element groups is provided.
  • a control method for driving an ultrasound diagnostic apparatus that transmits and receives ultrasound to and from a subject.
  • the control unit is two-dimensionally arranged in a matrix direction.
  • Ultrasonic that controls an ultrasonic probe having a plurality of ultrasonic elements to dynamically determine and drive unused element groups of the ultrasonic elements in units of rows or columns according to the scanning direction of the ultrasonic waves
  • a method for driving a diagnostic apparatus is provided.
  • the power consumption of the ultrasonic probe can be reduced, the ultrasonic image performance can be improved, and a longer operating time can be realized.
  • FIG. 1 is a diagram illustrating an example of the structure of an ultrasonic diagnostic apparatus according to Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of a structure of an element circuit according to the first embodiment.
  • FIG. 6 is a diagram for explaining a relationship between an opening pattern and an image quality index when the major axis direction according to the first embodiment is a scanning direction.
  • FIG. 6 is a diagram for explaining a relationship between an aperture pattern and an image quality index when the minor axis direction according to the first embodiment is a scanning direction.
  • FIG. 6 is a diagram for explaining a combination of aperture patterns when the major axis direction according to the first embodiment is a scanning direction.
  • FIG. 6 is a diagram for explaining a combination of aperture patterns when the minor axis direction according to the first embodiment is a scanning direction.
  • FIG. 3 is a flowchart illustrating an operation procedure of the element circuit control unit according to the first embodiment.
  • FIG. 10 is a diagram for explaining a relationship between an aperture pattern and an image quality index when a major axis direction according to the second embodiment is a scanning direction.
  • FIG. 10 is a diagram for explaining a combination of aperture patterns when the major axis direction according to the second embodiment is a scanning direction.
  • FIG. 10 is a diagram for explaining a relationship between an opening pattern and an image quality index when the major axis direction according to the third embodiment is a scanning direction.
  • FIG. 10 is a diagram for explaining a combination of aperture patterns when the major axis direction according to the third embodiment is a scanning direction.
  • FIG. 10 is a diagram for explaining a relationship between an aperture pattern and an image quality index when the major axis direction according to the fourth embodiment is a scanning direction.
  • FIG. 10 is a diagram for explaining a combination of opening patterns when the major axis direction according to the fourth embodiment is a scanning direction.
  • ultrasonic vibrator for example, a piezoelectric ceramic type, a single crystal type, a piezoelectric polymer type, or a capacitance type transducer is used. These devices generate ultrasonic waves by applying a voltage, transmit the ultrasonic waves to the outside, and generate electrical signals when receiving the ultrasonic waves.
  • An acoustic matching layer for efficiently transmitting acoustic energy to the front surface may be provided on the front surface side (hereinafter referred to as the radiation surface side) of the ultrasonic transducer.
  • a lens material for concentrating acoustic energy in a certain region may be installed on the radiation surface side of the ultrasonic transducer.
  • a back material (backing material) for preventing unnecessary acoustic reflection may be installed on the back side of the ultrasonic transducer.
  • the transducer is usually divided into a large number of channels and is arrayed. At the time of imaging, an appropriate delay time is given to the transmission / reception signal of each channel, and an ultrasonic beam focused on a certain point is created.
  • FIG. 1 shows transmission beam forming in an ultrasonic probe.
  • FIG. 1 shows a state in which input signals having different delay times are applied to each channel of the one-dimensional array probe during transmission.
  • the ultrasonic probe in FIG. 1 includes a plurality of ultrasonic transducers 1 corresponding to a plurality of channels.
  • a delay circuit in the ultrasonic probe or in the apparatus main body gives a different delay time 3 to each ultrasonic transducer 1, thereby forming an ultrasonic beam focused on the focus point 2.
  • FIG. 2 shows reception beam forming in the ultrasonic probe.
  • the ultrasonic probe includes an adder circuit 4 connected to a plurality of ultrasonic transducers 1.
  • the reception time of the echo signal received by each ultrasonic transducer 1 varies depending on the distance from the focus point 2.
  • a delay circuit in the ultrasonic probe or in the apparatus main body gives a delay time 3 ′ according to the propagation time difference to the reception signals of the respective ultrasonic transducers to align the phases.
  • the addition signals 4 in the ultrasonic probe or in the apparatus main body add each signal having the same phase, so that the reception signal is extracted as a signal focused on one point.
  • a circuit that performs such processing is referred to as a phasing circuit or a beam former.
  • the ultrasonic probe moves the focus point by changing the delay time, and acquires a signal of the entire imaging region.
  • the obtained signal is displayed as an image on the display of the ultrasonic diagnostic apparatus through weighting processing, detection processing, filtering processing, and the like.
  • the ultrasonic probe in the ultrasonic probe, a matrix array in which channels that are the ultrasonic transducers 1 are two-dimensionally arranged has been put into practical use.
  • the number of channels to be handled by the ultrasonic probe may increase to the order of several thousand channels. Therefore, the number of channels of the main body beam former is overwhelmingly insufficient with respect to the number of channels of the probe.
  • FIGS. 4 to 20 show drawings for explaining various embodiments of the present invention. However, these are only drawings prepared for understanding of the present invention, and the present invention is limited. Should not be used for interpretation.
  • the present embodiment includes a plurality of ultrasonic elements arranged two-dimensionally in the matrix direction, and dynamically determines unused element groups of the ultrasonic elements in units of rows or columns according to the scanning direction of the ultrasonic waves.
  • 1 is an example of an ultrasonic probe that can reduce power consumption while maintaining a desired resolution in the scanning direction, that is, image quality, and an ultrasonic diagnostic apparatus that uses the ultrasonic probe.
  • the apparatus configuration of the ultrasonic diagnostic apparatus, the signal flow until imaging, the relationship between the power consumption of the ultrasonic probe and the number of channels used, and the index of image quality used will be described.
  • FIG. 4 shows an example of the configuration of an ultrasonic diagnostic apparatus, which is composed of an ultrasonic probe and an apparatus main body.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe 100, a transmission / reception selector switch 40, a transmission amplifier 43, a reception amplifier 44, a transmission system circuit 39 including a DC power supply 45, a voltage limiter 41, and a power source 42.
  • the control unit 50 of the apparatus main body can be realized by executing a program of a central processing unit (CPU) of a computer, for example.
  • CPU central processing unit
  • the DC power supply 45 is not necessarily provided when an ultrasonic probe that does not require a DC voltage is connected. Note that whether each part shown in FIG. 4 is mounted on the ultrasonic probe or the apparatus main body depends on the type of product to be applied, and is not uniquely determined.
  • the ultrasonic probe 100 shown in FIG. 4 corresponds to the ultrasonic probe having a plurality of channels shown in FIGS.
  • the individual channels of the ultrasound probe 100 are switched to the transmission system circuit and the reception system circuit of the transmission system and reception system circuit 39 via the transmission / reception changeover switch 40.
  • the ultrasonic probe 100 operates as an array for forming an ultrasonic beam by a transmission amplifier 43 and a reception amplifier 44 driven by a power source 42, and is used for transmission / reception of ultrasonic waves.
  • CMUT Capacitive Micromachined Ultrasonic Transducer
  • the ultrasonic probe 100 is a direct current of the transmission system and the reception system circuit 39. Connected to a power supply 45.
  • the plurality of channels of the ultrasonic probe 100 are connected to the transmission beam former 48 and the reception beam former 49 of the ultrasonic imaging apparatus.
  • the transmission / reception signal is controlled by the control unit 50 in accordance with an operation by the user interface 54.
  • the transmission signal is controlled by the control unit 50, and the waveform, amplitude, and delay time are set for each channel. Further, the control unit 50 may perform control to weight the amplitude.
  • the transmission signal is transmitted to the ultrasonic probe 100 via the transmission beam former 48, the D / A converter 46, and the transmission amplifier 43.
  • the voltage whose waveform is formed by the control of the control unit 50 is input to the transmission amplifier 43, and the voltage is amplified by the transmission amplifier 43 and output.
  • a plurality of independent drive voltage signals for generating ultrasonic waves are input to the plurality of channels of the ultrasonic probe 100.
  • the voltage limiter 41 is provided so as not to apply an excessive voltage to the ultrasonic probe 100 or for the purpose of transmission waveform control.
  • the ultrasonic probe 100 When the ultrasonic probe 100 receives an ultrasonic signal, the received signals in a plurality of channels are subjected to phasing (delay) addition processing.
  • the reception signal is transmitted to the signal processing unit (image processing unit) 51 after passing through the reception amplifier 44, the A / D converter 47, and the reception beam former 49.
  • the signal processing unit 51 executes processing according to functions such as B-mode tomographic image processing, blood flow color mode, or Doppler, and converts the received signal into a video signal. Thereafter, the video signal is transmitted to the display unit 53 via the scan converter 52, and an image and a numerical value are displayed on the display unit 53.
  • the reception amplifier 44 is configured by an LNA (Low Noise Amplifier), a variable gain amplifier, or the like.
  • a circuit when a circuit is mounted inside the ultrasonic probe, some of the above-described components are mounted.
  • a sub-array receiving circuit 13 that is a receiving sub-beamformer for reducing signals inside the probe and a sub-array transmitting circuit 16 that is a transmitting sub-beamformer are mounted.
  • a plurality of channels, that is, the ultrasonic transducers 1 are combined to form a subarray 5.
  • the ultrasonic signal from the ultrasonic transducer 1 is separated into a transmission signal and a reception signal by the transmission / reception separating circuit 7.
  • the signal passes through the LNA 8 in the sub-array receiving circuit 13 and passes through a variable gain amplifier (VGA: Variable Gain Amplifier) 9. Thereafter, signals from a plurality of elements are added by the adder circuit 11 via the reception minute delay circuit 10. The signal is amplified by the buffer amplifier 12 as necessary and sent to the main beam former of the apparatus main body.
  • VGA Variable Gain Amplifier
  • the LNA 8 and the variable gain amplifier 9 may be mounted as necessary and are not necessarily essential.
  • the transmission waveform given the main delay time by the main beamformer is distributed to a plurality of signals by the distribution circuit 15 in the sub-array transmission circuit 16, and after the individual delays are given by the transmission minute delay circuit 14.
  • the signal is amplified by the transmission amplifier circuit 17 and applied to the vibrator 6 via the transmission / reception separation circuit 7.
  • the figure shows the relationship between the number of channels used at the time of ultrasonic transmission / reception and the power consumption of the ultrasonic probe.
  • the probe power consumption shown on the vertical axis increases, and it can be seen that the power consumption can be reduced by reducing the number of channels used.
  • FIG. (A) and (b) in the upper part of FIG. 7 show the transmission / reception aperture patterns of the channel array of the two-dimensional array ultrasonic probe having 96 channels in the long axis direction and 48 channels in the short axis direction in gray display.
  • the opening pattern means a combination of channels for performing an ultrasonic transmission / reception operation.
  • Computer simulation results are shown for the angle dependence of the ultrasonic signal intensity that can be obtained when ultrasonic transmission / reception is performed using all (96 x 48) channels as the aperture pattern. These are (c) and (d) in the lower part of FIG.
  • the assumed ultrasonic frequency is 1.6 MHz and the transducer spacing is 0.3 ⁇ m.
  • the signal intensity has a peak at an angle of 0 degrees, and attenuates as the angle increases.
  • the width of the main lobe (A) is defined as the angle width from 0 dB peak signal intensity at 0 degree to the first -20 dB signal intensity drop. This index is related to the inclination of the edge of the ultrasonic image, and it is better that the index is small.
  • the average signal intensity at angles of ⁇ 10 to ⁇ 40 degrees and 10 to 40 degrees is defined as the side lobe size (B). This index is related to the contrast of the ultrasonic image, and it is better that this numerical value is small in terms of image quality.
  • the main lobe width in the major axis direction is 3.2 and the side lobe size is ⁇ 67
  • the main lobe width in the minor axis direction is 6.0
  • the side lobe size is ⁇ 55. It can be seen that both the numerical values in the long axis direction are small and the resolution indicating the image quality in the long axis direction is good. This is because the opening width in the major axis direction is wide. When acquiring an ultrasound image in the B mode, it is preferable that the resolution in the scanning direction is high. For this reason, when scanning in the normal B mode, the major axis direction is often used as the scanning direction.
  • FIG. 8 shows a configuration example of an ultrasonic diagnostic apparatus using the two-dimensional array ultrasonic probe according to the present embodiment.
  • the ultrasonic diagnostic apparatus 99 includes an apparatus main body 22 and a two-dimensional array ultrasonic probe 101.
  • the two-dimensional array ultrasonic probe 101 is electrically connected to the apparatus main body 22 via a cable 102.
  • the cable 102 may be detachable from the apparatus main body 22.
  • the apparatus body 22 is provided with a control unit composed of a CPU or the like as described above, and this control unit includes the drive control of the two-dimensional array ultrasonic probe 101 and the entire apparatus. Execute control.
  • the two-dimensional array ultrasonic probe 101 includes a probe circuit 21 that is a probe drive unit, a plurality of ultrasonic transducers 1, and a temperature sensor 23.
  • the ultrasonic transducer 1 is an electromechanical transducer that includes a piezoelectric body.
  • An acoustic matching layer for efficiently transmitting acoustic energy to the front surface may be provided on the radiation surface side of the ultrasonic transducer 1.
  • a lens material (not shown) for concentrating acoustic energy in a certain region may be installed on the radiation surface side of the ultrasonic transducer 1.
  • a back material (backing material) for preventing unnecessary acoustic reflection may be installed on the back side of the ultrasonic transducer.
  • the probe circuit 21 serving as a drive unit includes a plurality of element circuits 20, an element circuit control unit 24 including a memory 25 and a main transmission beamformer circuit 18, and a row direction enable signal driver for driving the ultrasonic transducer 1.
  • a circuit 26 and a column direction enable signal driver circuit 27 are provided.
  • a plurality of element circuits 20 are grouped to form a subarray element circuit 19.
  • the subarray element circuit 19 is a unit for implementing the subbeamformer.
  • the row direction enable signal group 28 and the column direction enable signal group 29 respectively output from the row direction enable signal driver circuit 26 and the column direction enable signal driver circuit 27 are directed in the row direction and the column direction on the array of the plurality of element circuits 20. Is transmitted.
  • the same row direction enable signal or column direction enable signal is distributed to the element circuits 20 belonging to the same row or column.
  • the element circuit 20 includes a transmission / reception separating circuit 7, an LNA 8, a reception minute delay circuit 10, a transmission amplifier circuit 17, a transmission minute delay circuit 14, and a logical product circuit 30.
  • the element circuit 20 is connected to the ultrasonic transducer 1 through the transmission / reception separation circuit 7 in a one-to-one correspondence.
  • the AND circuit 30 receives a row direction enable signal 28a and a column direction enable signal 29b.
  • the reception minute delay circuit 10 is connected to an adder circuit 11 disposed in the subarray element circuit 19. Note that the adder circuit 11 may be arranged in the element circuit.
  • the transmission minute delay circuit 14 is connected to a distribution circuit 15 arranged in the subarray element circuit 19.
  • the reception minute delay circuit 10 and the transmission minute delay circuit 14 may use one minute delay circuit in a time-sharing manner.
  • the control unit of the apparatus main body 22 transmits the ultrasonic waves of the two-dimensional array ultrasonic probe 101 to the element circuit control unit 24 of the probe circuit 21 of the two-dimensional array ultrasonic probe 101 via the cable 102.
  • a transmission / reception operation start signal or setting information related to the ultrasonic transmission / reception operation of the two-dimensional array ultrasonic probe 101 is transmitted.
  • the setting information includes minute delay circuit setting information, operation setting information of the transmission main beamformer circuit 18, row direction enable information, column direction enable information, built-in analog circuit operation setting information, and the like.
  • the setting information is stored in the memory 25 in the element circuit control unit 24, and is distributed to each circuit as necessary.
  • the apparatus main body 22 also supplies power to the two-dimensional array ultrasonic probe 101.
  • the transmission main beamformer circuit 18 When the element circuit control unit 24 receives the ultrasonic transmission / reception operation start signal from the apparatus main body 22, the transmission main beamformer circuit 18 generates a transmission waveform and gives a main delay time to each transmission waveform.
  • the transmission waveform given the main delay time is transmitted to the subarray element circuit 19 and distributed to each element circuit 20 via the distribution circuit 15.
  • the distributed transmission waveform is added with a minute delay time by the transmission minute delay circuit 14, amplified by the transmission amplifier 17, and then drives the ultrasonic transducer 1 via the transmission / reception separation circuit 7. As a result, ultrasonic waves are emitted from the two-dimensional array ultrasonic probe 101.
  • the ultrasonic wave received from the subject is converted into an electric signal by the ultrasonic vibrator 1.
  • the electric signal is input to the LNA 8 via the transmission / reception separating circuit 7.
  • the input electric signal is amplified by the LNA 8, a minute time is added by the reception minute delay circuit 10, and then sent to the adding circuit 11.
  • the electrical signal to which the minute time has been added is added for each subarray element circuit 19 by the adder circuit 11 and then transmitted to the apparatus main body 22 having the main beamformer.
  • the transmitted signal is added with a main delay time by a main beamformer, and then subjected to detection processing, conversion to a luminance signal by logarithmic compression, etc., and an ultrasonic image is displayed on the display unit 53 of the apparatus main body 22.
  • the channel for performing the ultrasonic transmission / reception operation among the channels corresponding to the ultrasonic transducers 1 of the two-dimensional array is a row enable signal group. 28, column enable signal group 29 is designated in units of rows and columns.
  • row enable signal group 28a and the column direction enable signal 29b in FIG. 9 are both 1 (true)
  • the transmission / reception separating circuit 7, the LNA 8 and the reception minute delay of the element circuit 20 are concerned.
  • the circuit 10, the transmission amplifier circuit 17, and the transmission minute delay circuit 14 operate, and an ultrasonic transmission / reception operation is performed in the corresponding channel.
  • the operation of the LNA 8, the reception minute delay circuit 10, the transmission amplifier circuit 17, and the transmission minute delay circuit 14 is stopped by shutting off the power, cutting off the bias current transistor, stopping the clock supply, or the like.
  • the transmission / reception separating circuit 7 when the operation is stopped separates the connection between the ultrasonic transducer 1 and the LNA 8. Power consumption can be reduced by stopping the operation of the circuit.
  • the configuration of the ultrasonic diagnostic apparatus that is, the configuration in which the channel for performing the ultrasonic transmission / reception operation can be selected in units of rows and columns smaller than the subarray unit has sufficient flexibility of selectable channels.
  • it has a balanced configuration that can be realized with a simple circuit.
  • the opening pattern which is a combination of channels for performing ultrasonic transmission / reception operation is row direction enable information stored in the memory 25, column direction. Determined based on enable information.
  • a plurality of transmission aperture patterns that are aperture patterns at the time of transmission, reception aperture patterns that are aperture patterns at the time of reception, or aperture patterns according to the power consumption of the two-dimensional array ultrasonic probe 101 are stored in the memory 25. .
  • These opening patterns are read out from the memory 25 by the element circuit control unit 24 every time an ultrasonic wave is transmitted and received based on instruction information from the control unit of the apparatus body, and the row direction enable signal driver circuit 26 and the column direction enable signal are read.
  • Each element circuit is set via the signal driver circuit 27.
  • the signal driver circuit 27 As described above, by storing a plurality of opening patterns in the memory 25 in advance, only the transmission / reception opening pattern is transmitted from the apparatus main body 22 to the element control unit 24, so that the transmission / reception can be performed. And the opening pattern can be switched quickly before the next transmission. As a result, it is possible to reduce the information communication time between the control unit of the apparatus main body 22 and the element circuit control unit 24 in the probe circuit 21, so that the frame rate can be improved.
  • the temperature sensor 23 in the two-dimensional array ultrasonic probe 101 of FIG. 8 is composed of, for example, a band gap circuit, a thermocouple, a thermistor, a resistance temperature detector, and the like. Measure the temperature. The measured temperature information is transmitted to the apparatus main body 22 via the cable 102 or wireless. The control unit of the apparatus main body 22 calculates the power consumption of the two-dimensional array probe 101 from the heat generation state of the two-dimensional array ultrasonic probe 101 based on this temperature information, and based on the calculation result, the memory The element circuit control unit 24 is notified of the instruction information about which opening pattern to be used, which is stored in 25, to be used via the cable 102 or wirelessly.
  • the transmission aperture pattern and the reception aperture pattern when scanning in the long axis direction can be reduced by the configuration of the present embodiment as compared with the case where all channels are used.
  • An example will be described.
  • the used channel 31 is displayed in gray, and the unused channel 32 is displayed in white. The same applies to the following drawings.
  • (A) in the upper part of FIG. 10 shows a transmission aperture pattern when scanning in the long axis direction.
  • the unused channel 32 is designated in units of rows in the same direction as the scanning direction.
  • 24 rows in the center of 48 rows are designated as used channels 31 and 12 channels from the end are designated as unused rows, and unused channels 32 are designated.
  • the use channel 31 and the non-use channel 32 are designated with the same concept for the reception aperture pattern. Compared with the case where all channels are used, the number of channels used is halved as is apparent from the figure, so that the power consumption can be almost halved.
  • the unused channel 32 at the time of transmission / reception corresponds to the major axis direction that is the scanning direction of ultrasonic waves, and the unused element group of ultrasonic elements in units of rows. Is forming.
  • the unused channel 32, that is, the unused element group forms an element band having a predetermined width in which rows are continuous, and this element band is adjacent to the used channel 31, that is, used element group used in units of rows.
  • the unused channel 32 that is a plurality of unused element bands is separated from each other by the used channel 31 that is a used element group.
  • the resolution based on the signal intensity when ultrasonic transmission / reception is performed using the transmission aperture pattern of (a) in the upper part of FIG. 10 and the reception aperture pattern of (b) is shown in (c) and (d) of the lower part of FIG. .
  • the main lobe width in the major axis direction is 3.2 and the side lobe size is ⁇ 67
  • the main lobe width in the minor axis direction is 11.9
  • the side lobe size is ⁇ 42.
  • the number of unused rows is halved, but the number is not particularly limited, and the number of unused rows can be flexibly changed according to the desired power consumption.
  • the transmission aperture pattern and the reception aperture pattern are the same, but they may be different.
  • FIG. 11A shows a transmission aperture pattern when scanning in the minor axis direction.
  • the unused channel 32 is designated in units of columns in the same direction as the scanning direction.
  • 48 columns at the center are designated as the used channels 31 and 24 from the end are designated as unused columns.
  • the use channel 31 and the non-use channel 32 are designated with the same concept for the reception aperture pattern. Compared to the case where all channels are used, the number of channels used is halved, so that the power consumption can be almost halved.
  • the unused channel 32 at the time of transmission / reception corresponds to the minor axis direction that is the scanning direction of the ultrasonic wave, and the unused channel 32 of the ultrasonic element in units of columns.
  • An unused element group is formed.
  • the unused element group constitutes an element band having a predetermined width in which the columns are continuous, and the element band of the unused element group is adjacent to the use channel 31 which is the used element group used in units of columns. Or a plurality of element bands of the unused element group are separated from each other by a use channel 31 which is the use element group.
  • FIG. 11 shows resolutions based on signal intensity when ultrasonic transmission / reception is performed using the transmission aperture pattern of FIG. 11 (a) and the reception aperture pattern of (b).
  • the main lobe width in the major axis direction is 6.0 and the side lobe size is -55
  • the main lobe width in the minor axis direction is 6.0
  • the side lobe size is -55.
  • the number of unused columns is halved, but the number is not particularly limited, and the number of unused columns can be flexibly changed according to the desired power consumption.
  • the transmission aperture pattern and the reception aperture pattern are the same, but they may be different.
  • the grayed out rows are used channels, and the other rows indicate unused channels.
  • information on these opening patterns is stored in the memory 25 in advance.
  • the control unit of the apparatus main body 22 uses all the channels, The apparatus main body 22 instructs to perform transmission / reception.
  • Instruction information is output to the element circuit control unit 24.
  • the element circuit control unit 24 In the example of FIG. 12 of the present embodiment, only one type of transmission / reception aperture pattern combination with no power consumption margin is prepared, but a plurality of combinations may be prepared according to the degree of power consumption margin.
  • FIG. 13 shows an example of determining a combination of a transmission aperture pattern and a reception aperture pattern according to the power consumption margin when scanning in the minor axis direction.
  • the grayed out columns indicate the used channels, and the other columns indicate the unused channels. Similar to FIG. 12, information on these opening patterns is stored in the memory 25 in advance.
  • the control unit of the apparatus main body 22 Based on the temperature measurement result of the temperature sensor 23, when the power consumption of the two-dimensional array ultrasonic probe 101 is sufficient, the control unit of the apparatus main body 22 transmits and receives ultrasonic waves using all channels. Instruct.
  • the apparatus body 22 instructs to use a transmission aperture pattern and a reception aperture pattern without power consumption margin. To do. In the example of FIG. 13 of the present embodiment, only one type of transmission / reception aperture pattern combination without power consumption margin is prepared, but a plurality of combinations may be prepared according to the degree of power consumption margin.
  • step 01 when it is necessary to update the opening pattern information of the memory 25 in the element circuit control unit 24, new opening pattern information is received from the control unit of the apparatus body 22 and stored in the memory 25 (step 02). If there is no need for updating, step 02 is not performed.
  • step 03 when receiving the ultrasonic transmission / reception operation start signal from the apparatus main body 22 and the instruction information indicating which transmission / reception opening pattern stored in the memory 25 is to be used, the element circuit control unit 24 designates the specified transmission opening. A pattern is set in the element circuit 20, and an unused channel for transmission is determined (step 04). Thereafter, in step 05, an ultrasonic wave is transmitted.
  • the designated reception opening pattern in the memory 25 is set in the element circuit, and the unused channel at the time of reception is determined (step 06). . Thereafter, in step 07, an ultrasonic wave is received. When the series of ultrasonic transmission / reception operations is completed, the next ultrasonic transmission / reception operation is prepared.
  • the interval between the transmission of step 05 and the reception of step 07 is about 400 nsec. If the reception aperture pattern is downloaded from the apparatus main body 22 during that time, it is shorter than the required time (about 500 nsec). Saving the opening pattern information in the memory 25 is extremely significant.
  • the two-dimensional array ultrasonic probe 101 has a row or a line corresponding to the scanning direction according to the scanning direction or the power consumption of the two-dimensional array ultrasonic probe. It is possible to dynamically determine an unused element group for each column, switch the transmission / reception aperture pattern, and perform an appropriate ultrasonic transmission / reception operation. In other words, when it is necessary to reduce the power consumption of the two-dimensional array ultrasonic probe, it is possible to maintain a more important resolution in the scanning direction by selecting unused channels in units of rows or columns in the same direction as the scanning direction. However, power consumption can be reduced. Thereby, improvement of ultrasonic image performance and longer operation time can be realized.
  • This embodiment uses the channel at the end of the two-dimensional array ultrasonic probe based on the fact that the yield of the element circuit in the ultrasonic transducer and the probe circuit is relatively low at the end of the two-dimensional array structure. This is an example of a configuration that does not.
  • differences from the first embodiment will be mainly described.
  • FIG. 15 is a diagram for explaining the relationship between the aperture pattern and the image quality index when the major axis direction is the scanning direction according to the second embodiment.
  • the grayed out rows indicate the used channels 31 and the other matrices indicate the unused channels 32.
  • the transmission aperture pattern and the reception aperture pattern when scanning in the long axis direction which can reduce power consumption compared to the case where all channels are used, will be described with reference to FIG.
  • (A) in the upper part of FIG. 15 shows a transmission aperture pattern when scanning in the long axis direction.
  • the resolution in the long axis direction is important, it is preferable to widen the opening width in the long axis direction. Therefore, an unused channel is designated with a row in the same direction as the scanning direction as a basic unit.
  • the yield of the ultrasonic transducer 1 and the element circuit 20 is relatively low at the end of the two-dimensional array, so that the channel of the column at the end of the two-dimensional array is not used. And different.
  • 25 of the 48 rows are designated as the use channel 31 and the others are designated as unused rows.
  • two columns at the end in the long axis direction of the two-dimensional array ultrasonic probe are designated as unused columns.
  • the number of used rows can be increased by one as compared with the first embodiment. Assuming that the allowable power consumption is set to almost half that when all channels are used, the number of channels in the two rows at the end of the long axis that are not used is distributed to increase the opening width in the short axis direction. Because you can. That is, according to the configuration of the present embodiment, the allowable power consumption can be effectively utilized as much as possible, and the resolution in the minor axis direction can be further improved. Note that the number of unused columns is not limited to two, and may be one or three columns.
  • the use channel 31 and the non-use channel 32 are designated with the same concept for the reception aperture pattern. Compared to the case where all the channels are used, the number of channels used is almost halved, so that the power consumption can be almost halved as in the first embodiment.
  • the resolution based on the signal intensity when transmitting and receiving ultrasonic waves using the transmission aperture pattern of (a) in the upper part of FIG. 15 and the reception aperture pattern of (b) is shown in (c) and (d) of the lower part of FIG. .
  • the main lobe width in the major axis direction is 3.4 and the side lobe size is ⁇ 67
  • the main lobe width in the minor axis direction is 11.3, and the side lobe size is ⁇ 43.
  • the resolution in the major axis direction which is the scanning direction, is substantially maintained, and the resolution in the minor axis direction is lowered.
  • the total number of unused rows is 25.
  • the number is not particularly limited, and the number of unused rows can be flexibly changed according to the desired power consumption.
  • the transmission aperture pattern and the reception aperture pattern are the same, but needless to say, they may be different.
  • the grayed out rows indicate the used channels
  • the other matrices indicate the unused channels.
  • Information on the opening pattern is stored in advance in the memory 25 as in the first embodiment.
  • the control unit of the apparatus main body 22 Based on the temperature measurement result of the temperature sensor 23, when there is a power consumption margin of the two-dimensional array ultrasonic probe 101, the control unit of the apparatus main body 22 performs transmission / reception of ultrasonic waves using all channels. Be controlled. Conversely, when there is no power consumption margin or when it is desired to suppress the rate of temperature rise by continuing to use for a long time, the transmission aperture pattern and the reception aperture pattern without power consumption margin are controlled.
  • a case has been described in which only one type of transmission / reception aperture pattern combination without power margin is prepared, but a plurality of combinations may be prepared according to the degree of power consumption margin.
  • the case where the long axis direction of the two-dimensional array ultrasonic probe is set as the scanning direction has been described as an example.
  • the case where the short axis direction is set as the scanning direction is also based on the same concept as the present embodiment.
  • a transmission / reception opening pattern may be formed.
  • the present embodiment is an embodiment of an ultrasonic probe and an ultrasonic diagnostic apparatus capable of narrowing the main lobe width in the direction orthogonal to the scanning direction by changing the transmission / reception aperture pattern by chirp modulation. It is.
  • Example 1 in the aperture pattern with reduced power consumption, the resolution in the scanning direction is maintained, but the resolution in the direction orthogonal to the scanning direction is reduced.
  • the main lobe width in the direction orthogonal to the scanning direction is narrowed by changing the transmission and reception aperture patterns.
  • FIG. 17 is used to explain the transmission aperture pattern and the reception aperture pattern when scanning in the long axis direction, which can reduce power consumption as compared with the case where all channels are used, according to the third embodiment.
  • (A) in the upper part of FIG. 17 shows a transmission aperture pattern when scanning in the long axis direction.
  • the unused channel 32 is designated in units of rows in the same direction as the scanning direction.
  • a plurality of channels in unused rows are used based on the chirp modulation technique used in the synthetic aperture radar or the like. And chirp-modulate the width of a plurality of channels to be used.
  • FIG. 17A shows a reception aperture pattern. Based on the chirp modulation technique used in synthetic aperture radar and the like, the reception aperture pattern in FIG. 17B is substantially point-symmetric with the transmission aperture pattern in FIG. 17A and the center of the two-dimensional array ultrasonic probe. become.
  • the width of the row of the unused element group consisting of the unused channel 32 and the used element group consisting of the used channel 31 is chirp modulated, and the unused element group subjected to chirp modulation at the time of transmission
  • the arrangement of the unused channel 32 in the ultrasonic probe and the arrangement of the unused channel 32 in the unused probe, which is a group of unused elements subjected to chirp modulation at the time of reception, are two-dimensional array ultrasonic waves. There is a substantially point-symmetrical relationship with the center of the probe as the origin.
  • the number of channels to be used is halved compared to the case where all channels are used, so that the power consumption can be almost halved and the main lobe width in the short axis direction is narrowed. Can be achieved.
  • (C) and (d) in the lower part of FIG. 17 show resolutions based on signal intensity when ultrasonic transmission / reception is performed using the transmission aperture pattern and the reception aperture pattern of this embodiment.
  • the main lobe width in the major axis direction is 3.2 and the side lobe size is ⁇ 67
  • the main lobe width in the minor axis direction is 5.4
  • the side lobe size is ⁇ 27.
  • the resolution in the long axis direction, which is the scanning direction, is maintained as compared to when all channels are used.
  • the main lobe width in the short axis direction can be narrowed to less than half from 11.9 of the first embodiment shown in FIG.
  • the image quality in the short axis direction can be improved in the ultrasonic image.
  • the size of the side lobe in the minor axis direction becomes large.
  • the present embodiment it is possible to reduce power consumption while maintaining the more important resolution in the scanning direction, that is, the image quality, by designating the unused channel based on the row unit in the scanning direction. Further, by chirp modulating the transmission / reception aperture pattern, the main lobe width in the direction orthogonal to the scanning direction can be reduced, and the image quality can be improved.
  • the number of unused rows is halved, but the number is not particularly limited, and the number of unused rows can be flexibly changed according to the desired power consumption. At that time, the width of each of the plurality of channels is chirp-modulated based on the number of used or unused rows.
  • the control unit of the apparatus main body 22 transmits and receives ultrasonic waves using all channels when the power consumption of the two-dimensional array ultrasonic probe 101 is sufficient. Instruct. On the contrary, when there is no power consumption margin or when it is desired to suppress the rate of temperature rise by continuing to use for a long time, the transmission aperture pattern and the reception aperture pattern without power consumption margin are used.
  • the chirp modulated transmission aperture pattern and the reception aperture pattern are vertically asymmetrical patterns. For this reason, artifacts based on this vertical asymmetry may occur in the ultrasonic image.
  • the row width of the used channel is thick on the lower side. Assuming that there is a bone near the lower side where ultrasound is almost reflected due to the difference in acoustic impedance, the energy of the ultrasound entering the subject is reduced, and the signal intensity that can be detected by the ultrasound probe is reduced. .
  • the rows or columns of the chirp-modulated unused element groups at the time of transmission are arranged in a plurality of ultrasonic elements, and the chirp-modulated unused element groups at the time of reception are arranged in rows or columns.
  • the arrangement of the plurality of ultrasonic elements is changed for each frame of the ultrasonic image.
  • the frequency of updating the transmission and reception aperture pattern information stored in the memory 25 is once per frame.
  • the time for storing the transmission and reception aperture pattern information from the apparatus main body 22 in the memory 25 is approximately 1 ⁇ sec.
  • the typical time for one frame in the B mode is 0.0138 seconds, and the overhead time required to update the transmission and reception aperture pattern information stored in the memory 25 is 0.01% of the one frame time. The following is almost negligible.
  • the aperture pattern may be formed based on the same concept as in the present embodiment, as in the previous embodiment.
  • the chirp modulation at the time of transmission is performed.
  • the arrangement of the unused channel 32 which is an unused element group on the ultrasonic probe and the arrangement of the unused channel 32 which is an unused element group subjected to chirp modulation at the time of reception are super This is a point-symmetrical relationship with the center of the acoustic probe as the origin.
  • weighting is performed so as to increase the width of a use element group composed of a plurality of channels used at the center of a two-dimensional array based on a chirp-modulated transmission / reception aperture pattern.
  • This is an embodiment of an ultrasonic probe and an ultrasonic diagnostic apparatus that can reduce the size of a side lobe.
  • the main lobe width in the direction orthogonal to the scanning direction could be narrowed by chirp modulation of the opening pattern, but the size of the side lobe was increased.
  • the size of the side lobe in the direction orthogonal to the scanning direction is reduced by weighting the width of the element group used in the chirp-modulated aperture pattern.
  • FIG. 19 is used to explain the transmission aperture pattern and the reception aperture pattern when scanning in the long axis direction, which can reduce power consumption compared to the case where all channels are used, according to the fourth embodiment.
  • (A) in the upper part of FIG. 19 shows a transmission aperture pattern when scanning in the long axis direction.
  • the unused channel 32 is designated in units of rows in the same direction as the scanning direction.
  • the transmit / receive aperture pattern is chirp modulated as in the third embodiment.
  • the width of the row of the used channel 31 which is a plurality of channels used at the center of the two-dimensional array, that is, the used element group is set. Weights to make it thicker.
  • FIG. 19B shows the reception aperture pattern of the present embodiment. Based on the chirp modulation technique used in a synthetic aperture radar or the like, the reception aperture pattern is substantially point-symmetric with the transmission aperture pattern at the center of the two-dimensional array ultrasonic probe as described above. Compared to the case where all channels are used, the number of channels used is halved, so that the power consumption can be almost halved.
  • FIG. 19 shows resolutions based on signal intensity when ultrasonic transmission / reception is performed using the transmission aperture pattern of FIG. 19 (a) and the reception aperture pattern of (b).
  • the main lobe width in the major axis direction is 3.2 and the side lobe size is ⁇ 67
  • the main lobe width in the minor axis direction is 5.7
  • the side lobe size is ⁇ 30.
  • the resolution in the long axis direction which is the scanning direction, is maintained as compared to when all channels are used. Further, by performing chirp modulation on the opening pattern and weighting the center portion, the size of the side lobe in the short axis direction can be reduced by “3” from ⁇ 27 of the third embodiment supported in FIG.
  • the image quality in the short axis direction can be improved in the ultrasonic image while considering the balance between the main lobe width and the side lobe size.
  • the image quality can be improved while taking into account the balance between the main lobe width in the minor axis direction orthogonal to the scanning direction and the size of the side lobe. .
  • the number of unused rows is halved, but the number is not particularly limited, and the number of unused rows can be flexibly changed according to the desired power consumption.
  • the width of each of the plurality of channels may be chirp-modulated based on the number of rows used or not used, and weighting may be performed to increase the width of the used channel 31 used in the center.
  • FIG. 20 is used to show a combination example of a transmission aperture pattern and a reception aperture pattern according to the power consumption margin when scanning in the long axis direction according to the fourth embodiment.
  • Information on these opening patterns is stored in the memory 25 in advance as in the previous embodiment.
  • the control unit of the apparatus main body 22 has the power consumption margin of the two-dimensional array ultrasonic probe 101, the ultrasonic wave is transmitted and received using all the channels. Instruct.
  • an instruction is given to use a transmission aperture pattern and a reception aperture pattern with no power consumption margin.
  • the opening pattern may be formed based on the same concept as in the present embodiment when the minor axis direction is the scanning direction, as in the previous embodiment.
  • the use of the central portion of the two-dimensional array is used. Weighting is performed so as to increase the width of a row of a plurality of channels to be used, that is, a use channel 31 which is a use element group.
  • the power consumption can be reduced while maintaining the more important resolution in the scanning direction by dynamically determining the unused element group in units of rows and columns in accordance with the scanning direction.
  • the image quality can be improved while considering the balance between the main lobe width and the side lobe size in the minor axis direction orthogonal to the scanning direction.
  • the present invention achieves both low power consumption and high image quality by dynamically determining unused element groups of the ultrasonic elements in units of rows or columns according to the scanning direction of the ultrasonic waves.
  • the present invention is not limited to the configuration of the above-described embodiment, and includes various modifications.
  • the present invention can be applied not only to a cable-based ultrasonic probe but also to a wireless ultrasonic probe.
  • the above-described embodiments are only a part of the embodiments, and it is not always necessary to have all the configurations described.
  • a part of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. It is also possible to add other configurations to the configuration of each embodiment, replace a partial configuration of each embodiment with another configuration, or delete a partial configuration of each embodiment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

消費電力を低減し、且つ高画質な超音波画像が得られる超音波探触子、超音波診断装置を提供する。2次元アレイ超音波探触子において、走査方向に応じて、行または列単位で不使用素子群を動的に決定する。2次元アレイ超音波探触子で超音波走査を行う場合、その送受信開口パターンにおいて、超音波の送受信動作に使用する使用チャンネル(31)を間引き、超音波の送受信動作を実施しない不使用チャンネル(32)を、2次元アレイ超音波探触子の走査方向と消費電力に基づき、行単位または列単位で決定する。

Description

超音波探触子、超音波診断装置、及び方法
 本発明は、超音波診断装置に係り、特にその低消費電力化と高画質化技術に関する。
 超音波診断装置は、プローブと呼ばれる超音波探触子と装置本体から構成され、超音波を用いて生体等の内部構造を画像化する。超音波探触子には超音波振動子が内蔵されており、被検体に対する超音波信号を送受信する。
 超音波探触子は、通常、超音波振動子が多数の素子(以下、チャンネルと称する)に区切られており、アレイ化されている。撮像時には、これらの各チャンネルの送受信号に適宜遅延時間を与え、ある点にフォーカスされた超音波ビームを作り出す。また、受信時において、超音波振動子の各チャンネルで受信するエコー信号は、フォーカス点からの距離によって受信時間が異なるため、超音波探触子内もしくは装置本体内の遅延回路により、各チャンネルの受信信号に、伝搬時間差に応じた遅延時間を与えて位相を揃えた各信号を、超音波探触子内もしくは装置本体内の加算回路が加算することにより、1点にフォーカスされた受信信号として取り出される。
 超音波探触子は、上記の遅延時間を変えることでフォーカス点を移動させ、撮像領域全体の信号を取得する。得られた信号は、重み付け処理、検波処理、フィルター処理等を経て、超音波診断装置のディスプレイ上に画像として表示される。このような超音波探触子として、チャンネルを2次元的に配列したマトリクスアレイが実用化されている。マトリクスアレイでは、超音波探触子で扱うべきチャンネル数が数千チャンネルオーダと増加する場合がある。従って、探触子のチャンネル数に対して、本体ビームフォーマ(以下、メインビームフォーマと称する)のチャンネル数が圧倒的に不足する。
 このような超音波診断装置に関連する先行技術文献として、特許文献1、2、3がある。
特開2005-270423号公報 特開2001-327505号公報 特開2014-076093号公報
 上述のように、マトリクスアレイにおいては、探触子のチャンネル数に対して、本体ビームフォーマのチャンネル数が不足する。この事態に対応するため、特許文献1では、超音波探触子内の複数のチャンネルを一つにまとめ、サブアレイ化することが考えられている。サブアレイ化により、受信時におけるメインビームフォーマへ接続する信号線の本数を減らすことが可能となる。そして、メインビームフォーマでの主遅延時間とは別に、前段回路で各チャンネルに微小な遅延時間を加えた後、複数のチャンネル信号を加算する。本手法は、サブビームフォーマなどと呼ばれ、それを実現する送受信用のサブビームフォーマ回路を探触子内部に搭載することによって、装置本体が限られたチャンネル数であっても、より多くの探触子チャンネルを扱えるようになる。
 また、探触子と本体を分離し、探触子と本体の情報を無線でやり取りするワイヤレス型探触子が実用化されつつあるが、ワイヤレス型探触子において本体と通信を行うために電子回路を探触子内部に搭載する必要がある。
 このように、超音波探触子に電子回路を内蔵した場合、電子回路の発生する熱が問題となる。より多くの信号の処理、多くの機能を搭載して回路規模が増大するほど回路の消費電力が増大し、多くの熱を発生することになる。特に、マトリクスアレイを採用した2次元アレイ超音波探触子はチャンネル数が多く、回路規模が大きくなるため、従来の1次元アレイ超音波探触子や1.5次元アレイ超音波探触子と比べ、探触子の温度上昇が問題となる。
 医療用の超音波探触子は、プローブ本体の表面を被検査者に直接接触させるため、安全性を担保する必要がある。このため、医療用の超音波探触子では、温度の上限や上昇率等の様々な規格が法的に定められている。そして、所望の回路性能や測定を実現するためには、回路の消費電力を低減する工夫、もしくは発生した熱を探触子外部へと逃がす放熱技術や冷却技術が必要となる。
 回路の消費電力を低減する手法の一つとして、超音波の送受信動作時に使用するチャンネル数を低減する(間引く)ことがあげられる。使用するチャンネル数を低減すれば、回路の消費電力が低減し、超音波探触子の温度上昇を抑制できる。しかしながら、使用するチャンネル数を低減すると、取得できる超音波画像の画質が劣化する。そのため、画質に影響をなるべく与えないように、使用しないチャンネル(以下、不使用チャンネルと称する)を決める必要がある。
 特許文献2では、1次元アレイ超音波探触子において、偏向角度が0度付近の送信音圧を低減するために、一部の送信チャンネルを間引く構成が示されている。しかし、2次元アレイ探触子における不使用送信素子を間引く構成、方法は開示されていない。
 特許文献3では、1.5次元アレイ超音波探触子において、深いフォーカス点に超音波を送受信する場合に、走査方向に平行となる行のチャンネル群を間引く構成が明らかになっているが、チャンネルの数に対して、送受信を行う回路の数が少なく、それらの間の接続方法が固定されており、使用できるチャンネルの選択自由度が低いため、超音波探触子の消費電力に応じて、使用するチャンネル数を送受信の度に柔軟に変更できない。
 本発明の目的は、上記の課題を解決し、低消費電力と高画質を両立することができる超音波探触子、それを用いた超音波診断装置、及びその駆動方法を提供することにある。
 上記目的を達成するため、本発明においては、超音波探触子であって、行列方向に2次元配列された複数の超音波素子を備え、超音波の走査方向に応じて、行又は列単位で、超音波素子の不使用素子群を動的決定する構成の超音波探触子を提供する。
 また、上記目的を達成するため、本発明においては、超音波の送受信を行う超音波診断装置であって、行列方向に2次元配列された複数の超音波素子と、超音波素子を駆動する駆動部を有する超音波探触子と、超音波探触子を制御する制御部とを、を備え、制御部は、超音波の走査方向に応じて、行又は列単位で超音波素子の不使用素子群を動的決定する構成の超音波診断装置を提供する。
 更に、上記目的を達成するため、本発明においては、制御部を備え、被検体に超音波の送受信を行う超音波診断装置の駆動方法であって、制御部は、行列方向に2次元配列された複数の超音波素子を有する超音波探触子を、超音波の走査方向に応じて、行又は列単位で超音波素子の不使用素子群を動的決定して駆動するよう制御する超音波診断装置の駆動方法を提供する。
 本発明によれば、超音波探触子の消費電力を低減し、超音波画像性能の向上、より長い動作時間を実現できる。
超音波探触子における送信ビームフォーミングを説明する図。 超音波探触子における受信ビームフォーミングを説明する図。 二次元アレイ超音波探触子の一例を示す図。 超音波診断装置の機能構成を説明する図。 サブアレイ回路の機能構成を説明する図。 使用するチャンネル数と消費電力の関係を説明する図。 開口パターンと画質の指標の関係を説明する図。 実施例1に係る超音波診断装置の構造の一例を示す図。 実施例1に係るエレメント回路の構造の一例を示す図。 実施例1に係る長軸方向を走査方向とした時の開口パターンと画質の指標の関係を説明する図。 実施例1に係る短軸方向を走査方向とした時の開口パターンと画質の指標の関係を説明する図。 実施例1に係る長軸方向を走査方向とした時の開口パターンの組み合わせを説明する図。 実施例1に係る短軸方向を走査方向とした時の開口パターンの組み合わせを説明する図。 実施例1に係るエレメント回路制御部の動作手順を示すフローチャート図。 実施例2に係る長軸方向を走査方向とした時の開口パターンと画質の指標の関係を説明する図。 実施例2に係る長軸方向を走査方向とした時の開口パターンの組み合わせを説明する図。 実施例3に係る長軸方向を走査方向とした時の開口パターンと画質の指標の関係を説明する図。 実施例3に係る長軸方向を走査方向とした時の開口パターンの組み合わせを説明する図。 実施例4に係る長軸方向を走査方向とした時の開口パターンと画質の指標の関係を説明する図。 実施例4に係る長軸方向を走査方向とした時の開口パターンの組み合わせを説明する図。
 以下、添付図面を参照し、本発明の実施例を説明するが、それに先立ち図1、図2、図3を用いて、本発明が対象とする超音波探触子の送受信ビームフォーミングと、マトリクスアレイの基本構造について説明する。超音波振動子には、例えば圧電セラミック型、単結晶型、圧電ポリマー型、静電容量型トランスデューサが用いられる。これらのデバイスは、電圧を印加することにより超音波を発生し、その超音波を外部に送信し、超音波を受信すると電気信号を生成する。
 超音波振動子の前面側(以下、放射面側と称する)には、音響エネルギーを効率的に前面に伝達させるための音響整合層が設置されていることがある。また、超音波振動子の放射面側には、ある一定領域に音響エネルギーを集中させるためのレンズ材が設置されることもある。また、超音波振動子の背面側には、不要な音響反射を防ぐための背面材(バッキング材)が設置されることがある。超音波探触子は、通常、振動子が多数のチャンネルに区切られており、アレイ化されている。撮像時には、これらの各チャンネルの送受信号に適宜遅延時間を与え、ある点にフォーカスされた超音波ビームを作り出す。
 図1は、超音波探触子における送信ビームフォーミングを示す。図1では、送信時において各々異なる遅延時間を付与した入力信号を一次元アレイ探触子の各チャンネルに印加している様子が示されている。図1の超音波探触子は、複数のチャンネルに対応する複数の超音波振動子1を備える。超音波探触子内もしくは装置本体内の遅延回路が、各超音波振動子1に異なる遅延時間3を付与することにより、フォーカス点2に集束した超音波ビームを形成する。
 図2は、超音波探触子における受信ビームフォーミングを示す。同図では、一次元アレイ探触子の各超音波振動子1においてエコー信号を受信している様子が示されている。超音波探触子は、複数の超音波振動子1に接続された加算回路4を備える。受信時において、各超音波振動子1で受信するエコー信号は、フォーカス点2からの距離によって受信時間が異なる。超音波探触子内もしくは装置本体内の遅延回路が、各超音波振動子の受信信号に、伝搬時間差に応じた遅延時間3’を与えて位相を揃える。位相を揃えた各々の信号を、超音波探触子内もしくは装置本体内の加算回路4が加算することにより、受信信号は1点にフォーカスされた信号として取り出される。このような処理を行う回路を整相回路あるいはビームフォーマなどと呼ぶが、超音波探触子は、上記の遅延時間を変えることでフォーカス点を移動させ、撮像領域全体の信号を取得する。得られた信号は、重み付け処理、検波処理、フィルター処理等を経て、超音波診断装置のディスプレイ上に画像として表示される。
 また、図3に示すように、超音波探触子では、超音波振動子1であるチャンネルを2次元的に配列したマトリクスアレイが実用化されている。マトリクスアレイでは、超音波探触子で扱うべきチャンネル数が数千チャンネルオーダと増加する場合がある。従って、探触子のチャンネル数に対して、本体ビームフォーマのチャンネル数が圧倒的に不足するという事態となる。
 続いて、図4~図20は本発明の種々の実施例を説明するための図を示しているが、これらは本発明の理解のために用意した図面に過ぎず、本発明を限定的に解釈するために用いるべきではない。
 本実施例は、行列方向に2次元配列された複数の超音波素子を備え、超音波の走査方向に応じて、行又は列単位で超音波素子の不使用素子群を動的決定することで、所望の走査方向の分解能、すなわち画質を維持しつつ、消費電力を低減可能にする超音波探触子、及びそれを利用する超音波診断装置の実施例である。まず初めに、超音波診断装置の装置構成と画像化までの信号の流れ、超音波探触子の消費電力と使用するチャンネル数の関係性、使用する画質の指標について説明する。
 図4は、超音波診断装置の一構成例を示し、超音波探触子と装置本体で構成される。超音波診断装置は、超音波探触子100と、送受切替スイッチ40と、送信アンプ43、受信アンプ44、直流電源45からなる送信系及び受信系回路39と、電圧リミッター41と、電源42と、D/A(Digital to Analog)コンバータ46と、A/D(Analog to Digital)コンバータ47と、送信ビームフォーマ48と、受信ビームフォーマ49と、制御部50と、信号処理部51と、スキャンコンバータ52と、表示部53と、ユーザインタフェース54と、を備える。なお、装置本体の制御部50は、例えば、コンピュータの中央処理部(CPU)のプログラム実行により実現可能である。
 直流電源45は、直流電圧を必要としてない超音波探触子を接続する場合には必ずしも備えている必要はない。なお、図4に示す各部を、超音波探触子と装置本体のいずれに搭載するかは適用する製品の種類により異なり、一義的に決定されない。
 図4に示す超音波探触子100は、図1及び図2に示した複数のチャンネルを持つ超音波探触子に相当する。超音波探触子100の個々のチャンネルは、送受切替スイッチ40を介し、送信系及び受信系回路39の送信系回路と受信系回路に切り替えられる。超音波探触子100は、電源42によって駆動する送信アンプ43及び受信アンプ44により超音波ビームを形成するアレイとして動作し、超音波の送受信のために利用される。なお、超音波探触子100が、CMUT(Capacitive Micro-machined Ultrasonic Transducer)のようなバイアス電源を必要とするものである場合は、超音波探触子100が送信系及び受信系回路39の直流電源45に接続されている。
 超音波探触子100の複数のチャンネルは、超音波撮像装置の送信ビームフォーマ48及び受信ビームフォーマ49に接続されている。送受信の信号は、ユーザインタフェース54による操作に応じて制御部50によって制御される。信号を送信する場合、送信信号は、制御部50で制御され、個々のチャンネルに波形、振幅及び遅延時間が設定される。また、制御部50では、振幅に重みを付する制御を行ってもよい。
 送信信号は、送信ビームフォーマ48、D/Aコンバータ46、送信アンプ43を介して超音波探触子100に送信される。ここで、送信アンプ43には、制御部50による制御により波形形成された電圧が入力され、送信アンプ43で電圧が増幅されて出力される。これにより、超音波を発生させるための複数の独立な駆動電圧信号が超音波探触子100の複数のチャンネルに入力される。なお、電圧リミッター41は、超音波探触子100に過大な電圧が印加しないよう、あるいは送信波形制御の目的で設けられている。
 超音波探触子100において超音波の信号を受信した場合は、複数のチャンネルにおける受信信号が整相(遅延)加算処理される。受信信号は、受信アンプ44、A/Dコンバータ47、受信ビームフォーマ49を介した後、信号処理部(画像処理部)51に送信される。信号処理部51は、Bモード断層像処理や血流カラーモードあるいはドップラー等の機能に応じた処理を実行し、受信信号をビデオ信号に変換する。その後、ビデオ信号は、スキャンコンバータ52を介して表示部53に送信され、表示部53には画像や数値が表示される。なお、受信アンプ44は、LNA(Low Noise Amplifier)や可変ゲインアンプなどによって構成される。
 図5に示すように、超音波探触子内部に回路を搭載する場合は、上述した構成要素の一部が搭載される。あるいは、信号を探触子内部で減らすための受信用サブビームフォーマであるサブアレイ受信回路13や、送信用サブビームフォーマであるサブアレイ送信回路16が搭載される。図5では、複数のチャンネル、すなわち超音波振動子1をまとめてサブアレイ5を形成する。超音波振動子1からの超音波信号は、送受分離回路7で送信信号と受信信号に分離される。
 受信の場合、信号はサブアレイ受信回路13内のLNA8を通過し、可変ゲインアンプ(VGA:Variable Gain Amplifier)9を通過する。その後、受信微小遅延回路10を経由して加算回路11で複数の素子からの信号が加算される。必要に応じてバッファアンプ12で増幅され、装置本体のメインビームフォーマへと送られる。LNA8や可変ゲインアンプ9は必要に応じて搭載すればよく、必ずしも必須ではない。
 送信の場合、メインビームフォーマで主遅延時間を与えられた送信波形を、サブアレイ送信回路16内の分配回路15で複数の信号に分配し、送信微小遅延回路14で個々の遅延が与えられた後、送信アンプ回路17で増幅され、送受分離回路7を介して、振動子6に印加される。これらの構成は、探触子回路の一例であって、類似する回路構成が存在する。
 次に、図6を使って、超音波探触子の消費電力と使用するチャンネル数の関係について説明する。同図は、超音波送受信時に使用するチャンネル数と超音波探触子の消費電力の関係を示す。横軸の使用チャンネル数が多いほど、縦軸示す探触子消費電力は大きくなり、使用するチャンネル数を低減すれば消費電力を削減できることが分かる。
 続いて、図7を用いて、本明細書で使用する画質の指標について説明する。図7上段の(a)、(b)は長軸方向96個、短軸方向48個のチャンネルが存在する2次元アレイ超音波探触子のチャンネルアレイの送受信開口パターンをそれぞれグレイ表示で示す。なおここで、開口パターンとは、超音波送受信動作をさせるチャンネルの組み合わせを意味する。開口パターンとして、全部(96×48)のチャンネルを使用し、超音波の送受信を実施した時に取得できる超音波信号強度の長軸方向、短軸方向の角度依存性ついての計算機シミュレーション結果をそれぞれ示したのが、図7下段の(c)、(d)である。仮定した超音波周波数は1.6MHz、振動子間隔は0.3μmである。信号強度は、角度0度において、ピークを持ち、角度が大きくなると、減衰する。
 まず一つ目の画質の指標として、角度0度におけるピーク信号強度0dBから、始めに-20dBまで信号強度が落ちるまでの角度幅をメインローブの幅(A)として規定する。この指標は、超音波画像のエッジの傾きに関係し、画質的には小さいほうが良い。もう一つの画質の指標として、角度-10~-40度、10~40度における、平均的な信号強度をサイドローブの大きさ(B)として規定する。この指標は、超音波画像のコントラストに関係し、画質的にこの数値も小さいほうが良い。長軸方向のメインローブ幅は3.2、サイドローブの大きさは-67であり、短軸方向のメインローブ幅は6.0、サイドローブの大きさは-55である。長軸方向の数値が共に小さく、長軸方向の画質を示す分解能が良いことが分かる。この理由は、長軸方向の開口幅が広く取れているためである。Bモードで超音波画像を取得する場合、走査する方向の分解能が高いことが好ましい。このため、通常Bモードで走査する場合、長軸軸方向を走査する方向として使用する場合が多い。
 図8に、本実施例に係る2次元アレイ超音波探触子を使った超音波診断装置の一構成例を示す。超音波診断装置99は、装置本体22、2次元アレイ超音波探触子101を備える。2次元アレイ超音波探触子101はケーブル102を介して装置本体22と電気的に接続される。ケーブル102は装置本体22から着脱可能になっていることがある。図示を省略するが、装置本体22には、先に説明した通りCPUなどで構成される制御部が備えられ、この制御部が2次元アレイ超音波探触子101の駆動制御を含め装置全体の制御を実行する。
 2次元アレイ超音波探触子101は、探触子の駆動部である探触子回路21、複数の超音波振動子1、温度センサ23を有する。超音波振動子1は、圧電体などを含む電気機械変換トランスデューサである。超音波振動子1の放射面側には、音響エネルギーを効率的に前面に伝達させるための音響整合層が設置されていることがある。また、超音波振動子1の放射面側には、ある一定領域に音響エネルギーを集中させるための図示を省略したレンズ材が設置されることもある。また、超音波振動子の背面側には、不要な音響反射を防ぐための背面材(バッキング材)が設置されることがある。
 駆動部である探触子回路21は、複数のエレメント回路20、メモリ25とメイン送信ビームフォーマ回路18とを含むエレメント回路制御部24、超音波振動子1を駆動するための行方向イネーブル信号ドライバ回路26、及び列方向イネーブル信号ドライバ回路27を備える。エレメント回路20は複数個でグループ化されて、サブアレイエレメント回路19を形成する。サブアレイエレメント回路19はサブビームフォーマを実施する単位となる。行方向イネーブル信号ドライバ回路26と列方向イネーブル信号ドライバ回路27がそれぞれ出力する行方向イネーブル信号群28、列方向イネーブル信号群29は、複数のエレメント回路20のアレイ上を行方向、列方向に向かって伝達される。同じ行あるいは列に所属するエレメント回路20には、同じ行方向イネーブル信号あるいは列方向イネーブル信号が分配される。
 図9を用いて、エレメント回路20の内部構成の一例について説明する。エレメント回路20は、送受分離回路7、LNA8、受信微小遅延回路10、送信アンプ回路17、送信微小遅延回路14、論理積回路30を備える。エレメント回路20は、送受分離回路7を介して、1対1の対応で超音波振動子1と接続される。論理積回路30には、行方向イネーブル信号28a、列方向イネーブル信号29bが入力される。受信微小遅延回路10はサブアレイエレメント回路19内に配置される加算回路11と接続される。なお、加算回路11がエレメント回路内に配置される場合もある。送信微小遅延回路14は、サブアレイエレメント回路19に配置される分配回路15と接続される。受信微小遅延回路10と送信微小遅延回路14は、一つの微小遅延回路を時分割で共用して使用することもある。
 続いて、図8に示した本実施例の超音波診断装置99の構成および動作について説明する。装置本体22の制御部は、ケーブル102を介して、2次元アレイ超音波探触子101の探触子回路21のエレメント回路制御部24に対し、2次元アレイ超音波探触子101の超音波送受信動作開始信号、あるいは、2次元アレイ超音波探触子101の超音波送受信動作に係る設定情報を送信する。設定情報は、微小遅延回路設定情報、送信メインビームフォーマ回路18の動作設定情報、行方向イネーブル情報、列方向イネーブル情報、内臓アナログ回路の動作設定情報等を含む。設定情報は、エレメント回路制御部24内のメモリ25に保存され、必要に応じて、各回路に分配される。図示を省略したが、装置本体22は、2次元アレイ超音波探触子101の電源も供給する。
 エレメント回路制御部24が装置本体22から超音波送受信動作開始信号を受信すると、送信メインビームフォーマ回路18は、送信波形を生成し、各送信波形に対し主遅延時間を与える。主遅延時間が与えられた送信波形は、サブアレイエレメント回路19に送信され、分配回路15を介して、各エレメント回路20に分配される。分配された送信波形は、送信微小遅延回路14で微小遅延時間が加えられ、送信アンプ17で増幅された後、送受分離回路7を介して、超音波振動子1を駆動する。その結果、2次元アレイ超音波探触子101から超音波が発せられる。
 被検体から受信した超音波は、超音波振動子1で電気信号に変換される。当該電気信号は、送受分離回路7を介して、LNA8に入力される。入力された電気信号は、LNA8で増幅され、受信微小遅延回路10で微小時間が加えられた後、加算回路11に送られる。微小時間が加えられた電気信号は加算回路11でサブアレイエレメント回路19毎に加算された後、メインビームフォーマを有する装置本体22に伝達される。当該伝達された信号は、メインビームフォーマで主遅延時間が加算され、その後、検波処理、対数圧縮による輝度信号への変換等が実施され、装置本体22の表示部53に超音波画像が表示される。
 図8に示した本実施例の超音波診断装置の構成にあっては、2次元アレイの超音波振動子1に対応するチャンネルの中から、超音波送受信動作をさせるチャンネルは、行イネーブル信号群28、列イネーブル信号群29により、行単位、列単位で指定する。あるエレメント回路20に着目した場合、図9の行方向イネーブル信号28a、列方向イネーブル信号29bの論理値が共に1(true)ならば、当該エレメント回路20の送受分離回路7、LNA8、受信微小遅延回路10、送信アンプ回路17、送信微小遅延回路14が動作し、対応するチャンネルにおいて超音波の送受信動作を実施する。
 一方、行方向イネーブル信号28aと列方向イネーブル信号29bの論理値のいずれかあるいは共に0(false)ならば、当該エレメント回路の送受分離回路7、LNA8、受信微小遅延回路10、送信アンプ回路17、送信微小遅延回路14が動作せずに、対応するチャンネルにおいて超音波の送受信動作を実施しない。LNA8、受信微小遅延回路10、送信アンプ回路17、送信微小遅延回路14の動作停止は、電源遮断、バイアス電流用トランジスタのカットオフ、クロック供給の停止等で行う。動作停止時の送受分離回路7は、超音波振動子1とLNA8との接続を分離する。回路の動作を停止することで消費電力を低減できる。
 このように、本実施例の超音波診断装置の構成、すなわち超音波送受信動作を行うチャンネルがサブアレイ単位よりも細かい行単位、列単位で選択できる構成は、選択できるチャンネルの柔軟性を十分に有しながら、シンプルな回路で実現できるというバランスの取れた構成になっている。
 2次元アレイ超音波探触子101の超音波振動子1に対応するチャンネルの中から、超音波送受信動作をさせるチャンネルの組み合わせである開口パターンは、メモリ25に保存する行方向イネーブル情報、列方向イネーブル情報に基づき決定される。送信時の開口パターンである送信開口パターン、受信時の開口パターンである受信開口パターン、或いは2次元アレイ超音波探触子101の消費電力に応じた開口パターンなどが複数、メモリ25に保存される。それらの開口パターンは、エレメント回路制御部24が、装置本体の制御部からの指示情報に基づき、超音波の送信毎、受信毎にメモリ25から読み出し、行方向イネーブル信号ドライバ回路26、列方向イネーブル信号ドライバ回路27を介して、各エレメント回路に設定する。このように、あらかじめ複数の開口パターンをメモリ25に保存しておくことで、装置本体22からどの送受信開口パターンを使用するかという指示情報をエレメント制御部24に伝えるのみで、送信と受信の間や次回の送信までに、素早く開口パターンを切り替えることができる。これにより、装置本体22の制御部と探触子回路21内のエレメント回路制御部24の間の情報通信時間を削減することが可能になるため、フレームレートの向上が可能になる。
 図8の2次元アレイ超音波探触子101内の温度センサ23は、例えばバンドギャップ回路、熱電対、サーミスタ、測温抵抗体等で構成されており、2次元アレイ超音波探触子101の温度を測定する。測定した温度情報は、ケーブル102或いは無線等を介して装置本体22に送信される。装置本体22の制御部は、この温度情報に基づく、2次元アレイ超音波探触子101の発熱状況から、2次元アレイ探触子101の消費電力を計算し、その計算結果に基づいて、メモリ25に保存されたどの開口パターンを使用するかについての指示情報を、ケーブル102或いは無線等を介してエレメント回路制御部24に通知する。
 次に、図10を使用して、本実施例の構成により、全チャンネルを使用した場合と比較して消費電力を低減可能な、長軸方向に走査する時の送信開口パターンと受信開口パターンの一例について説明する。同図において、使用チャンネル31をグレイ表示し、不使用チャンネル32は白色表示した。以下の図面においても同様である。
 図10上段の(a)は、長軸方向に走査する時の送信開口パターンを示す。長軸方向に走査する場合、長軸方向の分解能が重要であるため、長軸方向の開口幅を広く取るのが好適である。そのため、走査方向と同じ方向の行を単位として不使用チャンネル32を指定する。図10の(a)では、48個の行の内、中心部の24個の行を使用チャンネル31として指定し、端から12個ずつを不使用行として不使用チャンネル32を指定する。
 図10の(b)に示すように、受信開口パターンも同じ考えで使用チャンネル31、不使用チャンネル32を指定する。全部のチャンネルを使用した場合と比較して、同図より明らかなように使用するチャンネル数は半分となるため、消費電力はほぼ半減できる。図10の(a)、(b)に明らかなように、送受信時における不使用チャンネル32は、超音波の走査方向である長軸方向に対応し、行単位で超音波素子の不使用素子群を形成している。そして、この不使用チャンネル32、すなわち、不使用素子群は、行が連続した所定の幅を有する素子帯を構成し、この素子帯が行単位で使用する使用チャンネル31、すなわち使用素子群に隣接している、或いは複数の不使用の素子帯である不使用チャンネル32が、使用素子群である使用チャンネル31によって互いに隔てられている構成を有する。
 図10上段の(a)の送信開口パターン、(b)の受信開口パターンを使用して超音波送受信した場合の信号強度の基づいた分解能を、図10下段の(c)、(d)に示す。長軸方向のメインローブ幅は3.2、サイドローブの大きさは-67であり、短軸方向のメインローブ幅は11.9、サイドローブの大きさは-42である。全部のチャンネルを使用したときと比較して、走査方向である長軸方向の分解能は維持され、短軸方向の分解能が低下する。
 このように、走査方向に応じて使用しない不使用チャンネルを行単位で指定することで、より重要な走査方向の分解能、即ち画質を維持しつつ、消費電力を低減可能になる。なお、本実施例の説明では、不使用行の個数を全体の半分にしたが、特に個数は限定するものではなく、所望する消費電力に応じて、不使用行の個数は柔軟に変更できる。また、本実施例では、送信開口パターンと受信開口パターンが同じにしたが、異なっていても良い。
 次に、図11を使用して、本実施例の構成により、全チャンネルを使用した場合と比較して消費電力を低減可能な、短軸方向に走査する時の送信開口パターンと受信開口パターンについて説明する。同図において、グレイ表示した列が使用チャンネルを示す。図11の(a)は、短軸方向に走査する時の送信開口パターンを示す。短軸方向に走査する場合、短軸方向の分解能が重要であるため、短軸方向の開口幅を広く取るのが好適である。そのため、走査方向と同じ方向の列を単位として不使用チャンネル32を指定する。図11の(a)では、96個の列の内、中心部の48個の列を使用チャンネル31として指定し、端から24個ずつを不使用列として指定する。
 図11の(b)に示すように、受信開口パターンも同じ考えで使用チャンネル31、不使用チャンネル32を指定する。全部のチャンネルを使用した場合と比較して、使用するチャンネル数は半分となるため、消費電力はほぼ半減できる。図11の(a)、(b)に明らかなように、送受信時における不使用チャンネル32は、超音波の走査方向である短軸方向に対応し、列単位で超音波素子の不使用チャンネル32である不使用素子群を形成している。そして、この不使用素子群は、列が連続した所定の幅を有する素子帯を構成し、この不使用素子群の素子帯が列単位で使用する使用素子群である使用チャンネル31に隣接している、あるいは不使用素子群の複数の素子帯が使用素子群である使用チャンネル31によって互いに隔てられている構成を有する。
 図11下段の(c)、(d)に、図11の(a)の送信開口パターン、(b)の受信開口パターンを使用して超音波送受信した場合の信号強度の基づいた分解能を示す。長軸方向のメインローブ幅は6.0、サイドローブの大きさは-55であり、短軸方向のメインローブ幅は6.0、サイドローブの大きさは-55である。図7で説明した全部のチャンネルを使用したときと比較して、走査方向である短軸方向の分解能は維持され、長軸方向の分解能が低下する。
 このように、走査方向に応じて不使用チャンネルを列単位で指定することで、より重要な走査方向の分解能、すなわち画質を維持しつつ、消費電力を低減可能になる。なお、本説明では、不使用列の個数を全体の半分にしたが、特に個数は限定するものではなく、所望する消費電力に応じて、不使用列の個数は柔軟に変更できる。また、本実施例では、送信開口パターンと受信開口パターンが同じくしたが、異なっていても良い。
 次に、図12を使用して、本実施例の構成により、長軸方向に走査する場合の、消費電力余裕に応じて送信開口パターンと受信開口パターンの組み合わせを決定する例を説明する。同図においても、グレイ表示した行が使用チャンネルであり、それ以外が不使用チャンネルを示す。先に説明した通り、これらの開口パターンの情報は、予めメモリ25に保存される。温度センサ23の温度測定結果に基づき計算した結果、2次元アレイ超音波探触子101の消費電力に余裕が有る場合は、装置本体22の制御部が全部のチャンネルを使用して、超音波の送受信を行うよう装置本体22が指示する。逆に、消費電力余裕が無い場合、あるいは、長時間使用し続ける等の理由で温度上昇の速度を抑制したいときには、制御部から消費電力余裕無しの送信開口パターンと受信開口パターンを使用するよう、エレメント回路制御部24に指示情報が出力される。なお、本実施例の図12の例では、消費電力余裕無しの送信・受信開口パターンの組み合わせを1種類しか用意していないが、消費電力余裕の度合いに応じて、複数用意しても良い。
 図13は、短軸方向に走査する場合の、消費電力余裕に応じた送信開口パターンと受信開口パターンの組み合わせを決定する例を示す。同図において、グレイ表示した列が使用チャンネル、それ以外の列が不使用チャンネルを示す。図12と同様に、これらの開口パターンの情報は、予めメモリ25に保存される。温度センサ23の温度測定結果に基づき、2次元アレイ超音波探触子101の消費電力余裕が有る場合は、装置本体22の制御部は全部のチャンネルを使用して、超音波の送受信を行うよう指示する。逆に、消費電力余裕が無い場合、あるいは、長時間使用し続ける等で温度上昇の速度を抑制したいときには、装置本体22は、消費電力余裕無しの送信開口パターンと受信開口パターンを使用するよう指示する。本実施例の図13の例では、消費電力余裕無しの送信・受信開口パターンの組み合わせを1種類しか用意していないが、消費電力余裕の度合いに応じて、複数用意しても良い。
 次に、図14のフローチャートを用いて、エレメント回路制御部24の動作手順を説明する。この制御は、超音波の送受信動作を実施する毎に行われる。ステップ01において、エレメント回路制御部24内のメモリ25の開口パターン情報を更新する必要が有る場合、装置本体22の制御部から新しい開口パターン情報を受信し、メモリ25に保存する(ステップ02)。更新の必要が無い場合は、ステップ02は実施しない。ステップ03にて、装置本体22から超音波送受信動作開始信号、およびメモリ25に保存されているどの送受信開口パターンを使用するかという指示情報を受信すると、エレメント回路制御部24は指定された送信開口パターンをエレメント回路20にセットし、送信の際の不使用チャンネルを確定する(ステップ04)。その後、ステップ05にて超音波を送信する。
 超音波送信後、被検体からの超音波の受信を開始する前に、メモリ25中の指定された受信開口パターンをエレメント回路にセットし、受信の際の不使用チャンネルを確定する(ステップ06)。その後、ステップ07にて超音波を受信する。一連の超音波送受信動作を終了したら、次回の超音波送受信動作に備える。
 なお、ステップ05の送信から、ステップ07の受信の間隔は約400nsecであり、もし、その間に受信開口パターンを装置本体22からダウンロードした場合、必要とされる時間(およそ500nsec)より短いため、予めメモリ25に開口パターン情報を保存しておくことは極めて意義がある。
 以上詳述したように本実施例の構成において、2次元アレイ超音波探触子101は、走査方向、或いは2次元アレイ超音波探触子の消費電力に応じて、走査方向に応じた行又は列単位での不使用素子群を動的に決定して、送受信開口パターンを切り替え、適切な超音波送受信動作を行うことができる。すなわち、2次元アレイ超音波探触子の消費電力の削減が必要な時には、走査方向と同じ方向の行又は列単位で不使用チャンネルを選択することで、より重要となる走査方向の分解能を維持しながら、消費電力を削減できる。これにより、超音波画像性能の向上、より長い動作時間が実現できる。
 次に、実施例2の超音波探触子、超音波診断装置の構成を説明する。本実施例は、超音波振動子や探触子回路内のエレメント回路の歩留まりが、2次元アレイ構造の端において比較的低いことに基づき、2次元アレイ超音波探触子の端のチャンネルを使用しない構成の実施例である。以下の実施例2の説明において、実施例1と異なる点を中心に説明する。
 図15は、実施例2に係る、長軸方向を走査方向とした時の開口パターンと画質の指標の関係を説明する図である。同図において、グレイ表示した行が使用チャンネル31、それ以外の行列が不使用チャンネル32を示す。同図を用い実施例2において、全チャンネルを使用した場合と比較して消費電力を低減可能な、長軸方向に走査する時の送信開口パターンと受信開口パターンについて説明する。
 図15上段の(a)は、長軸方向に走査する時の送信開口パターンを示す。長軸方向に走査する場合、長軸方向の分解能が重要であるため、長軸方向の開口幅を広く取るのが好適である。そのため、走査方向と同じ方向の行を基本的な単位として不使用チャンネルを指定する。さらに本実施例では、超音波振動子1やエレメント回路20の歩留まりが、2次元アレイの端において比較的低いことに基づき、2次元アレイの端の列のチャンネルを使用しないことが、実施例1と異なる。
 図15の(a)では、48個の行の内、中心部の25個の行を使用チャンネル31として指定し、それ以外を不使用行として指定する。さらに、2次元アレイ超音波探触子の長軸方向端の2列ずつを不使用列として指定する。この場合、使用行の個数が、実施例1よりも1個多くすることが可能となる。これは、許容される消費電力が全チャンネルを使用した場合のほぼ半分に設定されているとすると、使用しない長軸方向端の2列のチャンネル数分を短軸方向の開口幅拡大に振り分けることができるからである。すなわち、本実施例の構成によれば、許容される消費電力をできるだけ有効活用し、短軸方向の分解能をより向上させることができる。なお、この不使用列の数は2列に限定されず、1列、或いは3列などであっても良い。
 図15の(b)に示すように、受信開口パターンも同じ考えで使用チャンネル31と、不使用チャンネル32を指定する。全部のチャンネルを使用した場合と比較して、使用するチャンネル数はほぼ半分となるため、消費電力はほぼ半減できることは実施例1と同様である。
 図15上段の(a)の送信開口パターン、(b)の受信開口パターンを使用して超音波送受信した場合の信号強度の基づいた分解能を、図15下段の(c)、(d)に示す。長軸方向のメインローブ幅は3.4、サイドローブの大きさは-67であり、短軸方向のメインローブ幅は11.3、サイドローブの大きさは-43である。全部のチャンネルを使用したときと比較して、走査方向である長軸方向の分解能はほぼ維持され、短軸方向の分解能が低下する。このように、走査方向である行単位を基本として不使用チャンネルを指定することにより、より重要な走査方向の分解能、すなわち画質を維持しつつ、消費電力を低減可能になる。さらに、本実施例においては、歩留まりが比較的低い、2次元アレイの端のチャンネルを使用しない構成を採用することで、端のチャンネルが使用できない場合にも分解能に影響を与えることなく対応できるという効果がある。
 なお、本説明では、不使用行の個数を全体の25個にしたが、特に個数は限定するものではなく、所望する消費電力に応じて、不使用行の個数は柔軟に変更できる。また、本実施例では、送信開口パターンと受信開口パターンが同じにしたが、異なっていても良いことは言うまでもない。
 次に、図16を使用して、実施例2に係る、長軸方向に走査する場合の、消費電力余裕に応じた送信開口パターンと受信開口パターンの組み合わせ例を示す。同図において、グレイ表示した行が使用チャンネル、それ以外の行列が不使用チャンネルを示す。開口パターンの情報は、実施例1同様、メモリ25に予め保存される。温度センサ23の温度測定結果に基づき、2次元アレイ超音波探触子101の消費電力余裕が有る場合は、全部のチャンネルを使用して、超音波の送受信を行うよう装置本体22の制御部から制御される。逆に、消費電力余裕が無い場合、あるいは、長時間使用し続ける等で温度上昇の速度を抑制したいときには、消費電力余裕無しの送信開口パターンと受信開口パターンを使用するよう制御される。
 なお、本実施例では、消費電力余裕無しの送信・受信開口パターンの組み合わせを1種類しか用意していない場合を説明したが、消費電力余裕の度合いに応じて、複数用意しても良い。また以上の説明においては、2次元アレイ超音波探触子の長軸方向を走査方向とする場合を例に説明したが、短軸方向を走査方向とする場合も本実施例と同じ考え方に基づいて送受信開口パターンを形成すれば良い。
 本実施例によれば、走査方向に応じた行又は列単位での不使用素子群を動的に決定することにより、より重要となる走査方向の分解能を維持しながら、消費電力を削減できると共に、2次元アレイの端のチャンネルが使用できない場合にも分解能に影響を与えることなく対応でき、超音波画像性能の向上、より長い動作時間が実現できる。
 次に、実施例3の超音波探触子、超音波診断装置の構成を説明する。本実施例は、送受信開口パターンをチャープ変調で変更することで、走査方向と直交する方向のメインローブ幅の狭帯化を図ることが可能な超音波探触子、超音波診断装置の実施例である。実施例1では、消費電力を削減した開口パターンにおいて、走査方向の分解能維持が図られているが、走査方向と直交する方向の分解能が低下した。そこで実施例3では、送信と受信の開口パターンを変更することで、走査方向と直交する方向のメインローブ幅の狭帯化を図っている。以下の説明においては、実施例1と異なる点を中心に説明する。
 図17を使用して、実施例3に係る、全チャンネルを使用した場合と比較して消費電力を低減可能な、長軸方向に走査する時の送信開口パターンと受信開口パターンについて説明する。図17上段の(a)は、長軸方向に走査する時の送信開口パターンを示す。長軸方向に走査する場合、長軸方向の分解能が重要であるため、長軸方向の開口幅を広く取るのが好適である。そのため、走査方向と同じ方向の行を単位として不使用チャンネル32を指定する。さらに本実施例では、走査方向と直交する短軸方向のメインローブ幅の狭帯化をするために、合成開口レーダー等で使用されているチャープ変調技術に基づいて、不使用行単位の複数チャンネルと、使用する行単位の複数チャンネルの幅をチャープ変調させる。
 図17の(a)の送信開口パターンでは、48個の行の内、使用する行を24個、使用しない行を24個として、それぞれの複数チャンネルの幅をチャープ変調させて、使用・不使用チャンネルを指定する。図17の(b)に受信開口パターンを示す。合成開口レーダー等で使用されているチャープ変調技術に基づき、図17の(b)の受信開口パターンは、(a)の送信開口パターンと2次元アレイ超音波探触子の中心部でほぼ点対称になる。
 言い換えるなら、本実施例においては、不使用チャンネル32からなる不使用素子群と使用チャンネル31からなる使用素子群の行の幅がチャープ変調されており、送信時におけるチャープ変調された不使用素子群である不使用チャンネル32の超音波探触子での配置と、受信時におけるチャープ変調された不使用素子群である不使用チャンネル32の超音波探触子での配置は、2次元アレイ超音波探触子の中央部を原点としたほぼ点対称の関係にある。この本実施例の構成においては、全部のチャンネルを使用した場合と比較して、使用するチャンネル数は半分となるため、消費電力はほぼ半減できると共に、短軸方向のメインローブ幅の狭帯化を図ることができる。
 図17下段の(c)、(d)に、本実施例の送信開口パターン、受信開口パターンを使用して超音波送受信した場合の信号強度の基づいた分解能を示す。長軸方向のメインローブ幅は3.2、サイドローブの大きさは-67であり、短軸方向のメインローブ幅は5.4、サイドローブの大きさは-27である。全部のチャンネルを使用したときと比較して、走査方向である長軸方向の分解能は維持される。
 さらに、送受信開口パターンをチャープ変調することで、短軸方向のメインローブ幅が、図10に示した実施例1の11.9から半分以下に狭帯化できる。この結果、超音波画像において短軸方向の画質が向上できる。ただし、本実施例の構成にあっては短軸方向のサイドローブの大きさが大きくなる。
 このように、本実施例により、走査方向である行単位を基本として不使用チャンネルを指定することにより、より重要な走査方向の分解能、すなわち画質を維持しつつ、消費電力を低減可能になる。また、送受信開口パターンをチャープ変調することで、走査方向と直交する方向のメインローブ幅を低減でき、画質の向上が図れる。なお、本説明では、不使用行の個数を半分にしたが、特に個数は限定するものではなく、所望する消費電力に応じて、不使用行の個数を柔軟に変更できる。その際、使用する行あるいは使用しない行の個数に基づいて、それぞれの複数チャンネルの幅をチャープ変調させる。
 次に、図18を使用して、実施例3に係る、長軸方向に走査する場合の、消費電力余裕に応じた送信開口パターンと受信開口パターンの組み合わせの一例を説明する。これらの開口パターンの情報は、実施例1、2同様、予めメモリ25に保存される。温度センサ23の温度測定結果に基づき、装置本体22の制御部は、2次元アレイ超音波探触子101の消費電力余裕が有る場合は、全部のチャンネルを使用して、超音波の送受信を行うよう指示する。逆に、消費電力余裕が無い場合、あるいは、長時間使用し続ける等で温度上昇の速度を抑制したいときには、消費電力余裕無しの送信開口パターンと受信開口パターンを使用する。
 また、図18に明らかなように、チャープ変調された送信開口パターン、受信開口パターンは、それぞれ上下に鏡映非対称なパターンとなっている。このため、超音波画像において、この上下の非対称性に基づいたアーチファクトが発生する可能性がある。例えば、図17の(a)の送信開口パターンにおいては、使用チャンネルの行幅は下部側が太い。音響インピーダンスの差により超音波がほとんど反射されてしまう骨が下部側近傍にあるとすると、被検体内部に侵入する超音波のエネルギーが低減し、超音波探触子で検出できる信号強度が低減する。
 そこで、被検体に対して超音波を送受信する場合、フレーム毎に、送信開口パターンと受信開口パターンを入れ替えて動作させることで、この非対称性に基づいたアーチファクトを低減できる。すなわち、本実施例では、更に、送信時におけるチャープ変調された不使用素子群の行又は列の複数の超音波素子での配置と、受信時におけるチャープ変調された不使用素子群の行又は列の複数の超音波素子での配置を、超音波画像のフレーム毎に交代する。メモリ25に格納されている送信と受信の開口パターン情報を更新する頻度は、1フレームに1回となる。また、装置本体22から送信と受信の開口パターン情報をメモリ25に格納する時間は、およそ1μ秒である。Bモードにおける典型的な1フレームの時間は0.0138秒であり、メモリ25に格納されている送信と受信の開口パターン情報を更新するのに必要なオーバヘッド時間は1フレーム時間の0.01%以下でありほとんど無視できる。
 なお、本実施例では、消費電力余裕無しの送信・受信開口パターンの組み合わせを1種類しか用意していないが、消費電力余裕の度合いに応じて、複数用意しても良い。なお、短軸方向を走査方向とする場合も本実施例と同じ考え方に基づいて開口パターンを形成すれば良いことは先の実施例と同様であり、その場合も、送信時におけるチャープ変調された不使用素子群である不使用チャンネル32の超音波探触子での配置と、受信時におけるチャープ変調された不使用素子群である不使用チャンネル32の超音波探触子での配置は、超音波探触子の中央部を原点としたほぼ点対称の関係になる。
 本実施例によれば、走査方向に応じた行・列単位での不使用素子群を動的に決定することにより、より重要となる走査方向の分解能を維持しながら、消費電力を削減できると共に、走査方向と直交する方向のメインローブ幅の狭帯化を図ることができる。
 次に、実施例4の構成について説明する。本実施例は、チャープ変調した送受信開口パターンをベースとして、2次元アレイの中心部で使用する複数チャンネルからなる使用素子群の幅を太くするよう重み付けを行うことで、走査方向と直交する方向のサイドローブの大きさを低減することを可能とする超音波探触子、超音波診断装置の実施例である。実施例3では、開口パターンをチャープ変調することで、走査方向と直交する方向のメインローブ幅を狭帯化できたが、サイドローブの大きさが大きくなった。そこで実施例4では、チャープ変調した開口パターンにおいて、使用素子群の幅に重み付けを行うことで、走査方向と直交する方向のサイドローブの大きさを低減する。以下、実施例3と異なる点を中心に説明する。
 図19を使用して、実施例4に係る、全チャンネルを使用した場合と比較して消費電力を低減可能な、長軸方向に走査する時の送信開口パターンと受信開口パターンについて説明する。図19上段の(a)は、長軸方向に走査する時の送信開口パターンを示す。長軸方向に走査する場合、長軸方向の分解能が重要であるため、長軸方向の開口幅を広く取るのが好適である。そのため、走査方向と同じ方向の行を単位として不使用チャンネル32を指定する。また、走査方向と直交する短軸方向のメインローブ幅を狭帯化するために、実施例3と同様、送受信開口パターンをチャープ変調する。さらに本実施例では、走査方向と直交する方向のサイドローブの大きさを低減するために、2次元アレイの中心部の使用する複数チャンネル、すなわち使用素子群である使用チャンネル31の行の幅を太くするよう重み付けを行う。
 図19の(a)では、48個の行の内、使用する行を24個、使用しない行を24個として、それぞれの複数チャンネルの幅をチャープ変調させて、さらに、2次元アレイの中心部の使用する複数チャンネルの幅を太くする、という重み付けを行った。図19上段の(b)に本実施例の受信開口パターンを示す。合成開口レーダー等で使用されているチャープ変調技術に基づき、上述の通り受信開口パターンは送信開口パターンと2次元アレイ超音波探触子の中心部でほぼ点対称になる。全部のチャンネルを使用した場合と比較して、使用するチャンネル数は半分となるため、消費電力はほぼ半減できる。
 図19下段の(c)、(d)に、図19の(a)の送信開口パターン、(b)の受信開口パターンを使用して超音波送受信した場合の信号強度に基づいた分解能を示す。長軸方向のメインローブ幅は3.2、サイドローブの大きさは-67であり、短軸方向のメインローブ幅は5.7、サイドローブの大きさは-30である。全部のチャンネルを使用したときと比較して、走査方向である長軸方向の分解能は維持される。さらに、開口パターンをチャープ変調し、また中心部に重み付けを行うことで、短軸方向のサイドローブの大きさを、図17に支援した実施例3の-27から“3”低減できる。
 この結果、メインローブ幅とサイドローブの大きさのバランスを考慮しながら、超音波画像において短軸方向の画質が向上できる。このように、走査方向である行単位を基本として不使用チャンネルを指定することにより、より重要な走査方向の分解能、すなわち画質を維持しつつ、消費電力を低減可能になる。また、開口パターンをチャープ変調し、さらに、中心部に重み付けを行うことで、走査方向と直交する短軸方向のメインローブ幅とサイドローブの大きさのバランスを考慮しながら、画質の向上が図れる。なお、本説明では、不使用行の個数を半分にしたが、特に個数は限定するものではなく、所望する消費電力に応じて、不使用行の個数を柔軟に変更できる。その際、使用する行あるいは使用しない行の個数に基づいて、それぞれの複数チャンネルの幅をチャープ変調し、また、中心部の使用する使用チャンネル31の幅を太くする重み付けを行えば良い。
 次に、図20を使用して、実施例4に係る、長軸方向に走査する場合の、消費電力余裕に応じた送信開口パターンと受信開口パターンの組み合わせ例を示す。これらの開口パターンの情報は、先の実施例同様、予めメモリ25に保存される。温度センサ23の温度測定結果に基づき、装置本体22の制御部が、2次元アレイ超音波探触子101の消費電力余裕が有る場合は、全部のチャンネルを使用して、超音波の送受信を行うよう指示する。逆に、消費電力余裕が無い場合、あるいは、長時間使用し続ける等で温度上昇の速度を抑制したいときには、消費電力余裕無しの送信開口パターンと受信開口パターンを使用するよう指示する。また、本実施例では、消費電力余裕無しの送信・受信開口パターンの組み合わせを1種類しか用意していないが、消費電力余裕の度合いに応じて、複数用意しても良い。なお、短軸方向を走査方向とする場合も本実施例と同じ考え方に基づいて開口パターンを形成すればよいことは、先の実施例同様であり、この場合、2次元アレイの中心部の使用する複数チャンネル、すなわち使用素子群である使用チャンネル31の列の幅を太くするよう重み付けを行う。
 以上説明した実施例4によれば、走査方向に応じた行・列単位での不使用素子群を動的に決定することにより、より重要となる走査方向の分解能を維持しながら、消費電力を削減できると共に、走査方向と直交する短軸方向のメインローブ幅とサイドローブの大きさのバランスを考慮しながら、画質の向上を図ることができる。
 本発明は、超音波の走査方向に応じて、行又は列単位で前記超音波素子の不使用素子群を動的決定することにより、低消費電力と高画質を両立して実現するものであり、上述した実施例の構成に限定されるものでなく、様々な変形例を含んでいる。例えばケーブル利用の超音波探触子のみならず、ワイヤレス方式の超音波探触子にも応用することができる。また、上述した実施例は、本発明を分かりやすく説明するために、一部の実施例について説明したものであり、必ずしも説明した全ての構成を備える必要は無い。また、ある実施例の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成に他の構成を追加し、又は、各実施例の一部構成を他の構成で置換し、又は各実施例の一部構成を削除することも可能である。
 更に、上述した各構成、機能、処理部、制御部等は、それらの一部又は全部を実現するプログラムを作成する例を説明したが、それらの一部又は全部を例えば集積回路で設計する等によりハードウェアで実現しても良い。
1 超音波振動子
2 フォーカス点
3、3’ 遅延時間
4、11 加算回路
5 サブアレイ
7 送受分離回路
8 LNA
9 可変ゲインアンプ
10 受信微小遅延回路
12 バッファアンプ
13 サブアレイ受信回路
14 送信微小遅延回路
15 分配回路
16 サブアレイ送信回路
17 送信アンプ回路
18 送信メインビームフォーマ回路
19 サブアレイエレメント回路
20 エレメント回路
21 探触子回路
22 装置本体
23 温度センサ
24 エレメント回路制御部
25 メモリ
26 行方向イネーブル信号ドライバ回路
27 列方向イネーブル信号ドライバ回路
28 行方向イネーブル信号群
29 列方向イネーブル信号群
30 論理積回路
31 使用チャンネル
32 不使用チャンネル
40 送受切替スイッチ
41 電圧リミッター
42 電源
43 送信アンプ
44 受信アンプ
45 直流電源
46 D/Aコンバータ
47 A/Dコンバータ
48 送信ビームフォーマ
49 受信ビームフォーマ
50 制御部
51 信号処理部
52 スキャンコンバータ
53 表示部
54 ユーザインタフェース
99 超音波診断装置
100 超音波探触子
101 2次元アレイ超音波探触子
102 ケーブル

Claims (15)

  1. 超音波探触子であって、
    行列方向に2次元配列された複数の超音波素子を備え、
    超音波の走査方向に応じて、行又は列単位で前記超音波素子の不使用素子群を動的決定する、
    ことを特徴とする超音波探触子。
  2. 請求項1に記載の超音波探触子であって、
    前記超音波探触子の消費電力量に応じて、前記不使用素子群を決定する、
    ことを特徴とする超音波探触子。
  3. 請求項2に記載の超音波探触子であって、
    前記不使用素子群の行又は列方向は、前記超音波の走査方向と一致する、
    ことを特徴とする超音波探触子。
  4. 請求項2に記載の超音波探触子であって、
    前記不使用素子群は、行又は列が連続した所定の幅を有する素子帯を構成し、
    前記素子帯が行又は列単位で使用する使用素子群に隣接している、
    あるいは複数の前記素子帯が前記使用素子群によって互いに隔てられている、
    ことを特徴とする超音波探触子。
  5. 請求項2に記載の超音波探触子であって、
    前記不使用素子群と前記使用素子群の行又は列の幅がチャープ変調されており、
    送信時におけるチャープ変調された前記不使用素子群の行又は列の前記複数の超音波素子での配置と、受信時における前記チャープ変調された前記不使用素子群の行又は列の前記複数の超音波素子での配置を、前記複数の超音波素子の中央部を原点としたほぼ点対称とした、
    ことを特徴とする超音波探触子。
  6. 請求項5に記載の超音波探触子であって、
    前記複数の超音波素子の中央部における前記使用素子群の行又は列の幅を太くするよう重み付けした、
    ことを特徴とする超音波探触子。
  7. 請求項5に記載の超音波探触子であって、
    送信時におけるチャープ変調された前記不使用素子群の行又は列の前記複数の超音波素子での配置と、受信時における前記チャープ変調された前記不使用素子群の行又は列の前記複数の超音波素子での配置を、超音波画像のフレーム毎に交代する、
    ことを特徴とする超音波探触子。
  8. 超音波の送受信を行う超音波診断装置であって、
    行列方向に2次元配列された複数の超音波素子と、前記超音波素子を駆動する駆動部を有する超音波探触子と、
    前記超音波探触子を制御する制御部とを、を備え、
    前記制御部は、
    前記超音波の走査方向に応じて、行又は列単位で前記超音波素子の不使用素子群を動的決定する、
    ことを特徴とする超音波診断装置。
  9. 請求項8に記載の超音波診断装置であって、
    前記超音波探触子は温度センサを更に有し、
    前記制御部は、
    前記温度センサの出力に基づき前記超音波探触子の消費電力量を算定し、前記消費電力量に応じて、前記不使用素子群を決定する、
    ことを特徴とする超音波診断装置。
  10. 請求項9に記載の超音波診断装置であって、
    前記不使用素子群の行又は列方向は、前記超音波の走査方向と一致する、
    ことを特徴とする超音波診断装置。
  11. 請求項9に記載の超音波診断装置であって、
    前記超音波探触子の前記駆動部は、前記不使用素子群の情報を保持する記憶部を有し、
    前記制御部からの指示に基づき、前記不使用素子群の情報を使って、前記超音波素子を駆動する、
    ことを特徴とする超音波診断装置。
  12. 請求項9に記載の超音波診断装置であって、
    前記不使用素子群は、行又は列が連続した所定の幅を有する素子帯を構成し、
    前記素子帯が行又は列単位で使用する使用素子群に隣接している、
    あるいは複数の前記素子帯が前記使用素子群によって互いに隔てられている、
    ことを特徴とする超音波診断装置。
  13. 請求項9に記載の超音波診断装置であって、
    前記不使用素子群と前記使用素子群の行又は列の幅がチャープ変調されており、
    送信時におけるチャープ変調された前記不使用素子群の行又は列の前記複数の超音波素子での配置と、受信時における前記チャープ変調された前記不使用素子群の行又は列の前記複数の超音波素子での配置を、前記複数の超音波素子の中央部を原点としたほぼ点対称とした、
    ことを特徴とする超音波診断装置。
  14. 請求項13に記載の超音波診断装置であって、
    前記複数の超音波素子の中央部における前記使用素子群の行又は列の幅を太くするよう重み付けした、
    ことを特徴とする超音波診断装置。
  15. 制御部を備え、被検体に超音波の送受信を行う超音波診断装置の駆動方法であって、
    前記制御部は、
    行列方向に2次元配列された複数の超音波素子を有する超音波探触子を、前記超音波の走査方向に応じて、行又は列単位で前記超音波素子の不使用素子群を動的決定して駆動するよう制御する、
    ことを特徴とする超音波診断装置の駆動方法。
PCT/JP2015/071451 2015-07-29 2015-07-29 超音波探触子、超音波診断装置、及び方法 WO2017017801A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071451 WO2017017801A1 (ja) 2015-07-29 2015-07-29 超音波探触子、超音波診断装置、及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071451 WO2017017801A1 (ja) 2015-07-29 2015-07-29 超音波探触子、超音波診断装置、及び方法

Publications (1)

Publication Number Publication Date
WO2017017801A1 true WO2017017801A1 (ja) 2017-02-02

Family

ID=57884354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071451 WO2017017801A1 (ja) 2015-07-29 2015-07-29 超音波探触子、超音波診断装置、及び方法

Country Status (1)

Country Link
WO (1) WO2017017801A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170252012A1 (en) * 2016-03-03 2017-09-07 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus
US10859696B2 (en) * 2016-06-08 2020-12-08 B-K Medical Aps Row-column addressed 2-D array with a double curved surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034633A (ja) * 2003-06-25 2005-02-10 Aloka Co Ltd 超音波診断装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034633A (ja) * 2003-06-25 2005-02-10 Aloka Co Ltd 超音波診断装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170252012A1 (en) * 2016-03-03 2017-09-07 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus
US10993702B2 (en) * 2016-03-03 2021-05-04 Canon Medical Systems Corporation Ultrasonic diagnostic apparatus
US10859696B2 (en) * 2016-06-08 2020-12-08 B-K Medical Aps Row-column addressed 2-D array with a double curved surface

Similar Documents

Publication Publication Date Title
EP2929839B1 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP2006505319A (ja) 超音波トランスデューサ・アレイの送信開口と送信アポダイゼーションとを自動設定する方法及び装置
US20120310095A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP5800324B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP2012161555A (ja) 超音波診断装置および方法
WO2017017801A1 (ja) 超音波探触子、超音波診断装置、及び方法
JP2016189827A (ja) 超音波プローブ及び超音波診断装置
JP5777604B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP2005168667A (ja) 超音波診断装置およびその駆動方法
WO2013176112A1 (ja) 超音波画像生成方法および超音波画像診断装置
US10123769B2 (en) Ultrasound diagnostic apparatus and data processing method
JP5283725B2 (ja) 超音波診断装置
JP7211150B2 (ja) 超音波診断装置、超音波画像生成方法及びプログラム
JP5851345B2 (ja) 超音波診断装置およびデータ処理方法
JP5841034B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP5367746B2 (ja) 超音波診断装置
JP5579102B2 (ja) 超音波診断装置および超音波画像生成方法
JP2006192031A (ja) 超音波画像診断装置
JP5414717B2 (ja) 超音波診断装置
JP2012183103A (ja) 超音波診断装置および超音波画像生成方法
JP5215426B2 (ja) 超音波診断装置
US10932759B2 (en) Ultrasound diagnostic apparatus and data processing method
JP2019136297A (ja) 超音波診断装置
JPH10305032A (ja) 超音波診断装置
JP2012187187A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP