WO2017016674A1 - Einzelmodul, elektrisches umrichtersystem und batteriesystem - Google Patents

Einzelmodul, elektrisches umrichtersystem und batteriesystem Download PDF

Info

Publication number
WO2017016674A1
WO2017016674A1 PCT/EP2016/025030 EP2016025030W WO2017016674A1 WO 2017016674 A1 WO2017016674 A1 WO 2017016674A1 EP 2016025030 W EP2016025030 W EP 2016025030W WO 2017016674 A1 WO2017016674 A1 WO 2017016674A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching elements
module
switching
individual
energy store
Prior art date
Application number
PCT/EP2016/025030
Other languages
English (en)
French (fr)
Inventor
Stefan GÖTZ
Original Assignee
Dr. Ing. H.C. F. Porsche Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr. Ing. H.C. F. Porsche Aktiengesellschaft filed Critical Dr. Ing. H.C. F. Porsche Aktiengesellschaft
Priority to CN201680044670.0A priority Critical patent/CN107852092B/zh
Priority to JP2018504794A priority patent/JP6600406B2/ja
Priority to US15/748,465 priority patent/US10790743B2/en
Priority to KR1020187005913A priority patent/KR102048167B1/ko
Publication of WO2017016674A1 publication Critical patent/WO2017016674A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a single module for providing an electrical
  • Inverter system or a battery system as well as a corresponding electric drive system and a corresponding battery system.
  • batteries can be hardwired units made of individual parts, such as single cells or sub-batteries. Such batteries provide essentially a DC voltage at an output. Many consumers, however, need, for example, an AC voltage with a certain frequency, amplitude and / or phase. Furthermore, the DC voltage is not constant over the state of charge. To both at a peak voltage and a charging voltage at the end of the battery
  • the circuit If the voltage required by a consumer deviates far from the battery voltage, the circuit causes high losses and high output voltage distortions due to a so-called low modulation index, which is provided to the consumer.
  • this relates in particular to the drive, which usually requires an AC voltage with a low amplitude at low speeds.
  • an electric power converter is used as the supply circuit. Different types of power converters convert DC to AC
  • power converters may have different topologies.
  • an alternating voltage required by the consumer could also be generated by a dynamic switching of a connection of a corresponding battery. It will be
  • Switching elements dynamically switched so that energy storage of the battery are present either in parallel and / or in serial connection.
  • a battery is referred to as a switched battery.
  • a modulation index to be provided can be provided. H. a characteristic value of a corresponding inverter.
  • Electric converters convert DC voltage to AC voltage.
  • Topologies for electrical converters are known, for example, from DE 10 2010 052 934 A1 and DE 10 2011 108 920 B4.
  • DE 10 2010 052 934 AI an electrical converter system is described with at least two similar series-connected individual modules. The
  • Single modules have at least four internal switching elements, at least one
  • Connections form a first and a second pair of terminals.
  • the internal switching elements of each individual module are designed so that they can connect either one or both terminals of each pair of terminals with the energy storage element.
  • Switching elements of the respective individual modules in the series connection of the at least two individual modules connect their respective energy storage elements with the terminals of the series connection, that optionally a series or a parallel connection of the energy storage elements is present.
  • DE 10 2011 108 920 B4 continues this approach and also describes an electrical converter system comprising at least two similar modules connected in series, the modules connected in series forming a bridge branch.
  • the modules have at least one module capacitor and switching elements.
  • An object of the invention is to avoid the need for exactly simultaneous switching of switching elements in interconnected individual modules.
  • battery part is understood to mean a single cell, but also an interconnection of several cells, for example a battery with a plurality of cells, which is connected to a further battery having a plurality of cells.
  • battery in the following and in the course of the present description apply primary cells, secondary cells, capacitors of any kind and energy sources and energy storage, using only DC voltage.
  • the individual module according to the invention serves for interconnection with at least one second identical individual module.
  • the individual module according to the invention has at least one energy store, at least five internal switching elements and at least two terminals on each of a first and a second side of the individual module.
  • the energy store is directly connected to at least one of the at least two ports of the first page.
  • the internal switching elements are arranged and interconnected so that they are independent of a switching state of corresponding internal switching elements of the at least one second similar Single module all switching states for the dynamic switching of an electrical connection between the at least one energy storage and a corresponding at least one energy storage of the at least one second single module can realize.
  • control of the respective individual modules compared to an interconnection of modules known from the prior art is greatly simplified. It is even possible to switch the respective individual modules completely asynchronously or chaotically.
  • Switching elements that reside on the same single module can be programmed with accurate timing, i. with a sufficient simultaneity, to be controlled.
  • switching elements are activated or deactivated with a time delay, as is necessarily the case, for example, in other known from the prior art solutions, high losses due to cross-currents or due to a deliberate slowing down the switching can occur.
  • Switching elements low-voltage semiconductor switching elements. That is, the maximum voltage for which the switching elements are designed is significantly lower than the total voltage of a system composed of several individual modules, for example, at the maximum voltage of the single module to which the switching elements are associated, which is defined by the energy storage of the single module.
  • Energy storage and a corresponding at least one energy storage of the at least one second individual module are on the same single module. Therefore, the switching elements need only be designed for low voltage and it can be inexpensive, known from consumer electronics
  • MOSFET components (English: metal oxide semiconductor field-effect transistor) are ideal for use in an embodiment of the individual module according to the invention, since the working curve is linear through a zero point of a current-voltage diagram and therefore they have no voltage offset, whereby MOSFETs can be switched very well in parallel.
  • FIG. 1 shows an exemplary embodiment of a single module according to the invention, which represents a two-quadrant module.
  • FIG. 2 shows a further exemplary embodiment of a single module according to the invention, which represents a four-quadrant module.
  • FIG. 3 shows an embodiment of a single module according to the invention with redundant load paths.
  • FIG. 4 shows an exemplary interconnection of several individual modules according to the invention.
  • Figures 5, 6 and 7 show further exemplary embodiments of a
  • FIGS 8 to 11 show further exemplary embodiments of a
  • single module according to the invention, which represents a two-quadrant module with redundant load paths.
  • Figures 12, 13 and 14 show further exemplary embodiments of a
  • the individual module 10 shown has two terminals 14a, 14b on a first side (left in FIG. 1). On a second side (in FIG. 1 right), the individual module 10 has two further connections 18a, 18b, so that the individual module 10 has a total of four connections 14a, 14b, 18a, 18b.
  • the terminals 14a, 14b, 18a, 18b of a side are each designed to form a terminal pair.
  • a terminal pair or the terminals 14a, 14b, 18a, 18b serve the
  • the energy storage 12 is directly with at least one of the two
  • Connections 14a, 14b connected. It is conceivable that immediately before or after the energy storage 12, an electrical fuse and / or a switching element or the like.
  • the individual module 10 according to the invention has at least five switching elements 16-1, 16-2, 16-3, 16-7, 16-8.
  • the switching elements 16-1, 16-2, 16-3, 16-7, 16-8 are arranged to connect the first-side terminals 14a, 14b to the second-side terminals 18a, 18b, and are thus connectable, that they are the
  • Energy storage 12 of the individual module 10 according to the invention can be connected in parallel or in series to a corresponding energy storage of a similar neighbor single module, not shown, or can bridge the energy storage 12. That is, all the switching elements 16-1, 16-2, 16-3, 16-7, 16-8 that are for the various
  • Switching states parallel connection, series connection, bridging, deactivation
  • switching elements 16-1, 16-2, 16-3, 16-7, 16-8 with a minimal potential difference between the switching elements 16-1, 16-2, 16-3, 16-7, 16- 8 done. That allows the
  • Switching elements 16-1, 16-2, 16-3, 16-7, 16-8 can be designed as low-voltage switching elements, so that, for example.
  • Well-known from consumer electronics low-cost MOSFET semiconductor switching elements for the switching elements 16-1, 16-2, 16-3, 16-7, 16-8 can be used.
  • activation of the switches 16-1, 16-2, 16-3, 16-7, 16-8 can be used.
  • Switching elements 16-1, 16-2, 16-3, 16-7, 16-8 take place simultaneously accurate.
  • the first side terminal 14a may be connected to the second side terminal 18a via the switching elements 16-1 and 16-2. Via the switching element 16-3, the terminal 14a can be connected to the terminal 18b of the second side.
  • the first-side terminal 14b may be connected to the second-side terminal 18b via the switching elements 16-7 and 16-8. This allows all the addressed switching states for the dynamic switching of the electrical
  • the switching elements 16-1, 16-2, 16-7, 16-8 must be closed.
  • the terminal 14a is electrically connected to the terminal 18a and the terminal 14b is electrically connected to the terminal 18b.
  • the switching element 16-3 is in this example in an open switching state.
  • the switching element 16-3 To switch energy storage of a similar neighbor single module in series, for example, only the switching element 16-3 must be closed.
  • the switching elements 16-1, 16-2, 16-7, 16-8 must be in an open switching state.
  • FIG. 2 shows a further embodiment of a single module 20 according to the invention.
  • the single module 20 has six switching elements 16-1, 16-2, 16-3, 16-5, 16-6, 16-7. Furthermore, the terminals 14a, 14b can be connected to the terminals 18a, 18b and produce all the required switching states (parallel, series, bypass connection, deactivation).
  • switching elements 16-1, 16-2, 16-3, 16-5, 16-6, 16-7 certain switching states can be optimized in terms of their losses compared to other switching states and thus allow an individual adaptation of the single module 20 for appropriate applications ,
  • the switching elements 16-1, 16-2 and 16-5, 16-6 are closed, for example.
  • the switching elements 16-3 and 16-7 are then in an open switching state.
  • the switching elements 16-3 and 16-6 are closed and the switching elements 16-1, 16-2, 16-5, 16-7 be open.
  • Energy storage 12 with a corresponding energy storage of an adjacent single module would be the switching elements 16-2 and 16-7 in a closed
  • FIG. 3 shows yet another embodiment of the individual module 30 according to the invention.
  • the structure with four terminals 14a, 14b, 18a, 18b and an energy store 12 essentially corresponds to the topologies already described in FIGS. 1 and 2.
  • the individual module 30 now has eight switching elements 16-1, 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8.
  • the switching elements 16-1, 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8 are available for the electrical connection of the terminals 14a, 14b with the terminals 18a, 18b for each connection, ie 14a-18a, 14a-18b, 14b-18a and 14b-18b.
  • the switching elements shown in Figure 3 allow for almost all connections between the energy storage 12 and a corresponding energy storage of a similar adjacent single module (as shown, for example, in Figure 4) two parallel paths. The switching elements are used in parallel accordingly.
  • switching elements can be eliminated to reduce complexity.
  • the remaining switching elements should then be implemented with correspondingly larger semiconductors to allow the same current carrying capacity.
  • certain switching states can be optimized with regard to their losses compared to others.
  • the switching elements 16-1 and 16-2 form a path to that by the
  • Switching elements 16-3 and 16-4 is parallel and leads to the same destination, d. H. depending on the direction to the terminal 14a or to the terminal 18a.
  • Switching elements 16-5 and 16-4 form a path leading to the same destination as the path formed by the switching elements 16-7 and 16-2, namely, depending on the direction to the terminal 14b or to the terminal 18a.
  • the switching elements 16-1 and 16-8 form a path leading to the same destination as the path formed by the switching elements 16-3 and 16-6.
  • the switching elements 16-7 and 16-8 form a path which is parallel to the path formed by the switching elements 16-5 and 16-6 and leads to the same target, namely, depending on the direction to the terminal 14b or 18b.
  • any switching element can now be removed.
  • a second switching element to be eliminated should be chosen so that a connection can still be established from each terminal to every other terminal via the remaining switching elements.
  • the reduced circuits essentially allow two types of modules: two-quadrant modules and four-quadrant modules. Two-quadrant modules allow any type of interconnection of memories of two adjacent individual modules, ie a parallel connection of memories, one
  • Line losses significantly lower than four-quadrant modules. This may also cause uncontrollable short circuits when a reverse current is caused by the load (for example inductive loads) or the system (for example, with a Marquardt macro topology) as an inverter between multiple terminals
  • FIG. 5 shows a module 60 with essentially a structure of the module 10 of FIG. 1. Only the switching element 16-3 has been replaced by the switching element 16-6, which, however, lies on the same current path. The module 60 thus also has a two-quadrant topology and allows the same functions as the module 10 of FIG. 1.
  • FIGS. 6 and 7 show further individual modules according to the invention.
  • the module 70 has the five switching elements 16-1, 16-2, 16-5, 16-7 and 16-8.
  • the module 80 has the five switching elements 16-1, 16-2, 16-4, 16-7 and 16-8.
  • the structure of the modules 70 and 80 is similar to the embodiments already described.
  • FIGS. 6 and 7 the parallel connection and the bypass connection correspond to the switching states of the modules 10 and 60.
  • a series connection of the energy store 12 can be achieved by closing the switching element 16-5, if the switching elements 16-1, 16-5 2 and 16-7, 16-8 are open.
  • this series connection is achieved by corresponding closing of the switching element 16-4.
  • FIG. 8 shows another two-quadrant module 90 according to the invention.
  • the module 90 has six switching elements 16-2 to 16-5 and 16-7, 16-8. Also with this Single module 90 can allow all types of interconnection of adjacent energy storage. For a parallel connection of the neighboring ones
  • the switching elements 16-2 and 16-5 are for a parallel connection
  • the switching elements 16-4, 16-5 closed.
  • the switching elements 16-2, 16- 3, 16-7, 16-8 are open.
  • Another series connection could be achieved by closing the switching elements 16-2, 16-7 when the switching elements 16-3 to 16-5 and 16-8 are open.
  • a third possibility of a series connection offers one
  • a bypass connection it is only necessary to allow a path from one side of the module 90 to the other side of the module 90, so that several switching states are possible for this interconnection.
  • the switching elements 16-3, 16-8 are opened.
  • switching elements 16-3 and 16-4 be closed, while the remaining switching elements 16-2, 16-5, 16-7, 16-8 are open.
  • the switching elements 16-7 and 16-8 could be closed while the remaining switching elements 16-2 to 16-5 are opened.
  • Figures 9 to 11 show even more two-quadrant modules 100, 110, 120 with six 20 switching elements of different arrangement, which enable the envisaged interconnections of the energy storage 12 via corresponding switching states of the respective switching elements.
  • a parallel connection could be realized, for example, by closing the switching elements 16-3, 16-4, 16-7, 16-8, while the switching elements 16-1, 16-6 are open.
  • a bypass connection could be realized, for example, by closing the switching elements 16-3, 16-4 or 16-7, 30 16-8, while the other corresponding switching elements are opened.
  • a series connection could be realized by closing the switching elements 16-1, 16-8 and / or the switching elements 16-3, 16-6, when the remaining corresponding switching elements are opened.
  • a parallel connection could be realized, for example, by closing the switching elements 16-1, 16-2, 16-5, 16-6, while the switching elements 16-3, 16-8 are open.
  • a bypass connection could be realized, for example, by closing the switching elements 16-1, 16-2 or 16-5, 16-6, while the other corresponding switching elements are open.
  • a parallel connection could for example be realized by closing the switching elements 16-1, 16-2, 16-5, 16-6, while the switching elements 16-4, 16-7 are open.
  • a bypass connection could be realized, for example, by closing the switching elements 16-1, 16-2 or 16-5, 15 16-6, while the other corresponding switching elements are opened.
  • FIGS. 12 to 14 show further four-quadrant modules 130, 140, 150 with six switching elements.
  • FIGS. 12 to 14 show further four-quadrant modules 130, 140, 150 with six switching elements.
  • Switching elements 16-1, 16-8 are closed and the switching elements 16-2, 16-4 to 16-6
  • this second series connection has a reverse polarity to the aforementioned first series connection.
  • this second series connection has a reverse polarity to the aforementioned first series connection.
  • the switching elements 16-3, 16-4 and 16-7, 16-8 could be closed for a parallel connection and the switching elements 16-2 and 16-6 opened.
  • the switching elements 16-2, 16-7 are closed and the switching elements 16-3, 16-4, 16-6, 16-8 are open.
  • Another second series connection is achieved when the switching elements 16-3, 16-6 are closed and the switching elements 16-2, 16-4, 16-7, 16-8 are opened, this second series connection having a reverse polarity to that previously mentioned first
  • Series connection has.
  • a bypass connection one could, for example, close the switching elements 16-3, 16-4 and keep the switching elements 16-2, 16-6 to 16-8 open, or merely close the switching elements 16-7, 16-8 and the
  • the switching elements 16-3, 16-4 and 16-7, 16-8 could be closed and the switching elements 16-1 and 16-5 opened.
  • the switching elements 16-4, 16-5 are closed and the switching elements 16-1, 16-3, 16-7, 16-8 are open.
  • Another second series connection is achieved when the switching elements 16-1, 16-8 are closed and the switching elements 16-3, 16-4, 16-5, 16-7 are opened, this second series connection having a reverse polarity to that previously mentioned first
  • Series connection has.
  • a bypass connection one could, for example, close the switching elements 16-3, 16-4 and keep the switching elements 16-1, 16-5, 16-7, 16-8 open, or only close the switching elements 16-7, 16-8 and the
  • Open switching elements 16-1, 16-3, 16-4, 16-5 Open switching elements 16-1, 16-3, 16-4, 16-5.
  • the individual modules 10, 20, 30, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 shown can be implemented in a system comprising a plurality of individual modules 10, 20, 30, 60, 70, 80, 90, 100 , 110, 120, 130, 140, 150 are passivated when none of the respective switching elements 16-1 to 16-8 is activated, that is, the respective switching elements 16-1 to 16-8 are all open, and the respective switching elements 16-1 to 16-8 have an antiparallel diode.
  • a current can flow into the individual modules 10, 20, 30, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, wherein the Individual modules 10, 20, 30, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 balance themselves.
  • the energy stores 12 are charged, the polarity of the voltage applied to the system for charging the energy stores 12 is irrelevant.
  • FIG. 4 shows an exemplary connection of a plurality of individual modules 30.
  • a series connection of a plurality of individual modules 30 forms a strand, so that several side strands can form. Different side strands can also be interconnected in parallel.
  • the energy storage 12 can be power converter systems, such as, an inventive electrical
  • Inverter system 40 when using at least one capacitor as
  • Energy storage 12 or realize an inventive interconnected battery system 50 when using sub-batteries or battery cells as energy storage 12.
  • a plurality of individual modules 30 according to the invention are connected to one another for the interconnectable battery system 50.
  • the individual modules 30 have the function of a sub-battery.
  • the at least one energy store 12 of a sub-battery 30 can be connected either in parallel and / or in series with at least one energy store 12 of a neighboring sub-battery, whereby the battery 50 can be dynamically reconfigured during operation.
  • the battery 50 may directly provide DC, AC, or other forms of voltage.
  • the energy stores 12 of the at least two inventive and interconnected sub-batteries 30 between a parallel connection of the energy storage 12 of the at least two sub-batteries 30, a series circuit of at least two sub-batteries 30, bridging and switching off individual energy storage of at least two sub-batteries 30 are switched.
  • the dynamic reconfiguration of the interconnection of the sub-batteries 30 allows the union u.a. the following functions, namely the charge exchange between the sub-batteries 30, in order to carry out, for example, a conventional battery management, the bridging of defective sub-batteries, without losing the overall function of the battery and the generation of arbitrary output voltages and temporal Stromkol. Voltage curves directly through the battery, without the need for an additional power electronic converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Die Erfindung betrifft ein Einzelmodul (10, 20, 30, 60, 70,..., 150) zur Verschaltung mit mindestens einem zweiten gleichartigen Einzelmodul (10, 20, 30, 60, 70,..., 150) zur Bereitstellung eines elektrischen Umrichtersystems (40) oder eines Batteriesystems (50), wobei das Einzelmodul (10, 20, 30, 60, 70,..., 150) mindestens einen Energiespeicher (12), mindestens fünf interne Schaltelemente (16-1, 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8) und mindestens zwei Anschlüsse (14a, 14b, 18a, 18b) auf je einer ersten und einer zweiten Seite des Einzelmoduls (10, 20, 30, 60, 70,..., 150) umfasst, wobei der mindestens eine Energiespeicher (12) direkt mit mindestens einem der mindestens zwei Anschlüsse (14a, 14b) der ersten Seite verbunden ist und die internen Schaltelemente (16-1, 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8) so angeordnet und verschaltbar sind, dass sie unabhängig von einem Schaltzustand von entsprechenden internen Schaltelementen (16-1, 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8) des mindestens einen zweiten gleichartigen Einzelmoduls (10, 20, 30, 60, 70,..., 150) alle Schaltzustände zur dynamischen Umschaltung einer elektrischen Verbindung zwischen dem mindestens einen Energiespeicher (12) und einem entsprechenden mindestens einen Energiespeicher (12) des mindestens einen zweiten Einzelmoduls (10, 20, 30, 60, 70,..., 150) realisieren können. Des Weiteren betrifft die Erfindung ein elektrisches Umrichtersystem (40) und ein Batteriesystem (50).

Description

Einzelmodul, elektrisches Umrichtersystem und Batteriesystem
Die Erfindung betrifft ein Einzelmodul zum Bereitstellen eines elektrischen
Umrichtersystems oder eines Batteriesystems, sowie ein entsprechendes elektrisches Umrichtersystem und ein entsprechendes Batteriesystem.
Herkömmliche Batterien können festverdrahtete Einheiten aus Einzelteilen, wie bspw. Einzelzellen oder Teilbatterien, sein. Derartige Batterien stellen an einem Ausgang im Wesentlichen eine Gleichspannung bereit. Viele Verbraucher hingegen benötigen bspw. eine Wechselspannung mit bestimmter Frequenz, Amplitude und/oder Phase. Des Weiteren ist die Gleichspannung über den Ladezustand nicht konstant. Um sowohl bei einer Spitzenspannung als auch einer Ladeendspannung die an der Batterie
angeschlossenen Verbraucher zu betreiben und die geforderte Leistung entnehmen zu können, müssen die Verbraucher aufwändige Versorgungsschaltungen aufweisen.
Falls die von einem Verbraucher benötigte Spannung weit von der Batteriespannung abweicht, verursacht die Schaltung durch einen sogenannten niedrigen Modulationsindex hohe Verluste und hohe Verzerrungen in der Ausgangsspannung, die dem Verbraucher bereitgestellt wird. In einem Kraftfahrzeug mit einem elektrischen Antrieb, betrifft das insbesondere den Antrieb, der in der Regel bei niedrigen Geschwindigkeiten eine Wechselspannung mit einer niedrigen Amplitude benötigt. Die Verzerrungen, die in der Regel durch Pulsweitenmodulation hervorgerufen werden, belasten dort zusätzlich eine vorgesehene Isolierung eines Motors und wirken sich damit negativ auf die Lebensdauer des Motors aus.
Hinzu kommt, dass aufgrund der Streuung im physikalischen und chemischen Verhalten der Batteriezellen eine aufwändige Überwachung der Batteriezellen bereitgestellt werden muss, um einen gleichmäßigen Ladezustand der Batteriezellen zu ermöglichen. Ist bspw. eine Einzelzelle der Batterie defekt, wird in der Regel die gesamte Batterie unbrauchbar. Im Falle eines Fahrzeugs muss dann mit dem vollständigen Ausfall des Fahrzeugs gerechnet werden. Gegebenenfalls muss eine Stillegung sogar aktiv erzwungen werden, damit die defekten Batterieteile bei weiterer Belastung nicht überhitzen und ggf. sogar Feuer fangen. Zum Bereitstellen einer von einem Verbraucher benötigten Ausgangsspannung wird als Versorgungsschaltung ein elektrischer Stromrichter eingesetzt. Verschiedene Arten von Stromrichtern dienen einer Umwandlung von Gleichstrom in Wechselstrom
(Wechselrichter), von Wechselstrom in Gleichstrom (Gleichrichter) oder einem Anpassen von Frequenz und Amplitude einer Wechselspannung (Umrichter). Dementsprechend können Stromrichter unterschiedliche Topologien aufweisen.
Alternativ könnte, anstelle einer Verwendung eines Stromrichters, auch durch ein dynamisches Umschalten einer Verschaltung einer entsprechenden Batterie, eine von dem Verbraucher benötigte Wechselspannung generiert werden. Dabei werden
Schaltelemente dynamisch so umgeschaltet, dass Energiespeicher der Batterie entweder in Parallelschaltung und/oder in Seriellschaltung vorliegen. Eine solche Batterie wird als geschaltete Batterie bezeichnet. Im Gegensatz zu bisherigen Umrichtern kann dabei ein vorzusehender Modulationsindex, d. h. ein Kennwert einer entsprechenden
Frequenzmodulation, bei allen Amplituden maximal gehalten werden. Des Weiteren sinken bei niedrigen Spannungen sogar die Verluste, weil durch eine Parallelschaltung von Batterieteilen einer geschalteten Batterie ein effektiver Innenwiderstand sinkt. Weiterhin erzeugt eine geschaltete Batterie, bei der die Energiespeicher zwischen einer
Parallelschaltung und einer Seriellschaltung hin und her geschaltet werden können, eine fast verzerrungsfreie Ausgangsspannung, da Stufen zwischen den Spannungen zweier Konfigurationen sehr gering gehalten werden können. Darüber hinaus kann per
Schaltmodulation zwischen solchen Spannungen moduliert werden, um weiter zu glätten.
Elektrische Umrichter, eine Unterart elektrischer Stromrichter, wandeln Gleichspannung in Wechselspannung um. Topologien für elektrische Umrichter sind bspw. aus der DE 10 2010 052 934 AI und der DE 10 2011 108 920 B4 bekannt. In der DE 10 2010 052 934 AI wird ein elektrisches Umrichtersystem mit mindestens zwei gleichartigen hintereinander geschalteten Einzelmodulen beschrieben. Die
Einzelmodule weisen mindestens vier interne Schaltelemente, mindestens ein
Energiespeicherelement und mindestens vier Anschlüsse auf, wovon je zwei der
Anschlüsse ein erstes und ein zweites Klemmenpaar bilden. Die internen Schaltelemente jedes Einzelmoduls sind so ausgeführt, dass sie wahlweise einen oder beide Anschlüsse jedes Klemmenpaars mit dem Energiespeicherelement verbinden können. Die
Schaltelemente der jeweiligen Einzelmodule in der Hintereinanderschaltung der mindestens zwei Einzelmodule verbinden ihre jeweiligen Energiespeicherelemente so mit den Klemmen der Hintereinanderschaltung, dass wahlweise eine Reihen- oder eine Parallelschaltung der Energiespeicherelemente vorliegt.
Die DE 10 2011 108 920 B4 führt diesen Ansatz fort und beschreibt ebenfalls ein elektrisches Umrichtersystem aus mindestens zwei gleichartigen hintereinander geschalteten Modulen, wobei die hintereinander geschalteten Module einen Brückenzweig bilden. Die Module weisen mindestens einen Modulkondensator und Schaltelemente auf. Mindestens zwischen einem Modul und einem nachfolgenden der hintereinander geschalteten Module ist ein Zwischenmodul geschaltet, das mindestens eine Induktivität zur Energiespeicherung aufweist.
Bei den voranstehend beschriebenen Umrichtern ermöglichen Kombinationen von Schaltzuständen der internen Schaltelemente zweier Module verschiedene
Verschaltungen der Module. Dazu ist es notwendig, dass die internen Schaltelemente exakt gemeinsam, d.h. gleichzeitig geschaltet werden, um einen Kurzschluss zu vermeiden.
Andere Schaltungen sind nicht in der Lage, alle Schaltelemente, die auf einem gleichen Potential und/oder gleichzeitig angesteuert werden müssen, in ein einziges Modul zu integrieren. Bei diesen anderen bereits bekannten Schaltungen müssen dagegen mehrere Module exakt gleichzeitig, d. h. in einem Zeitbereich von 100 Nanosekunden (sie.) angesteuert werden, was deutlich kürzer ist als die jeweiligen aufgrund von Temperaturunterschieden auftretenden Laufzeitvarianzen vieler elektronischer
Schaltungen. Dadurch entsteht ein hoher Aufwand für eine erforderliche
Synchronisierung. Eine Aufgabe der Erfindung besteht darin, die Notwendigkeit des exakt gleichzeitigen Schaltens von Schaltelementen in zusammenzuschaltenden Einzelmodulen zu vermeiden.
Die Aufgabe wird erfindungsgemäß mit einem Einzelmodul, einem Umrichtersystem und einem Batteriesystem gemäß den unabhängigen Ansprüchen gelöst. Ausgestaltungen der Erfindung sind den jeweiligen Unteransprüchen und der Beschreibung zu entnehmen.
Im Folgenden und im Fortlauf der vorliegenden Beschreibung wird als„Batterieteil" eine einzelne Zelle, aber auch eine Zusammenschaltung mehrerer Zellen, bspw. eine Batterie mit mehreren Zellen verstanden, die mit einer weiteren Batterie mit mehreren Zellen verschaltet ist.
Als„Batterie" gelten im Folgenden und im Fortlauf der vorliegenden Beschreibung Primärzellen, Sekundärzellen, Kondensatoren jeglicher Art und Energiequellen und Energiespeicher, die lediglich Gleichspannung verwenden.
Das erfindungsgemäße Einzelmodul dient einer Verschaltung mit mindestens einem zweiten gleichartigen Einzelmodul. Durch die Verschaltung mindestens zweier
gleichartiger Einzelmodule soll ein erfindungsgemäßes elektrisches Umrichtersystem bzw. ein erfindungsgemäßes Batteriesystem bereitgestellt werden.
Das erfindungsgemäße Einzelmodul weist mindestens einen Energiespeicher, mindestens fünf interne Schaltelemente und mindestens zwei Anschlüsse auf je einer ersten und einer zweiten Seite des Einzelmoduls auf. Der Energiespeicher ist direkt mit mindestens einem der mindestens zwei Anschlüsse der ersten Seite verbunden. Die internen Schaltelemente sind so angeordnet und verschaltbar, dass sie unabhängig von einem Schaltzustand von entsprechenden internen Schaltelementen des mindestens einen zweiten gleichartigen Einzelmoduls alle Schaltzustände zur dynamischen Umschaltung einer elektrischen Verbindung zwischen dem mindestens einen Energiespeicher und einem entsprechenden mindestens einen Energiespeicher des mindestens einen zweiten Einzelmoduls realisieren können.
Bei einer Verschaltung des erfindungsgemäßen Einzelmoduls mit mindestens einem zweiten gleichartigen Einzelmodul ist eine Steuerung der jeweiligen Einzelmodule gegenüber einer Verschaltung von aus dem Stand der Technik bekannten Modulen stark vereinfacht. Es ist dabei sogar möglich, die jeweiligen Einzelmodule vollständig asynchron bzw. chaotisch umzuschalten.
Die meisten elektrischen Schaltelemente, insbesondere Transistoren, müssen elektrisch relativ zu ihrem eigenen elektrischen Potential, beispielsweise dem sogenannten Source- Potential, angesteuert werden. Dies führt dazu, dass mehrere Ansteuerungen, bspw. Gate-Driver diverser Transistoren, über gesonderte Spannungsversorgungen, bspw. isolierte Spannungsversorgungen oder Boostrap-Versorgungen, versorgt werden müssen. Für Schaltelemente, die auf demselben Einzelmodul liegen, wie bei dem erfindungsgemäßen Einzelmodul, kann die Ansteuerung mit einem Minimum an unterschiedlichen Potentialen erfolgen.
Schaltelemente, die auf demselben Einzelmodul liegen, können mit akkuratem Timing, d.h. mit einer ausreichenden Gleichzeitigkeit, angesteuert werden. Wenn dagegen Schaltelemente mit einer Zeitverzögerung aktiviert oder deaktiviert werden, wie dies zwangsläufig bspw. bei anderen, aus dem Stand der Technik bekannten Lösungen der Fall ist, können hohe Verluste aufgrund von Querströmen oder auch aufgrund einer absichtlichen Verlangsamung der Umschaltung entstehen.
In einer Ausführungsform des erfindungsgemäßen Einzelmoduls sind die internen
Schaltelemente Niederspannungs-Halbleiter-Schaltelemente. Das heißt, dass die maximale Spannung, für die die Schaltelemente ausgelegt sind, deutlich unter der Gesamtspannung eines aus mehreren Einzelmodulen aufgebauten Systems liegt, beispielsweise bei der Maximalspannung des Einzelmoduls, dem die Schaltelemente zugehörig sind, die durch den Energiespeicher des Einzelmoduls definiert ist.
Dies ist möglich, da erfindungsgemäß alle Schaltelemente, die zur dynamischen
Umschaltung einer elektrischen Verbindung zwischen dem mindestens einen
Energiespeicher und einem entsprechenden mindestens einen Energiespeicher des mindestens einen zweiten Einzelmoduls auf dem gleichen Einzelmodul liegen. Daher müssen die Schaltelemente lediglich für Niederspannung ausgelegt werden und es können preisgünstige, aus der Unterhaltungselektronik bekannte
Niederspannungsbauteile verwendet werden. Derzeit übliche
Hochspannungshalbleiterschaltelemente werden im Gegensatz zu
Niederspannungsbauteilen nur in sehr geringen Stückzahlen hergestellt und sind dadurch überproportional teuer. Insbesondere moderne MOSFET-Bauteile (englisch: metal-oxide- semiconductor field-effect transistor) sind ideal zum Einsatz in einer Ausführungsform des erfindungsgemäßen Einzelmoduls, da deren Arbeitskurve linear durch einen Nullpunkt eines Strom-Spannungs-Diagramms verläuft und sie daher keinen Spannungsoffset aufweisen, wodurch sich MOSFETs sehr gut parallel schalten lassen.
Weiterhin wird ein erfindungsgemäßes elektrisches Umrichtersystem unter Verwendung mindestens eines erfindungsgemäßen Einzelmoduls und ein erfindungsgemäßes
Batteriesystem unter Verwendung mindestens eines erfindungsgemäßen Einzelmoduls bereitgestellt.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und den beiliegenden Zeichnungen.
Es versteht sich, dass die voranstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen. Die Erfindung ist anhand von Ausführungsformen in den Zeichnungen schematisch dargestellt und wird unter Bezugnahme auf die Zeichnungen schematisch und ausführlich beschrieben. Figur 1 zeigt eine beispielhafte Ausführungsform eines erfindungsgemäßen Einzelmoduls, das ein Zwei-Quadranten-Modul repräsentiert.
Figur 2 zeigt eine weitere beispielhafte Ausführungsform eines erfindungsgemäßen Einzelmoduls, das ein Vier-Quadranten-Modul repräsentiert.
Figur 3 zeigt eine Ausführungsform eines erfindungsgemäßen Einzelmoduls mit redundanten Lastpfaden.
Figur 4 zeigt eine beispielhafte Verschaltung mehrerer erfindungsgemäßer Einzelmodule.
Figuren 5, 6 und 7 zeigen weitere beispielhafte Ausführungsformen eines
erfindungsgemäßen Einzelmoduls, das ein Zwei-Quadranten-Modul repräsentiert.
Figuren 8 bis 11 zeigen weitere beispielhafte Ausführungsformen eines
erfindungsgemäßen Einzelmoduls, das ein Zwei-Quadranten-Modul mit redundanten Lastpfaden repräsentiert.
Figuren 12, 13 und 14 zeigen weitere beispielhafte Ausführungsformen eines
erfindungsgemäßen Einzelmoduls, das ein Vier-Quadranten-Modul repräsentiert.
Die Figuren werden zusammenhängend und übergreifend beschrieben. Gleiche
Bezugszeichen bezeichnen gleiche Komponenten.
Unter Bezugnahme auf Figur 1 wird eine Ausführungsform eines erfindungsgemäßen Einzelmoduls 10 beschrieben. Das dargestellte Einzelmodul 10 weist auf einer ersten Seite (in Figur 1 links) zwei Anschlüsse 14a, 14b auf. Auf einer zweiten Seite (in Figur 1 rechts) weist das Einzelmodul 10 zwei weitere Anschlüsse 18a, 18b auf, sodass das Einzelmodul 10 insgesamt vier Anschlüsse 14a, 14b, 18a, 18b aufweist. Die Anschlüsse 14a, 14b, 18a, 18b einer Seite sind jeweils dazu ausgebildet, ein Klemmenpaar zu bilden. Ein Klemmenpaar bzw. die Anschlüsse 14a, 14b, 18a, 18b dienen dem
elektrischen Verbinden des Einzelmoduls 10 mit einem benachbarten Einzelmodul 10 oder mit Knotenpunkten zum Parallelschalten von Einzelmodulen und Ausbilden von Seitensträngen (Figur 4)
Zwischen den Anschlüssen 14a, 14b der ersten Seite ist ein Energiespeicher 12 geschaltet. Der Energiespeicher 12 ist direkt mit mindestens einem der beiden
Anschlüsse 14a, 14b verbunden. Es ist vorstellbar, dass unmittelbar vor bzw. nach dem Energiespeicher 12 eine elektrische Sicherung und/oder ein Schaltelement o.dgl.
geschaltet werden kann. Weiterhin weist das erfindungsgemäße Einzelmodul 10 mindestens fünf Schaltelemente 16-1 , 16-2, 16-3, 16-7, 16-8 auf. Die Schaltelemente 16-1 , 16-2, 16-3, 16-7, 16-8 sind so angeordnet, dass sie die Anschlüsse 14a, 14b der ersten Seite mit den Anschlüssen 18a, 18b der zweiten Seite verbinden und sind so verschaltbar, dass sie den
Energiespeicher 12 des erfindungsgemäßen Einzelmoduls 10 zu einem entsprechenden Energiespeicher eines nicht gezeigten gleichartigen Nachbar-Einzelmoduls parallel oder in Reihe verschalten können oder den Energiespeicher 12 überbrücken können. Das heißt, dass alle Schaltelemente 16-1 , 16-2, 16-3, 16-7, 16-8, die für die verschiedenen
Schaltzustände (Parallelschaltung, Reihenschaltung, Überbrückung, Deaktivierung) zwischen zwei Energiespeichern benachbarter Einzelmodule benötigt werden, auf einem Einzelmodul 10 vorhanden sind. Dadurch kann eine Ansteuerung der Schaltelemente 16- 1 , 16-2, 16-3, 16-7, 16-8 mit einem minimalen Potentialunterschied zwischen den Schaltelementen 16-1, 16-2, 16-3, 16-7, 16-8 erfolgen. Das erlaubt, dass die
Schaltelemente 16-1 , 16-2, 16-3, 16-7, 16-8 als Niederspannungsschaltelemente ausgelegt werden können, so dass bspw. aus der Unterhaltungselektronik bekannte, preisgünstige MOSFET-Halbleiterschaltelemente für die Schaltelemente 16-1 , 16-2, 16-3, 16-7, 16-8 verwendet werden können. Darüber hinaus kann eine Aktivierung der
Schaltelemente 16-1 , 16-2, 16-3, 16-7, 16-8 akkurat gleichzeitig erfolgen.
In Figur 1 kann der Anschluss 14a der ersten Seite über die Schaltelemente 16-1 und 16- 2 mit dem Anschluss 18a der zweiten Seite verbunden werden. Über das Schaltelement 16-3 kann der Anschluss 14a mit dem Anschluss 18b der zweiten Seite verbunden werden. Der Anschluss 14b der ersten Seite kann über die Schaltelemente 16-7 und 16-8 mit dem Anschluss 18b der zweiten Seite verbunden werden. Damit lassen sich alle angesprochenen Schaltzustände zur dynamischen Umschaltung der elektrischen
Verbindung zwischen dem Energiespeicher 12 und einem entsprechenden
Energiespeicher eines benachbarten Einzelmoduls realisieren.
Um den Energiespeicher 12 des Einzelmoduls 10 mit einem entsprechenden
Energiespeicher eines gleichartigen Nachbar-Einzelmoduls parallel zu schalten, müssen bspw. die Schaltelemente 16-1 , 16-2, 16-7, 16-8 geschlossen sein. Damit ist der Anschluss 14a mit dem Anschluss 18a und der Anschluss 14b mit dem Anschluss 18b elektrisch verbunden. Das Schaltelement 16-3 ist in diesem Beispiel dabei in einem geöffneten Schaltzustand. Um den Energiespeicher 12 des Einzelmoduls 10 mit einem entsprechenden
Energiespeicher eines gleichartigen Nachbar-Einzelmoduls in Reihe zu schalten, muss bspw. nur das Schaltelement 16-3 geschlossen sein. Die Schaltelemente 16-1 , 16-2, 16- 7, 16-8 müssen in einem geöffneten Schaltzustand sein. Um eine Überbrückung des Energiespeichers 12 des Einzelmoduls 10 zu schalten, also um eine Bypassverschaltung herzustellen, müssen beispielsweise lediglich die
Schaltelemente 16-1 und 16-2 geschlossen sein. Die Schaltelemente 16-3, 16-7, 16-8 müssen dabei in einem geöffneten Schaltzustand sein. Eine zweite Möglichkeit zum Herstellen einer Bypassverschaltung ist ein Schließen lediglich der Schaltelemente 16-7 und 16-8 während die Schaltelemente 16-1 bis 16-3 geöffnet sind. In Figur 2 ist eine weitere Ausführungsform eines erfindungsgemäßen Einzelmoduls 20 dargestellt. Der grundlegende Aufbau des Einzelmoduls 20 der Figur 2 mit einem
Energiespeicher 12, vier Anschlüssen 14a, 14b, 18a, 18b ist gleich dem des
Einzelmoduls 10 in der Figur 1. Jedoch weist das Einzelmodul 20 sechs Schaltelemente 16-1 , 16-2, 16-3, 16-5, 16-6, 16-7 auf. Weiterhin lassen sich die Anschlüsse 14a, 14b mit den Anschlüssen 18a, 18b verbinden und alle erforderlichen Schaltzustände (Parallel-, Reihen-, Bypassverschaltung, Deaktivierung) herstellen. Durch unterschiedliche
Anordnungen der Schaltelemente 16-1 , 16-2, 16-3, 16-5, 16-6, 16-7, lassen sich bestimmte Schaltzustände hinsichtlich ihrer Verluste gegenüber anderen Schaltzuständen optimieren und ermöglichen so eine individuelle Anpassung des Einzelmoduls 20 für entsprechende Anwendungen.
Um den Energiespeicher 12 des Einzelmoduls 20 mit einem benachbarten Einzelmodul parallel zu verschalten, werden beispielsweise die Schaltelemente 16-1, 16-2 und 16-5, 16-6 geschlossen. Die Schaltelemente 16-3 und 16-7 sind dann in einem geöffneten Schaltzustand.
Um eine Reihenverschaltung des Energiespeichers 12 mit einem entsprechenden
Energiespeicher eines benachbarten Einzelmoduls zu realisieren, werden beispielsweise die Schaltelemente 16-3 und 16-6 geschlossen und die Schaltelemente 16-1 , 16-2, 16-5, 16-7 geöffnet sein. Eine weitere Möglichkeit einer Reihenverschaltung des
Energiespeichers 12 mit einem entsprechenden Energiespeicher eines benachbarten Einzelmoduls wäre, die Schaltelemente 16-2 und 16-7 in einen geschlossenen
Schaltzustand zu stellen und die Schaltelemente 16-1 , 16-3, 16-5, 16-6 in einen geöffneten Schaltzustand zu stellen. Damit bieten sich zwei Möglichkeiten einer
Reihenverschaltung von Energiespeichern 12, die jedoch jeweils eine unterschiedliche Polarität aufweisen, was eine Eigenschaft eines Vier-Quadranten-Moduls darstellt, wie es nachfolgend noch näher beschrieben wird. Eine Bypassverschaltung des Energiespeichers 12 des Einzelmoduls 20 lässt sich über ein Schließen der Schaltelemente 16-1 und 16-2 erreichen, wenn die Schaltelemente 16- 3 und 16-5 bis 16-7 geöffnet sind. Eine weitere Bypassverschaltung wird erreicht, wenn lediglich die Schaltelemente 16-5, 16-6 geschlossen sind und die Schaltelemente 16-1 bis 16-3 und 16-7 geöffnet sind. Figur 3 zeigt noch eine weitere Ausführungsform des erfindungsgemäßen Einzelmoduls 30. Der Aufbau mit vier Anschlüssen 14a, 14b, 18a, 18b und einem Energiespeicher 12 entspricht im Wesentlichen den bereits in Figur 1 und 2 beschriebenen Topologien. In der gezeigten Ausführungsform weist das erfindungsgemäße Einzelmodul 30 nun acht Schaltelemente 16-1 , 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8 auf. Damit stehen für die elektrische Verbindung der Anschlüsse 14a, 14b mit den Anschlüssen 18a, 18b für jede Verbindung, also 14a-18a, 14a-18b, 14b-18a und 14b-18b, jeweils zwei Lastpfade zur Verfügung. Das ermöglicht die Schaltelemente 16-1 , 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8 für eine geringere Stromtragfähigkeit auszulegen. Die in Figur 3 dargestellten Schaltelemente erlauben für fast alle Verbindungen zwischen dem Energiespeicher 12 und einem entsprechenden Energiespeicher eines gleichartigen benachbarten Einzelmoduls (wie dies bspw. in Figur 4 dargestellt ist) zwei parallele Pfade. Die Schaltelemente werden entsprechend parallel verwendet. Allerdings lassen sich Schaltelemente, wie in den voranstehend beschriebenen Figuren 1 und 2 gezeigt, eliminieren, um die Komplexität zu verringern. Die verbleibenden Schaltelemente sollten dann jedoch mit entsprechend größeren Halbleitern implementiert werden, um die gleiche Stromtragfähigkeit zu ermöglichen. Durch eine entsprechende Wahl von Halbleitern lassen sich bestimmte Schaltzustände hinsichtlich ihrer Verluste gegenüber anderen optimieren.
So bilden die Schaltelemente 16-1 und 16-2 einen Pfad, der zu dem durch die
Schaltelemente 16-3 und 16-4 gebildeten Pfad parallel ist und zu demselben Ziel führt, d. h. je nach Richtung zu dem Anschluss 14a oder zu dem Anschluss 18a. Die
Schaltelemente 16-5 und 16-4 bilden einen Pfad, der zu demselben Ziel führt wie der durch die Schaltelemente 16-7 und 16-2 gebildete Pfad, nämlich je nach Richtung zu dem Anschluss 14b oder zu dem Anschluss 18a. Die Schaltelemente 16-1 und 16-8 bilden einen Pfad, der zu dem gleichen Ziel führt wie der durch die Schaltelemente 16-3 und 16- 6 gebildete Pfad. Ferner bilden die Schaltelemente 16-7 und 16-8 einen Pfad, der zu dem durch die Schaltelemente 16-5 und 16-6 gebildeten Pfad parallel ist und zu demselben Ziel führt, nämlich je nach Richtung zu dem Anschluss 14b oder 18b.
Bei einer Eliminierung kann nun ein beliebiges Schaltelement entfernt werden. Ein zweites zu eliminierendes Schaltelement sollte allerdings so gewählt werden, dass noch immer von jedem Anschluss zu jedem anderen Anschluss über die verbleibenden Schaltelemente eine Verbindung hergestellt werden kann. Dadurch ergeben sich eine Reihe reduzierter Schaltungen, von welchen beispielhaft zwei in den voranstehend beschriebenen Figuren 1 und 2 und in den nachfolgend beschriebenen Figuren 5 bis 14 dargestellt sind. Die reduzierten Schaltungen ermöglichen im Wesentlichen zwei Modultypen: Zwei-Quadranten- Module und Vier-Quadranten-Module. Zwei-Quadranten-Module erlauben jede Art der Verschaltung von Speichern von zwei benachbarten Einzelmodulen, also eine Parallelverschaltung von Speichern, eine
Bypassverschaltung von Speichern und eine Serienverschaltung von Speichern. Jedoch ermöglichen Zwei-Quadranten-Module bei einer Serienverschaltung von Speichern nur eine Polaritätsrichtung. Folglich lassen sich in einem Modulstrang nur positive
Spannungen und 0 V erzeugen. In Zwei-Quadranten-Modulen erlauben Freilaufdioden jener Schalter ohne anti-parallele Schalter einen nicht steuerbaren Stromfluss in mindestens eine Richtung. Als Vorteil liegen der Halbleiterbedarf und die Ohm'schen Verluste
(Leitungsverluste) bedeutend niedriger als bei Vier-Quadranten-Modulen. Dies kann ferner unkontrollierbare Kurzschlüsse verursachen, wenn ein Rückwärtsstrom durch die Last verursacht wird (beispielsweise bei induktiven Lasten) oder das System (beispielsweise mit einer Marquardt-Makrotopologie) als Umrichter zwischen mehreren Terminals
(beispielsweise verschiedenen Energienetzen mit Gleich-, Wechsel- oder Drehstrom) agiert und eines dieser Terminals kurzgeschlossen wird, wodurch der Kurzschluss durch entsprechende Dioden einen Kurzschluss in weiteren Terminals nach sich ziehen kann. Vier-Quadranten-Module erlauben ebenfalls jede Art der Verschaltung von Speichern wie die Zwei-Quadranten-Module. Allerdings erlauben Vier-Quadranten-Module beide
Polaritäten bei Serienverschaltungen von Speichern. Somit lassen sich Einzelmodule gegenüber einem Nachbar-Einzelmodul umpolen. Ferner haben Vier-Quadranten-Module den Vorteil, dass sie kurzschlusssicher sind, insbesondere wenn die Last eines Stranges oder auch eines Phasenmoduls kurzgeschlossen wird, da jeder Strompfad prinzipiell durch anti-parallele Schalter eine Kontrolle des Stromflusses in beiden Richtungen erlaubt. Figur 5 zeigt ein Modul 60 mit im Wesentlichen einem Aufbau des Moduls 10 der Figur 1. Lediglich das Schaltelement 16-3 wurde durch das Schaltelement 16-6 ersetzt, das jedoch auf dem gleichen Strompfad liegt. Das Modul 60 weist also auch eine Zwei- Quadranten-Topologie auf und ermöglicht die gleichen Funktionen wie das Modul 10 der Figur 1.
Die Figuren 6 und 7 zeigen weitere erfindungsgemäße Einzelmodule. Das Modul 70 weist die fünf Schaltelemente 16-1 , 16-2, 16-5, 16-7 und 16-8 auf. Das Modul 80 weist die fünf Schaltelemente 16-1 , 16-2, 16-4, 16-7 und 16-8 auf. Gegenüber den Modulen 10 (Figur 1) und 60 (Figur 5) wird eine umgekehrte Polarität bei einer Serienverschaltung der Energiespeicher ermöglicht. Im Übrigen ist der Aufbau der Module 70 und 80 gleich den bereits beschriebenen Ausführungsformen.
Bei den Figuren 6 und 7 entspricht die Parallelverschaltung und die Bypassverschaltung den Schaltzuständen der Module 10 und 60. In der Figur 6 kann eine Reihenverschaltung des Energiespeichers 12 über ein Schließen des Schaltelements 16-5 erzielt werden, wenn die Schaltelemente 16-1 , 16-2 und 16-7, 16-8 geöffnet sind. In der Figur 7 wird diese Reihenverschaltung durch entsprechendes Schließen des Schaltelements 16-4 erzielt. Die Figur 8 zeigt ein weiteres erfindungsgemäßes Zwei-Quadranten-Modul 90. Das Modul 90 weist sechs Schaltelemente 16-2 bis 16-5 und 16-7, 16-8 auf. Auch mit diesem Einzelmodul 90 lassen sich alle Arten der Verschaltung von benachbarten Energiespeichern ermöglichen. Für eine Parallelverschaltung der benachbarten
Energiespeicher sind beispielsweise die Schaltelemente 16-3, 16-4 und 16-7, 16-8 geschlossen. Die Schaltelemente 16-2 und 16-5 sind für eine Parallelverschaltung
5 geöffnet. Für eine Reihenverschaltung der benachbarten Energiespeicher 12 sind
beispielsweise die Schaltelemente 16-4, 16-5 geschlossen. Die Schaltelemente 16-2, 16- 3, 16-7, 16-8 sind geöffnet. Eine weitere Reihenverschaltung könnte über ein Schließen der Schaltelemente 16-2, 16-7 erreicht werden, wenn die Schaltelemente 16-3 bis 16-5 und 16-8 geöffnet sind. Eine dritte Möglichkeit einer Reihenverschaltung bietet eine
10 Kombination der beiden zuvor genannten Alternativen, also ein Schließen der
Schaltelemente 16-2, 16-7 und 16-4, 16-5, wenn die Schaltelemente 16-3, 16-8 geöffnet sind. Für eine Bypassverschaltung ist es lediglich erforderlich einen Pfad von einer Seite des Moduls 90 auf die andere Seite des Moduls 90 zu ermöglichen, so dass für diese Verschaltung mehrere Schaltzustände möglich sind. Beispielsweise könnten die
15 Schaltelemente 16-3 und 16-4 geschlossen sein, während die übrigen Schaltelemente 16-2, 16-5, 16-7, 16-8 geöffnet sind. Jedoch könnten auch die Schaltelemente 16-7 und 16-8 geschlossen sein, während die übrigen Schaltelemente 16-2 bis 16-5 geöffnet sind.
Figur 9 bis 11 zeigen noch weitere Zwei-Quadranten-Module 100, 110, 120 mit sechs 20 Schaltelementen unterschiedlicher Anordnung, die über entsprechende Schaltzustände der jeweiligen Schaltelemente die vorgesehenen Verschaltungen der Energiespeicher 12 ermöglichen.
In Figur 9 könnte eine Reihenverschaltung durch ein Schließen der Schaltelemente 16-1 , 25 16-8 und/oder der Schaltelemente 16-3, 16-6 realisiert werden, wenn die übrigen
entsprechenden Schaltelemente geöffnet sind. Eine Parallelverschaltung könnte beispielsweise durch ein Schließen der Schaltelemente 16-3, 16-4, 16-7, 16-8 realisiert werden, während die Schaltelemente 16-1 , 16-6 geöffnet sind. Eine Bypass-Verschaltung ließe sich beispielsweise durch ein Schließen der Schaltelemente 16-3, 16-4 oder 16-7, 30 16-8 realisieren, während die übrigen entsprechenden Schaltelemente geöffnet sind. In Figur 10 könnte eine Reihenverschaltung durch ein Schließen der Schaltelemente 16-1 , 16-8 und/oder der Schaltelemente 16-3, 16-6 realisiert werden, wenn die übrigen entsprechenden Schaltelemente geöffnet sind. Eine Parallelverschaltung könnte beispielsweise durch ein Schließen der Schaltelemente 16-1 , 16-2, 16-5, 16-6 realisiert 5 werden, während die Schaltelemente 16-3, 16-8 geöffnet sind. Eine Bypass-Verschaltung ließe sich beispielsweise durch ein Schließen der Schaltelemente 16-1 , 16-2 oder 16-5, 16-6 realisieren, während die übrigen entsprechenden Schaltelemente geöffnet sind.
In Figur 11 könnte eine Reihenverschaltung durch ein Schließen der Schaltelemente 16-4, 10 16-5 und/oder der Schaltelemente 16-2, 16-7 realisiert werden, wenn die übrigen
entsprechenden Schaltelemente geöffnet sind. Eine Parallelverschaltung könnte beispielsweise durch ein Schließen der Schaltelemente 16-1 , 16-2, 16-5, 16-6 realisiert werden, während die Schaltelemente 16-4, 16-7 geöffnet sind. Eine Bypass-Verschaltung ließe sich beispielsweise durch ein Schließen der Schaltelemente 16-1 , 16-2 oder 16-5, 15 16-6 realisieren, während die übrigen entsprechenden Schaltelemente geöffnet sind.
Zusätzlich zu dem Vier-Quadranten-Modul 20 der Figur 2 zeigen die Figuren 12 bis 14 weitere Vier-Quadranten-Module 130, 140, 150 mit sechs Schaltelementen. Für eine Parallelverschaltung benachbarter Speicherelemente könnte man beispielsweise in Figur
20 12 die Schaltelemente 16-1, 16-2 und 16-5, 16-6 schließen und die Schaltelemente 16-4 und 16-8 öffnen. Für eine erste Reihenverschaltung sind beispielsweise die
Schaltelemente 16-4, 16-5 geschlossen und die Schaltelemente 16-1 , 16-2, 16-6, 16-8 sind geöffnet. Eine weitere zweite Reihenverschaltung wird erzielt, wenn die
Schaltelemente 16-1 , 16-8 geschlossen sind und die Schaltelemente 16-2, 16-4 bis 16-6
25 geöffnet sind, wobei diese zweite Reihenverschaltung eine umgekehrte Polarität zu der zuvor genannten ersten Reihenverschaltung aufweist. Für eine Bypassverschaltung könnte man beispielsweise die Schaltelemente 16-1 , 16-2 schließen und die
Schaltelemente 16-4 bis 16-6 und 16-8 geöffnet halten, oder lediglich die Schaltelemente 16-5, 16-6 schließen und die Schaltelemente 16-1, 16-2, 16-4, 16-8 öffnen.
30 In Figur 13 könnte man für eine Parallelverschaltung beispielsweise die Schaltelemente 16-3, 16-4 und 16-7, 16-8 schließen und die Schaltelemente 16-2 und 16-6 öffnen. Für eine erste Reihenverschaltung sind beispielsweise die Schaltelemente 16-2, 16-7 geschlossen und die Schaltelemente 16-3, 16-4, 16-6, 16-8 sind geöffnet. Eine weitere zweite Reihenverschaltung wird erzielt, wenn die Schaltelemente 16-3, 16-6 geschlossen sind und die Schaltelemente 16-2, 16-4, 16-7, 16-8 geöffnet sind, wobei diese zweite Reihenverschaltung eine umgekehrte Polarität zu der zuvor genannten ersten
Reihenverschaltung aufweist. Für eine Bypassverschaltung könnte man beispielsweise die Schaltelemente 16-3, 16-4 schließen und die Schaltelemente 16-2, 16-6 bis 16-8 geöffnet halten, oder lediglich die Schaltelemente 16-7, 16-8 schließen und die
Schaltelemente 16-2, 16-3, 16-4, 16-6 öffnen.
In Figur 14 könnte man für eine Parallelverschaltung beispielsweise die Schaltelemente 16-3, 16-4 und 16-7, 16-8 schließen und die Schaltelemente 16-1 und 16-5 öffnen. Für eine erste Reihenverschaltung sind beispielsweise die Schaltelemente 16-4, 16-5 geschlossen und die Schaltelemente 16-1 , 16-3, 16-7, 16-8 sind geöffnet. Eine weitere zweite Reihenverschaltung wird erzielt, wenn die Schaltelemente 16-1 , 16-8 geschlossen sind und die Schaltelemente 16-3, 16-4, 16-5, 16-7 geöffnet sind, wobei diese zweite Reihenverschaltung eine umgekehrte Polarität zu der zuvor genannten ersten
Reihenverschaltung aufweist. Für eine Bypassverschaltung könnte man beispielsweise die Schaltelemente 16-3, 16-4 schließen und die Schaltelemente 16-1 , 16-5, 16-7, 16-8 geöffnet halten, oder lediglich die Schaltelemente 16-7, 16-8 schließen und die
Schaltelemente 16-1 , 16-3, 16-4, 16-5 öffnen. Die gezeigten Einzelmodule 10, 20, 30, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 können in einem System aus mehreren Einzelmodulen 10, 20, 30, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 passiviert werden, wenn keines der jeweiligen Schaltelemente 16-1 bis 16-8 aktiviert ist, also die jeweiligen Schaltelemente 16-1 bis 16-8 alle geöffnet sind, und die jeweiligen Schaltelemente 16-1 bis 16-8 über eine antiparallele Diode verfügen. Sind alle Schaltelemente geöffnet, kann ein Strom in die Einzelmodule 10, 20, 30, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 hineinfließen, wobei sich die Einzelmodule 10, 20, 30, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 selber ausbalancieren. Liegt also eine Spannung an einem System aus Einzelmodulen an, die von ihrem Betrag her größer ist als die Summe der von den Energiespeichern 12 bereitstellbaren Spannung, werden die Energiespeicher 12 geladen, wobei die Polarität der an dem System anliegenden Spannung für die Ladung der Energiespeicher 12 unbeachtlich ist.
Werden mehr Schaltelemente als in den Figuren 1 ,2 und 5 bis 14 gezeigt, entfernt, fallen einige Schaltzustände weg, wie bspw. eine Serienschaltung, was Vorteile für bestimmte Anwendungen haben kann.
In Figur 4 ist eine beispielhafte Verschaltung mehrerer Einzelmodule 30 gezeigt. Eine Hintereinanderschaltung mehrerer Einzelmodule 30 bildet einen Strang, sodass sich mehrere Seitenstränge ausbilden können. Dabei können verschiedene Seitenstränge auch parallel miteinander verschaltet sein. Durch entsprechende Wahl der Energiespeicher 12 lassen sich Stromrichtersysteme, wie bspw. ein erfindungsgemäßes elektrisches
Umrichtersystem 40 bei Verwendung mindestens eines Kondensators als
Energiespeicher 12, oder ein erfindungsgemäßes verschaltbares Batteriesystem 50 bei Verwendung von Teilbatterien bzw. Batteriezellen als Energiespeicher 12 realisieren.
Das heißt, dass für das verschaltbare Batteriesystem 50 mehrere erfindungsgemäße Einzelmodule 30 miteinander verschaltet sind. In diesem Fall haben die Einzelmodule 30 die Funktion einer Teilbatterie. Durch das Vorsehen mehrerer miteinander verschalteter und in der Verschaltung dynamischer Teilbatterien 30, wird es ermöglicht, eine bisher fest verdrahtete Batterie in ihrer Verschaltung dynamisch umzukonfigurieren. Der mindestens eine Energiespeicher 12 einer Teilbatterie 30 kann mit mindestens einem Energiespeicher 12 einer Nachbarteilbatterie entweder parallel und/oder in Serie geschaltet werden, wodurch die Batterie 50 im Betrieb dynamisch umkonfiguriert werden kann. Somit kann die Batterie 50 direkt Gleichspannung, Wechselspannung oder andere Spannungsformen bereitstellen. Des Weiteren lassen sich auch Batterien 50 und/oder Einzelmodule bzw. Teilbatterien 30 überbrücken, bspw. für den Fall, dass sie defekt sind. Insbesondere können die Energiespeicher 12 der mindestens zwei erfindungsgemäßen und miteinander verschalteten Teilbatterien 30 zwischen einer Parallelschaltung der Energiespeicher 12 der mindestens zwei Teilbatterien 30, einer Serienschaltung der mindestens zwei Teilbatterien 30, einer Überbrückung und einer Abschaltung einzelner Energiespeicher der mindestens zwei Teilbatterien 30 umgeschaltet werden.
Die dynamische Umkonfigurierung der Verschaltung der Teilbatterien 30 ermöglicht die Vereinigung u.a. folgender Funktionen, nämlich dem Ladungsaustausch zwischen den Teilbatterien 30, um bspw. ein konventionelles Batteriemanagement durchführen zu können, dem Überbrücken defekter Teilbatterien, ohne die Gesamtfunktion der Batterie zu verlieren und der Erzeugung beliebiger Ausgangsspannungen und zeitlicher Strombzw. Spannungsverläufe direkt durch die Batterie, ohne den Bedarf eines zusätzlichen leistungselektronischen Umrichters.

Claims

Patentansprüche
1. Einzelmodul (10, 20, 30, 60, 70, ... , 150) zur Verschaltung mit mindestens einem zweiten gleichartigen Einzelmodul (10, 20, 30, 60, 70, ... , 150) zur Bereitstellung eines elektrischen Umrichtersystems (40) oder eines Batteriesystems (50), wobei das
Einzelmodul (10, 20, 30, 60, 70, ... , 150) mindestens einen Energiespeicher (12), mindestens fünf interne Schaltelemente (16-1 , 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8) und mindestens zwei Anschlüsse (14a, 14b, 18a, 18b) auf je einer ersten und einer zweiten Seite des Einzelmoduls (10, 20, 30, 60, 70, ... , 150) umfasst, wobei der mindestens eine Energiespeicher (12) direkt mit mindestens einem der mindestens zwei Anschlüsse (14a, 14b) der ersten Seite verbunden ist und die internen Schaltelemente (16-1 , 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8) so angeordnet und verschaltbar sind, dass sie unabhängig von einem Schaltzustand von entsprechenden internen
Schaltelementen (16-1, 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8) des mindestens einen zweiten gleichartigen Einzelmoduls (10, 20, 30, 60, 70, ... , 150) alle Schaltzustände zur dynamischen Umschaltung einer elektrischen Verbindung zwischen dem mindestens einen Energiespeicher (12) und einem entsprechenden mindestens einen Energiespeicher (12) des mindestens einen zweiten Einzelmoduls (10, 20, 30, 60, 70, ... , 150) realisieren können.
2. Einzelmodul (10, 20, 30, 60, 70, ... , 150) nach Anspruch 1 , bei dem die internen Schaltelemente (16-1 , 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8) Niederspannungs- Halbleiter-Schaltelemente sind.
3. Einzelmodul (10, 20, 30, 60, 70, ... , 150) nach einem der Ansprüche 1 oder 2, bei dem unmittelbar vor bzw. nach dem mindestens einen Energiespeicher (12) eine elektrische Sicherung und/oder ein Schaltelement geschalten ist.
4. Einzelmodul (30) nach einem der voranstehenden Ansprüche, mit mindestens acht internen Schaltelementen (16-1, 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8), sodass zu allen mindestens benötigten Strompfaden zur dynamischen Umschaltung einer elektrischen Verbindung zwischen dem mindestens einen Energiespeicher (12) und dem entsprechenden mindestens einen Energiespeicher (12) des mindestens einen zweiten Einzelmoduls (10) jeweils mindestens ein zweiter Strompfad vorliegt.
5. Elektrisches Umrichtersystem (40) für Stromversorgungen mit mindestens zwei verschalteten gleichartigen Einzelmodulen (10, 20, 30) nach den Ansprüchen 1 bis 4, wobei der mindestens eine Energiespeicher (12) eines Einzelmoduls (10, 20, 30) ein Kondensator ist.
6. Batteriesystem (50) zur Stromversorgung mit mindestens zwei verschalteten gleichartigen Einzelmodulen (10, 20, 30) nach den Ansprüchen 1 bis 4, wobei der mindestens eine Energiespeicher (12) eines Einzelmoduls (10, 20, 30) eine Batterie ist.
PCT/EP2016/025030 2015-07-30 2016-04-04 Einzelmodul, elektrisches umrichtersystem und batteriesystem WO2017016674A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680044670.0A CN107852092B (zh) 2015-07-30 2016-04-04 独立模块、电变换器系统和电池系统
JP2018504794A JP6600406B2 (ja) 2015-07-30 2016-04-04 個々のモジュール、電気的変換器システム、および電池システム
US15/748,465 US10790743B2 (en) 2015-07-30 2016-04-04 Individual module, electrical converter system, and battery system
KR1020187005913A KR102048167B1 (ko) 2015-07-30 2016-04-04 개별 모듈, 전기 변환기 시스템, 및 배터리 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015112512.9 2015-07-30
DE102015112512.9A DE102015112512A1 (de) 2015-07-30 2015-07-30 Einzelmodul, elektrisches Umrichtersystem und Batteriesystem

Publications (1)

Publication Number Publication Date
WO2017016674A1 true WO2017016674A1 (de) 2017-02-02

Family

ID=55701924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/025030 WO2017016674A1 (de) 2015-07-30 2016-04-04 Einzelmodul, elektrisches umrichtersystem und batteriesystem

Country Status (6)

Country Link
US (1) US10790743B2 (de)
JP (1) JP6600406B2 (de)
KR (1) KR102048167B1 (de)
CN (1) CN107852092B (de)
DE (1) DE102015112512A1 (de)
WO (1) WO2017016674A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018106309A1 (de) 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energiespeicher
DE102018106306A1 (de) 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeug mit einem Energiespeicher

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015225614A1 (de) 2015-12-17 2017-06-22 Krones Ag Lebensmittel- oder Lebensmittelbehälter-Behandlungsmaschine
WO2017114802A1 (en) * 2015-12-29 2017-07-06 Vito Nv Device and method for the reconfiguration of a rechargeable energy storage device into separate battery connection strings
DE102016116127A1 (de) 2016-08-30 2018-03-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Baukastensystem mit mehreren miteinander elektrisch verbindbaren Modulen
DE102017113581A1 (de) 2017-06-20 2018-12-20 Stefan Götz Elektronische Schaltung zur magnetischen Neurostimulation und zugehörige Steuerung
DE102017113460A1 (de) 2017-06-20 2018-12-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektronische Schaltung zur Konvertierung elektrischer Energie und zugehörige Steuerung
DE102017124126B4 (de) 2017-10-17 2019-05-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Umrichter, elektrisches Polyphasen-System und Verfahren zum effizienten Leistungsaustausch
DE102017124122A1 (de) 2017-10-17 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Laden eines Energiespeichers
DE102017124125A1 (de) 2017-10-17 2019-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Laden eines Energiespeichers
DE102017130443A1 (de) 2017-12-19 2019-06-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Flexibles Bootstrapping für Leistungselektronikschaltungen
DE102018106304A1 (de) 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Gleichstromladung einer intelligenten Batterie
DE102018106308B4 (de) * 2018-03-19 2020-02-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Modulationsindexverbesserung durch intelligente Batterie
DE102018109921B3 (de) 2018-04-25 2019-08-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrisches Energiespeichersystem
DE102018109926B4 (de) 2018-04-25 2019-12-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrische Anordnung
DE102018125728B3 (de) 2018-10-17 2020-02-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System zur parallelen Schalttabellen-Optimierung für Multilevelkonverter
DE102018129111A1 (de) 2018-11-20 2020-05-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Schaltung zu einer Layout-Topologie für Seriell-/Parallel-Weichen
DE102019109723B3 (de) 2019-04-12 2020-08-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System zu einer elektronischen Stromregelung bei einer flexiblen Gleichstrombatterie
DE102019206019A1 (de) * 2019-04-26 2020-10-29 Robert Bosch Gmbh Verfahren zur Begrenzung eines Einschaltstroms eines elektrischen Verbrauchers und elektrische Energiespeicherungsvorrichtung
DE102019112826B3 (de) 2019-05-16 2020-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Analog-Digital-Modul für einen modularen Multilevelkonverter
DE102019130740A1 (de) 2019-11-14 2021-05-20 Audi Ag Batterie mit einer Batteriezelle und Verfahren zu deren Betrieb
DE102019130739A1 (de) * 2019-11-14 2021-05-20 Audi Ag Batterie mit einer Batteriezelle und Verfahren zu deren Betrieb
DE102019130741A1 (de) * 2019-11-14 2021-05-20 Audi Ag Batterie mit einer Batteriezelle und Verfahren zu deren Betrieb
DE102020117264B3 (de) 2020-07-01 2021-06-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System zu einer Vorauswahl von Schaltzuständen für einen Multilevelkonverter
DE102020129136A1 (de) 2020-11-05 2022-05-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System zu einer Reduzierung laufzeitrelevanter Komplexität einer Echtzeitsteuerung eines modularen Multilevelkonverters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046772A1 (de) * 2006-10-18 2008-04-24 Abb Research Ltd Umrichterschaltung zur schaltung einer vielzahl von schaltspannungsniveaus
WO2012072168A2 (de) * 2010-11-30 2012-06-07 Technische Universität München Neue multilevelkonvertertopologie mit der möglichkeit zur dynamischen seriell- und parallelschaltung von einzelmodulen
WO2012079822A1 (de) * 2010-12-17 2012-06-21 Sb Limotive Germany Gmbh Koppeleinheit und batteriemodul mit einer solchen koppeleinheit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003275906A1 (en) * 2003-10-17 2005-04-27 Abb Research Ltd Converter circuit for connecting a plurality of switching voltage levels
KR20090018208A (ko) * 2006-06-07 2009-02-19 엔엑스피 비 브이 Dc-dc 변환기와 이를 구비한 전자 디바이스 및 집적 회로
ATE470983T1 (de) * 2007-03-30 2010-06-15 Abb Research Ltd Schaltzelle sowie umrichterschaltung zur schaltung einer vielzahl von spannungsniveaus mit einer solchen schaltzelle
DE102010008978B4 (de) * 2010-02-24 2012-10-04 Rainer Marquardt Schaltungsanordnung für modulare Antriebsstromrichter
JP5378274B2 (ja) 2010-03-15 2013-12-25 株式会社日立製作所 電力変換装置
DE102010038866A1 (de) * 2010-08-04 2012-02-09 Sb Limotive Company Ltd. Energiewandler zum Ausgeben elektrischer Energie
JP5817103B2 (ja) * 2010-11-12 2015-11-18 ソニー株式会社 直並列切替システム、電力供給装置、電力供給制御装置及び直並列切替方法
DE102010052934A1 (de) 2010-11-30 2012-05-31 Technische Universität München Neue Multilevelkonvertertopologie mit der Möglichkeit zur dynamischen Seriell- und Parallelschaltung von Einzelmodulen
EP2684285A4 (de) * 2011-03-09 2015-07-22 Solantro Semiconductor Corp Wechselrichter mit gleichstromausgleichskondensatoren von verlängerter lebensdauer
DE102011108920B4 (de) * 2011-07-29 2013-04-11 Technische Universität München Elektrisches Umrichtersystem
EP2608384A1 (de) * 2011-12-19 2013-06-26 Siemens Aktiengesellschaft Modularer Stromrichter mit Fehlererkennung
CN203166799U (zh) * 2013-03-12 2013-08-28 江苏一同环保工程技术有限公司 大功率串联叠加型脉冲电源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046772A1 (de) * 2006-10-18 2008-04-24 Abb Research Ltd Umrichterschaltung zur schaltung einer vielzahl von schaltspannungsniveaus
WO2012072168A2 (de) * 2010-11-30 2012-06-07 Technische Universität München Neue multilevelkonvertertopologie mit der möglichkeit zur dynamischen seriell- und parallelschaltung von einzelmodulen
WO2012079822A1 (de) * 2010-12-17 2012-06-21 Sb Limotive Germany Gmbh Koppeleinheit und batteriemodul mit einer solchen koppeleinheit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018106309A1 (de) 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energiespeicher
DE102018106306A1 (de) 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeug mit einem Energiespeicher
US20190288536A1 (en) * 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energy storage element
CN110289778A (zh) * 2018-03-19 2019-09-27 保时捷股份公司 能量储存器
US10840714B2 (en) 2018-03-19 2020-11-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energy storage element
US11088550B2 (en) 2018-03-19 2021-08-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vehicle having an energy storage element
CN110289778B (zh) * 2018-03-19 2021-11-02 保时捷股份公司 能量储存器

Also Published As

Publication number Publication date
DE102015112512A1 (de) 2017-02-02
US20180219478A1 (en) 2018-08-02
CN107852092A (zh) 2018-03-27
JP6600406B2 (ja) 2019-10-30
KR20180037002A (ko) 2018-04-10
KR102048167B1 (ko) 2019-11-22
JP2018521625A (ja) 2018-08-02
CN107852092B (zh) 2020-07-03
US10790743B2 (en) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2017016674A1 (de) Einzelmodul, elektrisches umrichtersystem und batteriesystem
EP2737618B1 (de) Elektrisches umrichtersystem
EP3278441B1 (de) Verlustarmer modularer multilevelkonverter
EP3014725B1 (de) Energiespeichereinrichtung mit gleichspannungsversorgungsschaltung und verfahren zum bereitstellen einer gleichspannung aus einer energiespeichereinrichtung
EP4258512A2 (de) Modulares energiespeicher-direktumrichtersystem
DE102019120615B3 (de) Verfahren und Schaltung zur Bereitstellung erweiterter Schaltzustände für modularen Multilevelkonverter mit Halbrücken
EP2831946B1 (de) Verfahren zum aufheizen von energiespeicherzellen einer energiespeichereinrichtung und aufheizbare energiespeichereinrichtung
WO2018122094A1 (de) Niedervoltauskopplung aus einem modularen energiespeicher-umrichtersystem
EP2705564B1 (de) Verfahren zur steuerung einer batterie sowie eine batterie zur ausführung des verfahrens
DE102015112513A1 (de) Matroschka-Umrichter
EP3255773A1 (de) Verlustarmes doppel-submodul für einen modularen mehrpunktstromrichter und modularer mehrpunktstromrichter mit diesem
EP2596980A2 (de) Mehrpunkt-Stromrichter mit Bremschopper
EP2586646B1 (de) Elektrische Energieversorgungsanordnung für Antriebseinrichtungen, zum Betreiben eines Schienenfahrzeugs an elektrischen Versorgungsnetzen
WO2014127871A2 (de) Interne energieversorgung von energiespeichermodulen für eine energiespeichereinrichtung und energiespeichereinrichtung mit solchem
DE102013212692A1 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung
WO2013072107A1 (de) Energiespeichereinrichtung, system mit energiespeichereinrichtung und verfahren zum ansteuern einer energiespeichereinrichtung
WO2015113780A1 (de) Energiespeichereinrichtung, system mit energiespeichereinrichtung und verfahren zum ansteuern einer energiespeichereinrichtung
DE102015208568B4 (de) Bordnetz-Schaltmodul, Bordnetzunterstützungseinrichtung und Bordnetzzweig
DE102014005124A1 (de) Schaltungsanordnung und Verfahren zum Austausch elektrischer Energie
DE102018207373A1 (de) Umrichtervorrichtung für einen Elektromotor
DE102014100257A1 (de) Modularer Umrichter und Energieübertragungseinrichtung
EP2928055B1 (de) Modularer Stromrichter und Verfahren zur Erzeugung einer sinusförmigen Ausgangsspannung mit reduziertem Oberschwingungsgehalt
DE102012223482A1 (de) Batterie mit mindestens einem Batteriestrang sowie Verfahren zur Regelung einer Batteriespannung
DE102014205935A1 (de) Elektrochemische Speicherverbund zum bereitstellen eines mehrphasigen Wechselstroms oder einer mehrphasigen Wechselspannung
WO2022002470A1 (de) Verfahren und vorrichtung zum entladen eines zwischenkreiskondensators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16715461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018504794

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15748465

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187005913

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16715461

Country of ref document: EP

Kind code of ref document: A1