WO2017016405A1 - 分子弹簧隔振缓冲器 - Google Patents

分子弹簧隔振缓冲器 Download PDF

Info

Publication number
WO2017016405A1
WO2017016405A1 PCT/CN2016/090370 CN2016090370W WO2017016405A1 WO 2017016405 A1 WO2017016405 A1 WO 2017016405A1 CN 2016090370 W CN2016090370 W CN 2016090370W WO 2017016405 A1 WO2017016405 A1 WO 2017016405A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular spring
vibration isolating
end plate
spring vibration
cylinder
Prior art date
Application number
PCT/CN2016/090370
Other languages
English (en)
French (fr)
Inventor
陈前
余慕春
金阳
赵鹏
Original Assignee
陈前
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510440201.8A external-priority patent/CN105041943B/zh
Priority claimed from CN201510440202.2A external-priority patent/CN105041949B/zh
Application filed by 陈前 filed Critical 陈前
Publication of WO2017016405A1 publication Critical patent/WO2017016405A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/30Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium with solid or semi-solid material, e.g. pasty masses, as damping medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details

Definitions

  • the invention relates to a novel vibration isolating damper with high static and low dynamic stiffness characteristics, in particular to a molecular spring vibration isolating buffer.
  • the vibration isolation buffer is particularly suitable for use in the field of heavy-duty low-frequency vibration isolation.
  • Molecular spring vibration isolation technology is a passive vibration isolation technology based on a new mechanism.
  • the water and the porous hydrophobic material constitute a molecular spring mixed medium.
  • the compressed molecular spring mixes the medium to a certain pressure
  • the water molecules enter the hydrophobic nanopores of the porous hydrophobic material, and when unloading, the water molecules automatically escape from the micropores, in the process.
  • Mechanical energy and surface energy are mutually converted to achieve energy storage and release. Due to the hydrophobicity of the porous hydrophobic material, water molecules cannot enter the micropores at low pressure. When the pressure reaches a certain critical value, the water molecules overcome the capillary force and begin to invade the micropores in large quantities.
  • the vibration isolating damper with the molecular spring mixed medium as the working medium will exhibit a "high-low-high” piecewise stiffness characteristic.
  • the vibration isolation buffer will exhibit high static and low dynamic stiffness characteristics, especially suitable for low frequency vibration isolation of heavy equipment. Since the molecular spring medium composed of a part of porous hydrophobic material has hysteresis in the loading and unloading process, that is, a certain energy is consumed in the loading and unloading period, the vibration isolating buffer has a certain cushioning performance at the same time.
  • the object of the present invention is to provide a molecular spring vibration isolating buffer which has simple sealing, high static and low dynamic stiffness characteristics and lateral stiffness.
  • the vibration isolation buffer has small volume, light weight, simple maintenance and environmental adaptability. Strong characteristics, and can easily adjust the vibration isolation performance according to demand.
  • the molecular spring vibration isolating buffer comprises a pressurizable container filled with a molecular spring mixing medium; the spring mixed medium is formed by mixing water and a porous hydrophobic material containing nanometer pores.
  • the molecular spring vibration isolating damper of the present invention is a mixture of water and a porous hydrophobic material containing nanometer pores.
  • the porous hydrophobic material may be a hydrophobic zeolite, a hydrophobic silica gel, a hydrophobic metal organic framework material or a mixture thereof; the porous hydrophobic material contains pores having a pore diameter of less than 2 nm and a pore diameter of 2 ⁇ 50 nm mesopores or mesopores or macropores with a pore diameter greater than 50 nm.
  • the molecular spring vibration isolating buffer of the invention can improve the working pressure of the vibration isolating buffer for improving the bearing capacity; the addition of the surfactant can reduce the working pressure of the vibration isolating buffer to reduce the carrying capacity;
  • the addition of inorganic salts and surfactants reduces the freezing point of water and is used in environments where the temperature is below zero degrees Celsius.
  • the molecular spring vibration isolating buffer of the invention has an working pressure of between 10 MPa and 200 MPa.
  • the molecular spring vibration isolating buffer of the invention uses the molecular spring mixing medium to utilize the energy conversion and loss characteristics of the nano-sized hydrophobic capillary in the porous hydrophobic material flowing under high pressure to realize the vibration isolation and buffer protection of the device.
  • the molecular spring vibration isolating buffer of the present invention is of a capsule type, comprising an upper end plate, a capsule body and a lower end plate; a capsule body is arranged between the upper end plate and the lower end plate, and the capsule body is filled with a molecular spring Mixed medium; the capsule varies according to the spacing between the upper end plate and the lower end plate.
  • the pressurizable container may further include: a limiting sleeve, a guiding shaft; a bottom end of the upper end plate is disposed with a guiding shaft, and an upper end of the lower end plate is disposed with a limiting sleeve; the guiding shaft is disposed in the limiting sleeve.
  • the molecular spring vibration isolating buffer may be referred to as a capsule molecular spring vibration isolating buffer.
  • the capsule molecular spring vibration isolating buffer has an end portion of the guide shaft extending in a radial direction from the protruding structure.
  • the capsule molecular spring vibration isolating buffer is a disc structure, the disc structure is provided with a buffer rubber; the upper end of the buffer rubber is provided with a pressing plate, and the buffer rubber and the pressing plate are vulcanized and fixed to each other.
  • the capsule molecular spring vibration isolating buffer, a fastening flange is arranged at an edge of the upper end plate and the lower end plate, and the fastening flange is fixed by a fastening screw; the capsule body is fastened to the upper end plate and the lower end by the fastening flange Between the boards.
  • the capsule molecular spring vibration isolating buffer the one-way valve is arranged in the lower end plate, the one-way valve is connected with the capsule body; the inner container is pressurized by the one-way valve, and is used for adjusting the capsule molecular spring vibration isolation buffer Carrying capacity of the device.
  • the pressurized container is of a diaphragm type, comprising a guiding cylinder, a piston, a cylinder body and a molecular spring mixing medium
  • the guiding cylinder is sleeved on the outer side of the cylinder body, and the cylinder body
  • the inside is filled with a molecular spring mixing medium; a gap is provided between the inner side of the guiding cylinder and the upper and lower sides of the piston, and the guiding cylinder is connected with the upper and lower sides of the cylinder through a piston; one end of the piston is fixed at the inner top end of the guiding cylinder, and the other end extends into the cylinder body.
  • the end of the cylinder body is provided with an end cover, a diaphragm is arranged between the cylinder body and the end cover; and the piston passes through the end cover to interfere with the diaphragm.
  • the diaphragm is a three-layer flexible structure, the middle layer is a high-strength fiber fabric layer, the fabric is coated with rubber on both sides, and the diaphragm is a flexible structure.
  • the piston compresses the diaphragm, the diaphragm can provide a certain amount of deformation, so the dynamic density can be The seal is converted into a static seal to improve the sealing life and avoid the seal damping caused by the traditional sealing method.
  • the molecular spring vibration isolating buffer may be referred to as a diaphragm type molecular spring vibration isolating buffer.
  • the diaphragm type molecular spring vibration isolating buffer has a through hole formed in a side wall of the cylinder body near the bottom, wherein one of the through holes is provided with a one-way valve, and the other side of the through hole is provided with a plug and a sealing ring.
  • the diaphragm type molecular spring vibration isolating buffer wherein a groove is arranged at a contact surface between the side wall of the cylinder body and the guiding cylinder, and a nylon sleeve is arranged in the groove; an outer diameter of the nylon sleeve is larger than an outer diameter of the cylinder body,
  • the diaphragm type molecular spring vibration isolating buffer is provided with a buffer rubber at the bottom end of the outer wall of the cylinder.
  • the molecular spring vibration isolating buffer of the invention has the characteristics of high carrying capacity and low natural frequency, and is widely applicable to equipments in engineering fields, especially vibration isolation requirements of heavy machinery equipment;
  • the molecular spring vibration isolating buffer has a "high-low-high" piecewise stiffness characteristic, it has a self-limiting function at a large amplitude
  • the porous hydrophobicity selected by the invention has high porosity and large specific surface area, a very small amount of molecular spring mixed medium can satisfy the deformation amount and energy storage capacity of the vibration isolation requirement, and therefore the vibration isolation buffer has a small volume;
  • the molecular spring vibration isolating buffer has a "high-low-high" piecewise stiffness characteristic, it has a self-limiting function at a large amplitude
  • the vibration isolation damper Since the molecular spring mixed medium has a high working pressure (10 MPa to 200 MPa), the vibration isolation damper has a very strong bearing capacity;
  • the vibration isolation performance of the molecular spring vibration isolating buffer can be conveniently adjusted by increasing or decreasing the filling amount of the porous hydrophobic material.
  • the load carrying capacity of the molecular spring vibration isolating buffer can be fine-tuned by the addition of inorganic salts or surfactants.
  • Inorganic salts and surfactants can be used as antifreeze agents, so molecular spring vibration isolating buffers can also be used in environments below zero degrees Celsius.
  • the invention avoids dynamic sealing, has a long fatigue life, and has small additional damping.
  • the structural design of the guide shaft and the limit bushing and the buffer rubber makes the molecular spring vibration isolating buffer have a protection function for the device under the limit condition, and the buffer rubber simultaneously isolates the molecular spring.
  • the bumper has both lateral stiffness.
  • the capsule molecular spring vibration isolating buffer can be pre-pressurized by a one-way valve, thereby reducing the bearing capacity of the capsule molecular spring vibration isolating buffer. Therefore, the capsule molecular spring vibration isolating buffer is also widely used in the field of light equipment vibration isolation. prospect.
  • the diaphragm type molecular spring vibration isolating buffer can be pre-pressurized through the one-way valve, thereby reducing the static of the diaphragm type molecular spring vibration isolating buffer from the initial position to the equilibrium position. Displacement. When the displacement is too large, the cushion rubber of the diaphragm type molecular spring vibration isolating buffer acts as a buffer to protect the equipment from loss.
  • FIG. 1 is a schematic structural view of a molecular spring vibration isolating buffer of Embodiment 1;
  • FIG. 2 is a top plan view showing the structure of the molecular spring vibration isolating buffer of Embodiment 1;
  • Figure 3 is a top cross-sectional view of the end of the guide shaft and the protrusion
  • FIG. 4 is a top cross-sectional view of the limiting bushing;
  • FIG. 5 is a schematic view of the molecular spring vibration isolating buffer of the second embodiment;
  • Figure 6 is a molecular spring vibration isolation buffer stiffness curve.
  • the invention utilizes a molecular spring mixed medium as a working medium, and invents a brand-new vibration isolation buffer.
  • the molecular spring mixed medium is composed of water and a porous hydrophobic material containing nanometer pores, and the molecular spring mixed medium is sealed in a compressible container to obtain a molecular spring vibration isolating buffer, and the molecular spring medium is pressurized by the compressible container.
  • the pressure reaches a critical value
  • the molecule can enter the nanoporous channel of the porous hydrophobic material, and can automatically escape the nanopore when the pressure is lower than the critical value, and the energy conversion and loss of the nanometer hydrophobic capillary in the porous hydrophobic material flowing under high pressure by using water molecules under high pressure.
  • the molecular spring vibration isolating buffer exhibits high load-bearing stiffness, low dynamic stiffness and high limit stiffness, so the molecular spring vibration isolating buffer is also extremely low. Ideal performance for natural frequencies and small static deformation.
  • the porous hydrophobic material may be a hydrophobic zeolite, a hydrophobic silica gel, a hydrophobic metal organic framework material or a mixture thereof; the porous hydrophobic material contains pores having pore diameters of less than 2 nm, mesopores or mesopores having a pore diameter of 2 to 50 nm or pore diameters of more than 50 nm. big hole.
  • the working pressure is between 10Mpa and 200Mpa.
  • the water may be distilled water
  • the porous hydrophobic material may be a hydrophobic zeolite, a hydrophobic silica gel particle or a hydrophobic metal organic framework material.
  • the working mechanism of the molecular spring vibration isolating buffer is that water invades the hydrophobic micropores under high pressure.
  • the process of water entering the hydrophobic micropores under high pressure follows the Laplace capillary force equation:
  • P is the capillary force, ie the pressure at which water molecules enter the hydrophobic nanopore
  • is the surface tension of water
  • is the contact angle of the liquid-solid interface
  • r is the radius of the nanopore .
  • the process of compressing the molecular spring to mix the medium is divided into three stages: the water molecules cannot overcome the capillary force at low pressure, so they cannot invade the hydrophobic micropores.
  • the compressed molecular spring is essentially compressed pure water, so the molecular spring mixed medium exhibits high rigidity. It is called a static stiffness stage.
  • the pressure reaches the critical pressure, the water molecules first invade the pores with large pores and small contact angles. As the pressure gradually increases, the water molecules gradually enter the small pore diameter and the large contact angle until the pores until all. The pores are saturated, and the large intrusion of water molecules into the hydrophobic micropores leads to large displacement.
  • the molecular spring mixed medium exhibits low stiffness, called a dynamic stiffness stage; the pressure is continuously increased, and since all the pores have reached saturation, the water molecules It is impossible to continue to invade the micropores.
  • This stage is also the stage of compressing pure water.
  • the molecular spring mixed medium exhibits high rigidity, called the stopping stiffness stage. Therefore, the molecular spring vibration isolating damper has a "high-low-high" piecewise stiffness characteristic as shown in FIG.
  • the unloading process is the reverse process of the loading process, that is, the loading and unloading consumes almost no energy, so the two materials Suitable for vibration isolation.
  • the hydraulic pressure drops during the unloading process, so hysteresis occurs, that is, there is hysteresis in the loading and unloading process and consumes a lot of energy, so it can be used for buffering.
  • a damping spring can be formed. , to achieve vibration isolation buffer.
  • the molecular spring vibration isolation buffer exhibits high static and low dynamic stiffness characteristics, so the molecular spring vibration isolation buffer vibration isolation system It has high load carrying capacity and extremely low natural frequency, which solves the bottleneck that the existing passive vibration isolation technology can not coexist with high load capacity and small static deformation.
  • a load pressurizes the liquid-solid mixing medium by compressing the compressible container.
  • the subscript b is the stage in which the water is filled with the nanopore
  • S is the effective compression area
  • g is the acceleration of gravity.
  • the pressure in the mixed medium is in the working section, and the molecular spring vibration isolation buffer stiffness is the working stiffness to achieve the optimal vibration isolation effect.
  • the pressure P a of the nanopore which starts to enter the porous hydrophobic material varies depending on the type of the porous hydrophobic material, and is tens of MPa or even hundreds of MPa, and the water is filled with porous hydrophobic
  • the pressure P b of the nanopore of the material is slightly larger than P a
  • the pressure of the working segment is P a to P b
  • the molecular spring vibration isolation buffer has a bearing mass of several hundred Kg/cm 2 to thousands Kg/cm 2 , that is, per square centimeter.
  • the effective compression area can carry hundreds or even thousands of kilograms, showing extremely high load carrying capacity.
  • P a and P b are constant values.
  • the volume of water and porous hydrophobic material mixed medium increases with pressure when the water molecules fill the nanopores under high pressure. The reduction is more rapid, so the rigidity of the molecular spring vibration isolating damper is reduced. According to this feature, the working stiffness of the molecular spring vibration isolating buffer can be conveniently adjusted, so that the vibration isolation system can have an extremely low operating frequency regardless of the mass of the load.
  • inorganic salt or surfactant adjusts the load carrying capacity of the molecular spring isolation damper.
  • the addition of inorganic salts to the water enhances the working pressure of the vibration isolating buffer and increases the load carrying capacity.
  • Adding a surfactant to the water reduces the working pressure of the vibration isolating buffer and reduces the load carrying capacity, while also reducing the liquid freezing point, so that the vibration isolating buffer It can be used in environments where the temperature is below zero degrees Celsius; inorganic salts include, but are not limited to, NaCl, KCl, LiCl, KNO 3 , NaNO 3 ; surfactants include, but are not limited to, polyvinyl alcohol, polyethylene glycol octyl phenyl ether .
  • Table 1 shows an example of the relationship between the vibration damping performance of the molecular spring vibration isolating buffer and the filling quality of the porous hydrophobic material
  • a capsule molecular spring vibration isolating buffer As shown in FIG. 1 and FIG. 2, a capsule molecular spring vibration isolating buffer, a capsule body 14 is disposed between the upper end plate 11 and the lower end plate 110, and is locked by a fastening screw 12 and a fastening flange 13 to form a capsule.
  • the container; the molecular spring mixing medium is placed in the capsule container, and the capsule 14 is filled with the molecular spring mixing medium; the capsule 14 changes according to the change in the spacing between the upper end plate 11 and the lower end plate 110.
  • the upper end plate 11 is connected by a thread and a lower guide shaft 111.
  • the end of the guide shaft 111 has two radial protrusions; the guide shaft 111 is disposed in the limit sleeve 18, and the limit sleeve 18 is
  • the lower part is a disc structure, and a cushion rubber 19 is disposed in the lower end plate 110 below the limiting bushing 18.
  • the disc structure of the lower portion of the limiting bushing 18 and the cushion rubber 19 are vulcanized as a whole, and the cushion rubber 19 and the pressing plate 112 are vulcanized together. And fixed to the lower end plate 110 by fastening screws.
  • the limiting sleeve 18 has an axial limiting slot on the side thereof, and the protrusion at the end of the guiding shaft 111 is disposed in the limiting slot, and the guiding shaft 111 can slide up and down along the limiting slot; the limiting slot does not open to the limiting sleeve At the top of the 18, the limit sleeve 18 and the cushion rubber 19 do not function during normal use, and when the limit load is applied or the vibration isolation damper structure is broken, the limit sleeve 18 is limited when the guide shaft 111 moves upward, and the buffer function is used.
  • the rubber 19 has a buffering and limiting function when the guiding shaft 111 moves downward, so that the protected device is not damaged; the check valve 17 is arranged in the lower end plate 110, and the inside of the capsule can be pressurized by the one-way valve, thereby adjusting The carrying capacity of the capsule molecular spring vibration isolating buffer.
  • the capsule 14 has a total of three layers of structure, and the middle layer is a cord skeleton, which is formed by winding a plurality of wires; both sides of the skeleton Each has a rubber layer, and the rubber layer and the cord skeleton are vulcanized together.
  • the capsule structure has high strength and small additional rigidity.
  • the bladders 14 each have an annular knob for facilitating compression sealing.
  • the upper end plate 11 and the lower end plate 110 have threaded holes in the middle to facilitate fixing, connecting the adapter or connecting the protected device.
  • the molecular spring mixed medium is sealed in a diaphragm piston hydraulic cylinder to form a diaphragm type molecular spring vibration isolating buffer.
  • the molecular spring mixed medium is composed of water and a porous hydrophobic material containing nano-scale pores (hereinafter collectively referred to as micropores), and the porous hydrophobic material may be a hydrophobic zeolite, a hydrophobic silica gel, a hydrophobic metal organic framework material or a mixture thereof;
  • the piston hydraulic cylinder is composed of a piston 213, an end cover 214, a diaphragm 215, a cylinder 217, a fastening screw 22, a plug 218, a sealing ring 219, and a check valve 27.
  • the end cover 214 is disposed on the cylinder 217, and the diaphragm 215 is disposed between the end cap 214 and the cylinder block 217, the fastening screw 22 locks the end cap 214, the diaphragm 215 and the cylinder block 217 tightly; the top end of the end cap 214 is rounded, and the piston 213 extends from the circular hole and In contact with the diaphragm, the diaphragm forms a groove that encloses the end of the piston.
  • a threaded hole is opened in the guiding cylinder 221 to facilitate connection of the protected device, and a through hole is opened in the bottom of the cylinder 217, which can be used for fixing the diaphragm type molecular spring vibration isolating buffer to the foundation.
  • the protected device is connected to the guiding cylinder 221, and the diaphragm 215 is compressed by the piston 213, and the diaphragm 215 is deformed to transmit pressure to the chamber of the cylinder 217 to effect pressurization of the molecular spring mixed medium.
  • a through hole is formed on each side of the lower part of the cylinder; a plug 218 and a sealing ring 219 are arranged in one side of the hole, through which the water reducing 26 and the porous hydrophobic material 25 can be added to the vibration isolating buffer; the other side of the hole
  • the check valve 27 is disposed, and the vibration isolating damper can be pressurized by the check valve 27.
  • Two grooves are formed on the outer surface of the cylinder block 217, and two semi-circular nylon sleeves 216 are arranged in each of the grooves.
  • the outer diameter of the nylon sleeve 216 is larger than the outer diameter of the cylinder block 217, and the guide cylinder 221 is disposed outside the cylinder body.
  • the sliding sleeve 221 and the nylon sleeve 216 are unsealed, and the guiding cylinder 221 and the piston 213 are connected by a fastening screw 22.
  • the guiding cylinder and the nylon sleeve cooperate to guide the movement, and the piston can only be axially moved, and the structure has little additional damping.
  • the buffer rubber 220 is disposed outside the cylinder 217, and the cylinder 217 and the cushion rubber 220 are not in contact during normal operation, but when the load is extremely large or the structure is damaged, the cushion rubber 220 acts as a buffer to protect the device from damage.

Abstract

一种分子弹簧隔振缓冲器,包括可加压容器,可加压容器内填充分子弹簧混合介质;混合介质由水和含有纳米级孔隙多孔疏水材料混合而成。可加压容器为囊式的,包括上端板(11),囊体(14),下端板(110);所述的上端板(11)与下端板(110)之间布置囊体(14),囊体(14)内填充分子弹簧混合介质;囊体(14)根据上端板(11)与下端板(110)之间的间距变化而变化。可加压容器还包括:限位轴套(18),导向轴(111);上端板(11)的底端布置导向轴(111),下端板(110)的上端布置限位轴套(18);导向轴(111)布置在限位轴套(18)内,导向轴(111)的端部沿径向方向延伸出突起结构。该隔振缓冲器体积小、重量轻、维护简单、环境适应性强,并且可以根据需求方便的调节隔振性能。

Description

分子弹簧隔振缓冲器 技术领域
本发明涉及一种具有高静低动刚度特性的新型隔振缓冲器,尤其涉及一种分子弹簧隔振缓冲器。该隔振缓冲器特别适用于重载低频隔振领域。
背景技术
现代工程领域中机械设备的振动和冲击是非常普遍存在的问题,为隔离动力机械设备引起的振动与冲击,被动隔振技术因其简单有效而应用广泛。为满足日益苛刻的隔振需求,新型隔振缓冲器的研制一直是工程领域的研究热点之一。
分子弹簧隔振技术是一种基于全新机理的被动隔振技术。水和多孔疏水材料组成分子弹簧混合介质,当压缩分子弹簧混合介质至一定压强时,水分子会进入多孔疏水材料的疏水纳米微孔,当卸载时,水分子自动从微孔中逸出,在这个过程机械能和表面能相互转化,实现能量储存和释放。由于多孔疏水材料的疏水性,在低压时水分子无法进入微孔,当压强达到某一临界值时,水分子克服毛细管力,开始大量侵入微孔,当多孔疏水材料的所有微孔饱和后,继续加压将不再有水分子进入微孔;卸载过程即为这一过程的逆过程。因此以分子弹簧混合介质为工作介质的隔振缓冲器将表现出“高-低-高”的分段刚度特性。加载适当的负载后,该隔振缓冲器将表现出高静低动的刚度特性,特别适用于重型设备的低频隔振。由于部分多孔疏水材料组成的分子弹簧介质在加载卸载过程存在迟滞现象,即在加载卸载周期内会消耗一定的能量,因此该隔振缓冲器同时兼具一定的缓冲性能。
发明内容
本发明的目的在于提供一种密封简单,具有高静低动刚度特性且兼顾侧向刚度的一种分子弹簧隔振缓冲器,该隔振缓冲器具有体积小、重量轻、维护简单、环境适应性强等特点,并且可以根据需求方便的调节隔振性能。所述分子弹簧隔振缓冲器包括可加压容器,可加压容器内填充分子弹簧混合介质;所述的弹簧混合介质由水和含有纳米级孔隙多孔疏水材料混合而成。本发明的分子弹簧隔振缓冲器,所述的弹簧混合介质由水和含有纳米级孔隙多孔疏水材料混合而成。
本发明的分子弹簧隔振缓冲器,所述的多孔疏水材料可为疏水沸石、疏水硅胶、疏水金属有机骨架材料或其混合物;多孔疏水材料所含孔为孔径小于2nm的微孔、孔径为2~50nm的中孔或介孔或孔径大于50nm的大孔。
本发明的分子弹簧隔振缓冲器,弹簧混合介质中添加无机盐可提高隔振缓冲器工作压强用于提高承载能力;添加表面活性剂可降低隔振缓冲器的工作压强用于降低承载能力;添加无机盐和表面活性剂会降低水的冰点,用于温度低于零摄氏度的环境下使用。
本发明的分子弹簧隔振缓冲器,工作压强为10Mpa~200Mpa之间。
本发明的分子弹簧隔振缓冲器,所述分子弹簧混合介质,利用水分子在高压下流通多孔疏水材料中纳米级疏水毛细管的能量转换与损耗特性,实现对设备的隔振缓冲保护。
本发明的分子弹簧隔振缓冲器,所述可加压容器为囊式的,包括上端板,囊体,下端板;所述的上端板与下端板之间布置囊体,囊体内填充分子弹簧混合介质;囊体根据上端板与下端板之间的间距变化而变化。所述可加压容器还可包括:限位轴套,导向轴;所述的上端板的底端布置导向轴,下端板的上端布置限位轴套;导向轴布置在限位轴套内。所述分子弹簧隔振缓冲器可称为囊式分子弹簧隔振缓冲器。
所述囊式分子弹簧隔振缓冲器,导向轴的端部沿径向方向延伸出突起结构。
所述囊式分子弹簧隔振缓冲器,限位轴套下部为圆盘结构,圆盘结构上设有缓冲橡胶;缓冲橡胶上端设有压板,缓冲橡胶与压板硫化相互固定。
所述囊式分子弹簧隔振缓冲器,上端板与下端板的边缘处分别布置紧固法兰,紧固法兰通过紧固螺钉固定;囊体通过紧固法兰扣紧在上端板与下端板之间。
所述囊式分子弹簧隔振缓冲器,下端板内布置单向阀,单向阀与囊体相连通;通过单向阀对囊式容器内加压,用于调节囊式分子弹簧隔振缓冲器的承载能力。
本发明的分子弹簧隔振缓冲器,所述加压式容器为膜片式的,包括导向筒,活塞,缸体及分子弹簧混合介质,所述的导向筒套置在缸体外侧,缸体内部填充分子弹簧混合介质;导向筒内侧与活塞上下之间设有间隙,导向筒与缸体上下之间通过活塞连接;活塞的一端固定在导向筒内侧顶端、另一端延伸入缸体内。本发明的分子弹簧隔振缓冲器,所述的缸体的顶端设置端盖,缸体与端盖之间布置膜片;活塞穿过端盖与膜片相抵触。
膜片为三层柔性结构,中间层为高强度纤维织物层,织物两侧为橡胶涂层,膜片是柔性结构,活塞压缩膜片时膜片可以提供一定的变形量,因此可将动态密 封转化成静态密封,从而提高密封寿命,避免传统密封方式密中封圈等带来的密封阻尼。
所述分子弹簧隔振缓冲器可称为膜片式分子弹簧隔振缓冲器。
所述膜片式分子弹簧隔振缓冲器,缸体侧壁靠近底部分别开设通孔,其中一个通孔内设有单向阀,另一侧通孔内设有堵头及密封圈。
所述膜片式分子弹簧隔振缓冲器,所述的缸体侧壁与导向筒接触面处设有沟槽,沟槽内布置尼龙套;尼龙套的外径大于缸体的外径,
所述膜片式分子弹簧隔振缓冲器,缸体外壁底端布置缓冲橡胶。
有益效果
本发明的分子弹簧隔振缓冲器,具有高承载能力,低固有频率的特点,广泛适用于工程领域的设备,特别是重型机械设备的隔振要求;
由于分子弹簧隔振缓冲器具有“高-低-高”的分段刚度特性,因此在大振幅时具有自限位功能;
由于本发明所选用多孔疏水具有高孔隙率和大比表面积,因此极小量的分子弹簧混合介质即可满足隔振需求的变形量和能量储存能力,因此该隔振缓冲器体积很小;
由于分子弹簧隔振缓冲器具有“高-低-高”的分段刚度特性,因此在大振幅时具有自限位功能;
由于分子弹簧混合介质工作压强很高(10Mpa~200Mpa),因此该隔振缓冲器具有极强承载能力;
可通过增减多孔疏水材料的填充量方便的调节分子弹簧隔振缓冲器的隔振性能。
通过添加无机盐或表面活性剂可对分子弹簧隔振缓冲器的承载能力进行微调。
无机盐和表面活性剂在可以作为防冻剂,因此分子弹簧隔振缓冲器在低于零摄氏度的环境下也可以使用。
该发明避免了动密封,疲劳寿命长,附加阻尼小。
当可加压容器为囊式时,导向轴和限位轴套及缓冲橡胶的结构设计使分子弹簧隔振缓冲器在极限情况下对设备具有保护功能,缓冲橡胶同时使分子弹簧隔振 缓冲器兼具侧向刚度。
可通过单向阀对囊式分子弹簧隔振缓冲器进行预加压,从而降低囊式分子弹簧隔振缓冲器的承载能力因此囊式分子弹簧隔振缓冲器在轻型设备隔振领域也有广泛应用前景。
当可加压容器为膜片式时,可通过单向阀对膜片式分子弹簧隔振缓冲器进行预加压,从而降低膜片式分子弹簧隔振缓冲器从初始位置到平衡位置的静态位移。在位移过大时,膜片式分子弹簧隔振缓冲器的缓冲橡胶起缓冲作用,可保护设备不受损失。
附图说明
图1为实施例1分子弹簧隔振缓冲器结构示意图;
图2为实施例1分子弹簧隔振缓冲器结构俯视图;
图3为导向轴端部及突起俯视剖面图;
图4为限位轴套俯视剖面图;图5为实施例2的分子弹簧隔振缓冲器示意图;
图6为分子弹簧隔振缓冲器刚度曲线。
具体实施方式
本发明利用分子弹簧混合介质为工作介质,发明了一种全新的隔振缓冲器。分子弹簧混合介质由水和含有纳米级孔隙多孔疏水材料混合而成,将分子弹簧混合介质密封在可压缩容器中得到分子弹簧隔振缓冲器,对通过可压缩容器对分子弹簧介质加压,水分子在压强达到临界值时可进入多孔疏水材料的纳米孔道、在压强低于临界值时可自动逸出纳米孔道,利用水分子在高压下流通多孔疏水材料中纳米级疏水毛细管的能量转换与损耗特性,实现对设备的隔振保护。由于水分子在不同压力阶段进出纳米孔的难易程度不同,分子弹簧隔振缓冲器呈现出高承载刚度、低动态刚度和高限位刚度的特性,因而分子弹簧隔振缓冲器同时具备极低固有频率和小静变形的理想性能。
多孔疏水材料可为疏水沸石、疏水硅胶、疏水金属有机骨架材料或其混合物;多孔疏水材料所含孔为孔径小于2nm的微孔、孔径为2~50nm的中孔或介孔或孔径大于50nm的大孔。工作压强为10Mpa~200Mpa之间。
水可为蒸馏水,多孔疏水材料可为疏水沸石、疏水硅胶颗粒或疏水金属有机骨架材料。
分子弹簧隔振缓冲器的工作机理为水在高压下侵入疏水微孔。水在高压下进入疏水微孔的过程遵循Laplace毛细管力方程:
P=-2γcosθ/r
式中,P为毛细管力,即水分子进入疏水纳米孔的压强,γ为水的表面张力,θ为液固界面接触角,对于水和疏水界面,该角大于90°,r为纳米孔半径。
压缩分子弹簧混合介质的过程分为三个阶段:低压时水分子无法克服毛细管力,因此无法侵入疏水微孔,此阶段压缩分子弹簧本质为压缩纯水,因此分子弹簧混合介质表现出高刚度,称作承载段(static stiffness stage);压强达到临界压强时,水分子率先侵入大孔径、小接触角的孔道,随着压强逐渐增加,水分子逐渐进入小孔径、大接触角的直到孔道直至所有孔饱和,水分子大量侵入疏水微孔导致较大位移,此阶段分子弹簧混合介质表现为低刚度,称为工作段(dynamic stiffness stage);继续增加压强,由于所有孔道已达到饱和,因此水分子无法继续侵入微孔,此阶段也是压缩纯水的阶段,分子弹簧混合介质表现出高刚度,称为限位段(stopping stiffness stage)。因此,分子弹簧隔振缓冲器具有如图6所示的“高-低-高”的分段刚度特性。
在对分子弹簧混合介质进行卸载时,对于不同材料会有不同现象,对疏水沸石和疏水金属有机骨架材料,卸载过程是加载过程的逆过程,即加载卸载几乎不消耗能量,因此这两种材料适用于隔振,对于疏水硅胶颗粒,卸载过程液压骤降,因此出现迟滞现象,即加载卸载过程存在迟滞现象并消耗大量能量,因此可用于缓冲;而将这些材料混合使用时,可形成阻尼弹簧,实现隔振缓冲。
对分子弹簧隔振缓冲器施加适当的负载,使该隔振缓冲器处于工作段,此时分子弹簧隔振缓冲器表现出高静低动的刚度特性,因此分子弹簧隔振缓冲器隔振系统具有高承载能力和极低固有频率,解决了现有被动隔振技术高承载能力和小静变形无法共存的瓶颈。
本发明所述隔振缓冲器在使用时,负载(一般是被保护设备)通过压缩可压缩容器对液固混合介质加压。分子弹簧隔振缓冲器适用负载质量为M=Pa·S/g~Pb·S/g;式中P为水分子进入疏水纳米孔的压强,下标a为水开始进入多孔疏水材料的纳米孔阶段,下标b为水充满纳米孔阶段, S为有效压缩面积,g为重力加速度。
在适用负载质量作用下,该混合介质内的压强处于工作段,此时分子弹簧隔振缓冲器刚度为工作刚度,达到最优隔振效果。
本发明所述水和多孔疏水材料混合介质,水开始进入多孔疏水材料的纳米孔的压强Pa因多孔疏水材料种类不同而各异,为数十兆帕甚至上百兆帕,水充满多孔疏水材料的纳米孔的压强Pb略大于Pa,工作段压强为Pa~Pb,因此分子弹簧隔振缓冲器承载质量为几百Kg/cm2至上千Kg/cm2,即每平方厘米的有效压缩面积可以承载几百甚至上千千克,表现出极高的承载能力。
对于同一种多孔疏水材料,Pa和Pb是定值,随着多孔疏水材料数量的增加,水分子在高压下填充纳米孔的过程中,水和多孔疏水材料混合介质的体积对着压强增加更加迅速减少,因此分子弹簧隔振缓冲器的刚度降低。根据这一特点,可以方便的调节分子弹簧隔振缓冲器的工作刚度,因而不论负载质量大小,都可以使得隔振系统具有极低的工作频率。
向水中添加无机盐或表面活性剂可调节分子弹簧隔振缓冲器的承载能力。向水中添加无机盐可提高隔振缓冲器工作压强从而提高承载能力,向水中添加表面活性剂可降低隔振缓冲器的工作压强从而降低承载能力,同时还可降低液体冰点,使得隔振缓冲器可在温度低于零摄氏度的环境下使用;无机盐包括但不限于NaCl、KCl、LiCl、KNO3、NaNO3;表面活性剂包括但不限于聚乙烯醇、聚乙二醇辛基苯基醚。
以填充silicalite-1沸石材料为例,给出分子弹簧隔振缓冲器的性能与有效压缩面积及填充多孔疏水材料质量之间的关系如下表:
表一分子弹簧隔振缓冲器隔振缓冲性能与多孔疏水材料填充质量关系示例;
Figure PCTCN2016090370-appb-000001
Figure PCTCN2016090370-appb-000002
表二分子弹簧隔振缓冲器隔振缓冲性能与有效压缩面积关系示例:
Figure PCTCN2016090370-appb-000003
下面结合附图和实施例对本发明进一步详细说明:
实施例1
如图1和图2所示,囊式分子弹簧隔振缓冲器,上端板11与下端板110之间布置囊体14,并通过紧固螺钉12和紧固法兰13锁紧密封构成囊式容器;分子弹簧混合介质置于囊式容器内,囊体14内填充分子弹簧混合介质;囊体14根据上端板11与下端板110之间的间距变化而变化。
如图3和图4所示:上端板11通过螺纹和下方导向轴111连接,导向轴111端部有两个径向突起;导向轴111布置在限位轴套18内,限位轴套18下部为圆盘结构,限位轴套18下方的下端板110内布置缓冲橡胶19,限位轴套18下部的圆盘结构和缓冲橡胶19硫化为一个整体,缓冲橡胶19和压板112硫化在一起并通过紧固螺钉固定在下端板110上。
限位轴套18侧边开轴向的限位槽,导向轴111端部的突起布置在限位槽内,导向轴111可沿限位槽上下滑动;限位槽不开到限位轴套18顶部,正常使用时限位轴套18和缓冲橡胶19不起作用,在受到极限载荷或者该隔振缓冲器结构被破坏时,限位轴套18在导向轴111向上移动时有限位功能,缓冲橡胶19在导向轴111向下移动时具有缓冲和限位功能,使被保护设备不受损害;下端板110内布置单向阀17,可通过单向阀对囊式容器内加压,从而调节囊式分子弹簧隔振缓冲器的承载能力。
囊体14共3层结构,中间层为帘线骨架,由多层钢丝缠绕而成;骨架两侧 各有一层橡胶层,橡胶层和帘线骨架硫化在一起。该囊式结构强度大,附加刚度小。在与上下端板结合处,囊体14分别有一个环形突结,便于压紧密封。
上端板11和下端板110中部均有螺纹孔,方便固定、连接转接件或连接被保护设备。
实施例2
如图5所示,将分子弹簧混合介质密封在膜片式活塞液压缸内形成膜片式分子弹簧隔振缓冲器。分子弹簧混合介质由水和含有纳米级孔道(以下统称微孔)的多孔疏水材料混合而成,所述多孔疏水材料可为疏水沸石、疏水硅胶、疏水金属有机骨架材料或其混合物;膜片式活塞液压缸由活塞213、端盖214、膜片215、缸体217、紧固螺钉22、堵头218、密封圈219、单向阀27组成,端盖214布置在缸体217上,膜片215布置在端盖214和缸体217之间,紧固螺钉22把端盖214、膜片215和缸体217锁紧密封;端盖214顶部开圆孔,活塞213从圆孔内伸入并和膜片接触,膜片形成凹槽包裹住活塞端部。
导向筒221上开一圈螺纹孔,便于连接被保护设备,缸体217底部开一圈通孔,可用于将膜片式分子弹簧隔振缓冲器固定到基础上。
被保护设备和导向筒221连接,通过活塞213压缩膜片215,膜片215变形将压力传递到缸体217的腔室内,实现对分子弹簧混合介质的加压。
缸体下部两侧各开一个通孔;一侧孔内布置堵头218、密封圈219,可通过该通孔向隔振缓冲器内添减水26和多孔疏水材料25;另一侧孔内布置单向阀27,可以通过单向阀27为隔振缓冲器充压。
缸体217外表面开两个沟槽,每个沟槽内均布置两个半圆形的尼龙套216,尼龙套216外径大于缸体217外径,缸体外布置导向筒221,导向筒221和尼龙套216滑动配合不密封,导向筒221和活塞213通过紧固螺钉22连接,导向筒和尼龙套配合起导向作用,限制活塞只能轴向运动,同时该结构附加阻尼极小。
缸体217外部布置缓冲橡胶220,正常工作时缸体217和缓冲橡胶220不接触,但是在载荷极大或结构受到破坏性损伤时,缓冲橡胶220起缓冲作用,使设备不受损伤。
实施例1和实施力2所示的分子弹簧隔振缓冲器都具有如图6所示的分段刚度特性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (15)

  1. 一种分子弹簧隔振缓冲器,其特征在于:包括可加压容器,可加压容器内填充分子弹簧混合介质;所述的弹簧混合介质由水和含有纳米级孔隙多孔疏水材料混合而成。
  2. 根据权利要求1所述的分子弹簧隔振缓冲器,其特征在于:所述可加压容器为囊式的,包括上端板(11),囊体(14),下端板(110);所述的上端板(11)与下端板(110)之间布置囊体(14),囊体(14)内填充分子弹簧混合介质;囊体(14)根据上端板(11)与下端板(110)之间的间距变化而变化。
  3. 根据权利要求2所述的分子弹簧隔振缓冲器,其特征在于:所述可加压容器还包括:限位轴套(18),导向轴(111);所述的上端板(11)的底端布置导向轴(111),下端板(110)的上端布置导向轴(111);导向轴(111)布置在限位轴套(18)内,导向轴(111)的端部沿径向方向延伸出突起结构。
  4. 根据权利要求3所述的分子弹簧隔振缓冲器,其特征在于:所述的限位轴套(18)下部为圆盘结构,圆盘结构上设有缓冲橡胶(19);缓冲橡胶(19)上端设有压板(112),缓冲橡胶(19)与压板(112)硫化固定。
  5. 根据权利要求2所述的分子弹簧隔振缓冲器,其特征在于:所述的上端板(11)与下端板(110)的边缘处分别布置紧固法兰(13),紧固法兰(13)通过紧固螺钉(12)固定;所述的囊体(14)通过紧固法兰(13)扣紧在上端板(11)与下端板(110)之间。
  6. 根据权利要求2所述的分子弹簧隔振缓冲器,其特征在于:所述的下端板(110)内布置单向阀(17),单向阀(17)与囊体(14)相连通;通过单向阀(17)对囊式容器内加压,用于调节囊式分子弹簧隔振缓冲器的承载能力。
  7. 根据权利要求1所述的分子弹簧隔振缓冲器,其特征在于:所述加压式容器为膜片式的,包括导向筒(221),活塞(213),缸体(217)及分子弹簧混合介质,所述的导向筒(221)套置在缸体(217)外侧,缸体(217)内部填充分子弹簧混合介质;导向筒(221)内侧与活塞(213)上下之间设有间隙,导向筒(221)与缸体(217)上下之间通过活塞(213)连接;活塞(213)的一端固定在导向筒(221)内侧顶端、另一端延伸入缸体(217)内;缸体(217)的顶端设置端盖(214),缸体(217)与端盖(214)之间布置膜片(215);活塞(213)穿过端盖(214)与膜片(215)相接触。
  8. 根据权利要求7所述的分子弹簧隔振缓冲器,其特征在于:所述的缸体(217)侧壁靠近底部分别开设通孔,其中一个通孔内设有单向阀(27),另一侧通孔内设有堵头(218)及密封圈(219)。
  9. 根据权利要求7所述的分子弹簧隔振缓冲器,其特征在于:所述的缸体(217)侧壁与导向筒(221)接触面处设有沟槽,沟槽内布置尼龙套(216);尼龙套(216)的外径大于缸体(217)的外径。
  10. 根据权利要求7所述的分子弹簧隔振缓冲器,其特征在于:缸体(217)外壁底端布置缓冲橡胶(220)。
  11. 根据权利要求1所述的分子弹簧隔振缓冲器,其特征在于:所述多孔疏水材料为疏水沸石、疏水硅胶、疏水金属有机骨架材料或其混合物。
  12. 根据权利要求1所述的分子弹簧隔振缓冲器,其特征在于:所述多孔疏水材料所含孔为孔径小于2nm的微孔、孔径为2~50nm的中孔或介孔或孔径大于50nm的大孔。
  13. 根据权利要求1所述的分子弹簧隔振缓冲器,其特征在于:工作压强为10Mpa~200Mpa之间。
  14. 根据权利要求1所述的分子弹簧隔振缓冲器,其特征在于:所述分子弹簧混合介质,利用水分子在高压下流通多孔疏水材料中纳米级疏水毛细管的能量转换与损耗特性,实现对设备的隔振缓冲保护。
  15. 根据权利要求14所述的分子弹簧隔振缓冲器,其特征在于:所述弹簧混合介质中添加无机盐和/或表面活性剂。
PCT/CN2016/090370 2015-07-24 2016-07-18 分子弹簧隔振缓冲器 WO2017016405A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510440201.8A CN105041943B (zh) 2015-07-24 2015-07-24 囊式分子弹簧隔振缓冲器
CN201510440201.8 2015-07-24
CN201510440202.2 2015-07-24
CN201510440202.2A CN105041949B (zh) 2015-07-24 2015-07-24 膜片式分子弹簧隔振缓冲器

Publications (1)

Publication Number Publication Date
WO2017016405A1 true WO2017016405A1 (zh) 2017-02-02

Family

ID=57884084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090370 WO2017016405A1 (zh) 2015-07-24 2016-07-18 分子弹簧隔振缓冲器

Country Status (1)

Country Link
WO (1) WO2017016405A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108591339A (zh) * 2018-05-24 2018-09-28 太原科技大学 一种液滴弹簧隔振装置及其隔振方法
CN112984024A (zh) * 2021-01-22 2021-06-18 中国人民解放军92578部队 一种囊膜式分子弹簧隔振器
CN117212382A (zh) * 2023-11-09 2023-12-12 中铁三局集团有限公司 一种主动、半主动粘滞流体阻尼器及其控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391630A1 (de) * 2002-08-23 2004-02-25 Audi Ag Luftfeder mit einem an einem Abrollrohr befestigten Rollbalg
JP2004156664A (ja) * 2002-11-05 2004-06-03 Bridgestone Corp 空気ばね
CN201434038Y (zh) * 2009-06-10 2010-03-31 无锡锡南铸造机械有限公司 空气弹簧装置
CN102330784A (zh) * 2011-07-12 2012-01-25 杨洁 一种充液和位移调节静动刚度加限压减冲的空气弹簧
CN103256333A (zh) * 2013-05-16 2013-08-21 南京航空航天大学 一种分子弹簧隔振缓冲技术
CN203442037U (zh) * 2013-07-31 2014-02-19 南京航空航天大学 一种分子弹簧隔振缓冲装置
JP2015113846A (ja) * 2013-12-09 2015-06-22 株式会社ビービーエム 構造物用制振ダンパー
CN105041949A (zh) * 2015-07-24 2015-11-11 南京航空航天大学 膜片式分子弹簧隔振缓冲器
CN105041943A (zh) * 2015-07-24 2015-11-11 南京航空航天大学 囊式分子弹簧隔振缓冲器
CN205315597U (zh) * 2015-07-24 2016-06-15 南京航空航天大学 膜片式分子弹簧隔振缓冲器
CN205315596U (zh) * 2015-07-24 2016-06-15 南京航空航天大学 囊式分子弹簧隔振缓冲器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391630A1 (de) * 2002-08-23 2004-02-25 Audi Ag Luftfeder mit einem an einem Abrollrohr befestigten Rollbalg
JP2004156664A (ja) * 2002-11-05 2004-06-03 Bridgestone Corp 空気ばね
CN201434038Y (zh) * 2009-06-10 2010-03-31 无锡锡南铸造机械有限公司 空气弹簧装置
CN102330784A (zh) * 2011-07-12 2012-01-25 杨洁 一种充液和位移调节静动刚度加限压减冲的空气弹簧
CN103256333A (zh) * 2013-05-16 2013-08-21 南京航空航天大学 一种分子弹簧隔振缓冲技术
CN203442037U (zh) * 2013-07-31 2014-02-19 南京航空航天大学 一种分子弹簧隔振缓冲装置
JP2015113846A (ja) * 2013-12-09 2015-06-22 株式会社ビービーエム 構造物用制振ダンパー
CN105041949A (zh) * 2015-07-24 2015-11-11 南京航空航天大学 膜片式分子弹簧隔振缓冲器
CN105041943A (zh) * 2015-07-24 2015-11-11 南京航空航天大学 囊式分子弹簧隔振缓冲器
CN205315597U (zh) * 2015-07-24 2016-06-15 南京航空航天大学 膜片式分子弹簧隔振缓冲器
CN205315596U (zh) * 2015-07-24 2016-06-15 南京航空航天大学 囊式分子弹簧隔振缓冲器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108591339A (zh) * 2018-05-24 2018-09-28 太原科技大学 一种液滴弹簧隔振装置及其隔振方法
CN112984024A (zh) * 2021-01-22 2021-06-18 中国人民解放军92578部队 一种囊膜式分子弹簧隔振器
CN112984024B (zh) * 2021-01-22 2022-06-21 中国人民解放军92578部队 一种囊膜式分子弹簧隔振器
CN117212382A (zh) * 2023-11-09 2023-12-12 中铁三局集团有限公司 一种主动、半主动粘滞流体阻尼器及其控制方法
CN117212382B (zh) * 2023-11-09 2024-01-23 中铁三局集团有限公司 一种主动、半主动粘滞流体阻尼器的控制方法

Similar Documents

Publication Publication Date Title
CN105041943B (zh) 囊式分子弹簧隔振缓冲器
CN105041949B (zh) 膜片式分子弹簧隔振缓冲器
WO2017016405A1 (zh) 分子弹簧隔振缓冲器
CN113007265B (zh) 一种囊膜式分子弹簧隔振缓冲器
CN106678257B (zh) 一种体积补偿隔离式单出杆磁流变阻尼器
US11629518B2 (en) Tuned liquid damper with a membrane liquid-gas interface
CN203442037U (zh) 一种分子弹簧隔振缓冲装置
CA3113459A1 (en) High-capacity bladder type constant pressure accumulator and application thereof
CN206111933U (zh) 并联六自由度减震台
CN107956835A (zh) 可控阻尼分子弹簧车辆悬架
CN205315597U (zh) 膜片式分子弹簧隔振缓冲器
CN209973236U (zh) 一种货物运输用安全防护装置
CN103256333B (zh) 一种分子弹簧隔振缓冲技术
KR20020049528A (ko) 쇽업소버
WO2019192184A1 (zh) 一种反共振频率可调的液压式动力反共振隔振器
CN112253672B (zh) 一种双料式弹簧隔振缓冲器
CN109538678A (zh) 一种高静刚度的液弹隔振器
CN113306882A (zh) 一种货物安全运输的机构
CN105134855A (zh) 一种新型的油气阻尼器
CN104696413A (zh) 内置填充物的复合空气弹簧
CN104832582A (zh) 复合空气弹簧
CN112253665B (zh) 一种双级隔振缓冲器
US20140067340A1 (en) Method for designing cylinder device and cylinder device
CN206900668U (zh) 轻小型无人机动力系统连接缓冲机构
CN205315596U (zh) 囊式分子弹簧隔振缓冲器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829771

Country of ref document: EP

Kind code of ref document: A1