WO2017016376A1 - 无线充电发射装置 - Google Patents
无线充电发射装置 Download PDFInfo
- Publication number
- WO2017016376A1 WO2017016376A1 PCT/CN2016/088628 CN2016088628W WO2017016376A1 WO 2017016376 A1 WO2017016376 A1 WO 2017016376A1 CN 2016088628 W CN2016088628 W CN 2016088628W WO 2017016376 A1 WO2017016376 A1 WO 2017016376A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spiral coil
- dimensional spiral
- coil
- wires
- wireless charging
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
Definitions
- the present invention relates to the field of wireless charging, and more particularly to a wireless charging transmitting device.
- a wireless charging device generally employs a planar coil.
- the planar coil is easy to shape and easy to install.
- the planar coil is placed in a platform or a plastic casing, such as a desk, a coffee shop, a bedside cabinet, a wireless charging transmitter module or a product similar to a charging treasure, and the receiving end module or product is placed flat in the charging area.
- a platform On the platform, wireless charging is possible.
- it is generally required to face the receiving coil of the receiving end module or the product directly with the planar coil, so that the charging efficiency is the highest. If the receiving coil deviates from the planar coil, the charging efficiency will decrease or even fail to charge. As such, the convenience of wireless charging will be reduced.
- a plurality of planar coils are also used to form a stereo coil for wireless charging, and the orientations of the plurality of planar coils are different.
- a plurality of planar coils can constitute a three-dimensional magnetic field.
- the receiving coil of the receiving module or product is located at any position or orientation near the wireless charging device, and a magnetic field of the planar coil is coupled thereto to determine and drive the corresponding planar coil to work.
- multiple control circuit boards are required to control multiple planar coils respectively, and the control circuit becomes complicated and the cost increases; in addition, multiple planar coils cause uneven distribution of internal magnetic fields, and partial position charging in the receiving space. low efficiency.
- the present invention aims to at least solve one of the technical problems existing in the related art. To this end, the present invention is required to provide a wireless charging device.
- a wireless charging transmitting apparatus includes a transmitting coil, the transmitting coil is a three-dimensional helical coil, and the three-dimensional helical coil includes at least two wires wound into an inverted cone contour, the at least The two wires are coiled to have an accommodation space for accommodating the device to be charged; the at least two wires are wound along the same central axis.
- the three-dimensional spiral coil of the wireless charging and emitting device is formed by winding at least two wires, and a three-dimensional magnetic field can be formed in the inner space and the outer space enclosed by the three-dimensional spiral coil, so that the device to be charged is in any position or orientation of the receiving space, and In the proper position of the external space, magnetic lines of force pass through, which can be efficiently charged. And the three-dimensional spiral coil is evenly wound, so the magnetic field distribution inside the charging and emitting device is uniform.
- the three-dimensional helical coil includes a bottom end and a top end, the at least two wires being coiled from a bottom end to a top end, the bottom end being coiled into a plane, the top end being provided with an opening.
- the wireless charging transmitting device further includes: a first capacitor and a control circuit, the at least two wires are connected in series at the bottom end by the first capacitor, and the at least two wires are at the top end Parallel to the control circuit.
- control circuit includes at least one second capacitor.
- the three-dimensional spiral coil has at least one of a bowl shape, a hemispherical shape, a square shape, and a truncated cone shape.
- the at least two wires are identical in shape and structure.
- the at least two wires are enameled wires.
- the wires are two, the wires are wound along the same central axis and the wires cross each other.
- the two wires comprise a first wire and a second wire
- the first wire is wound into a first three-dimensional spiral coil
- the second wire is wound into a second three-dimensional spiral coil
- the first a first spiral end coil and a second three-dimensional spiral coil are respectively provided with a first connecting end and a second connecting end at the bottom end
- the first three-dimensional spiral coil and the second three-dimensional spiral coil are respectively provided with a first feeding end at the top end and
- the second feeding end is connected between the first connecting end and the second connecting end by the first capacitor, and the first feeding end and the second feeding end are respectively connected to the control circuit.
- the inductance of the three-dimensional spiral coil is determined according to the following formula
- L is the inductance of the three-dimensional spiral coil
- ⁇ 0 is a vacuum permeability
- ⁇ s is a magnetic permeability inside the three-dimensional spiral coil
- N is a number of winding turns of the three-dimensional spiral coil
- l is the length of the three-dimensional spiral coil
- k is a coefficient, depending on the ratio of the equivalent radius of the three-dimensional spiral coil to the length of the three-dimensional spiral coil.
- the magnetic field strength of the three-dimensional spiral coil is determined according to the following formula
- B is the magnetic field strength of the three-dimensional spiral coil
- ⁇ 0 is the vacuum permeability
- I is the current of the three-dimensional spiral coil
- N is the number of windings of the three-dimensional spiral coil
- R is the three-dimensional spiral coil The equivalent radius.
- the magnetic field strength of the three-dimensional spiral coil is determined according to the following formula
- B is the magnetic field strength of the three-dimensional spiral coil
- ⁇ 0 is the vacuum permeability
- I is the current of the three-dimensional spiral coil
- R is the equivalent radius of the three-dimensional spiral coil
- x is a space point to the The vertical distance of the equivalent plane of the three-dimensional spiral coil, the equivalent plane is the plane of the midpoint of the spiral coil height.
- the wireless charging and transmitting device further includes at least one of a shape of a bowl, a hemisphere, a square, and a truncated cone.
- the outer casing includes a top end and a bottom end, the outer end of the outer casing being closed, the top end forming an opening.
- the present invention also provides a coil assembly.
- the coil in the coil assembly is a three-dimensional spiral coil
- the three-dimensional spiral coil includes at least two wires wound into an inverted cone profile, and the at least two wires are coiled for use. And accommodating an accommodating space of the device to be charged; the at least two wires are wound along the same central axis.
- the three-dimensional helical coil includes a bottom end and a top end, the at least two wires being coiled from a bottom end to a top end, the bottom end being coiled into a plane, the top end being provided with an opening.
- the three-dimensional spiral coil has at least one of a bowl shape, a hemispherical shape, a square shape, and a truncated cone shape.
- the at least two wires are identical in shape and structure.
- the at least two wires are enameled wires.
- FIG. 1 is a schematic structural view of a three-dimensional coil according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a wireless charging device in accordance with an embodiment of the present invention.
- FIG 3 is a schematic view of a housing in accordance with an embodiment of the present invention.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
- the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
- connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
- Connected, or integrally connected may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
- the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
- the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature includes the first feature directly above and above the second feature, or merely the first feature level being less than the second feature.
- a wireless charging transmitting apparatus 100 includes a transmitting coil 10, that is, a three-dimensional helical coil 10 as shown in the drawing.
- the three-dimensional spiral coil 10 includes at least two wires 11. At least two wires 11 are spirally wound into the inverted cone profile along the same central axis, so that the three-dimensional spiral coil 10 is surrounded to form a hollow receiving space.
- the accommodation space can accommodate the equipment to be charged.
- the cone profile described in the embodiments of the present invention is a profile in which the longitudinal section of the profile is trapezoidal, for example, may be a square cone or a cone; the longitudinal section of the profile is a hyperbolic surface, and the contour
- the top view of the top is larger than the bottom view of the bottom; or the longitudinal section of the profile may be other forms, and the top view of the top of the profile is larger than the bottom view of the bottom, for example, the cone profile may be bowl-shaped, with the top of the top overlooking
- the face is larger than the bottom of the bottom.
- the purpose of designing such a profile is to make the distribution of magnetic lines of force in the hollow accommodation space surrounded by the three-dimensional spiral coil 10 more uniform.
- the cone refers to a hollow cylindrical shape or the like in which the sectional size changes from one end to the other end.
- the three-dimensional spiral coil has at least one of a bowl shape, a hemispherical shape, a square shape, and a truncated cone shape.
- the three-dimensional spiral coil 10 includes a bottom end and a top end, and at least two wires 11 are wound upward from the bottom end, the bottom end is coiled in a plane, and the top end is provided with an opening.
- the radial dimension of the wire 11 is gradually increased during the winding process, so that the four sides of the three-dimensional spiral coil 10 form a gradient (as shown in FIG. 1 , wherein the side of the coil is shaped according to the shape of the cone of the three-dimensional spiral coil) different).
- the bottom end is coiled in a planar shape, and the top end is provided with an opening. In this way, the device to be charged can be placed in the accommodating space, and when placed in the accommodating space in an arbitrary posture, magnetic lines of force are passed through to improve the charging efficiency.
- the accommodation space for accommodating the device to be charged can be formed, and the radial dimension can be gradually reduced from the top end to the bottom end so that the three-dimensional spiral coil 10 is wound into an inverted cone shape to meet the charging requirement.
- the wireless charging transmitting device 100 further includes a control circuit 20 connected to the three-dimensional spiral coil 10.
- Control circuit 20 includes at least one second capacitor C.
- the three-dimensional helical coil 10 is connected to the second capacitor C to form an LC oscillating circuit for wireless charging in accordance with the principle of electromagnetic resonance.
- the magnetic field formed after the three-dimensional spiral coil 10 is powered up includes magnetic lines of force that diverge upward and outward from the center of the bottom end, and the magnetic lines of force revolve around the three-dimensional spiral coil 10 and return to the center of the bottom end. That is to say, the three-dimensional spiral coil 10 forms a three-dimensional magnetic field.
- the receiving coil of the device to be charged is inside the three-dimensional spiral coil 10, a part of the magnetic lines of force pass through at any position or orientation, so that charging can be performed efficiently.
- the three-dimensional spiral coil 10 is coiled by the wire 11, so wireless
- the internal magnetic field distribution of the charging and emitting device 100 is uniform.
- the number of the wires 11 is two (as shown in FIG. 1) or more (for example, four, five, six, eight, etc.), and is entangled with each other.
- the intertwining can improve the stability of the three-dimensional spiral coil 10 and increase the compactness of the three-dimensional spiral coil 10.
- the wires 11 can be divided into two groups, and the two groups are entangled with each other.
- the number of the wires 11 is 4, the two wires 11 constitute one set, and the two sets of wires are intertwined with each other.
- the person skilled in the art can easily extend the number of the wires 11 to 5, 6, 7, 8, etc., and the winding manner of these wires can also be implemented. It should be understood that if the number of wires 11 is an even number, the uniformity of the magnetic field is good.
- the shape and structure of the wires 11 can be substantially the same. In this way, the same wire 11 can be manufactured, and then the three-dimensional spiral coil 10 can be formed by misalignment winding. Therefore, production efficiency can be improved. Misalignment is the starting point for guiding the rise of the coil at the bottom.
- the plurality of wires 11 can be wound at equal distances, so that the distribution of the wires 11 in the axial direction is more uniform, so that the uniformity of the magnetic field can be improved.
- the wires 11 may be made of enamel wires, so that they are insulated from each other when entangled with each other, and the short-circuit between the wires 11 is prevented from affecting the direction and magnitude of the magnetic field.
- wire 11 is not limited to the embodiment, and the shape and structure of the wire 11 may be different according to requirements, and are not limited to being identical to each other.
- the transmit coil 10 includes two wires 11.
- the first wire of the two wires 11 is wound into a first three-dimensional spiral coil 10a
- the second wire of the two wires 11 is wound into a second three-dimensional spiral coil 10b.
- the first three-dimensional spiral coil 10a and the second three-dimensional spiral coil 10b are wound along the same central axis and the windings cross each other.
- the transmitting coil 10 has a top end and a bottom end, and the size of the top end is larger than the size of the bottom end, and the size from the top end to the bottom end of the three-dimensional spiral coil 10 gradually becomes smaller.
- the first three-dimensional spiral coil 10a and the second three-dimensional spiral coil 10b are respectively provided with a first connecting end 3 and a second connecting end 4 at the bottom end.
- the first connection end 3 and the second connection end 4 are connected by a capacitor.
- the first three-dimensional spiral coil 10a and the second three-dimensional spiral coil 10b are respectively provided with a first feeding end 1 and a second feeding end 2 at the top end, and the first feeding end 1 and the second feeding end 2 and the control circuit 20 connections.
- the first three-dimensional spiral coil 10a includes a first feeding end 1 and a first connecting end 3
- the second three-dimensional spiral coil 10b includes a second feeding end 2 and a second connecting end 4.
- a first capacitor C1 is connected in series between the first connecting end 3 and the second connecting end 4.
- the first feeding end 1 and the second feeding end are connected in parallel to the control circuit 20 to form two sets of parallel LC oscillating circuits.
- the first capacitor C1 can lower the temperature of the control circuit 20 and improve the charging efficiency.
- the specific shape and structure of the three-dimensional spiral coil 10 are determined according to the shape of the device to be charged, the resonant frequency, and the like, or by adjusting the radius of the three-dimensional spiral coil 10 , the number of turns, the wire diameter to obtain the inductance, resistance, and magnetic force required for the three-dimensional spiral coil 10 Field strength and magnetic field direction.
- the number of the wires 11 is two, the wire diameter is 1.6 mm, and the three-dimensional spiral coil 10 has a square shape, the bottom end has a diameter of 100 mm, a height of 50 mm, and the number of winding turns is 6 turns.
- the basic shape of the three-dimensional helical coil 10 of the wireless charging device is thus constructed.
- the shape and structure are then adjusted by software simulation to obtain the relevant electrical performance parameters of the desired three-dimensional helical coil 10.
- the required frequency, inductance and resistance of the three-dimensional helical coil 10 are required to meet the relevant calibration and efficiency requirements.
- the resonant frequency is 6.78 MHz
- the three-dimensional helical coil 10 satisfies the inductance of 4.5 ⁇ 10% ⁇ H, and the resistance is less than 2.5. ⁇ .
- the control circuit 20 is connected to the mains, and the 220v mains is converted to direct current through the rectification portion, and then the direct current is reconverted to 6.78 MHz high-frequency alternating current.
- the inductance of the three-dimensional spiral coil 10 is calculated according to the following formula:
- the shape of the cross section of the three-dimensional spiral coil may be a circle or a square or a rectangle, if the shape of the cross section is a circle, the radius of the three-dimensional spiral coil takes a circular radius, and if the shape of the cross section is a square, It may be an inner ring circle of a square and an average radius of the outer ring circle, and the like. According to the formula (1), changing the number of windings of the three-dimensional spiral coil 10 has the greatest influence on the inductance value. Therefore, the inductance of the three-dimensional spiral coil 10 is determined by adjusting the number of winding turns.
- the inductance is less than 4.5 ⁇ H, the number of windings of the three-dimensional spiral coil 10 is increased, for example, the number of winding turns is increased from 6 to 7 or 8 turns; if the inductance is greater than 4.5 ⁇ H, the number of windings of the three-dimensional spiral coil 10 is reduced, for example, The number of winding turns is reduced from 6 turns to 5 or 4 turns, and finally the inductance of the three-dimensional spiral coil 10 is 4.5 ⁇ 10% ⁇ H.
- the line spacing change the horizontal projection spacing between the coils (referred to as the line spacing) and the vertical height between the coils, and adjust the magnetic field distribution of the coil so that the receiving module or terminal is in the optimal magnetic field region. For example: increase the line spacing and the vertical height between the coils, the radius, length and coil cross-sectional area of the coil become larger. In the formula 1, S and l become larger at the same time, and the inductance is little affected when substituted into the formula. The coefficient k is also the same for the inductor. Less affected. In actual production, the copper wire with a copper content of 99.95% or more is selected, and the magnetic permeability is a fixed value. Therefore, the number of turns is determined, no matter how the line spacing and vertical height are changed, the total number of coil inductors is within the effective range of 4.5 ⁇ 10% ⁇ H.
- the resistance of the three-dimensional spiral coil 10 is determined according to the following formula:
- R is a three-dimensional spiral coil 10 resistance
- ⁇ is a resistivity
- l is a resistance length, that is, a length of the three-dimensional spiral coil 10
- s is a resistance cross-sectional area.
- the resistance of the three-dimensional spiral coil 10 is determined by adjusting the wire diameter of the three-dimensional spiral coil 10. If the resistance is greater than 2.5 ⁇ , the diameter of the three-dimensional spiral coil 10 is increased to reduce the electric resistance, for example, the wire diameter of the coil is increased by 1.6 mm. Up to 2 mm or 2.5 mm, the resistance of the three-dimensional spiral coil 10 is finally made lower than 2.5 ⁇ .
- the inductance, resistance, winding number and wire diameter of the three-dimensional spiral coil 10 are not adjusted after being determined.
- the ideal state of charging is to make the device to be charged in the region with the strongest magnetic field of the three-dimensional spiral coil 10. Therefore, after determining the inductance and resistance of the three-dimensional spiral coil 10, the radius of the three-dimensional spiral coil 10 is adjusted according to the shape of the device to be charged, so that the device to be charged is in a three-dimensional manner.
- the spiral coil 10 has the strongest magnetic field.
- the magnetic field strength of the three-dimensional spiral coil 10 is determined according to the following formula:
- the magnetic field of the three-dimensional spiral coil 10 is constant when the current and the number of winding turns are constant.
- the intensity is inversely related to the radius R of the three-dimensional helical coil 10, that is, the smaller the radius of the three-dimensional helical coil 10, the greater the magnetic field strength at that point; vice versa.
- the radius of the three-dimensional spiral coil 10 is reduced, and the magnetic field strength of the device to be charged is increased, so that the magnetic field strength is the strongest. It is in the device to be charged to improve the charging efficiency.
- the magnetic field strength of the three-dimensional spiral coil 10 is determined according to the following formula:
- the magnetic field strength and the three-dimensional spiral coil 10 are obtained when the current of the three-dimensional spiral coil 10 is constant.
- the radius R is positively correlated, that is, the larger the radius of the three-dimensional spiral coil 10, the stronger the magnetic field strength at that point; vice versa.
- the radius of the three-dimensional spiral coil 10 is increased to increase the magnetic field strength of the device to be charged, so that the magnetic field strength is the strongest.
- the area is in the device to be charged, which improves the charging efficiency.
- the vertical direction pitch of the three-dimensional spiral coil 10 is adjusted according to the manner in which the device to be charged is placed.
- the component of the magnetic field direction of the three-dimensional helical coil 10 is made to pass through the coil of the device to be charged as perpendicularly as possible, thereby improving the charging efficiency.
- the device to be charged includes a coil of the device to be charged having the same frequency as the three-dimensional spiral coil 10.
- the coil of the device to be charged when the coil of the device to be charged is in the magnetic field radiation of the three-dimensional spiral coil 10 of the same frequency, electromagnetic resonance is generated, and the three-dimensional spiral coil 10 emits electromagnetic waves, and the coil of the device to be charged receives the electromagnetic wave and converts the electromagnetic wave into electric energy to realize wireless energy transmission.
- control circuit 20 is connected to the three-dimensional spiral coil 10, and the control circuit 20 may be a PCBA (Assembly of Printed Circle Board).
- PCBA Assembly of Printed Circle Board
- control circuit 20 includes at least one second capacitor C, and the capacitance value is determined according to the frequency and inductance of the three-dimensional spiral coil 10.
- the capacitance satisfying the condition is matched, so that the LC oscillation circuit satisfies the requirement.
- f is the resonant frequency
- L is the inductance of the three-dimensional helical coil 10
- C is the capacitance value
- both the resonance frequency and the inductance of the three-dimensional helical coil 10 are known, and the capacitance value can be obtained by calculation.
- the three-dimensional helical coil 10 that satisfies the condition is connected to the capacitor satisfying the condition, and an LC oscillation circuit that satisfies the condition is obtained.
- the wireless charging device further includes a casing 30 enclosing the three-dimensional spiral coil 10, and the shape of the casing 30 is matched with the shape of the three-dimensional spiral coil 10, and is in the shape of a bowl, a hemisphere, a square, and a truncated cone. At least one of the shapes.
- the outer casing 30 encloses the three-dimensional spiral coil 10, and the three-dimensional spiral coil is formed to meet the charging requirement, and the outer shape is designed according to the winding shape of the three-dimensional spiral spiral coil 10.
- the outer casing 30 has a bowl shape or a square groove shape. In this way, the accommodation space is formed, and usually one end of the opening is closed at one end. On the one hand, it is convenient to hold equipment to be charged, and another In one aspect, the outer casing 30 can serve to protect the three-dimensional helical coil 10.
- the outer casing 30 forms an opening at the bottom end or the top end.
- the accommodation space formed by the opening of the outer casing 30 at the bottom end or the top end and the three-dimensional spiral coil 10 can be placed in the apparatus to be charged.
- the receiving space can carry a plurality of devices to be charged.
- the wire 11 Since the wire 11 has a three-dimensional spiral shape, the magnetic field is distributed in all directions in the accommodating space. Therefore, in a case where the accommodating space is sufficiently large, the accommodating space can simultaneously carry a plurality of devices to be charged and meet charging requirements.
- the device to be charged can be placed in the accommodating space in an arbitrary posture.
- the magnetic field is distributed in all directions in the accommodating space. Therefore, the equipment to be charged can be placed at any angle and position, which can meet the charging demand.
- At least one three-dimensional spiral coil 10 is wound by a wire 11 in a spatial spiral structure, and the outer casing 30 encloses the three-dimensional spiral coil 10 and is matched with the shape of the three-dimensional spiral coil 10, and may be in the shape of a square or a hemisphere.
- the magnetic field is distributed in a certain area of the accommodating space and the magnetic field is evenly distributed.
- a magnetic field is perpendicularly passed through the coil of the device to be charged, so that the device to be charged can be placed in an arbitrary posture. Charging needs can be met in space.
- the accommodating space can simultaneously satisfy the simultaneous charging of a plurality of devices to be charged.
- the three-dimensional spiral coil 10 is connected to a control circuit 20 having a capacitance (the number of which may be plural) to form an LC oscillation circuit.
- the coil of the device to be charged and the three-dimensional spiral coil 10 of the same frequency generate electromagnetic resonance in the magnetic field radiation region of the three-dimensional spiral coil 10, and the three-dimensional spiral coil 10 emits electromagnetic waves, and the device to be charged receives electromagnetic waves and converts the electromagnetic waves into electric energy to realize wireless charging.
- the plurality of wires 11 are controlled by only one control circuit 20, and the control is simple.
- Embodiments of the present invention also provide a coil assembly.
- the coil assembly can refer to the three-dimensional spiral coil 10 described in the above embodiment, and will not be repeated here.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明公开了一种无线充电发射装置。无线充电发射装置包括发射线圈、控制电路及外壳。发射线圈呈立体螺旋状,使得一定区域内均有磁场分布并且磁场分布均匀。立体螺旋线圈接入带电容的控制电路,形成LC振荡电路,根据电磁共振原理实现无线充电。通过本发明,可以使待充电设备任意姿态放置均能实现无线充电,并且可以满足多个待充电设备同时充电的需求,充电效率高。
Description
本发明涉及无线充电领域,特别是一种无线充电发射装置。
随着移动设备的普及,移动设备的种类也越来越多。然而,不同的移动设备(例如,手机、平板电脑、媒体播放器、移动电视等)一般具有不同的适配器接口。用户将不同的适配器直接连接至电源,从而为不同的移动设备充电。因而,为了给不同移动设备充电,用户需要携带不同的适配器,使用不方便。
如果采用无线充电技术为不同的移动终端充电,则无需采用上述接口与电源直接连接的方式。因此,不存在不同的接口需要采用不同的适配器的问题。如此,在汽车、咖啡店、图书馆、餐馆、火车、飞机、办公室中提供无线充电,将满足人们所需的便利性。
在相关技术中,无线充电设备一般采用平面线圈。平面线圈容易成型、方便安装。一般将平面线圈置于平台或者塑料壳体内,如办公桌、咖啡厅、床头柜内部、类似充电宝的无线充电发射端模组或产品内,将接收端模组或产品平放在充电区域内的平台上,就能实现无线充电。然而,采用平面线圈时,一般要求将接收端模组或产品的接收线圈与平面线圈正对,如此,充电效率最高。如果接收线圈与平面线圈发生偏离,则充电效率将降低,甚至无法充电。如此,将降低无线充电的便利性。
在相关技术中,还采用多个平面线圈组成立体线圈进行无线充电,多个平面线圈的朝向不同。如此,多个平面线圈可以构成立体磁场。接收端模组或产品的接收线圈处于无线充电设备附近的任意位置或朝向,都会有一个平面线圈的磁场与其耦合,确定并驱动对应的平面线圈工作即可实现充电。然而,采用这种方式,需要采用多个控制电路板分别来控制多个平面线圈,控制电路变复杂,成本增加;另外,多个平面线圈导致内部磁场分布不均匀,容纳空间中的部分位置充电效率低。
发明内容
本发明旨在至少解决相关技术中存在的技术问题之一。为此,本发明需要提供一种无线充电设备。
根据本发明的实施方式的无线充电发射装置,包括发射线圈,所述发射线圈为立体螺旋线圈,所述立体螺旋线圈包括至少两根导线盘绕成倒置的锥筒轮廓,所述至少
两根导线盘绕成具有用于容纳待充电设备的容纳空间;所述至少两根导线沿同一中心轴盘绕。
上述无线充电发射装置的立体螺旋线圈采用至少两根导线盘绕而成,可以在立体螺旋线圈围成的内部空间以及外部空间都形成立体磁场,因此待充电设备处于容纳空间任意位置或朝向,也可以在外部空间的恰当位置,都有磁力线穿过,可高效充电。并且立体螺旋线圈盘绕均匀,因此充电发射装置内部磁场分布均匀。
在某些实施方式中,所述立体螺旋线圈包括底端和顶端,所述至少两根导线从底端开始向顶端盘绕,所述底端盘绕成平面,所述顶端设有开口。
在某些实施方式中,无线充电发射装置还包括:第一电容和控制电路,所述至少两根导线在所述底端通过所述第一电容串联,所述至少两根导线在所述顶端并联至所述控制电路。
在某些实施方式中,所述控制电路包括至少一个第二电容。
在某些实施方式中,所述立体螺旋线圈呈碗状、半球状、方台状和圆台状中的至少一种。
在某些实施方式中,所述至少两根导线形状及结构相同。
在某些实施方式中,所述至少两根导线采用漆包线。
在某些实施方式中,所述导线为两根,所述两根导线沿同一中心轴绕线且绕线相互交叉。
在某些实施方式中,所述两根导线包括第一导线和第二导线,所述第一导线缠绕成第一立体螺旋线圈,所述第二导线缠绕成第二立体螺旋线圈,所述第一立体螺旋线圈和第二立体螺旋线圈在底端分别设有第一连接端和第二连接端,所述第一立体螺旋线圈和第二立体螺旋线圈在顶端分别设有第一馈电端和第二馈电端,所述第一连接端与第二连接端之间通过所述第一电容相连,所述第一馈电端和第二馈电端分别与所述控制电路相连。
在某些实施方式中,所述立体螺旋线圈的电感根据以下公式确定
其中,L为所述立体螺旋线圈的所述电感;μ0为真空磁导率;μs为所述立体螺旋线圈内部的磁导率;N为所述立体螺旋线圈的缠绕圈数;S为所述立体螺旋线圈的等效横截面积;l为所述立体螺旋线圈的长度;k为系数,取决于所述立体螺旋线圈的等效半径与所述立体螺旋线圈的长度的比值。
在某些实施方式中,所述立体螺旋线圈的磁场强度根据以下公式确定
其中,B为所述立体螺旋线圈的磁场强度;μ0为真空磁导率;I为所述立体螺旋线圈的电流;N为所述立体螺旋线圈的缠绕圈数;R为所述立体螺旋线圈的等效半径。
在某些实施方式中,所述立体螺旋线圈的磁场强度根据以下公式确定
其中,B为所述立体螺旋线圈的磁场强度;μ0为真空磁导率;I为所述立体螺旋线圈的电流;R为所述立体螺旋线圈的等效半径;x为空间一点到所述立体螺旋线圈的等效平面的垂直距离,等效平面是螺旋线圈高度中点所在平面。
在某些实施方式中,所述无线充电发射装置还包括有包裹所述立体螺旋线圈外壳,所述外壳呈碗状、半球状、方台庄和圆台状中的至少一种。
在某些实施方式中,所述外壳包括顶端与底端,所述外壳底端封闭,所述顶端形成开口。
本发明还提供一种线圈组件。
根据本发明的实施方式的线圈组件,所述线圈组件中的线圈为立体螺旋线圈,所述立体螺旋线圈包括至少两根导线盘绕成倒置的锥筒轮廓,所述至少两根导线盘绕成具有用于容纳待充电设备的容纳空间;所述至少两根导线沿同一中心轴盘绕。
在某些实施方式中,所述立体螺旋线圈包括底端和顶端,所述至少两根导线从底端开始向顶端盘绕,所述底端盘绕成平面,所述顶端设有开口。
在某些实施方式中,所述立体螺旋线圈呈碗状、半球状、方台状和圆台状中的至少一种。
在某些实施方式中,所述至少两根导线形状及结构相同。
在某些实施方式中,所述至少两根导线采用漆包线。
本发明的附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是根据本发明的一个实施方式的立体线圈的结构示意图。
图2是根据本发明的一个实施方式的无线充电设备的示意图。
图3是根据本发明的一个实施方式的外壳示意图。
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领
域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1及图2,本发明实施方式的无线充电发射装置100,包括发射线圈10,也即图中所示的立体螺旋线圈10。立体螺旋线圈10包括至少两根导线11。至少两根导线11沿同一中心轴盘旋绕成倒置的锥筒轮廓,使得立体螺旋线圈10围绕而成形成中空的容纳空间。容纳空间可收容待充电设备。
应当理解,本发明的实施例所述的锥筒轮廓是这样的一种轮廓:轮廓的纵截面呈梯形,例如,可以是方锥筒或圆锥筒;轮廓的纵截面呈双曲线面,且轮廓的顶部的俯视面大于底部的仰视面;或轮廓的纵截面还可以是其他的形式,且轮廓的顶部的俯视面大于底部的仰视面,例如,锥筒轮廓可以是碗状,其顶部的俯视面大于底部的仰视面。设计这样的轮廓的目的是使得立体螺旋线圈10围绕而形成中空的容纳空间中的磁力线分布更加均匀。
也就是说,锥筒是指截面尺寸从一端到另一端发生变化的中空筒状或者类似的变形。
在本发明的实施方式中,立体螺旋线圈呈碗状、半球状、方台状和圆台状中的至少一种。如图1所示的方台状,然而,应当理解的是,锥筒并不限于图示的具体形状。还应当理解的是,本领域技术人员可以根据上述原理设计出容纳空间中的磁力线分布均匀的立体螺旋线圈。
在本实施方式中,立体螺旋线圈10包括底端和顶端,至少两根导线11从底端开始向上盘绕,底端盘绕呈平面,顶端设有开口。
具体的,导线11在盘绕过程中径向尺寸逐渐增大,使得立体螺旋线圈10的四个侧面形成梯度(如图1所示,其中线圈的侧面根据立体螺旋线圈的锥筒轮廓形状会有所不同)。底端盘绕呈平面状,顶端设有开口。如此,待充电设备可以放置于容纳空间中,并且以任意姿态置于容纳空间中时,均有磁力线穿过,提高充电效率。
如此,既能够形成容纳待充电设备的容纳空间,又能满足径向尺寸自顶端至底端逐渐变小使得立体螺旋线圈10盘绕成倒置锥筒状,从而满足充电需求。
本实施方式中,无线充电发射装置100还包括与立体螺旋线圈10连接的控制电路20。控制电路20包括有至少一个第二电容C。工作时,立体螺旋线圈10与第二电容C连接,从而形成LC振荡电路,根据电磁共振原理实现无线充电。
如此,立体螺旋线圈10上电后形成的磁场包括自底端中心向上向外发散的磁力线,磁力线绕立体螺旋线圈10后回至底端中心。也即是说,立体螺旋线圈10形成立体磁场。待充电设备的接收线圈处于立体螺旋线圈10内部时任意位置或朝向都有部分磁力线的穿过,因此可以高效充电。并且立体螺旋线圈10由导线11盘绕而成,因此无线
充电发射装置100内部磁场分布均匀。
本实施方式中,导线11的数目为两根(如图1)或更多(例如,4根、5根、6根、8根等),并相互缠绕。相互缠绕可以提高立体螺旋线圈10的稳定度,并提高立体螺旋线圈10的紧凑度。其中,如果导线11的数目大于2,则可以将导线11分成两组,两组之间相互缠绕。例如,如果导线11的数目为4,则2个导线11构成一组,两组导线之间相互缠绕。本领域人员可以根据本实施例,很容易地将导线11的数目扩展到5、6、7、8等,还可以实施这些导线的缠绕方式。应当理解,如果导线11的数目为偶数,则磁场的均匀程度好。
导线11的形状及结构可以基本相同。如此,可以制造相同导线11,然后通过错位缠绕即可形成立体螺旋线圈10。因此,可以提高生产效率。错位缠绕是指导线盘升的起点在底端错开。优选的,多根导线11可以等距离错位缠绕,如此,使得导线11在轴向的分布更加均匀,因此可以提高磁场的均匀程度。
导线11可采用漆包线,如此,在相互缠绕时彼此绝缘,避免导线11之间短路影响磁场的方向及大小。
可以理解,导线11并不限于本实施方式,导线11的形状及结构也可以根据需求而不同,不限于彼此相同。
在至少一个实施例中,如图1所示,发射线圈10包括两根导线11。两根导线11中第一导线缠绕成第一立体螺旋线圈10a,两根导线11中第二导线缠绕成第二立体螺旋线圈10b。第一立体螺旋线圈10a和第二立体螺旋线圈10b沿同一中心轴绕线且绕线相互交叉。发射线圈10具有顶端和底端,顶端的尺寸大于底端的尺寸,且从立体螺旋线圈10顶端到底端尺寸逐渐变小。
在这样的实施方式中,第一立体螺旋线圈10a与第二立体螺旋线圈10b在底端分别设有第一连接端3及第二连接端4。第一连接端3与第二连接端4通过电容连接。第一立体螺旋线圈10a与第二立体螺旋线圈10b在顶端分别设有第一馈电端1及第二馈电端2,所述第一馈电端1及第二馈电端2与控制电路20连接。
具体的,第一立体螺旋线圈10a包括第一馈电端1和第一连接端3,第二立体螺旋线圈10b包括第二馈电端2和第二连接端4。第一连接端3和第二连接端4之间串联一个第一电容C1,第一馈电端1与第二馈电端并联接入控制电路20,形成两组并联的LC振荡电路。第一电容C1可以降低控制电路20的温度,并提高充电效率。
在本实施方式中,为了与待充电设备匹配,提高充电效率,需根据待充电设备形状及谐振频率等来确定立体螺旋线圈10的具体形状及结构,或者说,通过调节立体螺旋线圈10半径大小、圈数、线径来获得立体螺旋线圈10所需具有的电感、电阻、磁
场强度及磁场方向。
例如,在如图1所示的实施方式中,导线11的数目为两根,线径1.6mm,立体螺旋线圈10呈方台状,底端直径100mm,高度50mm,缠绕圈数为6圈,如此构成无线充电设备立体螺旋线圈10基本形状。然后,通过软件仿真来调整形状及结构,以获得所需立体螺旋线圈10的相关电性能参数。本实施方式中,立体螺旋线圈10所需的频率、电感及电阻需满足相关的校准及效率要求,例如,谐振频率为6.78MHZ,立体螺旋线圈10满足电感为4.5±10%μH,电阻小于2.5Ω。
控制电路20接入市电,经整流部分将220v的市电转换为直流电,而后将直流电流再转换为6.78MHz的高频交流电。
根据以下公式计算立体螺旋线圈10的电感:
其中,L为立体螺旋线圈10的电感;μ0=4π·10-7为真空磁导率;μs=1为立体螺旋线圈10内部的磁导率;N为立体螺旋线圈10的缠绕圈数;S为立体螺旋线圈10的等效横截面积,其中在立体螺旋线圈10,每一层线圈的横截面积都是呈一定规律变化的,如果线圈圈数是奇数圈,S则是中间的那一线圈的横截面积,如果线圈是偶数圈,S则是中间两线圈的横截面积平均值;l为立体螺旋线圈10的长度;k为系数,取决于立体螺旋线圈10的等效半径与立体螺旋线圈10长度的比值。其中由于立体螺旋线圈的横截面的形状可以是圆形还可以是正方形或长方形等,如果横截面的形状是圆形,则立体螺旋线圈的半径取圆形半径,如果横截面的形状是正方形,可以是正方形的内环圆和外环圆的平均半径等。公式(1)可知,改变立体螺旋线圈10缠绕圈数对电感数值影响最大。因此,立体螺旋线圈10电感通过调节缠绕圈数来确定。若电感小于4.5μH,则增加立体螺旋线圈10缠绕圈数,例如缠绕圈数由6圈增加至7圈或8圈;若电感大于4.5μH,则减少所述立体螺旋线圈10缠绕圈数,例如缠绕圈数由6圈减少至5圈或4圈,最终使得立体螺旋线圈10电感值为4.5±10%μH。
如此,可获得满足条件的立体螺旋线圈10电感值。
保持线圈圈数不变,改变线圈之间水平投影间距(简称线间距)和线圈间的垂直高度,对线圈磁场分布进行调整,使接受模组或终端处于最佳磁场区域。例如:加大线间距和线圈间的垂直高度,线圈的半径、长度和线圈截面积变大,公式1中S、l同时变大,代入公式后对电感影响很小,系数k也同样对电感影响较小。实际生产中,选用铜含量99.95%以上的铜线,磁导率是定值,所以在圈数确定,无论怎么改变线间距和垂直高度,线圈电感总数在4.5±10%μH的有效范围内。
根据以下公式确定立体螺旋线圈10的电阻:
其中,R为立体螺旋线圈10电阻;ρ为电阻率;l为电阻长度,即立体螺旋线圈10的长度;s为电阻横截面积。
由公式(2)可知,在立体螺旋线圈10长度不变的情况下,立体螺旋线圈10的电阻与立体螺旋线圈10的线径反相关。因此立体螺旋线圈10的电阻通过调节立体螺旋线圈10的线径来确定,若电阻大于2.5Ω,则增大立体螺旋线圈10德尔线径,以减小电阻,例如将线圈线径有1.6mm增大至2mm或2.5mm,最终使立体螺旋线圈10的电阻低于2.5Ω。
如此,可获得满足条件的立体螺旋线圈10的电阻值。
立体螺旋线圈10的电感、电阻、缠绕圈数及线径确定后不再调节。
充电的理想状态为使待充电设备处于立体螺旋线圈10磁场最强的区域,因此确定立体螺旋线圈10电感和电阻后,根据待充电设备的形状调节立体螺旋线圈10半径,使待充电设备处于立体螺旋线圈10磁场最强的区域。
根据以下公式确定立体螺旋线圈10的磁场强度:
其中,B为立体螺旋线圈10的磁场强度;μ0=4π·10-7为真空磁导率;I为立体螺旋线圈10的电流;N为立体螺旋线圈10的缠绕圈数;R为立体螺旋线圈10的等效半径。
根据公式(3)可知,若将待充电设备等效为空间中一点,当该点处于立体螺旋线圈10内时,在立体螺旋线圈10的电流及缠绕圈数一定的情况下,该点磁场强度与立体螺旋线圈10的半径R反相关,即立体螺旋线圈10的半径越小,该点磁场强度越大;反之亦反。
如此,当待充电设备为智能手表等体积较小、充电时可置于容纳空间内的产品时,减小立体螺旋线圈10的半径,增大待充电设备磁场强度,使得磁场强度最强的区域处于待充电设备内,提高充电效率。
根据以下公式确定立体螺旋线圈10的磁场强度:
其中,B为立体螺旋线圈10的磁场;μ0=4π·10-7为真空磁导率;I为立体螺旋线圈10的电流;R为立体螺旋线圈10的半径;x为空间一点到所述立体螺旋线圈的等效平面的垂直距离,等效平面是螺旋线圈高度中点所在平面。
根据公式(4)可知,若将待充电设备等效为空间中一点,当该点远离立体螺旋线圈10时,在立体螺旋线圈10的电流一定的情况下,该点磁场强度与立体螺旋线圈10的半径R正相关,即立体螺旋线圈10的半径越大,该点磁场强度越强;反之亦反。
如此,当待充电设备为体积较大且充电时待充电设备线圈远离立体螺旋线圈10的产品时,增大立体螺旋线圈10的半径,以增大待充电设备磁场强度,使得磁场强度最强的区域处于待充电设备内,提高充电效率。
在本实施方式中,立体螺旋线圈10的垂直方向间距根据待充电设备放置方式调节。
如此,使得立体螺旋线圈10的磁场方向的分量尽可能垂直穿过待充电设备线圈,从而提高充电效率。
在本实施方式中,待充电设备包括与立体螺旋线圈10频率相同的待充电设备线圈。
如此,待充电设备线圈处于同频率的立体螺旋线圈10的磁场辐射内时,产生电磁共振,立体螺旋线圈10发射电磁波,待充电设备线圈接收电磁波并将电磁波转化为电能,实现无线电能传输。
在本实施方式中,控制电路20与立体螺旋线圈10相连,控制电路20可以是PCBA(Assembly of Printed Circle Board,电子装联印刷电路板)。
在本实施方式中,控制电路20包括有至少一个第二电容C,电容值根据立体螺旋线圈10的频率及电感确定。
具体的,在获得满足条件的立体螺旋线圈10后,匹配满足条件的电容,使得LC振荡电路满足要求。
根据公式:
其中,f为谐振频率;L为立体螺旋线圈10的电感;C为电容值。
根据公式(5)可知,谐振频率和立体螺旋线圈10的电感均为已知,通过计算即可得到电容值。如此,满足条件的立体螺旋线圈10与满足条件的电容连接,得到满足条件的LC振荡电路。
如图3所示,在本实施方式中,无线充电设备还包括包裹立体螺旋线圈10的外壳30,外壳30形状与立体螺旋线圈10形态相匹配,呈碗状、半球状、方台状和圆台状中的至少一种。
具体的,外壳30包裹立体螺旋线圈10,配合立体螺旋线圈形成满足充电需求的形态,依立体螺旋螺旋线圈10的缠绕形态设计外形,例如外壳30呈碗状或方槽状。如此,形成容纳空间,并且通常一端开口一端封闭。一方面,方便承装待充电设备,另
一方面,外壳30可以起到对立体螺旋线圈10的保护作用。
本实施方式中,外壳30在底端或顶端形成开口。
如此,外壳30在底端或顶端形成的开口配合立体螺旋线圈10围绕而成的容纳空间可以使得待充电设备放置于其中。
优选的,容纳空间可以承载多个待充电设备。
由于导线11呈立体螺旋状,容纳空间内各个方向均有磁场分布,因此,在容纳空间足够大的情况下,容纳空间可同时承载多个待充电设备并满足充电需求。
优选的,待充电设备可以任意姿态放置于容纳空间中。
容纳空间内各个方向均有磁场分布,因此,待充电设备可以以任意角度、位置放置,均可满足充电需求。
本发明实施方式的无线充电设备,至少一个立体螺旋线圈10由导线11缠绕呈空间螺旋结构,外壳30包裹立体螺旋线圈10,并与立体螺旋线圈10形状匹配,可以呈方台状或半球状,由此形成容纳空间。容纳空间某一区域内均有磁场分布并且磁场分布均匀,在磁场辐射区域中无论待充电设备处于何种角度,都会有磁场垂直穿过待充电设备线圈,使得待充电设备可以任意姿态放置于容纳空间中均可满足充电需求。容纳空间可同时满足多个待充电设备同时充电。立体螺旋线圈10接入带电容(其个数可以为多个)的控制电路20,形成LC振荡电路。相同频率的待充电设备线圈及立体螺旋线圈10在立体螺旋线圈10磁场辐射区域内,产生电磁共振,立体螺旋线圈10发射电磁波,待充电设备接收电磁波并将电磁波转化为电能,实现无线充电。多根导线11仅需一个控制电路20控制,控制简单。
本发明的实施例还提供一种线圈组件。该线圈组件可参考上述实施例所述的立体螺旋线圈10,在此不再重复。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
Claims (19)
- 一种无线充电发射装置,其特征在于,包括发射线圈,所述发射线圈为立体螺旋线圈,所述立体螺旋线圈包括至少两根导线盘绕成倒置的锥筒轮廓,所述至少两根导线盘绕成具有用于容纳待充电设备的容纳空间;所述至少两根导线沿同一中心轴盘绕。
- 根据权利要求1所述的无线充电发射装置,其特征在于,所述立体螺旋线圈包括底端和顶端,所述至少两根导线从底端开始向顶端盘绕,所述底端盘绕成平面,所述顶端设有开口。
- 根据权利要求1或2所述的无线充电发射装置,其特征在于,还包括:第一电容和控制电路,所述至少两根导线在所述底端通过所述第一电容串联,所述至少两根导线在所述顶端并联至所述控制电路。
- 根据权利要求3所述的无线充电发射装置,其特征在于,所述控制电路包括至少一个第二电容。
- 根据权利要求1至4中任一项所述的无线充电发射装置,其特征在于,所述立体螺旋线圈呈碗状、半球状、方台状和圆台状中的至少一种。
- 根据权利要求1至5中任一项所述的无线充电发射装置,其特征在于,所述至少两根导线形状及结构相同。
- 根据权利要求1至6中任一项所述的无线充电发射装置,其特征在于,所述至少两根导线采用漆包线。
- 根据权利要求1至7中任一项所述的无线充电发射装置,其特征在于,所述导线为两根,所述两根导线沿同一中心轴绕线且绕线相互交叉。
- 根据权利要求3或4所述的无线充电发射装置,其特征在于,所述两根导线包括第一导线和第二导线,所述第一导线缠绕成第一立体螺旋线圈,所述第二导线缠绕成第二立体螺旋线圈,所述第一立体螺旋线圈和第二立体螺旋线圈在底端分别设有第一连接端和第二连接端,所述第一立体螺旋线圈和第二立体螺旋线圈在顶端分别设有第一馈电端和第二馈电端,所述第一连接端与第二连接端之间通过所述第一电容相连,所述第一馈电端和第二馈电端分别与所述控制电路相连。
- 根据权利要求1至12中任一项所述的无线充电发射装置,其特征在于,所述无线充电发射装置还包括有包裹所述立体螺旋线圈外壳,所述外壳呈碗状、半球状、方台状和圆台状中的至少一种。
- 根据权利要求13所述的无线充电发射装置,其特征在于,所述外壳包括顶端与底端,所述外壳底端封闭,所述顶端形成开口。
- 一种线圈组件,其特征在于,所述线圈组件中的线圈为立体螺旋线圈,所述立体螺旋线圈包括至少两根导线盘绕成倒置的锥筒轮廓,所述至少两根导线盘绕成具有用于容纳待充电设备的容纳空间;所述至少两根导线沿同一中心轴盘绕。
- 根据权利要求15所述的线圈组件,其特征在于,所述立体螺旋线圈包括底端和顶端,所述至少两根导线从底端开始向顶端盘绕,所述底端盘绕成平面,所述顶端设有开口。
- 根据权利要求15或16所述的线圈组件,其特征在于,所述立体螺旋线圈呈碗状、半球状、方台庄和圆台状中的至少一种。
- 根据权利要求15至17中任一项所述的线圈组件,其特征在于,所述至少两根导线形状及结构相同。
- 根据权利要求15至18中任一项所述的线圈组件,其特征在于,所述至少两根导线采用漆包线。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510458363.4A CN106712227B (zh) | 2015-07-29 | 2015-07-29 | 无线充电发射装置 |
CN201510458363.4 | 2015-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017016376A1 true WO2017016376A1 (zh) | 2017-02-02 |
Family
ID=57884077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/088628 WO2017016376A1 (zh) | 2015-07-29 | 2016-07-05 | 无线充电发射装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106712227B (zh) |
WO (1) | WO2017016376A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106685105A (zh) * | 2017-03-24 | 2017-05-17 | 国网电力科学研究院武汉南瑞有限责任公司 | 基于共振磁耦合的变电站智能巡检机器人无线供能系统及方法 |
CN114421164A (zh) * | 2022-01-27 | 2022-04-29 | 上海交通大学 | 基于人工表面等离激元的低剖面磁电偶极子天线单元及频扫阵列 |
US11621584B2 (en) | 2018-02-02 | 2023-04-04 | Maxell, Ltd. | Wireless power-feeding apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107276249A (zh) * | 2017-06-12 | 2017-10-20 | 浙江大学 | 一种磁耦合谐振式无线电能传输碗状原边线圈 |
CN109301943A (zh) * | 2018-11-13 | 2019-02-01 | 宁波工程学院 | 一种无线充电装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100937627B1 (ko) * | 2007-04-30 | 2010-01-19 | (주)제이씨 프로텍 | 소형전자기기의 무방향성 충전용기 및 무선전력충전세트 |
CN103368242A (zh) * | 2013-07-26 | 2013-10-23 | 华南理工大学 | 一种usb接口的电子设备无线充电接收装置 |
CN203747470U (zh) * | 2014-03-10 | 2014-07-30 | 武汉大学 | 一种基于屏蔽体的封闭式无线充电装置 |
WO2015099914A1 (en) * | 2013-12-27 | 2015-07-02 | Intel Corporation | Wireless charging device having concave charging station |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002305121A (ja) * | 2000-11-06 | 2002-10-18 | Nec Tokin Corp | 非接触電力伝送装置 |
CN103630858B (zh) * | 2012-08-23 | 2018-09-14 | 西门子(深圳)磁共振有限公司 | 一种磁共振系统的肩部线圈和发射线圈 |
CN103683438B (zh) * | 2014-01-06 | 2016-03-30 | 武汉大学 | 应用于植入式心脏起搏器的功率可调式无线充电装置 |
CN203813469U (zh) * | 2014-03-13 | 2014-09-03 | 深圳市金溢科技股份有限公司 | 用于批量充电的无线充电设备及其无线充电线圈 |
-
2015
- 2015-07-29 CN CN201510458363.4A patent/CN106712227B/zh active Active
-
2016
- 2016-07-05 WO PCT/CN2016/088628 patent/WO2017016376A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100937627B1 (ko) * | 2007-04-30 | 2010-01-19 | (주)제이씨 프로텍 | 소형전자기기의 무방향성 충전용기 및 무선전력충전세트 |
CN103368242A (zh) * | 2013-07-26 | 2013-10-23 | 华南理工大学 | 一种usb接口的电子设备无线充电接收装置 |
WO2015099914A1 (en) * | 2013-12-27 | 2015-07-02 | Intel Corporation | Wireless charging device having concave charging station |
CN203747470U (zh) * | 2014-03-10 | 2014-07-30 | 武汉大学 | 一种基于屏蔽体的封闭式无线充电装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106685105A (zh) * | 2017-03-24 | 2017-05-17 | 国网电力科学研究院武汉南瑞有限责任公司 | 基于共振磁耦合的变电站智能巡检机器人无线供能系统及方法 |
US11621584B2 (en) | 2018-02-02 | 2023-04-04 | Maxell, Ltd. | Wireless power-feeding apparatus |
CN114421164A (zh) * | 2022-01-27 | 2022-04-29 | 上海交通大学 | 基于人工表面等离激元的低剖面磁电偶极子天线单元及频扫阵列 |
Also Published As
Publication number | Publication date |
---|---|
CN106712227A (zh) | 2017-05-24 |
CN106712227B (zh) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017016376A1 (zh) | 无线充电发射装置 | |
JP5934934B2 (ja) | 無線電力伝送システム | |
US10002707B2 (en) | Induction coil structure for wireless charging device | |
JP6264437B2 (ja) | 給電装置、給電システムおよび電子機器 | |
JP5553368B2 (ja) | 電子装置の無線充電コイル構造 | |
CN104037493B (zh) | 用于高效无线通信的多层多匝结构 | |
CN103534772B (zh) | 供电单元、供电系统和电子装置 | |
CN110137676B (zh) | 用于高效无线通信的多层引线结构 | |
CN103918047A (zh) | 用于感应电能传输系统的发射器 | |
US9431856B2 (en) | Power transmission | |
CN103026436A (zh) | 具备散热构造的无线电力传输系统及送受电装置 | |
WO2013145788A1 (ja) | 送電装置、電子機器およびワイヤレス電力伝送システム | |
CN102906831A (zh) | 改进的接收器线圈 | |
CN117223191A (zh) | 用于助听器充电器的充电线圈 | |
US9812246B1 (en) | Apparatus and method for a coiled wire nest and frame for toroidal induction | |
TWM508836U (zh) | 無線充電印刷電路板線圈結構 | |
WO2016026095A1 (zh) | 薄型高效率无线充电线圈及其无线充电系统 | |
KR20110092112A (ko) | 무선 에너지 전송 구조체 | |
JP5981203B2 (ja) | 電力伝送システム | |
CN205882764U (zh) | 一种无线充电设备 | |
JP2016004990A (ja) | 共振器 | |
KR101349448B1 (ko) | 무선전력 전달장치 | |
JP2015220891A (ja) | 共振器及び無線給電システム | |
CN207640116U (zh) | 高电磁兼容性的电磁加热烹饪器具 | |
CN108599394A (zh) | 可实现能量漏斗效应的无线充电系统及其无线充电方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16829742 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16829742 Country of ref document: EP Kind code of ref document: A1 |