WO2017016375A1 - 智能球型摄像机、监控系统及控制方法 - Google Patents

智能球型摄像机、监控系统及控制方法 Download PDF

Info

Publication number
WO2017016375A1
WO2017016375A1 PCT/CN2016/088592 CN2016088592W WO2017016375A1 WO 2017016375 A1 WO2017016375 A1 WO 2017016375A1 CN 2016088592 W CN2016088592 W CN 2016088592W WO 2017016375 A1 WO2017016375 A1 WO 2017016375A1
Authority
WO
WIPO (PCT)
Prior art keywords
dome
smart
camera
dome camera
azimuth
Prior art date
Application number
PCT/CN2016/088592
Other languages
English (en)
French (fr)
Inventor
陈县
吴可龙
许建军
凌在龙
徐鹏
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2017016375A1 publication Critical patent/WO2017016375A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present application relates to the field of video surveillance technologies, and in particular, to a smart dome camera, a monitoring system, and a control method.
  • the smart dome camera is widely used in the field of video surveillance and is suitable for monitoring various areas.
  • Smart dome cameras typically include at least: a dome board, a pan/tilt system, and an all-in-one movement with a dome lens.
  • the pan-tilt system refers to the rotating part driven by the motor; the movement can be horizontally rotated under the driving of the pan-tilt system, thereby changing the azimuth of the dome lens;
  • the main board of the dome machine belongs to the main control core component, which comprises a processor ( Processor) and memory (memory), the processor can perform various functions by executing instructions in the memory, such as controlling the motor of the pan/tilt system, and processing the image captured by the dome lens of the movement.
  • a smart dome camera comprising at least: a movement, a pan/tilt system, and a dome machine; the movement includes a dome lens, and the azimuth of the dome lens is Changing the horizontal movement of the movement, the pan/tilt system is configured to drive the movement to perform horizontal rotation under the control of the dome main board; the smart dome camera further comprises: an electronic compass; the electronic compass Obtaining geomagnetic data and/or acceleration data in a specified direction, and transmitting the geomagnetic data and/or the acceleration data to the dome of the dome; the dome of the dome, according to the electronic compass The geomagnetic field data determines a direction pointing to the north pole and serves as a reference for calibrating the azimuth of the dome lens; and/or determining the smart dome camera based on the acceleration data from the electronic compass The amplitude of the vibration in the specified direction.
  • a monitoring system includes at least one of the foregoing Smart dome camera and platform server; each smart dome camera further includes a global positioning system GPS module, wherein the dome motherboard determines the direction pointing to the north pole based on the geomagnetic field data from the electronic compass Then, determining a current azimuth of the dome lens according to the direction pointing to the north pole, acquiring position information of the smart dome camera through the GPS module, and the location information and the current lens of the dome camera The azimuth is sent to the platform server; the platform server receives location information sent by each smart dome camera and the azimuth, according to the pre-stored electronic map and the received location information of each smart dome camera And the azimuth angle determining whether there is a smart dome camera that needs to adjust the direction, and when determining one or more of the smart dome cameras that need to adjust the direction, for each of the smart dome cameras that need to adjust the direction , generating an adjustment instruction carrying the specified azimuth, and transmitting the generated instruction to the
  • a control method for the aforementioned smart dome camera the smart dome camera further comprising a global positioning system GPS module, wherein the dome motherboard is based on the electronic compass
  • the dome motherboard is based on the electronic compass
  • the geomagnetic field data determines the direction pointing to the north pole
  • the current azimuth of the dome lens is further determined according to the direction pointing to the north pole
  • the position information of the smart dome camera is acquired by the GPS module
  • the method is applied to the platform server, comprising: receiving the location information and the azimuth angle from each smart dome camera; and according to the pre-saved electronic map and the received location information from each smart dome camera Determining whether there is a smart dome camera that needs to adjust the direction; when determining one or more of the smart dome cameras that need to adjust the direction, generating for each of the smart dome cameras that need to adjust the direction Carry the adjustment command of the specified azimuth and send the generated to the smart dome camera Adjusting the command such that the dome of the smart dome camera further passes the pan
  • an application for executing a control method for the above-described smart dome camera at runtime is provided.
  • a storage medium for storing an application for executing a control method for the above-described smart dome camera.
  • the smart dome camera provided by the present application can sense the geomagnetic data and/or the acceleration data, thereby automatically determining the state parameters such as the direction and/or the amplitude of the vibration pointing to the north pole, which can reduce the manual operation during use, and can be timely, Accurately obtaining this state parameter makes the performance of the smart dome camera improved.
  • the monitoring system provided by the present application can timely and accurately control the azimuth of the dome lens of each smart dome camera by using information such as the azimuth angle automatically determined by the geomagnetic field data of each smart dome camera, so that the working efficiency of the monitoring system can be improved. Upgrade.
  • the control method for the smart dome camera provided by the present application can timely and accurately control the monitoring orientation of each smart dome camera by using information such as the azimuth angle of the dome lens automatically determined by the geomagnetic field data of each smart dome camera.
  • the platform server's work efficiency and accuracy are improved, and the monitoring performance of the entire monitoring system can be improved.
  • the application provided by the present application can timely and accurately control the monitoring orientation of each smart dome camera by using information such as the azimuth angle of the dome lens automatically determined by the geomagnetic field data of each smart dome camera, so that the working efficiency of the platform server is made. As well as improved accuracy, the monitoring performance of the entire monitoring system can be improved.
  • the storage medium provided by the present application can timely and accurately control the monitoring orientation of each smart dome camera by using information such as the azimuth angle of the dome lens automatically determined by each smart dome camera based on the geomagnetic field data, so that the working efficiency of the platform server As well as improved accuracy, the monitoring performance of the entire monitoring system can be improved.
  • FIG. 2 is a schematic structural diagram of a specific example of a smart dome camera according to the present application.
  • FIG. 3 is a schematic structural diagram of a software system of a smart dome camera according to the present application.
  • FIG. 4 is a flow chart of a data processing method applied to a main board of a dome camera in a smart dome camera according to the present application;
  • FIG. 5 is a structural diagram of a main assembly of a dome camera in a smart dome camera according to the present application.
  • FIG. 6 is a structural diagram of a monitoring system proposed by the present application.
  • FIG. 7 is a schematic diagram of a monitoring area of each smart dome camera in the monitoring system according to the present application.
  • FIG. 8 is a structural diagram of an example of a monitoring system according to the present application.
  • FIG. 9 is a schematic diagram of an application scenario of a monitoring system according to the present application.
  • FIG. 10 is a flowchart of a method for controlling the above smart dome camera according to the present application.
  • FIG. 11 is a structural diagram of a platform server in the above monitoring system according to the present application.
  • the inventor of the present application found in the research that the existing smart dome camera can not automatically obtain some state parameters, such as direction, acceleration, etc., so that it cannot judge its current state in time and accurately, such as the orientation of the dome lens. Angle, whether it is impacted, etc.
  • the user when installing the smart dome camera, the user needs to manually set the direction pointing to the north pole (also called the position of the zero limit angle), so that the dome of the dome will calibrate the dome lens with the direction pointing to the north pole. Azimuth. If the smart dome camera is moved, the user also has to manually set the direction pointing to the north pole. However, the accuracy of the manual setting is not high, which in turn affects the accuracy of the azimuth of the calibrated dome lens, and the complexity of the user operation is also high.
  • the smart dome camera may be impacted during use and cannot be properly monitored. For example, at a crime scene or a car accident scene, the smart dome camera may be artificially or accidentally destroyed, but the smart dome camera itself cannot report this. Impact-related parameters can only be artificially found to find such anomalies, and the processing efficiency is very low.
  • the present application integrates an electronic compass in a smart dome camera, and combines the ability of the electronic compass to sense ground magnetic field data and/or gravitational acceleration to automatically determine the direction of the north pole and/or the amplitude of the vibration in a specified direction without manual intervention. And can guarantee accuracy and real-time.
  • FIG. 1 is a schematic view showing the composition and connection relationship of the inside of the dome machine proposed in the present application.
  • the dome 100 includes at least a dome board 101 and a movement 102.
  • the movement 102 includes a dome lens 1021, and the azimuth angle of the dome lens 1021 changes horizontally.
  • the dome 100 further includes a pan-tilt system 104.
  • the dome board 101 controls the horizontal rotation of the movement 102 through the pan-tilt system 104.
  • the pan-tilt system 104 drives the rotating component through the self-motor under the control of the dome mainframe 101.
  • the motive core 102 is then rotated horizontally.
  • the dome 100 further includes an electronic compass 103 that measures geomagnetic field data and/or acceleration data in a specified direction and transmits the measured geomagnetic data and/or acceleration data to the dome motherboard 101.
  • the electronic compass 103 has a magnetic sensor and a gravitational acceleration sensor (G-sensor), wherein the magnetic sensor can measure the intensity of the surrounding earth magnetic field to obtain geomagnetic field data, and the geomagnetic field data can include the geomagnetic field strength of at least one sampling point.
  • G-sensor gravitational acceleration sensor
  • the geomagnetic field strength data of each sampling point may include the geomagnetic field intensity component in each dimension direction in a predetermined two-dimensional or three-dimensional coordinate system;
  • the gravity acceleration sensor can sense the acceleration force that the object itself is subjected to during acceleration Further, acceleration data can be measured, which can include acceleration components in respective dimensional directions in a predetermined two-dimensional or three-dimensional coordinate system.
  • the electronic compass 103 can be placed at any position in the dome 100, which can be placed above a rotating shaft for rotation under the rotation of the rotating shaft, which can be newly set in the dome 100. It may be a component that can be used as a rotating shaft in the ball machine 100, such as the movement 102.
  • the dome main board 101 determines the north direction according to the received geomagnetic field data from the electronic compass 103 and uses it as a reference for calibrating the azimuth angle of the dome lens 1021; and/or according to the received electronic compass 103.
  • the acceleration data determines the amplitude of the vibration of the dome 100 in the specified direction.
  • the so-called north direction may also be referred to as a magnetic north pole direction.
  • the dome main board 101 can calculate the azimuth of each sampling point by data modeling, and then according to the orientation.
  • the orientation of the sampling point with an angle of zero determines the north direction
  • the north direction of the finger can be an angle value of the rotating shaft that drives the electronic compass 103 to rotate horizontally.
  • the dome lens 1021 is driven by the movement 102.
  • the horizontal rotation of the movement 102 also has an angle value, and the angle of the horizontal rotation of the movement 102 can be used to calibrate the orientation of the dome lens 1021.
  • the movement 102 is horizontally rotated by the pan-tilt system 104.
  • the horizontal rotation of the rotating parts of the pan-tilt system 104 also has an angular value.
  • the axis of rotation of the electronic compass 103 is rotated at a zero-angle position, the movement
  • the position of the zero-angle position of the horizontal rotation 102 and the zero-angle position of the horizontal rotation of the rotating part of the pan-tilt system 104 are not necessarily the same, but the offset between them (such as the angle)
  • the difference can be preset in the dome board 101 and is fixed. Therefore, the dome board 101 has an angle value representative of the north direction, an angle value representing the orientation of the dome lens 1021, and a preset rotation of the electronic compass 103.
  • the offset between the zero angular position of the shaft and the zero angular position of the movement 102 can determine the angle between the orientation of the dome lens 1021 and the north direction, i.e., the azimuth of the dome lens 1021.
  • the electronic compass 103 is disposed on a horizontal surface of the movement 102 or a horizontal plane parallel to the horizontal plane, it is more simple to determine the azimuth angle, because the rotation axis of the electronic compass 103 can be the movement 102, according to
  • the azimuth angle can be determined by representing an angle value in the north direction and an angle value representing the orientation of the dome lens 1021.
  • the amplitude of the vibration in the specified one or more directions may be determined based on the acceleration data. Amplitude.
  • the dome main body 101 may further determine the current azimuth of the dome lens 1021 according to the north direction.
  • the dome motherboard 101 can further determine if the amplitude of vibration of the dome 100 in a specified direction exceeds a predetermined threshold.
  • the dome board 101 may output an alarm message, and/or acquire an image (picture or a video) currently captured by the dome lens 1021 and output the image.
  • the alarm information and/or the image may be output when the amplitude of the vibration in either direction exceeds a predetermined threshold, or when the amplitude of the vibration in each direction exceeds a predetermined one.
  • the alarm information and/or the above image are output at the threshold.
  • the dome board 101 can output the above alarm information and/or image to the local (for example, display the alarm information and/or image on the display screen of the dome 100, issue an audible alarm message, etc.), or output the same.
  • Clients to external sources eg, sending alarm messages and/or images over the network to clients installed in the user's terminal device
  • can also output them to an external server eg, alerting information and/or via the network
  • the image is sent to the platform server of the monitoring system, etc.
  • different output modes can be adopted according to different requirements.
  • the dome 100 may further include a global positioning system (GPS) module 105 that may be independently disposed in the dome 100 or integrated into any other component of the dome 100.
  • the dome board 101 further acquires position information (such as latitude and longitude geographic location information) of the dome 100 through the GPS module 105, and outputs the position information and the determined azimuth of the dome lens 1021; and/or, the dome board 101
  • the time information in the satellite signal is further acquired and parsed by the GPS module 105, and time calibration is performed based on the time information.
  • the dome board 101 can output the above position information and azimuth to an external client (for example, sent to a client installed in the user's terminal device through a network), and can also output it to an external server (for example: Through the network to the platform server of the monitoring system) and so on, in short, different output methods can be adopted according to different needs.
  • an external server for example: Through the network to the platform server of the monitoring system
  • different output methods can be adopted according to different needs.
  • the user can know the position of the dome 100 and the azimuth of the dome lens 1021 through the terminal device or at the server end, so as to better manage and adjust the dome 100, for example, according to the above position information and azimuth. It is timely found whether the orientation of the dome camera 1021 of the dome 100 is suitable or whether it can meet the monitoring needs. If it is found to be inappropriate or cannot meet the monitoring needs, the azimuth of the dome lens 1021 can be adjusted in time.
  • the dome board 101 can further respond to an adjustment command sent by an external client or server to carry a specified azimuth (for example, an adjustment instruction sent by a user through a client installed on the terminal device or a platform server of the monitoring system)
  • a specified azimuth for example, an adjustment instruction sent by a user through a client installed on the terminal device or a platform server of the monitoring system
  • the movement 102 is controlled to rotate horizontally by the pan-tilt system 104 to adjust the azimuth of the dome lens 1021 to the specified azimuth.
  • the dome board 101 may further perform filtering processing on the geomagnetic field data received from the electronic compass 103 to remove the abnormal value therein, and then determine the north direction according to the filtered geomagnetic data.
  • the measurement of the geomagnetic field data on the surface of the electronic device is susceptible to interference by the electronic device itself.
  • the so-called magnetic field interference refers to the presence of a magnetic substance or a substance that can affect the strength of the local magnetic field, so that the earth magnetic field at the position where the magnetic sensor is placed is deviated.
  • the dome board 101 can correct the magnetic field interference caused by the circuit board in the dome 100 by correcting the measured geomagnetic field data, so that the determined north direction is more accurate.
  • the electronic compass 103 is placed on the horizontal surface of the movement 102 or a horizontal plane parallel to the horizontal plane, and the horizontal rotation of the random core 102 is performed horizontally.
  • Electronic compass 103 When the horizontal rotation of the random core 102 is performed horizontally, the geomagnetic field data in a plurality of directions in the current horizontal plane can be measured and transmitted to the dome main board 101.
  • the movement 102 can be controlled to rotate horizontally by the pan-tilt system 104, thereby receiving geomagnetic field data in multiple directions from the electronic compass 103, according to the geomagnetic field in multiple directions.
  • the data is corrected by the electronic compass 103 to calculate the magnetic interference parameter, and then the north direction is determined according to the magnetic interference parameter and the received geomagnetic field data in a plurality of directions.
  • the geomagnetic field data in a plurality of directions is the geomagnetic field data measured by the electronic compass 103 when rotated to a predetermined plurality of sampling points.
  • the dome board 101 can rotate the electronic compass 103 one or two times through the pan/tilt system 104, and preset the magnetic field data once every one revolution (1°) (ie, one sampling point per 1°), so that Each time the electronic compass 103 rotates, 360 sets of geomagnetic field data are acquired, and based on the geomagnetic data, the electronic compass 103 can perform correction processing and determine the north direction.
  • the dome board 101 is to perform filtering processing on the received geomagnetic field data, the received geomagnetic field data in multiple directions may be filtered first, and then the filtered plurality of The geomagnetic field data in the direction is corrected.
  • the magnetic field interference inside the above-described dome 100 may include hard magnetic interference and soft magnetic interference
  • hard magnetic interference refers to interference from a component having a magnetic material such as a magnet
  • soft magnetic interference refers to a material from which a magnet can be attracted. interference.
  • the dome motherboard 101 first calculates the hard magnetic interference parameter and the soft magnetic interference parameter, and then determines whether the size of the soft magnetic interference parameter reaches a preset threshold. If the threshold is reached, the soft magnetic needs to be considered.
  • the interference, and then the calculated magnetic interference parameters include hard magnetic interference parameters and soft magnetic interference parameters; if not, the soft magnetic interference may not be considered, and the calculated magnetic interference parameters only include hard magnetic interference parameters.
  • the dome motherboard 101 can further determine the correction processing performed on the electronic compass 103 in response to a status review command sent by an external client or server (such as a client installed on the user terminal device or a platform server of the monitoring system). Current correction status, and output the determined current correction status, for example, output "no correction” if correction processing has not been started, and output "correction” if the correction processing has not been completed, if the correction processing is completed The output "correction is completed” or the azimuth of the determined dome lens 1021 is output.
  • an external client or server such as a client installed on the user terminal device or a platform server of the monitoring system.
  • the dome motherboard 101 can send an initialization command to the electronic compass 103 upon initialization; the electronic compass 103 initializes itself in response to the initialization command (eg, by itself) The various configuration parameters are restored to the factory defaults, the measured geomagnetic field data is cleared, etc.).
  • FIG. 1 is only showing the connection relationship between the various components inside the dome machine proposed in the present application, and does not limit the components themselves and the specific mechanical structure and circuit design between them, any composition based on FIG. 1 and The ball machines that connect the various functions to achieve the above various functions belong to the ball machine proposed in the present application.
  • FIG. 2 is a schematic view showing the structure of an embodiment of the ball machine proposed in the present application.
  • the implementation principle of the dome 200 is the same as that of the aforementioned dome 100, and will not be described here.
  • FIG. 2 the specific connection/placement mode between the electronic compass 203 and the components is presented by FIG.
  • the dome board 201 is horizontally placed, the movement 202 is placed above the dome board 201, and the adapter plate 205 is disposed on the horizontal surface of the movement 202, and the electronic compass 203 is placed on the adapter board 205.
  • the communication between the electronic compass 203 and the dome motherboard 201 is achieved by the adapter plate 205 and the movement main plate 204 of the movement 202.
  • the electronic compass 203 transmits the measured geomagnetic data and/or acceleration data to the movement main plate 204 through the interposer 205.
  • the movement main board 204 is used to supply power to the electronic compass 203 and the adapter plate 205, and transmits the received geomagnetic field data and/or acceleration data to the dome main board 201.
  • the dome board 201 can also send a message or command to the electronic compass 203 through the movement main board 204 and the adapter board 205.
  • the electronic compass 203 is placed on a horizontal plane parallel to the horizontal plane of the movement 202 and connected to the movement 202 through the adapter plate 205, so that the electronic compass 203 can be rotated by the random core 202, and the electronic compass 203 and the dome motherboard
  • the communication of 201 is achieved by the interposer board 205 and the movement main board 204.
  • the movement main board 204 is mainly used for controlling image acquisition of the dome lens, and the communication between the movement main board 204 and the dome main board 201 can be communicated through the coaxial I2C; between the movement main board 204 and the adapter board 205 Communicate via an 8-pin socket and cable.
  • the electronic compass 203 can be soldered to the adapter plate 205, which can communicate directly.
  • FIG. 3 is a schematic diagram showing the software system architecture of the ball machine proposed in the present application.
  • the software system architecture of the dome machine includes three levels: an operating system, an underlying driver, and a functional layer.
  • the operating system may employ a LINUX system, and the underlying driver may include an electronic compass driver and a GPS driver.
  • the functional layer may include Compass communication module, geomagnetic data processing module, acceleration data processing module, compass initialization module, display module, GPS communication module and GPS data processing module.
  • the compass communication module is based on an electronic compass drive, and is used to implement a number between an application layer module such as a geomagnetic data processing module, an acceleration data processing module, a compass initialization module, and a display module, and an electronic compass.
  • an application layer module such as a geomagnetic data processing module, an acceleration data processing module, a compass initialization module, and a display module, and an electronic compass.
  • the geomagnetic data processing module, the acceleration data processing module, the compass initialization module and the display module both call the compass communication module when communicating with the electronic compass, and then realize data interaction through the electronic compass driving and the electronic compass.
  • the GPS communication module is based on a GPS driver for implementing data interaction between an application layer module such as a GPS data processing module and a display module and a GPS module, and the GPS data processing module and the display module will invoke GPS communication when communicating with the GPS module.
  • the module implements data interaction with the GPS module via a GPS driver.
  • FIG. 3 is only a basic component of the software system architecture of the ball machine proposed by the present application. According to the implementation requirements, other modules may be added in the function layer and the driver layer to implement corresponding software functions.
  • the present application also proposes a data processing method applied to the main board of the dome. As shown in FIG. 4, the method includes at least the following steps:
  • Step 401 Acquire geomagnetic data and/or acceleration data from an electronic compass.
  • an instruction to measure geomagnetic data and/or acceleration data may be issued to the electronic compass, after which the geomagnetic data and/or acceleration data from the electronic compass is received.
  • the geomagnetic data processing module of FIG. 3 sends an instruction to measure the geomagnetic field data to the electronic compass through the compass communication module and the electronic compass driving, and then receives the geomagnetic field data through the compass communication module and the electronic compass driving; and/ Alternatively, the acceleration data processing module of FIG. 3 sends an instruction to measure the acceleration data to the electronic compass through the compass communication module and the electronic compass drive, and then receives the acceleration data through the compass communication module and the electronic compass drive.
  • Step 402 Determine a north direction according to the received geomagnetic field data from the electronic compass; and/or determine a vibration amplitude of the dome in the specified direction according to the received acceleration data from the electronic compass.
  • step 403 may be further performed: determining the current azimuth of the dome lens according to the north direction.
  • the geomagnetic data processing module in FIG. 3 determines the north direction according to the received geomagnetic field data, and determines the current azimuth of the dome lens according to the north direction; and/or, in FIG.
  • the acceleration data processing module determines the amplitude of the vibration of the dome in the specified direction based on the received acceleration data from the electronic compass.
  • step 404 may be performed: determining whether the amplitude of the vibration of the dome exceeds a predetermined threshold; When a predetermined threshold is exceeded, an alarm message is output, and/or an image currently captured by the dome lens is acquired and the image is output.
  • the step may be performed by the acceleration data processing module in FIG. 3; wherein, when the image is output, if the image needs to be displayed in the screen of the dome camera, the acceleration data processing module may display the image by calling the display module, if The image needs to be sent to an external client or server, and the acceleration data processing module can call the network communication module to send the image.
  • the dome motherboard may further perform step 404: acquiring location information of the dome camera through the GPS module, and outputting the location information and the dome lens obtained by performing step 403.
  • the current azimuth; and/or, the time information in the satellite signal is acquired and parsed by the GPS module, and the time calibration of the dome is performed based on the time information.
  • This step can be performed in parallel with the foregoing steps, and can be performed by the GPS data processing module in FIG. 3; wherein the GPS data processing module can issue commands to the GPS module through the GPS communication module and the GPS driver, and then through the GPS communication module and the GPS driver.
  • the GPS module reads the position information of the dome camera.
  • step 406 may also be performed: in response to an external client or server (eg, installed in the user's terminal device)
  • the adjustment command carrying the specified azimuth sent by the client or the platform server of the monitoring system is controlled by the pan/tilt system of the dome camera according to the specified azimuth angle and the current azimuth angle of the dome lens determined in step 403. Rotate horizontally to adjust the azimuth of the dome lens to the specified azimuth.
  • step 401' may be further performed: performing filtering processing on the geomagnetic field data, and then performing step 402 to determine according to the filtered geomagnetic field data. Refer to the north direction.
  • the electronic compass can be corrected to remove the magnetic field interference caused by the electronic device.
  • the electronic compass is placed on the horizontal surface of the movement or on a horizontal plane parallel to the horizontal plane, and can be horizontally rotated by the horizontal rotation of the random core, and can be measured when it is horizontally rotated with the horizontal rotation of the movement.
  • Geomagnetic data in multiple directions in the horizontal plane is sent to the dome of the dome.
  • the determining, by the dome board in step 402, the processing in the north direction may include: controlling the movement of the movement through the pan/tilt system of the dome to perform horizontal rotation, and receiving the geomagnetic data in multiple directions in the horizontal plane from the electronic compass, according to Correction of the electronic compass by geomagnetic data in multiple directions
  • the magnetic interference parameter is calculated, and the north direction is determined according to the magnetic interference parameter and the geomagnetic field data in multiple directions.
  • the dome motherboard may also perform step 407: determining a current correction state of the correction process performed on the electronic compass in response to a status review command sent by the external client or server, and outputting the determined current correction state.
  • the dome motherboard 500 can include a memory 502, a processor 501, and a bus 503. Processor 501 and memory 502 are interconnected by a bus 503. The processor 501 can implement the various steps performed by the above-described dome motherboard by executing machine executable instructions stored in the memory 502.
  • the dome motherboard 500 can also include a port 504 through which the processor 501 can receive and transmit data for network communication.
  • the electronic compass integrated in the ball machine of the above various examples can obtain the earth magnetic field data and/or acceleration data by utilizing the electronic compass's perception of the earth magnetic field and/or acceleration, thereby automatically determining the north direction and/or the designation.
  • the amplitude of the vibration in the direction so that the performance of the ball machine can be significantly improved.
  • an accurate north direction can be automatically obtained based on the geomagnetic field data. Based on the north direction, the ball machine can more accurately calibrate the ball machine.
  • the orientation of the lens based on the automatically determined amplitude of the vibration in the specified direction, the external client or server can know in time whether the dome is severely impacted, and thus can take remedial measures in time to make the operation efficiency of the system including the dome Upgrade.
  • the current azimuth of the dome lens can be automatically determined based on the automatically determined north direction, the whole process does not require manual operation, and the determined azimuth has high accuracy, so that the external client or server is based on the accuracy. The higher azimuth allows for a more reasonable and accurate operation of the dome, resulting in a significant increase in the operational efficiency of the system incorporating such a dome.
  • the present application also proposes a monitoring system, which may include at least one of the ball machines and platform servers in the above examples, the ball machines are distributed in different geographical locations, and each ball machine can capture video of a certain geographical area around itself.
  • the monitoring screen, the platform server collects the state information of each ball machine through the network and can capture the video monitoring picture captured by the arbitrary ball machine, and the platform server can understand the video monitoring picture of each geographical area through the captured video monitoring picture, and then It can monitor the vast geographical areas (such as: traffic management platform for urban road traffic monitoring, or public security business platform for security area monitoring), platform server based on the collected status information of each ball machine Information can be sent to some or all of the domes to implement control of these domes.
  • vast geographical areas such as: traffic management platform for urban road traffic monitoring, or public security business platform for security area monitoring
  • the monitoring system 600 includes a plurality of domes 601 and a platform server 602. Only three domes 601 are shown in FIG. 6, and any number of domes 601 may be employed in practical applications.
  • Each ball machine 601 includes an electronic compass and a GPS module. In each ball machine 601, after determining the north direction according to the received geomagnetic field data from the local electronic compass, the ball machine further determines the ball machine according to the north direction.
  • the current azimuth of the lens acquires the position information of the dome 601 through the local GPS module, and transmits the position information and the current azimuth of the dome lens to the platform server 602 through the network.
  • the platform server 602 receives the position information and the azimuth angle sent by the respective ball machines 601, and determines whether there is a ball machine 601 that needs to adjust the direction according to the pre-stored electronic map and the received position information and azimuth of each ball machine 601, and determines When there are one or more ball machines 601 that need to adjust the direction, for each ball machine 601 that needs to adjust the direction, an adjustment instruction carrying the specified azimuth is generated, and the generated adjustment instruction is sent to the dome 601;
  • the dome board may further respond to the adjustment command carrying the specified azimuth sent by the platform server 602, and pass the dome 601 according to the specified azimuth and the current azimuth of the dome lens.
  • the pan/tilt system controls the movement to perform horizontal rotation to adjust the azimuth of the dome lens to the specified azimuth.
  • the direction of the dome camera of the dome 601 can be adjusted by sending such an adjustment command to a certain ball machine 601, that is, the monitoring range of the dome 601 is adjusted.
  • the dome camera of the ball machine 601 at a certain intersection is changed from eastward (if the current azimuth is 90 degrees) to northward (if the specified azimuth is 0 degrees). Since the azimuth of the dome lens is determined based on the measured geomagnetic field data and has high accuracy, the platform server 602 can adjust the monitoring range of the dome 601 flexibly, accurately, and efficiently. To meet various monitoring needs.
  • the dome can further transmit the monitored visual sector parameters of the dome 601 to the platform server 602 to determine whether the amplitude of the vibration of the dome 601 in the specified direction exceeds a predetermined threshold.
  • the alarm message is sent to the platform server 602, and/or the image currently captured by the dome lens is acquired and the acquired image is transmitted to the platform server 602.
  • the platform server 602 further receives the monitored visual sector area parameters from each of the domes 601, and determines the ball in response to the received alarm information and/or images from any of the domes 601.
  • the machine 601 is abnormal, and according to the position information of the dome 601, the azimuth angle and the monitoring visual area parameter, and the position information, the azimuth angle and the monitoring visual area parameter of the other ball machines 601 around the position, it is determined that the ball can be replaced. Another ball machine 601 of the machine 601, and determining that the other ball machine 601 is a ball machine 601 that needs to adjust the direction, so that the platform server 602 generates an adjustment instruction for carrying the specified azimuth for the other ball machine 601, The designated azimuth enables the monitoring area of the other dome 601 to cover the monitored area of the abnormally-made dome 601.
  • the monitoring visible sector area parameter of each dome 601 may include: a visible radius, an angle of view, and may further include a magnification amplification parameter, and the visible radius and the angle of view may change according to a change of the magnification amplification parameter, based on These monitoring visual sector area parameters can determine the monitoring area of the dome 601.
  • the platform server 602 can timely discover the abnormality of the ball machine 601, and automatically call other ball machines 601 instead of the ball machine 601, thereby improving the monitoring capability of the monitoring system.
  • the user when applied to the public security service platform, the user can issue an anti-command to each ball machine 601 by operating the platform server 602, so that each ball machine 601 can open the arming function, and use the data measured by the acceleration sensor to detect its horizontal and vertical directions in real time.
  • the vibration amplitude when the vibration amplitude exceeds the normal range, the dome 601 immediately sends an alarm message to the platform server 602, and can send the currently captured picture or video clip; the platform server 602 receives the alarm information from a ball machine 601 and stores it.
  • the picture or the video clip is marked with an abnormal event, and it is determined that the monitoring area near the dome 601 can cover another dome 601 of the monitoring area of the dome 601, and an adjustment command is sent to the other dome 601. It immediately adjusts the lens direction to perform real-time monitoring instead of the dome 601 that issued the alarm message.
  • Figure 7 shows the relationship between the monitoring areas of several adjacent domes. If the dome 701 sends an alarm message and/or image to the platform server 602 when determining that the amplitude of the vibration exceeds a predetermined threshold (ie, when a severe impact is sensed), the platform server 602 can look up the dome 701 and several ball machines 702 around it, The position information, the azimuth angle and the monitoring visual area parameters of 703 and 704 determine the respective sector monitoring areas 711, 712, 713 and 714 of the ball machines 701 to 704, thereby determining which monitoring area of the ball machine and the ball machine 701 The monitoring area 711 overlaps, and for a dome machine whose monitoring area overlaps with the monitoring area 711 of the dome 701, the monitoring area can be covered by the monitoring area 711 of the dome 701 by adjusting the azimuth angle of the dome lens of the dome.
  • a predetermined threshold ie, when a severe impact is sensed
  • the monitoring area 712 of the dome 702 overlaps with the monitoring area 711 of the dome 701, and it can be determined that the monitoring area of the dome 702 can be covered by the dome 701 by adjusting the azimuth of the dome of the dome 702.
  • Monitoring area 711, after which platform server 602 will The adjustment command carrying the specified azimuth is transmitted to the dome 702, so that the dome 702 performs monitoring instead of the dome 701.
  • the platform server 602 can further display an electronic map, display the positions of the respective ball machines 601 and their corresponding azimuths in the electronic map according to the received position information of the respective ball machines 601, and determine one in response to the user operation. Or a plurality of ball machines 601 that need to adjust the direction.
  • the user can intuitively understand the position of each ball 601 and the current azimuth of the dome lens, and thus can conveniently determine which ball machines 601 need to be adjusted according to the monitoring requirements (ie, which ball machines)
  • the azimuth of the 601's dome lens needs to be adjusted). For example, it is determined that the monitoring direction of all the domes 601 on the section A at 9:00-10:00 in the morning should be adjusted to face east (ie, the azimuth of the dome lens is adjusted to 90 degrees).
  • the dome machine in the dome 601 can determine whether the amplitude of the vibration of the dome 601 in the specified direction exceeds a predetermined threshold, and when it is determined that the predetermined threshold is exceeded, send an alarm message and/or the currently captured image to the platform.
  • the server 602; the platform server 602 can further display an electronic map, and display the positions of the respective ball machines 601 and their corresponding azimuths in the electronic map according to the received position information of the respective ball machines 601, and also display the signals from any of the ball machines 601.
  • the above alarm information and in response to a user operation, determines one or more domes 601 that need to be adjusted in direction.
  • the user can intuitively understand the position of each dome 601 and the current azimuth of the dome lens, and can also intuitively know which alarm signals sent by the dome 601, so that it can be conveniently determined according to the monitoring requirements.
  • the monitoring direction of the machine 601 needs to be adjusted, for example, which monitoring directions of the ball machine 601 need to be adjusted to perform monitoring instead of the ball machine 601 that issues the alarm information.
  • the monitoring system can not only control a plurality of domes, but also control a gun-type camera (hereinafter referred to as a "gun"), and the monitoring system can further include a plurality of guns connected to the platform server via a network. machine.
  • the monitoring system 800 includes a plurality of cameras 811, 812, 821, 822, 831, 832 in addition to the platform server 80 and the plurality of domes 81-83.
  • the dome board can further transmit the monitoring visual sector area parameters of the dome to the platform server 80.
  • Each of the 811, 812, 821, 822, 831 or 832 includes a GPS module and an electronic compass, obtains its own position information through its own GPS module, and determines the north direction according to the geomagnetic field data measured by its own electronic compass, and According to the direction of the north finger, determine its current azimuth (ie, the azimuth of its own lens), and set its own position information, square
  • the loft and monitoring visual sector area parameters are sent over the network to the platform server 80.
  • the platform server 80 further receives the monitored visual sector parameters from the various domes 81-83, receiving their respective positional information, azimuth and monitoring visual sector from each of the bolts 811, 812, 821, 822, 831 and 832. parameter.
  • the platform server 80 can configure the correspondence between each ball machine and each of the guns according to the position information of each of the ball machines 81-83 and the respective guns 811, 812, 821, 822, 831, and 832, wherein each ball The machine corresponds to at least two guns adjacent to each other in the electronic map.
  • the dome 81 corresponds to the bolts 811 and 812 near its position
  • the dome 82 corresponding to the bolts 821 and 822 near its position
  • the dome 83 corresponding to the bolts 831 and 832 near its position.
  • Each of the 811, 812, 821, 822, 831 or 832 transmits its own status information to the platform server 80 in real time.
  • the platform server 80 further receives status information from the respective horns 811, 812, 821, 822, 831, and 832, and determines whether there is a failure of the rifle based on the received status information, when determining any of the 811, 812, 821, 822
  • 831 or 832 fails, according to the position information of the gun 811, 812, 821, 822, 831 or 832, the azimuth angle and the monitoring visual area parameter, and the position information of each ball machine around the position, the ball machine Azimuth of the lens and monitoring visual area parameters, determining one or more domes that can replace the failed gun and determining that it is a dome that needs to be adjusted, and then the platform server 80 will give the one or more The dome machine transmits an adjustment command carrying a specified azimuth, wherein an adjustment command for a ball machine capable of replacing any of
  • the current monitoring area of the dome camera can be determined according to the position information of a dome camera, the azimuth angle of the dome camera, and the monitoring visual area parameter. Similarly, according to the position information and orientation of a gun machine.
  • the angle and monitoring visible area parameters can also determine the current monitoring area of the gun. For a faulty gun, it can be determined according to its current monitoring area and the current monitoring area of one or more domes around it, which monitoring area of the dome overlaps with the monitoring area of the gun, for its monitoring area
  • the ball machine overlapping the monitoring area of the gun can adjust the azimuth of the dome lens of the dome to cover the monitoring area of the gun.
  • the platform server 80 can further display an electronic map and display the respective guns 811, 812, 821 in an electronic map according to the received location information of the respective guns 811, 812, 821, 822, 831, and 832.
  • One or more domes 81, 82 and/or 83 are examples of the selected guns 811, 812, 821, 822, 831, and/or 832.
  • the platform server 80 can further display the correspondence between the various domes 81-83 and the respective guns 811, 812, 821, 822, 831, and 832, wherein each dome corresponds to an electronic map. Positioning at least two guns adjacent thereto; when it is determined that a gun has failed, further displaying status information of each of the failed guns 811, 812, 821, 822, 831, and/or 832 and responding to user operations The faulty guns 811, 812, 821, 822, 831, and/or 832 selected by the user are determined and one or more domes 81, 82, and/or 83 that can replace the selected gun are determined.
  • the icons of the respective guns can be respectively displayed at the positions where the guns are located in the electronic map, and the respective status information of each of the guns in the electronic map can be displayed next to the icons of the faulty guns.
  • the platform server 602 or 80 if the platform server 602 or 80 generates a plurality of adjustment instructions carrying the specified azimuth within a predetermined time period, the generated plurality of adjustment instructions may be batch sent to the plurality of domes. With this technical solution, the operating efficiency of the monitoring system can be further improved.
  • the ball machine capable of replacing the abnormality or the failure may be automatically determined according to a preset algorithm.
  • the ball machine of the gun machine can also display the abnormally shaped ball machine or the malfunctioning machine in the electronic map, the alternative ball machine around it and the monitoring area of the ball machine and the gun machine. Parameters (such as direct display of their current monitoring area, or display their lens azimuth and monitoring visual area parameters, etc.), the user can choose from the alternative dome displayed by the platform server to replace the exception The ball machine or the ball machine of the malfunctioning machine.
  • different determination methods can be adopted according to different monitoring requirements.
  • the monitoring system combined with map information is a perceptual network.
  • the sensing points (ball machines and/or guns) in the sensing network are no longer independent entities, but a linked whole.
  • Each sensing point can Perceive GPS positioning information, geomagnetic data and acceleration data, report their position information, lens azimuth, monitor visible area parameters, alarm information indicating impact, etc.
  • the platform server can issue operation instructions to one or some sensing points according to the information reported by each sensing point, thereby better meeting the monitoring requirements and operating efficiency.
  • the monitoring system proposed in the present application is applied to the traffic management service platform, the ball machine and the gun machine work together as a sensing point to form a sensing network.
  • Figure 9 shows a specific application scenario. As shown in Fig. 9, at a certain intersection, guns 911, 912, 913 and 914 are respectively arranged in the direction of the four roads, and a dome 91 is installed in the middle of the intersection.
  • a certain gun such as the gun 911
  • the dome corresponding corresponding to the gun can be determined.
  • the ball machine is a ball machine 91, and can determine the current monitoring area of the malfunctioning gun machine 911 and the current monitoring area of the ball machine 91 according to the azimuth angle and the monitoring visual area parameters received from the respective ball machines and the respective gun machines, and further Determining how to adjust the azimuth of the dome lens of the dome 91 is such that the monitoring area of the dome 91 covers the current monitoring area of the failed 911, i.e., the adjustment command to be delivered to the dome 91 is determined to be carried.
  • the size of the azimuth is specified, after which the platform server issues an adjustment command to the dome 91, so that the dome 91 rotates the dome lens to the specified azimuth according to the adjustment command, instead of performing the monitoring of the malfunctioning machine 911.
  • the platform server can determine the position information reported by each sensing point (ball machine and gun) in the sensing network formed by the ball machine and the gun machine, the azimuth of the lens, the monitoring visual area parameter, and the like. It can replace the ball machine that monitors any machine that has failed, and can automatically adjust the azimuth of the ball machine lens of the ball machine, which significantly improves the operation efficiency and accuracy of the monitoring system.
  • the location information sent by the dome to the platform server may be latitude and longitude information.
  • the platform server may further determine the position of the dome camera in the electronic map according to the latitude and longitude information of any dome camera, and then according to the address information and/or road traffic information around the location in the electronic map and the dome lens from the dome camera Azimuth, determining address information and/or road traffic information corresponding to the monitoring area of the dome, and transmitting the determined address information and/or road traffic information corresponding to the monitoring area of the dome to the ball
  • the dome board can further respond to the address information and/or road traffic information corresponding to the monitoring area of the dome machine sent by the platform server, and the monitoring screen outputted thereon (such as the displayed monitoring The address information and/or road traffic information is displayed in the screen).
  • the platform server can according to the latitude and longitude information of the dome camera and the dome lens thereof.
  • the azimuth determines the address information corresponding to its monitoring area (the address of building C) and/or road traffic information (road A or road B 200 meters east, etc.), and then distributes the address information and/or road traffic information.
  • the dome can display the address information and/or road traffic information in the live view screen displayed by itself. In this way, the user can more intuitively understand the monitoring direction and monitoring range of the dome camera through the monitoring screen displayed by the dome camera, which is convenient for the user to further operate the dome camera.
  • the present application also proposes a control method for the aforementioned ball machine, which is applied to a platform server in the monitoring system. As shown in FIG. 10, the method includes the following steps:
  • Step 1001 Receive the position information and the azimuth angle sent by each ball machine.
  • Step 1002 Determine whether there is a ball machine that needs to adjust the direction according to the pre-stored electronic map and the received position information and azimuth of each ball machine.
  • Step 1003 When it is determined that there are one or more ball machines that need to adjust the direction, for each ball machine that needs to adjust the direction, an adjustment instruction carrying the specified azimuth is generated, and the generated adjustment instruction is sent to the dome machine,
  • the dome board of the dome camera further controls the movement of the movement through the pan/tilt system of the dome camera according to the specified azimuth angle of the adjustment instruction received and the current azimuth angle of the dome camera to The azimuth is adjusted to the specified azimuth.
  • the platform server can determine whether there is a ball machine that needs to adjust the direction according to the position information and the azimuth angle of each ball machine, and the ball machine automatically adjusts the camera lens to the specified azimuth by issuing an adjustment instruction, thereby realizing Automatic and efficient control of the various domes in the monitoring system.
  • the dome can further transmit the monitored visual sector area parameters of the dome to determine whether the amplitude of the vibration of the dome in the specified direction exceeds a predetermined threshold; At the threshold, an alarm message is sent, and/or an image currently captured by the dome lens is acquired and the image is transmitted.
  • the platform server can further perform the following steps:
  • Step 1004 Receive the monitored visual sector area parameters from each dome.
  • Step 1005 In response to the alarm information and/or image received from any of the domes, it is determined that the dome has an abnormality.
  • determining whether there is a ball machine that needs to adjust the direction specifically includes: position information, azimuth angle, and monitoring visual area parameter according to the abnormality of the ball machine, and position information and orientation of other ball machines around the position. Angle and monitor the visible area parameter, determine another ball machine that can replace the abnormally generated ball machine, and determine that the other ball machine is a ball machine that needs to adjust the direction.
  • the specified azimuth enables the monitoring area of the other dome to cover the monitoring area of the abnormally generated dome.
  • the platform server can know in time which ball machine has an abnormality (such as being severely impacted), and can automatically control another ball machine to replace the abnormal ball machine to implement monitoring, thereby achieving more efficient ball machine. Control and ensure the monitoring performance of the monitoring system.
  • the dome in any of the domes, can further transmit the monitored visual sector parameters of the dome.
  • the platform server can further perform the following processing:
  • Step 1006 Receive monitoring visual sector area parameters from each dome.
  • Step 1007 Receive respective position information, azimuth angle, and monitoring visual sector area parameters from each gun machine; wherein each gun machine includes a GPS module and an electronic compass, and obtains its own position information through its own GPS module, according to itself The geomagnetic data measured by the electronic compass determines the direction pointing to the north pole and determines its current azimuth according to the direction pointing to the north pole.
  • Step 1008 Receive their respective real-time status information from each of the guns.
  • Step 1009 Determine whether a gun has failed according to the received status information.
  • determining whether there is a ball machine that needs to adjust the direction specifically includes: when determining that any of the bolts fails, according to the position information of the gun, the azimuth angle, and the monitoring visible area parameters and the positions around the same.
  • the position information, the azimuth angle, and the monitored visual area parameters of the dome determine one or more domes that can replace the failed gun and determine that it is a dome that needs to be adjusted.
  • step 1003 when an adjustment command carrying a specified azimuth is generated for a ball machine capable of replacing any of the failed guns, the specified azimuth enables the monitoring area of the dome to cover the failed gun.
  • the monitoring area of the machine when an adjustment command carrying a specified azimuth is generated for a ball machine capable of replacing any of the failed guns, the specified azimuth enables the monitoring area of the dome to cover the failed gun. The monitoring area of the machine.
  • the platform server can detect the faulty gun in time and can automatically control it.
  • a ball machine is used instead of the faulty gun to implement monitoring, which can achieve more efficient control of the ball machine and ensure the monitoring performance of the monitoring system.
  • the platform server when the platform server generates a plurality of adjustment instructions in a predetermined period of time, the generated plurality of adjustment instructions may be batch-issued to the plurality of domes.
  • the location information transmitted by the dome is latitude and longitude information.
  • the platform server can further perform the following steps:
  • Step 1010 Determine the position of the dome in the electronic map according to the latitude and longitude information of any dome.
  • Step 1011 Determine address information and/or road traffic information corresponding to the monitoring area of the dome camera according to address information and/or road traffic information around the location in the electronic map and an azimuth from the dome camera.
  • Step 1012 Send the determined address information and/or road traffic information corresponding to the monitoring area of the dome to the dome, so that the dome of the dome in the dome displays the monitored screen. Address information and/or road traffic information.
  • the platform server can provide the ball machine with address information and/or road traffic information corresponding to the monitoring area of the ball machine, which can better meet the monitoring requirements of the ball machine user, and facilitate the user to further operate according to the monitoring screen. To improve the user experience.
  • the present application further provides a platform server.
  • the platform server 1100 includes at least an information collection module 111, a determination module 112, and an instruction delivery module 113.
  • the information collecting module 111 is configured to receive various information (including: position information, azimuth, monitoring visual area parameters, alarm information, images, etc.) from each ball machine and/or each gun machine in the monitoring system, that is, The aforementioned steps 1001, 1004, 1006, 1007, 1008 and the like are performed.
  • the determining module 112 is configured to determine whether there is a ball machine that needs to adjust the direction according to various information received by the information collecting module 111, that is, the foregoing steps 1002, 1005, 1009, etc.
  • the instruction delivery module 113 is configured to target The determining, by the determining module 112, the ball machine that needs to adjust the direction generates and sends an adjustment command that carries the specified azimuth, that is, the foregoing step 1003 can be performed.
  • the specific implementation method has been described above, and details are not described herein again.
  • the platform server 1100 can further include a user interface module 114.
  • the determining module 112 can display an alternate dome camera to the user through the user interface module 114 when determining the dome machine that needs to adjust the direction, and then pass through the user interface module 114.
  • the user's operation instruction is received, and the ball machine selected by the user is determined and determined as the dome machine that needs to be adjusted in response to the user's operation.
  • the determining module 112 may display an electronic map through the user interface module 114, display the position of each ball machine and its corresponding azimuth in the electronic map according to the received position information of each ball machine, and determine one in response to the user operation. Or multiple ball cameras that need to be adjusted.
  • the determining module 112 may display an electronic map through the user interface module 114, and display the position of each ball machine and its corresponding azimuth in the electronic map according to the received position information of each ball machine, and also display any ball from any ball.
  • the determining module 112 can display the electronic map through the user interface module 114, and display the position of each gun in the electronic map according to the received position information of each gun; when it is determined that the gun camera fails, The electronic map displays status information of each failed gun, determines a faulty gun selected by the user in response to a user operation, and determines one or more domes that can replace the selected gun.
  • the judging module 112 can display the correspondence between each ball machine and each gun machine through the user interface module 114, wherein each ball machine corresponds to at least two guns adjacent to the position in the electronic map; When it is determined that there is a failure of the bolt, the state information of each failed gun is further displayed, and the faulty gun selected by the user is determined in response to the user operation, and one or more of the selected guns can be determined to be replaced. Ball machine.
  • the platform server 1100 can further include a location information processing module 115 and an information delivery module 116.
  • the location information processing module 115 may determine the address information corresponding to the monitoring area of the dome camera according to the latitude and longitude information and the azimuth angle of any of the domes received by the information collection module 111. / or road traffic information, the specific determination method has been described in the foregoing, and will not be described here.
  • the information sending module 116 may send the address information and/or road traffic information determined by the location information processing module 115 to the corresponding dome.
  • the platform server 1100 can include a memory 1102, a processor 1101, and a bus 1103.
  • the processor 1101 and the memory 1102 are interconnected by a bus 1103.
  • the processor 1101 can implement various processes performed by the platform server 1100 described above by executing machine executable instructions stored in the memory 1102.
  • the platform server 1100 can further include a port 1104, and the processor 1101 can receive and send data through the port 1104 to implement network communication (eg, receiving various information from each ball machine and/or the gun in the monitoring system, and transmitting the information to the ball machine) Adjust instructions, address information and/or road traffic information, etc.).
  • the various functional modules 111-116 in the platform server 1100 described above may be instruction modules in the memory 1102, such that when the processor 1101 executes any of the instruction modules (ie, any of the modules 111-116) in the memory 1102, The corresponding function or processing step of the instruction module can be realized when the instruction is executed.
  • each instance of the present application can be implemented by a data processing program executed by a data processing device such as a computer.
  • the data processing program constitutes the present application.
  • a data processing program usually stored in a storage medium is executed by directly reading a program out of a storage medium or by installing or copying the program to a storage device (such as a hard disk and or a memory) of the data processing device. Therefore, such a storage medium also constitutes the present application.
  • the storage medium can use any type of recording method, such as paper storage medium (such as paper tape, etc.), magnetic storage medium (such as floppy disk, hard disk, flash memory, etc.), optical storage medium (such as CD-ROM, etc.), magneto-optical storage medium ( Such as MO, etc.).
  • the present application also provides a storage medium in which is stored a data processing program for performing any of the foregoing examples of the methods provided herein.
  • the embodiment of the present application further provides an application program for executing a control method of the smart spherical camera provided by the embodiment of the present application at runtime.
  • the smart dome camera further includes a global positioning system GPS module, wherein the dome board determines the current azimuth of the dome lens according to the direction pointing to the north pole after determining the direction pointing to the north pole based on the geomagnetic field data from the electronic compass.
  • the GPS module acquires location information of the smart dome camera; the control method is applied to a platform server, and the control method includes:
  • the dome motherboard further transmits the monitoring visual sector parameter of the smart dome camera to determine the vibration amplitude of the smart dome camera in the specified direction. Whether the predetermined threshold is exceeded; when it is determined that the predetermined threshold is exceeded, the alarm information is sent, and/or the image currently captured by the dome lens is acquired and the image is sent; the control method executed by the application at runtime further includes:
  • any smart dome camera determined to be abnormal based on the position information, azimuth and monitoring visual area parameters of the smart dome camera, and position information, azimuth and position of other smart dome cameras located around it Monitoring the visible area parameter, determining another smart dome camera capable of replacing the smart dome camera, and determining that another smart dome camera is a smart dome camera that needs to adjust the direction;
  • the specified azimuth enables the monitoring area of another smart dome camera to cover the monitoring area of the abnormally-shaped smart dome camera.
  • the dome motherboard further transmits a monitoring visual sector area parameter of the smart dome camera; and the control method executed by the application program at runtime Further includes:
  • each gun type camera includes a GPS module and an electronic compass, and obtains its own position information through its own GPS module, according to its own Geomagnetic field data obtained by electronic compass measurement In the direction of the North Pole, and determine its current azimuth based on the direction pointing to the North Pole;
  • the specified azimuth enables the surveillance area of the smart dome camera to cover the failed gun The surveillance area of the camera.
  • the platform server in the control method executed by the application program during runtime, when the platform server generates a plurality of adjustment instructions within a predetermined time period, the generated plurality of adjustment instructions are batch-sent.
  • the location information sent by the smart dome camera is latitude and longitude information; and the control method executed by the application program at runtime further includes:
  • the embodiment of the present application further provides a storage medium for storing an application for executing a control method of the smart spherical camera provided by the embodiment of the present application at runtime.
  • the smart dome camera also includes a global positioning system GPS module, wherein the dome motherboard After determining the direction pointing to the north pole according to the geomagnetic field data from the electronic compass, further determining the current azimuth of the dome lens according to the direction pointing to the north pole, acquiring the position information of the smart dome camera through the GPS module; the control method is applied to the platform Server, the control method includes:
  • an adjustment instruction carrying the specified azimuth is generated, and the generated adjustment is sent to the smart dome camera.
  • a command for the dome board of the smart dome camera to further rotate horizontally according to the specified azimuth angle of the received adjustment command and the current azimuth of the dome camera to control the movement through the pan/tilt system to The azimuth of the lens is adjusted to the specified azimuth.
  • the dome motherboard further transmits the monitoring visual sector parameter of the smart dome camera to determine the vibration amplitude of the smart dome camera in the specified direction. Whether the predetermined threshold is exceeded; when it is determined that the predetermined threshold is exceeded, the alarm information is sent, and/or the image currently captured by the dome lens is acquired and the image is sent; the control method executed by the application stored by the storage medium at the runtime further includes:
  • any smart dome camera determined to be abnormal based on the position information, azimuth and monitoring visual area parameters of the smart dome camera, and position information, azimuth and position of other smart dome cameras located around it Monitoring the visible area parameter, determining another smart dome camera capable of replacing the smart dome camera, and determining that another smart dome camera is a smart dome camera that needs to adjust the direction;
  • the specified azimuth enables the monitoring area of another smart dome camera to cover the monitoring area of the abnormally-shaped smart dome camera.
  • the dome motherboard further transmits a monitoring visual sector area parameter of the smart dome camera;
  • the storage medium stores the application during operation
  • the control method implemented further includes:
  • each gun type camera includes a GPS module and an electronic compass, and obtains its own position information through its own GPS module, according to its own
  • the geomagnetic field data measured by the electronic compass determines the direction pointing to the north pole and determines its current azimuth according to the direction pointing to the north pole;
  • the specified azimuth enables the surveillance area of the smart dome camera to cover the failed gun The surveillance area of the camera.
  • the platform server in the control method executed by the storage medium stored in the storage medium, when the platform server generates a plurality of adjustment instructions within a predetermined time period, the generated plurality of adjustments are batchly sent. instruction.
  • the location information sent by the smart dome camera is latitude and longitude information; and the control method executed by the application stored by the storage medium at runtime further includes:
  • the azimuth of the dome camera determines the address information and/or road traffic information corresponding to the monitoring area of the smart dome camera;
  • a storage medium embodiment since it is basically similar to the method embodiment, the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请提供了一种智能球型摄像机,至少包括:机芯、云台系统和球机主板;机芯中包括球机镜头,球机镜头的方位角随机芯的水平转动而变化,所述云台系统用于在球机主板的控制下带动机芯做水平转动;智能球型摄像机进一步包括:电子罗盘;其中,电子罗盘,测量得到地磁场数据和/或指定方向上的加速度数据,并发送地磁场数据和/或加速度数据给球机主板;球机主板,根据接收到的来自电子罗盘的地磁场数据确定指向北极的方向;和/或,根据接收到的来自电子罗盘的加速度数据确定智能球型摄像机在指定方向上的振动幅度。本申请还提出了相应的监控系统和控制方法。本申请提供的智能球型摄像机能够自动确定有关方位和/或振动幅度的状态参数。

Description

智能球型摄像机、监控系统及控制方法
本申请要求于2015年07月29日提交中国专利局、申请号为201510455470.1、发明名称为“智能球型摄像机、监控系统及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及视频监控技术领域,尤其涉及智能球型摄像机、监控系统及控制方法。
背景技术
智能球型摄像机,是目前视频监控领域广泛应用的产品,适于对各种区域进行监控。智能球型摄像机通常至少包括:球机主板、云台系统和带有球机镜头的一体机机芯。其中,云台系统是指电机带动的旋转部分;机芯在云台系统的带动下可以做水平转动,进而改变球机镜头的方位角;球机主板属于主控核心部件,其包含处理器(processor)和存储器(memory),处理器通过执行存储器中的指令可以实现各种功能,比如:对云台系统的电机加以控制,也可以对机芯的球机镜头所采集的图像进行处理。
发明内容
根据本申请的一个方面,提供了一种智能球型摄像机,至少包括:机芯、云台系统和球机主板;所述机芯中包括球机镜头,所述球机镜头的方位角随所述机芯的水平转动而变化,所述云台系统用于在所述球机主板的控制下带动所述机芯做水平转动;所述智能球型摄像机进一步包括:电子罗盘;所述电子罗盘,测量得到地磁场数据和/或指定方向上的加速度数据,并发送所述地磁场数据和/或所述加速度数据给所述球机主板;所述球机主板,根据来自所述电子罗盘的所述地磁场数据确定指向北极的方向并将其作为标定所述球机镜头的方位角的基准;和/或,根据来自所述电子罗盘的所述加速度数据确定所述智能球型摄像机在所述指定方向上的振动幅度。
根据本申请的另一个方面,提供了一种监控系统,其包括至少一个前述 的智能球型摄像机和平台服务器;每一智能球型摄像机还包括全球定位系统GPS模块,其中,所述球机主板当根据来自所述电子罗盘的所述地磁场数据确定所述指向北极的方向之后,进一步根据所述指向北极的方向确定所述球机镜头当前的方位角,通过所述GPS模块获取该智能球型摄像机的位置信息,并将所述位置信息和所述球机镜头当前的方位角发送给所述平台服务器;所述平台服务器,接收各个智能球型摄像机发送的位置信息及所述方位角,根据预先保存的电子地图以及接收到的各个智能球型摄像机的所述位置信息和所述方位角确定是否有需要调整方向的智能球型摄像机,并在确定有一个或多个所述需要调整方向的智能球型摄像机时,针对每一所述需要调整方向的智能球型摄像机,生成携带指定方位角的调整指令,并向该智能球型摄像机发送所生成的所述调整指令;在每一智能球型摄像机中,所述球机主板进一步响应于所述平台服务器发送的携带指定方位角的调整指令,根据所述指定方位角以及所述球机镜头当前的方位角,通过所述智能球型摄像机的云台系统控制所述机芯进行水平转动,以将所述球机镜头的方位角调整到所述指定方位角。
根据本申请的另一个方面,提供了一种针对前述智能球型摄像机的控制方法,所述智能球型摄像机还包括全球定位系统GPS模块,其中,所述球机主板当根据来自所述电子罗盘的所述地磁场数据确定所述指向北极的方向之后,进一步根据所述指向北极的方向确定所述球机镜头当前的方位角,通过所述GPS模块获取该智能球型摄像机的位置信息;该方法应用于所述平台服务器,包括:接收来自各个智能球型摄像机的所述位置信息及所述方位角;根据预先保存的电子地图以及接收到的来自各个智能球型摄像机的所述位置信息和所述方位角确定是否有需要调整方向的智能球型摄像机;在确定有一个或多个所述需要调整方向的智能球型摄像机时,针对每一所述需要调整方向的智能球型摄像机,生成携带指定方位角的调整指令,并向该智能球型摄像机发送所生成的所述调整指令,以使该智能球型摄像机的所述球机主板进一步根据所收到的调整指令中的所述指定方位角以及所述球机镜头当前的方位角,通过所述云台系统控制所述机芯进行水平转动,以将所述球机镜头的方位角调整到所述指定方位角。
根据本申请的另一个方面,提供了一种应用程序,所述应用程序用于在运行时执行针对上述智能球型摄像机的控制方法。
根据本申请的另一个方面,提供了一种存储介质,所述存储介质用于存储应用程序,所述应用程序用于执行针对上述智能球型摄像机的控制方法。
本申请提供的智能球型摄像机能够感知到地磁场数据和/或加速度数据,进而能够自动确定指向北极的方向和/或振动幅度等状态参数,能够减少使用过程中的人工操作,并能及时、准确的获得这种状态参数,使得智能球型摄像机的性能得以改善。
本申请提供的监控系统能够利用各智能球型摄像机基于地磁场数据自动确定的方位角等信息对各智能球型摄像机的球机镜头方位角进行及时、准确的操控,使得监控系统的工作效率得以提升。
本申请提供的对于智能球型摄像机的控制方法能够利用各智能球型摄像机基于地磁场数据自动确定的球机镜头的方位角等信息对各智能球型摄像机的监控方位进行及时、准确的操控,使得平台服务器的工作效率以及准确度得以提升,还能使整个监控系统的监控性能得以改善。
本申请提供的应用程序能够利用各智能球型摄像机基于地磁场数据自动确定的球机镜头的方位角等信息对各智能球型摄像机的监控方位进行及时、准确的操控,使得平台服务器的工作效率以及准确度得以提升,还能使整个监控系统的监控性能得以改善。
本申请提供的存储介质能够利用各智能球型摄像机基于地磁场数据自动确定的球机镜头的方位角等信息对各智能球型摄像机的监控方位进行及时、准确的操控,使得平台服务器的工作效率以及准确度得以提升,还能使整个监控系统的监控性能得以改善。
附图说明
通过参考附图会更加清楚地理解本申请的特征和优点,附图是示意性的而不应理解为对本申请进行任何限制,在附图中:
图1为本申请提出的智能球型摄像机的组成及连接关系示意图;
图2为本申请提出的智能球型摄像机一具体实例的结构示意图;
图3为本申请提出的智能球型摄像机的软件系统构架示意图;
图4为本申请提出的应用于智能球型摄像机中球机主板的数据处理方法的流程图;
图5为本申请提出的智能球型摄像机中球机主板的组成结构图;
图6为本申请提出的监控系统的组成结构图;
图7为本申请提出的监控系统中各智能球型摄像机的监控区域示意图;
图8为本申请提出的监控系统一实例的组成结构图;
图9为本申请提出的监控系统一应用场景示意图;
图10为本申请提出的针对上述智能球型摄像机的控制方法的流程图;
图11为本申请提出的上述监控系统中平台服务器的组成结构图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本申请进一步详细说明。
本申请的发明人在研究中发现,现有的智能球型摄像机还无法自动获得一些状态参数,如方向、加速度等,这样就不能及时、准确地判断自身当前的状态,如球机镜头的方位角、是否受到撞击等。
具体的,用户在安装智能球型摄像机时需要手动设置指向北极的方向(也称为零限位角的位置),这样,球机主板会以该指向北极的方向为基准来标定球机镜头的方位角。如果智能球型摄像机被移动了,用户还要手动设置该指向北极的方向。然而,手动设置的准确度不高,进而会影响到所标定的球机镜头的方位角的准确度,同时用户操作的复杂度也较高。
另外,智能球型摄像机在使用过程中可能受到撞击进而不能正常实施监控,比如在犯罪现场或车祸现场,智能球型摄像机可能被人为或意外的破坏,但是智能球型摄像机本身无法上报与这种撞击相关的参数,目前只能人为去发现这种异常情况,处理效率非常低。
本申请在智能球型摄像机中整合电子罗盘,结合电子罗盘对于地磁场数据和/或重力加速度的感知能力,自动确定指向北极的方向和/或在指定方向上的振动幅度,整个过程无需人工参与并且能保证准确度和实时性。
为方便描述,以下统一将智能球型摄像机简称为“球机”,将指向北极的方向简称为“指北方向”。
图1示出了本申请提出的球机内部的组成及连接关系示意图。如图1所示,球机100至少包括:球机主板101和机芯102;机芯102中包括球机镜头1021,球机镜头1021的方位角随机芯102的水平转动而变化。这里,球机100还包括云台系统104,球机主板101通过云台系统104来控制机芯102的水平转动,云台系统104在球机主板101的控制下通过自身电机来带动旋转部件转动进而带动机芯102作水平转动。
球机100还包括:电子罗盘103,其测量得到地磁场数据和/或指定方向上的加速度数据,并发送测量得到的地磁场数据和/或加速度数据给球机主板101。这里,电子罗盘103中带有磁传感器和重力加速度传感器(G-sensor),其中,磁传感器可以测量周围地球磁场强度而得到地磁场数据,该地磁场数据可包括至少一个采样点的地磁场强度数据,每一采样点的地磁场强度数据可包括在预定的二维或三维坐标系中各维方向上的地磁场强度分量;重力加速度传感器可以感知自身所在物体在加速过程中所受到的加速力,进而可以测量得到加速度数据,该加速度数据可包括在预定的二维或三维坐标系中各维方向上的加速度分量。电子罗盘103可摆放在球机100中的任何位置,其可被置于一旋转轴之上以便在该旋转轴的带动下而旋转,该旋转轴可以为在球机100中新设置的也可为球机100中现有的可作为旋转轴的部件,比如机芯102。
球机主板101,根据接收到的来自电子罗盘103的地磁场数据确定指北方向,并将其作为标定球机镜头1021的方位角的基准;和/或,根据接收到的来自电子罗盘103的加速度数据确定球机100在该指定方向上的振动幅度。
这里,所谓的指北方向也可称为磁北极方向,根据电子罗盘103收集的多个采样点的地磁场数据,球机主板101可通过数据建模计算各个采样点的方位角,再根据方位角为零的采样点的方位确定的指北方向,该指北方向可以为带动电子罗盘103做水平转动的旋转轴的一个角度值,同时,球机镜头1021是在机芯102的带动下进行水平转动的,机芯102的水平转动也具有角度值,可以用机芯102水平转动的角度值来标定球机镜头1021朝向,此外, 机芯102是在云台系统104的带动下进行水平转动的,云台系统104的旋转部件的水平转动也具有角度值,然而,电子罗盘103的旋转轴做水平转动的零角度位置、机芯102做水平转动的零角度位置以及云台系统104的旋转部件做水平转动的零角度位置这三者所代表的方向不一定相同,但它们之间任两者之间的偏移量(比如角度差)是可以预设在球机主板101中并且是固定的,所以,球机主板101根据代表指北方向的角度值、代表球机镜头1021朝向的角度值、预设的电子罗盘103的旋转轴的零角度位置与机芯102的零角度位置之间的偏移量可以确定球机镜头1021朝向与指北方向之间的夹角,即球机镜头1021的方位角。这里,若电子罗盘103设置在机芯102的水平面上或者与该水平面相平行的一水平面上,则确定上述方位角会更为简单,因电子罗盘103的旋转轴可以为机芯102,则根据代表指北方向的角度值和代表球机镜头1021朝向的角度值即可确定上述方位角。
另外,球机主板101如果接收到的来自电子罗盘103的加速度数据,则可根据此加速度数据确定在指定的一个或多个方向上的振动幅度,比如在水平方向和/或垂直方向上的振动幅度。
在一实例中,球机主板101当根据来自电子罗盘103的地磁场数据确定了指北方向之后,可进一步根据该指北方向确定球机镜头1021当前的方位角。
在一个实例中,球机主板101可进一步确定球机100在指定方向上的振动幅度是否超过预定阈值。当确定在指定方向上的振动幅度超过预定阈值时,球机主板101可输出报警信息,和/或,获取球机镜头1021当前拍摄到的图像(图片或一段视频)并输出该图像。这里,球机主板101确定的如果是多个方向上的振动幅度,可当任一方向上的振动幅度超过预定阈值时输出报警信息和/或上述图像,或者当各个方向上的振动幅度均超过预定阈值时输出报警信息和/或上述图像。另外,球机主板101可将上述报警信息和/或图像输出到本地(比如:将报警信息和/或图像显示在球机100的显示屏幕上、发出声音报警信息等),也可将其输出到外部的客户端(比如:通过网络将报警信息和/或图像发送到用户的终端设备中安装的客户端),还可以将其输出到外部的服务器(比如:通过网络将报警信息和/或图像发送到监控系统的平台服务器)等等,总之,根据不同的需求,可以采用不同的输出方式。
在一实例中,球机100可进一步包括全球定位系统(GPS)模块105,该GPS模块105可以独立设置在球机100中,也可集成在球机100中的任一其它部件中。球机主板101进一步通过GPS模块105获取球机100的位置信息(如经纬度地理位置信息),并输出该位置信息以及所确定的球机镜头1021当前的方位角;和/或,球机主板101进一步通过GPS模块105获取并解析卫星信号中的时间信息,并根据该时间信息进行时间校准。这里,球机主板101可将上述位置信息和方位角输出到外部的客户端(比如:通过网络发送到用户的终端设备中安装的客户端),还可以将其输出到外部的服务器(比如:通过网络发送到监控系统的平台服务器)等等,总之,根据不同的需求,可以采用不同的输出方式。这样,用户通过终端设备或者在服务器端可以了解到球机100的位置及其球机镜头1021的方位角,以便更好的管理和调整球机100,比如,根据上述的位置信息和方位角可以及时发现球机100在此位置下其球机镜头1021的朝向是否合适或者是否能够满足监控需要,如果发现不合适或者不能满足监控需要,就可以及时调整球机镜头1021的方位角。
在一实例中,球机主板101可进一步响应外部客户端或者服务器发送的携带指定方位角的调整指令(比如:用户通过终端设备上安装的客户端发送的调整指令或者监控系统的平台服务器下发的调整指令),根据该指定方位角以及球机镜头1021当前的方位角,通过云台系统104控制机芯102进行水平转动,以将球机镜头1021的方位角调整到该指定方位角。
在一实例中,球机主板101可进一步对从电子罗盘103接收到的地磁场数据做滤波处理,以去除其中的异常值,再根据滤波后的地磁场数据确定上述指北方向。
电子设备表面地磁场数据的测量易受到电子设备本身的干扰,所谓的磁场干扰是指由于具有磁性物质或者可以影响局部磁场强度的物质存在,使得磁传感器所放置位置上的地球磁场发生了偏差。
有鉴于此,在一实例中,球机主板101可以通过对测量得到的地磁场数据作校正处理,来去除球机100内电路板等带来的磁场干扰,使所确定的指北方向更准确。其中,电子罗盘103被置于机芯102的水平面上或者与该水平面平行的水平面上,并随机芯102的水平转动而做水平旋转。电子罗盘103, 在随机芯102的水平转动而做水平旋转时可测量得到当前自身所在水平面中多个方向上的地磁场数据并发送这些地磁场数据给球机主板101。球机主板101在准备接收地磁场数据时,可通过云台系统104控制机芯102做水平转动,进而从电子罗盘103接收到多个方向上的地磁场数据,根据多个方向上的地磁场数据对电子罗盘103做校正处理以计算出磁干扰参数,再根据磁干扰参数以及所收到的多个方向上的地磁场数据确定指北方向。这里,多个方向上的地磁场数据即为电子罗盘103在转动到预定的多个采样点时分别测量得到的地磁场数据。比如,球机主板101通过云台系统104可以使电子罗盘103旋转一至两圈,预设每转过一度(1°)即测量一次地磁场数据(即每1°设一个采样点),这样,电子罗盘103每旋转一圈就会采集到360组地磁场数据,根据这些地磁场数据,电子罗盘103可以进行校正处理并确定指北方向。
需要说明的是,如果球机主板101要对接收到的地磁场数据做滤波处理,则可先对接收到的多个方向上的地磁场数据做滤波处理,再对经过滤波的所述多个方向上的地磁场数据做校正处理。
上述球机100内部的磁场干扰可包括硬磁干扰和软磁干扰,硬磁干扰指来自本身带有磁性材料(如磁铁)的部件的干扰,软磁干扰指来自能够被磁铁吸住的材料的干扰。具体的,在校正处理过程中,球机主板101先计算得到硬磁干扰参数和软磁干扰参数,再判断软磁干扰参数的大小是否达到预设门限,如果达到门限,则说明需要考虑软磁干扰,进而所计算出的磁干扰参数包含硬磁干扰参数和软磁干扰参数;如果未达到,则可以不必考虑软磁干扰,进而所计算出的磁干扰参数只包含硬磁干扰参数。
在一实例中,球机主板101可进一步响应外部客户端或服务器(如用户终端设备上安装的客户端或者监控系统的平台服务器)发送的状态查看指令,确定对电子罗盘103所做的校正处理的当前校正状态,并输出所确定的当前校正状态,比如:若还未开始做校正处理则输出“未做校正”,若校正处理还未完成则输出“校正中”,若校正处理已完成则输出“校正完成”或者输出所确定的球机镜头1021的方位角。
在一实例中,球机主板101可在初始化时向电子罗盘103发送初始化指令;电子罗盘103响应于该初始化指令,对自身做初始化处理(如:将自身 的各种配置参数恢复到出厂缺省值、将已测量到的地磁场数据清零等)。
以上图1只是示出本申请所提出的球机内部各组成部件之间的连接关系,并未限定各部件本身以及它们之间的具体机械结构和电路设计,任何基于图1示出的组成及连接关系而实现上述各种功能的球机均属于本申请所提出的球机。
图2示出了本申请提出的球机一实施例的结构示意图。此球机200的实现原理与前述的球机100相同,这里就不再赘述,这里只是通过图2来呈现电子罗盘203与各部件之间具体的连接/摆放方式。如图2所示,球机主板201水平摆放,机芯202放置在球机主板201的上方,机芯202的水平面上设置有转接板205,电子罗盘203被置于转接板205上,电子罗盘203与球机主板201之间的通信是通过转接板205和机芯202的机芯主板204实现的。电子罗盘203将测量得到地磁场数据和/或加速度数据通过转接板205发送至机芯主板204。机芯主板204用于为电子罗盘203和转接板205供电,并将接收到的地磁场数据和/或加速度数据发送给球机主板201。相应的,球机主板201也可通过机芯主板204和转接板205给电子罗盘203发消息或指令。也就是说,电子罗盘203被置于与机芯202的水平面平行的水平面上并通过转接板205与机芯202连接,这样电子罗盘203可随机芯202转动,而电子罗盘203与球机主板201的通信是通过转接板205和机芯主板204来实现的。
这里,机芯主板204主要用于控制球机镜头的图像采集,机芯主板204和球机主板201之间可通过同轴线的I2C进行通信;机芯主板204和转接板205之间可通过8芯插座和连接线进行通信。电子罗盘203可焊接在转接板205上,二者可直接通信。
图3示出了本申请提出的球机的软件系统构架示意图。如图3所示,球机的软件系统构架包括操作系统、底层驱动和功能层三个层面,其中,操作系统可采用LINUX系统,底层驱动可包括电子罗盘驱动以及GPS驱动等,功能层可包括罗盘通信模块、地磁场数据处理模块、加速度数据处理模块、罗盘初始化模块、显示模块、GPS通信模块及GPS数据处理模块等。其中,罗盘通信模块基于电子罗盘驱动,用于实现地磁场数据处理模块、加速度数据处理模块、罗盘初始化模块和显示模块等应用层模块与电子罗盘之间的数 据交互,地磁场数据处理模块、加速度数据处理模块、罗盘初始化模块和显示模块在与电子罗盘进行通信时都会调用罗盘通信模块,进而通过电子罗盘驱动与电子罗盘实现数据交互。同样,GPS通信模块基于GPS驱动,用于实现GPS数据处理模块、显示模块等应用层模块与GPS模块之间的数据交互,GPS数据处理模块和显示模块在与GPS模块进行通信时都会调用GPS通信模块,进而通过GPS驱动与GPS模块实现数据交互。图3只是示出了本申请提出的球机的软件系统构架的基本组成部分,根据实现需要还可在功能层、驱动层加入其它模块来实现相应的软件功能。
基于上述本申请提出的球机,本申请还提出了一种应用于球机主板的数据处理方法。如图4所示,该方法至少包括如下步骤:
步骤401:从电子罗盘获取地磁场数据和/或加速度数据。这里,可向电子罗盘发出测量地磁场数据和/或加速度数据的指令,之后接收来自电子罗盘的地磁场数据和/或加速度数据。
在一实例中,由图3中的地磁场数据处理模块通过罗盘通信模块和电子罗盘驱动向电子罗盘发出测量地磁场数据的指令,再通过罗盘通信模块和电子罗盘驱动接收地磁场数据;和/或,由图3中的加速度数据处理模块通过罗盘通信模块和电子罗盘驱动向电子罗盘发出测量加速度数据的指令,再通过罗盘通信模块和电子罗盘驱动接收加速度数据。
步骤402:根据接收到的来自电子罗盘的地磁场数据确定指北方向;和/或,根据接收到的来自电子罗盘的加速度数据确定球机在该指定方向上的振动幅度。
在步骤402中,当球机主板根据接收到的地磁场数据确定指北方向后,可进一步执行步骤403:根据该指北方向确定球机镜头当前的方位角。
在一实例中,由图3中的地磁场数据处理模块根据接收到的地磁场数据确定指北方向,并根据该指北方向确定球机镜头当前的方位角;和/或,由图3中的加速度数据处理模块根据接收到的来自电子罗盘的加速度数据确定球机在该指定方向上的振动幅度。
在一实例中,当球机主板根据接收到的加速度数据确定上述振动幅度之后,还可执行步骤404:确定球机的上述振动幅度是否超过预定阈值;在确定 超过预定阈值时,输出报警信息,和/或获取球机镜头当前拍摄到的图像并输出该图像。本步骤可由图3中的加速度数据处理模块来执行;其中,在输出该图像时,如需要在球机的屏幕中显示该图像,则加速度数据处理模块可通过调用显示模块来显示该图像,如果需要将该图像发送给外部客户端或者服务器,则加速度数据处理模块可调用网络通信模块来发送该图像。
在一实例中,当球机主板包括全球定位系统GPS模块时,球机主板还可执行步骤404:通过GPS模块获取球机的位置信息,并输出位置信息以及通过执行步骤403获得的球机镜头当前的方位角;和/或,通过GPS模块获取并解析卫星信号中的时间信息,并根据该时间信息对球机进行时间校准。本步骤可与前述步骤并行执行,可由图3中的GPS数据处理模块来执行;其中,GPS数据处理模块可通过GPS通信模块和GPS驱动向GPS模块发出指令,再通过GPS通信模块和GPS驱动从GPS模块读取到球机的位置信息。
在一实例中,球机主板在步骤403中根据该指北方向确定球机镜头当前的方位角之后,还可执行步骤406:响应于外部客户端或者服务器(比如:用户的终端设备中安装的客户端或者监控系统的平台服务器)发送的携带指定方位角的调整指令,根据该指定方位角以及步骤403中所确定的球机镜头当前的方位角,通过球机的云台系统控制机芯进行水平转动,以将球机镜头的方位角调整到该指定方位角。
在一实例中,球机主板在步骤401中从电子罗盘获取地磁场数据之后,可进一步执行步骤401’:对地磁场数据做滤波处理,再执行步骤402,以根据滤波后的地磁场数据确定指北方向。
在一实例中,球机主板在步骤402中根据接收到的来自电子罗盘的地磁场数据确定指北方向时,可对电子罗盘做校正处理以去除电子设备所带来的磁场干扰,此时,电子罗盘被置于机芯的水平面上或者与该水平面平行的水平面上,并可随机芯的水平转动而做水平旋转,可以在随所述机芯的水平转动而做水平旋转时测量得到自身所在水平面中多个方向上的地磁场数据并发送给球机主板。具体的,球机主板在步骤402中确定指北方向的处理可包括:通过球机的云台系统控制机芯做水平转动,从电子罗盘接收到水平面中多个方向上的地磁场数据,根据多个方向上的地磁场数据对电子罗盘做校正处理 以计算出磁干扰参数,并根据磁干扰参数以及多个方向上的地磁场数据确定指北方向。
在一实例中,球机主板还可执行步骤407:响应于外部客户端或服务器发送的状态查看指令,确定对电子罗盘所做的校正处理的当前校正状态,并输出所确定的当前校正状态。
在一实例中,如图5所示,球机主板500可包括:存储器502、处理器501、总线503。处理器501和存储器502通过总线503互联。处理器501通过执行存储器502中存储的机器可执行指令可以实现上述球机主板所执行的各种步骤。球机主板500还可包括端口504,处理器501可通过端口504接收和发送数据以实现网络通信。
上述各种实例中的球机中结合了电子罗盘,可以利用电子罗盘对地磁场和/或加速度的感知力获得地磁场数据和/或加速度数据,进而能够自动确定指北方向和/或在指定方向上的振动幅度,这样,球机的性能可以得到显著改善。具体的,在球机被安装到或者被移动到某一位置时,无需人工操作,可自动基于地磁场数据获得准确的指北方向,基于此指北方向,球机可以更准确的标定球机镜头的朝向;而基于自动确定的指定方向上的振动幅度,外部客户端或服务器能够及时获知球机是否受到严重撞击,进而能及时采取补救措施,使包含此种球机的系统的操作效率得以提升。进一步的,基于上述自动确定的指北方向可以自动确定球机镜头当前的方位角,整个过程无需人工操作,所确定的方位角具有较高准确度,这样,外部客户端或者服务器基于此准确度较高的方位角可以对球机进行更为合理、准确的操作,使得包含此种球机的系统的操作效率得到明显提升。
本申请还提出了一种监控系统,其可包括至少一个上述各实例中的球机以及平台服务器,这些球机分布在不同的地理位置上,每一球机能够拍摄自身周围一定地理区域的视频监控画面,平台服务器通过网络搜集各个球机的状态信息并能调取任意球机拍摄到的视频监控画面,平台服务器通过调取到的视频监控画面可以了解到各个地理区域的视频监控画面,进而能够对广大地理区域实施监控(如:交管业务平台对于城市道路交通的监控,或者公安业务平台对于安防区域的监控),平台服务器根据搜集到的各个球机的状态信 息,可以向部分或全部球机发出指令,以实施对这些球机的控制。
如图6所示的实例,该监控系统600包括多个球机601和平台服务器602,图6中只示出三个球机601,在实际应用中可以采用任意数量的球机601。
每个球机601包括电子罗盘和GPS模块,在每一球机601中,球机主板当根据接收到的来自本地电子罗盘的地磁场数据确定指北方向之后,进一步根据指北方向确定球机镜头当前的方位角,通过本地GPS模块获取球机601的位置信息,并将位置信息和球机镜头当前的方位角通过网络发送给平台服务器602。
平台服务器602接收各个球机601发送的位置信息及方位角,根据预先保存的电子地图以及接收到的各个球机601的位置信息和方位角确定是否有需要调整方向的球机601,并在确定有一个或多个需要调整方向的球机601时,针对每一需要调整方向的球机601,生成携带指定方位角的调整指令,并向该球机601发送所生成的所述调整指令;
在一实例中,每一球机601中,球机主板可进一步响应于平台服务器602发送的携带指定方位角的调整指令,根据该指定方位角以及球机镜头当前的方位角,通过球机601的云台系统控制机芯进行水平转动,以将球机镜头的方位角调整到该指定方位角。在实际应用中,根据监控需要,可通过发送这种调整指令给某球机601来调整该球机601的球机镜头的方向,即调整球机601的监控范围。比如:令某路口的球机601的球机镜头由向东(如当前方位角为90度)变为向北(如指定方位角为0度)。由于球机镜头的方位角是基于实测得到的地磁场数据确定的,具有较高的准确性,所以采用此种方案,平台服务器602可以灵活、准确、高效的对球机601的监控范围进行调整,以满足各种监控需要。
在一实例中,任一球机601中,球机主板可进一步将该球机601的监控可视扇形区域参数发送至平台服务器602,确定球机601在指定方向上的振动幅度是否超过预定阈值;在确定超过预定阈值时,发送报警信息至平台服务器602,和/或获取球机镜头当前拍摄到的图像并发送所获取的图像至平台服务器602。平台服务器602进一步接收来自各球机601的监控可视扇形区域参数,响应于接收到的来自任一球机601的上述报警信息和/或图像,确定该球 机601发生异常,根据该球机601的位置信息、方位角和监控可视区域参数以及位置在其周围的其它球机601的位置信息、方位角及监控可视区域参数,确定能够替代该球机601的另一球机601,并确定该另一球机601为需要调整方向的球机601,这样,平台服务器602会生成针对该另一球机601的携带指定方位角的调整指令,该指定方位角能够使该另一球机601的监控区域覆盖该发生异常的球机601的监控区域。这里,每一球机601的监控可视扇形区域参数可包括:可视半径、视场角,还可包括倍率放大参数,可视半径和视场角会随倍率放大参数的改变而改变,基于这些监控可视扇形区域参数可以确定该球机601的监控区域。通过此种技术方案,平台服务器602可以及时发现发生异常的球机601,并自动调用其它球机601来替代该球机601,进而改善了监控系统的监控能力。比如,应用于公安业务平台时,用户可通过操作平台服务器602来向各球机601下发布防指令,使各球机601开启布防功能,利用加速度传感器测量的数据实时检测自身水平和垂直方向的振动幅度,当振动幅度超过正常范围时,球机601立即向平台服务器602发送报警信息,并可附带发送当前抓拍的图片或视频片段;平台服务器602接收到来自一球机601的报警信息之后存储图片或视频片段并做异常事件录像标记,同时确定该球机601附近其监控区域能够覆盖到该球机601的监控区域的另一球机601,并向该另一球机601发送调整指令使其立即调整镜头方向,以代替该发出报警信息的球机601进行实时监控。
图7示出了相邻几个球机的监控区域之间的关系。如球机701在确定振动幅度超出预定阈值时(即感知到剧烈撞击时)发送报警信息和/或图像至平台服务器602,平台服务器602可查找球机701及其周围的几个球机702、703和704的位置信息、方位角和监控可视区域参数,确定出球机701~704各自的扇形监控区域711、712、713和714,进而可以确定哪个球机的监控区域与球机701的监控区域711相重叠,对于其监控区域与球机701的监控区域711相重叠的球机,通过调整该球机的球机镜头方位角能够使其监控区域覆盖球机701的监控区域711。如图7所示,球机702的监控区域712与球机701的监控区域711相重叠,则可确定通过调整球机702的球机镜头方位角可以使球机702的监控区域覆盖球机701的监控区域711,之后,平台服务器602会 向球机702发送携带指定方位角的调整指令,使球机702代替球机701实施监控。
在一实例中,平台服务器602可进一步展示电子地图,根据接收到的各个球机601的位置信息在电子地图中展示各个球机601的位置及其对应的方位角,并响应于用户操作确定一个或多个需要调整方向的球机601。采用此种技术方案,用户可直观了解到各球机601的位置及其球机镜头当前的方位角,进而可以方便的根据监控需求来确定哪些球机601的监控方向需要调整(即哪些球机601的球机镜头方位角需要调整)。比如:确定在早上9:00-10:00路段A上的所有球机601的监控方向都应调整为朝东(即球机镜头的方位角调整到90度)。
在一实例中,球机601中的球机主板可确定球机601在指定方向上的振动幅度是否超过预定阈值,在确定超过预定阈值时,发送报警信息和/或当前拍摄到的图像至平台服务器602;平台服务器602可进一步展示电子地图,根据接收到的各个球机601的位置信息在电子地图中展示各个球机601的位置及其对应的方位角,还展示来自任一球机601的上述报警信息,并响应于用户操作确定一个或多个需要调整方向的球机601。采用此种技术方案,用户可直观了解各球机601的位置及其球机镜头当前的方位角,还可直观了解哪些球机601发出的报警信息,进而可以方便的根据监控需求来确定哪些球机601的监控方向需要调整,如:哪些球机601的监控方向需要调整以便代替发出报警信息的球机601来实施监控。
在一实例中,监控系统不仅可以对多个球机实施控制,还可对枪型摄像机(以下简称“枪机”)实施控制,此监控系统可进一步包括与平台服务器通过网络相连的多个枪机。如图8所示,监控系统800除了包括平台服务器80和多个球机81~83,进一步包括多个枪机811、812、821、822、831、832。
在任一球机81、82或83中,球机主板,可进一步将该球机的监控可视扇形区域参数发送至平台服务器80。每一枪机811、812、821、822、831或832包括GPS模块和电子罗盘,通过自身的GPS模块获取自身的位置信息,根据自身的电子罗盘测量得到的地磁场数据确定指北方向,并根据该指北方向确定自身当前的方位角(即自身镜头的方位角),并将自身的位置信息、方 位角和监控可视扇形区域参数通过网络发送给平台服务器80。
平台服务器80进一步接收来自各球机81~83的监控可视扇形区域参数,从各个枪机811、812、821、822、831和832接收其各自的位置信息、方位角和监控可视扇形区域参数。这里,平台服务器80可以根据各个球机81~83和各个枪机811、812、821、822、831和832的位置信息配置各个球机与各个枪机之间的对应关系,其中,每一球机对应于在电子地图中位置与其相邻的至少两个枪机。在本实例中,球机81对应其位置附近的枪机811和812,球机82对应其位置附近的枪机821和822,球机83对应其位置附近的枪机831和832。
每一枪机811、812、821、822、831或832实时将自身的状态信息发送给平台服务器80。平台服务器80进一步从各个枪机811、812、821、822、831和832接收状态信息,根据接收到的状态信息确定是否有枪机发生故障,当确定任一枪机811、812、821、822、831或832发生故障时,根据该枪机811、812、821、822、831或832的位置信息、方位角和监控可视区域参数以及位置在其周围的各球机的位置信息、球机镜头的方位角及监控可视区域参数,确定能够替代该发生故障的枪机的一个或多个球机并确定其为需要调整方向的球机,之后,平台服务器80会给这一个或多个球机发送携带指定方位角的调整指令,其中,针对能够替代任一所述发生故障的枪机的一球机的调整指令,其中携带的指定方位角能够使该球机的监控区域覆盖该发生故障的枪机的监控区域。具体的,如前文所述,根据一球机的位置信息、球机镜头的方位角和监控可视区域参数可以确定该球机当前的监控区域,同样的,根据一枪机的位置信息、方位角和监控可视区域参数也可以确定该枪机当前的监控区域。针对一发生故障的枪机,可以根据其当前的监控区域和其周围一个或多个球机当前的监控区域,确定哪个球机的监控区域与该枪机的监控区域相重叠,对于其监控区域与该枪机的监控区域相重叠的球机,通过调整该球机的球机镜头方位角能够使其监控区域覆盖该枪机的监控区域。
在一实例中,平台服务器80可进一步展示电子地图,并根据接收到的各个枪机811、812、821、822、831和832的位置信息在电子地图中展示各个枪机811、812、821、822、831和832的位置;当确定有枪机发生故障时, 进一步在电子地图中展示各个发生故障的枪机811、812、821、822、831和/或832的状态信息(如,“图像模糊”、“信号丢失”、“雪花噪声”等等),并响应于用户操作确定用户选择的发生故障的枪机811、812、821、822、831和/或832,并确定能够替代所选择的枪机811、812、821、822、831和/或832的一个或多个球机81、82和/或83。
在一实例中,平台服务器80可进一步展示各个球机81~83和各个枪机811、812、821、822、831和832之间的对应关系,其中,每一球机对应于在电子地图中位置与其相邻的至少两个枪机;当确定有枪机发生故障时,进一步展示各个发生故障的枪机811、812、821、822、831和/或832的状态信息,并响应于用户操作确定用户选择的发生故障的枪机811、812、821、822、831和/或832,并确定能够替代所选择的枪机的一个或多个球机81、82和/或83。
上述实例中,可以在电子地图中各枪机所在的位置分别展示各枪机的图标,还可以在电子地图中各发生故障的枪机的图标旁边分别展示其各自的状态信息。
在上述各种实例中,如果平台服务器602或80在预定时间段内生成多条携带指定方位角的调整指令,则可批量发送所生成的多条调整指令给多个球机。采用此种技术方案,可进一步提升监控系统的操作效率。
在上述各种实例中,当平台服务器602或80确定能够替代发生异常的球机或发生故障的枪机的球机时,可以根据预设的算法自动确定能够替代发生异常的球机或发生故障的枪机的球机,也可以在电子地图中展示出发生异常的球机或发生故障的枪机、其周围的可作为备选的球机以及与这些球机和枪机的监控区域相关的参数(如:直接展示所确定的它们的当前监控区域,或者展示它们的镜头方位角和监控可视区域参数等等),由用户从平台服务器所展示的备选球机中选择能够替代发生异常的球机或发生故障的枪机的球机。总之,根据不同的监控需求,可以采用不同的确定方式。
结合地图信息(如电子地图)的监控系统是一个感知网络,感知网络中各个感知点(球机和/或枪机)不再是各自独立的实体,而是一个联动的整体,各感知点可以感知GPS定位信息、地磁场数据及加速度数据,上报各自的位置信息、镜头的方位角、监控可视区域参数、指示受到撞击的报警信息等等, 这样平台服务器可以根据各感知点上报的信息对某个或某些感知点下发操作指令,进而能更好的满足监控需要并且操作效率高。当本申请提出的监控系统应用于交管业务平台时,球机与枪机作为感知点联合工作,构成了一个感知网络。在某些十字路口,针对每个方向都会架设至少一个枪机,同时在路口中间安装至少一个球机。图9给出了一个具体的应用场景。如图9所示,在某十字路口,四个道路方向上分别架设有枪机911、912、913和914,路口中间安装有一个球机91。当平台服务器诊断出某个枪机(如枪机911)出现故障(如信号丢失,导致无法有效工作)时,根据所收到的各枪机和球机的位置信息可以确定该枪机对应的球机为球机91,并能根据从各球机和各枪机接收到的方位角和监控可视区域参数确定出现故障的枪机911的当前监控区域以及球机91的当前监控区域,进而确定如何调整球机91的球机镜头的方位角才能使球机91的监控区域覆盖到出现故障的枪机911的当前监控区域,即确定准备下发给球机91的调整指令中应携带的指定方位角的大小,之后,平台服务器下发调整指令给球机91,使得球机91根据该调整指令将球机镜头转动到指定方位角,来代替出现故障的枪机911实施监控。可见,采用此种技术方案,平台服务器可以根据球机和枪机构成的感知网络中各感知点(球机和枪机)上报的位置信息、镜头的方位角、监控可视区域参数等来确定能够代替发生故障的任一枪机实施监控的球机,并能自动调整该球机的球机镜头的方位角,显著提高了监控系统的操作效率和准确度。
上述各实例中,球机发送至平台服务器的位置信息可以为经纬度信息。平台服务器可进一步根据任一球机的经纬度信息,确定该球机在电子地图中的位置,再根据电子地图中该位置周边的地址信息和/或道路交通信息以及来自该球机的球机镜头的方位角,确定与该球机的监控区域对应的地址信息和/或道路交通信息,并将所确定的与该球机的监控区域对应的地址信息和/或道路交通信息下发给该球机;在该球机中,球机主板可进一步响应于平台服务器发送的与该球机的监控区域对应的地址信息和/或道路交通信息,在其所输出的监控画面(如所显示的监控画面)中展示该地址信息和/或道路交通信息。比如:根据一球机的经纬度信息可以确定该球机位于道路A和道路B交叉的十字路口附近,那么,当球机的球机镜头转到不同的方位角时,其监控方向 会发生变化,进而其监控区域也会发生变化,其监控区域对应的地址信息和/或道路交通信息会不同。具体的,当球机镜头朝东时,其监控区域覆盖的是道路A的某段和此段道路上的某个建筑物C,那么,平台服务器可以根据球机的经纬度信息和其球机镜头的方位角确定其监控区域对应的地址信息(建筑物C的地址)和/或道路交通信息(道路A或者道路B东200米等),之后再将这些地址信息和/或道路交通信息下发给该球机,该球机在自身显示的实景监控画面中可以展示这些地址信息和/或道路交通信息。这样,用户通过球机显示的监控画面可以更直观了解到其球机镜头的监控方向、监控范围等,方便用户对球机的进一步操作。
基于上述各种实例提供的监控系统,本申请还提出了一种针对前述球机的控制方法,该方法应用于监控系统中的平台服务器。如图10所示,该方法包括如下步骤:
步骤1001:接收各个球机发送的所述位置信息及所述方位角。
步骤1002:根据预先保存的电子地图以及接收到的各个球机的位置信息和方位角确定是否有需要调整方向的球机。
步骤1003:在确定有一个或多个需要调整方向的球机时,针对每一需要调整方向的球机,生成携带指定方位角的调整指令,并向该球机发送所生成的调整指令,以使该球机的球机主板进一步根据所收到的调整指令中的指定方位角以及球机镜头当前的方位角,通过该球机的云台系统控制机芯进行水平转动,以将球机镜头的方位角调整到所述指定方位角。
采用此种技术方案,平台服务器可以根据各球机的位置信息以及方位角确定是否有需要调整方向的球机,并通过下发调整指令使球机自动调整球机镜头到指定方位角,进而实现了对于监控系统中各个球机的自动、高效的操控。
在一实例中,在任一球机中,球机主板可进一步发送该球机的监控可视扇形区域参数,确定该球机在指定方向上的振动幅度是否超过预定阈值;在确定超过所述预定阈值时,发送报警信息,和/或获取球机镜头当前拍摄到的图像并发送该图像。平台服务器可进一步执行如下步骤:
步骤1004:接收来自各球机的所述监控可视扇形区域参数。
步骤1005:响应于从任一球机接收到的报警信息和/或图像,确定该球机发生异常。
上述步骤1002中,确定是否有需要调整方向的球机具体包括:根据该发生异常的球机的位置信息、方位角和监控可视区域参数以及位置在其周围的其它球机的位置信息、方位角及监控可视区域参数,确定能够替代该发生异常的球机的另一球机,并确定该另一球机为需要调整方向的球机。
上述步骤1003中,当针对该另一球机生成携带指定方位角的调整指令时,该指定方位角能够使该另一球机的监控区域覆盖该发生异常的球机的监控区域。
采用此种技术方案,平台服务器可以及时获知哪些球机发生了异常(比如受到严重撞击),并能自动操控另一球机来代替异常球机来实施监控,进而能实现对于球机更为高效的控制,并能保证监控系统的监控性能。
在一实例中,在任一球机中,球机主板可进一步发送该球机的监控可视扇形区域参数。平台服务器可进一步执行如下处理:
步骤1006:接收来自各球机的监控可视扇形区域参数。
步骤1007:从各个枪机接收其各自的位置信息、方位角和监控可视扇形区域参数;其中,每一枪机包括GPS模块和电子罗盘,通过自身的GPS模块获取自身的位置信息,根据自身的电子罗盘测量得到的地磁场数据确定指向北极的方向,并根据所述指向北极的方向确定自身当前的方位角。
步骤1008:从各个枪机接收其各自实时的状态信息。
步骤1009:根据接收到的状态信息确定是否有枪机发生故障。
上述步骤1002中,确定是否有需要调整方向的球机具体包括:当确定任一枪机发生故障时,根据该枪机的位置信息、方位角和监控可视区域参数以及位置在其周围的各球机的位置信息、方位角及监控可视区域参数,确定能够替代该发生故障的枪机的一个或多个球机并确定其为需要调整方向的球机。
上述步骤1003中,当针对能够替代任一所述发生故障的枪机的一球机生成携带指定方位角的调整指令时,该指定方位角能够使该球机的监控区域覆盖该发生故障的枪机的监控区域。
采用此种技术方案,平台服务器可以及时发现故障枪机,并能自动操控 一球机来代替该故障枪机实施监控,进而能实现对于球机更为高效的控制,并能保证监控系统的监控性能。
在一实例中,上述步骤1003中,当平台服务器在预定时间段内生成多条调整指令时,可批量下发所生成的多条调整指令给多个球机。采用此种技术方案,可显著提升工作效率。
在一实例中,球机发送的位置信息为经纬度信息。此时,平台服务器可进一步执行如下步骤:
步骤1010:根据任一球机的经纬度信息,确定该球机在所述电子地图中的位置。
步骤1011:根据电子地图中该位置周边的地址信息和/或道路交通信息以及来自该球机的方位角,确定与该球机的监控区域对应的地址信息和/或道路交通信息。
步骤1012:将所确定的与该球机的监控区域对应的地址信息和/或道路交通信息下发给该球机,以使该球机中的球机主板在所输出的监控画面中展示该地址信息和/或道路交通信息。
采用此种技术方案,平台服务器可为球机提供与球机的监控区域对应的地址信息和/或道路交通信息,能够更好的满足球机用户的监控需求,方便用户根据监控画面做进一步操作,进而改善用户体验。
以上仅列出平台服务器所实现的控制方法中的部分处理步骤,本文所述各种实例中平台服务器所做的处理都可算作本控制方法的处理步骤,这里就不再赘述。
基于以上应用于平台服务器的控制方法,本申请还提出了一种平台服务器,如图11所示,该平台服务器1100至少包括:信息收集模块111、判断模块112和指令下发模块113。信息收集模块111用于接收来自监控系统中各个球机和/或各个枪机的各种信息(可包括:位置信息、方位角、监控可视区域参数、报警信息、图像等等),即可以执行前述的步骤1001、1004、1006、1007、1008等等。判断模块112用于根据信息收集模块111接收到的各种信息确定是否有需要调整方向的球机,即可以执行前述的步骤1002、1005、1009等等,具体的判断方法前文均有描述,这里不再赘述。指令下发模块113用于针对 判断模块112确定的每一需要调整方向的球机生成并下发携带指定方位角的调整指令,即可以执行前述的步骤1003,具体的实现方法前文已有描述,这里不再赘述。
在一实例中,平台服务器1100可进一步包括用户接口模块114,判断模块112在确定需要调整方向的球机时,可以通过用户接口模块114为用户展示备选的球机,之后通过用户接口模块114接收用户的操作指令,并响应于用户的操作来确定用户选择的球机并将其确定为需要调整方向的球机。
具体的,判断模块112可通过用户接口模块114展示电子地图,根据接收到的各个球机的位置信息在电子地图中展示各个球机的位置及其对应的方位角,并响应于用户操作确定一个或多个需要调整方向的球像机。可选的,判断模块112可通过用户接口模块114展示电子地图,根据接收到的各个球机的位置信息在电子地图中展示各个球机的位置及其对应的方位角,还展示来自任一球机的报警信息和/或图像,并响应于用户操作确定一个或多个需要调整方向的智能球型摄像机。可选的,判断模块112可通过用户接口模块114展示电子地图,并根据接收到的各个枪机的位置信息在电子地图中展示各个枪机的位置;当确定有枪型摄像机发生故障时,在电子地图中展示各个发生故障的枪机的状态信息,响应于用户操作确定用户选择的发生故障的枪机,并确定能够替代所选择的枪机的一个或多个球机。可选的,判断模块112可通过用户接口模块114展示各个球机和各个枪机之间的对应关系,其中,每一球机对应于在电子地图中位置与其相邻的至少两个枪机;当确定有枪机发生故障时,进一步展示各个发生故障的枪机的状态信息,并响应于用户操作确定用户选择的发生故障的枪机,并确定能够替代所选择的枪机的一个或多个球机。
在一实例中,平台服务器1100可进一步包括位置信息处理模块115和信息下发模块116。当球机发来的位置信息为经纬度信息时,位置信息处理模块115可根据信息收集模块111接收到的任一球机的经纬度信息和方位角确定与该球机的监控区域对应的地址信息和/或道路交通信息,具体的确定方法前文已有描述,这里不再赘述。信息下发模块116可将位置信息处理模块115确定的地址信息和/或道路交通信息下发给相应的球机。
在一实例中,如图11所示,平台服务器1100可包括:存储器1102、处理器1101、总线1103。处理器1101和存储器1102通过总线1103互联。处理器1101通过执行存储器1102中存储的机器可执行指令可以实现上述平台服务器1100所进行的各种处理。平台服务器1100还可包括端口1104,处理器1101可通过端口1104接收和发送数据以实现网络通信(如:从监控系统中的各球机和/或枪机接收各种信息,向球机下发调整指令、地址信息和/或道路交通信息等等)。上述平台服务器1100中的各种功能模块111~116可以为存储器1102中的指令模块,这样当处理器1101执行存储器1102中的任一指令模块(即模块111~116中的任一者)中包含的指令时就可以实现该指令模块对应的功能或者处理步骤。
另外,本申请的每个实例可以通过由数据处理设备如计算机执行的数据处理程序来实现。显然,数据处理程序构成了本申请。此外,通常存储在一个存储介质中的数据处理程序通过直接将程序读取出存储介质或者通过将程序安装或复制到数据处理设备的存储设备(如硬盘和或内存)中执行。因此,这样的存储介质也构成了本申请。存储介质可以使用任何类型的记录方式,例如纸张存储介质(如纸带等)、磁存储介质(如软盘、硬盘、闪存等)、光存储介质(如CD-ROM等)、磁光存储介质(如MO等)等。因此,本申请还提供了一种存储介质,其中存储有数据处理程序,该数据处理程序用于执行本申请提供的前述方法的任何一种实例。
本申请实施例还提供了一种应用程序,该应用程序用于在运行时执行针对本申请实施例提供的智能球形摄像机的控制方法。该智能球型摄像机还包括全球定位系统GPS模块,其中,球机主板当根据来自电子罗盘的地磁场数据确定指向北极的方向之后,进一步根据指向北极的方向确定球机镜头当前的方位角,通过GPS模块获取该智能球型摄像机的位置信息;该控制方法应用于平台服务器,该控制方法包括:
接收来自各个智能球型摄像机的位置信息及方位角;
根据预先保存的电子地图以及接收到的来自各个智能球型摄像机的位置信息和方位角确定是否有需要调整方向的智能球型摄像机;
在确定有一个或多个需要调整方向的智能球型摄像机时,针对每一需要 调整方向的智能球型摄像机,生成携带指定方位角的调整指令,并向该智能球型摄像机发送所生成的调整指令,以使该智能球型摄像机的球机主板进一步根据所收到的调整指令中的指定方位角以及球机镜头当前的方位角,通过云台系统控制机芯进行水平转动,以将球机镜头的方位角调整到指定方位角。
在本申请的一种具体实现方式中,在任一智能球型摄像机中,球机主板,进一步发送该智能球型摄像机的监控可视扇形区域参数,确定智能球型摄像机在指定方向上的振动幅度是否超过预定阈值;在确定超过预定阈值时,发送报警信息,和/或获取球机镜头当前拍摄到的图像并发送图像;上述应用程序在运行时执行的控制方法进一步包括:
接收来自各智能球型摄像机的监控可视扇形区域参数;
响应于从任一智能球型摄像机接收到的报警信息和/或图像,确定该智能球型摄像机发生异常;
其中,根据预先保存的电子地图以及接收到的来自各个智能球型摄像机的位置信息和方位角确定是否有需要调整方向的智能球型摄像机,包括:
针对任一被确定为发生异常的智能球型摄像机,根据该智能球型摄像机的位置信息、方位角和监控可视区域参数以及位置在其周围的其它智能球型摄像机的位置信息、方位角及监控可视区域参数,确定能够替代该智能球型摄像机的另一智能球型摄像机,并确定另一智能球型摄像机为需要调整方向的智能球型摄像机;
其中,当针对另一智能球型摄像机生成携带指定方位角的调整指令时,该指定方位角能够使另一智能球型摄像机的监控区域覆盖该发生异常的智能球型摄像机的监控区域。
在本申请的一种具体实现方式中,在任一智能球型摄像机中,所述球机主板,进一步发送该智能球型摄像机的监控可视扇形区域参数;上述应用程序在运行时执行的控制方法进一步包括:
接收来自各智能球型摄像机的监控可视扇形区域参数;
从各个枪型摄像机接收其各自的位置信息、方位角和监控可视扇形区域参数;其中,每一枪型摄像机包括GPS模块和电子罗盘,通过自身的GPS模块获取自身的位置信息,根据自身的电子罗盘测量得到的地磁场数据确定指 向北极的方向,并根据指向北极的方向确定自身当前的方位角;
从各个枪型摄像机接收其各自实时的状态信息;
根据接收到的状态信息确定是否有枪型摄像机发生故障;
其中,根据预先保存的电子地图以及接收到的来自各个智能球型摄像机的位置信息和方位角确定是否有需要调整方向的智能球型摄像机,包括:
当确定任一枪型摄像机发生故障时,根据该枪型摄像机的位置信息、方位角和监控可视区域参数以及位置在其周围的各智能球型摄像机的位置信息、方位角及监控可视区域参数,确定能够替代该发生故障的枪型摄像机的一个或多个智能球型摄像机,并确定一个或多个智能球型摄像机为需要调整方向的智能球型摄像机;
其中,当针对能够替代任一发生故障的枪型摄像机的一智能球型摄像机生成携带指定方位角的调整指令时,该指定方位角能够使该智能球型摄像机的监控区域覆盖该发生故障的枪型摄像机的监控区域。
在本申请的一种具体实现方式中,上述应用程序在运行时执行的控制方法中,当平台服务器在预定时间段内生成多条调整指令时,批量发送所生成的多条调整指令。
在本申请的一种具体实现方式中,智能球型摄像机发送的位置信息为经纬度信息;上述应用程序在运行时执行的控制方法进一步包括:
根据任一智能球型摄像机的经纬度信息,确定该智能球型摄像机在电子地图中的位置;
根据电子地图中该位置周边的地址信息和/或道路交通信息以及来自该智能球型摄像机的方位角,确定与该智能球型摄像机的监控区域对应的地址信息和/或道路交通信息;
将所确定的与该智能球型摄像机的监控区域对应的地址信息和/或道路交通信息下发给该智能球型摄像机,以使该智能球型摄像机中的球机主板在其所输出的监控画面中展示该地址信息和/或道路交通信息。
本申请实施例还提供了一种存储介质,该存储介质用于存储应用程序,该应用程序用于在运行时执行针对本申请实施例提供的智能球形摄像机的控制方法。该智能球型摄像机还包括全球定位系统GPS模块,其中,球机主板 当根据来自电子罗盘的地磁场数据确定指向北极的方向之后,进一步根据指向北极的方向确定球机镜头当前的方位角,通过GPS模块获取该智能球型摄像机的位置信息;该控制方法应用于平台服务器,该控制方法包括:
接收来自各个智能球型摄像机的位置信息及方位角;
根据预先保存的电子地图以及接收到的来自各个智能球型摄像机的位置信息和方位角确定是否有需要调整方向的智能球型摄像机;
在确定有一个或多个需要调整方向的智能球型摄像机时,针对每一需要调整方向的智能球型摄像机,生成携带指定方位角的调整指令,并向该智能球型摄像机发送所生成的调整指令,以使该智能球型摄像机的球机主板进一步根据所收到的调整指令中的指定方位角以及球机镜头当前的方位角,通过云台系统控制机芯进行水平转动,以将球机镜头的方位角调整到指定方位角。
在本申请的一种具体实现方式中,在任一智能球型摄像机中,球机主板,进一步发送该智能球型摄像机的监控可视扇形区域参数,确定智能球型摄像机在指定方向上的振动幅度是否超过预定阈值;在确定超过预定阈值时,发送报警信息,和/或获取球机镜头当前拍摄到的图像并发送图像;上述存储介质存储的应用程序在运行时执行的控制方法进一步包括:
接收来自各智能球型摄像机的监控可视扇形区域参数;
响应于从任一智能球型摄像机接收到的报警信息和/或图像,确定该智能球型摄像机发生异常;
其中,根据预先保存的电子地图以及接收到的来自各个智能球型摄像机的位置信息和方位角确定是否有需要调整方向的智能球型摄像机,包括:
针对任一被确定为发生异常的智能球型摄像机,根据该智能球型摄像机的位置信息、方位角和监控可视区域参数以及位置在其周围的其它智能球型摄像机的位置信息、方位角及监控可视区域参数,确定能够替代该智能球型摄像机的另一智能球型摄像机,并确定另一智能球型摄像机为需要调整方向的智能球型摄像机;
其中,当针对另一智能球型摄像机生成携带指定方位角的调整指令时,该指定方位角能够使另一智能球型摄像机的监控区域覆盖该发生异常的智能球型摄像机的监控区域。
在本申请的一种具体实现方式中,在任一智能球型摄像机中,所述球机主板,进一步发送该智能球型摄像机的监控可视扇形区域参数;上述存储介质存储的应用程序在运行时执行的控制方法进一步包括:
接收来自各智能球型摄像机的监控可视扇形区域参数;
从各个枪型摄像机接收其各自的位置信息、方位角和监控可视扇形区域参数;其中,每一枪型摄像机包括GPS模块和电子罗盘,通过自身的GPS模块获取自身的位置信息,根据自身的电子罗盘测量得到的地磁场数据确定指向北极的方向,并根据指向北极的方向确定自身当前的方位角;
从各个枪型摄像机接收其各自实时的状态信息;
根据接收到的状态信息确定是否有枪型摄像机发生故障;
其中,根据预先保存的电子地图以及接收到的来自各个智能球型摄像机的位置信息和方位角确定是否有需要调整方向的智能球型摄像机,包括:
当确定任一枪型摄像机发生故障时,根据该枪型摄像机的位置信息、方位角和监控可视区域参数以及位置在其周围的各智能球型摄像机的位置信息、方位角及监控可视区域参数,确定能够替代该发生故障的枪型摄像机的一个或多个智能球型摄像机,并确定一个或多个智能球型摄像机为需要调整方向的智能球型摄像机;
其中,当针对能够替代任一发生故障的枪型摄像机的一智能球型摄像机生成携带指定方位角的调整指令时,该指定方位角能够使该智能球型摄像机的监控区域覆盖该发生故障的枪型摄像机的监控区域。
在本申请的一种具体实现方式中,上述存储介质存储的应用程序在运行时执行的控制方法中,当平台服务器在预定时间段内生成多条调整指令时,批量发送所生成的多条调整指令。
在本申请的一种具体实现方式中,智能球型摄像机发送的位置信息为经纬度信息;上述存储介质存储的应用程序在运行时执行的控制方法进一步包括:
根据任一智能球型摄像机的经纬度信息,确定该智能球型摄像机在电子地图中的位置;
根据电子地图中该位置周边的地址信息和/或道路交通信息以及来自该智 能球型摄像机的方位角,确定与该智能球型摄像机的监控区域对应的地址信息和/或道路交通信息;
将所确定的与该智能球型摄像机的监控区域对应的地址信息和/或道路交通信息下发给该智能球型摄像机,以使该智能球型摄像机中的球机主板在其所输出的监控画面中展示该地址信息和/或道路交通信息。
对于应用程序、存储介质实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (25)

  1. 一种智能球型摄像机,至少包括:机芯、云台系统和球机主板;所述机芯中包括球机镜头,所述球机镜头的方位角随所述机芯的水平转动而变化,所述云台系统用于在所述球机主板的控制下带动所述机芯做水平转动;其特征在于,所述智能球型摄像机进一步包括:电子罗盘;
    所述电子罗盘,测量得到地磁场数据和/或指定方向上的加速度数据,并发送所述地磁场数据和/或所述加速度数据给所述球机主板;
    所述球机主板,根据来自所述电子罗盘的所述地磁场数据确定指向北极的方向并将其作为标定所述球机镜头的方位角的基准;和/或,根据来自所述电子罗盘的所述加速度数据确定所述智能球型摄像机在所述指定方向上的振动幅度。
  2. 如权利要求1所述的智能球型摄像机,其特征在于,所述球机主板,当根据来自所述电子罗盘的所述地磁场数据确定所述指向北极的方向之后,进一步根据所述指向北极的方向确定所述球机镜头当前的方位角。
  3. 如权利要求1所述的智能球型摄像机,其特征在于,所述球机主板,当根据来自所述电子罗盘的所述加速度数据确定所述智能球型摄像机在所述指定方向上的振动幅度之后,进一步确定所述智能球型摄像机在所述指定方向上的所述振动幅度是否超过预定阈值;在确定超过所述预定阈值时,输出报警信息,和/或获取所述球机镜头当前拍摄到的图像并输出所获取的所述图像。
  4. 如权利要求2所述的智能球型摄像机,其特征在于,进一步包括全球定位系统GPS模块;
    所述球机主板,进一步通过所述GPS模块获取所述智能球型摄像机的位置信息,并输出所述位置信息以及所述球机镜头当前的方位角;和/或,通过所述GPS模块获取并解析卫星信号中的时间信息,并根据所述时间信息进行时间校准。
  5. 如权利要求2所述的智能球型摄像机,其特征在于,所述球机主板,进一步响应于外部客户端或者服务器发送的携带指定方位角的调整指令,根据所述指定方位角以及所述球机镜头当前的方位角,通过所述云台系统控制 所述机芯进行水平转动,以将所述球机镜头的方位角调整到所述指定方位角。
  6. 如权利要求1所述的智能球型摄像机,其特征在于,所述球机主板,进一步对接收到的所述地磁场数据做滤波处理,再根据滤波后的所述地磁场数据确定所述指向北极的方向。
  7. 如权利要求1所述的智能球型摄像机,其特征在于,所述电子罗盘被置于所述机芯的水平面上或者被置于与所述机芯的水平面相平行的水平面上,并随所述机芯的水平转动而做水平旋转;
    所述电子罗盘,在随所述机芯的水平转动而做水平旋转时测量得到自身所在的所述水平面中多个方向上的地磁场数据并发送给所述球机主板;
    所述球机主板,通过所述云台系统控制所述机芯做水平转动来从所述电子罗盘接收到所述多个方向上的地磁场数据,根据所述多个方向上的地磁场数据对所述电子罗盘做校正处理以计算出磁干扰参数,并根据所述磁干扰参数以及所述多个方向上的地磁场数据确定所述指向北极的方向。
  8. 如权利要求7所述的智能球型摄像机,其特征在于,
    所述球机主板,进一步响应于外部客户端或服务器发送的状态查看指令,确定对所述电子罗盘所做的校正处理的当前校正状态,并输出所确定的当前校正状态。
  9. 如权利要求1至8中任一项所述的智能球型摄像机,其特征在于,所述机芯的水平面上设置有转接板,所述电子罗盘被置于所述转接板的水平面上;
    所述电子罗盘将测量得到所述地磁场数据和/或所述加速度数据通过所述转接板发送至所述机芯的机芯主板;
    所述机芯主板用于为所述电子罗盘和所述转接板供电,并将接收到的所述地磁场数据和/或所述加速度数据发送给所述球机主板。
  10. 一种监控系统,其特征在于,包括至少一个如权利要求1所述的智能球型摄像机和平台服务器;
    每一智能球型摄像机还包括全球定位系统GPS模块,其中,所述球机主板当根据来自所述电子罗盘的所述地磁场数据确定所述指向北极的方向之后,进一步根据所述指向北极的方向确定所述球机镜头当前的方位角,通过所述 GPS模块获取该智能球型摄像机的位置信息,并将所述位置信息和所述球机镜头当前的方位角发送给所述平台服务器;
    所述平台服务器,接收各个智能球型摄像机发送的位置信息及所述方位角,根据预先保存的电子地图以及接收到的各个智能球型摄像机的所述位置信息和所述方位角确定是否有需要调整方向的智能球型摄像机,并在确定有一个或多个所述需要调整方向的智能球型摄像机时,针对每一所述需要调整方向的智能球型摄像机,生成携带指定方位角的调整指令并向该智能球型摄像机发送所生成的所述调整指令;
    在每一智能球型摄像机中,所述球机主板进一步响应于所述平台服务器发送的携带指定方位角的调整指令,根据所述指定方位角以及所述球机镜头当前的方位角,通过所述智能球型摄像机的云台系统控制所述机芯进行水平转动,以将所述球机镜头的方位角调整到所述指定方位角。
  11. 如权利要求10所述的监控系统,其特征在于,在任一智能球型摄像机中,所述球机主板,进一步将该智能球型摄像机的监控可视扇形区域参数发送至所述平台服务器,确定所述智能球型摄像机在所述指定方向上的所述振动幅度是否超过预定阈值;在确定超过所述预定阈值时,发送报警信息至所述平台服务器,和/或获取所述球机镜头当前拍摄到的图像并发送所获取的所述图像至所述平台服务器;
    所述平台服务器,进一步接收来自各智能球型摄像机的监控可视扇形区域参数,响应于接收到的来自任一智能球型摄像机的所述报警信息和/或所述图像,确定该智能球型摄像机发生异常,根据该智能球型摄像机的位置信息、方位角和监控可视区域参数以及位置在其周围的其它智能球型摄像机的位置信息、方位角及监控可视区域参数,确定能够替代该智能球型摄像机的另一智能球型摄像机,并确定所述另一智能球型摄像机为所述需要调整方向的智能球型摄像机;其中,当针对所述另一智能球型摄像机生成携带指定方位角的调整指令时,该指定方位角能够使所述另一智能球型摄像机的监控区域覆盖该发生异常的智能球型摄像机的监控区域。
  12. 如权利要求10所述的监控系统,其特征在于,所述平台服务器进一步展示所述电子地图,根据接收到的各个智能球型摄像机的所述位置信息在 所述电子地图中展示各个智能球型摄像机的位置及其对应的方位角,并响应于用户操作确定一个或多个所述需要调整方向的智能球型摄像机。
  13. 如权利要求11所述的监控系统,其特征在于,所述平台服务器进一步展示所述电子地图,根据接收到的各个智能球型摄像机的所述位置信息在所述电子地图中展示各个智能球型摄像机的位置及其对应的方位角,还展示来自任一智能球型摄像机的所述报警信息和/或所述图像,并响应于用户操作确定一个或多个所述需要调整方向的智能球型摄像机。
  14. 如权利要求10所述的监控系统,其特征在于,进一步包括多个枪型摄像机;
    在任一智能球型摄像机中,所述球机主板,进一步将该智能球型摄像机的监控可视扇形区域参数发送至所述平台服务器;
    每一枪型摄像机包括GPS模块和电子罗盘,通过自身的GPS模块获取自身的位置信息,根据自身的电子罗盘测量得到的地磁场数据确定指向北极的方向,并根据所述指向北极的方向确定自身当前的方位角,并将自身的所述位置信息、所述方位角和监控可视扇形区域参数发送给所述平台服务器;
    所述平台服务器进一步接收来自各智能球型摄像机的监控可视扇形区域参数,从各个枪型摄像机接收其各自的所述位置信息、所述方位角和监控可视扇形区域参数;
    每一枪型摄像机实时将自身的状态信息发送给所述平台服务器;
    所述平台服务器进一步从各个枪型摄像机接收所述状态信息,根据接收到的所述状态信息确定是否有枪型摄像机发生故障,当确定任一枪型摄像机发生故障时,根据该枪型摄像机的位置信息、方位角和监控可视区域参数以及位置在其周围的各智能球型摄像机的位置信息、方位角及监控可视区域参数,确定能够替代该发生故障的枪型摄像机的一个或多个智能球型摄像机,并确定所述一个或多个智能球型摄像机为所述需要调整方向的智能球型摄像机;
    其中,当针对能够替代任一所述发生故障的枪型摄像机的一智能球型摄像机生成携带指定方位角的调整指令时,该指定方位角能够使该智能球型摄像机的监控区域覆盖该发生故障的枪型摄像机的监控区域。
  15. 如权利要求14所述的监控系统,其特征在于,所述平台服务器进一步展示所述电子地图,并根据接收到的各个枪型摄像机的所述位置信息在所述电子地图中展示各个枪型摄像机的位置;当确定有枪型摄像机发生故障时,进一步在所述电子地图中展示各个发生故障的枪型摄像机的状态信息,并响应于用户操作确定用户选择的发生故障的枪型摄像机,并确定能够替代所选择的枪型摄像机的一个或多个智能球型摄像机。
  16. 如权利要求14所述的监控系统,其特征在于,所述平台服务器进一步展示各个智能球型摄像机和各个枪型摄像机之间的对应关系,其中,每一智能球型摄像机对应于在所述电子地图中位置与其相邻的至少两个枪型摄像机;当确定有枪型摄像机发生故障时,进一步展示各个发生故障的枪型摄像机的状态信息,并响应于用户操作确定用户选择的发生故障的枪型摄像机,并确定能够替代所选择的枪型摄像机的一个或多个智能球型摄像机。
  17. 如权利要求10至16任一项所述的监控系统,其特征在于,当所述平台服务器在预定时间段内生成多条所述调整指令时,批量发送所生成的多条所述调整指令。
  18. 如权利要求10至16任一项所述的监控系统,其特征在于,所述智能球型摄像机发送至所述平台服务器的所述位置信息为经纬度信息;
    所述平台服务器进一步根据任一智能球型摄像机的经纬度信息,确定该智能球型摄像机在所述电子地图中的位置,再根据所述电子地图中该位置周边的地址信息和/或道路交通信息以及来自该智能球型摄像机的所述球机镜头的方位角,确定与该智能球型摄像机的监控区域对应的地址信息和/或道路交通信息,并将所确定的与该智能球型摄像机的监控区域对应的所述地址信息和/或道路交通信息下发给该智能球型摄像机;
    在该智能球型摄像机中,所述球机主板进一步响应于所述平台服务器发送的与该智能球型摄像机的监控区域对应的所述地址信息和/或道路交通信息,在其所输出的监控画面中展示该地址信息和/或道路交通信息。
  19. 一种针对如权利要求1所述智能球型摄像机的控制方法,其特征在于,所述智能球型摄像机还包括全球定位系统GPS模块,其中,所述球机主板当根据来自所述电子罗盘的所述地磁场数据确定所述指向北极的方向之后, 进一步根据所述指向北极的方向确定所述球机镜头当前的方位角,通过所述GPS模块获取该智能球型摄像机的位置信息;
    该方法应用于所述平台服务器,包括:
    接收来自各个智能球型摄像机的所述位置信息及所述方位角;
    根据预先保存的电子地图以及接收到的来自各个智能球型摄像机的所述位置信息和所述方位角确定是否有需要调整方向的智能球型摄像机;
    在确定有一个或多个所述需要调整方向的智能球型摄像机时,针对每一所述需要调整方向的智能球型摄像机,生成携带指定方位角的调整指令,并向该智能球型摄像机发送所生成的所述调整指令,以使该智能球型摄像机的所述球机主板进一步根据所收到的调整指令中的所述指定方位角以及所述球机镜头当前的方位角,通过所述云台系统控制所述机芯进行水平转动,以将所述球机镜头的方位角调整到所述指定方位角。
  20. 如权利要求19所述的方法,其特征在于,在任一智能球型摄像机中,所述球机主板,进一步发送该智能球型摄像机的监控可视扇形区域参数,确定所述智能球型摄像机在所述指定方向上的所述振动幅度是否超过预定阈值;在确定超过所述预定阈值时,发送报警信息,和/或获取所述球机镜头当前拍摄到的图像并发送所述图像;
    该方法进一步包括:
    接收来自各智能球型摄像机的所述监控可视扇形区域参数;
    响应于从任一智能球型摄像机接收到的所述报警信息和/或所述图像,确定该智能球型摄像机发生异常;
    其中,所述根据预先保存的电子地图以及接收到的来自各个智能球型摄像机的所述位置信息和所述方位角确定是否有需要调整方向的智能球型摄像机,包括:
    针对任一被确定为发生异常的智能球型摄像机,根据该智能球型摄像机的位置信息、方位角和监控可视区域参数以及位置在其周围的其它智能球型摄像机的位置信息、方位角及监控可视区域参数,确定能够替代该智能球型摄像机的另一智能球型摄像机,并确定所述另一智能球型摄像机为所述需要调整方向的智能球型摄像机;
    其中,当针对所述另一智能球型摄像机生成携带指定方位角的调整指令时,该指定方位角能够使所述另一智能球型摄像机的监控区域覆盖该发生异常的智能球型摄像机的监控区域。
  21. 如权利要求19所述的方法,其特征在于,在任一智能球型摄像机中,所述球机主板,进一步发送该智能球型摄像机的监控可视扇形区域参数;
    该方法进一步包括:
    接收来自各智能球型摄像机的所述监控可视扇形区域参数;
    从各个枪型摄像机接收其各自的所述位置信息、所述方位角和监控可视扇形区域参数;其中,每一枪型摄像机包括GPS模块和电子罗盘,通过自身的GPS模块获取自身的位置信息,根据自身的电子罗盘测量得到的地磁场数据确定指向北极的方向,并根据所述指向北极的方向确定自身当前的方位角;
    从各个枪型摄像机接收其各自实时的状态信息;
    根据接收到的所述状态信息确定是否有枪型摄像机发生故障;
    其中,所述根据预先保存的电子地图以及接收到的来自各个智能球型摄像机的所述位置信息和所述方位角确定是否有需要调整方向的智能球型摄像机,包括:
    当确定任一枪型摄像机发生故障时,根据该枪型摄像机的位置信息、方位角和监控可视区域参数以及位置在其周围的各智能球型摄像机的位置信息、方位角及监控可视区域参数,确定能够替代该发生故障的枪型摄像机的一个或多个智能球型摄像机,并确定所述一个或多个智能球型摄像机为所述需要调整方向的智能球型摄像机;
    其中,当针对能够替代任一所述发生故障的枪型摄像机的一智能球型摄像机生成携带指定方位角的调整指令时,该指定方位角能够使该智能球型摄像机的监控区域覆盖该发生故障的枪型摄像机的监控区域。
  22. 如权利要求19至21任一项所述的方法,其特征在于,当所述平台服务器在预定时间段内生成多条所述调整指令时,批量发送所生成的多条所述调整指令。
  23. 如权利要求19至21任一项所述的方法,其特征在于,所述智能球型摄像机发送的所述位置信息为经纬度信息;
    该方法进一步包括:
    根据任一智能球型摄像机的经纬度信息,确定该智能球型摄像机在所述电子地图中的位置;
    根据所述电子地图中该位置周边的地址信息和/或道路交通信息以及来自该智能球型摄像机的方位角,确定与该智能球型摄像机的监控区域对应的地址信息和/或道路交通信息;
    将所确定的与该智能球型摄像机的监控区域对应的所述地址信息和/或道路交通信息下发给该智能球型摄像机,以使该智能球型摄像机中的所述球机主板在其所输出的监控画面中展示该地址信息和/或道路交通信息。
  24. 一种应用程序,其特征在于,所述应用程序用于在运行时执行针对如权利要求1所述智能球型摄像机的控制方法。
  25. 一种存储介质,其特征在于,所述存储介质用于存储应用程序,所述应用程序用于在运行时执行针对如权利要求1所述智能球型摄像机的控制方法。
PCT/CN2016/088592 2015-07-29 2016-07-05 智能球型摄像机、监控系统及控制方法 WO2017016375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510455470.1 2015-07-29
CN201510455470.1A CN107040752B (zh) 2015-07-29 2015-07-29 智能球型摄像机、监控系统及控制方法

Publications (1)

Publication Number Publication Date
WO2017016375A1 true WO2017016375A1 (zh) 2017-02-02

Family

ID=57884120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088592 WO2017016375A1 (zh) 2015-07-29 2016-07-05 智能球型摄像机、监控系统及控制方法

Country Status (2)

Country Link
CN (1) CN107040752B (zh)
WO (1) WO2017016375A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108062115A (zh) * 2018-02-07 2018-05-22 成都新舟锐视科技有限公司 一种基于云台控制技术的多目标连续跟踪系统及方法
CN110826477A (zh) * 2019-10-31 2020-02-21 福州塔联信息科技有限公司 一种基于球型网络摄像机的课堂点名装置
CN112995578A (zh) * 2019-12-02 2021-06-18 杭州海康威视数字技术股份有限公司 电子地图显示方法、装置、系统及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083488A (ja) * 2017-10-31 2019-05-30 キヤノン株式会社 撮像装置、支持装置、及びそれらの制御方法、プログラム
CN107995468A (zh) * 2017-12-19 2018-05-04 天津天地伟业信息系统集成有限公司 全景全时监控设备和监控方法
CN111654634B (zh) * 2020-06-24 2022-02-08 杭州海康威视数字技术股份有限公司 确定摄像机中机芯组件和云台组件倾斜的方法、摄像机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355693A (zh) * 2008-08-29 2009-01-28 中兴通讯股份有限公司 全方位无盲点监控系统及其监控方法
CN102006456A (zh) * 2010-10-28 2011-04-06 北京中星微电子有限公司 一种云台摄像机、云台监控系统及进行方向定位的方法
CN103237198A (zh) * 2013-04-15 2013-08-07 四川华雁信息产业股份有限公司 一种摄像机协调处理方法、装置及摄像机
CN103475858A (zh) * 2013-08-28 2013-12-25 天津市亚安科技股份有限公司 基于gis的云台3d预置功能的视频监控系统
US20150025655A1 (en) * 2013-07-19 2015-01-22 Superior Traffic Systems, LLC Traffic management system
CN104767965A (zh) * 2015-03-11 2015-07-08 苏州中德宏泰电子科技有限公司 一种方位感知网络摄像机系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402612B2 (ja) * 2009-12-22 2014-01-29 ソニー株式会社 表示装置、表示方法及びプログラム
JP5920863B2 (ja) * 2011-06-03 2016-05-18 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置
CN103686065A (zh) * 2012-09-17 2014-03-26 南京中兴力维软件有限公司 基于gis互操作的监控设备云镜集群控制方法及装置
CN104639824B (zh) * 2013-11-13 2018-02-02 杭州海康威视系统技术有限公司 基于电子地图的摄像机控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355693A (zh) * 2008-08-29 2009-01-28 中兴通讯股份有限公司 全方位无盲点监控系统及其监控方法
CN102006456A (zh) * 2010-10-28 2011-04-06 北京中星微电子有限公司 一种云台摄像机、云台监控系统及进行方向定位的方法
CN103237198A (zh) * 2013-04-15 2013-08-07 四川华雁信息产业股份有限公司 一种摄像机协调处理方法、装置及摄像机
US20150025655A1 (en) * 2013-07-19 2015-01-22 Superior Traffic Systems, LLC Traffic management system
CN103475858A (zh) * 2013-08-28 2013-12-25 天津市亚安科技股份有限公司 基于gis的云台3d预置功能的视频监控系统
CN104767965A (zh) * 2015-03-11 2015-07-08 苏州中德宏泰电子科技有限公司 一种方位感知网络摄像机系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108062115A (zh) * 2018-02-07 2018-05-22 成都新舟锐视科技有限公司 一种基于云台控制技术的多目标连续跟踪系统及方法
CN110826477A (zh) * 2019-10-31 2020-02-21 福州塔联信息科技有限公司 一种基于球型网络摄像机的课堂点名装置
CN112995578A (zh) * 2019-12-02 2021-06-18 杭州海康威视数字技术股份有限公司 电子地图显示方法、装置、系统及电子设备
CN112995578B (zh) * 2019-12-02 2022-09-02 杭州海康威视数字技术股份有限公司 电子地图显示方法、装置、系统及电子设备

Also Published As

Publication number Publication date
CN107040752B (zh) 2019-09-17
CN107040752A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2017016375A1 (zh) 智能球型摄像机、监控系统及控制方法
US10648809B2 (en) Adaptive compass calibration based on local field conditions
US11428527B2 (en) Monitoring method, monitoring system, and program
US9667862B2 (en) Method, system, and computer program product for gamifying the process of obtaining panoramic images
CN113345028B (zh) 一种确定目标坐标变换信息的方法与设备
TW201328344A (zh) 控制無人飛行載具進行影像採集的系統及方法
CN105809701A (zh) 全景视频姿态标定方法
US11206351B2 (en) Omnidirectional camera system with improved point of interest selection
CN104320587A (zh) 一种室外云台摄像机的自动获取取景范围的方法
TWI541767B (zh) 藉助於自動產生之巡邏路徑控制一監視系統之方法與裝置
CN111596297A (zh) 基于全景成像及超声旋转对空中无人机的探测装置及方法
JP2010006089A (ja) ライフライン等の施設の被災、損傷、劣化状況の空撮装置
WO2013136399A1 (ja) 情報提供システム、情報提供装置、撮影装置、およびコンピュータプログラム
JP2011095112A (ja) 三次元位置測定装置、飛翔体のマッピングシステム、およびコンピュータプログラム
CN111046121A (zh) 环境监控方法、装置和系统
CN110296688A (zh) 一种基于被动地理定位技术的侦测一体倾斜航测吊舱
JP4685680B2 (ja) 防災監視システムとその防災設備及び監視センタ
CN110827500A (zh) 一种智能安防方法和系统
CN111862197B (zh) 视频监控中的目标跟踪方法、系统及球机
KR20110121426A (ko) 주, 야간 겸용 이동물체 관측시스템
KR101629221B1 (ko) Gps센서와 전자 나침반을 이용한 카메라 위치 판별 및 영점 고정 시스템
WO2017169089A1 (ja) カメラ制御装置
WO2020143004A1 (zh) 一种信息处理方法及相关设备
KR101601963B1 (ko) Ptz 카메라를 이용한 영상 감시 방법 및 장치
CN212623080U (zh) 基于全景成像及超声旋转对空中无人机的探测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829741

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/07/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16829741

Country of ref document: EP

Kind code of ref document: A1