WO2017016136A1 - 临界热流密度试验用加热棒 - Google Patents
临界热流密度试验用加热棒 Download PDFInfo
- Publication number
- WO2017016136A1 WO2017016136A1 PCT/CN2015/097228 CN2015097228W WO2017016136A1 WO 2017016136 A1 WO2017016136 A1 WO 2017016136A1 CN 2015097228 W CN2015097228 W CN 2015097228W WO 2017016136 A1 WO2017016136 A1 WO 2017016136A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- rod
- heating
- heat flux
- nickel
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
- H05B3/44—Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
Definitions
- the invention relates to the field of nuclear reactor test research, and in particular to a heating rod for testing a critical heat flux density test of a nuclear fuel component.
- the model of off-core boiling mechanism mainly includes three types: (a) when a large vapor bubble is formed on the wall of the heating element, the thin liquid film at the bottom continuously evaporates to form a dry spot, which causes the heat transfer of the heat-emitting element wall to deteriorate; When the bubble layer on the wall of the heating element is thickened enough to prevent the liquid from wetting the wall surface, the vapor will not escape and form a vapor shell, blocking the liquid flow path, causing overheating of the heating element wall; (c) high heat flow At the density, when the evaporation rate of the liquid film between the steam block and the wall surface of the heating element is greater than the liquid wetting wall surface speed, the wall surface of the heating element is abnormally overheated and dried.
- the experimental study method is usually used to obtain the critical heat flux relationship.
- the test section is designed according to the similarity criteria, and the effects of system pressure, mass flow rate, critical point steam content, structural parameters and other factors on the critical heat flux density are studied.
- the critical judgment is generally judged by the wall temperature of the heating element. There are two criteria: one is that the wall temperature jump rate of the heating element reaches or exceeds a certain value; the other is that the wall temperature of the heating element reaches or exceeds the highest value. Temperature limit.
- Critical heat flux density test data analysis requires a critical heat flux ratio of 95% confidence that at least 95% probability does not occur for critical boiling.
- the local average parameter method is generally used to process the critical heat flux test data; for the non-uniform heating test section, the sub-channel analysis method is generally used to process the critical heat flux test data.
- critical heat flux is an important limiting thermal hydraulic parameter, and its size directly affects the safety and economy of nuclear power plants.
- critical heat flux density is one of the key parameters for characterizing the thermal hydraulic performance of fuel assemblies.
- the critical heat flux density of fuel assemblies cannot be predicted by theoretical methods at present, and can only be obtained through experiments. However, it is mainly based on the principle that the current flows through the conductor to generate heat, and the uniform heat generated by the heating rod simulates the heat release of the nuclear fuel, thereby conducting a critical heat flux density test.
- U.S. Patent No. 4,720,624 discloses a heating rod which is a non-uniform heating rod made of stainless steel, zirconium alloy or Inconel.
- the thickness and electrical resistance of the non-uniform heating rod vary with the length of the rod, but the outer diameter constant.
- a voltage is applied across the non-uniform heating rod, a current flows through it, which generates heat, simulates nuclear heat release, and conducts related experimental studies; this non-uniform heating rod can generate heat that is unevenly distributed along the axial direction, but There are certain defects in the technical problems of overall assembly, heating temperature measurement, and external voltage connection.
- U.S. Patent No. 4,156,127 also discloses an electric heating rod which is composed of three layers of extrusion, the inner layer of which is a thin tube of polytetrafluoroethylene, which serves as insulation and heat exchange with the medium; the intermediate layer is carbon and polytetrafluoroethylene.
- the electric heating rod can generate heat uniformly distributed in the axial direction, but the maximum temperature can only reach 260 ° C, which is far from the critical heat flux density test.
- the required temperature; the heating layer and the medium are insulated and thermally conductive by Teflon, and rapid mass exchange of heat cannot be achieved; the electric heating rod has a large diameter and cannot be processed and assembled according to the size of the nuclear fuel.
- the object of the present invention is to provide a heating rod for critical heat flux density test which can accurately realize the heat release of simulated nuclear fuel and can effectively meet the critical heat flux density test requirements.
- the present invention provides a heating rod for critical heat flux density test, which is suitable for simulating nuclear fuel heat release and performing critical heat flux density test, which comprises a nickel rod, a heating tube, a nickel tube, a copper tube, a ceramic member, a copper sheet and a thermocouple, wherein an upper end of the nickel rod is connected to an upper upper charging device, and a lower end of the nickel rod is butted and sealedly connected to an upper end of the heating tube, and a lower end of the heating tube is The upper end of the nickel tube is butted and sealed, and the upper end of the copper tube is butted and fixedly connected to the lower end of the nickel tube, and the lower end of the copper tube is connected to the lower part of the externally charged device, the heating tube,
- the nickel tube and the copper tube are sequentially butted to form a rod body having a hollow structure, the ceramic piece is attached to the inner wall of the rod body having the hollow structure and surrounds the heat chamber, and the copper sheet is uniformly disposed laterally.
- thermocouples Preferably, a plurality of the thermocouples are distributed in parallel and staggered in the thermal cavity.
- the rod body has a circular cross-sectional profile.
- the ceramic member comprises a ceramic tube in a heating tube, a ceramic member in a nickel tube and a ceramic member in a copper tube which are sequentially abutted to each other, and the ceramic member in the heating tube is attached to an inner wall of the rod body corresponding to the heating tube.
- the nickel tube inner ceramic member is attached to an inner wall of the rod body corresponding to the nickel tube
- the inner ceramic member of the copper tube is attached to an inner wall of the rod body corresponding to the copper tube.
- the invention can also generate a large heat flux density and has good heat conduction.
- Sexuality can realize rapid and large-scale heat exchange, can be processed and assembled according to the size of nuclear fuel, solves the problem that the existing heating rod can not reliably connect the large current power source, and achieves the purpose of accurately controlling the effective heating length; at the same time, the invention has compact structure and size.
- Uniform and precise, high heat flux density, safe and reliable operation under high temperature and high pressure conditions the invention can accurately realize the simulated nuclear fuel heat release and can effectively meet the critical heat flux test requirements, and can also measure the nuclear fuel rod under different operating conditions.
- the critical heat flux density has a good supporting effect on the development of new nuclear fuel assemblies.
- FIG. 1 is a schematic view showing the structure of a heating rod for critical heat flux density test of the present invention.
- Figure 2 is a cross-sectional view taken along line A-A of Figure 1.
- Figure 3 is a cross-sectional view taken along line B-B of Figure 1.
- Figure 4 is a cross-sectional view taken along line C-C of Figure 1.
- the heating rod 100 for critical heat flux density testing of the present invention is used for simulating the heat release of nuclear fuel to perform a critical heat flux density test, which includes a nickel rod 10, a heating tube 20, a nickel tube 30, a copper tube 40, and a ceramic. a member 50, a copper sheet 60 and a thermocouple 70.
- the upper end of the nickel rod 10 is connected to an external upper charging device, and the lower end of the nickel rod 10 is butted to the upper end of the heating tube 20 and is sealed and fixedly connected.
- the heating tube 10 is fixed to the heating tube 20 to ensure the strength while reducing the inefficient heat generation; the lower end of the heating tube 20 is butted against the upper end of the nickel tube 30 and is sealed and fixedly connected, and the heating tube 20 generates heat under the energization condition.
- the heating tube 20 is conventional, which generates heat by energizing its own resistance, and the upper end of the copper tube 40 is butted and sealed and fixedly connected to the lower end of the nickel tube 30, and the copper tube 40 is The lower end is connected with the lower part of the living device, and the copper tube 40 is connected with the lower part of the living device to ensure the reliable connection of the large current power source while reducing the inefficient heat generation; the heating tube 20, the nickel tube 30 and the copper tube 40 are in turn And forming a rod body having a hollow structure, the ceramic member 50 is attached to the inner wall of the rod body having a hollow structure and surrounding the heat chamber 51, that is, the ceramic member 50 is also hollow, and the hot chamber 51 is a ceramic piece.
- the hollow structure of 50 is formed, and the ceramic has excellent insulation and heat insulation, and the accuracy of the test data is ensured; the copper sheet 60 is uniformly disposed laterally in the heat chamber 51 and located in the heating tube 20.
- the thermocouple 70 is disposed in the thermal cavity 51 and is fixed by the copper sheet 60.
- the copper sheet 60 has excellent thermal conductivity and mechanical properties, so that the copper sheet 60 can be used on the one hand.
- thermocouple 70 is firmly fixed, and the heat generated by the heating tube 20 can be quickly transmitted to the thermocouple 70 by the copper sheet 60; the heating temperature of the heating rod 100 for critical heat flux density test of the present invention is high, which can satisfy The critical heat flux density test is required, and the temperature parameter is measured and output in real time through the thermocouple 70; at the same time, the heating rod 100 for the critical heat flux density test of the present invention can generate a large heat flux density, has good thermal conductivity, and can realize a rapid mass.
- the invention can accurately realize the simulated nuclear fuel heat release and can effectively meet the critical heat flux density test requirements, and can also measure the critical heat flux density of the nuclear fuel rod under different operating conditions, and has a good supporting effect on the development of the new nuclear fuel component;
- the temperature at the specified position is measured in real time by the thermocouple 70, and the heating rod 100 for the critical heat flux density test of the present invention is effectively prevented from being burnt.
- the lower end of the nickel rod 10 and the upper end of the heating tube 20 are welded and fixed to each other by soldering, and the two are welded to form a solder joint 11; the lower end of the heating tube 20 is a nickel tube 30.
- the upper end is also welded and fixedly connected by a soldering method, and the two are welded to form a soldering point 12.
- the upper end of the copper tube 40 and the lower end of the nickel tube 30 are also welded to achieve abutting and sealing.
- the two are welded to form the solder joint 13; the fixed connection between the two devices is achieved by soldering, which not only ensures the strength but also reduces the contact resistance; the critical heat flux density test of the present invention will be continued below with reference to FIG. 2 to FIG. Use the heating rod 100 for further detailed explanation:
- thermocouples 70 are distributed in parallel and staggered in the thermal cavity 51; that is, the present invention is provided with a plurality of mutually parallel thermocouples 70, and each thermocouple 70 is disposed at a different position.
- a staggered distribution is formed; in the embodiment of FIGS. 1 to 4 of the present invention, only an embodiment in which two thermocouples 70 are provided is provided; and those skilled in the art, based on the technical solution provided by the present invention, The requirements of the situation, the implementation of three, four, five and other thermocouples can be implemented without any creativity, and will not be described in detail herein.
- the cross-sectional profile of the rod has a circular structure.
- the ceramic member 50 includes a heating in-tube ceramic member 50a, a nickel in-tube ceramic member 50b, and a copper in-tube ceramic member 50c, which are sequentially attached to each other, and the heating tube inner ceramic member 50a is attached.
- the inner ceramic member 50b of the nickel tube is attached to the inner wall of the rod body corresponding to the nickel tube 30, and the ceramic piece 50c is attached to the copper tube.
- the ceramic piece 50c is attached to the copper tube.
- the heating temperature of the heating rod 100 for the critical heat flux density test of the present invention is high, the critical heat flux density test is required, and the temperature parameter is measured and output through the thermocouple 70 in real time; It has a large heat flux density, has good thermal conductivity, can realize rapid mass exchange of heat, can be processed and assembled according to the size of nuclear fuel, and solves the problem that the existing heating rod can not reliably connect the large current power source, and achieves accurate control of effective heat generation.
- the purpose of the length; at the same time, the invention has the advantages of compact structure, uniform size and precision, high heat flow density, and safe and reliable operation under high temperature and high pressure working conditions.
- the heating rod 100 for critical heat flux density test of the present invention can accurately realize the simulated heat release of nuclear fuel. It can effectively meet the critical heat flux test requirements, and can also measure the critical heat flux density of nuclear fuel rods under different operating conditions, and has a good supporting role for the development of new nuclear fuel assemblies.
- thermocouple 70 In addition, the specific structure and working principle of the heating tube 20 and the thermocouple 70 according to the present invention are well known to those skilled in the art and will not be described in detail herein.
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
一种临界热流密度试验用加热棒,其包括镍棒、加热管、镍管、铜管、陶瓷件、铜片及热电偶,加热管、镍管及铜管依次对接且密封的固定连接,并形成呈中空结构的棒体,镍棒与外界上部带电设备连接,铜管与外界下部带电设备连接,陶瓷件附着于棒体的内壁上并环绕形成热腔,铜片呈均匀的横向设置于热腔中并位于加热管内,热电偶呈悬空的设置于热腔内并藉由铜片固定;本发明加热温度高、热流密度高且结构紧凑,满足临界热流密度试验所需,并将温度参数通过热电偶实时测量和输出,能精准实现模拟核燃料释热且能有效满足临界热流密度试验要求,还能测量不同运行工况下核燃料棒的临界热流密度,对新型核燃料组件研发具有良好的支撑作用。
Description
本发明涉及一种核反应堆试验研究领域,尤其涉及一种用于研究核燃料组件的临界热流密度试验用加热棒。
在对流沸腾中,主要有两种类型的临界热流密度:偏离核态沸腾和干涸。在压水堆核动力装置稳态热工设计中,通常只遇到过冷沸腾和低含汽量的饱和沸腾,因此偏离核态沸腾热流密度尤其重要。
偏离核态沸腾机理模型主要包括三种类型:(a)当发热元件壁面上形成一大蒸汽泡时,其底部薄层液膜不断蒸发,形成干斑,导致发热元件壁面传热恶化;(b)当发热元件壁面上的汽泡层增厚到足以阻碍液体润湿壁面时,蒸汽将无法逸出而形成汽壳,堵塞了液体流道,导致发热元件壁面发生过热;(c)在高热流密度下,汽块与发热元件壁面之间的液膜蒸发速度大于液体润湿壁面速度时,导致发热元件壁面异常过热而干涸。由于临界热流密度机理及其现象太复杂,通常采用试验研究的方法,得到临界热流密度关系式。根据临界热流密度试验目的及其内容,按相似准则要求设计试验段,研究系统压力、质量流速、临界点含汽量、结构参数等因素对临界热流密度的影响。
在临界热流密度试验过程中,临界判断一般采用加热元件壁温判断,其判据有两条:一是加热元件壁温跃升速率达到或超过某一定值;二是加热元件壁温达到或超过最高温度限值。临界热流密度试验数据分析要求给出95%的置信度上,至少95%的概率不发生临界沸腾的临界热流密度比。
对均匀加热试验段,一般采用局部平均参数法处理临界热流密度试验数据;对非均匀加热试验段,一般采用子通道分析法处理临界热流密度试验数据。在核动力装置安全评审中,临界热流密度是重要的限制性热工水力参数,它的大小直接影响核动力装置的安全性和经济性。通过优化燃料组件结构,提高临界热流密度,使反应堆系统产生最大的热功率,从而在保证核动力装置工程设计
安全可靠的基础上,提高经济性。
在核燃料组件研发中,临界热流密度是表征燃料组件热工水力性能的关键参数之一,燃料组件的临界热流密度目前还不能采用理论的方法进行预测,只能通过试验获取,此加热棒便因此而产生,其主要是以电流流过导体产生热量为原理,通过加热棒产生的均匀热量模拟核燃料释热,从而进行临界热流密度试验研究。
美国专利US4720624公开了一种加热棒,该加热棒为非均匀加热棒,材质为不锈钢、锆合金或因科镍合金,非均匀加热棒的厚度和电阻随着棒长度方向发生变化,但外径不变。在非均匀加热棒的两端施加电压,会有电流流过,进而产生热量,模拟核释热和进行相关试验研究;这种非均匀加热棒能产生沿轴向非均匀分布的热量,但其在整体组装、加热温度测量、外部电压连通等技术问题上存在一定的缺陷。
美国专利US4156127也公开了一种电加热棒,该电加热棒由三层挤压构成,里层为聚四氟乙烯薄管,起绝缘和与介质换热作用;中间层为碳与聚四氟乙烯的混合物,起导电发热作用;最外层为聚四氟乙烯厚管,起绝缘和与环境隔热作用;在加热棒首尾两端引出与中间层连通的导线,当导线上施加电压,会有电流流过均匀布置碳物质的中间层,进而产生均匀发热量;因此该电加热棒能产生沿轴向均匀分布的热量,但最高温度仅能达260℃,远达不到临界热流密度试验所需温度;加热层与介质通过聚四氟乙烯绝缘和导热,无法实现快速大量热交换;电加热棒的直径较大,无法按照核燃料尺寸进行加工组装。
因此,亟需一种能精准实现模拟核燃料释热且能有效满足临界热流密度试验研究要求的临界热流密度试验用加热棒。
发明内容
本发明的目的在于提供一种能精准实现模拟核燃料释热且能有效满足临界热流密度试验要求的临界热流密度试验用加热棒。
为实现上述目的,本发明提供了一种临界热流密度试验用加热棒,适用于模拟核燃料释热而进行临界热流密度试验,其包括镍棒、加热管、镍管、铜管、
陶瓷件、铜片及热电偶,所述镍棒的上端与外界上部带电设备连接,所述镍棒的下端与所述加热管的上端对接且密封的固定连接,所述加热管的下端与所述镍管的上端对接且密封的固定连接,所述铜管的上端与所述镍管的下端对接且密封的固定连接,所述铜管的下端与外界下部带电设备连接,所述加热管、镍管及铜管依次对接形成呈中空结构的棒体,所述陶瓷件附着于所述呈中空结构的棒体的内壁上并环绕形成热腔,所述铜片呈均匀的横向设置于所述热腔中并位于加热管内,所述热电偶呈悬空的设置于所述热腔内并藉由所述铜片固定。
较佳地,多根所述热电偶呈平行且交错的分布于所述热腔内。
较佳地,所述棒体的横截面轮廓呈圆形结构。
较佳地,所述陶瓷件包括依次相互对接的加热管内陶瓷件、镍管内陶瓷件及铜管内陶瓷件,所述加热管内陶瓷件附着于位于所述加热管所对应的棒体的内壁上,所述镍管内陶瓷件附着与位于所述镍管所对应的棒体的内壁上,所述铜管内陶瓷件附着与位于所述铜管所对应的棒体的内壁上。
与现有技术相比,由于本发明加热温度高,满足临界热流密度试验所需,并将温度参数通过热电偶实时测量和输出;另本发明还能产生较大的热流密度,具有良好的导热性,能实现快速大量热交换,能按照核燃料尺寸进行加工组装,解决了现有加热棒往往不能可靠连接大电流电源的问题,达到了精确控制有效发热长度的目的;同时本发明结构紧凑、尺寸统一且精确、热流密度高,能在高温高压工况下安全可靠的工作,因此本发明能精准实现模拟核燃料释热且能有效满足临界热流密度试验要求,还能测量不同运行工况下核燃料棒的临界热流密度,对新型核燃料组件研发具有良好的支撑作用。
图1是本发明临界热流密度试验用加热棒的结构示意图。
图2是沿图1中A-A线的剖视图。
图3是沿图1中B-B线的剖视图。
图4是沿图1中C-C线的剖视图。
现在参考附图描述本发明的实施例,附图中类似的元件标号代表类似的元件。
如图1所示,本发明的临界热流密度试验用加热棒100,用于模拟核燃料释热而进行临界热流密度试验,其包括镍棒10、加热管20、镍管30、铜管40、陶瓷件50、铜片60及热电偶70,所述镍棒10的上端与外界上部带电设备连接,所述镍棒10的下端与所述加热管20的上端对接且密封的固定连接,采用镍棒10与加热管20对接固定,保证强度的同时还降低了无效发热量;所述加热管20的下端与所述镍管30的上端对接且密封的固定连接,加热管20在通电情况下产生热量,加热管20为现有的,其利用自身电阻通电而产生热量,从而实现加热,所述铜管40的上端与所述镍管30的下端对接且密封的固定连接,所述铜管40的下端与外界下部带电设备连接,采用铜管40与外界下部带电设备连接,在保证可靠连接大电流电源的同时还降低了无效发热量;所述加热管20、镍管30及铜管40依次对接形成呈中空结构的棒体,所述陶瓷件50附着于所述呈中空结构的棒体的内壁上并环绕形成热腔51,即陶瓷件50亦呈中空结构,热腔51即为陶瓷件50的中空结构所形成,利用陶瓷具有优良的绝缘性和隔热性,确保了试验数据的准确性;所述铜片60呈均匀的横向设置于所述热腔51中并位于加热管20内,所述热电偶70呈悬空的设置于所述热腔51内并藉由所述铜片60固定,利用铜片60具有优良的导热性和机械性,因此一方面藉由该铜片60能牢固的将热电偶70固定住,另一面藉由该铜片60能将加热管20所产生的热量快速传导至热电偶70;本发明的临界热流密度试验用加热棒100加热温度高,能满足临界热流密度试验所需,并将温度参数通过热电偶70实时测量和输出;同时本发明的临界热流密度试验用加热棒100能产生较大的热流密度,具有良好的导热性,能实现快速大量热交换,因此本发明能精准实现模拟核燃料释热且能有效满足临界热流密度试验要求,还能测量不同运行工况下核燃料棒的临界热流密度,对新型核燃料组件研发具有良好的支撑作用;另,通过热电偶70实时测量指定位置温度,有效的避免了本发明的临界热流密度试验用加热棒100被烧毁。
继续结合图1所示,具体地,镍棒10的下端与加热管20的上端通过焊接的方式实现对接且密封的固定连接,二者焊接形成焊接点11;加热管20的下端镍管30的上端同样通过焊接的方式来实现对接且密封的固定连接,二者焊接形成焊接点12,同样铜管40的上端与镍管30的下端也采用焊接的方式实现二者对接且密封的固定连接,二者焊接形成焊接点13;通过焊接的方式来实现上述两两器件之间的固定连接,既保证了强度同时还降低了接触电阻;以下继续结合图2-图4对本发明的临界热流密度试验用加热棒100作进一步详细的说明:
较佳者,多根所述热电偶70呈平行且交错的分布于所述热腔51内;即本发明设置有多根相互平行的热电偶70,且每根热电偶70均设置在不同位置,从而形成交错的分布;本发明图1-图4的实施例中仅给出了设置两根热电偶70的实施方式;本领域技术人员在本发明所提供的技术方案的前提下,根据实际情况的需求,无需任何创造性即可实施设置三根、四根、五根等热电偶的实施方式,在此不再详细说明。
结合图2-图4所示,较佳者,所述棒体的横截面轮廓呈圆形结构。
结合图1-图4所示,较佳者,所述陶瓷件50包括依次相互对接的加热管内陶瓷件50a、镍管内陶瓷件50b及铜管内陶瓷件50c,所述加热管内陶瓷件50a附着于位于所述加热管20所对应的棒体的内壁上,所述镍管内陶瓷件50b附着与位于所述镍管30所对应的棒体的内壁上,所述铜管内陶瓷件50c附着与位于所述铜管40所对应的棒体的内壁上。
继续结合图1-图4,由于本发明的临界热流密度试验用加热棒100加热温度高,满足临界热流密度试验所需,并将温度参数通过热电偶70实时测量和输出;另本发明还能产生较大的热流密度,具有良好的导热性,能实现快速大量热交换,能按照核燃料尺寸进行加工组装,解决了现有加热棒往往不能可靠连接大电流电源的问题,达到了精确控制有效发热长度的目的;同时本发明结构紧凑、尺寸统一且精确、热流密度高,能在高温高压工况下安全可靠的工作,因此本发明的临界热流密度试验用加热棒100能精准实现模拟核燃料释热且能有效满足临界热流密度试验要求,还能测量不同运行工况下核燃料棒的临界热流密度,对新型核燃料组件研发具有良好的支撑作用。
另,本发明所涉及的加热管20及热电偶70的具体结构及工作原理,均为本领域普通技术人员所熟知的,在此不再作详细的说明。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。
Claims (4)
- 一种临界热流密度试验用加热棒,适用于模拟核燃料释热而进行临界热流密度试验,其特征在于:包括镍棒、加热管、镍管、铜管、陶瓷件、铜片及热电偶,所述镍棒的上端与外界上部带电设备连接,所述镍棒的下端与所述加热管的上端对接且密封的固定连接,所述加热管的下端与所述镍管的上端对接且密封的固定连接,所述铜管的上端与所述镍管的下端对接且密封的固定连接,所述铜管的下端与外界下部带电设备连接,所述加热管、镍管及铜管依次对接形成呈中空结构的棒体,所述陶瓷件附着于所述呈中空结构的棒体的内壁上并环绕形成热腔,所述铜片呈均匀的横向设置于所述热腔中并位于加热管内,所述热电偶呈悬空的设置于所述热腔内并藉由所述铜片固定。
- 如权利要求1所述的临界热流密度试验用加热棒,其特征在于:多根所述热电偶呈平行且交错的分布于所述热腔内。
- 如权利要求1所述的临界热流密度试验用加热棒,其特征在于:所述棒体的横截面轮廓呈圆形结构。
- 如权利要求1所述的临界热流密度试验用加热棒,其特征在于:所述陶瓷件包括依次相互对接的加热管内陶瓷件、镍管内陶瓷件及铜管内陶瓷件,所述加热管内陶瓷件附着于位于所述加热管所对应的棒体的内壁上,所述镍管内陶瓷件附着与位于所述镍管所对应的棒体的内壁上,所述铜管内陶瓷件附着与位于所述铜管所对应的棒体的内壁上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510451490.1 | 2015-07-29 | ||
CN201510451490.1A CN105007641B (zh) | 2015-07-29 | 2015-07-29 | 临界热流密度试验用加热棒 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017016136A1 true WO2017016136A1 (zh) | 2017-02-02 |
Family
ID=54380105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/097228 WO2017016136A1 (zh) | 2015-07-29 | 2015-12-14 | 临界热流密度试验用加热棒 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105007641B (zh) |
WO (1) | WO2017016136A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112080405A (zh) * | 2020-09-23 | 2020-12-15 | 吴园园 | 一种检验科细菌培养箱 |
CN114048424A (zh) * | 2021-11-08 | 2022-02-15 | 中海油田服务股份有限公司 | 热采实验方法及装置 |
CN114235887A (zh) * | 2021-12-13 | 2022-03-25 | 西安交通大学 | 一种高温高压单棒临界热流密度可视化实验装置 |
CN114980378A (zh) * | 2022-05-12 | 2022-08-30 | 西北核技术研究所 | 一种电加热燃料组件热工水力实验装置 |
CN115101224A (zh) * | 2022-04-11 | 2022-09-23 | 国家电投集团科学技术研究院有限公司 | 电加热模拟燃料棒 |
CN115265817A (zh) * | 2022-07-26 | 2022-11-01 | 北京理工大学 | 一种燃油附壁燃烧瞬态热流密度测量装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105007641B (zh) * | 2015-07-29 | 2016-09-28 | 中广核研究院有限公司 | 临界热流密度试验用加热棒 |
CN106158057B (zh) * | 2016-08-17 | 2019-12-13 | 中国核电工程有限公司 | 乏燃料水池的模拟装置 |
CN107945895A (zh) * | 2017-06-19 | 2018-04-20 | 重庆大学 | 一种非均匀电加热的核燃料模拟棒 |
CN108990185A (zh) * | 2018-08-23 | 2018-12-11 | 镇江裕太防爆电加热器有限公司 | 复合型高电压加热器 |
CN110296765A (zh) * | 2019-06-06 | 2019-10-01 | 深圳市合众清洁能源研究院 | 一种全温度场测量式特种非均匀电加热元件及制造方法 |
CN114121319B (zh) * | 2021-11-23 | 2022-08-05 | 西安交通大学 | 六自由度运动条件下核反应堆单棒沸腾临界试验装置及方法 |
CN114916101B (zh) * | 2022-05-12 | 2024-06-21 | 西北核技术研究所 | 一种加热棒及加热棒束装置 |
CN115223738B (zh) * | 2022-07-15 | 2024-01-26 | 西安交通大学 | 一种用于测量包壳温度和电位的实验段及测量方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1185564A (zh) * | 1996-11-19 | 1998-06-24 | 日本特殊陶业株式会社 | 陶瓷加热器及其制造方法 |
CN103650060A (zh) * | 2011-05-18 | 2014-03-19 | 原子能与替代能源委员会 | 用于加热液体的电加热装置、用于生产该电加热装置的方法以及该电加热装置在核燃料棒的电气仿真中的使用 |
CN105007641A (zh) * | 2015-07-29 | 2015-10-28 | 中科华核电技术研究院有限公司 | 临界热流密度试验用加热棒 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52133321U (zh) * | 1976-04-06 | 1977-10-11 | ||
EP0109843B1 (en) * | 1982-11-23 | 1987-08-26 | United Kingdom Atomic Energy Authority | Resistance heater probe |
JPS6066198A (ja) * | 1983-09-20 | 1985-04-16 | 動力炉・核燃料開発事業団 | 肉厚不均一抵抗加熱管の製造方法 |
CN201260249Y (zh) * | 2008-07-21 | 2009-06-17 | 杨智慧 | 一种复合电热管 |
CN102592689B (zh) * | 2012-02-06 | 2015-01-14 | 国核华清(北京)核电技术研发中心有限公司 | 复合材料加热块、其制造方法及其应用 |
US10222091B2 (en) * | 2012-07-17 | 2019-03-05 | Eemax, Inc. | Next generation modular heating system |
CN102881339B (zh) * | 2012-08-31 | 2014-10-15 | 中国核动力研究设计院 | 便于测量壁温的球形燃料元件模拟件及其组装工艺 |
CN104517656B (zh) * | 2013-09-30 | 2016-08-17 | 中国核动力研究设计院 | 一种细长型非均匀加热元件及其加工工艺 |
-
2015
- 2015-07-29 CN CN201510451490.1A patent/CN105007641B/zh active Active
- 2015-12-14 WO PCT/CN2015/097228 patent/WO2017016136A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1185564A (zh) * | 1996-11-19 | 1998-06-24 | 日本特殊陶业株式会社 | 陶瓷加热器及其制造方法 |
CN103650060A (zh) * | 2011-05-18 | 2014-03-19 | 原子能与替代能源委员会 | 用于加热液体的电加热装置、用于生产该电加热装置的方法以及该电加热装置在核燃料棒的电气仿真中的使用 |
CN105007641A (zh) * | 2015-07-29 | 2015-10-28 | 中科华核电技术研究院有限公司 | 临界热流密度试验用加热棒 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112080405A (zh) * | 2020-09-23 | 2020-12-15 | 吴园园 | 一种检验科细菌培养箱 |
CN114048424A (zh) * | 2021-11-08 | 2022-02-15 | 中海油田服务股份有限公司 | 热采实验方法及装置 |
CN114235887A (zh) * | 2021-12-13 | 2022-03-25 | 西安交通大学 | 一种高温高压单棒临界热流密度可视化实验装置 |
CN115101224A (zh) * | 2022-04-11 | 2022-09-23 | 国家电投集团科学技术研究院有限公司 | 电加热模拟燃料棒 |
CN114980378A (zh) * | 2022-05-12 | 2022-08-30 | 西北核技术研究所 | 一种电加热燃料组件热工水力实验装置 |
CN115265817A (zh) * | 2022-07-26 | 2022-11-01 | 北京理工大学 | 一种燃油附壁燃烧瞬态热流密度测量装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105007641B (zh) | 2016-09-28 |
CN105007641A (zh) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017016136A1 (zh) | 临界热流密度试验用加热棒 | |
WO2017020474A1 (zh) | 用于整体效应热工水力试验的堆芯模拟体 | |
Wang et al. | Experimental investigation on startup and thermal performance of a high temperature special-shaped heat pipe coupling the flat plate heat pipe and cylindrical heat pipes | |
CN107945895A (zh) | 一种非均匀电加热的核燃料模拟棒 | |
CN109632573B (zh) | 一种用于等热流加热条件下超临界压力流体流动传热可视化实验装置 | |
CN103512755B (zh) | 一种用于主动冷却实验的辐射加热系统 | |
CN103940851B (zh) | 基于微波加热的流动湿蒸汽湿度测量探针及其测量方法 | |
CN106770440B (zh) | 一种陶瓷球床有效热导率测试平台 | |
CN114222383B (zh) | 一种可测量壁面温度场的耐高温环形电加热棒 | |
JP5215750B2 (ja) | センサ、液膜測定装置 | |
CN116337929A (zh) | 一种非均匀功率高温热管传热极限测试的实验装置及方法 | |
CN211400328U (zh) | 一种大功率自动控温气体管道加热器 | |
CN204350336U (zh) | 用于高温熔盐用热导式液位传感器的铠装加热器 | |
CN112326286B (zh) | 一种棒状燃料元件瞬态释热模拟实验装置及方法 | |
CN207425373U (zh) | 一种非均匀电加热的核燃料模拟棒 | |
CN104458808A (zh) | 一种利用微波硬同轴线的湿蒸汽湿度测量探针及方法 | |
CN104890228A (zh) | 一种利用电热钽防涨销熔结氟塑管换热器管板的装置 | |
CN114235887B (zh) | 一种高温高压单棒临界热流密度可视化实验装置 | |
CN109827337A (zh) | 一种精准控温极速电热管 | |
Arulselvan et al. | Experimental investigation of the thermal performance of a heat pipe under various modes of condenser cooling | |
RU106447U1 (ru) | Высокотемпературная термопара | |
Singh et al. | Experimental analysis of a bayonet tube at constant wall temperature conditions under laminar, transition, and turbulent flow | |
CN209744736U (zh) | 一种精准控温极速电热管 | |
CN117269032B (zh) | 一种腐蚀介质下金属材料腐蚀速率在线测量装置及方法 | |
Jun et al. | Method for measuring temperature of inner wall surface of pipeline in nuclear power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15899485 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.06.2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15899485 Country of ref document: EP Kind code of ref document: A1 |