WO2017014211A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2017014211A1
WO2017014211A1 PCT/JP2016/071104 JP2016071104W WO2017014211A1 WO 2017014211 A1 WO2017014211 A1 WO 2017014211A1 JP 2016071104 W JP2016071104 W JP 2016071104W WO 2017014211 A1 WO2017014211 A1 WO 2017014211A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
pole
magnetic
rotor
winding
Prior art date
Application number
PCT/JP2016/071104
Other languages
French (fr)
Japanese (ja)
Inventor
晃司 三上
洋次 山田
晃尚 服部
横山 誠也
Original Assignee
アスモ 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016050075A external-priority patent/JP6677029B2/en
Application filed by アスモ 株式会社 filed Critical アスモ 株式会社
Priority to CN201680041645.7A priority Critical patent/CN107852050B/en
Priority to DE112016003276.5T priority patent/DE112016003276T5/en
Priority to US15/745,241 priority patent/US10367385B2/en
Publication of WO2017014211A1 publication Critical patent/WO2017014211A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the magnetic poles of the rotor are uniform, interlinkage magnetic fluxes in the same direction are generated in the U-phase windings U1 to U4. Therefore, as shown in FIG. 3B, the same induced voltage vx is generated in each of the U-phase windings U1 to U4.
  • the combined induced voltage vu ′ obtained by synthesizing the induced voltage vx generated in each U-phase winding U1 to U4 is the induced voltage vx of each U-phase winding U1 to U4. (That is, four times the induced voltage vx).
  • An interlinkage magnetic flux ⁇ y having a phase opposite to that of ⁇ x is generated. Therefore, as shown in FIG. 3A, the induced voltage vy generated in the U-phase windings U2 and U4 has a reverse polarity (reverse phase) with respect to the induced voltage vx generated in the U-phase windings U1 and U3. .
  • the windings 13 of the stator 11 are composed of four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current.
  • the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
  • the rotor 21 includes magnet magnetic poles Mn and Ms having permanent magnets 25, and U-phase windings U2 and U4 at a rotational position where the magnetic pole Mn (or magnet magnetic pole Ms) faces, for example, the U-phase windings U1 and U3. And a protruding portion 24 (magnetic flux allowing portion) of the opposing rotor core 22.
  • the protrusion 24 of the rotor core 22 allows the linkage flux ⁇ y to be generated by the field weakening current in the opposing winding 13 (for example, the U-phase windings U2 and U4).
  • the induced voltage vy generated by the interlinkage magnetic flux ⁇ y caused by the field weakening current in the winding 13 facing the protrusion 24 of the rotor core 22 is the winding 13 facing the magnet magnetic pole Mn (or the magnet magnetic pole Ms).
  • the polarity is opposite to that of the induced voltage vx generated in (see FIG. 3A).
  • a plurality (two sets) of magnetic pole pairs (magnetic pole sets) P each composed of an N-pole magnet magnetic pole Mn and an S-pole magnet magnetic pole Ms arranged adjacent to each other in the circumferential direction are arranged at equal intervals in the circumferential direction. According to this configuration, it is possible to make the rotor 21 have an excellent balance magnetically and mechanically.
  • the winding U1 and the winding U3 have the same induced voltage (the induced voltage).
  • vx occurs, and induced voltages (the induced voltages vy) having the same magnitude are generated in the windings U2 and U4.
  • the combined induction voltage generated in the series pair of the windings U1 and U2 and the combined induction voltage generated in the series pair of the windings U3 and U4 are substantially equal (vx + vy).
  • the windings are arranged in series in each phase, the windings (for example, U-phase windings) respectively facing the magnet magnetic pole Mn (magnet magnetic pole Ms) and the protrusion 24 at a predetermined rotational position of the rotor 21.
  • Line U1 and U-phase winding U2) are connected in series.
  • the induced voltages of the opposite polarity (reverse phase) generated in the in-phase windings connected in series can be added to obtain a combined induced voltage, and the combined induced voltage in each phase can be effectively suppressed. Can do.
  • the rotor 21 shown in FIG. 8 is a modification of the configuration shown in FIG. 7, and has the same shape as the magnet accommodation hole 22d of each magnet magnetic pole Mn, Ms and can accommodate a permanent magnet 25a.
  • Two holes 22e are formed in each magnetic flux allowing portion 22c. That is, the rotor core 22 is formed with eight magnet housing holes 22d and 22e in which the permanent magnets 25 can be embedded at equal circumferential intervals (45 ° intervals). According to such a configuration, if the permanent magnet 25a is embedded in the magnet housing hole 22e, the rotor core 22 can be configured as an 8-pole IPM rotor, and the versatility of the rotor core 22 is improved. .
  • the permanent magnet 32b has a magnetic orientation substantially along the circumferential direction of the rotor 21, so that a portion near the magnet magnetic pole Mn in the circumferential direction is an N pole and a portion near the magnet magnetic pole Ms in the circumferential direction is an S pole. Magnetized.
  • the permanent magnets 32a and 32c on both sides in the circumferential direction with respect to the middle permanent magnet 32b are provided symmetrically with respect to the boundary portion (permanent magnet 32b) and are closer to the N-pole magnetic pole Mn from the permanent magnet 32b.
  • the opening angle to the permanent magnet 32a and the opening angle from the permanent magnet 32b to the permanent magnet 32c near the S magnetic pole Ms are set to about 45 °.
  • the permanent magnet 32a is magnetized so that the N pole appears on the surface facing the middle permanent magnet 32b
  • the permanent magnet 32c is magnetized so that the S pole appears on the surface facing the middle permanent magnet 32b.
  • each magnet magnetic pole Mn, Ms is positioned near the outer peripheral surface 22b of the rotor core 22 (the radially outer side of the permanent magnets 32a to 32c).
  • the permanent magnet 32d is embedded in the vicinity of the end portion.
  • the permanent magnets 32d have the same shape and a rectangular parallelepiped shape.
  • the permanent magnet 32d of the N-pole magnet magnetic pole Mn is disposed between the circumferential directions of the radially outer ends of the permanent magnets 32a and 32b, and is magnetized so that the radially outer surface becomes the N-pole.
  • the rotor 21 shown in FIG. 14 is a further modification of the configuration shown in FIG. 12, and the magnetic poles Mn and Ms are embedded in the rotor core 22 near the radially inner ends of the permanent magnets 32a to 32c.
  • the permanent magnet 32e is provided.
  • the permanent magnets 32e have the same shape and a rectangular parallelepiped shape.
  • the permanent magnet 32e of the N-pole magnet magnetic pole Mn is disposed between the circumferential directions of the radially inner ends of the permanent magnets 32a and 32b, and is magnetized so that the radially outer surface is the N-pole.
  • the permanent magnet 32e of the magnetic pole Ms having the S pole is disposed between the circumferential directions of the radially inner ends of the permanent magnets 32b and 32c, and is magnetized so that the radially outer surface is the S pole. According to such a configuration, it is possible to secure the volume of the outer peripheral core portion 22g in each of the magnetic poles Mn and Ms, that is, to ensure the reluctance torque, while increasing the torque by adding the permanent magnet 32e. Further, in this configuration, the magnet torque of each of the magnetic poles Mn and Ms is smaller than that in the configuration shown in FIG. 13, but the induced voltage generated in the winding 13 during the rotation of the rotor can be reduced accordingly.
  • the total number of magnet magnetic poles Mn and Ms in the rotor 21 is four and the number of windings 13 (slot number) of the stator 11 is twelve.
  • the number of 13 can be appropriately changed according to the configuration.
  • FIG. 16 shows an example of the motor 30 in which the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is 5:12.
  • the same components as those in the above embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different portions will be described in detail.
  • the twelve windings 13 of the stator 11 are classified according to the three-phase driving currents (U phase, V phase, W phase) supplied, and in FIG.
  • U phase winding bar U1, bar U2, V phase winding bar V1 with respect to U phase windings U1, U2, V phase windings V1, V2 and W phase windings W1, W2 constituted by positive windings.
  • Bar V2, W-phase winding bar W1, bar W2 are constituted by reverse winding.
  • the U-phase winding U1 and the bar U1 are placed at positions facing each other by 180 °, and similarly, the U-phase winding U2 and the bar U2 are placed at positions facing each other by 180 °.
  • the opening angles around the axis L of the magnet magnetic poles Mn and Ms are set to be equal to each other.
  • the open angles of the magnetic poles Mn and Ms (permanent magnet 25) are set to (360 / 2n) ° where n is the total number of the magnetic poles Mn and Ms (the number of permanent magnets 25). In this example, since the total number of magnet magnetic poles Mn and Ms is 5, the open angle of the magnet magnetic poles Mn and Ms (permanent magnet 25) is set to 36 °, and the open angle of the magnetic pole set Pa is 180 °. Yes.
  • the protrusion 24 of the rotor core 22 is on the opposite side in the circumferential direction. Is opposed to the U-phase winding bar U1 in the radial direction (see FIG. 16). That is, the magnet magnetic pole Ms and the protrusion 24 are simultaneously opposed to the U-phase winding U1 and the bar U1 that are excited in opposite phases (same timing).
  • the U-phase winding bar U1 since the portion of the rotor 21 that is opposed is the protrusion 24 of the rotor core 22, the interlinkage magnetic flux ⁇ y due to the field weakening current does not disappear, and the U-phase winding bar U1 has no chain.
  • the cross magnetic flux ⁇ y passes toward the outside in the radial direction. That is, the protrusion 24 of the rotor core 22 facing the U-phase winding bar U1 is configured as a magnetic flux allowing portion that allows generation of the interlinkage magnetic flux ⁇ y due to the field weakening current.
  • stator 11 it is not necessary that all the U-phase windings U1, U2, bar U1, and bar U2 are connected in series, and the windings U1, bar U1, and windings U2, U2 are respectively connected in different series.
  • a paired configuration may be used. Moreover, it can change similarly also in V phase and W phase.
  • FIG. 18 shows an example of the rotor 21 in which the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is 10:24.
  • the magnetic pole set Pa in which the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are alternately arranged in the circumferential direction and the protrusion 24 of the rotor core 22 are opened at approximately 90 ° intervals in the circumferential direction. They are alternately arranged at an angle (occupied angle).
  • the rotor 21 can be configured to have an excellent balance both magnetically and mechanically.
  • each magnet accommodation hole 41 has comprised the curved shape which approaches the axis line L most in the circumferential direction center position of each magnet magnetic pole Mn and Ms seeing from an axial direction.
  • Each permanent magnet 42 provided in each magnet accommodation hole 41 also has a curved shape corresponding to the shape of each magnet accommodation hole 41, and each permanent magnet 42 in the N-pole magnet magnetic pole Mn is curved inside ( The permanent magnet 42 in the magnetic pole Ms of the S pole is magnetized so that the portion on the curved inner side (outer side in the rotor radial direction) becomes the S pole. Yes.
  • the number of the magnet housing holes 41 (permanent magnets 42) arranged in the radial direction in each of the magnetic poles Mn and Ms is three. It may be more than one.
  • the coercive force is set to be larger as the permanent magnets 42 arranged in the radial direction are located on the outer peripheral side.
  • a slit 43 is formed in a portion (magnetic flux allowable portion 22 c) located in the circumferential direction of the magnetic pole pair P in the rotor core 22, and the magnetic flux allowable portion 22 c is a salient pole by the magnetic flux rectifying action of the slit 43. You may comprise so that it may act as 44.
  • the occupying angle of the pair of magnetic pole pairs P is approximately 180 °, and the remaining range is configured as a magnetic flux allowing portion 22 c where no magnet is arranged. That is, in the rotor core 22, a pair of magnetic pole pairs P and a pair of magnetic flux allowance portions 22c are alternately configured approximately every 90 ° in the circumferential direction.
  • the magnet arrangement structure of each magnet magnetic pole Mn and Ms is the same as the structure shown in FIG.
  • each slit group 43H is configured such that curved apex portions (portions that are closest to the axis L when viewed in the axial direction) of the slits 43 are arranged along the radial direction.
  • the circumferential center (curved apex portion) of each slit group 43H and the circumferential center of each magnet magnetic pole Mn, Ms are positioned at equal intervals in the circumferential direction (45 ° equal intervals in the example in the figure).
  • the number of slits 43 in each slit group 43H is three.
  • the number of slits 43 is not limited to this, and may be two or four or more.
  • the portion between the slits 43 (the portion R2 between the slits) in the rotor core 22 becomes the q-axis magnetic path, so that the q-axis inductance becomes sufficiently large.
  • each slit 43 becomes a magnetic resistance, so that the d-axis inductance is sufficiently small. Therefore, a large difference (so-called salient pole ratio) between the q-axis and d-axis inductances can be obtained.
  • the circumferential center position that is, the center position between the slit groups 43H adjacent in the circumferential direction
  • the slit group 43H adjacent in the circumferential direction and the magnetic poles Mn and Ms (magnet housing holes). 41
  • the salient pole 44 occurs at the circumferential center position.
  • the reluctance torque can be obtained by each of the salient poles 44, which can contribute to further increase in torque.
  • the salient pole 44 becomes a pole by the magnetic flux rectifying action of each slit 43 formed in the rotor core 22, and is not a magnet magnetic pole having a permanent magnet, and therefore the magnetic flux allowing portion 22 c has the salient pole 44. Even so, the magnetic flux allowing portion 22c functions to allow the generation of the interlinkage magnetic flux ⁇ y (see FIG. 1) due to the field weakening current.
  • each slit 43 in each slit group 43H in FIG. 21 may be changed as shown in FIG.
  • each slit 43 is divided at the center position in the circumferential direction of each slit group 43H. That is, the rotor core 22 is formed with a connecting portion 45 that connects the core portions on both sides in the radial direction of each slit 43 at the center position in the circumferential direction of each slit group 43H.
  • the configuration shown in FIG. 22 is advantageous in that the interlinkage magnetic flux ⁇ y caused by the field weakening current can be increased and the rotation speed can be increased as compared with the configuration shown in FIG.
  • the opening angle ⁇ 1 (occupied angle) of the magnetic pole pair P composed of the magnet magnetic poles Mn and Ms adjacent in the circumferential direction is larger than the opening angle ⁇ 2 (occupied angle) of the magnetic flux allowing portion of the rotor core 22. It may be configured.
  • the opening angle ⁇ 1 of the magnetic pole pair P is determined in the S-pole permanent magnet 25 from the circumferential end of the N-pole permanent magnet 25 (magnet magnetic pole Mn) that is not adjacent to the S-pole permanent magnet 25 (magnet magnetic pole Ms). This is the opening angle to the circumferential end that is not adjacent to the N-pole permanent magnet 25.
  • the opening angle ⁇ 2 of the magnetic flux allowing portion is an opening angle including the protrusion 24 of the rotor core 22 and the gap K on both sides thereof.
  • ⁇ 1 + ⁇ 2 180 (degrees).
  • the opening angle ⁇ 1 of the magnetic pole pair P is larger than the opening angle ⁇ 2 of the magnetic flux allowing portion of the rotor core 22, which is advantageous in achieving high torque.
  • the present invention is applied to the SPM structure in which the permanent magnets 25 constituting the magnetic poles Mn and Ms are fixed to the outer peripheral surface of the rotor core 22.
  • the present invention may be applied to an IPM structure as shown in FIG.
  • the rotor 21 shown in FIG. 24 is obtained by changing the shape and arrangement of the permanent magnets 32a, 32b, and 32c in the configuration shown in FIG. 12, and the open angle ⁇ 1 of the magnetic pole pair P (permanent magnets 32a, 32b, and 32c) is This is advantageous in that it is configured to be larger than the opening angle ⁇ 2 of the magnetic flux allowance portion 22c, and the torque can be increased.
  • FIG. 23 shows an example in which the present invention is applied to the IPM structure of FIG. 12, but the present invention can also be applied to the IPM structures shown in FIGS. 7 to 11, FIG. 13, FIG.
  • the permanent magnets 32a, 32b, and 32c have the same plate thickness (width in the short direction as viewed in the axial direction). However, as shown in FIG.
  • the plate thickness of the permanent magnet 32b located in the middle of the magnets 32a to 32c may be thicker than the plate thickness of the other permanent magnets 32a and 32c.
  • the plate thickness of the permanent magnets 32a and 32c may be larger than the plate thickness of the permanent magnet 32b located in the middle.
  • the projecting portion 24 constituting the magnetic flux allowing portion is integrally formed with the rotor core 22. That is, although the rotor core 22 is configured as an integral part including the protrusion 24, the present invention is not limited thereto, and the protrusion 24 may be configured as a separate body.
  • the rotor core 22 includes a core body 51 and a separate core member 52.
  • the core body 51 is formed, for example, from a cold rolled steel plate (SPCC) iron or the like in a substantially cylindrical shape, and the rotating shaft 23 is fixed to the center.
  • the core body 51 includes a pair of first fixing portions 53 to which the permanent magnet 25 is fixed and a pair of second fixing portions 54 to which the separate core member 52 is fixed alternately in the circumferential direction on the outer peripheral surface thereof. ing.
  • the second fixing portions 54 are recessed between the first fixing portions 53 in the circumferential direction so as to be recessed radially inward from the outer peripheral surface of the core body 51.
  • a separate core member 52 is fixed to each second fixing portion 54 by press-fitting or bonding.
  • Each separate core member 52 has a fan shape centered on the axis L of the rotation shaft 23.
  • Each separate core member 52 is made of a material (for example, amorphous metal or permalloy) having a higher magnetic permeability than the core body 51 (for example, iron material).
  • the separate core member 52 is symmetrical with respect to the center line L2 between the circumferential directions of the magnetic pole pairs P in the axial direction, and the circumferential center line (center line L2) of the separate core member 52 ) And the circumferential center line L3 of the magnetic pole pair P (boundary line between adjacent magnetic poles Mn and Ms) is 90 °.
  • the outer peripheral surface of each separate core member 52 has an arc shape centered on the axis L when viewed from the direction of the axis L of the rotation shaft 23, and the outer peripheral surface of the separate core member 52 and the outer periphery of the permanent magnet 25.
  • the plane is configured to be located on the same circle centered on the axis L.
  • the separate core member 52 functions as a magnetic flux allowing portion, like the protrusion 24 of the above embodiment. That is, the field weakening magnetic flux (linkage magnetic flux generated by application of field weakening current) from the opposing winding 13 passes through the separate core member 52.
  • the opening angle (circumferential width) of the separate core member 52 is desirably set so as to include the magnetic path of the field weakening magnetic flux (d-axis magnetic path Pd). That is, the opening angle of the separate core member 52 is equal to or greater than the angle (45 ° in this example) when the rotor 21 is equally divided by twice the total number of magnet magnetic poles Mn and Ms (8 in this example) in the circumferential direction. It is desirable to set. In the example shown in FIG. 27, the opening angle of the separate core member 52 is set to about 75 ° to 85 °, but is not limited thereto, and may be set to 75 ° or less.
  • the separate core member 52 which comprises such a magnetic flux allowance part is comprised as a different body from the core main body 51 which has the magnetic pole pair P (N pole magnetic pole Mn and S pole magnet magnetic pole Ms). . Therefore, the magnetic path of the field weakening magnetic flux (d-axis magnetic path Pd) in the separate core member 52 and the magnetic path of the magnetic poles Mn and Ms in the core body 51 (particularly, one magnetic pole pair P and the other magnetic pole) Interference with the magnetic pole pair P can be suppressed. As a result, the field-weakening magnetic flux can easily pass through the separate core member 52, thereby contributing to further higher rotation.
  • FIG. 28 shows an example of the rotor 21 in which the configuration including the separate core member 52 is applied to the IPM structure.
  • the circumferential positions of the magnet magnetic poles Mn and Ms in the core body 51 are configured in substantially the same manner as the IPM structure described above (for example, see the configuration in FIG. 7).
  • Each magnet magnetic pole Mn, Ms includes a pair of permanent magnets 61 embedded in the core body 51.
  • the pair of permanent magnets 61 are arranged in a substantially V shape that expands to the outer peripheral side when viewed in the axial direction, and on the magnetic pole center line in the circumferential direction (see the straight line L1 in FIG. 28). On the other hand, they are provided in line symmetry.
  • Each permanent magnet 61 forms a rectangular parallelepiped.
  • the pair of permanent magnets 61 in each of the magnetic poles Mn and Ms has an angular range when the rotor 21 is equally divided by twice the total number of the magnetic poles Mn and Ms (8 in this example) in the circumferential direction (in this example, (Range of 45 °).
  • the magnetization directions of the permanent magnets 61 of the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are indicated by solid arrows, and the tip end side of the arrow represents the N pole and the base end side of the arrow represents the S pole. ing.
  • the permanent magnets 61 in the N-pole magnet magnetic pole Mn face each other (surfaces near the magnetic pole center line) so that the outer peripheral portion of the magnet magnetic pole Mn is the N-pole. Is magnetized so that the N pole appears.
  • each permanent magnet 61 in the magnetic pole Ms of the S pole appears so that the S pole appears on the surfaces facing each other (surface near the magnetic pole center line) so that the outer peripheral side portion of the magnet magnetic pole Ms becomes the S pole. Magnetized.
  • the core body 51 is formed with a magnetoresistive hole 62 at a position on the inner peripheral side of the pair of permanent magnets 61 in each of the magnetic poles Mn and Ms.
  • Each magnetoresistive hole 62 is a rectangular hole that is long in the radial direction when viewed in the axial direction, and is provided at the center position in the circumferential direction of each of the magnetic poles Mn and Ms. That is, in this example, the distance between the centers of the magnetic resistance holes 62 of the magnet magnetic poles Mn and Ms adjacent in the circumferential direction is set to 45 °.
  • Each magnetoresistive hole 62 penetrates the core body 51 in the axial direction, and each magnetoresistive hole 62 is a gap. Thereby, each magnetoresistive hole 62 suppresses the short circuit of the magnetic flux between the magnet magnetic poles Mn and Ms adjacent in the circumferential direction, and as a result, can contribute to high torque.
  • the magnetic resistance of each of the gaps K1 and K2 causes a short circuit of the magnetic flux in each of the permanent magnets 61 (the magnetic flux of each permanent magnet 61 is short-circuited between its N and S poles via the core body 51). As a result, the torque can be increased.
  • a separate core member 52 that is a separate body from the core body 51 is fitted in the fixed recess 64.
  • the outer peripheral surface of each separate core member 52 has an arc shape centered on the axis L when viewed from the direction of the axis L of the rotary shaft 23, and the outer peripheral surface of the separate core member 52 and the outer peripheral surface of the core body 51 are Are configured to be flush with each other.
  • the circumferential direction both end surfaces of the separate core member 52 have comprised the planar shape along radial direction.
  • the circumferential end surfaces and the radially inner side surface of the separate core member 52 are in contact with the circumferential end surfaces and the radially inner side surface of the fixed recess 64, respectively.
  • a first connection recess 71 into which the connection protrusion 65 of the core body 51 is fitted is formed on each end surface of the separate core member 52 in the circumferential direction.
  • Each first connection recess 71 has the same shape as the connection protrusion 65 of the core body 51.
  • a second connection recess 72 to which the connection member 66 is connected is formed at the center in the circumferential direction on the radially inner side surface of the fixed recess 64.
  • the portion located between the magnetic pole pairs P in the circumferential direction of the rotor core 22 functions as the magnetic flux allowing portion 22c.
  • a part of the magnetic flux allowing portion 22 c is configured by a separate core member 52.
  • the opening angle (circumferential width) of the separate core member 52 is desirably set so as to include the magnetic path of the field weakening magnetic flux (d-axis magnetic path Pd). That is, it is desirable to set the angle of the rotor 21 equal to or larger than twice the total number of magnet magnetic poles Mn and Ms (8 in this example) in the circumferential direction (45 ° in this example).
  • the opening angle of the separate core member 52 is set to approximately 45 ° to 50 °, but is not limited thereto, and may be set to 45 ° or less, or 50 ° or more. .
  • the core main body 51 and the separate core member 52 are separated from each other. Therefore, the magnetic path of the field weakening magnetic flux in the separate core member 52 (d-axis magnetic path Pd). And interference with the magnetic paths of the magnetic poles Mn and Ms in the core main body 51 (particularly, the magnetic path of the short-circuit magnetic flux between the one magnetic pole pair P and the other magnetic pole pair P) can be suppressed. Thereby, the field-weakening magnetic flux can easily pass through the separate core member 52 that constitutes a part of the magnetic flux allowing portion 22c, which can contribute to higher rotation.
  • the separate core member 52 is made of a material having a higher magnetic permeability than the core body 51, so that the weakened field magnetic flux can be more easily passed through the separate core member 52. As a result, it can contribute to further higher rotation.
  • at least the separate core member 52 is made of a material having high magnetic permeability, and the core body 51 is made of an inexpensive iron material or the like, so that an increase in manufacturing cost can be suppressed and a high rotation speed can be achieved. Can be achieved.
  • the permanent magnet 61 is embedded in the core body 51 in each of the magnetic poles Mn and Ms, similarly to the above-described example of the IPM structure (for example, FIG. 7). This is advantageous in that demagnetization of the permanent magnet 61 is suppressed. Further, in the configuration of the magnet magnetic poles Mn and Ms shown in FIG. 28 (arrangement configuration of the permanent magnet 61), similarly to the configuration shown in FIG. Since the volume of the portion 22g can be increased, the reluctance torque can be increased, which can contribute to higher torque.
  • the separate core member 52 is preferably mainly composed of a material having a magnetization easy axis (a crystal orientation easily magnetized) in the circumferential direction. According to this, the field-weakening magnetic flux can easily pass through the d-axis magnetic path Pd in the separate core member 52, and as a result, it can contribute to further higher rotation.
  • a cylindrical cover member that covers the outer peripheral surface of the rotor 21 may be provided. According to this, it is possible to suppress the separate core member 52 from dropping from the core body 51 by the cover member.
  • the present invention is embodied in the radial gap type motor 10 in which the stator 11 and the rotor 21 are opposed to each other in the radial direction.
  • the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction.
  • the present invention may be applied to an axial gap type motor that faces the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

This motor includes a stator having a winding, and a rotor. The rotor rotates by being subjected to a rotating magnetic field generated when a drive current is supplied to the winding. The winding includes a first winding and a second winding. The first winding and the second winding are energized with the same timing by the drive current, and are connected in series. The rotor includes magnetic poles comprising permanent magnets, and magnetic flux permitting portions. In a rotor rotational position in which the magnetic poles oppose the first winding, the magnetic flux permitting portions oppose the second winding and permit the generation of an interlinkage magnetic flux arising as a result of a weak field current in the second winding.

Description

モータmotor
 本発明は、モータに関するものである。 The present invention relates to a motor.
 従来、ブラシレスモータ等の永久磁石モータは、例えば特許文献1に示されるように、ステータコアに巻線が巻装されてなるステータと、該ステータと対向する永久磁石を磁極としたロータとを備え、ステータの巻線に駆動電流が供給されることで生じる回転磁界を受けてロータが回転するようになっている。 Conventionally, a permanent magnet motor such as a brushless motor includes, for example, a stator in which a winding is wound around a stator core and a rotor having a permanent magnet facing the stator as a magnetic pole, as shown in Patent Document 1, for example. The rotor rotates by receiving a rotating magnetic field generated by supplying a drive current to the winding of the stator.
特開2014-135852号公報JP 2014-135852 A
 上記のような永久磁石モータでは、ロータが高回転駆動になるほど、ロータの永久磁石による鎖交磁束の増加によってステータの巻線に発生する誘起電圧が大きくなり、この誘起電圧がモータ出力を低下させ、モータの高回転化の妨げとなっている。 In the permanent magnet motor as described above, the higher the rotor is driven, the larger the induced voltage generated in the stator winding due to the increase of the interlinkage magnetic flux by the permanent magnet of the rotor, and this induced voltage decreases the motor output. This hinders high motor rotation.
 本発明の目的は、高回転化を図ることができるモータを提供することにある。 An object of the present invention is to provide a motor capable of achieving high rotation.
 上記目的を達成するため、本発明の一態様に係るモータは、巻線を有するステータと、ロータと、を含む。前記ロータは、前記巻線に駆動電流が供給されることで生じる回転磁界を受けて回転する。前記巻線は、第1の巻線と第2の巻線とを含んでいる。該第1の巻線と第2の巻線とは前記駆動電流によって互いに同一のタイミングで励磁され、かつ、直列接続されている。前記ロータは、永久磁石を有する磁石磁極と、磁束許容部と、を含んでいる。前記磁束許容部は、前記磁石磁極が前記第1の巻線と対向するロータの回転位置で前記第2の巻線と対向し、該第2の巻線での弱め界磁電流による鎖交磁束の発生を許容する。 To achieve the above object, a motor according to one aspect of the present invention includes a stator having windings and a rotor. The rotor rotates by receiving a rotating magnetic field generated by supplying a driving current to the winding. The winding includes a first winding and a second winding. The first winding and the second winding are excited at the same timing by the drive current and are connected in series. The rotor includes a magnet magnetic pole having a permanent magnet and a magnetic flux allowing portion. The magnetic flux permitting unit is configured so that the magnetic pole is opposed to the second winding at a rotational position of the rotor facing the first winding, and the interlinkage magnetic flux is generated by the field weakening current in the second winding. Is allowed to occur.
(a)は、本発明の実施形態に係るモータの平面図であり、(b)は、図1(a)のロータの平面図である。(A) is a top view of the motor which concerns on embodiment of this invention, (b) is a top view of the rotor of Fig.1 (a). 図1(a)の巻線の結線態様を示す電気回路図である。It is an electric circuit diagram which shows the connection aspect of the coil | winding of Fig.1 (a). (a)は、図1(a)のロータの回転時にU相巻線に生じる誘起電圧の変化を示すグラフであり、(b)は、従来構成においてロータ回転時にU相巻線に生じる誘起電圧の変化を示すグラフである。(A) is a graph which shows the change of the induced voltage which arises in U phase winding at the time of rotation of the rotor of Drawing 1 (a), and (b) is the induced voltage which arises in U phase winding at the time of rotor rotation in the conventional composition. It is a graph which shows the change of. 別例における巻線の結線態様を示す電気回路図である。It is an electric circuit diagram which shows the connection aspect of the coil | winding in another example. 別例におけるSPM構造のロータの平面図である。It is a top view of the rotor of the SPM structure in another example. 別例におけるSPM構造のロータの平面図である。It is a top view of the rotor of the SPM structure in another example. 別例におけるIPM構造のロータの平面図である。It is a top view of the rotor of the IPM structure in another example. 別例におけるIPM構造のロータの平面図である。It is a top view of the rotor of the IPM structure in another example. 別例におけるIPM構造のロータの平面図である。It is a top view of the rotor of the IPM structure in another example. 別例におけるIPM構造のロータの平面図である。It is a top view of the rotor of the IPM structure in another example. 別例におけるIPM構造のロータの平面図である。It is a top view of the rotor of the IPM structure in another example. 別例におけるIPM構造のロータの平面図である。It is a top view of the rotor of the IPM structure in another example. 別例におけるIPM構造のロータの平面図である。It is a top view of the rotor of the IPM structure in another example. 別例におけるIPM構造のロータの平面図である。It is a top view of the rotor of the IPM structure in another example. 別例におけるIPM構造のロータの平面図である。It is a top view of the rotor of the IPM structure in another example. 別例のモータの平面図である。It is a top view of the motor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example.
 以下、モータの一実施形態について説明する。
 図1(a)に示すように、本実施形態のモータ10は、ブラシレスモータとして構成され、円環状のステータ11の内側にロータ21が配置されて構成されている。
Hereinafter, an embodiment of the motor will be described.
As shown in FIG. 1A, the motor 10 of the present embodiment is configured as a brushless motor, and is configured by arranging a rotor 21 inside an annular stator 11.
 [ステータの構成]
 ステータ11は、ステータコア12と、該ステータコア12に巻装された巻線13とを備えている。ステータコア12は、磁性金属にて略円環状に形成され、その周方向の等角度間隔においてそれぞれ径方向内側に延びる12個のティース12aを有している。
[Structure of stator]
The stator 11 includes a stator core 12 and a winding 13 wound around the stator core 12. The stator core 12 is formed of a magnetic metal in a substantially annular shape, and has twelve teeth 12a extending radially inward at equal angular intervals in the circumferential direction.
 巻線13は、ティース12aと同数の12個備えられ、各ティース12aにそれぞれ集中巻きにて同一方向に巻装されている。つまり、巻線13は、周方向等間隔(30°間隔)に12個設けられている。この巻線13は、供給される3相の駆動電流(U相、V相、W相)に応じて3相に分類され、図1(a)において反時計回り方向に順に、U1、V1、W1、U2、V2、W2、U3、V3、W3、U4、V4、W4とする。 Twelve windings 13 having the same number as the teeth 12a are provided, and each tooth 12a is wound in the same direction by concentrated winding. That is, twelve windings 13 are provided at equal intervals in the circumferential direction (30 ° intervals). The windings 13 are classified into three phases according to the three-phase driving currents (U phase, V phase, W phase) supplied, and U1, V1, Let W1, U2, V2, W2, U3, V3, W3, U4, V4, and W4.
 各相で見ると、U相巻線U1~U4は周方向等間隔(90°間隔)に配置されている。同様に、V相巻線V1~V4は、周方向等間隔(90°間隔)に配置されている。また、同様に、W相巻線W1~W4は、周方向等間隔(90°間隔)に配置されている。 Referring to each phase, the U-phase windings U1 to U4 are arranged at equal intervals in the circumferential direction (90 ° intervals). Similarly, the V-phase windings V1 to V4 are arranged at equal circumferential intervals (90 ° intervals). Similarly, the W-phase windings W1 to W4 are arranged at equal intervals in the circumferential direction (90 ° intervals).
 また、図2に示すように、巻線13は各相毎に直列に接続されている。つまり、U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4はそれぞれ直列回路を構成している。なお、本実施形態では、U相巻線U1~U4の直列回路、V相巻線V1~V4の直列回路、及びW相巻線W1~W4の直列回路がスター結線されている。 Further, as shown in FIG. 2, the windings 13 are connected in series for each phase. That is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 each constitute a series circuit. In this embodiment, a series circuit of U-phase windings U1 to U4, a series circuit of V-phase windings V1 to V4, and a series circuit of W-phase windings W1 to W4 are star-connected.
 [ロータの構成]
 図1(b)に示すように、ロータ21のロータコア22は、磁性金属にて略円盤状に形成され、中心部に回転軸23が固定されている。ロータコア22の外周部には、周方向に隣接するN極の磁石磁極MnとS極の磁石磁極Msとからなる磁極対(磁極組)Pと、ロータコア22に一体形成された突部24とが、周方向において交互に設けられている。本実施形態では、磁極対Pと突部24はそれぞれ2つずつ設けられている。そして、2つの磁極対Pは周方向において180°対向位置に設けられ、2つの突部24も同様に周方向において180°対向位置に設けられている。
[Configuration of rotor]
As shown in FIG. 1B, the rotor core 22 of the rotor 21 is formed of a magnetic metal in a substantially disk shape, and a rotating shaft 23 is fixed at the center. On the outer peripheral portion of the rotor core 22, there are a magnetic pole pair (magnetic pole set) P composed of an N-pole magnet magnetic pole Mn and an S-pole magnet magnetic pole Ms adjacent in the circumferential direction, and a protrusion 24 integrally formed with the rotor core 22. Are provided alternately in the circumferential direction. In the present embodiment, two magnetic pole pairs P and two protrusions 24 are provided. The two magnetic pole pairs P are provided at 180 ° facing positions in the circumferential direction, and the two protrusions 24 are similarly provided at 180 ° facing positions in the circumferential direction.
 N極の磁石磁極Mn及びS極の磁石磁極Msは、ロータコア22の外周面に固着された永久磁石25をそれぞれ有している。つまり、ロータ21は、4つの永久磁石25がロータコア22の外周面に固着された表面磁石型構造(SPM構造)をなしている。各永久磁石25は、互いに同一形状であり、各永久磁石25の外周面は、回転軸23の軸線L方向から見て該軸線Lを中心とする円弧状をなしている。 The N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms each have a permanent magnet 25 fixed to the outer peripheral surface of the rotor core 22. That is, the rotor 21 has a surface magnet type structure (SPM structure) in which four permanent magnets 25 are fixed to the outer peripheral surface of the rotor core 22. Each permanent magnet 25 has the same shape, and the outer peripheral surface of each permanent magnet 25 has an arc shape with the axis L as the center when viewed from the direction of the axis L of the rotary shaft 23.
 また、各永久磁石25は、磁気配向が径方向を向くように形成されている。より詳しくは、N極の磁石磁極Mnの永久磁石25は外周側に現れる磁極がN極となるように径方向に磁化され、S極の磁石磁極Msの永久磁石25は外周側に現れる磁極がS極となるように径方向に磁化されている。なお、各永久磁石25は、例えば異方性の焼結磁石であり、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成される。また、各永久磁石25は、同極のものが周方向において180°対向するように配置されている。つまり、N極の磁石磁極Mn同士は互いに180°対向位置に配置され、同様に、S極の磁石磁極Ms同士は互いに180°対向位置に配置されている。 Further, each permanent magnet 25 is formed so that the magnetic orientation faces the radial direction. More specifically, the permanent magnet 25 of the N-pole magnet magnetic pole Mn is magnetized in the radial direction so that the magnetic pole appearing on the outer peripheral side becomes the N-pole, and the permanent magnet 25 of the S-pole magnet magnetic pole Ms has the magnetic pole appearing on the outer peripheral side. It is magnetized in the radial direction so as to be the south pole. Each permanent magnet 25 is, for example, an anisotropic sintered magnet, and includes, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like. Moreover, each permanent magnet 25 is arrange | positioned so that the thing of the same pole may oppose 180 degrees in the circumferential direction. That is, the N-pole magnet magnetic poles Mn are arranged at positions opposite to each other by 180 °. Similarly, the S-pole magnet magnetic poles Ms are arranged at positions opposed to each other by 180 °.
 各永久磁石25の軸線Lを中心とする開角度(占有角度)は、磁石磁極Mn,Msの総数(永久磁石25の個数)をn個として、(360/2n)°に設定されている。本実施形態では、磁石磁極Mn,Msの総数は4個であるため、各永久磁石25の開角度は45°に設定されている。また、磁極対Pを構成するN極の永久磁石25とS極の永久磁石25とは周方向に隣接配置されており、該磁極対Pの開角度は永久磁石25の2つ分で90°となっている。 The open angle (occupied angle) around the axis L of each permanent magnet 25 is set to (360 / 2n) °, where n is the total number of magnet magnetic poles Mn and Ms (number of permanent magnets 25). In the present embodiment, since the total number of magnet magnetic poles Mn and Ms is 4, the open angle of each permanent magnet 25 is set to 45 °. Further, the N-pole permanent magnet 25 and the S-pole permanent magnet 25 constituting the magnetic pole pair P are disposed adjacent to each other in the circumferential direction, and the open angle of the magnetic pole pair P is 90 ° for two permanent magnets 25. It has become.
 ロータコア22の各突部24は、周方向における磁極対Pの間において径方向外側に突出形成されている。つまり、突部24は、周方向の一方でN極の永久磁石25と隣り合い、周方向の他方でS極の永久磁石25と隣り合うように構成されている。また、各突部24の外周面は、回転軸23の軸線L方向から見て該軸線Lを中心とする円弧状をなし、該突部24の外周面と永久磁石25の外周面とは面一となるように構成されている。 The protrusions 24 of the rotor core 22 are formed to protrude radially outward between the magnetic pole pairs P in the circumferential direction. That is, the protrusion 24 is configured to be adjacent to the N-pole permanent magnet 25 on one side in the circumferential direction and to be adjacent to the S-pole permanent magnet 25 on the other side in the circumferential direction. Further, the outer peripheral surface of each protrusion 24 has an arc shape centered on the axis L as viewed from the direction of the axis L of the rotating shaft 23, and the outer peripheral surface of the protrusion 24 and the outer peripheral surface of the permanent magnet 25 are surfaces. It is comprised so that it may become one.
 また、各突部24の周方向両端部において、隣り合う永久磁石25との間に空隙Kが設けられている。各突部24の軸線Lを中心とする開角度は、前記磁極対Pの開角度(90°)に対し、空隙Kが設けられた分だけ小さく設定されている。 Also, a gap K is provided between the adjacent permanent magnets 25 at both ends in the circumferential direction of each protrusion 24. The opening angle of each protrusion 24 around the axis L is set smaller than the opening angle (90 °) of the magnetic pole pair P by the amount of the gap K provided.
 次に、本実施形態の作用について説明する。
 図示しない駆動回路からそれぞれ120°の位相差を持つ3相の駆動電流(交流)がU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4にそれぞれ供給されると、各巻線U1~W4が相毎に同一タイミングで励磁されてステータ11に回転磁界が発生し、その回転磁界に基づいてロータ21が回転する。このとき、3相の駆動電流の供給によってステータ11に形成される磁極は、各相の巻線U1~W4毎で同極となる。なお、本実施形態のロータ21の磁極の数(磁石磁極Mn,Msの数)は4つであるが、各相の巻線U1~W4には、ロータ21の極数を磁石磁極Mn,Msの数の2倍(本実施形態では8極)とみなして設定された駆動電流が供給される。
Next, the operation of this embodiment will be described.
A three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively. Then, the windings U1 to W4 are excited at the same timing for each phase to generate a rotating magnetic field in the stator 11, and the rotor 21 rotates based on the rotating magnetic field. At this time, the magnetic poles formed on the stator 11 by the supply of the three-phase drive current are the same for the windings U1 to W4 of each phase. Note that the number of magnetic poles (the number of magnet magnetic poles Mn and Ms) of the rotor 21 of this embodiment is four, but the number of poles of the rotor 21 is set to the magnet magnetic poles Mn and Ms in the windings U1 to W4 of each phase. The drive current set is assumed to be twice the number of (8 poles in this embodiment).
 ロータ21の高速回転時においては、巻線13に弱め界磁電流(d軸電流)を供給する弱め界磁制御が実行される。このロータ21の高速回転時(弱め界磁制御時)において、例えば、図1(a)に示すように、N極の磁石磁極MnがU相巻線U1,U3と径方向に対向するとき、一対の突部24は、U相巻線U2,U4とそれぞれ径方向に対向する。 When the rotor 21 rotates at high speed, field weakening control for supplying a field weakening current (d-axis current) to the winding 13 is executed. When the rotor 21 rotates at high speed (field weakening control), for example, as shown in FIG. 1A, when the N-pole magnet magnetic pole Mn is opposed to the U-phase windings U1 and U3 in the radial direction, Protrusion 24 opposes U-phase windings U2 and U4 in the radial direction.
 このとき、各U相巻線U1~U4には弱め界磁電流が供給されているが、U相巻線U1,U3では、対向するN極の磁石磁極Mnが発する磁束(径方向外側への磁束)が弱め界磁電流による鎖交磁束(径方向内側への鎖交磁束)を上回り、U相巻線U1,U3には径方向外側に向かって通過する鎖交磁束φxが発生する。 At this time, a field weakening current is supplied to each of the U-phase windings U1 to U4. However, in the U-phase windings U1 and U3, a magnetic flux (radially outward) generated by the opposing N-pole magnet magnetic poles Mn. Magnetic flux) exceeds the interlinkage magnetic flux (interlinkage magnetic flux inward in the radial direction) caused by the field weakening current, and the interlinkage magnetic flux φx that passes outward in the radial direction is generated in the U-phase windings U1 and U3.
 一方、U相巻線U2,U4では、対向するロータ21の部位が磁石磁極Mnではなくロータコア22の突部24であるため、弱め界磁電流による鎖交磁束φyが消滅せず、U相巻線U2,U4には鎖交磁束φyが径方向内側に向かって通過する。つまり、U相巻線U2,U4と対向するロータコア22の突部24が、弱め界磁電流による鎖交磁束φyの発生を許容する磁束許容部として構成されるため、U相巻線U2,U4には、磁石磁極MnによってU相巻線U1,U3に生じる鎖交磁束φxとは逆位相の鎖交磁束φyが発生する。そして、各U相巻線U1~U4には、鎖交磁束φx,φyによる誘起電圧が生じる。なお、上記の作用は、S極の磁石磁極Msが例えばU相巻線U1,U3と対向するときにも同様に生じる。 On the other hand, in the U-phase windings U2 and U4, the portion of the rotor 21 facing is not the magnet magnetic pole Mn but the protrusion 24 of the rotor core 22, so the interlinkage magnetic flux φy due to the field weakening current does not disappear and the U-phase winding The flux linkage φy passes through the lines U2 and U4 inward in the radial direction. That is, the protrusion 24 of the rotor core 22 facing the U-phase windings U2 and U4 is configured as a magnetic flux allowing portion that allows generation of the interlinkage magnetic flux φy due to the field weakening current. The magnetic flux Mn generates an interlinkage magnetic flux φy having a phase opposite to that of the interlinkage magnetic flux φx generated in the U-phase windings U1 and U3. In each U-phase winding U1 to U4, an induced voltage is generated by the interlinkage magnetic fluxes φx and φy. Note that the above effect also occurs when the S-pole magnet magnetic pole Ms faces the U-phase windings U1 and U3, for example.
 ここで、図3(a)は、本実施形態におけるロータ21の高速回転時のU相巻線U1~U4に生じる誘起電圧の所定の回転範囲(90°)での変化を示し、図3(b)は、従来構成におけるロータの高速回転時のU相巻線U1~U4に生じる誘起電圧の所定の回転範囲(90°)での変化を示している。従来構成は、8極ロータにおいて各磁極が一様である構成、つまり、N極及びS極の永久磁石が周方向等間隔に交互に4つずつ配置された構成である。 Here, FIG. 3A shows the change in the induced voltage generated in the U-phase windings U1 to U4 during the high-speed rotation of the rotor 21 in the present embodiment in a predetermined rotation range (90 °). b) shows changes in the induced voltage generated in the U-phase windings U1 to U4 during high-speed rotation of the rotor in the conventional configuration in a predetermined rotation range (90 °). The conventional configuration is a configuration in which each magnetic pole is uniform in the 8-pole rotor, that is, a configuration in which four N-pole and S-pole permanent magnets are alternately arranged at equal intervals in the circumferential direction.
 従来構成では、ロータの各磁極が一様であるため、各U相巻線U1~U4に同一方向の鎖交磁束が生じる。このため、図3(b)に示すように、各U相巻線U1~U4で互いに等しい誘起電圧vxが生じる。そして、各U相巻線U1~U4が直列の場合、各U相巻線U1~U4に生じる誘起電圧vxを合成した合成誘起電圧vu’は、各U相巻線U1~U4の誘起電圧vxの和(つまり、誘起電圧vxの4倍)となる。 In the conventional configuration, since the magnetic poles of the rotor are uniform, interlinkage magnetic fluxes in the same direction are generated in the U-phase windings U1 to U4. Therefore, as shown in FIG. 3B, the same induced voltage vx is generated in each of the U-phase windings U1 to U4. When the U-phase windings U1 to U4 are in series, the combined induced voltage vu ′ obtained by synthesizing the induced voltage vx generated in each U-phase winding U1 to U4 is the induced voltage vx of each U-phase winding U1 to U4. (That is, four times the induced voltage vx).
 一方、本実施形態では、上記したように、ロータコア22の突部24と対向する例えばU相巻線U2,U4には、磁石磁極Mn,MsによってU相巻線U1,U3に生じる鎖交磁束φxとは逆位相の鎖交磁束φyが発生する。このため、図3(a)に示すように、U相巻線U2,U4に生じる誘起電圧vyは、U相巻線U1,U3に生じる誘起電圧vxに対して逆極性(逆位相)となる。これにより、各U相巻線U1~U4の誘起電圧を合成した合成誘起電圧vu(vu=vx×2+vy×2)が、従来構成での合成誘起電圧vu’(図3(b)参照)と比較して、効果的に減少されるようになっている。 On the other hand, in this embodiment, as described above, the interlinkage magnetic flux generated in the U-phase windings U1 and U3 by the magnet magnetic poles Mn and Ms, for example, in the U-phase windings U2 and U4 facing the protrusion 24 of the rotor core 22. An interlinkage magnetic flux φy having a phase opposite to that of φx is generated. Therefore, as shown in FIG. 3A, the induced voltage vy generated in the U-phase windings U2 and U4 has a reverse polarity (reverse phase) with respect to the induced voltage vx generated in the U-phase windings U1 and U3. . As a result, the combined induced voltage vu (vu = vx × 2 + vy × 2) obtained by combining the induced voltages of the U-phase windings U1 to U4 is combined with the combined induced voltage vu ′ (see FIG. 3B) in the conventional configuration. In comparison, it is effectively reduced.
 なお、ここではU相巻線U1~U4の合成誘起電圧vuを例にとって説明したが、V相巻線V1~V4及びW相巻線W1~W4においても同様に、ロータコア22の突部24による合成誘起電圧の減少が生じる。 Here, the combined induced voltage vu of the U-phase windings U1 to U4 has been described as an example, but the V-phase windings V1 to V4 and the W-phase windings W1 to W4 are similarly affected by the protrusions 24 of the rotor core 22. A decrease in the synthesis induced voltage occurs.
 次に、本実施形態の特徴的な利点を記載する。
 (1)ステータ11の巻線13は、供給される3相の駆動電流に応じた、それぞれ4つのU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4からなり、各相の4つの巻線はそれぞれ直列接続されている。つまり、ステータ11の巻線13は、各相において、直列接続された少なくとも2つの巻線(第1の巻線及び第2の巻線)を備える。
Next, characteristic advantages of this embodiment will be described.
(1) The windings 13 of the stator 11 are composed of four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current. Thus, the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
 また、ロータ21は、永久磁石25を有する磁石磁極Mn,Msと、磁石磁極Mn(又は磁石磁極Ms)が例えばU相巻線U1,U3と対向する回転位置でU相巻線U2,U4と対向するロータコア22の突部24(磁束許容部)とを備える。このロータコア22の突部24は、対向する巻線13(例えばU相巻線U2,U4)での弱め界磁電流による鎖交磁束φyの発生を許容する。 The rotor 21 includes magnet magnetic poles Mn and Ms having permanent magnets 25, and U-phase windings U2 and U4 at a rotational position where the magnetic pole Mn (or magnet magnetic pole Ms) faces, for example, the U-phase windings U1 and U3. And a protruding portion 24 (magnetic flux allowing portion) of the opposing rotor core 22. The protrusion 24 of the rotor core 22 allows the linkage flux φy to be generated by the field weakening current in the opposing winding 13 (for example, the U-phase windings U2 and U4).
 この構成によれば、ロータコア22の突部24と対向する巻線13で弱め界磁電流による鎖交磁束φyによって生じる誘起電圧vyは、磁石磁極Mn(又は磁石磁極Ms)と対向する巻線13で生じる誘起電圧vxに対して逆極性となる(図3(a)参照)。これにより、誘起電圧vx,vyを合成した合成誘起電圧vuを小さく抑えることができ、その結果、モータ10の高回転化を図ることができる。 According to this configuration, the induced voltage vy generated by the interlinkage magnetic flux φy caused by the field weakening current in the winding 13 facing the protrusion 24 of the rotor core 22 is the winding 13 facing the magnet magnetic pole Mn (or the magnet magnetic pole Ms). The polarity is opposite to that of the induced voltage vx generated in (see FIG. 3A). As a result, the combined induced voltage vu obtained by combining the induced voltages vx and vy can be kept small, and as a result, the motor 10 can be rotated at a high speed.
 なお、本実施形態のように、巻線13が各相でそれぞれ直列とされた巻線態様では、相毎の各巻線でそれぞれ生じる誘起電圧の和が合成誘起電圧となることから、該合成誘起電圧が大きくなる傾向がある。このため、巻線13が各相でそれぞれ直列とされた構成において上記のようにロータ21に突部24を設けることで、合成誘起電圧vuの抑制効果をより顕著に得ることができ、モータ10の高回転化を図るのにより好適となる。 Note that, in the winding mode in which the windings 13 are connected in series in each phase as in the present embodiment, the sum of the induced voltages generated in the respective windings for each phase becomes the combined induced voltage. The voltage tends to increase. For this reason, by providing the protrusions 24 on the rotor 21 as described above in the configuration in which the windings 13 are in series in each phase, the effect of suppressing the combined induced voltage vu can be obtained more significantly. It is more preferable to increase the rotation speed.
 また、ロータ21が突部24を備えることにより、巻線13に供給する弱め界磁電流を小さく抑えることが可能となる。そして、弱め界磁電流を小さくできることで、弱め界磁制御時に永久磁石25が減磁しづらくなり、また、巻線13の銅損を抑えることができる。また、換言すると、同等の弱め界磁電流量で低減できる鎖交磁束量が増加するため、弱め界磁制御による高回転化をより効果的に得ることができる。 In addition, since the rotor 21 includes the protrusion 24, the field-weakening current supplied to the winding 13 can be suppressed to a small value. Since the field weakening current can be reduced, the permanent magnet 25 is difficult to demagnetize during field weakening control, and the copper loss of the winding 13 can be suppressed. In other words, since the amount of flux linkage that can be reduced with the same amount of field-weakening current increases, higher rotation by field-weakening control can be obtained more effectively.
 (2)磁石磁極Mn,Msは、ロータコア22の外周面に永久磁石25が固着されてなる。つまり、ロータ21が表面磁石型構造(SPM構造)をなすため、モータ10の高トルク化に寄与できる。 (2) The magnet magnetic poles Mn and Ms are formed by fixing the permanent magnet 25 to the outer peripheral surface of the rotor core 22. That is, since the rotor 21 has a surface magnet type structure (SPM structure), it can contribute to the high torque of the motor 10.
 (3)磁束許容部としてのロータコア22の突部24は、径方向において永久磁石25と同位置に形成される。この構成によれば、ロータコア22の突部24(磁束許容部)を、ステータ11の磁極(ティース12a及び巻線13)に対してより近距離で対向させることができるため、ティース12aとロータコア22の突部24との間の磁気抵抗(エアギャップ)を小さく抑えることができる。これにより、ロータコア22の突部24と対向する巻線13で弱め界磁電流によって生じる鎖交磁束φyを増加させることができ、その結果、合成誘起電圧vuをより好適に抑えることができる。 (3) The protrusion 24 of the rotor core 22 as the magnetic flux allowing portion is formed at the same position as the permanent magnet 25 in the radial direction. According to this configuration, the protrusion 24 (magnetic flux allowing portion) of the rotor core 22 can be opposed to the magnetic poles (the teeth 12a and the windings 13) of the stator 11 at a closer distance. The magnetic resistance (air gap) between the protrusions 24 can be kept small. Thereby, the interlinkage magnetic flux φy generated by the field weakening current can be increased in the winding 13 facing the protrusion 24 of the rotor core 22, and as a result, the combined induced voltage vu can be more suitably suppressed.
 (4)周方向に隣接配置されたN極の磁石磁極MnとS極の磁石磁極Msとからなる磁極対(磁極組)Pが、周方向等間隔に複数(2組)配置される。この構成によれば、ロータ21を磁気的に、また機械的にバランスの優れた構成とすることが可能となる。 (4) A plurality (two sets) of magnetic pole pairs (magnetic pole sets) P each composed of an N-pole magnet magnetic pole Mn and an S-pole magnet magnetic pole Ms arranged adjacent to each other in the circumferential direction are arranged at equal intervals in the circumferential direction. According to this configuration, it is possible to make the rotor 21 have an excellent balance magnetically and mechanically.
 なお、上記実施形態は、以下のように変更してもよい。
 ・上記実施形態では、各相の巻線、つまり、U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4がそれぞれ直列接続されたが、これに特に限定されるものではなく、巻線態様は適宜変更してもよい。
In addition, you may change the said embodiment as follows.
In the above embodiment, the windings of each phase, that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series. However, the winding mode may be changed as appropriate.
 例えば、図4に示す例では、U相において、巻線U1,U2が直列接続され、また、巻線U3,U4が直列接続され、それら巻線U1,U2の直列対と巻線U3,U4の直列対とが並列接続されている。V相においても同様に、巻線V1,V2が直列接続され、また、巻線V3,V4が直列接続され、それら巻線V1,V2の直列対と巻線V3,V4の直列対とが並列接続されている。また、W相においても同様に、巻線W1,W2が直列接続され、また、巻線W3,W4が直列接続され、それら巻線W1,W2の直列対と巻線W3,W4の直列対とが並列接続されている。 For example, in the example shown in FIG. 4, in the U phase, the windings U1, U2 are connected in series, and the windings U3, U4 are connected in series, and the series pair of the windings U1, U2 and the windings U3, U4. Are connected in parallel. Similarly, in the V phase, the windings V1 and V2 are connected in series, and the windings V3 and V4 are connected in series. The series pair of the windings V1 and V2 and the series pair of the windings V3 and V4 are parallel. It is connected. Similarly, in the W phase, the windings W1, W2 are connected in series, and the windings W3, W4 are connected in series. The series pair of the windings W1, W2 and the series pair of the windings W3, W4 Are connected in parallel.
 上記実施形態のロータ21の構成(図1参照)において図4の巻線態様を適用した場合、例えばU相において巻線U1及び巻線U3には互いに同等の大きさの誘起電圧(前記誘起電圧vx)が生じ、また、巻線U2及び巻線U4には互いに同等の大きさの誘起電圧(前記誘起電圧vy)が生じる。このため、巻線U1,U2の直列対で生じる合成誘起電圧と、巻線U3,U4の直列対で生じる合成誘起電圧とが略同等(vx+vy)となる。これにより、磁束許容部としての突部24を設けたことによる誘起電圧の減少が、巻線U1,U2の直列対及び巻線U3,U4の直列対の両方において常に生じることとなる。そして、巻線U1,U2の直列対と巻線U3,U4の直列対とが並列であるため、U相巻線全体における合成誘起電圧vuは、巻線U1,U2の直列対の合成誘起電圧(及び巻線U3,U4の直列対の合成誘起電圧)と略同等(vx+vy)となり、該合成誘起電圧vuを効果的に抑制することができる。 When the winding mode of FIG. 4 is applied to the configuration of the rotor 21 of the above-described embodiment (see FIG. 1), for example, in the U phase, the winding U1 and the winding U3 have the same induced voltage (the induced voltage). vx) occurs, and induced voltages (the induced voltages vy) having the same magnitude are generated in the windings U2 and U4. For this reason, the combined induction voltage generated in the series pair of the windings U1 and U2 and the combined induction voltage generated in the series pair of the windings U3 and U4 are substantially equal (vx + vy). As a result, a reduction in the induced voltage due to the provision of the protrusion 24 as the magnetic flux allowing portion always occurs in both the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4. Since the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are parallel, the combined induction voltage vu in the entire U-phase winding is the combined induction voltage of the series pair of the windings U1 and U2. (And the combined induction voltage of the series pair of windings U3 and U4) (vx + vy), and the combined induction voltage vu can be effectively suppressed.
 ここで、図4に示す例において巻線U2と巻線U3を入れ替えた場合、すなわち、誘起電圧の大きさが同等である巻線U1,U3を直列とするとともに、誘起電圧の大きさが同等である巻線U2,U4を直列とした場合を考える。この場合、突部24を設けたことによる誘起電圧の減少が、巻線U2,U4の直列対と巻線U1,U3の直列対のいずれか一方のみで生じ、他方では誘起電圧が減少しない。そして、巻線U1,U3の直列対と巻線U2,U4の直列対とが並列であることから、U相巻線全体における合成誘起電圧を効果的に抑制する点で不利となる。なお、各U相巻線U1~U4を並列とした場合においても同様に、U相巻線全体における合成誘起電圧を効果的に抑制する点で不利となる。 Here, when the winding U2 and the winding U3 are exchanged in the example shown in FIG. 4, that is, the windings U1 and U3 having the same magnitude of the induced voltage are connected in series and the magnitude of the induced voltage is the same. Consider the case where the windings U2 and U4 are in series. In this case, the reduction of the induced voltage due to the provision of the protrusion 24 occurs only in one of the series pair of the windings U2 and U4 and the series pair of the windings U1 and U3, and the induced voltage does not decrease on the other side. And since the series pair of winding U1, U3 and the series pair of winding U2, U4 are parallel, it is disadvantageous at the point which suppresses the synthetic | combination induced voltage in the whole U-phase winding effectively. Similarly, when the U-phase windings U1 to U4 are arranged in parallel, similarly, it is disadvantageous in that the combined induced voltage in the entire U-phase winding is effectively suppressed.
 以上のように、各相において巻線を直列とする場合には、ロータ21の所定の回転位置において磁石磁極Mn(磁石磁極Ms)と突部24とにそれぞれ対向する巻線(例えばU相巻線U1とU相巻線U2)同士を直列接続する。これにより、その直列に接続した同相巻線に生じた互いに逆極性(逆位相)の誘起電圧を足し合わせて合成誘起電圧とすることができ、各相における合成誘起電圧を効果的に抑制することができる。 As described above, when the windings are arranged in series in each phase, the windings (for example, U-phase windings) respectively facing the magnet magnetic pole Mn (magnet magnetic pole Ms) and the protrusion 24 at a predetermined rotational position of the rotor 21. Line U1 and U-phase winding U2) are connected in series. As a result, the induced voltages of the opposite polarity (reverse phase) generated in the in-phase windings connected in series can be added to obtain a combined induced voltage, and the combined induced voltage in each phase can be effectively suppressed. Can do.
 なお、図4の例では、U相において、巻線U1,U2を直列対とするとともに、巻線U3,U4を直列対としたが、巻線U1,U4、及び巻線U2,U3をそれぞれ直列対としても同様の利点を得ることができる。また、V相及びW相においても同様の変更が可能である。 In the example of FIG. 4, in the U phase, the windings U1 and U2 are a series pair and the windings U3 and U4 are a series pair. However, the windings U1 and U4 and the windings U2 and U3 are respectively Similar advantages can be obtained as a series pair. The same change can be made in the V phase and the W phase.
 また、図4の例では、U相において、巻線U1,U2の直列対と巻線U3,U4の直列対とが並列接続されたが、これに特に限定されるものではなく、巻線U1,U2の直列対と巻線U3,U4の直列対とを分離し、その分離した直列対のそれぞれにU相の駆動電流を供給すべくインバータを一対設けてもよい。この構成によっても、同様の利点を得ることができる。また、V相及びW相においても同様の変更が可能である。 In the example of FIG. 4, in the U phase, the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are connected in parallel. However, the present invention is not particularly limited to this, and the winding U1 , U2 and the series pair of windings U3, U4 may be separated, and a pair of inverters may be provided to supply a U-phase drive current to each of the separated series pairs. With this configuration, the same advantages can be obtained. The same change can be made in the V phase and the W phase.
 また、上記実施形態(図2参照)及び図4に示す例では、巻線の結線態様をスター結線としたが、これに限らず、例えばデルタ結線としてもよい。
 ・上記実施形態では、磁極対Pの周方向間においてロータコア22から突出する突部24を設けたが、例えば図5に示すように、上記実施形態のロータ21から突部24を省略、つまり、ロータコア22の外形を軸方向視で円形に形成してもよい。この構成では、ロータコア22の外周面における永久磁石25が固着されていない露出面22aが磁束許容部として機能する。このような構成によっても、上記実施形態の利点(1)と同様の利点を得ることができる。
Moreover, in the example shown in the said embodiment (refer FIG. 2) and FIG. 4, although the connection aspect of the coil | winding was made into the star connection, it is not restricted to this, For example, it is good also as a delta connection.
In the above embodiment, the protrusion 24 that protrudes from the rotor core 22 between the circumferential directions of the magnetic pole pair P is provided, but the protrusion 24 is omitted from the rotor 21 of the above embodiment, for example, as shown in FIG. The outer shape of the rotor core 22 may be formed in a circular shape when viewed in the axial direction. In this configuration, the exposed surface 22a on the outer peripheral surface of the rotor core 22 where the permanent magnet 25 is not fixed functions as a magnetic flux allowing portion. With such a configuration, the same advantage as the advantage (1) of the above embodiment can be obtained.
 ・上記実施形態のロータ21では、磁石磁極Mn,Ms(永久磁石25)は同極のもの同士が180°対向位置に配置されたが、これに特に限定されるものではない。
 例えば、図6に示すように、磁石磁極Mn,Ms(永久磁石25)をロータコア22の半周にN極・S極で交互に設け、残りの半周を磁束許容部として構成(同図では前記露出面22aとして構成)してもよい。このような構成によっても、上記実施形態の利点(1)と同様の利点を得ることができる。なお、同図では、ロータコア22の外周の露出面22aを磁束許容部としているが、これに限らず、例えば上記実施形態のようにロータコア22に一体形成した突部24を磁束許容部としてもよい。
In the rotor 21 of the above-described embodiment, the magnet poles Mn and Ms (permanent magnet 25) are arranged at 180 ° facing positions with the same pole, but it is not particularly limited thereto.
For example, as shown in FIG. 6, magnet magnetic poles Mn and Ms (permanent magnet 25) are alternately provided on the half circumference of the rotor core 22 as N poles and S poles, and the remaining half circumference is configured as a magnetic flux permissible portion (in the figure, the above-mentioned exposure). It may be configured as a surface 22a. With such a configuration, the same advantage as the advantage (1) of the above embodiment can be obtained. In the figure, the exposed surface 22a on the outer periphery of the rotor core 22 is used as a magnetic flux allowing portion. However, the present invention is not limited to this. For example, the protrusion 24 formed integrally with the rotor core 22 as in the above embodiment may be used as the magnetic flux allowing portion. .
 ・上記実施形態のロータ21は、磁石磁極Mn,Msを構成する永久磁石25がロータコア22の外周面に固着されたSPM構造をなしているが、例えば図7に示すように、ロータコア22の外周面22bよりも内側部分に永久磁石25aを埋め込む態様とした埋込磁石型構造(IPM構造)としてもよい。 The rotor 21 of the above embodiment has an SPM structure in which the permanent magnets 25 constituting the magnet magnetic poles Mn and Ms are fixed to the outer peripheral surface of the rotor core 22. For example, as shown in FIG. An embedded magnet type structure (IPM structure) may be employed in which the permanent magnet 25a is embedded in the inner portion of the surface 22b.
 図7に示す例では、ロータコア22の外周面22bは軸方向視で円形をなし、磁石磁極Mn,Msを構成する各永久磁石25aの径方向外側面及び径方向内側面は、軸方向視において、ロータコア22の中心軸(回転軸23の軸線L)を中心とする円弧状をなしている。このような構成では、ロータコア22における磁極対Pの周方向間に位置する部位が上記実施形態の突部24と同様の磁束許容部22cとして機能するため、上記実施形態と同様の利点を得ることができる。更に、この構成によれば、磁石磁極Mn,Msは、永久磁石25aがロータコア22に埋設されてなるため、弱め界磁制御時における永久磁石25aの減磁を抑制する点で有利となる。 In the example shown in FIG. 7, the outer peripheral surface 22b of the rotor core 22 is circular when viewed in the axial direction, and the radially outer surface and the radially inner surface of each permanent magnet 25a constituting the magnetic poles Mn and Ms are viewed in the axial direction. The arc shape is centered on the central axis of the rotor core 22 (the axis L of the rotary shaft 23). In such a configuration, the portion located in the circumferential direction of the magnetic pole pair P in the rotor core 22 functions as the magnetic flux allowance portion 22c similar to the protrusion 24 of the above embodiment, and thus obtains the same advantages as in the above embodiment. Can do. Furthermore, according to this configuration, the magnet magnetic poles Mn and Ms are advantageous in that the permanent magnet 25a is embedded in the rotor core 22, and therefore the demagnetization of the permanent magnet 25a during field-weakening control is suppressed.
 また、図8に示すロータ21は、図7に示す構成を更に変更したものであり、各磁石磁極Mn,Msが有する磁石収容孔22dと同形状であって永久磁石25aを埋設可能な磁石収容孔22eが、各磁束許容部22cにそれぞれ2つずつ形成されている。つまり、ロータコア22には、永久磁石25を埋設可能な磁石収容孔22d,22eが周方向等間隔(45°間隔)に8個形成されている。このような構成によれば、磁石収容孔22eにも永久磁石25aを埋設すればロータコア22を8極のIPM型ロータとして構成することも可能となっており、ロータコア22の汎用性が向上される。 Further, the rotor 21 shown in FIG. 8 is a modification of the configuration shown in FIG. 7, and has the same shape as the magnet accommodation hole 22d of each magnet magnetic pole Mn, Ms and can accommodate a permanent magnet 25a. Two holes 22e are formed in each magnetic flux allowing portion 22c. That is, the rotor core 22 is formed with eight magnet housing holes 22d and 22e in which the permanent magnets 25 can be embedded at equal circumferential intervals (45 ° intervals). According to such a configuration, if the permanent magnet 25a is embedded in the magnet housing hole 22e, the rotor core 22 can be configured as an 8-pole IPM rotor, and the versatility of the rotor core 22 is improved. .
 また、図9に示すロータ21は、図7に示す構成を更に変更したものであり、各永久磁石25aが軸方向視で長方形をなしている。なお、各永久磁石25aは、軸方向から見たときの長辺を含む面(径方向内側面)がロータ21の径方向に対して直交するように設けられている。このような構成によれば、各永久磁石25aを簡素な直方体とすることができるため、成形が容易となり、また、磁石加工費の削減に寄与できる。なお、図7に示す例のように、各永久磁石25aを軸方向視で円弧状とした構成では、各永久磁石25aを軸方向視で長方形とした構成と比較して、磁石表面積を稼ぐことができ、高トルク化に寄与できる。 Further, the rotor 21 shown in FIG. 9 is a further modification of the configuration shown in FIG. 7, and each permanent magnet 25a has a rectangular shape when viewed in the axial direction. Each permanent magnet 25 a is provided such that a surface (radial inner surface) including a long side when viewed from the axial direction is orthogonal to the radial direction of the rotor 21. According to such a configuration, each permanent magnet 25a can be formed into a simple rectangular parallelepiped, so that molding is facilitated and it is possible to contribute to a reduction in magnet processing costs. In addition, as in the example shown in FIG. 7, the configuration in which each permanent magnet 25 a has an arc shape when viewed in the axial direction increases the magnet surface area compared to the configuration in which each permanent magnet 25 a has a rectangular shape when viewed in the axial direction. Can contribute to higher torque.
 また、図10に示すロータ21は、図7に示す構成を更に変更したものであり、各永久磁石25aは、軸方向視で径方向内側に凸となる円弧状をなしている。このような構成によれば、ロータコア22における永久磁石25aの径方向外側の部位(外周コア部22g)の体積を大きくとることが可能となるため、リラクタンストルクを増やすことが可能となり、より一層の高トルク化に寄与できる。なお、図10に示す例では、ロータコア22における磁石磁極Mnの永久磁石25aと磁石磁極Msの永久磁石25aとの対向端部間(磁石磁極Mn,Msの境界部に対応する位置)には、それら永久磁石25a間の短絡磁束を抑制するための空洞部22fが形成されている。 Further, the rotor 21 shown in FIG. 10 is a further modification of the configuration shown in FIG. 7, and each permanent magnet 25a has an arc shape that protrudes radially inward when viewed in the axial direction. According to such a configuration, it is possible to increase the volume of the radially outer portion (outer peripheral core portion 22g) of the permanent magnet 25a in the rotor core 22, so that it is possible to increase the reluctance torque and further increase the reluctance torque. Can contribute to higher torque. In the example shown in FIG. 10, in the rotor core 22 between the opposed end portions of the permanent magnet 25a of the magnetic pole Mn and the permanent magnet 25a of the magnetic pole Ms (position corresponding to the boundary between the magnetic poles Mn and Ms), A hollow portion 22f for suppressing a short-circuit magnetic flux between the permanent magnets 25a is formed.
 また、図11に示すロータ21は、図10に示す構成を更に変更したものであり、各磁石磁極Mn,Msは、それぞれ直方体状をなす一対の永久磁石31を有している。各磁石磁極Mn,Msにおいて、一対の永久磁石31は、径方向外側に向かって開放する略V字状をなすようにロータコア22内に配置されるとともに、磁極中心線(図11中の直線L1を参照)に対して線対称に設けられている。なお、N極の磁石磁極Mnにおける各永久磁石31は、該磁石磁極Mnの外周側をN極にするべく、互いに向かい合う面にN極が現れるように磁化されている。また、S極の磁石磁極Msにおける各永久磁石31においても同様に、磁石磁極Msの外周側をS極にするべく、互いに向かい合う面にS極が現れるように磁化されている。 Further, the rotor 21 shown in FIG. 11 is a further modification of the configuration shown in FIG. 10, and each magnet magnetic pole Mn, Ms has a pair of permanent magnets 31 each having a rectangular parallelepiped shape. In each of the magnetic poles Mn and Ms, the pair of permanent magnets 31 are arranged in the rotor core 22 so as to form a substantially V shape that opens outward in the radial direction, and the magnetic pole center line (straight line L1 in FIG. 11). For reference). The permanent magnets 31 in the N-pole magnet magnetic pole Mn are magnetized so that the N-poles appear on the surfaces facing each other so that the outer peripheral side of the magnet magnetic pole Mn becomes the N-pole. Similarly, each permanent magnet 31 in the S magnetic pole Ms is magnetized so that the S poles appear on the surfaces facing each other so that the outer periphery of the magnet magnetic pole Ms becomes the S pole.
 この構成によっても、各磁石磁極Mn,Msにおける一対の永久磁石31の外周側の外周コア部22gの体積を大きくとることが可能となるため、リラクタンストルクを増やすことが可能となり、より一層の高トルク化に寄与できる。更に、この構成によれば、各永久磁石31を簡素な直方体とすることができるため、成形が容易となり、また、磁石加工費の削減に寄与できる。 Also with this configuration, it is possible to increase the volume of the outer peripheral core portion 22g on the outer peripheral side of the pair of permanent magnets 31 in each of the magnetic poles Mn and Ms, so that it is possible to increase the reluctance torque and further increase the Can contribute to torque. Furthermore, according to this structure, since each permanent magnet 31 can be made into a simple rectangular parallelepiped, shaping | molding becomes easy and it can contribute to the reduction of magnet processing cost.
 また、図12に示すロータ21は、図11に示す構成を更に変更したものであり、各磁極対Pは、回転軸23の軸線Lを中心とする放射状に配置された3つの永久磁石32a,32b,32cを有している。これら永久磁石32a~32cは、互いに同形状をなしている。各磁極対Pにおいて、3つの永久磁石32a~32cのうちの真ん中に位置する永久磁石32bは、N極の磁石磁極MnとS極の磁石磁極Msとの境界部に沿って径方向に延びている。この永久磁石32bは、ロータ21の周方向に略沿った磁気配向を有し、周方向の磁石磁極Mn寄りの部位がN極、周方向の磁石磁極Ms寄りの部位がS極となるように磁化されている。また、この真ん中の永久磁石32bに対する周方向両側の永久磁石32a,32cは、前記境界部(永久磁石32b)に対して線対称に設けられており、永久磁石32bからN極の磁石磁極Mn寄りの永久磁石32aまでの開角度、及び永久磁石32bからS極の磁石磁極Ms寄りの永久磁石32cまでの開角度は、それぞれ略45°に設定されている。そして、永久磁石32aは、真ん中の永久磁石32bと向かい合う面にN極が現れるように磁化され、永久磁石32cは、真ん中の永久磁石32bと向かい合う面にS極が現れるように磁化されている。 Further, the rotor 21 shown in FIG. 12 is a further modification of the configuration shown in FIG. 11, and each magnetic pole pair P includes three permanent magnets 32 a, which are arranged radially about the axis L of the rotating shaft 23. 32b and 32c. These permanent magnets 32a to 32c have the same shape. In each magnetic pole pair P, the permanent magnet 32b located in the middle of the three permanent magnets 32a to 32c extends in the radial direction along the boundary between the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms. Yes. The permanent magnet 32b has a magnetic orientation substantially along the circumferential direction of the rotor 21, so that a portion near the magnet magnetic pole Mn in the circumferential direction is an N pole and a portion near the magnet magnetic pole Ms in the circumferential direction is an S pole. Magnetized. The permanent magnets 32a and 32c on both sides in the circumferential direction with respect to the middle permanent magnet 32b are provided symmetrically with respect to the boundary portion (permanent magnet 32b) and are closer to the N-pole magnetic pole Mn from the permanent magnet 32b. The opening angle to the permanent magnet 32a and the opening angle from the permanent magnet 32b to the permanent magnet 32c near the S magnetic pole Ms are set to about 45 °. The permanent magnet 32a is magnetized so that the N pole appears on the surface facing the middle permanent magnet 32b, and the permanent magnet 32c is magnetized so that the S pole appears on the surface facing the middle permanent magnet 32b.
 このような構成によっても、各磁石磁極Mn,Msにおける外周コア部22gの体積を大きくとることが可能となるため、リラクタンストルクを増やすことが可能となり、より一層の高トルク化に寄与できる。更に、この構成によれば、図11に示す構成に比べて永久磁石の個数を減らすことができ、部品点数の削減に寄与できる。 Even with such a configuration, it is possible to increase the volume of the outer peripheral core portion 22g in each of the magnetic poles Mn and Ms, so that it is possible to increase the reluctance torque and contribute to higher torque. Furthermore, according to this configuration, the number of permanent magnets can be reduced as compared with the configuration shown in FIG. 11, which can contribute to a reduction in the number of parts.
 また、図13に示すロータ21は、図12に示す構成を更に変更したものであり、各磁石磁極Mn,Msは、ロータコア22における外周面22bの近傍位置(永久磁石32a~32cの径方向外側端部の近傍位置)に埋設された永久磁石32dを有している。各永久磁石32dは、互いに同一形状であって直方体状をなしている。N極の磁石磁極Mnの永久磁石32dは、永久磁石32a,32bの径方向外側端部の周方向間に配置され、径方向外側面がN極となるように磁化されている。また、S極の磁石磁極Msの永久磁石32dは、永久磁石32b,32cの径方向外側端部の周方向間に配置され、径方向外側面がS極となるように磁化されている。このような構成によれば、モータ10の高トルク化に寄与できる。 Further, the rotor 21 shown in FIG. 13 is a modification of the configuration shown in FIG. 12, and each magnet magnetic pole Mn, Ms is positioned near the outer peripheral surface 22b of the rotor core 22 (the radially outer side of the permanent magnets 32a to 32c). The permanent magnet 32d is embedded in the vicinity of the end portion. The permanent magnets 32d have the same shape and a rectangular parallelepiped shape. The permanent magnet 32d of the N-pole magnet magnetic pole Mn is disposed between the circumferential directions of the radially outer ends of the permanent magnets 32a and 32b, and is magnetized so that the radially outer surface becomes the N-pole. Further, the permanent magnet 32d of the S-pole magnet magnetic pole Ms is arranged between the circumferential directions of the radially outer ends of the permanent magnets 32b and 32c, and is magnetized so that the radially outer surface becomes the S pole. According to such a configuration, the torque of the motor 10 can be increased.
 また、図14に示すロータ21は、図12に示す構成を更に変更したものであり、各磁石磁極Mn,Msは、ロータコア22における永久磁石32a~32cの径方向内側端部の近傍位置に埋設された永久磁石32eを有している。各永久磁石32eは、互いに同一形状であって直方体状をなしている。N極の磁石磁極Mnの永久磁石32eは、永久磁石32a,32bの径方向内側端部の周方向間に配置され、径方向外側面がN極となるように磁化されている。また、S極の磁石磁極Msの永久磁石32eは、永久磁石32b,32cの径方向内側端部の周方向間に配置され、径方向外側面がS極となるように磁化されている。このような構成によれば、永久磁石32eの追加によって高トルク化を図りつつも、各磁石磁極Mn,Msにおける外周コア部22gの体積を確保する、つまり、リラクタンストルクを確保することができる。また、この構成では、図13に示す構成と比較して、各磁石磁極Mn,Msのマグネットトルクは小さくなるが、その分、ロータ回転時に巻線13に生じる誘起電圧を小さく抑えることができる。 Further, the rotor 21 shown in FIG. 14 is a further modification of the configuration shown in FIG. 12, and the magnetic poles Mn and Ms are embedded in the rotor core 22 near the radially inner ends of the permanent magnets 32a to 32c. The permanent magnet 32e is provided. The permanent magnets 32e have the same shape and a rectangular parallelepiped shape. The permanent magnet 32e of the N-pole magnet magnetic pole Mn is disposed between the circumferential directions of the radially inner ends of the permanent magnets 32a and 32b, and is magnetized so that the radially outer surface is the N-pole. The permanent magnet 32e of the magnetic pole Ms having the S pole is disposed between the circumferential directions of the radially inner ends of the permanent magnets 32b and 32c, and is magnetized so that the radially outer surface is the S pole. According to such a configuration, it is possible to secure the volume of the outer peripheral core portion 22g in each of the magnetic poles Mn and Ms, that is, to ensure the reluctance torque, while increasing the torque by adding the permanent magnet 32e. Further, in this configuration, the magnet torque of each of the magnetic poles Mn and Ms is smaller than that in the configuration shown in FIG. 13, but the induced voltage generated in the winding 13 during the rotation of the rotor can be reduced accordingly.
 また、図15に示すロータ21は、図14に示す構成を更に変更したものであり、各磁極対Pにおいて、N極側及びS極側の永久磁石32a,32cが、磁極境界部上の永久磁石32bに対して平行となるように配置されている。このような構成によれば、永久磁石32a~32cの大きさ(磁石表面積)、及び永久磁石32a~32cの内側端部間に配置する各永久磁石32eの大きさ(磁石表面積)を確保することができ、高トルク化に寄与できる。なお、図15に示す構成において、ロータコア22に埋設した各永久磁石32eの代わりに空洞部(スリット)を形成してもよい。 Further, the rotor 21 shown in FIG. 15 is a further modification of the configuration shown in FIG. 14, and in each magnetic pole pair P, the N pole side and S pole side permanent magnets 32a and 32c are permanent on the magnetic pole boundary. It arrange | positions so that it may become parallel with respect to the magnet 32b. According to such a configuration, the size (magnet surface area) of the permanent magnets 32a to 32c and the size (magnet surface area) of each permanent magnet 32e disposed between the inner ends of the permanent magnets 32a to 32c are ensured. Can contribute to higher torque. In the configuration shown in FIG. 15, a cavity (slit) may be formed instead of each permanent magnet 32 e embedded in the rotor core 22.
 ・上記実施形態では、ロータ21における磁石磁極Mn,Msの総数を4個とし、ステータ11の巻線13の個数(スロット数)を12個としたが、磁石磁極Mn,Msの総数と巻線13の個数は構成に応じて適宜変更可能である。例えば、磁石磁極Mn,Msの総数と巻線13の個数との関係がn:3n(ただし、nは2以上の整数)となるように、磁石磁極Mn,Msの総数と巻線13の個数を適宜変更してもよい。なお、上記実施形態のように、磁石磁極Mn,Msの総数を偶数とすれば、磁石磁極Mn,Msを同数とすることができ、磁気的にバランスの良い構成とすることが可能となる。 In the above embodiment, the total number of magnet magnetic poles Mn and Ms in the rotor 21 is four and the number of windings 13 (slot number) of the stator 11 is twelve. The number of 13 can be appropriately changed according to the configuration. For example, the total number of magnet magnetic poles Mn and Ms and the number of windings 13 so that the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is n: 3n (where n is an integer of 2 or more). May be changed as appropriate. If the total number of magnet magnetic poles Mn and Ms is an even number as in the above embodiment, the number of magnet magnetic poles Mn and Ms can be the same, and a magnetically balanced configuration can be achieved.
 また、磁石磁極Mn,Msの総数と巻線13の個数との関係は必ずしもn:3n(ただし、nは2以上の整数)である必要はなく、例えば、磁石磁極Mn,Msの総数と巻線13の個数との関係を5:12や7:12等で構成してもよい。 Further, the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is not necessarily n: 3n (where n is an integer of 2 or more). The relationship with the number of lines 13 may be 5:12, 7:12, or the like.
 図16には、磁石磁極Mn,Msの総数と巻線13の個数との関係を5:12としたモータ30の一例を示している。なお、図16の例では、上記実施形態と同一の構成については同一の符号を付してその詳細な説明は省略し、相異する部分について詳細に説明する。 FIG. 16 shows an example of the motor 30 in which the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is 5:12. In the example of FIG. 16, the same components as those in the above embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different portions will be described in detail.
 図16に示すモータ30において、ステータ11の12個の巻線13は、供給される3相の駆動電流(U相、V相、W相)に応じて分類され、図16において反時計回り方向に順に、U1、バーU2、バーV1、V2、W1、バーW2、バーU1、U2、V1、バーV2、バーW1、W2とする。なお、正巻きで構成されるU相巻線U1,U2、V相巻線V1,V2、W相巻線W1,W2に対し、U相巻線バーU1,バーU2、V相巻線バーV1,バーV2、W相巻線バーW1,バーW2は逆巻きで構成される。また、U相巻線U1,バーU1は互いに180°対向位置にされ、同様に、U相巻線U2,バーU2は互いに180°対向位置にされる。これは他相(V相及びW相)においても同様である。 In the motor 30 shown in FIG. 16, the twelve windings 13 of the stator 11 are classified according to the three-phase driving currents (U phase, V phase, W phase) supplied, and in FIG. In this order, U1, bar U2, bar V1, V2, W1, bar W2, bar U1, U2, V1, bar V2, bar W1, W2. In addition, U phase winding bar U1, bar U2, V phase winding bar V1 with respect to U phase windings U1, U2, V phase windings V1, V2 and W phase windings W1, W2 constituted by positive windings. , Bar V2, W-phase winding bar W1, bar W2 are constituted by reverse winding. Further, the U-phase winding U1 and the bar U1 are placed at positions facing each other by 180 °, and similarly, the U-phase winding U2 and the bar U2 are placed at positions facing each other by 180 °. The same applies to the other phases (V phase and W phase).
 U相巻線U1,U2,バーU1,バーU2は直列に繋がって構成され、同様に、V相巻線V1,V2,バーV1,バーV2は直列に繋がって構成され、W相巻線W1,W2,バーW1,バーW2は直列に繋がって構成されている。そして、U相巻線U1,U2,バーU1,バーU2にはU相の駆動電流が供給される。これにより、正巻きのU相巻線U1,U2に対して逆巻きのU相巻線バーU1,バーU2は常に逆極性(逆位相)で励磁されることとなるが、励磁タイミングは同一である。このことは他相(V相及びW相)においても同様である。なお、各相の巻線には、ロータ21の極数を磁石磁極Mn,Msの数の2倍(つまり、本例では10極)とみなして設定された駆動電流が供給される。 U-phase windings U1, U2, U1 and U2 are connected in series. Similarly, V-phase windings V1, V2, V1 and V2 are connected in series, and W-phase winding W1. , W2, bar W1, and bar W2 are connected in series. The U-phase windings U1, U2, U1 and U2 are supplied with U-phase drive current. As a result, the reverse winding U-phase winding bars U1 and U2 are always excited with the opposite polarity (reverse phase) with respect to the forward winding U-phase windings U1 and U2, but the excitation timing is the same. . The same applies to the other phases (V phase and W phase). The windings of each phase are supplied with a drive current set by regarding the number of poles of the rotor 21 as twice the number of magnet magnetic poles Mn and Ms (that is, 10 poles in this example).
 モータ30のロータ21の外周部には、3つの磁石磁極Msと2つの磁石磁極Mnとが周方向に交互に隣接配置された磁極組Paと、ロータコア22の突部24とがそれぞれ1つ設けられている。 A magnetic pole set Pa in which three magnet magnetic poles Ms and two magnet magnetic poles Mn are alternately arranged adjacent to each other in the circumferential direction and one protrusion 24 of the rotor core 22 are provided on the outer peripheral portion of the rotor 21 of the motor 30. It has been.
 磁石磁極Mn,Ms(永久磁石25)の軸線Lを中心とする開角度は、互いに等しく設定されている。また、磁石磁極Mn,Ms(永久磁石25)の開角度は、磁石磁極Mn,Msの総数(永久磁石25の個数)をn個として、(360/2n)°に設定されている。本例では、磁石磁極Mn,Msの総数は5個であるため、磁石磁極Mn,Ms(永久磁石25)の開角度は36°に設定され、磁極組Paの開角度は180°となっている。 The opening angles around the axis L of the magnet magnetic poles Mn and Ms (permanent magnet 25) are set to be equal to each other. The open angles of the magnetic poles Mn and Ms (permanent magnet 25) are set to (360 / 2n) ° where n is the total number of the magnetic poles Mn and Ms (the number of permanent magnets 25). In this example, since the total number of magnet magnetic poles Mn and Ms is 5, the open angle of the magnet magnetic poles Mn and Ms (permanent magnet 25) is set to 36 °, and the open angle of the magnetic pole set Pa is 180 °. Yes.
 つまり、本例では、ロータ21の外周の半分に磁極組Paが設けられ、もう半分に開角度が略180°に形成された突部24が形成されている。これにより、ロータ21は、各磁石磁極Mn,Msの180°反対側に突部24が位置するように構成されている。なお、ロータコア22の突部24の開角度は、周方向に隣り合う磁石磁極Ms(永久磁石25)との間の空隙Kの分だけ180°よりも小さくなっている。 In other words, in this example, the magnetic pole set Pa is provided on the half of the outer periphery of the rotor 21, and the protrusion 24 having an open angle of approximately 180 ° is formed on the other half. Thereby, the rotor 21 is configured such that the protrusion 24 is positioned on the opposite side of each magnet magnetic pole Mn, Ms by 180 °. The opening angle of the protrusion 24 of the rotor core 22 is smaller than 180 ° by the gap K between the magnet magnetic pole Ms (permanent magnet 25) adjacent in the circumferential direction.
 上記構成では、ロータ21の高速回転時(弱め界磁制御時)において、例えばS極の磁石磁極MsがU相巻線U1と径方向に対向するとき、その周方向反対側においてロータコア22の突部24がU相巻線バーU1と径方向に対向する(図16参照)。つまり、磁石磁極Msと突部24とが、互いに逆位相(同一タイミング)で励磁されるU相巻線U1,バーU1とそれぞれ同時に対向する。 In the above configuration, when the rotor 21 rotates at high speed (when the field weakening control is performed), for example, when the S-pole magnet magnetic pole Ms faces the U-phase winding U1 in the radial direction, the protrusion 24 of the rotor core 22 is on the opposite side in the circumferential direction. Is opposed to the U-phase winding bar U1 in the radial direction (see FIG. 16). That is, the magnet magnetic pole Ms and the protrusion 24 are simultaneously opposed to the U-phase winding U1 and the bar U1 that are excited in opposite phases (same timing).
 このとき、U相巻線U1,バーU1には弱め界磁電流が供給されているが、U相巻線U1では、対向する磁石磁極Msの磁束(径方向内側への磁束)が弱め界磁電流による鎖交磁束(径方向外側への鎖交磁束)を上回り、U相巻線U1には径方向内側に向かって通過する鎖交磁束φxが発生する。 At this time, the field weakening current is supplied to the U-phase winding U1 and the bar U1, but in the U-phase winding U1, the magnetic flux (magnetic flux inward in the radial direction) of the opposing magnet magnetic pole Ms is weakened. The flux linkage φx that exceeds the flux linkage caused by the current (linkage flux outward in the radial direction) and passes inward in the radial direction is generated in the U-phase winding U1.
 一方、U相巻線バーU1では、対向するロータ21の部位がロータコア22の突部24であるため、弱め界磁電流による鎖交磁束φyが消滅せず、U相巻線バーU1には鎖交磁束φyが径方向外側に向かって通過する。つまり、U相巻線バーU1と対向するロータコア22の突部24が、弱め界磁電流による鎖交磁束φyの発生を許容する磁束許容部として構成される。このように、U相巻線バーU1には、磁石磁極MsによってU相巻線U1に生じる鎖交磁束φxとは逆位相の鎖交磁束φyが発生する。これにより、鎖交磁束φxによってU相巻線U1に生じる誘起電圧に対して、鎖交磁束φyによってU相巻線バーU1に生じる誘起電圧が逆極性(逆位相)となるため、U相巻線U1,バーU1での合成誘起電圧を小さく抑えることができる。このように、各相において合成誘起電圧を抑制することができるため、モータ30の高回転化を図ることができる。 On the other hand, in the U-phase winding bar U1, since the portion of the rotor 21 that is opposed is the protrusion 24 of the rotor core 22, the interlinkage magnetic flux φy due to the field weakening current does not disappear, and the U-phase winding bar U1 has no chain. The cross magnetic flux φy passes toward the outside in the radial direction. That is, the protrusion 24 of the rotor core 22 facing the U-phase winding bar U1 is configured as a magnetic flux allowing portion that allows generation of the interlinkage magnetic flux φy due to the field weakening current. As described above, the magnetic flux My that has the opposite phase to the magnetic flux φx generated in the U-phase winding U1 by the magnet magnetic pole Ms is generated in the U-phase winding bar U1. As a result, the induced voltage generated in the U-phase winding bar U1 by the linkage flux φy is opposite in polarity (reverse phase) to the induced voltage generated in the U-phase winding U1 by the linkage flux φx. The combined induced voltage at the line U1 and the bar U1 can be kept small. As described above, since the combined induction voltage can be suppressed in each phase, the motor 30 can be rotated at a high speed.
 なお、磁石磁極Mn,Msの各個数は、図16に示す例に限られるものではなく、例えば、磁石磁極Mnを3つ、磁石磁極Msを2つで構成してもよい。
 また、ロータ21における磁石磁極Mn,Ms及び突部24の配置は、図16に示す例に限定されるものではなく、磁石磁極Mn,Msの周方向反対側に突部24が位置する構成であれば、例えば、図17に示す構成のように変更してもよい。
Note that the number of magnet magnetic poles Mn and Ms is not limited to the example shown in FIG. 16, and for example, three magnet magnetic poles Mn and two magnet magnetic poles Ms may be configured.
Further, the arrangement of the magnet magnetic poles Mn, Ms and the protrusions 24 in the rotor 21 is not limited to the example shown in FIG. 16, and the protrusion 24 is positioned on the opposite side of the magnet magnetic poles Mn, Ms in the circumferential direction. For example, the configuration may be changed as shown in FIG.
 図17の構成は、図16に示す構成の磁極組Paにおける中央の磁石磁極Msに代えて突部24を形成するとともに、その周方向反対側に磁石磁極Mn(N極の永久磁石25)を設けた構成である。この構成によれば、図16に示す構成と同等の利点が得られ、更には、図16に示す構成と比較して、ロータ21を磁気的に、また機械的にバランスの優れた構成とすることができる。 In the configuration of FIG. 17, a protrusion 24 is formed instead of the central magnetic pole Ms in the magnetic pole set Pa of the configuration shown in FIG. 16, and a magnetic pole Mn (N-pole permanent magnet 25) is provided on the opposite side in the circumferential direction. This is a configuration provided. According to this configuration, the same advantages as the configuration shown in FIG. 16 are obtained, and furthermore, the rotor 21 is magnetically and mechanically balanced compared to the configuration shown in FIG. be able to.
 また、ステータ11において、各U相巻線U1,U2,バーU1,バーU2が全て直列に接続される必要はなく、巻線U1,バーU1、及び巻線U2,バーU2をそれぞれ別の直列対とした構成としてもよい。また、V相及びW相においても同様に変更可能である。 Further, in the stator 11, it is not necessary that all the U-phase windings U1, U2, bar U1, and bar U2 are connected in series, and the windings U1, bar U1, and windings U2, U2 are respectively connected in different series. A paired configuration may be used. Moreover, it can change similarly also in V phase and W phase.
 また、図16には、磁石磁極Mn,Msの総数と巻線13の個数との関係を5:12とした例を示したが、7:12とした構成にも適用可能である。また、5:12(又は7:12)の磁石磁極Mn,Msの総数と巻線13の個数をそれぞれ等倍した構成にも適用可能である。 FIG. 16 shows an example in which the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is 5:12, but the present invention can also be applied to a configuration with 7:12. Further, the present invention can also be applied to a configuration in which the total number of 5:12 (or 7:12) magnetic poles Mn and Ms and the number of windings 13 are each equal.
 なお、図18には、磁石磁極Mn,Msの総数と巻線13の個数との関係を10:24としたロータ21の一例を示している。同例では、N極の磁石磁極Mn及びS極の磁石磁極Msが周方向に交互に配置された磁極組Paと、ロータコア22の突部24とが、周方向においてそれぞれ略90°毎の開角度(占有角度)で交互に配置されている。このように、磁極組Paと突部24とを周方向にバランス良く配置することで、ロータ21を磁気的に、また機械的にバランスの優れた構成とすることができる。 FIG. 18 shows an example of the rotor 21 in which the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is 10:24. In this example, the magnetic pole set Pa in which the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are alternately arranged in the circumferential direction and the protrusion 24 of the rotor core 22 are opened at approximately 90 ° intervals in the circumferential direction. They are alternately arranged at an angle (occupied angle). Thus, by arranging the magnetic pole set Pa and the protrusion 24 in a balanced manner in the circumferential direction, the rotor 21 can be configured to have an excellent balance both magnetically and mechanically.
 ・上記実施形態のロータ21を、図19に示すような埋込磁石型構造(IPM構造)としてもよい。
 図19に示す例では、各磁石磁極Mn,Msにおいてロータコア22に形成された磁石収容孔41に永久磁石42が収容固定されている。磁石収容孔41は、各磁石磁極Mn,Msにおいて、径方向に3つ並んで形成され、それぞれに永久磁石42が収容されている。これら各磁石収容孔41は、軸方向から見てロータ21の中心(軸線L)に向かって凸となる湾曲形状をなしている。また、各磁石収容孔41は、軸方向から見て、各磁石磁極Mn,Msの周方向中心位置で最も軸線Lに接近する湾曲形状をなしている。また、各磁石収容孔41内に設けられた各永久磁石42も、該各磁石収容孔41の形状に応じた湾曲形状をなし、N極の磁石磁極Mnにおける各永久磁石42は、湾曲内側(ロータ径方向外側)の部位がN極となるように磁化され、S極の磁石磁極Msにおける各永久磁石42は、湾曲内側(ロータ径方向外側)の部位がS極となるように磁化されている。なお、図19に示す構成では、各磁石磁極Mn,Msにおいて径方向に並設される磁石収容孔41(永久磁石42)の個数を3つとしているが、これに限らず、2つ又は4つ以上としてもよい。
-The rotor 21 of the said embodiment is good also as an interior magnet type structure (IPM structure) as shown in FIG.
In the example shown in FIG. 19, the permanent magnet 42 is accommodated and fixed in the magnet accommodation hole 41 formed in the rotor core 22 in each magnet magnetic pole Mn and Ms. The magnet accommodation holes 41 are formed side by side in the radial direction at each of the magnetic poles Mn and Ms, and the permanent magnets 42 are accommodated in the respective magnet accommodation holes 41. Each of the magnet housing holes 41 has a curved shape that is convex toward the center (axis line L) of the rotor 21 when viewed from the axial direction. Moreover, each magnet accommodation hole 41 has comprised the curved shape which approaches the axis line L most in the circumferential direction center position of each magnet magnetic pole Mn and Ms seeing from an axial direction. Each permanent magnet 42 provided in each magnet accommodation hole 41 also has a curved shape corresponding to the shape of each magnet accommodation hole 41, and each permanent magnet 42 in the N-pole magnet magnetic pole Mn is curved inside ( The permanent magnet 42 in the magnetic pole Ms of the S pole is magnetized so that the portion on the curved inner side (outer side in the rotor radial direction) becomes the S pole. Yes. In the configuration shown in FIG. 19, the number of the magnet housing holes 41 (permanent magnets 42) arranged in the radial direction in each of the magnetic poles Mn and Ms is three. It may be more than one.
 このような構成によれば、各磁石磁極Mn,Msにおいて、ロータコア22の各磁石収容孔41間の部位(孔間部位R1)がq軸磁路となるため、q軸インダクタンスが十分大きくなる。また、d軸磁路では、各磁石収容孔41(及び永久磁石42)が磁気抵抗となるため、d軸インダクタンスが十分小さくなる。これにより、q軸,d軸インダクタンスの差(所謂、突極比)を大きくとることができることから、リラクタンストルクを増大でき、より一層の高トルク化に寄与できる。 According to such a configuration, in each of the magnetic poles Mn and Ms, the portion between the magnet accommodation holes 41 of the rotor core 22 (the portion R1 between the holes) becomes the q-axis magnetic path, so that the q-axis inductance becomes sufficiently large. Further, in the d-axis magnetic path, each magnet accommodation hole 41 (and the permanent magnet 42) becomes a magnetic resistance, so that the d-axis inductance becomes sufficiently small. As a result, the difference (so-called salient pole ratio) between the q-axis and d-axis inductances can be made large, so that the reluctance torque can be increased, which can contribute to further higher torque.
 なお、図19のような構成において、各永久磁石42は、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成されることが好ましい。更に、各磁石磁極Mn,Msにおいて径方向に並設される複数の永久磁石42については、それらの磁気特性(保磁力や残留磁束密度)を互いに異ならせることが好ましい。例えば、外部磁界の影響を受けやすい外周側の永久磁石42の保磁力を大きく設定することで減磁を抑制できる。一方、内周側の永久磁石42では、外部磁界の影響を受けにくいことから大きな保磁力を必要としないため、保磁力を小さく(又は残留磁束密度を大きく)設定できる。従って、径方向に並設される複数の永久磁石42について、外周側に位置するものほど保磁力を大きく設定することが好ましい。 In the configuration as shown in FIG. 19, each permanent magnet 42 is preferably composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN magnet, a ferrite magnet, an alnico magnet, or the like. Furthermore, it is preferable that the magnetic characteristics (coercive force and residual magnetic flux density) of the plurality of permanent magnets 42 arranged in the radial direction in the magnet magnetic poles Mn and Ms are different from each other. For example, demagnetization can be suppressed by setting the coercive force of the permanent magnet 42 on the outer peripheral side that is easily influenced by an external magnetic field. On the other hand, since the inner permanent magnet 42 is not easily affected by an external magnetic field, a large coercive force is not required, so that the coercive force can be set small (or the residual magnetic flux density can be increased). Therefore, it is preferable that the coercive force is set to be larger as the permanent magnets 42 arranged in the radial direction are located on the outer peripheral side.
 なお、図19の例では、各磁石収容孔41に永久磁石42が1つずつ設けられたが、例えば図20に示すように、各磁石収容孔41に収容する永久磁石42を周方向において複数(同図では2つ)に分割してもよい。この構成によれば、永久磁石42の1つあたりのサイズを小さくできるため、各永久磁石42の成形が容易となる。なお、図20に示す構成では、各磁石磁極Mn,Msにおいて径方向に並設される磁石収容孔41(永久磁石42)の個数を2つとしているが、これに限らず、1つ又は3つ以上としてもよい。 In the example of FIG. 19, one permanent magnet 42 is provided in each magnet accommodation hole 41. However, as shown in FIG. 20, for example, a plurality of permanent magnets 42 accommodated in each magnet accommodation hole 41 are provided in the circumferential direction. You may divide | segment into (two in the same figure). According to this configuration, since the size of each permanent magnet 42 can be reduced, each permanent magnet 42 can be easily formed. In the configuration shown in FIG. 20, the number of magnet receiving holes 41 (permanent magnets 42) arranged in the radial direction in each magnet magnetic pole Mn, Ms is two, but is not limited to this, and one or three It may be more than one.
 ・図21に示すように、ロータコア22における磁極対Pの周方向間に位置する部位(磁束許容部22c)にスリット43を形成し、該スリット43の磁束整流作用により磁束許容部22cが突極44として作用するように構成してもよい。 As shown in FIG. 21, a slit 43 is formed in a portion (magnetic flux allowable portion 22 c) located in the circumferential direction of the magnetic pole pair P in the rotor core 22, and the magnetic flux allowable portion 22 c is a salient pole by the magnetic flux rectifying action of the slit 43. You may comprise so that it may act as 44.
 図21に示す構成では、ロータコア22の周方向において、一対の磁極対Pの占有角度は略180°であり、残りの範囲は磁石が配置されない磁束許容部22cとして構成されている。つまり、ロータコア22には、一対の磁極対Pと一対の磁束許容部22cとが周方向において略90°毎に交互に構成されている。なお、各磁石磁極Mn,Msの磁石配置構成は、図19に示す構成と同様である。 21, in the circumferential direction of the rotor core 22, the occupying angle of the pair of magnetic pole pairs P is approximately 180 °, and the remaining range is configured as a magnetic flux allowing portion 22 c where no magnet is arranged. That is, in the rotor core 22, a pair of magnetic pole pairs P and a pair of magnetic flux allowance portions 22c are alternately configured approximately every 90 ° in the circumferential direction. In addition, the magnet arrangement structure of each magnet magnetic pole Mn and Ms is the same as the structure shown in FIG.
 各磁束許容部22cには、径方向に並ぶ複数(図21の例では3つ)のスリット43からなるスリット群43Hが一対形成されている。各スリット群43Hの各スリット43は、軸方向から見てロータ21の中心(軸線L)に向かって凸となる湾曲形状をなしている。なお、図21に示す例では、各スリット群43Hの各スリット43は、各磁石磁極Mn,Msにおける各磁石収容孔41と同形状をなしている。また、各スリット群43Hは、各スリット43の湾曲頂点部分(軸方向視において最も軸線Lに接近する部分)が径方向に沿って並ぶように構成されている。そして、各スリット群43Hの周方向中心(湾曲頂点部分)と、各磁石磁極Mn,Msの周方向中心とが周方向等間隔(同図の例では45°等間隔)に位置するように構成されている。なお、図21に示す構成では、各スリット群43Hにおけるスリット43の個数を3つとしているが、これに限らず、2つ又は4つ以上としてもよい。 A pair of slit groups 43H including a plurality of (three in the example of FIG. 21) slits 43 arranged in the radial direction is formed in each magnetic flux allowing portion 22c. Each slit 43 of each slit group 43H has a curved shape that is convex toward the center (axis line L) of the rotor 21 when viewed from the axial direction. In the example shown in FIG. 21, each slit 43 of each slit group 43H has the same shape as each magnet accommodation hole 41 in each magnet magnetic pole Mn, Ms. In addition, each slit group 43H is configured such that curved apex portions (portions that are closest to the axis L when viewed in the axial direction) of the slits 43 are arranged along the radial direction. The circumferential center (curved apex portion) of each slit group 43H and the circumferential center of each magnet magnetic pole Mn, Ms are positioned at equal intervals in the circumferential direction (45 ° equal intervals in the example in the figure). Has been. In the configuration shown in FIG. 21, the number of slits 43 in each slit group 43H is three. However, the number of slits 43 is not limited to this, and may be two or four or more.
 このような構成によれば、ロータコア22における各スリット43間の部位(スリット間部位R2)がq軸磁路となるため、q軸インダクタンスが十分大きくなる。また、d軸磁路では、各スリット43が磁気抵抗となるため、d軸インダクタンスが十分小さくなる。従って、q軸,d軸インダクタンスの差(所謂、突極比)を大きくとることができる。これにより、各磁束許容部22cの周方向中心位置(つまり、周方向に隣り合うスリット群43Hの間の中心位置)と、周方向に隣り合うスリット群43Hと磁石磁極Mn,Ms(磁石収容孔41)との間の周方向中心位置とに突極44が生じる。そして、これら各突極44でリラクタンストルクを得ることができ、より一層の高トルク化に寄与できる。なお、突極44は、ロータコア22に形成された各スリット43の磁束整流作用によって極となるものであって、永久磁石を有する磁石磁極ではないため、磁束許容部22cが突極44を有する場合であっても、該磁束許容部22cが弱め界磁電流による前記鎖交磁束φy(図1参照)の発生を許容する機能を果たすようになっている。 According to such a configuration, the portion between the slits 43 (the portion R2 between the slits) in the rotor core 22 becomes the q-axis magnetic path, so that the q-axis inductance becomes sufficiently large. Further, in the d-axis magnetic path, each slit 43 becomes a magnetic resistance, so that the d-axis inductance is sufficiently small. Therefore, a large difference (so-called salient pole ratio) between the q-axis and d-axis inductances can be obtained. Thereby, the circumferential center position (that is, the center position between the slit groups 43H adjacent in the circumferential direction) of each magnetic flux allowing portion 22c, the slit group 43H adjacent in the circumferential direction, and the magnetic poles Mn and Ms (magnet housing holes). 41) and the salient pole 44 occurs at the circumferential center position. Then, the reluctance torque can be obtained by each of the salient poles 44, which can contribute to further increase in torque. The salient pole 44 becomes a pole by the magnetic flux rectifying action of each slit 43 formed in the rotor core 22, and is not a magnet magnetic pole having a permanent magnet, and therefore the magnetic flux allowing portion 22 c has the salient pole 44. Even so, the magnetic flux allowing portion 22c functions to allow the generation of the interlinkage magnetic flux φy (see FIG. 1) due to the field weakening current.
 なお、図21に示す例では、各磁石磁極Mn,Msにおける磁石構成を図19に示す構成としたが、これに限らず、図20、図7及び図9~図14に示すような構成(IPM構造)や、上記実施形態(図1)のような構成(SPM構造)としてもよい。 In the example shown in FIG. 21, the magnet configuration in each of the magnetic poles Mn and Ms is the configuration shown in FIG. 19, but not limited to this, the configuration shown in FIGS. 20, 7, and 9 to 14 ( (IPM structure) or a configuration (SPM structure) as in the above-described embodiment (FIG. 1).
 また、図21の各スリット群43Hにおける各スリット43の形状を図22に示すように変更してもよい。図22に示す構成では、各スリット群43Hの周方向中心位置において各スリット43が分割された構成となっている。つまり、ロータコア22には、各スリット43の径方向両側のコア部分を繋ぐ連結部45が、各スリット群43Hの周方向中心位置に形成されている。この図22に示すような構成によれば、図21の構成に比べて、弱め界磁電流による前記鎖交磁束φyを増加させることができ、高回転化を図る点で有利となる。 Further, the shape of each slit 43 in each slit group 43H in FIG. 21 may be changed as shown in FIG. In the configuration shown in FIG. 22, each slit 43 is divided at the center position in the circumferential direction of each slit group 43H. That is, the rotor core 22 is formed with a connecting portion 45 that connects the core portions on both sides in the radial direction of each slit 43 at the center position in the circumferential direction of each slit group 43H. The configuration shown in FIG. 22 is advantageous in that the interlinkage magnetic flux φy caused by the field weakening current can be increased and the rotation speed can be increased as compared with the configuration shown in FIG.
 ・図23に示すように、周方向に隣接する磁石磁極Mn,Msからなる磁極対Pの開角度θ1(占有角度)を、ロータコア22の磁束許容部の開角度θ2(占有角度)よりも大きく構成してもよい。なお、磁極対Pの開角度θ1は、N極の永久磁石25(磁石磁極Mn)におけるS極の永久磁石25(磁石磁極Ms)と隣接しない周方向端部から、S極の永久磁石25におけるN極の永久磁石25と隣接しない周方向端部までの開角度である。また、磁束許容部の開角度θ2は、ロータコア22の突部24とその両脇の空隙Kを含めた開角度である。なお、磁極対P及び突部24(磁束許容部)が2つずつ設けられた本例の構成では、θ1+θ2=180(度)である。このような構成によれば、磁極対Pの開角度θ1がロータコア22の磁束許容部の開角度θ2よりも大きいため、高トルク化を図る点で有利である。 As shown in FIG. 23, the opening angle θ1 (occupied angle) of the magnetic pole pair P composed of the magnet magnetic poles Mn and Ms adjacent in the circumferential direction is larger than the opening angle θ2 (occupied angle) of the magnetic flux allowing portion of the rotor core 22. It may be configured. The opening angle θ1 of the magnetic pole pair P is determined in the S-pole permanent magnet 25 from the circumferential end of the N-pole permanent magnet 25 (magnet magnetic pole Mn) that is not adjacent to the S-pole permanent magnet 25 (magnet magnetic pole Ms). This is the opening angle to the circumferential end that is not adjacent to the N-pole permanent magnet 25. Further, the opening angle θ2 of the magnetic flux allowing portion is an opening angle including the protrusion 24 of the rotor core 22 and the gap K on both sides thereof. In the configuration of this example in which two pairs of magnetic poles P and two protrusions 24 (magnetic flux allowing portions) are provided, θ1 + θ2 = 180 (degrees). According to such a configuration, the opening angle θ1 of the magnetic pole pair P is larger than the opening angle θ2 of the magnetic flux allowing portion of the rotor core 22, which is advantageous in achieving high torque.
 なお、図23に示す構成では、磁石磁極Mn,Msを構成する永久磁石25がロータコア22の外周面に固着されたSPM構造に本発明を適用しているが、これに限らず、例えば図24に示すようにIPM構造に本発明を適用してもよい。図24に示すロータ21は、図12に示す構成における永久磁石32a,32b,32cの形状及び配置を変更したものであり、磁極対P(永久磁石32a,32b,32c)の開角度θ1が、磁束許容部22cの開角度θ2よりも大きく構成され、高トルク化を図る点で有利である。なお、図23では、図12のIPM構造に本発明を適用した例を示したが、図7~図11、図13、図14等に示すIPM構造にも本発明を適用可能である。 In the configuration shown in FIG. 23, the present invention is applied to the SPM structure in which the permanent magnets 25 constituting the magnetic poles Mn and Ms are fixed to the outer peripheral surface of the rotor core 22. However, the present invention is not limited to this. The present invention may be applied to an IPM structure as shown in FIG. The rotor 21 shown in FIG. 24 is obtained by changing the shape and arrangement of the permanent magnets 32a, 32b, and 32c in the configuration shown in FIG. 12, and the open angle θ1 of the magnetic pole pair P ( permanent magnets 32a, 32b, and 32c) is This is advantageous in that it is configured to be larger than the opening angle θ2 of the magnetic flux allowance portion 22c, and the torque can be increased. FIG. 23 shows an example in which the present invention is applied to the IPM structure of FIG. 12, but the present invention can also be applied to the IPM structures shown in FIGS. 7 to 11, FIG. 13, FIG.
 また、図24に示す構成では、永久磁石32a,32b,32cの板厚(軸方向視における短手方向幅)を全て等しくしているが、図25に示すように、各磁極対Pにおける永久磁石32a~32cのうちの真ん中に位置する永久磁石32bの板厚を、他の永久磁石32a,32cの板厚よりも厚くしてもよい。また反対に、図26に示すように、永久磁石32a,32cの板厚を、真ん中に位置する永久磁石32bの板厚よりも厚くしてもよい。これらの構成のように、永久磁石32a,32b,32cの板厚を異ならせることで、モータの出力特性を容易に調整することが可能となる。 24, the permanent magnets 32a, 32b, and 32c have the same plate thickness (width in the short direction as viewed in the axial direction). However, as shown in FIG. The plate thickness of the permanent magnet 32b located in the middle of the magnets 32a to 32c may be thicker than the plate thickness of the other permanent magnets 32a and 32c. On the other hand, as shown in FIG. 26, the plate thickness of the permanent magnets 32a and 32c may be larger than the plate thickness of the permanent magnet 32b located in the middle. As in these configurations, the output characteristics of the motor can be easily adjusted by making the plate thicknesses of the permanent magnets 32a, 32b, and 32c different.
 ・上記実施形態では、磁束許容部を構成する突部24がロータコア22に一体形成されている。つまり、ロータコア22が突部24を含む一体部品として構成されたが、これに限らず、突部24を別体として構成してもよい。 In the above embodiment, the projecting portion 24 constituting the magnetic flux allowing portion is integrally formed with the rotor core 22. That is, although the rotor core 22 is configured as an integral part including the protrusion 24, the present invention is not limited thereto, and the protrusion 24 may be configured as a separate body.
 例えば、図27に示す構成では、ロータコア22は、コア本体51と、別体コア部材52とを備えている。コア本体51は、例えば冷間圧延鋼板(SPCC)の鉄材等から略円筒状に形成され、中心部には回転軸23が固定されている。コア本体51は、その外周面において、永久磁石25が固定される一対の第1固定部53と、別体コア部材52が固定される一対の第2固定部54とを周方向に交互に備えている。 For example, in the configuration shown in FIG. 27, the rotor core 22 includes a core body 51 and a separate core member 52. The core body 51 is formed, for example, from a cold rolled steel plate (SPCC) iron or the like in a substantially cylindrical shape, and the rotating shaft 23 is fixed to the center. The core body 51 includes a pair of first fixing portions 53 to which the permanent magnet 25 is fixed and a pair of second fixing portions 54 to which the separate core member 52 is fixed alternately in the circumferential direction on the outer peripheral surface thereof. ing.
 コア本体51の各第1固定部53には、周方向に互いに隣接するN極の永久磁石25及びS極の永久磁石25が固着されている。これにより、コア本体51の各第1固定部53には、上記実施形態と同様の磁極対P(N極の磁石磁極Mn及びS極の磁石磁極Ms)が構成されている。 The N-pole permanent magnet 25 and the S-pole permanent magnet 25 adjacent to each other in the circumferential direction are fixed to each first fixing portion 53 of the core body 51. Thus, each first fixing portion 53 of the core body 51 is configured with the same magnetic pole pair P (N-pole magnet magnetic pole Mn and S-pole magnet magnetic pole Ms) as in the above-described embodiment.
 各第2固定部54は、周方向の各第1固定部53の間において、コア本体51の外周面から径方向内側に窪むように凹設されている。そして、各第2固定部54には、別体コア部材52が圧入や接着等により固定されている。各別体コア部材52は、回転軸23の軸線Lを中心とする扇状をなす。また、各別体コア部材52は、コア本体51(例えば鉄材)よりも透磁率の高い材料(例えばアモルファス金属やパーマロイ等)で構成されている。 The second fixing portions 54 are recessed between the first fixing portions 53 in the circumferential direction so as to be recessed radially inward from the outer peripheral surface of the core body 51. A separate core member 52 is fixed to each second fixing portion 54 by press-fitting or bonding. Each separate core member 52 has a fan shape centered on the axis L of the rotation shaft 23. Each separate core member 52 is made of a material (for example, amorphous metal or permalloy) having a higher magnetic permeability than the core body 51 (for example, iron material).
 各別体コア部材52は、それらの径方向内側端部が各第2固定部54に嵌合され、その嵌合部位以外の部位は、コア本体51の外周面(第1固定部53)よりも径方向外側に突出している。各別体コア部材52におけるコア本体51から突出する部位は、周方向の一方でN極の永久磁石25と空隙Kを介して隣り合い、周方向の他方でS極の永久磁石25と空隙Kを介して隣り合うように構成されている。なお、各別体コア部材52の軸線Lを中心とする開角度は、磁極対Pの開角度(90°)に対し、空隙Kが設けられた分だけ小さく設定されている。また、別体コア部材52は、軸方向視において、各磁極対Pの周方向間の中心線L2に対して線対称をなしており、別体コア部材52の周方向中心線(中心線L2)と磁極対Pの周方向中心線L3(隣接する磁石磁極Mn,Msの境界線)とのなす角度は90°となっている。また、各別体コア部材52の外周面は、回転軸23の軸線L方向から見て該軸線Lを中心とする円弧状をなし、該別体コア部材52の外周面と永久磁石25の外周面とは軸線Lを中心とする同一円上に位置するように構成されている。 Each separate core member 52 has its radially inner end fitted into each second fixing portion 54, and the portions other than the fitting portion are from the outer peripheral surface (first fixing portion 53) of the core body 51. Also protrudes radially outward. The portion of each separate core member 52 that protrudes from the core body 51 is adjacent to the N-pole permanent magnet 25 via the gap K on one side in the circumferential direction, and the S-pole permanent magnet 25 and the gap K on the other circumferential side. It is comprised so that it may adjoin via. The opening angle of each separate core member 52 around the axis L is set to be smaller than the opening angle (90 °) of the magnetic pole pair P by the amount of the gap K provided. The separate core member 52 is symmetrical with respect to the center line L2 between the circumferential directions of the magnetic pole pairs P in the axial direction, and the circumferential center line (center line L2) of the separate core member 52 ) And the circumferential center line L3 of the magnetic pole pair P (boundary line between adjacent magnetic poles Mn and Ms) is 90 °. Further, the outer peripheral surface of each separate core member 52 has an arc shape centered on the axis L when viewed from the direction of the axis L of the rotation shaft 23, and the outer peripheral surface of the separate core member 52 and the outer periphery of the permanent magnet 25. The plane is configured to be located on the same circle centered on the axis L.
 このような構成によれば、別体コア部材52は、上記実施形態の突部24と同様に磁束許容部として機能する。つまり、別体コア部材52には、対向する巻線13からの弱め界磁磁束(弱め界磁電流の印加により生じる鎖交磁束)が通過する。なお、別体コア部材52の開角度(周方向幅)は、弱め界磁磁束の磁路(d軸磁路Pd)を含むように設定されることが望ましい。つまり、別体コア部材52の開角度は、ロータ21を周方向において磁石磁極Mn,Msの総数の2倍(本例では8)で等分したときの角度(本例では45°)以上に設定されることが望ましい。なお、図27に示す例では、別体コア部材52の開角度がおよそ75°~85°に設定されているが、これに限らず、75°以下に設定してもよい。 According to such a configuration, the separate core member 52 functions as a magnetic flux allowing portion, like the protrusion 24 of the above embodiment. That is, the field weakening magnetic flux (linkage magnetic flux generated by application of field weakening current) from the opposing winding 13 passes through the separate core member 52. The opening angle (circumferential width) of the separate core member 52 is desirably set so as to include the magnetic path of the field weakening magnetic flux (d-axis magnetic path Pd). That is, the opening angle of the separate core member 52 is equal to or greater than the angle (45 ° in this example) when the rotor 21 is equally divided by twice the total number of magnet magnetic poles Mn and Ms (8 in this example) in the circumferential direction. It is desirable to set. In the example shown in FIG. 27, the opening angle of the separate core member 52 is set to about 75 ° to 85 °, but is not limited thereto, and may be set to 75 ° or less.
 そして、このような磁束許容部を構成する別体コア部材52が、磁極対P(N極の磁石磁極Mn及びS極の磁石磁極Ms)を有するコア本体51とは別体として構成されている。このため、別体コア部材52における弱め界磁磁束の磁路(d軸磁路Pd)と、コア本体51における磁石磁極Mn,Msの磁束の磁路(特に、一方の磁極対Pと他方の磁極対Pとの間での短絡磁束の磁路)との干渉を抑制できる。これにより、別体コア部材52に弱め界磁磁束が通り易くなることで、より一層の高回転化に寄与できる。 And the separate core member 52 which comprises such a magnetic flux allowance part is comprised as a different body from the core main body 51 which has the magnetic pole pair P (N pole magnetic pole Mn and S pole magnet magnetic pole Ms). . Therefore, the magnetic path of the field weakening magnetic flux (d-axis magnetic path Pd) in the separate core member 52 and the magnetic path of the magnetic poles Mn and Ms in the core body 51 (particularly, one magnetic pole pair P and the other magnetic pole) Interference with the magnetic pole pair P can be suppressed. As a result, the field-weakening magnetic flux can easily pass through the separate core member 52, thereby contributing to further higher rotation.
 更に、同構成では、別体コア部材52は、コア本体51よりも透磁率の高い材料で構成されるため、別体コア部材52に弱め界磁磁束をより一層通り易くすることができ、その結果、更なる高回転化に寄与できる。また、ロータコア22の構成部品において、少なくとも別体コア部材52を透磁率の高い材料で構成し、コア本体51を安価な材料(鉄材等)で構成することで、製造コストの増加を抑えつつ、高回転化を図ることができる。 Further, in the same configuration, the separate core member 52 is made of a material having a higher magnetic permeability than the core body 51, so that the weakened magnetic field flux can be more easily passed through the separate core member 52. As a result, it can contribute to further higher rotation. Further, in the component parts of the rotor core 22, at least the separate core member 52 is made of a material having high magnetic permeability, and the core body 51 is made of an inexpensive material (iron material or the like), thereby suppressing an increase in manufacturing cost. High rotation can be achieved.
 ・上記の図27に示す構成では、別体コア部材52を備えた構成を表面磁石型構造(SPM構造)に適用しているが、埋込磁石型構造(IPM構造)に適用してもよい。
 別体コア部材52を備えた構成をIPM構造に適用したロータ21の一例を図28に示す。図28に示すロータ21では、コア本体51における各磁石磁極Mn,Msの周方向位置は、上記のIPM構造(例えば図7の構成を参照)と略同様に構成されている。
In the configuration shown in FIG. 27, the configuration including the separate core member 52 is applied to the surface magnet type structure (SPM structure), but may be applied to an embedded magnet type structure (IPM structure). .
FIG. 28 shows an example of the rotor 21 in which the configuration including the separate core member 52 is applied to the IPM structure. In the rotor 21 shown in FIG. 28, the circumferential positions of the magnet magnetic poles Mn and Ms in the core body 51 are configured in substantially the same manner as the IPM structure described above (for example, see the configuration in FIG. 7).
 各磁石磁極Mn,Msは、コア本体51に埋設された一対の永久磁石61を備えている。各磁石磁極Mn,Msにおいて、一対の永久磁石61は、軸方向視で外周側に拡がる略V字状に配置されるとともに、周方向における磁極中心線(図28中の直線L1を参照)に対して線対称に設けられている。なお、各永久磁石61は直方体をなす。また、各磁石磁極Mn,Msにおける一対の永久磁石61は、ロータ21を周方向において磁石磁極Mn,Msの総数の2倍(本例では8)で等分したときの角度範囲(本例では45°の範囲)に収まるように配置されている。 Each magnet magnetic pole Mn, Ms includes a pair of permanent magnets 61 embedded in the core body 51. In each of the magnetic poles Mn and Ms, the pair of permanent magnets 61 are arranged in a substantially V shape that expands to the outer peripheral side when viewed in the axial direction, and on the magnetic pole center line in the circumferential direction (see the straight line L1 in FIG. 28). On the other hand, they are provided in line symmetry. Each permanent magnet 61 forms a rectangular parallelepiped. In addition, the pair of permanent magnets 61 in each of the magnetic poles Mn and Ms has an angular range when the rotor 21 is equally divided by twice the total number of the magnetic poles Mn and Ms (8 in this example) in the circumferential direction (in this example, (Range of 45 °).
 また、図28では、N極の磁石磁極Mn及びS極の磁石磁極Msの各永久磁石61の磁化方向を実線の矢印で示しており、矢印先端側がN極、矢印基端側がS極を表している。この矢印にて示されるように、N極の磁石磁極Mnにおける各永久磁石61は、該磁石磁極Mnの外周側の部位をN極にするべく、互いに向かい合う面(前記磁極中心線寄りの面)にN極が現れるように磁化されている。また、S極の磁石磁極Msにおける各永久磁石61は、該磁石磁極Msの外周側の部位をS極にするべく、互いに向かい合う面(前記磁極中心線寄りの面)にS極が現れるように磁化されている。 In FIG. 28, the magnetization directions of the permanent magnets 61 of the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are indicated by solid arrows, and the tip end side of the arrow represents the N pole and the base end side of the arrow represents the S pole. ing. As indicated by the arrows, the permanent magnets 61 in the N-pole magnet magnetic pole Mn face each other (surfaces near the magnetic pole center line) so that the outer peripheral portion of the magnet magnetic pole Mn is the N-pole. Is magnetized so that the N pole appears. In addition, each permanent magnet 61 in the magnetic pole Ms of the S pole appears so that the S pole appears on the surfaces facing each other (surface near the magnetic pole center line) so that the outer peripheral side portion of the magnet magnetic pole Ms becomes the S pole. Magnetized.
 コア本体51には、各磁石磁極Mn,Msにおける一対の永久磁石61よりも内周側位置に磁気抵抗孔62が形成されている。各磁気抵抗孔62は、軸方向視において径方向に沿って長い長方形の孔であり、各磁石磁極Mn,Msの周方向中心位置に設けられている。つまり、本例では、周方向に隣り合う磁石磁極Mn,Msの各磁気抵抗孔62の中心間が45°に設定されている。また、各磁気抵抗孔62はコア本体51を軸方向に貫通しており、各磁気抵抗孔62内は空隙となっている。これにより、各磁気抵抗孔62は、周方向に隣り合う磁石磁極Mn,Ms間での磁束の短絡を抑制し、その結果、高トルク化に寄与できる。 The core body 51 is formed with a magnetoresistive hole 62 at a position on the inner peripheral side of the pair of permanent magnets 61 in each of the magnetic poles Mn and Ms. Each magnetoresistive hole 62 is a rectangular hole that is long in the radial direction when viewed in the axial direction, and is provided at the center position in the circumferential direction of each of the magnetic poles Mn and Ms. That is, in this example, the distance between the centers of the magnetic resistance holes 62 of the magnet magnetic poles Mn and Ms adjacent in the circumferential direction is set to 45 °. Each magnetoresistive hole 62 penetrates the core body 51 in the axial direction, and each magnetoresistive hole 62 is a gap. Thereby, each magnetoresistive hole 62 suppresses the short circuit of the magnetic flux between the magnet magnetic poles Mn and Ms adjacent in the circumferential direction, and as a result, can contribute to high torque.
 また、各永久磁石61の内周側及び外周側にはそれぞれ空隙K1,K2が設けられている。各空隙K1,K2は、コア本体51に形成された、各永久磁石61をそれぞれ収容する各磁石収容孔63の一部であり、各永久磁石61の内周側側面が各空隙K1に面し、各永久磁石61の外周側側面が各空隙K2に面するように構成されている。つまり、永久磁石61と磁石収容孔63の径方向内側端部との間に空隙K1が設けられ、永久磁石61と磁石収容孔63の径方向外側端部との間に空隙K2が設けられている。そして、これら各空隙K1,K2の磁気抵抗によって、各永久磁石61のそれぞれにおける磁束の短絡(各永久磁石61の磁束がコア本体51を介して自身のN・S極間で短絡すること)を抑制でき、その結果、高トルク化に寄与できる。 Further, gaps K1, K2 are provided on the inner peripheral side and the outer peripheral side of each permanent magnet 61, respectively. Each gap K1, K2 is a part of each magnet accommodation hole 63 which accommodates each permanent magnet 61 formed in the core body 51, and the inner peripheral side surface of each permanent magnet 61 faces each gap K1. The outer peripheral side surface of each permanent magnet 61 is configured to face each gap K2. That is, a gap K1 is provided between the permanent magnet 61 and the radially inner end of the magnet accommodation hole 63, and a gap K2 is provided between the permanent magnet 61 and the radially outer end of the magnet accommodation hole 63. Yes. Then, the magnetic resistance of each of the gaps K1 and K2 causes a short circuit of the magnetic flux in each of the permanent magnets 61 (the magnetic flux of each permanent magnet 61 is short-circuited between its N and S poles via the core body 51). As a result, the torque can be increased.
 コア本体51における各磁極対Pの周方向間には、コア本体51の外周面から径方向内側に窪む固定凹部64が凹設されている。固定凹部64の周方向両端面は径方向に沿った平面状をなし、該両端面には固定凹部64内に周方向に突出する連結凸部65がそれぞれ形成されている。各連結凸部65は、突出先端(周方向先端)にかけてロータ21の径方向に沿った幅が拡がるテーパ状をなしている。また、固定凹部64の径方向内側面における周方向中心部には、連結部材66が連結される本体側連結凹部67が形成されている。 Between the circumferential directions of each magnetic pole pair P in the core body 51, a fixed recess 64 that is recessed radially inward from the outer peripheral surface of the core body 51 is provided. Both end surfaces in the circumferential direction of the fixed recess 64 have a planar shape along the radial direction, and connecting convex portions 65 projecting in the circumferential direction are formed in the fixed recess 64 on the both end surfaces. Each connecting convex portion 65 has a tapered shape in which the width along the radial direction of the rotor 21 extends from the protruding tip (circumferential tip). In addition, a body-side coupling recess 67 to which the coupling member 66 is coupled is formed at the circumferential central portion on the radially inner side surface of the fixed recess 64.
 固定凹部64には、コア本体51とは別体をなす別体コア部材52が嵌め込まれている。各別体コア部材52の外周面は、回転軸23の軸線L方向から見て該軸線Lを中心とする円弧状をなし、該別体コア部材52の外周面とコア本体51の外周面とは面一となるように構成されている。また、別体コア部材52の周方向両端面は、径方向に沿った平面状をなしている。そして、別体コア部材52の周方向両端面及び径方向内側面は、固定凹部64の周方向両端面及び径方向内側面とそれぞれ当接している。 A separate core member 52 that is a separate body from the core body 51 is fitted in the fixed recess 64. The outer peripheral surface of each separate core member 52 has an arc shape centered on the axis L when viewed from the direction of the axis L of the rotary shaft 23, and the outer peripheral surface of the separate core member 52 and the outer peripheral surface of the core body 51 are Are configured to be flush with each other. Moreover, the circumferential direction both end surfaces of the separate core member 52 have comprised the planar shape along radial direction. The circumferential end surfaces and the radially inner side surface of the separate core member 52 are in contact with the circumferential end surfaces and the radially inner side surface of the fixed recess 64, respectively.
 別体コア部材52の周方向両端面には、コア本体51の連結凸部65が嵌合される第1連結凹部71がそれぞれ形成されている。各第1連結凹部71は、コア本体51の連結凸部65と同形状をなしている。また、固定凹部64の径方向内側面における周方向中心部には、連結部材66が連結される第2連結凹部72が形成されている。 A first connection recess 71 into which the connection protrusion 65 of the core body 51 is fitted is formed on each end surface of the separate core member 52 in the circumferential direction. Each first connection recess 71 has the same shape as the connection protrusion 65 of the core body 51. In addition, a second connection recess 72 to which the connection member 66 is connected is formed at the center in the circumferential direction on the radially inner side surface of the fixed recess 64.
 連結部材66は、別体コア部材52の径方向内側において該別体コア部材52とコア本体51とに跨って設けられ、別体コア部材52とコア本体51とを連結している。詳しくは、連結部材66は、径方向中心部から径方向両端にかけて周方向幅が拡がるテーパ状をなしている。そして、連結部材66における径方向内側の半分がコア本体51の本体側連結凹部67に嵌合され、連結部材66における径方向外側の半分が別体コア部材52の第2連結凹部72に嵌合されている。なお、連結部材66は、コア本体51及び別体コア部材52よりも磁気抵抗の大きい材料(例えば、樹脂、ステンレス鋼、真鍮等)で構成されることが好ましい。 The connecting member 66 is provided across the separate core member 52 and the core main body 51 on the radially inner side of the separate core member 52, and connects the separate core member 52 and the core main body 51. Specifically, the connecting member 66 has a tapered shape in which the circumferential width increases from the radial center to both radial ends. Then, the radially inner half of the connecting member 66 is fitted into the body-side connecting recess 67 of the core body 51, and the radially outer half of the connecting member 66 is fitted into the second connecting recess 72 of the separate core member 52. Has been. In addition, it is preferable that the connection member 66 is comprised with the material (for example, resin, stainless steel, brass, etc.) with larger magnetic resistance than the core main body 51 and the separate core member 52. FIG.
 上記のように、コア本体51の各連結凸部65と別体コア部材52の各第1連結凹部71との嵌合、及び本体側連結凹部67と第2連結凹部72に対する連結部材66の嵌合によって、別体コア部材52がコア本体51の固定凹部64に固定されている。なお、別体コア部材52は、軸方向視において、各磁極対Pの周方向間の中心線L2に対して線対称をなしており、別体コア部材52の周方向中心線(中心線L2)と磁極対Pの周方向中心線L3(隣接する磁石磁極Mn,Msの境界線)とのなす角度は90°となっている。また、図28に示す構成では、別体コア部材52の内径をロータコア22の外径(コア本体51の外径)の半分程度としているが、これに限らず、別体コア部材52の内径をロータコア22の外径の半分以上又は半分以下に設定してもよい。 As described above, the coupling protrusions 65 of the core body 51 and the first coupling recesses 71 of the separate core member 52 are fitted, and the coupling member 66 is fitted to the body-side coupling recess 67 and the second coupling recess 72. Accordingly, the separate core member 52 is fixed to the fixing recess 64 of the core body 51. In addition, the separate core member 52 is line-symmetric with respect to the center line L2 between the circumferential directions of the magnetic pole pairs P in the axial direction, and the circumferential core line (center line L2) of the separate core member 52 ) And the circumferential center line L3 of the magnetic pole pair P (boundary line between adjacent magnetic poles Mn and Ms) is 90 °. In the configuration shown in FIG. 28, the inner diameter of the separate core member 52 is about half of the outer diameter of the rotor core 22 (the outer diameter of the core main body 51). You may set to more than half or less than half of the outer diameter of the rotor core 22.
 このような構成においても、上記の例えば図7に示す構成と同様に、ロータコア22における磁極対Pの周方向間に位置する部位が磁束許容部22cとして機能する。そして、図28に示す構成では、磁束許容部22cの一部が別体コア部材52にて構成されている。なお、別体コア部材52の開角度(周方向幅)は、弱め界磁磁束の磁路(d軸磁路Pd)を含むように設定されることが望ましい。つまり、ロータ21を周方向において磁石磁極Mn,Msの総数の2倍(本例では8)で等分したときの角度(本例では45°)以上に設定されることが望ましい。なお、図28に示す例では、別体コア部材52の開角度がおよそ45°~50°に設定されているが、これに限らず、45°以下、又は50°以上に設定してもよい。 Also in such a configuration, as in the configuration shown in FIG. 7, for example, the portion located between the magnetic pole pairs P in the circumferential direction of the rotor core 22 functions as the magnetic flux allowing portion 22c. In the configuration shown in FIG. 28, a part of the magnetic flux allowing portion 22 c is configured by a separate core member 52. The opening angle (circumferential width) of the separate core member 52 is desirably set so as to include the magnetic path of the field weakening magnetic flux (d-axis magnetic path Pd). That is, it is desirable to set the angle of the rotor 21 equal to or larger than twice the total number of magnet magnetic poles Mn and Ms (8 in this example) in the circumferential direction (45 ° in this example). In the example shown in FIG. 28, the opening angle of the separate core member 52 is set to approximately 45 ° to 50 °, but is not limited thereto, and may be set to 45 ° or less, or 50 ° or more. .
 上記の図28に示すような構成によっても、コア本体51と別体コア部材52とが別体をなすことから、別体コア部材52における弱め界磁磁束の磁路(d軸磁路Pd)と、コア本体51における磁石磁極Mn,Msの磁束の磁路(特に、一方の磁極対Pと他方の磁極対Pとの間での短絡磁束の磁路)との干渉を抑制できる。これにより、磁束許容部22cの一部を構成する別体コア部材52に弱め界磁磁束が通り易くなることで、より一層の高回転化に寄与できる。 28, the core main body 51 and the separate core member 52 are separated from each other. Therefore, the magnetic path of the field weakening magnetic flux in the separate core member 52 (d-axis magnetic path Pd). And interference with the magnetic paths of the magnetic poles Mn and Ms in the core main body 51 (particularly, the magnetic path of the short-circuit magnetic flux between the one magnetic pole pair P and the other magnetic pole pair P) can be suppressed. Thereby, the field-weakening magnetic flux can easily pass through the separate core member 52 that constitutes a part of the magnetic flux allowing portion 22c, which can contribute to higher rotation.
 また、図28に示す構成においても、別体コア部材52をコア本体51よりも透磁率の高い材料で構成することで、別体コア部材52に弱め界磁磁束をより一層通り易くすることができ、その結果、更なる高回転化に寄与できる。また、ロータコア22の構成部品において、少なくとも別体コア部材52を透磁率の高い材料で構成し、コア本体51を安価な鉄材等で構成することで、製造コストの増加を抑えつつ、高回転化を図ることができる。 Also, in the configuration shown in FIG. 28, the separate core member 52 is made of a material having a higher magnetic permeability than the core body 51, so that the weakened field magnetic flux can be more easily passed through the separate core member 52. As a result, it can contribute to further higher rotation. Further, in the component parts of the rotor core 22, at least the separate core member 52 is made of a material having high magnetic permeability, and the core body 51 is made of an inexpensive iron material or the like, so that an increase in manufacturing cost can be suppressed and a high rotation speed can be achieved. Can be achieved.
 それに加え、図28に示す構成では、上記のIPM構造の例(例えば図7)と同様に、各磁石磁極Mn,Msにおいて永久磁石61がコア本体51に埋設されているため、弱め界磁制御時における永久磁石61の減磁を抑制する点で有利となる。また、図28に示す磁石磁極Mn,Msの構成(永久磁石61の配置構成)では、上記した図11に示す構成と同様に、永久磁石61の径方向外側のロータコアの部位の体積(外周コア部22gの体積)を大きくとることが可能となるため、リラクタンストルクを増やすことが可能となり、より一層の高トルク化に寄与できる。 In addition, in the configuration shown in FIG. 28, the permanent magnet 61 is embedded in the core body 51 in each of the magnetic poles Mn and Ms, similarly to the above-described example of the IPM structure (for example, FIG. 7). This is advantageous in that demagnetization of the permanent magnet 61 is suppressed. Further, in the configuration of the magnet magnetic poles Mn and Ms shown in FIG. 28 (arrangement configuration of the permanent magnet 61), similarly to the configuration shown in FIG. Since the volume of the portion 22g can be increased, the reluctance torque can be increased, which can contribute to higher torque.
 また、上記の図27及び図28に示すような構成において、別体コア部材52は、主に周方向に磁化容易軸(磁化され易い結晶方位)を持つ材料で構成されていることが好ましい。これによれば、別体コア部材52におけるd軸磁路Pdにおいて弱め界磁磁束が通り易くなり、その結果、より一層の高回転化に寄与できる。 In the configuration shown in FIGS. 27 and 28, the separate core member 52 is preferably mainly composed of a material having a magnetization easy axis (a crystal orientation easily magnetized) in the circumferential direction. According to this, the field-weakening magnetic flux can easily pass through the d-axis magnetic path Pd in the separate core member 52, and as a result, it can contribute to further higher rotation.
 また、上記の図27及び図28に示すような構成において、ロータ21の外周面を被覆する円筒状のカバー部材を設けてもよい。これによれば、別体コア部材52がコア本体51から脱落することをカバー部材によって抑制できる。 In the configuration shown in FIGS. 27 and 28, a cylindrical cover member that covers the outer peripheral surface of the rotor 21 may be provided. According to this, it is possible to suppress the separate core member 52 from dropping from the core body 51 by the cover member.
 ・上記実施形態では、永久磁石25を焼結磁石としたが、これ以外に例えば、ボンド磁石としてもよい。
 ・上記実施形態では、ロータ21をステータ11の径方向内側に配置したインナロータ型のモータ10に具体化したが、これに特に限定されるものではなく、ロータをステータの径方向外側に配置したアウタロータ型のモータに具体化してもよい。
In the above embodiment, the permanent magnet 25 is a sintered magnet, but other than this, for example, a bonded magnet may be used.
In the above embodiment, the rotor 21 is embodied as the inner rotor type motor 10 arranged on the inner side in the radial direction of the stator 11, but is not particularly limited to this, and the outer rotor is arranged on the outer side in the radial direction of the stator. It may be embodied in a type of motor.
 ・上記実施形態では、ステータ11とロータ21とが径方向に対向するラジアルギャップ型のモータ10に本発明を具体化したが、これに特に限定されるものではなく、ステータとロータとが軸方向に対向するアキシャルギャップ型のモータに本発明を適用してもよい。 In the above embodiment, the present invention is embodied in the radial gap type motor 10 in which the stator 11 and the rotor 21 are opposed to each other in the radial direction. However, the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction. The present invention may be applied to an axial gap type motor that faces the motor.
 ・上記した実施形態並びに各変形例は適宜組み合わせてもよい。 -The above-mentioned embodiment and each modification may be combined suitably.

Claims (11)

  1.  巻線を有するステータと、
     前記巻線に駆動電流が供給されることで生じる回転磁界を受けて回転するロータと、を備え、
     前記巻線は、第1の巻線と第2の巻線とを含んでおり、該第1の巻線と第2の巻線とは前記駆動電流によって互いに同一のタイミングで励磁され、かつ、直列接続されており、
     前記ロータは、永久磁石を有する磁石磁極と、磁束許容部と、を含んでおり、
     前記磁束許容部は、前記磁石磁極が前記第1の巻線と対向するロータの回転位置で前記第2の巻線と対向し、該第2の巻線での弱め界磁電流による鎖交磁束の発生を許容する、モータ。
    A stator having windings;
    A rotor that rotates in response to a rotating magnetic field generated by supplying a driving current to the winding; and
    The winding includes a first winding and a second winding, and the first winding and the second winding are excited at the same timing by the drive current, and Connected in series,
    The rotor includes a magnet magnetic pole having a permanent magnet, and a magnetic flux allowing portion,
    The magnetic flux permitting unit is configured so that the magnetic pole is opposed to the second winding at a rotational position of the rotor facing the first winding, and the interlinkage magnetic flux is generated by the field weakening current in the second winding. Motor that allows the generation of
  2.  請求項1に記載のモータにおいて、
     前記磁石磁極は、前記永久磁石がロータコアの外周面に固着されてなる、モータ。
    The motor according to claim 1,
    The magnet magnetic pole is a motor in which the permanent magnet is fixed to an outer peripheral surface of a rotor core.
  3.  請求項2に記載のモータにおいて、
     前記磁束許容部は、径方向において前記永久磁石と同位置に形成された前記ロータコアの突部である、モータ。
    The motor according to claim 2,
    The magnetic flux allowing portion is a motor that is a protrusion of the rotor core formed at the same position as the permanent magnet in the radial direction.
  4.  請求項1に記載のモータにおいて、
     前記磁石磁極は、前記永久磁石がロータコアに埋設されてなる、モータ。
    The motor according to claim 1,
    The magnet magnetic pole is a motor in which the permanent magnet is embedded in a rotor core.
  5.  請求項4に記載のモータにおいて、
     前記磁石磁極は、前記ロータコアに形成された複数の磁石収容孔を有し、
     該複数の磁石収容孔は径方向に並設されており、
     前記磁石収容孔の各々には前記永久磁石が収容されており、
     前記磁石収容孔の各々は、軸方向視でロータ中心に向かって凸となる湾曲形状をなしている、モータ。
    The motor according to claim 4,
    The magnet magnetic pole has a plurality of magnet receiving holes formed in the rotor core,
    The plurality of magnet housing holes are juxtaposed in the radial direction,
    The permanent magnet is accommodated in each of the magnet accommodation holes,
    Each of the magnet housing holes has a curved shape that is convex toward the center of the rotor as viewed in the axial direction.
  6.  請求項1~5のいずれか1項に記載のモータにおいて、
     前記磁石磁極は複数のN極の磁石磁極と複数のS極の磁石磁極とのうちの一つであり、
     該複数のN極の磁石磁極と複数のS極の磁石磁極とは、複数の磁極組を含んでおり、
     該磁極組の各々は周方向において互いに隣接するN極の磁石磁極とS極の磁石磁極とを含んでおり、
     前記複数の磁極組が、周方向等間隔に配置されている、モータ。
    The motor according to any one of claims 1 to 5,
    The magnet magnetic pole is one of a plurality of N pole magnet poles and a plurality of S pole magnet poles;
    The plurality of N-pole magnet magnetic poles and the plurality of S-pole magnet magnetic poles include a plurality of magnetic pole sets,
    Each of the magnetic pole sets includes an N-pole magnet pole and an S-pole magnet pole adjacent to each other in the circumferential direction,
    The motor in which the plurality of magnetic pole groups are arranged at equal intervals in the circumferential direction.
  7.  請求項1~6のいずれか1項に記載のモータにおいて、
     前記磁束許容部は、ロータコアに形成されたスリットを含んでおり、
     該スリットにより前記磁束許容部は突極として作用する、モータ。
    The motor according to any one of claims 1 to 6,
    The magnetic flux allowing portion includes a slit formed in the rotor core,
    The motor in which the magnetic flux allowing portion acts as a salient pole by the slit.
  8.  請求項7に記載のモータにおいて、
     前記スリットは複数のスリットのうちの一つであり、
     該複数のスリットは径方向に並設されており、
     前記複数のスリットの各々は、軸方向視でロータ中心に向かって凸となる湾曲形状をなしている、モータ。
    The motor according to claim 7, wherein
    The slit is one of a plurality of slits;
    The plurality of slits are arranged in the radial direction,
    Each of the plurality of slits has a curved shape that is convex toward the center of the rotor as viewed in the axial direction.
  9.  請求項1~8のいずれか1項に記載のモータにおいて、
     前記磁石磁極は、周方向において互いに隣接するN極の前記磁石磁極とS極の前記磁石磁極とのうちの一つであり、
     前記隣接するN極の前記磁石磁極とS極の前記磁石磁極とが磁極対を構成し、
     該磁極対の開角度が、前記磁束許容部の開角度よりも大きい、モータ。
    The motor according to any one of claims 1 to 8,
    The magnet magnetic pole is one of the N magnetic pole and the S magnetic pole adjacent to each other in the circumferential direction,
    The adjacent N magnetic poles and S magnetic poles constitute a magnetic pole pair,
    A motor in which an opening angle of the magnetic pole pair is larger than an opening angle of the magnetic flux allowing portion.
  10.  請求項1~9のいずれか1項に記載のモータにおいて、
     前記ロータのロータコアは、前記磁石磁極を有するコア本体と、別体コア部材と、を含んでおり、
     該別体コア部材は、前記コア本体に連結された別体部品であって前記磁束許容部の少なくとも一部を構成する、モータ。
    The motor according to any one of claims 1 to 9,
    The rotor core of the rotor includes a core body having the magnet magnetic pole, and a separate core member,
    The separate core member is a separate component connected to the core body, and constitutes at least a part of the magnetic flux allowing portion.
  11.  請求項10に記載のモータにおいて、
     前記別体コア部材は、前記コア本体よりも透磁率が高い材料で構成されている、モータ。
    The motor according to claim 10, wherein
    The separate core member is a motor made of a material having higher magnetic permeability than the core body.
PCT/JP2016/071104 2015-07-21 2016-07-19 Motor WO2017014211A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680041645.7A CN107852050B (en) 2015-07-21 2016-07-19 Electric motor
DE112016003276.5T DE112016003276T5 (en) 2015-07-21 2016-07-19 electric motor
US15/745,241 US10367385B2 (en) 2015-07-21 2016-07-19 Motor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-144308 2015-07-21
JP2015144308 2015-07-21
JP2015251812 2015-12-24
JP2015-251812 2015-12-24
JP2016-050075 2016-03-14
JP2016050075A JP6677029B2 (en) 2015-07-21 2016-03-14 motor

Publications (1)

Publication Number Publication Date
WO2017014211A1 true WO2017014211A1 (en) 2017-01-26

Family

ID=57834454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071104 WO2017014211A1 (en) 2015-07-21 2016-07-19 Motor

Country Status (1)

Country Link
WO (1) WO2017014211A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017221878A1 (en) * 2017-12-05 2019-06-06 Siemens Aktiengesellschaft Rotor for an electric machine
US20210367463A1 (en) * 2015-07-21 2021-11-25 Denso Corporation Motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285088A (en) * 1996-04-12 1997-10-31 Hitachi Ltd Permanent magnet dynamo-electric machine and motor-driven vehicle employing the same
JP2001346368A (en) * 2000-03-31 2001-12-14 Sanyo Denki Co Ltd Synchronous motor comprising a permanent magnet
JP2002252941A (en) * 2000-12-20 2002-09-06 Moric Co Ltd Permanent magnet type dynamo electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285088A (en) * 1996-04-12 1997-10-31 Hitachi Ltd Permanent magnet dynamo-electric machine and motor-driven vehicle employing the same
JP2001346368A (en) * 2000-03-31 2001-12-14 Sanyo Denki Co Ltd Synchronous motor comprising a permanent magnet
JP2002252941A (en) * 2000-12-20 2002-09-06 Moric Co Ltd Permanent magnet type dynamo electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210367463A1 (en) * 2015-07-21 2021-11-25 Denso Corporation Motor
US11552514B2 (en) * 2015-07-21 2023-01-10 Denso Corporation Motor
DE102017221878A1 (en) * 2017-12-05 2019-06-06 Siemens Aktiengesellschaft Rotor for an electric machine
US11381125B2 (en) 2017-12-05 2022-07-05 Rolls-Royce Deutschland Ltd & Co Kg Rotor for an electric machine

Similar Documents

Publication Publication Date Title
US11552514B2 (en) Motor
JP6677029B2 (en) motor
US10734852B2 (en) Motor
JP6589624B2 (en) motor
EP2667483B1 (en) Rotor and motor including rotor
JP2011135638A (en) Rotator of rotating electric machine, and rotating electric machine
JP6390506B2 (en) Rotating electrical machine rotor
WO2017014207A1 (en) Motor
WO2017014211A1 (en) Motor
JP6481545B2 (en) motor
JP6657928B2 (en) Motor and method of adjusting magnetic flux of motor
WO2017171037A1 (en) Rotor and method for designing rotor
JP6607029B2 (en) motor
JP6711159B2 (en) motor
WO2018008475A1 (en) Motor
JP6672914B2 (en) motor
JP2014183694A (en) Motor
JP6481546B2 (en) motor
JP2014220884A (en) Rotary electric machine
JP2015073362A (en) Motor
JP6059047B2 (en) motor
WO2017014212A1 (en) Motor
JP2015023726A (en) Rotor and motor
JP2014183696A (en) Rotor and brushless motor
JPH11275790A (en) Structure of rotor of brushless motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15745241

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003276

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827771

Country of ref document: EP

Kind code of ref document: A1