WO2017014212A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2017014212A1
WO2017014212A1 PCT/JP2016/071105 JP2016071105W WO2017014212A1 WO 2017014212 A1 WO2017014212 A1 WO 2017014212A1 JP 2016071105 W JP2016071105 W JP 2016071105W WO 2017014212 A1 WO2017014212 A1 WO 2017014212A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet magnetic
rotor
magnet
magnetic poles
magnetic pole
Prior art date
Application number
PCT/JP2016/071105
Other languages
French (fr)
Japanese (ja)
Inventor
横山 誠也
洋次 山田
晃司 三上
晃尚 服部
Original Assignee
アスモ 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016120941A external-priority patent/JP6711159B2/en
Application filed by アスモ 株式会社 filed Critical アスモ 株式会社
Priority to DE112016003277.3T priority Critical patent/DE112016003277T5/en
Priority to CN201680041589.7A priority patent/CN107852049B/en
Priority to US15/744,692 priority patent/US10298078B2/en
Publication of WO2017014212A1 publication Critical patent/WO2017014212A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a motor.
  • a permanent magnet motor such as a brushless motor includes, for example, a stator in which a winding is wound around a stator core and a rotor having a permanent magnet facing the stator as a magnetic pole, as shown in Patent Document 1, for example.
  • the rotor rotates by receiving a rotating magnetic field generated by supplying a drive current to the winding of the stator.
  • the higher the rotor is driven the larger the induced voltage generated in the stator winding due to the increase of the interlinkage magnetic flux by the permanent magnet of the rotor, and this induced voltage decreases the motor output. This hinders high motor rotation.
  • An object of the present invention is to provide a motor capable of achieving high rotation.
  • a motor includes a stator having windings and a rotor that rotates by receiving a rotating magnetic field generated by supplying a driving current to the windings.
  • the rotor includes a rotor core and a first magnet magnetic pole, a second magnet magnetic pole, and a protrusion that are arranged in parallel in the circumferential direction.
  • the first magnet magnetic pole uses a permanent magnet provided on the rotor core.
  • the second magnet magnetic pole uses a permanent magnet provided on the rotor core, and has a different polarity with respect to the first magnet magnetic pole.
  • the protrusion is formed to protrude in the radial direction in the rotor core.
  • the winding includes a first winding and a second winding.
  • the first winding and the second winding are excited at the same timing by the drive current and are connected in series.
  • the motor is configured such that the first magnet magnetic pole or the second magnet magnetic pole is at a rotational position of the rotor facing the first winding, and the protrusion is opposed to the second winding.
  • the motor 10 of the present embodiment is configured as a brushless motor, and a rotor 21 is arranged inside an annular stator 11.
  • the stator 11 includes a stator core 12 and a winding 13 wound around the stator core 12.
  • the stator core 12 is formed of a magnetic metal in a substantially annular shape, and has twelve teeth 12a extending radially inward at equal angular intervals in the circumferential direction.
  • windings 13 having the same number as the teeth 12a are provided, and each tooth 12a is wound in the same direction by concentrated winding. That is, twelve windings 13 are provided at equal intervals in the circumferential direction (30 ° intervals).
  • the windings 13 are classified into three phases according to the three-phase driving currents (U phase, V phase, W phase) supplied, and U1, V1, W1, U2 in order counterclockwise in FIG. , V2, W2, U3, V3, W3, U4, V4, W4.
  • the U-phase windings U1 to U4 are arranged at equal intervals in the circumferential direction (90 ° intervals).
  • the V-phase windings V1 to V4 are arranged at equal circumferential intervals (90 ° intervals).
  • the W-phase windings W1 to W4 are arranged at equal intervals in the circumferential direction (90 ° intervals).
  • the windings 13 are connected in series for each phase. That is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 each constitute a series circuit.
  • a series circuit of U-phase windings U1 to U4, a series circuit of V-phase windings V1 to V4, and a series circuit of W-phase windings W1 to W4 are star-connected.
  • the rotor core 22 of the rotor 21 is formed of a magnetic metal in a substantially disk shape, and a rotating shaft 23 is fixed at the center.
  • two magnetic pole pairs P composed of an N-pole magnet magnetic pole Mn and an S-pole magnet magnetic pole Ms adjacent to each other in the circumferential direction, and four which are integrally formed with the rotor core 22 and protrude radially outward.
  • the protrusions 24a, 24b, 24c, and 24d are juxtaposed in the circumferential direction. That is, the rotor 21 is provided with the same number of magnet magnetic poles Mn, Ms and protrusions 24a to 24d.
  • the magnet magnetic poles Mn and Ms function as a first magnet magnetic pole and a second magnet magnetic pole, respectively.
  • the magnetic pole pair P is provided at a position opposite to each other at 180 ° in the circumferential direction. Between the circumferential directions of the magnetic pole pair P, a pair of protrusions 24a and 24b adjacent in the circumferential direction and a pair of adjacent in the circumferential direction are provided. Protrusions 24c and 24d are provided. Specifically, on the outer peripheral portion of the rotor 21, in order in the clockwise direction, the S magnetic pole Ms, the N magnetic pole Mn, the protrusion 24 a, the protrusion 24 b, the S magnetic pole Ms, N pole. Magnet magnetic pole Mn, protrusion 24c, and protrusion 24d.
  • the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms each have a permanent magnet 25 fixed to the outer peripheral surface of the rotor core 22. That is, the rotor 21 has a surface magnet type structure (SPM structure) in which four permanent magnets 25 are fixed to the outer peripheral surface of the rotor core 22.
  • SPM structure surface magnet type structure
  • the permanent magnets 25 have the same shape, and the pair of permanent magnets 25 in the magnetic pole pair P are arranged adjacent to each other in the circumferential direction.
  • the outer peripheral surface (radially outer surface) that is the surface facing each of the permanent magnets 25 in the permanent magnet 25 has an arc shape with the axis L as the center when viewed from the direction of the axis L of the rotating shaft 23.
  • the outer peripheral surface (radial outer surface) that is the surface facing the stator 11 in each of the protrusions 24a to 24d has an arc shape that is located on the same circle as the outer peripheral surface of each permanent magnet 25 when viewed from the axis L direction. Is formed.
  • Each permanent magnet 25 is formed so that the magnetic orientation faces the radial direction. More specifically, the permanent magnet 25 of the N-pole magnet magnetic pole Mn is magnetized in the radial direction so that the magnetic pole appearing on the outer peripheral side becomes the N-pole, and the permanent magnet 25 of the S-pole magnet magnetic pole Ms has the magnetic pole appearing on the outer peripheral side. It is magnetized in the radial direction so as to be the south pole.
  • Each permanent magnet 25 is, for example, an anisotropic sintered magnet, and includes, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like.
  • each permanent magnet 25 is arrange
  • a three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively. Then, the windings U1 to W4 are excited at the same timing for each phase to generate a rotating magnetic field in the stator 11, and the rotor 21 rotates based on the rotating magnetic field.
  • AC three-phase drive current
  • magnet torque is generated in the rotor 21 by the action of the rotating magnetic field of the stator 11 and the magnet magnetic poles Mn and Ms, and reluctance torque is applied to the rotor 21 by the action of the rotating magnetic field of the stator 11 and the protrusions 24a to 24d of the rotor core 22.
  • Arise magnet torque is generated in the rotor 21 by the action of the rotating magnetic field of the stator 11 and the magnet magnetic poles Mn and Ms, and reluctance torque is applied to the rotor 21 by the action of the rotating magnetic field of the stator 11 and the protrusions 24a to 24d of the rotor core 22.
  • the magnetic poles formed on the stator 11 by supplying the three-phase driving currents have the same polarity for the windings U1 to W4 of the respective phases.
  • the number of magnetic poles (the number of magnet magnetic poles Mn and Ms) of the rotor 21 of this embodiment is four, but the number of poles of the rotor 21 is set to the magnet magnetic poles Mn and Ms in the windings U1 to W4 of each phase.
  • the drive current set is assumed to be twice the number of (8 poles in this embodiment).
  • field weakening control for supplying a field weakening current (d-axis current) to the winding 13 is executed.
  • field weakening control for example, as shown in FIG. 1, when the N-pole magnet magnetic pole Mn is opposed to the U-phase windings U1, U3 in the radial direction, the protrusions 24b, 24d Are opposed to the U-phase windings U2 and U4 in the radial direction, respectively.
  • a field weakening current is supplied to each of the U-phase windings U1 to U4.
  • a magnetic flux (radially outward) generated by the opposing N-pole magnet magnetic poles Mn. Magnetic flux) exceeds the interlinkage magnetic flux (interlinkage magnetic flux inward in the radial direction) caused by the field weakening current, and the interlinkage magnetic flux ⁇ x that passes outward in the radial direction is generated in the U-phase windings U1 and U3.
  • the portions of the rotor 21 facing each other are not the magnet magnetic pole Mn but the protrusions 24b and 24d of the rotor core 22, so that the interlinkage magnetic flux ⁇ y due to the field weakening current does not disappear.
  • the interlinkage magnetic flux ⁇ y passes through the phase windings U2 and U4 inward in the radial direction.
  • the protrusions 24b and 24d of the rotor core 22 facing the U-phase windings U2 and U4 are allowed to generate the linkage flux ⁇ y due to the field weakening current.
  • the magnetic flux Mn generates an interlinkage magnetic flux ⁇ y having a phase opposite to that of the interlinkage magnetic flux ⁇ x generated in the U-phase windings U1 and U3.
  • an induced voltage is generated by the interlinkage magnetic fluxes ⁇ x and ⁇ y in each of the U-phase windings U1 to U4.
  • the interlinkage magnetic fluxes ⁇ x and ⁇ y are in opposite phases, the induced voltage generated in the U-phase windings U2 and U4 by the interlinkage magnetic flux ⁇ y is induced in the U-phase windings U1 and U3 by the interlinkage magnetic flux ⁇ x. Since the polarity is opposite to the voltage (reverse phase), the combined induced voltage obtained by combining the induced voltages of the U-phase windings U1 to U4 is effectively reduced.
  • the above action also occurs in the winding facing the S magnetic pole Ms. That is, when the S-pole magnet magnetic pole Ms faces, for example, the U-phase windings U1, U3, the protrusions 24a, 24c of the rotor core 22 face the U-phase windings U2, U4, respectively.
  • the induced voltage generated in U3 and the induced voltage generated in U-phase windings U2 and U4 are in opposite phases, and the combined induced voltage in each U-phase winding U1 to U4 is effectively reduced.
  • the combined induced voltage of the U-phase windings U1 to U4 has been described as an example.
  • the protrusions 24a to 24d of the rotor core 22 are also applied to the V-phase windings V1 to V4 and the W-phase windings W1 to W4. This causes a decrease in the synthesis induced voltage.
  • the total number of magnet magnetic poles Mn and Ms is n, and 2n reference lines extending in the radial direction from the rotation axis of the rotor 21 (axis L of the rotation shaft 23) are equiangularly spaced in the circumferential direction.
  • the total number of magnet magnetic poles Mn and Ms is 4, eight reference lines X1 to X8 are set at equal intervals of 45 ° in the clockwise direction.
  • the magnet magnetic poles Mn and Ms are arranged so that their circumferential centers coincide with any of the eight reference lines X1 to X8.
  • the pair of N-pole magnet magnetic poles Mn are arranged so that their circumferential centers coincide with the reference lines X4 and X8. That is, the pair of N-pole magnet magnetic poles Mn are disposed at positions that oppose each other at 180 ° in the circumferential direction.
  • the pair of S-pole magnet magnetic poles Ms are arranged so that their circumferential centers coincide with the reference lines X3 and X7. That is, the pair of S-pole magnet magnetic poles Ms are disposed at positions that oppose each other at 180 ° in the circumferential direction. Further, the magnet magnetic poles Mn and Ms adjacent to each other in the magnetic pole pair P have an interval (open angle) between their circumferential centers set to 45 °.
  • the protrusions 24a to 24d are arranged such that their circumferential centers C1 to C4 are deviated from any of the reference lines X1 to X8.
  • several arrangement patterns of the protrusions 24a to 24d will be exemplified.
  • the deviation angle of the circumferential center C1 of the protrusion 24a with respect to the reference line X1 is ⁇ a
  • the deviation angle of the circumferential center C2 of the protrusion 24b with respect to the reference line X2 is ⁇ b
  • the deviation angle of the direction center C3 is ⁇ c
  • the deviation angle of the circumferential center C4 of the protrusion 24d with respect to the reference line X6 is ⁇ d
  • the deviation angle in the clockwise direction is a positive value.
  • the present invention is not limited to this, and may be set as ⁇ c ⁇ ⁇ a and ⁇ b ⁇ ⁇ d.
  • ⁇ a to ⁇ d ⁇ 0 ° that is, any of the protrusions 24a to 24d is configured to be shifted with respect to the reference lines X1, X2, X5, and X6.
  • the remaining protrusions may be arranged so that the center in the circumferential direction coincides with the reference line.
  • gaps are formed between the protrusions 24a and 24b (protrusions 24c and 24d) adjacent in the circumferential direction and between the magnetic poles Mn and Ms adjacent to the protrusions 24a to 24d. .
  • the open angle is an angle from one end to the other end in the circumferential direction of the object.
  • Each of the outer peripheral surfaces 26 to 28 functions as an opposing surface.
  • the open angles ⁇ n and ⁇ s of the magnetic poles Mn and Ms are set to be equal to each other, and the open angles ⁇ 1 to ⁇ 4 of the protrusions 24a to 24d are set to be smaller than the open angles ⁇ n and ⁇ s.
  • several setting patterns for the open angles ⁇ 1 to ⁇ 4 of the protrusions 24a to 24d will be exemplified.
  • the centers of the protrusions 24a to 24d are arranged so as to coincide with the reference lines X1, X2, X5, and X6, respectively, but not limited to this, the arrangement patterns 1 to 4 described above are arranged. It is also possible to adopt a configuration in which any one of the above opening angle setting patterns 1 to 3 is combined.
  • the windings 13 of the stator 11 are composed of four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current.
  • the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
  • the magnetic pole Mn (or the magnetic pole Ms) is, for example, a rotational position facing the U-phase windings U1 and U3, and the protrusions 24b and 24d (or the protrusions 24a and 24c) are respectively connected to the U-phase windings U2 and U4. Configured to face each other.
  • the protrusions 24a to 24d which are part of the rotor core 23, operate without disturbing the generation of the interlinkage magnetic flux due to the field weakening current (d-axis current) in the second winding.
  • the induced voltage generated by the linkage flux ⁇ y due to the field weakening current in the winding 13 facing the protrusions 24a to 24d is opposite to the induced voltage generated in the winding 13 facing the magnet magnetic pole Mn (or the magnet magnetic pole Ms). Polarity (reverse phase).
  • the sum of the induced voltages generated in the respective windings for each phase becomes the combined induced voltage.
  • the voltage tends to increase. Therefore, by providing the protrusions 24a to 24d on the rotor 21 as described above in a configuration in which the winding 13 is in series in each phase, the effect of suppressing the combined induced voltage can be obtained more remarkably, and the motor It is more suitable to increase the rotation speed of 10.
  • the magnetic pole Mn and Ms having the magnetic force forcing and the protrusions 24a to 24d of the rotor core 21 having no magnetic force forcing are arranged in the circumferential direction, the magnetic pole Mn (or the magnetic pole Ms)
  • the magnetic flux density changes sharply at the boundaries between the protrusions 24a to 24d, which may contribute to an increase in cogging torque.
  • the phase change of the cogging torque is caused by changing the shape of the protrusions 24a to 24d of the rotor core 21.
  • the cogging torque can be suppressed by shifting.
  • the rotor 21 since the rotor 21 includes the protrusions 24a to 24d, the field-weakening current supplied to the winding 13 can be suppressed to a small value. Since the field weakening current can be reduced, the permanent magnet 25 is difficult to demagnetize during field weakening control, and the copper loss of the winding 13 can be suppressed. In other words, since the amount of flux linkage that can be reduced with the same amount of field-weakening current increases, higher rotation by field-weakening control can be obtained more effectively.
  • the magnet magnetic poles Mn and Ms are arranged so that their circumferential centers coincide with the reference lines X3, X4, X7, and X8, respectively, and at least one of the protrusions 24a to 24d has the circumferential center as a reference It arrange
  • the phase of the cogging torque generated when the rotor 21 rotates can be shifted, so that the cogging torque can be prevented from maximizing at a specific frequency. Thereby, the vibration generated due to the cogging torque can be suppressed.
  • At least one of the protrusions 24a to 24d is set so that the open angle of the outer peripheral surface 28 is different from the open angles ⁇ n and ⁇ s of the outer peripheral surfaces 26 and 27 of the magnet magnetic poles Mn and Ms (permanent magnet 25). Is done.
  • This configuration can also shift the phase of the cogging torque generated when the rotor 21 rotates, so that the cogging torque can be prevented from maximizing at a specific frequency. Thereby, the vibration generated due to the cogging torque can be suppressed.
  • the said embodiment may change the said embodiment as follows. -In the rotor 21 of the said embodiment, as shown in FIG. 5, you may form the slit hole 22a extended along the radial direction of the rotating shaft 23 in the rotor core 22. As shown in FIG. In the example shown in the figure, the slit holes 22a are arranged at intervals of 90 ° in the circumferential direction, and are adjacent to the circumferentially adjacent projections 24a and 24b and the boundary between the projections 24c and 24d in the circumferential direction. It is provided at the boundary between the magnet magnetic poles Mn and Ms, respectively. Moreover, each slit hole 22a has penetrated the rotor core 22 to the axial direction.
  • Each of these slit holes 22a is a gap, and has a magnetic resistance larger than that of the magnetic metal rotor core 22, so that the magnetic flux of each permanent magnet 25 passing through the rotor core 22 by each slit hole 22a is projected in the circumferential direction. It is possible to guide to 24d suitably (see the broken arrow in the figure).
  • each of the protrusions 24a to 24d functions as a pseudo magnetic pole (core magnetic pole) by the magnetic flux action of the magnet magnetic poles Mn and Ms (permanent magnet 25) adjacent in the circumferential direction. That is, the protrusions 24a and 24c adjacent to the N-pole magnet magnetic pole Mn in the circumferential direction are configured as the S-pole core magnetic pole Rs, and the protrusions 24b and 24d adjacent to the S-pole magnet magnetic pole Ms in the circumferential direction are the N pole.
  • the core magnetic pole Rn is configured.
  • each of the protrusions 24a to 24d is configured as a magnetic flux allowing portion that allows generation of field weakening magnetic flux (linkage magnetic flux ⁇ y caused by field weakening current) in the winding 13.
  • Such a configuration is difficult to earn magnet torque and is disadvantageous in terms of increasing torque, but is advantageous in terms of increasing rotation as described above.
  • each of the protrusions 24a to 24d functions as the core magnetic poles Rn and Rs by the slit holes 22a formed in the rotor core 22, and therefore the core magnetic poles Rn and Rs (projections 24a to 24d).
  • This makes it difficult for field-weakening magnetic flux (linkage magnetic flux generated by field-weakening current) of winding 13 to be generated.
  • This is disadvantageous in terms of increasing the rotation speed compared to the configuration in which the protrusions 24a to 24d are the magnetic flux allowing portions as in the above embodiment, but is advantageous in terms of increasing the torque.
  • the output characteristics (torque and rotation speed) of the motor can be adjusted by changing the configuration.
  • the magnet poles Mn and Ms are arranged at 180 ° facing positions with the same pole, but it is not particularly limited thereto.
  • the magnet magnetic poles Mn and Ms may be alternately provided on the half circumference of the rotor core 22 as N poles and S poles, and the protrusions 24a to 24d may be provided on the remaining half circumference.
  • the rotor 21 of the above embodiment has an SPM structure in which the permanent magnets 25 constituting the magnet magnetic poles Mn and Ms are fixed to the outer peripheral surface of the rotor core 22.
  • the present invention is not particularly limited to this, and each magnet An embedded magnet type structure (IPM structure) in which a permanent magnet is embedded in the rotor core 22 at the magnetic poles Mn and Ms may be used. This configuration is advantageous in that it suppresses demagnetization of the permanent magnet during field-weakening control.
  • the windings of each phase that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series.
  • the winding mode may be changed as appropriate.
  • the windings U1, U2 are connected in series, and the windings U3, U4 are connected in series.
  • the series pair of the windings U1, U2 and the windings U3, U4 Are connected in parallel.
  • the windings V1 and V2 are connected in series, and the windings V3 and V4 are connected in series.
  • the series pair of the windings V1 and V2 and the series pair of the windings V3 and V4 are parallel. It is connected.
  • the windings W1, W2 are connected in series, and the windings W3, W4 are connected in series.
  • the series pair of the windings W1, W2 and the series pair of the windings W3, W4 Are connected in parallel.
  • the combined induced voltage in the entire U-phase winding is the combined induced voltage of the series pair of the windings U1 and U2 ( And the combined induced voltage of the series pair of windings U3 and U4), and the combined induced voltage can be effectively suppressed.
  • the winding U2 and the winding U3 are interchanged in the example shown in FIG. 6, that is, the windings U1 and U3 having the same magnitude of the induced voltage are connected in series and the magnitude of the induced voltage is the same.
  • the windings U2 and U4 are in series.
  • the reduction of the induced voltage due to the provision of the protrusions 24a to 24d occurs only in one of the series pair of the windings U2 and U4 and the series pair of the windings U1 and U3, and the induced voltage is reduced on the other side. do not do.
  • the windings for example, the U-phase winding U1 and the U-phase winding U2 facing the magnet magnetic pole Mn (magnet magnetic pole Ms) and the protrusion at the predetermined rotational position of the rotor 21 are connected in series.
  • the induced voltages having opposite polarities (reverse phases) generated in the in-phase windings connected in series can be added to obtain a combined induced voltage.
  • combination induced voltage in each phase can be suppressed effectively.
  • the windings U1 and U2 are a series pair and the windings U3 and U4 are a series pair.
  • the windings U1 and U4 and the windings U2 and U3 are respectively Similar advantages can be obtained as a series pair.
  • the same change can be made in the V phase and the W phase.
  • the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are connected in parallel.
  • U2 and the series pair of windings U3, U4 may be separated, and a pair of inverters may be provided to supply a U-phase drive current to each of the separated series pairs.
  • winding was made into the star connection, it is not restricted to this, For example, it is good also as a delta connection.
  • the total number of magnet magnetic poles Mn and Ms in the rotor 21 is four and the number of windings 13 (slot number) of the stator 11 is twelve.
  • the number of 13 can be appropriately changed according to the configuration.
  • the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is not necessarily n: 3n (where n is an integer of 2 or more).
  • the relationship with the number of lines 13 may be 5:12, 7:12, or the like.
  • FIG. 7 shows an example of the motor 30 in which the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is 5:12.
  • the same components as those in the above embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different portions will be described in detail.
  • the 12 windings 13 of the stator 11 are classified according to the supplied three-phase drive currents (U phase, V phase, W phase), and are counterclockwise in FIG.
  • U phase winding bar U1, bar U2, V phase winding bar V1 with respect to U phase windings U1, U2, V phase windings V1, V2 and W phase windings W1, W2 constituted by positive windings.
  • Bar V2, W-phase winding bar W1, bar W2 are constituted by reverse winding.
  • the U-phase winding U1 and the bar U1 are placed at positions facing each other by 180 °, and similarly, the U-phase winding U2 and the bar U2 are placed at positions facing each other by 180 °.
  • U-phase windings U1, U2, U1 and U2 are connected in series.
  • V-phase windings V1, V2, V1 and V2 are connected in series
  • W-phase winding W1. , W2, bar W1, and bar W2 are connected in series.
  • the U-phase windings U1, U2, U1 and U2 are supplied with U-phase drive current.
  • the reverse winding U-phase winding bars U1 and U2 are always excited with the opposite polarity (reverse phase) with respect to the forward winding U-phase windings U1 and U2, but the excitation timing is the same. .
  • the windings of each phase are supplied with a drive current set by regarding the number of poles of the rotor 31 as twice the number of magnet magnetic poles Mn and Ms (that is, 10 poles in this example).
  • the field weakening current is supplied to the U-phase winding U1 and the bar U1, but in the U-phase winding U1, the magnetic flux (magnetic flux inward in the radial direction) of the opposing magnet magnetic pole Ms is weakened.
  • the flux linkage ⁇ x that exceeds the flux linkage caused by the current (linkage flux outward in the radial direction) and passes inward in the radial direction is generated in the U-phase winding U1.
  • the interlinkage magnetic flux ⁇ y due to the field weakening current does not disappear, and the U-phase winding bar U1 has no chain.
  • the cross magnetic flux ⁇ y passes toward the outside in the radial direction.
  • the magnetic flux My that has the opposite phase to the magnetic flux ⁇ x generated in the U-phase winding U1 by the magnet magnetic pole Ms is generated in the U-phase winding bar U1.
  • the induced voltage generated in the U-phase winding bar U1 by the linkage flux ⁇ y is opposite in polarity (reverse phase) to the induced voltage generated in the U-phase winding U1 by the linkage flux ⁇ x.
  • the combined induced voltage at the line U1 and the bar U1 can be kept small. As described above, since the combined induction voltage can be suppressed in each phase, the motor 30 can be rotated at a high speed.
  • the total number of magnetic poles Mn and Ms is n
  • 2n reference lines extending radially from the rotation axis of the rotor 31 (axis L of the rotation shaft 23) are equiangularly spaced in the circumferential direction.
  • ten reference lines X1 to X10 are sequentially set at equal intervals of 36 ° in the clockwise direction.
  • the magnet magnetic poles Mn and Ms are arranged so that their circumferential centers coincide with any of the ten reference lines X1 to X10.
  • the three magnetic poles Ms of S poles are arranged so that their circumferential centers coincide with the reference lines X1, X3, and X5, respectively
  • the two magnetic poles Mn of N poles are arranged at their circumferential centers.
  • the protrusions 24a to 24e are arranged so that their circumferential centers C1 to C5 are deviated from any of the reference lines X1 to X10.
  • several arrangement patterns of the protrusions 24a to 24e will be exemplified.
  • the deviation angle of the circumferential center C1 of the protrusion 24a with respect to the reference line X6 is ⁇ a
  • the deviation angle of the circumferential center C2 of the protrusion 24b with respect to the reference line X7 is ⁇ b
  • the circumference of the protrusion 24c with respect to the reference line X8 is ⁇ c
  • the deviation angle of the direction center C3 is ⁇ c
  • the deviation angle of the circumferential center C4 of the protrusion 24d with respect to the reference line X9 is ⁇ d
  • the deviation angle of the circumferential center C5 of the protrusion 24e with respect to the reference line X10 is ⁇ e.
  • the open angles ⁇ n and ⁇ s of the magnetic poles Mn and Ms are set to be equal to each other, and the open angles ⁇ 1 to ⁇ 5 of the protrusions 24a to 24e are set to be smaller than the open angles ⁇ n and ⁇ s.
  • several setting patterns for the open angles ⁇ 1 to ⁇ 5 of the protrusions 24a to 24e will be exemplified.
  • the centers of the protrusions 24a to 24e are arranged so as to coincide with the reference lines X6 to X10.
  • the present invention is not limited to this, and any of the above arrangement patterns 5 to 11 and the above It is also possible to adopt a configuration in which any one of the opening angle setting patterns 4 and 5 is combined.
  • the number of magnet magnetic poles Mn and Ms may be changed as appropriate.
  • three magnet magnetic poles Mn and two magnet magnetic poles Ms may be configured.
  • the arrangement of the magnet magnetic poles Mn and Ms and the protrusions 24a to 24e in the rotor 31 is not limited to the example shown in FIG. 7, and the protrusion of the rotor core 22 is provided on the opposite side of the magnet magnetic poles Mn and Ms in the circumferential direction.
  • the configuration may be changed as shown in FIG.
  • a protrusion 24f is formed to protrude from the rotor core 22 instead of the central magnet magnetic pole Ms in the magnetic pole set Pa of the configuration shown in FIG. 7, and the magnet magnetic pole Mn (N pole permanent) is formed on the opposite side in the circumferential direction.
  • a magnet 25) is provided.
  • stator 11 it is not necessary that all the U-phase windings U1, U2, bar U1, and bar U2 are connected in series, and a pair of windings U1, U1 and a pair of windings U2, U2 are provided. It is good also as a structure which made each another separate serial pair. Moreover, it can change similarly also in V phase and W phase.
  • FIG. 7 shows an example in which the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is 5:12, but the present invention can also be applied to a configuration with 7:12. . In addition, the present invention can be applied to a configuration in which the total number of 5:12 (or 7:12) magnetic poles Mn and Ms and the number of windings 13 are each equal.
  • a plurality (two) of protrusions between the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms (between the magnetic pole pair P).
  • a pair of protrusions 24c and 24d may be arranged between the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms.
  • the arrangement of the protrusions 24g and 24h in the configuration shown in FIG. 11 will be described.
  • the arrangement of the magnet magnetic poles Mn and Ms is the same as in the above embodiment.
  • the protrusions 24g and 24h are arranged such that their circumferential centers Cg and Ch are displaced from the circumferential center line CL between the magnetic poles Mn and Ms.
  • the circumferential center line CL is a circumferential end face 25a (end face opposite to the S pole magnet magnetic pole Ms) near the protrusion of the N pole magnetic pole Mn (permanent magnet 25) in the circumferential direction of the rotor 21.
  • the circumferential centers Cg and Ch of the protrusions 24g and 24h are set so as to shift in the clockwise direction or the counterclockwise direction with respect to the circumferential center line CL. Further, the deviation angle of the circumferential center Cg of the protrusion 24g with respect to the circumferential center line CL and the deviation angle of the circumferential center Ch of the protrusion 24h with respect to the circumferential center line CL are not necessarily set to be equal. Different shift angles may be used.
  • the open angles ⁇ n and ⁇ s of the outer peripheral surfaces 26 and 27 of the magnet magnetic poles Mn and Ms are set to be equal to each other, and the open angles ⁇ g and ⁇ h of the outer peripheral surfaces 28 of the protrusions 24g and 24h are
  • the opening angles ⁇ n and ⁇ s of the magnet magnetic poles Mn and Ms are set differently.
  • the outer peripheral surfaces of the protrusions 24a to 24d and the outer peripheral surfaces of the magnet magnetic poles Mn and Ms are on the same circle with the axis L as the center. It is formed in the circular arc shape located in. That is, the outer diameters of the protrusions 24a to 24d and the outer diameters of the magnet magnetic poles Mn and Ms are formed to be equal.
  • the present invention is not limited to this, and the outer diameters of the protrusions 24a to 24d may be different from the outer diameters of the magnet magnetic poles Mn and Ms.
  • the outer diameter D1 of each of the protrusions 24a to 24d may be set larger than the outer diameter D2 of each of the magnetic poles Mn and Ms (each permanent magnet 25).
  • the outer peripheral surfaces of the protrusions 24a to 24d have an arc shape centered on the axis L when viewed from the direction of the axis L, and the outer diameters D1 of the protrusions 24a to 24d are mutually different. equal.
  • the outer peripheral surfaces of the magnet magnetic poles Mn and Ms have an arc shape centered on the axis L when viewed from the direction of the axis L, and the outer diameters D2 of the magnet magnetic poles Mn and Ms are equal to each other.
  • the air gap (gap) between the stator teeth 12a and the inner peripheral surface of the stator becomes smaller at the protrusions 24a to 24d than at the magnetic poles Mn and Ms. That is, since each of the protrusions 24a to 24d comes closer to the inner peripheral surface of the tooth 12a, the interlinkage magnetic flux ⁇ y (see FIG. 1) due to the field weakening current can be increased. As a result, the combined induction voltage in each phase can be suppressed to a smaller value, which can contribute to further increase in the rotation speed of the motor 10.
  • a cover 40 for preventing the permanent magnet 25 from scattering in the rotor 21 having the SPM structure.
  • the cover 40 By forming the cover 40, the cover 40 can be disposed on the outer peripheral portion of the permanent magnet 25 while keeping the air gap between the protrusions 24a to 24d and the teeth 12a small, which is more preferable.
  • the outer peripheral surfaces of the protrusions 24a to 24d and the outer peripheral surfaces of the magnet magnetic poles Mn and Ms have an arc shape centered on the axis L. That is, the distance from the axis L to the outer peripheral surface of each of the protrusions 24a to 24d is uniform in the circumferential direction. Similarly, the distance between the axis L and the outer peripheral surface of each magnet magnetic pole Mn, Ms is uniform in the circumferential direction.
  • the shapes of the outer peripheral surfaces of the protrusions 24a to 24d and the magnetic poles Mn and Ms are not limited to this, and the distance from the axis L to the outer peripheral surface may not be uniform in the circumferential direction.
  • the distance at the point where the distance from the axis L to the outer peripheral surface is the longest in each of the protrusions 24a to 24d is the outermost diameter of each of the protrusions 24a to 24d, and the axis L in each of the magnetic poles Mn and Ms.
  • the distance at the longest distance from the outer peripheral surface to the outer peripheral surface is defined as the outermost diameter of each of the magnetic poles Mn and Ms.
  • the outermost diameters of the protrusions 24a to 24d are preferably set larger than the outermost diameters of the magnet magnetic poles Mn and Ms. In the example of FIG.
  • the outer diameters D1 and D2 are respectively the protrusions. 24a to 24d and the outermost diameters of the magnetic poles Mn and Ms.
  • the present invention may be applied to an embedded magnet type structure (IPM structure) in which the permanent magnets 41 n and 41 s constituting the magnetic poles Mn and Ms are embedded in the rotor core 22.
  • IPM structure embedded magnet type structure
  • the arrangement of the magnetic poles Mn and Ms and the protrusions 24a to 24d and the open angles of the magnetic poles Mn and Ms and the protrusions 24a to 24d can be set in the same manner as in the above embodiment. It is.
  • the rotor core 22 is formed with a pair of convex portions 42 projecting to the outer peripheral side, and the pair of convex portions 42 is configured with magnetic pole pairs P (magnet magnetic poles Mn and Ms), respectively.
  • each convex portion 42 of the rotor core 22 has a permanent magnet 41n (permanent magnet having an N pole on the outer peripheral side) and a permanent magnet 41s (outer periphery) forming an S pole magnet magnetic pole Ms.
  • each permanent magnet 41n, 41s has an arc shape centered on the axis L of the rotating shaft 23.
  • the center in the circumferential direction of each N-pole permanent magnet 41n is arranged to coincide with the reference lines X4 and X8, respectively, and the center in the circumferential direction of each S-pole permanent magnet 41s coincides with the reference lines X3 and X7, respectively.
  • each convex portion 42 has an arc shape located on the same circle centered on the axis L, and the open angle of the outer peripheral surface of each convex portion 42 is 90 °. Is set.
  • the circumferential center position CP (boundary position between adjacent magnet magnetic poles Mn and Ms) between the N-pole permanent magnet 41n and the S-pole permanent magnet 41s in each convex portion 42 is the convex portion 42. It is comprised so that it may correspond with the circumferential direction center position.
  • the opening angles ⁇ n and ⁇ s of the magnet magnetic poles Mn and Ms are angles from the circumferential center position CP between the permanent magnets 41n and 41s to the circumferential ends 42a and 42b of the outer peripheral surface of the convex portion 42, respectively. . That is, the open angles ⁇ n and ⁇ s of the magnetic poles Mn and Ms formed on the convex portion 42 are set to be 1 ⁇ 2 of the open angles of the convex portions 42, respectively. In this example, the open angles of the magnetic poles Mn and Ms are set. ⁇ n and ⁇ s are each set to 45 °.
  • each of the permanent magnets 41 n and 41 s has a rectangular shape when viewed in the axial direction, and a surface (radial inner surface) including a long side when viewed from the axial direction is orthogonal to the radial direction of the rotor 21. It is provided to do.
  • Each magnetoresistive hole 43 has a shape corresponding to the end shape of the permanent magnets 41n and 41s.
  • one of the vertices has a substantially triangular shape when viewed in the axial direction and faces radially inward.
  • the opening angle ⁇ n of the magnet magnetic pole Mn is the circumferential direction of the outer peripheral surface of the convex portion 42 from one circumferential end of the magnetoresistive hole 43.
  • the opening angle ⁇ s of the magnet magnetic pole Ms is an angle from the other circumferential end of the magnetoresistive hole 43 to the other circumferential end 42b of the outer peripheral surface of the convex portion 42.
  • each permanent magnet 41 n and 41 s when viewed in the axial direction is a rectangle, but is not limited to this, for example, the axis L is the center. It may be arcuate.
  • each of the magnetic poles Mn and Ms may have a magnet configuration as shown in FIG.
  • each of the magnetic poles Mn and Ms includes a pair of permanent magnets 51 embedded in the rotor core 22 (convex portion 42).
  • Each permanent magnet 51 has a rectangular parallelepiped shape, and the pair of permanent magnets 51 in each of the magnetic poles Mn and Ms are arranged in a substantially V shape that extends to the outer peripheral side when viewed in the axial direction.
  • the pair of permanent magnets 51 are provided symmetrically with respect to the circumferential center line in the circumferential direction.
  • the symmetry axis of the pair of permanent magnets 51 having line symmetry is the center in the circumferential direction of the magnet magnetic poles Mn and Ms.
  • the arrangement of the magnet magnetic poles Mn and Ms is the same as that of the above embodiment, and the circumferential center (the axis of symmetry of the permanent magnet 51) of the N magnetic poles Mn coincides with the reference lines X4 and X8, respectively.
  • the center in the circumferential direction of each of the S magnetic poles Ms (the axis of symmetry of the permanent magnet 51) is arranged so as to coincide with the reference lines X3 and X7, respectively.
  • the pair of permanent magnets 51 in each of the magnetic poles Mn and Ms are arranged so as to be within an angular range (in the example, a 45 ° range) obtained by dividing the convex portion 42 into two equal parts in the circumferential direction.
  • each permanent magnet 51 in the N-pole magnet magnetic pole Mn has N-poles on the surfaces facing each other (surface on the magnetic pole center side) so that the outer peripheral side of the magnet magnetic pole Mn is N-pole. Magnetized to appear.
  • each permanent magnet 51 in the S magnetic pole Ms is magnetized so that the S pole appears on the surfaces facing each other (surface on the magnetic pole center side) so that the outer peripheral side of the magnet magnetic pole Ms becomes the S pole. .
  • the pair of permanent magnets 51 are embedded so as to form a substantially V shape that expands radially outward when viewed in the axial direction.
  • the volume (the volume of the portion including the inter-magnet core portion 22b between the pair of permanent magnets 51 arranged in a V shape) can be increased.
  • the reluctance torque can be increased, which can contribute to an increase in torque of the motor 10.
  • the rotor 21 shown in FIG. 16 is provided with a magnetoresistive hole 52 similar to the magnetoresistive hole 43 (see FIG. 14) for each convex portion 42 having the configuration shown in FIG.
  • the magnetoresistive holes 52 are formed between the outer peripheral side ends of the permanent magnets 51 adjacent in the circumferential direction between the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms formed in the convex portion 42.
  • the opening angle ⁇ n of the magnet magnetic pole Mn is an angle from one end in the circumferential direction of the magnetoresistive hole 52 to one end 42a in the circumferential direction of the outer peripheral surface of the convex portion 42
  • the opening angle ⁇ s of the magnetic pole Ms is The angle is from the other circumferential end of the magnetoresistive hole 52 to the other circumferential end 42 b of the outer peripheral surface of the convex portion 42.
  • the outer diameter D1 of each protrusion 24g, 24h of the rotor core 22 is the outer diameter D2 of the magnetic poles Mn, Ms (the outer diameter of the rotor core 22 at the magnetic poles Mn, Ms). ) May be set larger.
  • the air gap (gap) between the stator teeth 12a and the inner peripheral surface of the stator becomes smaller at the protrusions 24g and 24h than at the magnetic poles Mn and Ms. That is, since each protrusion 24g, 24h comes closer to the inner peripheral surface of the tooth 12a, the interlinkage magnetic flux ⁇ y (see FIG. 1) due to the field weakening current can be increased. As a result, the combined induction voltage in each phase can be suppressed to a smaller value, which can contribute to further increase in the rotation speed of the motor 10.
  • the magnet configuration of the magnet magnetic poles Mn and Ms and the configuration (number and the like) of the protrusions between the magnetic pole pairs P in the configuration shown in FIG. 17 can be appropriately changed.
  • the magnet configuration of the magnet magnetic poles Mn and Ms is shown in FIG.
  • a V-shaped arrangement as shown in FIG. 16 may be used.
  • the outer peripheral surface of the rotor core 22 (the outer peripheral surface of each protrusion 24g, 24h and the outer peripheral surface of the magnet magnetic poles Mn, Ms) is formed in an arc shape centered on the axis L. It is not specifically limited to.
  • the outer peripheral surfaces of the protrusions 24g and 24h may be formed in an elliptical arc shape with the axis L as the center.
  • Each of the protrusions 24g and 24h is formed so that the outer diameter becomes maximum (outer diameter D1) at the circumferential center position, and the outer diameter D1 is set larger than the outer diameter D2 of the magnet magnetic poles Mn and Ms. It is preferable.
  • the outer peripheral surfaces of the magnet magnetic poles Mn and Ms are arcuate (outer diameter D2), and the outer diameters of the protrusions 24g and 24h are the magnet magnetic poles Mn and Ms over the entire circumferential direction. It is comprised so that it may become larger than the outer diameter D2.
  • the entire circumference of the rotor core 22 may be formed in an elliptical shape with the axis L as the center.
  • the boundary between the magnetic poles Mn and Ms in each magnetic pole pair P coincides with the elliptical short axis Ls of the rotor core 22.
  • the outer diameters of the protrusions 24g and 24h can be configured to be larger than the outer diameters of the magnet magnetic poles Mn and Ms.
  • the air gap (gap) between the stator teeth 12a and the inner peripheral surface of the stator is smaller at the protrusions 24g and 24h than at the magnetic poles Mn and Ms.
  • the interlinkage magnetic flux ⁇ y due to the field weakening current can be increased.
  • the combined induction voltage in each phase can be suppressed to a smaller value, which can contribute to further increase in the rotation speed of the motor 10.
  • the configuration shown in FIG. 20 is a configuration in which slit holes (see FIG. 5) are formed in the rotor core 22 of the rotor 21 having the IPM structure shown in FIG.
  • the rotor core 22 is formed with four slit holes 22 c and 22 d extending along the radial direction of the rotating shaft 23.
  • the slit hole 22c is provided between the protrusions 24a and 24b adjacent in the circumferential direction and between the protrusions 24c and 24d adjacent in the circumferential direction.
  • the slit hole 22d is provided in the boundary part between the magnet magnetic poles Mn and Mn adjacent to each other in the circumferential direction.
  • Each slit hole 22c, 22d penetrates the rotor core 22 in the axial direction.
  • the magnetic fluxes of the permanent magnets 41n and 41s passing through the rotor core 22 are guided to the protrusions 24a to 24d adjacent to each other in the circumferential direction (see the broken arrows in the figure), thereby Each of the protrusions 24a to 24d functions as a pseudo magnetic pole (core magnetic pole).
  • the protrusions 24a and 24c adjacent to the N-pole magnet magnetic pole Mn in the circumferential direction are configured as the S-pole core magnetic pole Rs, and the protrusions 24b and 24d adjacent to the S-pole magnet magnetic pole Ms in the circumferential direction are set to the N pole.
  • the core magnetic pole Rn is configured.
  • the deviation angles ⁇ a to ⁇ d of the protrusions 24a to 24d are set larger than 0 °. That is, the protrusions 24a to 24d are provided at positions shifted in the clockwise direction with respect to the reference lines X1, X2, X5, and X6.
  • the slit holes 22c and 22d are not provided at equal intervals in the circumferential direction, but the slit holes 22c are arranged according to the deviation angles ⁇ a to ⁇ d of the protrusions 24a to 24d. preferable.
  • one slit hole 22c is formed at the center position between the circumferential centers C1 and C2 of the protrusions 24a and 24b in the circumferential direction, and the other slit hole 22c is formed between the protrusions 24c and 24d in the circumferential direction. It is preferably formed at the center position between the circumferential centers C3 and C4. This makes it possible to configure the slit hole 22c so as not to overlap the protrusions 24a to 24d in the radial direction. As a result, the magnetic fluxes of the magnet magnetic poles Mn and Ms are adjacent to the protrusions 24a to 24d adjacent in the circumferential direction. Can be suitably induced. In the example shown in the figure, the deviation angles ⁇ a to ⁇ d of the protrusions 24a to 24d are all set to the same angle, but the present invention is not limited to this.
  • each permanent magnet 41n, 41s has an arc shape centered on the axis L of the rotating shaft 23.
  • the shape may be a rectangle.
  • each of the permanent magnets 41 n and 41 s is provided such that a surface (a radially inner side surface) including a long side when viewed from the axial direction is orthogonal to the radial direction of the rotor 21. ing.
  • slit holes 22c and 22d are formed in the rotor core 22 of the rotor 21 having the IPM structure shown in FIG. Even in this configuration, the magnetic fluxes of the magnetic poles Mn and Ms passing through the rotor core 22 are guided to the projecting portions 24a to 24d adjacent in the circumferential direction by the slit holes 22c and 22d (see the broken arrows in the figure). Thereby, the protrusions 24a to 24d function as pseudo magnetic poles (core magnetic poles Rn, Rs).
  • slit holes 22c and 22d are formed in the rotor core 22 of the rotor 21 having the IPM structure shown in FIG. Even in this configuration, the magnetic fluxes of the magnetic poles Mn and Ms passing through the rotor core 22 are guided to the projecting portions 24a to 24d adjacent in the circumferential direction by the slit holes 22c and 22d (see the broken arrows in the figure). Thereby, the protrusions 24a to 24d function as pseudo magnetic poles (core magnetic poles Rn, Rs).
  • the slit hole 22d is provided at the boundary portion between the magnet magnetic poles Mn adjacent to each other in the circumferential direction.
  • the present invention is not particularly limited thereto, and the arrangement of the slit hole 22d and the like.
  • the configuration may be changed as appropriate.
  • one slit hole 22d is provided for each magnet magnetic pole Mn, Ms. More specifically, the slit hole 22d is provided along the circumferential center line (reference line X3, X4, X7, X8) of each magnet magnetic pole Mn, Ms.
  • the magnetic fluxes of the magnetic poles Mn and Ms passing through the rotor core 22 are guided to the projecting portions 24a to 24d adjacent in the circumferential direction by the slit holes 22c and 22d (indicated by broken lines in the figure).
  • the protrusions 24a to 24d function as pseudo magnetic poles (core magnetic poles Rn and Rs).
  • slit holes 22c and 22d are formed in the rotor core 22 of the rotor 21 having the IPM structure shown in FIG. Even in this configuration, the magnetic fluxes of the magnetic poles Mn and Ms passing through the rotor core 22 are guided to the projecting portions 24a to 24d adjacent in the circumferential direction by the slit holes 22c and 22d (see the broken arrows in the figure). Thereby, the protrusions 24a to 24d function as pseudo magnetic poles (core magnetic poles Rn, Rs).
  • each slit hole 22d is provided at the boundary between the magnet magnetic poles Mn and Mn adjacent in the circumferential direction, but each slit hole 22d is provided in each magnet magnetic pole Mn and Ms as shown in FIG. You may provide along the circumferential direction centerline.
  • the configuration shown in FIG. 26 is a configuration in which four slit holes 22e and 22f extending along the radial direction of the rotating shaft 23 are formed in the rotor core 22 of the rotor 21 shown in FIG.
  • the radially outer ends of the two slit holes 22e are formed so as to partially divide the protrusions 24g and 24h of the rotor core 22 in the circumferential direction.
  • one slit hole 22e is formed on the circumferential center line L1 of the protrusion 24g, and the radially outer end of the slit hole 22e extends into the protrusion 24g.
  • the other slit hole 22e is formed on the circumferential center line L2 of the protrusion 24h, and the radially outer end of the slit hole 22e extends into the protrusion 24h.
  • the slit hole 22f is provided at each boundary between the magnetic poles Mn and Mn adjacent in the circumferential direction. The slit holes 22e and 22f penetrate the rotor core 22 in the axial direction.
  • the magnetic flux of the N-pole magnet magnetic pole Mn is guided by the slit holes 22e and 22f to a portion closer to the magnet magnetic pole Mn than the slit hole 22e in the protrusions 24g and 24h (in the figure, a broken line). See arrow).
  • the said part of protrusion 24g, 24h functions as the core magnetic pole Rs of S pole.
  • the magnetic flux of the S-pole magnet magnetic pole Ms is guided to the part closer to the magnet magnetic pole Ms than the slit hole 22e in the protrusions 24g and 24h by the slit holes 22e and 22f (indicated by the broken arrow in the figure). reference).
  • the said part of protrusion 24g, 24h functions as the core magnetic pole Rn of N pole.
  • slit holes 22e and 22f are formed in the rotor core 22 of the rotor 21 shown in FIG. Also in this configuration, the magnetic poles Mn and Ms are guided by the slit holes 22e and 22f, so that the core magnetic poles Rn and Rs are formed on both sides in the circumferential direction of the slit hole 22e in the protrusions 24g and 24h. It has become so.
  • slit holes 22e and 22f are formed in the rotor core 22 of the rotor 21 shown in FIG. Also in this configuration, the magnetic poles Mn and Ms are guided by the slit holes 22e and 22f, so that the core magnetic poles Rn and Rs are formed on both sides in the circumferential direction of the slit hole 22e in the protrusions 24g and 24h. It has become so.
  • each slit hole 22 f is preferably provided on the boundary between the magnetic poles Mn and Ms in each magnetic pole pair P, that is, on the elliptical short axis Ls of the rotor core 22.
  • each slit hole 22e is provided on the elliptical long axis Lt of the rotor core 22.
  • the magnetic poles Mn and Ms are guided by the slit holes 22e and 22f, so that the core magnetic poles Rn and Rs are formed on both sides in the circumferential direction of the slit hole 22e in the protrusions 24g and 24h. It has become so.
  • FIG. 30 is a configuration in which two slit holes 22g extending along the radial direction of the rotating shaft 23 are formed in the rotor core 22 of the rotor 31 shown in FIG.
  • One slit hole 22g is provided at the boundary between the magnet magnetic pole Ms adjacent to the protrusion 24e and the magnet magnetic pole Mn adjacent to the magnet magnetic pole Ms.
  • the other slit hole 22g is provided at the boundary between the magnet magnetic pole Ms adjacent to the protrusion 24a and the magnet magnetic pole Mn adjacent to the magnet magnetic pole Ms.
  • each magnetic pole Ms immediately adjacent to each slit hole 22g is guided to the adjacent protrusions 24a and 24e by the slit hole 22g, whereby the protrusions 24a and 24e are It functions as an N-pole core magnetic pole Rn.
  • one slit hole 22g is provided on the circumferential center line (reference line X1) of the magnetic pole Ms adjacent to the protrusion 24e, and the other slit hole 22g is adjacent to the protrusion 24a.
  • the magnetic fluxes of the magnet poles Ms adjacent to the protrusions 24a and 24e can be guided by the slit hole 22g, so that the protrusions 24a and 24e have an N-pole core. It functions as the magnetic pole Rn.
  • the 32 is a configuration in which four slit holes 22h and 22i extending along the radial direction of the rotating shaft 23 are formed in the rotor core 22 of the rotor 31 shown in FIG.
  • the two slit holes 22h are respectively provided at the boundary between the magnetic poles Mn and Ms adjacent in the circumferential direction.
  • the two slit holes 22i are respectively provided between the protrusions 24a and 24b adjacent in the circumferential direction and between the protrusions 24d and 24e adjacent in the circumferential direction.
  • the protrusions 24a, 24b, 24d, 24e, and 24f can function as pseudo magnetic poles (core magnetic poles) by the magnetic flux rectification action of the slit holes 22h and 22i.
  • the protrusions 24a and 24e adjacent to the S-pole magnet magnetic pole Ms in the circumferential direction function as the N-pole core magnetic pole Rn by the magnetic flux rectification action of the slit holes 22h and 22i.
  • the protrusions 24b and 24d arranged on both sides in the circumferential direction of the N-pole magnet magnetic pole Mn function as the S-pole core magnetic pole Rs by the magnetic flux rectification action of each slit hole 22i.
  • the protrusion 24f provided at a position sandwiched between the N-pole magnet magnetic poles Mn in the circumferential direction functions as the S-pole core magnetic pole Rs by the magnetic flux rectifying action of each slit hole 22h.
  • the configuration such as the arrangement of the slit holes described above is not limited to the configuration shown in FIG. 32, and may be changed as shown in FIG. 33, for example.
  • the two slit holes 22i are provided between the projections 24a and 24b adjacent in the circumferential direction and between the projections 24d and 24e adjacent in the circumferential direction, as in the configuration of FIG. Are provided corresponding to each.
  • the rotor core 22 is formed with slit holes 22k extending along the radial direction so as to be aligned with the circumferential centers of the magnet magnetic poles Mn and Ms. Even with such a configuration, the protrusions 24a, 24b, 24d, 24e, and 24f can function as pseudo magnetic poles (core magnetic poles Rn and Rs) by the magnetic flux rectifying action of the slit holes 22i and 22k.
  • the permanent magnet 25 is a sintered magnet, but other than this, for example, a bonded magnet may be used.
  • the present invention is embodied in the inner rotor type motor 10 in which the rotor 21 is disposed on the inner peripheral side of the stator 11, but the invention is not particularly limited thereto, and the rotor is disposed on the outer peripheral side of the stator.
  • the present invention may be embodied in an outer rotor type motor.
  • the present invention is embodied in the radial gap type motor 10 in which the stator 11 and the rotor 21 are opposed to each other in the radial direction.
  • the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction.
  • the present invention may be applied to an axial gap type motor that faces the motor.

Abstract

A motor includes a stator having windings and a rotor which rotates upon being subjected to a rotating magnetic field produced by a driving current being fed to the windings. The rotor includes a rotor core and a first magnet magnetic pole, a second magnet magnetic pole, and a protrusion provided next to each other in the circumferential direction. For the first magnet magnetic pole, a permanent magnet provided to the rotor core is used. For the second magnet magnetic pole, a permanent magnet provided to the rotor core is used, and the second magnet magnetic pole has an opposite polarity to the first magnet magnetic pole. The protrusion is formed so as to project in the radial direction in the rotor core. The windings include a first winding and a second winding. The first winding and the second winding are excited at the same timing by a driving current, and are serially connected. The motor is configured so that the protrusion faces the second winding at the rotor rotation position at which the first magnet magnetic pole or the second magnet magnetic pole faces the first winding.

Description

モータmotor
 本発明は、モータに関するものである。 The present invention relates to a motor.
 従来、ブラシレスモータ等の永久磁石モータは、例えば特許文献1に示されるように、ステータコアに巻線が巻装されてなるステータと、該ステータと対向する永久磁石を磁極としたロータとを備え、ステータの巻線に駆動電流が供給されることで生じる回転磁界を受けてロータが回転するようになっている。 Conventionally, a permanent magnet motor such as a brushless motor includes, for example, a stator in which a winding is wound around a stator core and a rotor having a permanent magnet facing the stator as a magnetic pole, as shown in Patent Document 1, for example. The rotor rotates by receiving a rotating magnetic field generated by supplying a drive current to the winding of the stator.
特開2014-135852号公報JP 2014-135852 A
 上記のような永久磁石モータでは、ロータが高回転駆動になるほど、ロータの永久磁石による鎖交磁束の増加によってステータの巻線に発生する誘起電圧が大きくなり、この誘起電圧がモータ出力を低下させ、モータの高回転化の妨げとなっている。 In the permanent magnet motor as described above, the higher the rotor is driven, the larger the induced voltage generated in the stator winding due to the increase of the interlinkage magnetic flux by the permanent magnet of the rotor, and this induced voltage decreases the motor output. This hinders high motor rotation.
 本発明の目的は、高回転化を図ることができるモータを提供することにある。 An object of the present invention is to provide a motor capable of achieving high rotation.
 上記目的を達成するため、本発明の一態様に係るモータは、巻線を有するステータと、前記巻線に駆動電流が供給されることで生じる回転磁界を受けて回転するロータと、を含む。前記ロータは、ロータコアと、周方向において互いに並設された第1磁石磁極、第2磁石磁極及び突部と、を含んでいる。前記第1磁石磁極は、前記ロータコアに設けられた永久磁石を用いている。前記第2磁石磁極は、前記ロータコアに設けられた永久磁石を用いており、前記第1磁石磁極に対して異極性である。前記突部は、前記ロータコアにおいて径方向に突出形成されている。前記巻線は、第1の巻線と第2の巻線とを含んでいる。該第1の巻線と第2の巻線とは前記駆動電流によって互いに同一のタイミングで励磁され、かつ、直列接続されている。前記第1磁石磁極又は前記第2磁石磁極が前記第1の巻線と対向するロータの回転位置で、前記突部が前記第2の巻線と対向するようにモータは構成されている。 To achieve the above object, a motor according to an aspect of the present invention includes a stator having windings and a rotor that rotates by receiving a rotating magnetic field generated by supplying a driving current to the windings. The rotor includes a rotor core and a first magnet magnetic pole, a second magnet magnetic pole, and a protrusion that are arranged in parallel in the circumferential direction. The first magnet magnetic pole uses a permanent magnet provided on the rotor core. The second magnet magnetic pole uses a permanent magnet provided on the rotor core, and has a different polarity with respect to the first magnet magnetic pole. The protrusion is formed to protrude in the radial direction in the rotor core. The winding includes a first winding and a second winding. The first winding and the second winding are excited at the same timing by the drive current and are connected in series. The motor is configured such that the first magnet magnetic pole or the second magnet magnetic pole is at a rotational position of the rotor facing the first winding, and the protrusion is opposed to the second winding.
本発明の実施形態に係るモータの平面図である。It is a top view of the motor concerning the embodiment of the present invention. 図1の巻線の結線態様を示す電気回路図である。It is an electric circuit diagram which shows the connection aspect of the coil | winding of FIG. 図1のロータにおける磁石磁極及び突部の配置パターンについて説明するための平面図である。It is a top view for demonstrating the arrangement pattern of the magnetic pole in the rotor of FIG. 1, and a protrusion. 図1のロータにおける磁石磁極及び突部の開角度の設定パターンについて説明するための平面図である。It is a top view for demonstrating the setting pattern of the magnet magnetic pole in the rotor of FIG. 1, and the opening angle of a protrusion. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例における巻線の結線態様を示す電気回路図である。It is an electric circuit diagram which shows the connection aspect of the coil | winding in another example. 別例のモータの平面図である。It is a top view of the motor of another example. 同別例のロータにおける磁石磁極及び突部の配置パターンについて説明するための平面図である。It is a top view for demonstrating the arrangement pattern of the magnet magnetic pole and protrusion in the rotor of the said another example. 同別例のロータにおける磁石磁極及び突部の開角度の設定パターンについて説明するための平面図である。It is a top view for demonstrating the setting pattern of the open angle of the magnet magnetic pole and protrusion in the rotor of the said another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example. 別例のロータの平面図である。It is a top view of the rotor of another example.
 以下、モータの一実施形態について説明する。
 図1に示すように、本実施形態のモータ10は、ブラシレスモータとして構成され、円環状のステータ11の内側にロータ21が配置されて構成されている。
Hereinafter, an embodiment of the motor will be described.
As shown in FIG. 1, the motor 10 of the present embodiment is configured as a brushless motor, and a rotor 21 is arranged inside an annular stator 11.
 [ステータの構成]
 ステータ11は、ステータコア12と、該ステータコア12に巻装された巻線13とを備えている。ステータコア12は、磁性金属にて略円環状に形成され、その周方向の等角度間隔においてそれぞれ径方向内側に延びる12個のティース12aを有している。
[Structure of stator]
The stator 11 includes a stator core 12 and a winding 13 wound around the stator core 12. The stator core 12 is formed of a magnetic metal in a substantially annular shape, and has twelve teeth 12a extending radially inward at equal angular intervals in the circumferential direction.
 巻線13は、ティース12aと同数の12個備えられ、各ティース12aにそれぞれ集中巻きにて同一方向に巻装されている。つまり、巻線13は、周方向等間隔(30°間隔)に12個設けられている。この巻線13は、供給される3相の駆動電流(U相、V相、W相)に応じて3相に分類され、図1において反時計回り方向に順に、U1、V1、W1、U2、V2、W2、U3、V3、W3、U4、V4、W4とする。 Twelve windings 13 having the same number as the teeth 12a are provided, and each tooth 12a is wound in the same direction by concentrated winding. That is, twelve windings 13 are provided at equal intervals in the circumferential direction (30 ° intervals). The windings 13 are classified into three phases according to the three-phase driving currents (U phase, V phase, W phase) supplied, and U1, V1, W1, U2 in order counterclockwise in FIG. , V2, W2, U3, V3, W3, U4, V4, W4.
 各相で見ると、U相巻線U1~U4は周方向等間隔(90°間隔)に配置されている。同様に、V相巻線V1~V4は、周方向等間隔(90°間隔)に配置されている。また、同様に、W相巻線W1~W4は、周方向等間隔(90°間隔)に配置されている。 Referring to each phase, the U-phase windings U1 to U4 are arranged at equal intervals in the circumferential direction (90 ° intervals). Similarly, the V-phase windings V1 to V4 are arranged at equal circumferential intervals (90 ° intervals). Similarly, the W-phase windings W1 to W4 are arranged at equal intervals in the circumferential direction (90 ° intervals).
 また、図2に示すように、巻線13は各相毎に直列に接続されている。つまり、U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4はそれぞれ直列回路を構成している。なお、本実施形態では、U相巻線U1~U4の直列回路、V相巻線V1~V4の直列回路、及びW相巻線W1~W4の直列回路がスター結線されている。 Further, as shown in FIG. 2, the windings 13 are connected in series for each phase. That is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 each constitute a series circuit. In this embodiment, a series circuit of U-phase windings U1 to U4, a series circuit of V-phase windings V1 to V4, and a series circuit of W-phase windings W1 to W4 are star-connected.
 [ロータの構成]
 図1に示すように、ロータ21のロータコア22は、磁性金属にて略円盤状に形成され、中心部に回転軸23が固定されている。ロータコア22の外周部には、周方向に隣接するN極の磁石磁極MnとS極の磁石磁極Msとからなる2つの磁極対Pと、ロータコア22に一体形成され径方向外側に突出する4つの突部24a,24b,24c,24dとが、周方向において並設されている。つまり、ロータ21には、磁石磁極Mn,Msと突部24a~24dとが同数で設けられている。磁石磁極Mn,Msはそれぞれ第1磁石磁極及び第2磁石磁極として機能する。
[Configuration of rotor]
As shown in FIG. 1, the rotor core 22 of the rotor 21 is formed of a magnetic metal in a substantially disk shape, and a rotating shaft 23 is fixed at the center. On the outer periphery of the rotor core 22, two magnetic pole pairs P composed of an N-pole magnet magnetic pole Mn and an S-pole magnet magnetic pole Ms adjacent to each other in the circumferential direction, and four which are integrally formed with the rotor core 22 and protrude radially outward. The protrusions 24a, 24b, 24c, and 24d are juxtaposed in the circumferential direction. That is, the rotor 21 is provided with the same number of magnet magnetic poles Mn, Ms and protrusions 24a to 24d. The magnet magnetic poles Mn and Ms function as a first magnet magnetic pole and a second magnet magnetic pole, respectively.
 磁極対Pは、周方向において180°対向位置にそれぞれ設けられ、その磁極対Pの周方向間には、周方向に隣り合う一対の突部24a,24b、及び、周方向に隣り合う一対の突部24c,24dが設けられている。具体的には、ロータ21の外周部には、時計回り方向において順に、S極の磁石磁極Ms、N極の磁石磁極Mn、突部24a、突部24b、S極の磁石磁極Ms、N極の磁石磁極Mn、突部24c、突部24dが配されている。 The magnetic pole pair P is provided at a position opposite to each other at 180 ° in the circumferential direction. Between the circumferential directions of the magnetic pole pair P, a pair of protrusions 24a and 24b adjacent in the circumferential direction and a pair of adjacent in the circumferential direction are provided. Protrusions 24c and 24d are provided. Specifically, on the outer peripheral portion of the rotor 21, in order in the clockwise direction, the S magnetic pole Ms, the N magnetic pole Mn, the protrusion 24 a, the protrusion 24 b, the S magnetic pole Ms, N pole. Magnet magnetic pole Mn, protrusion 24c, and protrusion 24d.
 N極の磁石磁極Mn及びS極の磁石磁極Msは、ロータコア22の外周面に固着された永久磁石25をそれぞれ有している。つまり、ロータ21は、4つの永久磁石25がロータコア22の外周面に固着された表面磁石型構造(SPM構造)をなしている。 The N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms each have a permanent magnet 25 fixed to the outer peripheral surface of the rotor core 22. That is, the rotor 21 has a surface magnet type structure (SPM structure) in which four permanent magnets 25 are fixed to the outer peripheral surface of the rotor core 22.
 各永久磁石25は互いに同一形状をなし、磁極対Pにおける一対の永久磁石25は周方向に隣り合うように配置されている。また、各永久磁石25におけるステータ11との対向面である外周面(径方向外側面)は、回転軸23の軸線L方向から見て該軸線Lを中心とする円弧状をなしている。また、各突部24a~24dにおけるステータ11との対向面である外周面(径方向外側面)は、軸線L方向から見て各永久磁石25の外周面と同一円上に位置する円弧状に形成されている。 The permanent magnets 25 have the same shape, and the pair of permanent magnets 25 in the magnetic pole pair P are arranged adjacent to each other in the circumferential direction. In addition, the outer peripheral surface (radially outer surface) that is the surface facing each of the permanent magnets 25 in the permanent magnet 25 has an arc shape with the axis L as the center when viewed from the direction of the axis L of the rotating shaft 23. In addition, the outer peripheral surface (radial outer surface) that is the surface facing the stator 11 in each of the protrusions 24a to 24d has an arc shape that is located on the same circle as the outer peripheral surface of each permanent magnet 25 when viewed from the axis L direction. Is formed.
 各永久磁石25は、磁気配向が径方向を向くように形成されている。より詳しくは、N極の磁石磁極Mnの永久磁石25は外周側に現れる磁極がN極となるように径方向に磁化され、S極の磁石磁極Msの永久磁石25は外周側に現れる磁極がS極となるように径方向に磁化されている。なお、各永久磁石25は、例えば異方性の焼結磁石であり、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成される。また、各永久磁石25は、同極のものが周方向において180°対向するように配置されている。つまり、N極の磁石磁極Mn同士は互いに180°対向位置に配置され、同様に、S極の磁石磁極Ms同士は互いに180°対向位置に配置されている。 Each permanent magnet 25 is formed so that the magnetic orientation faces the radial direction. More specifically, the permanent magnet 25 of the N-pole magnet magnetic pole Mn is magnetized in the radial direction so that the magnetic pole appearing on the outer peripheral side becomes the N-pole, and the permanent magnet 25 of the S-pole magnet magnetic pole Ms has the magnetic pole appearing on the outer peripheral side. It is magnetized in the radial direction so as to be the south pole. Each permanent magnet 25 is, for example, an anisotropic sintered magnet, and includes, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like. Moreover, each permanent magnet 25 is arrange | positioned so that the thing of the same pole may oppose 180 degrees in the circumferential direction. That is, the N-pole magnet magnetic poles Mn are arranged at positions opposite to each other by 180 °. Similarly, the S-pole magnet magnetic poles Ms are arranged at positions opposed to each other by 180 °.
 次に、本実施形態の作用について説明する。
 図示しない駆動回路からそれぞれ120°の位相差を持つ3相の駆動電流(交流)がU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4にそれぞれ供給されると、各巻線U1~W4が相毎に同一タイミングで励磁されてステータ11に回転磁界が発生し、その回転磁界に基づいてロータ21が回転する。このとき、ステータ11の回転磁界と磁石磁極Mn,Msとの作用によってロータ21にマグネットトルクが生じ、ステータ11の回転磁界とロータコア22の突部24a~24dとの作用によってロータ21にリラクタンストルクが生じる。
Next, the operation of this embodiment will be described.
A three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively. Then, the windings U1 to W4 are excited at the same timing for each phase to generate a rotating magnetic field in the stator 11, and the rotor 21 rotates based on the rotating magnetic field. At this time, magnet torque is generated in the rotor 21 by the action of the rotating magnetic field of the stator 11 and the magnet magnetic poles Mn and Ms, and reluctance torque is applied to the rotor 21 by the action of the rotating magnetic field of the stator 11 and the protrusions 24a to 24d of the rotor core 22. Arise.
 また、このとき、3相の駆動電流の供給によってステータ11に形成される磁極は、各相の巻線U1~W4毎で同極となる。なお、本実施形態のロータ21の磁極の数(磁石磁極Mn,Msの数)は4つであるが、各相の巻線U1~W4には、ロータ21の極数を磁石磁極Mn,Msの数の2倍(本実施形態では8極)とみなして設定された駆動電流が供給される。 Further, at this time, the magnetic poles formed on the stator 11 by supplying the three-phase driving currents have the same polarity for the windings U1 to W4 of the respective phases. Note that the number of magnetic poles (the number of magnet magnetic poles Mn and Ms) of the rotor 21 of this embodiment is four, but the number of poles of the rotor 21 is set to the magnet magnetic poles Mn and Ms in the windings U1 to W4 of each phase. The drive current set is assumed to be twice the number of (8 poles in this embodiment).
 ロータ21の高速回転時においては、巻線13に弱め界磁電流(d軸電流)を供給する弱め界磁制御が実行される。このロータ21の高速回転時(弱め界磁制御時)において、例えば、図1に示すように、N極の磁石磁極MnがU相巻線U1,U3と径方向に対向するとき、突部24b,24dは、U相巻線U2,U4とそれぞれ径方向に対向する。 When the rotor 21 rotates at high speed, field weakening control for supplying a field weakening current (d-axis current) to the winding 13 is executed. When the rotor 21 rotates at high speed (field weakening control), for example, as shown in FIG. 1, when the N-pole magnet magnetic pole Mn is opposed to the U-phase windings U1, U3 in the radial direction, the protrusions 24b, 24d Are opposed to the U-phase windings U2 and U4 in the radial direction, respectively.
 このとき、各U相巻線U1~U4には弱め界磁電流が供給されているが、U相巻線U1,U3では、対向するN極の磁石磁極Mnが発する磁束(径方向外側への磁束)が弱め界磁電流による鎖交磁束(径方向内側への鎖交磁束)を上回り、U相巻線U1,U3には径方向外側に向かって通過する鎖交磁束φxが発生する。 At this time, a field weakening current is supplied to each of the U-phase windings U1 to U4. However, in the U-phase windings U1 and U3, a magnetic flux (radially outward) generated by the opposing N-pole magnet magnetic poles Mn. Magnetic flux) exceeds the interlinkage magnetic flux (interlinkage magnetic flux inward in the radial direction) caused by the field weakening current, and the interlinkage magnetic flux φx that passes outward in the radial direction is generated in the U-phase windings U1 and U3.
 一方、U相巻線U2,U4では、対向するロータ21の部位が磁石磁極Mnではなくロータコア22の突部24b,24dであるため、弱め界磁電流による鎖交磁束φyが消滅せず、U相巻線U2,U4には鎖交磁束φyが径方向内側に向かって通過する。このように、U相巻線U2,U4と対向するロータコア22の突部24b,24dによって、弱め界磁電流による鎖交磁束φyの発生が許容されるため、U相巻線U2,U4には、磁石磁極MnによってU相巻線U1,U3に生じる鎖交磁束φxとは逆位相の鎖交磁束φyが発生する。 On the other hand, in the U-phase windings U2 and U4, the portions of the rotor 21 facing each other are not the magnet magnetic pole Mn but the protrusions 24b and 24d of the rotor core 22, so that the interlinkage magnetic flux φy due to the field weakening current does not disappear. The interlinkage magnetic flux φy passes through the phase windings U2 and U4 inward in the radial direction. In this way, the protrusions 24b and 24d of the rotor core 22 facing the U-phase windings U2 and U4 are allowed to generate the linkage flux φy due to the field weakening current. The magnetic flux Mn generates an interlinkage magnetic flux φy having a phase opposite to that of the interlinkage magnetic flux φx generated in the U-phase windings U1 and U3.
 すると、各U相巻線U1~U4には、鎖交磁束φx,φyによる誘起電圧が生じる。このとき、鎖交磁束φx,φyが互いに逆位相であるため、鎖交磁束φyによってU相巻線U2,U4に生じる誘起電圧は、鎖交磁束φxによってU相巻線U1,U3に生じる誘起電圧に対して逆極性(逆位相)となるため、各U相巻線U1~U4の誘起電圧を合成した合成誘起電圧が効果的に減少されるようになっている。 Then, an induced voltage is generated by the interlinkage magnetic fluxes φx and φy in each of the U-phase windings U1 to U4. At this time, since the interlinkage magnetic fluxes φx and φy are in opposite phases, the induced voltage generated in the U-phase windings U2 and U4 by the interlinkage magnetic flux φy is induced in the U-phase windings U1 and U3 by the interlinkage magnetic flux φx. Since the polarity is opposite to the voltage (reverse phase), the combined induced voltage obtained by combining the induced voltages of the U-phase windings U1 to U4 is effectively reduced.
 なお、上記の作用は、S極の磁石磁極Msと対向する巻線においても同様に生じる。つまり、S極の磁石磁極Msが例えばU相巻線U1,U3と対向するときには、ロータコア22の突部24a,24cがU相巻線U2,U4とそれぞれ対向するため、U相巻線U1,U3で生じる誘起電圧とU相巻線U2,U4で生じる誘起電圧とが逆位相となり、各U相巻線U1~U4の合成誘起電圧が効果的に減少される。 It should be noted that the above action also occurs in the winding facing the S magnetic pole Ms. That is, when the S-pole magnet magnetic pole Ms faces, for example, the U-phase windings U1, U3, the protrusions 24a, 24c of the rotor core 22 face the U-phase windings U2, U4, respectively. The induced voltage generated in U3 and the induced voltage generated in U-phase windings U2 and U4 are in opposite phases, and the combined induced voltage in each U-phase winding U1 to U4 is effectively reduced.
 また、上記ではU相巻線U1~U4の合成誘起電圧を例にとって説明したが、V相巻線V1~V4及びW相巻線W1~W4においても同様に、ロータコア22の突部24a~24dによる合成誘起電圧の減少が生じる。 In the above description, the combined induced voltage of the U-phase windings U1 to U4 has been described as an example. Similarly, the protrusions 24a to 24d of the rotor core 22 are also applied to the V-phase windings V1 to V4 and the W-phase windings W1 to W4. This causes a decrease in the synthesis induced voltage.
 [ロータの磁石磁極及び突部の配置について]
 図3に示すように、磁石磁極Mn,Msの総数をn個として、ロータ21の回転軸線(回転軸23の軸線L)から径方向に延びる2n個の基準線を、周方向において等角度間隔に設定する。本実施形態では、磁石磁極Mn,Msの総数が4個であるため、8個の基準線X1~X8を時計回り方向において順に45°等間隔で設定する。
[Arrangement of rotor magnetic poles and protrusions]
As shown in FIG. 3, the total number of magnet magnetic poles Mn and Ms is n, and 2n reference lines extending in the radial direction from the rotation axis of the rotor 21 (axis L of the rotation shaft 23) are equiangularly spaced in the circumferential direction. Set to. In the present embodiment, since the total number of magnet magnetic poles Mn and Ms is 4, eight reference lines X1 to X8 are set at equal intervals of 45 ° in the clockwise direction.
 各磁石磁極Mn,Msは、それらの周方向中心が8個の基準線X1~X8のいずれかと一致するように配置されている。
 詳しくは、一対のN極の磁石磁極Mnは、それらの周方向中心が基準線X4,X8と一致するように配置されている。つまり、一対のN極の磁石磁極Mnは、互いに周方向の180°対向位置に配置されている。
The magnet magnetic poles Mn and Ms are arranged so that their circumferential centers coincide with any of the eight reference lines X1 to X8.
Specifically, the pair of N-pole magnet magnetic poles Mn are arranged so that their circumferential centers coincide with the reference lines X4 and X8. That is, the pair of N-pole magnet magnetic poles Mn are disposed at positions that oppose each other at 180 ° in the circumferential direction.
 また、一対のS極の磁石磁極Msは、それらの周方向中心が基準線X3,X7と一致するように配置されている。つまり、一対のS極の磁石磁極Msは、互いに周方向の180°対向位置に配置されている。また、磁極対Pにおける互いに隣接する磁石磁極Mn,Msは、それらの周方向中心間の間隔(開角度)が45°に設定されている。 Also, the pair of S-pole magnet magnetic poles Ms are arranged so that their circumferential centers coincide with the reference lines X3 and X7. That is, the pair of S-pole magnet magnetic poles Ms are disposed at positions that oppose each other at 180 ° in the circumferential direction. Further, the magnet magnetic poles Mn and Ms adjacent to each other in the magnetic pole pair P have an interval (open angle) between their circumferential centers set to 45 °.
 一方、各突部24a~24dは、それらの周方向中心C1~C4が基準線X1~X8のいずれに対してもずれるように配置されている。以下には、突部24a~24dの配置パターンを幾つか例示する。 On the other hand, the protrusions 24a to 24d are arranged such that their circumferential centers C1 to C4 are deviated from any of the reference lines X1 to X8. Hereinafter, several arrangement patterns of the protrusions 24a to 24d will be exemplified.
 なお、以下では、基準線X1に対する突部24aの周方向中心C1のずれ角をθa、基準線X2に対する突部24bの周方向中心C2のずれ角をθb、基準線X5に対する突部24cの周方向中心C3のずれ角をθc、基準線X6に対する突部24dの周方向中心C4のずれ角をθdとし、時計回り方向へのずれ角を正の値として説明する。 In the following, the deviation angle of the circumferential center C1 of the protrusion 24a with respect to the reference line X1 is θa, the deviation angle of the circumferential center C2 of the protrusion 24b with respect to the reference line X2 is θb, and the circumference of the protrusion 24c with respect to the reference line X5. Description will be made assuming that the deviation angle of the direction center C3 is θc, the deviation angle of the circumferential center C4 of the protrusion 24d with respect to the reference line X6 is θd, and the deviation angle in the clockwise direction is a positive value.
 (配置パターン1)
 θa<0°、θb>0°
 θc=θa
 θd=θb
 (配置パターン2)
 θa>0°、θb<0°
 θc=θa
 θd=θb
 (配置パターン3)
 θa<0°、θb<0°
 θc=θa
 θd=θb
 (配置パターン4)
 θa>0°、θb>0°
 θc=θa
 θd=θb
 なお、上記の配置パターン1~4では、いずれにおいても、θc=θa、θd=θbと設定したが、これに限定されることはなく、θc≠θa、θb≠θdと設定してもよい。また、上記の配置パターン1~4では、θa~θd≠0°、つまり、突部24a~24dのいずれにおいても基準線X1,X2,X5,X6に対してずらす構成としているが、突部24a~24dの少なくとも1つが基準線に対してずれた配置となっていれば、残りの突部については周方向中心が基準線と一致する配置であってもよい。
(Arrangement pattern 1)
θa <0 °, θb> 0 °
θc = θa
θd = θb
(Arrangement pattern 2)
θa> 0 °, θb <0 °
θc = θa
θd = θb
(Arrangement pattern 3)
θa <0 °, θb <0 °
θc = θa
θd = θb
(Arrangement pattern 4)
θa> 0 °, θb> 0 °
θc = θa
θd = θb
In any of the above arrangement patterns 1 to 4, θc = θa and θd = θb are set. However, the present invention is not limited to this, and may be set as θc ≠ θa and θb ≠ θd. In the arrangement patterns 1 to 4, θa to θd ≠ 0 °, that is, any of the protrusions 24a to 24d is configured to be shifted with respect to the reference lines X1, X2, X5, and X6. As long as at least one of ˜24d is displaced from the reference line, the remaining protrusions may be arranged so that the center in the circumferential direction coincides with the reference line.
 また、周方向に隣り合う突部24a,24b(突部24c,24d)の間、及び突部24a~24dと隣り合う磁石磁極Mn,Msとの間には、空隙が形成されることが望ましい。 Further, it is desirable that gaps are formed between the protrusions 24a and 24b ( protrusions 24c and 24d) adjacent in the circumferential direction and between the magnetic poles Mn and Ms adjacent to the protrusions 24a to 24d. .
 [ロータの磁石磁極及び突部の開角度について]
 次に、N極の磁石磁極Mn(N極の永久磁石25)の外周面26(径方向外側面)の開角度θn、S極の磁石磁極Ms(S極の永久磁石25)の外周面27(径方向外側面)の開角度θs、及び突部24a~24dの外周面28(径方向外側面)の開角度θ1~θ4の設定について、図4に従って説明する。なお、開角度は、対象の周方向一端から他端までの角度である。また、外周面26~28の各々は対向面として機能する。
[Opening angle of rotor magnetic poles and protrusions]
Next, the open angle θn of the outer peripheral surface 26 (radially outer surface) of the N-pole magnet magnetic pole Mn (N-pole permanent magnet 25), and the outer peripheral surface 27 of the S-pole magnet magnetic pole Ms (S-pole permanent magnet 25). The setting of the opening angle θs of the (radial outer surface) and the opening angles θ1 to θ4 of the outer peripheral surface 28 (radial outer surface) of the protrusions 24a to 24d will be described with reference to FIG. The open angle is an angle from one end to the other end in the circumferential direction of the object. Each of the outer peripheral surfaces 26 to 28 functions as an opposing surface.
 各磁石磁極Mn,Msの開角度θn,θsは互いに等しく設定され、各突部24a~24dの開角度θ1~θ4は、該開角度θn,θsよりも小さく設定される。以下には、突部24a~24dの開角度θ1~θ4の設定パターンを幾つか例示する。 The open angles θn and θs of the magnetic poles Mn and Ms are set to be equal to each other, and the open angles θ1 to θ4 of the protrusions 24a to 24d are set to be smaller than the open angles θn and θs. In the following, several setting patterns for the open angles θ1 to θ4 of the protrusions 24a to 24d will be exemplified.
 (開角度の設定パターン1)
 θn=θs=α
 θ1=θ2=θ3=θ4=β
 β<α
 (開角度の設定パターン2)
 θn=θs=α
 θ1=θ3=β
 θ2=θ4=γ
 β≠γ
 β,γ<α
 (開角度の設定パターン3)
 θ1=θ2=θ3=θ4=α
 α<θs<θn
 なお、上記の設定パターン1~3では、いずれにおいても、θ1=θ3、θ2=θ4と設定したが、これに限定されることはなく、θ1≠θ3、θ2≠θ4と設定してもよい。
(Open angle setting pattern 1)
θn = θs = α
θ1 = θ2 = θ3 = θ4 = β
β <α
(Open angle setting pattern 2)
θn = θs = α
θ1 = θ3 = β
θ2 = θ4 = γ
β ≠ γ
β, γ <α
(Open angle setting pattern 3)
θ1 = θ2 = θ3 = θ4 = α
α <θs <θn
In any of the above setting patterns 1 to 3, although θ1 = θ3 and θ2 = θ4 are set, the present invention is not limited to this, and θ1 ≠ θ3 and θ2 ≠ θ4 may be set.
 また、図4に示す構成では、突部24a~24dの周方向中心が基準線X1,X2,X5,X6とそれぞれ一致する配置としているが、これに限らず、上記の配置パターン1~4のいずれかと、上記の開角度の設定パターン1~3のいずれかとを組み合わせた構成とすることも可能である。 In the configuration shown in FIG. 4, the centers of the protrusions 24a to 24d are arranged so as to coincide with the reference lines X1, X2, X5, and X6, respectively, but not limited to this, the arrangement patterns 1 to 4 described above are arranged. It is also possible to adopt a configuration in which any one of the above opening angle setting patterns 1 to 3 is combined.
 次に、本実施形態の特徴的な利点を記載する。
 (1)ステータ11の巻線13は、供給される3相の駆動電流に応じた、それぞれ4つのU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4からなり、各相の4つの巻線はそれぞれ直列接続されている。つまり、ステータ11の巻線13は、各相において、直列接続された少なくとも2つの巻線(第1の巻線及び第2の巻線)を備える。そして、磁石磁極Mn(又は磁石磁極Ms)が例えばU相巻線U1,U3と対向する回転位置で、突部24b,24d(又は突部24a,24c)がU相巻線U2,U4とそれぞれ対向するように構成される。
Next, characteristic advantages of this embodiment will be described.
(1) The windings 13 of the stator 11 are composed of four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current. Thus, the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase. Then, the magnetic pole Mn (or the magnetic pole Ms) is, for example, a rotational position facing the U-phase windings U1 and U3, and the protrusions 24b and 24d (or the protrusions 24a and 24c) are respectively connected to the U-phase windings U2 and U4. Configured to face each other.
 この構成によれば、ロータコア23の一部である突部24a~24dは、第2の巻線での弱め界磁電流(d軸電流)による鎖交磁束の発生を妨げることなく作用する。突部24a~24dと対向する巻線13で弱め界磁電流による鎖交磁束φyによって生じる誘起電圧は、磁石磁極Mn(又は磁石磁極Ms)と対向する巻線13で生じる誘起電圧に対して逆極性(逆位相)となる。これにより、各相における合成誘起電圧を小さく抑えることができ、その結果、モータ10の高回転化を図ることができる。 According to this configuration, the protrusions 24a to 24d, which are part of the rotor core 23, operate without disturbing the generation of the interlinkage magnetic flux due to the field weakening current (d-axis current) in the second winding. The induced voltage generated by the linkage flux φy due to the field weakening current in the winding 13 facing the protrusions 24a to 24d is opposite to the induced voltage generated in the winding 13 facing the magnet magnetic pole Mn (or the magnet magnetic pole Ms). Polarity (reverse phase). Thereby, the synthetic | combination induced voltage in each phase can be restrained small, As a result, high rotation of the motor 10 can be achieved.
 なお、本実施形態のように、巻線13が各相でそれぞれ直列とされた巻線態様では、相毎の各巻線でそれぞれ生じる誘起電圧の和が合成誘起電圧となることから、該合成誘起電圧が大きくなる傾向がある。このため、巻線13が各相でそれぞれ直列とされた構成において上記のようにロータ21に突部24a~24dを設けることで、合成誘起電圧の抑制効果をより顕著に得ることができ、モータ10の高回転化を図るのにより好適となる。 Note that, in the winding mode in which the windings 13 are connected in series in each phase as in the present embodiment, the sum of the induced voltages generated in the respective windings for each phase becomes the combined induced voltage. The voltage tends to increase. Therefore, by providing the protrusions 24a to 24d on the rotor 21 as described above in a configuration in which the winding 13 is in series in each phase, the effect of suppressing the combined induced voltage can be obtained more remarkably, and the motor It is more suitable to increase the rotation speed of 10.
 また、磁束の強制力のある磁石磁極Mn,Msと、磁束の強制力のないロータコア21の突部24a~24dとが周方向に並設される場合、磁石磁極Mn(又は磁石磁極Ms)と突部24a~24dとの境界部で急峻に磁束密度が変化し、これがコギングトルクの増大の一因となるおそれがあるが、ロータコア21の突部24a~24dの形状変更によってコギングトルクの位相をずらして該コギングトルクを抑制することが可能となる。 Further, when the magnetic poles Mn and Ms having the magnetic force forcing and the protrusions 24a to 24d of the rotor core 21 having no magnetic force forcing are arranged in the circumferential direction, the magnetic pole Mn (or the magnetic pole Ms) The magnetic flux density changes sharply at the boundaries between the protrusions 24a to 24d, which may contribute to an increase in cogging torque. However, the phase change of the cogging torque is caused by changing the shape of the protrusions 24a to 24d of the rotor core 21. The cogging torque can be suppressed by shifting.
 また、ロータ21が突部24a~24dを備えることにより、巻線13に供給する弱め界磁電流を小さく抑えることが可能となる。そして、弱め界磁電流を小さくできることで、弱め界磁制御時に永久磁石25が減磁しづらくなり、また、巻線13の銅損を抑えることができる。また、換言すると、同等の弱め界磁電流量で低減できる鎖交磁束量が増加するため、弱め界磁制御による高回転化をより効果的に得ることができる。 In addition, since the rotor 21 includes the protrusions 24a to 24d, the field-weakening current supplied to the winding 13 can be suppressed to a small value. Since the field weakening current can be reduced, the permanent magnet 25 is difficult to demagnetize during field weakening control, and the copper loss of the winding 13 can be suppressed. In other words, since the amount of flux linkage that can be reduced with the same amount of field-weakening current increases, higher rotation by field-weakening control can be obtained more effectively.
 (2)磁石磁極Mn,Msは、それらの周方向中心が基準線X3,X4,X7,X8とそれぞれ一致するように配置され、突部24a~24dの少なくとも1つは、周方向中心が基準線X1,X2,X5,X6に対してずれるように配置される。 (2) The magnet magnetic poles Mn and Ms are arranged so that their circumferential centers coincide with the reference lines X3, X4, X7, and X8, respectively, and at least one of the protrusions 24a to 24d has the circumferential center as a reference It arrange | positions so that it may shift | deviate with respect to line X1, X2, X5, X6.
 この構成によれば、ロータ21の回転時に発生するコギングトルクの位相をずらすことができるため、コギングトルクが特定周波数で極大化することを抑制することができる。これにより、コギングトルクに起因して発生する振動を抑制することができる。 According to this configuration, the phase of the cogging torque generated when the rotor 21 rotates can be shifted, so that the cogging torque can be prevented from maximizing at a specific frequency. Thereby, the vibration generated due to the cogging torque can be suppressed.
 (3)突部24a~24dの少なくとも1つは、その外周面28の開角度が磁石磁極Mn,Ms(永久磁石25)の外周面26,27の開角度θn,θsとは異なるように設定される。 (3) At least one of the protrusions 24a to 24d is set so that the open angle of the outer peripheral surface 28 is different from the open angles θn and θs of the outer peripheral surfaces 26 and 27 of the magnet magnetic poles Mn and Ms (permanent magnet 25). Is done.
 この構成によっても、ロータ21の回転時に発生するコギングトルクの位相をずらすことができるため、コギングトルクが特定周波数で極大化することを抑制することができる。これにより、コギングトルクに起因して発生する振動を抑制することができる。 This configuration can also shift the phase of the cogging torque generated when the rotor 21 rotates, so that the cogging torque can be prevented from maximizing at a specific frequency. Thereby, the vibration generated due to the cogging torque can be suppressed.
 なお、上記実施形態は、以下のように変更してもよい。
 ・上記実施形態のロータ21において、図5に示すように、回転軸23の径方向に沿って延びるスリット孔22aをロータコア22に形成してもよい。同図に示す例では、スリット孔22aは周方向に90°間隔に配設され、周方向に隣り合う突部24a,24b、及び突部24c,24d間の境界部と、周方向に隣り合う磁石磁極Mn,Ms間の境界部とにそれぞれ設けられている。また、各スリット孔22aは、ロータコア22を軸方向に貫通している。これら各スリット孔22a内は空隙であり、磁性金属のロータコア22よりも磁気抵抗が大きいため、各スリット孔22aによってロータコア22内を通る各永久磁石25の磁束を周方向に隣り合う突部24a~24dに好適に誘導させることが可能となる(図中、破線の矢印を参照)。
In addition, you may change the said embodiment as follows.
-In the rotor 21 of the said embodiment, as shown in FIG. 5, you may form the slit hole 22a extended along the radial direction of the rotating shaft 23 in the rotor core 22. As shown in FIG. In the example shown in the figure, the slit holes 22a are arranged at intervals of 90 ° in the circumferential direction, and are adjacent to the circumferentially adjacent projections 24a and 24b and the boundary between the projections 24c and 24d in the circumferential direction. It is provided at the boundary between the magnet magnetic poles Mn and Ms, respectively. Moreover, each slit hole 22a has penetrated the rotor core 22 to the axial direction. Each of these slit holes 22a is a gap, and has a magnetic resistance larger than that of the magnetic metal rotor core 22, so that the magnetic flux of each permanent magnet 25 passing through the rotor core 22 by each slit hole 22a is projected in the circumferential direction. It is possible to guide to 24d suitably (see the broken arrow in the figure).
 これにより、各突部24a~24dは、周方向に隣り合う磁石磁極Mn,Ms(永久磁石25)の磁束作用によって疑似的な磁極(コア磁極)として機能する。すなわち、N極の磁石磁極Mnと周方向に隣り合う突部24a,24cはS極のコア磁極Rsとして構成され、S極の磁石磁極Msと周方向に隣り合う突部24b,24dはN極のコア磁極Rnとして構成される。 Thereby, each of the protrusions 24a to 24d functions as a pseudo magnetic pole (core magnetic pole) by the magnetic flux action of the magnet magnetic poles Mn and Ms (permanent magnet 25) adjacent in the circumferential direction. That is, the protrusions 24a and 24c adjacent to the N-pole magnet magnetic pole Mn in the circumferential direction are configured as the S-pole core magnetic pole Rs, and the protrusions 24b and 24d adjacent to the S-pole magnet magnetic pole Ms in the circumferential direction are the N pole. The core magnetic pole Rn is configured.
 ここで、上記実施形態では、図5に示す構成のようなスリット孔22aがロータコア22に形成されていないことから、磁石磁極Mn,Msの磁束(磁石磁束)は異極間同士で短絡して突部24a~24dにほぼ流れない。これにより、突部24a~24dには、磁石磁束による磁極が形成されないようになっている。その結果、各突部24a~24dは、巻線13における弱め界磁磁束(弱め界磁電流による鎖交磁束φy)の発生を許容する磁束許容部として構成される。このような構成では、マグネットトルクが稼ぎにくく、高トルク化を図る点では不利となるものの、上記したように高回転化を図る点では有利である。 Here, in the above embodiment, since the slit hole 22a as in the configuration shown in FIG. 5 is not formed in the rotor core 22, the magnetic fluxes of the magnetic poles Mn and Ms (magnet flux) are short-circuited between the different poles. Almost no flow into the protrusions 24a to 24d. This prevents magnetic poles from being formed by the magnetic flux from being formed on the protrusions 24a to 24d. As a result, each of the protrusions 24a to 24d is configured as a magnetic flux allowing portion that allows generation of field weakening magnetic flux (linkage magnetic flux φy caused by field weakening current) in the winding 13. Such a configuration is difficult to earn magnet torque and is disadvantageous in terms of increasing torque, but is advantageous in terms of increasing rotation as described above.
 一方、図5に示す構成では、ロータコア22に形成された各スリット孔22aによって、各突部24a~24dがコア磁極Rn,Rsとして機能するため、コア磁極Rn,Rs(突部24a~24d)の磁束により巻線13の弱め界磁磁束(弱め界磁電流によって生じる鎖交磁束)が発生しにくくなる。これにより、上記実施形態のような突部24a~24dを磁束許容部とする構成に比べて高回転化を図る点では不利となるものの、高トルク化を図る点で有利な構成となる。 On the other hand, in the configuration shown in FIG. 5, each of the protrusions 24a to 24d functions as the core magnetic poles Rn and Rs by the slit holes 22a formed in the rotor core 22, and therefore the core magnetic poles Rn and Rs (projections 24a to 24d). This makes it difficult for field-weakening magnetic flux (linkage magnetic flux generated by field-weakening current) of winding 13 to be generated. This is disadvantageous in terms of increasing the rotation speed compared to the configuration in which the protrusions 24a to 24d are the magnetic flux allowing portions as in the above embodiment, but is advantageous in terms of increasing the torque.
 すなわち、上記実施形態のように突部24a~24dを磁束許容部として機能させるか、コア磁極Rn,Rsとして機能させるかによって、モータの出力特性(トルク及び回転数)を調整する事が可能となる。また、突部24a~24dをコア磁極Rn,Rsとして機能させる場合には、コア磁極Rn,Rs(突部24a~24d)に誘導する磁石磁束の量の調整(例えばスリット孔22aの形状等の構成変更)によっても、モータの出力特性(トルク及び回転数)を調整する事が可能となる。 That is, it is possible to adjust the output characteristics (torque and rotation speed) of the motor depending on whether the protrusions 24a to 24d function as magnetic flux allowance portions or the core magnetic poles Rn and Rs as in the above embodiment. Become. Further, when the protrusions 24a to 24d are caused to function as the core magnetic poles Rn and Rs, the amount of magnet magnetic flux induced to the core magnetic poles Rn and Rs (protrusions 24a to 24d) is adjusted (for example, the shape of the slit hole 22a, etc. The output characteristics (torque and rotation speed) of the motor can be adjusted by changing the configuration.
 ・上記実施形態のロータ21では、磁石磁極Mn,Ms(永久磁石25)は同極のもの同士が180°対向位置に配置されたが、これに特に限定されるものではない。
 例えば、磁石磁極Mn,Ms(永久磁石25)をロータコア22の半周にN極・S極で交互に設け、残りの半周に突部24a~24dを設けてもよい。このような構成によっても、上記実施形態の利点(3)と同様の利点を得ることができる。
In the rotor 21 of the above-described embodiment, the magnet poles Mn and Ms (permanent magnet 25) are arranged at 180 ° facing positions with the same pole, but it is not particularly limited thereto.
For example, the magnet magnetic poles Mn and Ms (permanent magnets 25) may be alternately provided on the half circumference of the rotor core 22 as N poles and S poles, and the protrusions 24a to 24d may be provided on the remaining half circumference. With such a configuration, the same advantage as the advantage (3) of the above embodiment can be obtained.
 ・上記実施形態のロータ21は、磁石磁極Mn,Msを構成する永久磁石25がロータコア22の外周面に固着されたSPM構造をなしているが、これに特に限定されるものではなく、各磁石磁極Mn,Msにおいてロータコア22に永久磁石を埋め込む態様とした埋込磁石型構造(IPM構造)としてもよい。この構成によれば、弱め界磁制御時における永久磁石の減磁を抑制する点で有利となる。 The rotor 21 of the above embodiment has an SPM structure in which the permanent magnets 25 constituting the magnet magnetic poles Mn and Ms are fixed to the outer peripheral surface of the rotor core 22. However, the present invention is not particularly limited to this, and each magnet An embedded magnet type structure (IPM structure) in which a permanent magnet is embedded in the rotor core 22 at the magnetic poles Mn and Ms may be used. This configuration is advantageous in that it suppresses demagnetization of the permanent magnet during field-weakening control.
 ・上記実施形態では、各相の巻線、つまり、U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4がそれぞれ直列接続されたが、これに特に限定されるものではなく、巻線態様は適宜変更してもよい。 In the above embodiment, the windings of each phase, that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series. However, the winding mode may be changed as appropriate.
 例えば、図6に示す例では、U相において、巻線U1,U2が直列接続され、また、巻線U3,U4が直列接続され、それら巻線U1,U2の直列対と巻線U3,U4の直列対とが並列接続されている。V相においても同様に、巻線V1,V2が直列接続され、また、巻線V3,V4が直列接続され、それら巻線V1,V2の直列対と巻線V3,V4の直列対とが並列接続されている。また、W相においても同様に、巻線W1,W2が直列接続され、また、巻線W3,W4が直列接続され、それら巻線W1,W2の直列対と巻線W3,W4の直列対とが並列接続されている。 For example, in the example shown in FIG. 6, in the U phase, the windings U1, U2 are connected in series, and the windings U3, U4 are connected in series. The series pair of the windings U1, U2 and the windings U3, U4 Are connected in parallel. Similarly, in the V phase, the windings V1 and V2 are connected in series, and the windings V3 and V4 are connected in series. The series pair of the windings V1 and V2 and the series pair of the windings V3 and V4 are parallel. It is connected. Similarly, in the W phase, the windings W1, W2 are connected in series, and the windings W3, W4 are connected in series. The series pair of the windings W1, W2 and the series pair of the windings W3, W4 Are connected in parallel.
 上記実施形態のロータ21の構成(図1参照)において図6の巻線態様を適用した場合、例えばU相において巻線U1及び巻線U3には互いに同等の大きさの誘起電圧が生じ、また、巻線U2及び巻線U4には互いに同等の大きさの誘起電圧が生じる。このため、巻線U1,U2の直列対で生じる合成誘起電圧と、巻線U3,U4の直列対で生じる合成誘起電圧とが略同等となる。これにより、突部24a~24dを設けたことによる誘起電圧の減少が、巻線U1,U2の直列対及び巻線U3,U4の直列対の両方において常に生じることとなる。そして、巻線U1,U2の直列対と巻線U3,U4の直列対とが並列であるため、U相巻線全体における合成誘起電圧は、巻線U1,U2の直列対の合成誘起電圧(及び巻線U3,U4の直列対の合成誘起電圧)と略同等となり、該合成誘起電圧を効果的に抑制することができる。 When the winding mode of FIG. 6 is applied to the configuration of the rotor 21 of the above embodiment (see FIG. 1), for example, in the U phase, induced voltages having the same magnitude are generated in the winding U1 and the winding U3, The induced voltages having the same magnitude are generated in the winding U2 and the winding U4. For this reason, the combined induced voltage generated in the series pair of the windings U1 and U2 is substantially equal to the combined induced voltage generated in the series pair of the windings U3 and U4. As a result, a decrease in the induced voltage due to the provision of the protrusions 24a to 24d always occurs in both the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4. Since the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are parallel, the combined induced voltage in the entire U-phase winding is the combined induced voltage of the series pair of the windings U1 and U2 ( And the combined induced voltage of the series pair of windings U3 and U4), and the combined induced voltage can be effectively suppressed.
 ここで、図6に示す例において巻線U2と巻線U3を入れ替えた場合、すなわち、誘起電圧の大きさが同等である巻線U1,U3を直列とするとともに、誘起電圧の大きさが同等である巻線U2,U4を直列とした場合を考える。この場合、突部24a~24dを設けたことによる誘起電圧の減少が、巻線U2,U4の直列対と巻線U1,U3の直列対のいずれか一方のみで生じ、他方では誘起電圧が減少しない。そして、巻線U1,U3の直列対と巻線U2,U4の直列対とが並列であることから、U相巻線全体における合成誘起電圧を効果的に抑制する点で不利となる。なお、各U相巻線U1~U4を並列とした場合においても同様に、U相巻線全体における合成誘起電圧を効果的に抑制する点で不利となる。 Here, when the winding U2 and the winding U3 are interchanged in the example shown in FIG. 6, that is, the windings U1 and U3 having the same magnitude of the induced voltage are connected in series and the magnitude of the induced voltage is the same. Consider the case where the windings U2 and U4 are in series. In this case, the reduction of the induced voltage due to the provision of the protrusions 24a to 24d occurs only in one of the series pair of the windings U2 and U4 and the series pair of the windings U1 and U3, and the induced voltage is reduced on the other side. do not do. And since the series pair of winding U1, U3 and the series pair of winding U2, U4 are parallel, it is disadvantageous at the point which suppresses the synthetic | combination induced voltage in the whole U-phase winding effectively. Similarly, when the U-phase windings U1 to U4 are arranged in parallel, similarly, it is disadvantageous in that the combined induced voltage in the entire U-phase winding is effectively suppressed.
 以上のように、ロータ21の所定の回転位置において磁石磁極Mn(磁石磁極Ms)と突部とにそれぞれ対向する巻線(例えばU相巻線U1とU相巻線U2)同士を直列接続する。これにより、その直列に接続した同相巻線に生じた互いに逆極性(逆位相)の誘起電圧を足し合わせて合成誘起電圧とすることができる。これにより、各相における合成誘起電圧を効果的に抑制することができる。 As described above, the windings (for example, the U-phase winding U1 and the U-phase winding U2) facing the magnet magnetic pole Mn (magnet magnetic pole Ms) and the protrusion at the predetermined rotational position of the rotor 21 are connected in series. . As a result, the induced voltages having opposite polarities (reverse phases) generated in the in-phase windings connected in series can be added to obtain a combined induced voltage. Thereby, the synthetic | combination induced voltage in each phase can be suppressed effectively.
 なお、図6の例では、U相において、巻線U1,U2を直列対とするとともに、巻線U3,U4を直列対としたが、巻線U1,U4、及び巻線U2,U3をそれぞれ直列対としても同様の利点を得ることができる。また、V相及びW相においても同様の変更が可能である。 In the example of FIG. 6, in the U phase, the windings U1 and U2 are a series pair and the windings U3 and U4 are a series pair. However, the windings U1 and U4 and the windings U2 and U3 are respectively Similar advantages can be obtained as a series pair. The same change can be made in the V phase and the W phase.
 また、図6の例では、U相において、巻線U1,U2の直列対と巻線U3,U4の直列対とが並列接続されたが、これに特に限定されるものではなく、巻線U1,U2の直列対と巻線U3,U4の直列対とを分離し、その分離した直列対のそれぞれにU相の駆動電流を供給すべくインバータを一対設けてもよい。この構成によっても、同様の利点を得ることができる。また、V相及びW相においても同様の変更が可能である。 In the example of FIG. 6, in the U phase, the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are connected in parallel. , U2 and the series pair of windings U3, U4 may be separated, and a pair of inverters may be provided to supply a U-phase drive current to each of the separated series pairs. With this configuration, the same advantages can be obtained. The same change can be made in the V phase and the W phase.
 また、上記実施形態(図2参照)及び図6に示す例では、巻線の結線態様をスター結線としたが、これに限らず、例えばデルタ結線としてもよい。
 ・上記実施形態では、ロータ21における磁石磁極Mn,Msの総数を4個とし、ステータ11の巻線13の個数(スロット数)を12個としたが、磁石磁極Mn,Msの総数と巻線13の個数は構成に応じて適宜変更可能である。例えば、磁石磁極Mn,Msの総数と巻線13の個数との関係がn:3n(ただし、nは2以上の整数)となるように、磁石磁極Mn,Msの総数と巻線13の個数を適宜変更してもよい。なお、上記実施形態のように、磁石磁極Mn,Msの総数を偶数とすれば、磁石磁極Mn,Msを同数とすることができ、磁気的にバランスの良い構成とすることが可能となる。
Moreover, in the example shown in the said embodiment (refer FIG. 2) and FIG. 6, although the connection aspect of the coil | winding was made into the star connection, it is not restricted to this, For example, it is good also as a delta connection.
In the above embodiment, the total number of magnet magnetic poles Mn and Ms in the rotor 21 is four and the number of windings 13 (slot number) of the stator 11 is twelve. The number of 13 can be appropriately changed according to the configuration. For example, the total number of magnet magnetic poles Mn and Ms and the number of windings 13 so that the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is n: 3n (where n is an integer of 2 or more). May be changed as appropriate. If the total number of magnet magnetic poles Mn and Ms is an even number as in the above embodiment, the number of magnet magnetic poles Mn and Ms can be the same, and a magnetically balanced configuration can be achieved.
 また、磁石磁極Mn,Msの総数と巻線13の個数との関係は必ずしもn:3n(ただし、nは2以上の整数)である必要はなく、例えば、磁石磁極Mn,Msの総数と巻線13の個数との関係を5:12や7:12等で構成してもよい。 Further, the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is not necessarily n: 3n (where n is an integer of 2 or more). The relationship with the number of lines 13 may be 5:12, 7:12, or the like.
 図7には、磁石磁極Mn,Msの総数と巻線13の個数との関係を5:12としたモータ30の一例を示している。なお、図7の例では、上記実施形態と同一の構成については同一の符号を付してその詳細な説明は省略し、相異する部分について詳細に説明する。 FIG. 7 shows an example of the motor 30 in which the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is 5:12. In the example of FIG. 7, the same components as those in the above embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different portions will be described in detail.
 同図に示すモータ30において、ステータ11の12個の巻線13は、供給される3相の駆動電流(U相、V相、W相)に応じて分類され、図7において反時計回り方向に順に、U1、バーU2、バーV1、V2、W1、バーW2、バーU1、U2、V1、バーV2、バーW1、W2とする。なお、正巻きで構成されるU相巻線U1,U2、V相巻線V1,V2、W相巻線W1,W2に対し、U相巻線バーU1,バーU2、V相巻線バーV1,バーV2、W相巻線バーW1,バーW2は逆巻きで構成される。また、U相巻線U1,バーU1は互いに180°対向位置にされ、同様に、U相巻線U2,バーU2は互いに180°対向位置にされる。これは他相(V相及びW相)においても同様である。 In the motor 30 shown in the figure, the 12 windings 13 of the stator 11 are classified according to the supplied three-phase drive currents (U phase, V phase, W phase), and are counterclockwise in FIG. In this order, U1, bar U2, bar V1, V2, W1, bar W2, bar U1, U2, V1, bar V2, bar W1, W2. In addition, U phase winding bar U1, bar U2, V phase winding bar V1 with respect to U phase windings U1, U2, V phase windings V1, V2 and W phase windings W1, W2 constituted by positive windings. , Bar V2, W-phase winding bar W1, bar W2 are constituted by reverse winding. Further, the U-phase winding U1 and the bar U1 are placed at positions facing each other by 180 °, and similarly, the U-phase winding U2 and the bar U2 are placed at positions facing each other by 180 °. The same applies to the other phases (V phase and W phase).
 U相巻線U1,U2,バーU1,バーU2は直列に繋がって構成され、同様に、V相巻線V1,V2,バーV1,バーV2は直列に繋がって構成され、W相巻線W1,W2,バーW1,バーW2は直列に繋がって構成されている。そして、U相巻線U1,U2,バーU1,バーU2にはU相の駆動電流が供給される。これにより、正巻きのU相巻線U1,U2に対して逆巻きのU相巻線バーU1,バーU2は常に逆極性(逆位相)で励磁されることとなるが、励磁タイミングは同一である。このことは他相(V相及びW相)においても同様である。なお、各相の巻線には、ロータ31の極数を磁石磁極Mn,Msの数の2倍(つまり、本例では10極)とみなして設定された駆動電流が供給される。 U-phase windings U1, U2, U1 and U2 are connected in series. Similarly, V-phase windings V1, V2, V1 and V2 are connected in series, and W-phase winding W1. , W2, bar W1, and bar W2 are connected in series. The U-phase windings U1, U2, U1 and U2 are supplied with U-phase drive current. As a result, the reverse winding U-phase winding bars U1 and U2 are always excited with the opposite polarity (reverse phase) with respect to the forward winding U-phase windings U1 and U2, but the excitation timing is the same. . The same applies to the other phases (V phase and W phase). The windings of each phase are supplied with a drive current set by regarding the number of poles of the rotor 31 as twice the number of magnet magnetic poles Mn and Ms (that is, 10 poles in this example).
 モータ30のロータ31の外周部には、3つの磁石磁極Msと2つの磁石磁極Mnとが周方向に交互に隣接配置された磁極組Paと、ロータコア22の5つの突部24a~24eとが設けられている。詳しくは、磁極組Paは、ロータ31の外周の半分に設けられ、残りの半分の範囲に突部24a~24eが設けられている。また、磁石磁極Mn,Msの周方向反対側において、それぞれ突部24a~24eが配置されている。 A magnetic pole set Pa in which three magnet magnetic poles Ms and two magnet magnetic poles Mn are alternately arranged adjacent to each other in the circumferential direction and five protrusions 24a to 24e of the rotor core 22 are provided on the outer periphery of the rotor 31 of the motor 30. Is provided. Specifically, the magnetic pole set Pa is provided on the half of the outer periphery of the rotor 31, and the protrusions 24a to 24e are provided in the remaining half of the range. Protrusions 24a to 24e are arranged on opposite sides of the magnet magnetic poles Mn and Ms in the circumferential direction.
 上記構成では、ロータ31の高速回転時(弱め界磁制御時)において、例えばS極の磁石磁極MsがU相巻線U1と径方向に対向するとき、その周方向反対側においてロータコア22の突部24aがU相巻線バーU1と径方向に対向する(図7参照)。つまり、磁石磁極Msと突部24aとが、互いに逆位相(同一タイミング)で励磁されるU相巻線U1,バーU1とそれぞれ同時に対向する。 In the above configuration, when the rotor 31 rotates at high speed (when the field weakening control is performed), for example, when the S-pole magnet magnetic pole Ms is opposed to the U-phase winding U1 in the radial direction, the protrusion 24a of the rotor core 22 on the opposite side in the circumferential direction. Is opposed to the U-phase winding bar U1 in the radial direction (see FIG. 7). That is, the magnet magnetic pole Ms and the protrusion 24a are simultaneously opposed to the U-phase winding U1 and the bar U1 that are excited in opposite phases (same timing).
 このとき、U相巻線U1,バーU1には弱め界磁電流が供給されているが、U相巻線U1では、対向する磁石磁極Msの磁束(径方向内側への磁束)が弱め界磁電流による鎖交磁束(径方向外側への鎖交磁束)を上回り、U相巻線U1には径方向内側に向かって通過する鎖交磁束φxが発生する。 At this time, the field weakening current is supplied to the U-phase winding U1 and the bar U1, but in the U-phase winding U1, the magnetic flux (magnetic flux inward in the radial direction) of the opposing magnet magnetic pole Ms is weakened. The flux linkage φx that exceeds the flux linkage caused by the current (linkage flux outward in the radial direction) and passes inward in the radial direction is generated in the U-phase winding U1.
 一方、U相巻線バーU1では、対向するロータ31の部位がロータコア22の突部24aであるため、弱め界磁電流による鎖交磁束φyが消滅せず、U相巻線バーU1には鎖交磁束φyが径方向外側に向かって通過する。このように、U相巻線バーU1には、磁石磁極MsによってU相巻線U1に生じる鎖交磁束φxとは逆位相の鎖交磁束φyが発生する。これにより、鎖交磁束φxによってU相巻線U1に生じる誘起電圧に対して、鎖交磁束φyによってU相巻線バーU1に生じる誘起電圧が逆極性(逆位相)となるため、U相巻線U1,バーU1での合成誘起電圧を小さく抑えることができる。このように、各相において合成誘起電圧を抑制することができるため、モータ30の高回転化を図ることができる。 On the other hand, in the U-phase winding bar U1, since the portion of the rotor 31 that faces is the protrusion 24a of the rotor core 22, the interlinkage magnetic flux φy due to the field weakening current does not disappear, and the U-phase winding bar U1 has no chain. The cross magnetic flux φy passes toward the outside in the radial direction. As described above, the magnetic flux My that has the opposite phase to the magnetic flux φx generated in the U-phase winding U1 by the magnet magnetic pole Ms is generated in the U-phase winding bar U1. As a result, the induced voltage generated in the U-phase winding bar U1 by the linkage flux φy is opposite in polarity (reverse phase) to the induced voltage generated in the U-phase winding U1 by the linkage flux φx. The combined induced voltage at the line U1 and the bar U1 can be kept small. As described above, since the combined induction voltage can be suppressed in each phase, the motor 30 can be rotated at a high speed.
 次に、ロータ31の磁石磁極Mn,Ms及び突部24a~24eの配置について説明する。
 上記実施形態と同様に、磁石磁極Mn,Msの総数をn個として、ロータ31の回転軸線(回転軸23の軸線L)から径方向に延びる2n個の基準線を、周方向において等角度間隔に設定する。同例のロータ31では、図8に示すように、磁石磁極Mn,Msの総数が5個であるため、10個の基準線X1~X10を時計回り方向において順に36°等間隔で設定する。
Next, the arrangement of the magnet magnetic poles Mn and Ms and the protrusions 24a to 24e of the rotor 31 will be described.
As in the above embodiment, the total number of magnetic poles Mn and Ms is n, and 2n reference lines extending radially from the rotation axis of the rotor 31 (axis L of the rotation shaft 23) are equiangularly spaced in the circumferential direction. Set to. In the rotor 31 of the same example, as shown in FIG. 8, since the total number of magnet magnetic poles Mn and Ms is 5, ten reference lines X1 to X10 are sequentially set at equal intervals of 36 ° in the clockwise direction.
 各磁石磁極Mn,Msは、それらの周方向中心が10個の基準線X1~X10のいずれかと一致するように配置されている。
 詳しくは、3つのS極の磁石磁極Msは、それらの周方向中心が基準線X1,X3,X5とそれぞれ一致するように配置され、2つのN極の磁石磁極Mnは、それらの周方向中心が基準線X2,X4とそれぞれ一致するように配置されている。つまり、各磁石磁極Mn,Msは、それらの周方向中心間の間隔(開角度)が36°に設定されている。
The magnet magnetic poles Mn and Ms are arranged so that their circumferential centers coincide with any of the ten reference lines X1 to X10.
Specifically, the three magnetic poles Ms of S poles are arranged so that their circumferential centers coincide with the reference lines X1, X3, and X5, respectively, and the two magnetic poles Mn of N poles are arranged at their circumferential centers. Are arranged so as to coincide with the reference lines X2 and X4, respectively. That is, the interval (open angle) between the circumferential centers of the magnet magnetic poles Mn and Ms is set to 36 °.
 一方、各突部24a~24eは、それらの周方向中心C1~C5が基準線X1~X10のいずれに対してもずれるように配置されている。以下には、突部24a~24eの配置パターンを幾つか例示する。 On the other hand, the protrusions 24a to 24e are arranged so that their circumferential centers C1 to C5 are deviated from any of the reference lines X1 to X10. Hereinafter, several arrangement patterns of the protrusions 24a to 24e will be exemplified.
 なお、以下では、基準線X6に対する突部24aの周方向中心C1のずれ角をθa、基準線X7に対する突部24bの周方向中心C2のずれ角をθb、基準線X8に対する突部24cの周方向中心C3のずれ角をθc、基準線X9に対する突部24dの周方向中心C4のずれ角をθd、基準線X10に対する突部24eの周方向中心C5のずれ角をθeとする。また、時計回り方向へのずれ角を正の値として説明する。 In the following, the deviation angle of the circumferential center C1 of the protrusion 24a with respect to the reference line X6 is θa, the deviation angle of the circumferential center C2 of the protrusion 24b with respect to the reference line X7 is θb, and the circumference of the protrusion 24c with respect to the reference line X8. The deviation angle of the direction center C3 is θc, the deviation angle of the circumferential center C4 of the protrusion 24d with respect to the reference line X9 is θd, and the deviation angle of the circumferential center C5 of the protrusion 24e with respect to the reference line X10 is θe. Further, the description will be made assuming that the angle of deviation in the clockwise direction is a positive value.
 (配置パターン5)
 θa>0°
 θb=θa
 θc=0°
 θd<0°
 θe=θd
 (配置パターン6)
 θa<0°
 θb=θa
 θc=0°
 θd>0°
 θe=θd
 (配置パターン7)
 θa>0°、θb<0°
 θc=0°
 θd=θa
 θe=θb
 (配置パターン8)
 θa<0°、θb>0°
 θc=0°
 θd=θa
 θe=θb
 (配置パターン9)
 θa>0°、θb>0°θc>0°、θd>0°θe>0°
 (配置パターン10)
 θa<0°、θb<0°θc<0°、θd<0°θe<0°
 (配置パターン11)
 θa+θb+θc+θd+θe=0°(ただし、θa~θdは全て異なる値に設定される。)
 次に、磁石磁極Mn,Msの外周面26,27の開角度θn,θs及び突部24a~24eの外周面28の開角度θ1~θ5の設定について、図9に従って説明する。
(Arrangement pattern 5)
θa> 0 °
θb = θa
θc = 0 °
θd <0 °
θe = θd
(Arrangement pattern 6)
θa <0 °
θb = θa
θc = 0 °
θd> 0 °
θe = θd
(Arrangement pattern 7)
θa> 0 °, θb <0 °
θc = 0 °
θd = θa
θe = θb
(Arrangement pattern 8)
θa <0 °, θb> 0 °
θc = 0 °
θd = θa
θe = θb
(Arrangement pattern 9)
θa> 0 °, θb> 0 ° θc> 0 °, θd> 0 ° θe> 0 °
(Arrangement pattern 10)
θa <0 °, θb <0 ° θc <0 °, θd <0 ° θe <0 °
(Arrangement pattern 11)
θa + θb + θc + θd + θe = 0 ° (however, θa to θd are all set to different values).
Next, setting of the opening angles θn and θs of the outer peripheral surfaces 26 and 27 of the magnet magnetic poles Mn and Ms and the opening angles θ1 to θ5 of the outer peripheral surfaces 28 of the protrusions 24a to 24e will be described with reference to FIG.
 各磁石磁極Mn,Msの開角度θn,θsは互いに等しく設定され、各突部24a~24eの開角度θ1~θ5は、該開角度θn,θsよりも小さく設定される。以下には、突部24a~24eの開角度θ1~θ5の設定パターンを幾つか例示する。 The open angles θn and θs of the magnetic poles Mn and Ms are set to be equal to each other, and the open angles θ1 to θ5 of the protrusions 24a to 24e are set to be smaller than the open angles θn and θs. In the following, several setting patterns for the open angles θ1 to θ5 of the protrusions 24a to 24e will be exemplified.
 (開角度の設定パターン4)
 θn=θs=α
 θ1=θ2=θ3=θ4=θ5=β
 β<α
 (開角度の設定パターン5)
 θ1=θ2=θ3=θ4=θ5=α
 α<θs<θn
 なお、上記の設定パターン4,5では、各突部24a~24eの開角度θ1~θ5を全て等しく設定しているが、これに限定されることはなく、開角度θ1~θ5を全て異なる値に設定してもよい。
(Open angle setting pattern 4)
θn = θs = α
θ1 = θ2 = θ3 = θ4 = θ5 = β
β <α
(Open angle setting pattern 5)
θ1 = θ2 = θ3 = θ4 = θ5 = α
α <θs <θn
In the setting patterns 4 and 5 described above, the opening angles θ1 to θ5 of the protrusions 24a to 24e are all set to be equal. However, the present invention is not limited to this, and the opening angles θ1 to θ5 are all different values. May be set.
 また、図9に示す構成では、突部24a~24eの周方向中心が基準線X6~X10とそれぞれ一致する配置としているが、これに限らず、上記の配置パターン5~11のいずれかと、上記の開角度の設定パターン4,5のいずれかとを組み合わせた構成とすることも可能である。 In the configuration shown in FIG. 9, the centers of the protrusions 24a to 24e are arranged so as to coincide with the reference lines X6 to X10. However, the present invention is not limited to this, and any of the above arrangement patterns 5 to 11 and the above It is also possible to adopt a configuration in which any one of the opening angle setting patterns 4 and 5 is combined.
 なお、図7に示す構成において、磁石磁極Mn,Msの各個数は適宜変更してもよく、例えば、磁石磁極Mnを3つ、磁石磁極Msを2つで構成してもよい。
 また、ロータ31における磁石磁極Mn,Ms及び突部24a~24eの配置は、図7に示す例に限定されるものではなく、磁石磁極Mn,Msの周方向反対側にロータコア22の突部が位置する構成であれば、例えば、図10に示す構成のように変更してもよい。
In the configuration shown in FIG. 7, the number of magnet magnetic poles Mn and Ms may be changed as appropriate. For example, three magnet magnetic poles Mn and two magnet magnetic poles Ms may be configured.
Further, the arrangement of the magnet magnetic poles Mn and Ms and the protrusions 24a to 24e in the rotor 31 is not limited to the example shown in FIG. 7, and the protrusion of the rotor core 22 is provided on the opposite side of the magnet magnetic poles Mn and Ms in the circumferential direction. For example, the configuration may be changed as shown in FIG.
 図10の構成は、図7に示す構成の磁極組Paにおける中央の磁石磁極Msに代えてロータコア22から突部24fを突出形成するとともに、その周方向反対側に磁石磁極Mn(N極の永久磁石25)を設けた構成である。この構成によれば、図7に示す構成と同等の利点が得られ、更には、図7に示す構成と比較して、ロータ31を磁気的に、また機械的にバランスの優れた構成とすることができる。 In the configuration of FIG. 10, a protrusion 24f is formed to protrude from the rotor core 22 instead of the central magnet magnetic pole Ms in the magnetic pole set Pa of the configuration shown in FIG. 7, and the magnet magnetic pole Mn (N pole permanent) is formed on the opposite side in the circumferential direction. A magnet 25) is provided. According to this configuration, the same advantages as the configuration shown in FIG. 7 can be obtained, and furthermore, the rotor 31 is magnetically and mechanically balanced compared to the configuration shown in FIG. be able to.
 また、ステータ11において、各U相巻線U1,U2,バーU1,バーU2が全て直列に接続される必要はなく、巻線U1,バーU1の対と、巻線U2,バーU2の対をそれぞれ別の直列対とした構成としてもよい。また、V相及びW相においても同様に変更可能である。 Further, in the stator 11, it is not necessary that all the U-phase windings U1, U2, bar U1, and bar U2 are connected in series, and a pair of windings U1, U1 and a pair of windings U2, U2 are provided. It is good also as a structure which made each another separate serial pair. Moreover, it can change similarly also in V phase and W phase.
 また、図7には、磁石磁極Mn,Msの総数と巻線13の個数との関係を5:12とした例を示したが、7:12とした構成にも本発明を適用可能である。また、5:12(又は7:12)の磁石磁極Mn,Msの総数と巻線13の個数をそれぞれ等倍した構成にも本発明を適用可能である。 FIG. 7 shows an example in which the relationship between the total number of magnet magnetic poles Mn and Ms and the number of windings 13 is 5:12, but the present invention can also be applied to a configuration with 7:12. . In addition, the present invention can be applied to a configuration in which the total number of 5:12 (or 7:12) magnetic poles Mn and Ms and the number of windings 13 are each equal.
 ・上記実施形態では、ロータ21の周方向において、N極の磁石磁極MnとS極の磁石磁極Msとの間(磁極対P間)に複数(2つ)の突部(突部24a,24bのペア、及び突部24c,24dのペア)が配置される構成とした。しかしながら、これに限らず、例えば図11に示すように、N極の磁石磁極MnとS極の磁石磁極Msとの間に突部24g,24hをそれぞれ1つずつ配置した構成としてもよい。 In the embodiment described above, in the circumferential direction of the rotor 21, a plurality (two) of protrusions ( protrusions 24 a and 24 b) between the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms (between the magnetic pole pair P). And a pair of protrusions 24c and 24d). However, the present invention is not limited to this. For example, as shown in FIG. 11, one protrusion 24g and 24h may be arranged between the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms.
 ここで、図11に示す構成における突部24g,24hの配置について説明する。なお、磁石磁極Mn,Msの配置については上記実施形態と同様である。
 各突部24g,24hは、それらの周方向中心Cg,Chが、磁石磁極Mn,Ms間の周方向中心線CLからずれるように配置されている。なお、周方向中心線CLは、ロータ21の周方向において、N極の磁石磁極Mn(永久磁石25)の突部寄りの周方向端面25a(S極の磁石磁極Msとは反対側の端面)から、S極の磁石磁極Ms(永久磁石25)の突部寄りの周方向端面25b(N極の磁石磁極Mnとは反対側の端面)までの間の中心線である。
Here, the arrangement of the protrusions 24g and 24h in the configuration shown in FIG. 11 will be described. The arrangement of the magnet magnetic poles Mn and Ms is the same as in the above embodiment.
The protrusions 24g and 24h are arranged such that their circumferential centers Cg and Ch are displaced from the circumferential center line CL between the magnetic poles Mn and Ms. The circumferential center line CL is a circumferential end face 25a (end face opposite to the S pole magnet magnetic pole Ms) near the protrusion of the N pole magnetic pole Mn (permanent magnet 25) in the circumferential direction of the rotor 21. To the circumferential end face 25b (end face opposite to the N-pole magnet magnetic pole Mn) near the protrusion of the S-pole magnet magnetic pole Ms (permanent magnet 25).
 突部24g,24hの周方向中心Cg,Chは、前記周方向中心線CLに対して時計回り方向、又は反時計回り方向にずれるように設定される。また、周方向中心線CLに対する突部24gの周方向中心Cgのずれ角と、周方向中心線CLに対する突部24hの周方向中心Chのずれ角とは、必ずしも等しく設定される必要はなく、互いに異なるずれ角としてもよい。 The circumferential centers Cg and Ch of the protrusions 24g and 24h are set so as to shift in the clockwise direction or the counterclockwise direction with respect to the circumferential center line CL. Further, the deviation angle of the circumferential center Cg of the protrusion 24g with respect to the circumferential center line CL and the deviation angle of the circumferential center Ch of the protrusion 24h with respect to the circumferential center line CL are not necessarily set to be equal. Different shift angles may be used.
 また、図11に示す構成において、各磁石磁極Mn,Msの外周面26,27の開角度θn,θsは互いに等しく設定され、各突部24g,24hの外周面28の開角度θg,θhは、磁石磁極Mn,Msの開角度θn,θsとは異なるように設定される。 In the configuration shown in FIG. 11, the open angles θn and θs of the outer peripheral surfaces 26 and 27 of the magnet magnetic poles Mn and Ms are set to be equal to each other, and the open angles θg and θh of the outer peripheral surfaces 28 of the protrusions 24g and 24h are The opening angles θn and θs of the magnet magnetic poles Mn and Ms are set differently.
 上記のような突部24g,24hの配置設定及び開角度設定によれば、周方向における磁極対Pの間に突部24g,24hを1つ配置した構成において、ロータ21の回転時に発生するコギングトルクの位相をずらすことができ、コギングトルクが特定周波数で極大化することを抑制することができる。これにより、コギングトルクに起因して発生する振動を抑制することができる。 According to the arrangement setting and the opening angle setting of the protrusions 24g and 24h as described above, cogging generated when the rotor 21 rotates in the configuration in which one protrusion 24g and 24h is arranged between the magnetic pole pairs P in the circumferential direction. The phase of the torque can be shifted, and the cogging torque can be prevented from maximizing at a specific frequency. Thereby, the vibration generated due to the cogging torque can be suppressed.
 なお、上記したような周方向の磁石磁極間に1つの突部を配置する構成、及びその突部の配置と開角度の設定は、図7や図10に示すようなロータ構成に対しても適用可能である。 The configuration in which one protrusion is arranged between the magnetic poles in the circumferential direction as described above, and the arrangement of the protrusion and the setting of the opening angle are also applied to the rotor configuration as shown in FIGS. Applicable.
 ・上記実施形態では、軸線L方向から見て、各突部24a~24dの外周面と各磁石磁極Mn,Ms(各永久磁石25)の外周面とは、軸線Lを中心とする同一円上に位置する円弧状に形成されている。つまり、各突部24a~24dの外径と各磁石磁極Mn,Msの外径とは等しく形成されている。しかしながら、これに限定されるものではなく、各突部24a~24dの外径と各磁石磁極Mn,Msの外径とを異ならせてもよい。 In the above embodiment, when viewed from the direction of the axis L, the outer peripheral surfaces of the protrusions 24a to 24d and the outer peripheral surfaces of the magnet magnetic poles Mn and Ms (each permanent magnet 25) are on the same circle with the axis L as the center. It is formed in the circular arc shape located in. That is, the outer diameters of the protrusions 24a to 24d and the outer diameters of the magnet magnetic poles Mn and Ms are formed to be equal. However, the present invention is not limited to this, and the outer diameters of the protrusions 24a to 24d may be different from the outer diameters of the magnet magnetic poles Mn and Ms.
 例えば、図12に示すように、各突部24a~24dの外径D1を、各磁石磁極Mn,Ms(各永久磁石25)の外径D2よりも大きく設定してもよい。なお、図12に示す例では、各突部24a~24dの外周面は、軸線L方向から見て該軸線Lを中心とする円弧状をなし、それら突部24a~24dの外径D1は互いに等しい。また、各磁石磁極Mn,Msの外周面は、軸線L方向から見て該軸線Lを中心とする円弧状をなし、それら磁石磁極Mn,Msの外径D2は互いに等しい。 For example, as shown in FIG. 12, the outer diameter D1 of each of the protrusions 24a to 24d may be set larger than the outer diameter D2 of each of the magnetic poles Mn and Ms (each permanent magnet 25). In the example shown in FIG. 12, the outer peripheral surfaces of the protrusions 24a to 24d have an arc shape centered on the axis L when viewed from the direction of the axis L, and the outer diameters D1 of the protrusions 24a to 24d are mutually different. equal. Further, the outer peripheral surfaces of the magnet magnetic poles Mn and Ms have an arc shape centered on the axis L when viewed from the direction of the axis L, and the outer diameters D2 of the magnet magnetic poles Mn and Ms are equal to each other.
 このような構成によれば、ステータのティース12aの内周面との間のエアギャップ(隙間)が各磁石磁極Mn,Msよりも各突部24a~24dで小さくなる。つまり、各突部24a~24dがティース12aの内周面により接近するため、弱め界磁電流による前記鎖交磁束φy(図1参照)を増加させることができる。その結果、各相における合成誘起電圧をより小さく抑えることができ、モータ10のより一層の高回転化に寄与できる。 According to such a configuration, the air gap (gap) between the stator teeth 12a and the inner peripheral surface of the stator becomes smaller at the protrusions 24a to 24d than at the magnetic poles Mn and Ms. That is, since each of the protrusions 24a to 24d comes closer to the inner peripheral surface of the tooth 12a, the interlinkage magnetic flux φy (see FIG. 1) due to the field weakening current can be increased. As a result, the combined induction voltage in each phase can be suppressed to a smaller value, which can contribute to further increase in the rotation speed of the motor 10.
 また、SPM構造のロータ21では、永久磁石25の飛散を防止するカバー40を設けることが好ましい。図12に示す構成では、各永久磁石25の外径D2が各突部24a~24dの外径D1よりも小さいことから、各突部24a~24dの外周面を露出させる開口40aをカバー40に形成することで、突部24a~24dとティース12aとの間のエアギャップを小さく維持しつつも、永久磁石25の外周部にカバー40を配置可能となり、より好適である。 Further, it is preferable to provide a cover 40 for preventing the permanent magnet 25 from scattering in the rotor 21 having the SPM structure. In the configuration shown in FIG. 12, since the outer diameter D2 of each permanent magnet 25 is smaller than the outer diameter D1 of each protrusion 24a to 24d, an opening 40a that exposes the outer peripheral surface of each protrusion 24a to 24d is formed in the cover 40. By forming the cover 40, the cover 40 can be disposed on the outer peripheral portion of the permanent magnet 25 while keeping the air gap between the protrusions 24a to 24d and the teeth 12a small, which is more preferable.
 なお、同例では、各突部24a~24dの外周面及び各磁石磁極Mn,Msの外周面は、軸線Lを中心とする円弧状をなしている。つまり、各突部24a~24dは、軸線Lから外周面までの距離が周方向において一様である。また同様に、各磁石磁極Mn,Msは、軸線Lから外周面までの距離が周方向において一様である。しかしながら、各突部24a~24d及び各磁石磁極Mn,Msの外周面の形状はこれに限らず、軸線Lから外周面までの距離が周方向において一様でなくてもよい。この場合、各突部24a~24dにおいて軸線Lから外周面までの距離が最も長い地点でのその距離を各突部24a~24dの最外径とし、また、各磁石磁極Mn,Msにおいて軸線Lから外周面までの距離が最も長い地点でのその距離を各磁石磁極Mn,Msの最外径とする。そして、各突部24a~24dの最外径を、各磁石磁極Mn,Msの最外径よりも大きく設定することが好ましい。なお、図12の例では、各突部24a~24dの外周面及び各磁石磁極Mn,Msの外周面が軸線Lを中心とする円弧状をなすため、前記外径D1,D2がそれぞれ突部24a~24d及び磁石磁極Mn,Msの最外径となる。 In this example, the outer peripheral surfaces of the protrusions 24a to 24d and the outer peripheral surfaces of the magnet magnetic poles Mn and Ms have an arc shape centered on the axis L. That is, the distance from the axis L to the outer peripheral surface of each of the protrusions 24a to 24d is uniform in the circumferential direction. Similarly, the distance between the axis L and the outer peripheral surface of each magnet magnetic pole Mn, Ms is uniform in the circumferential direction. However, the shapes of the outer peripheral surfaces of the protrusions 24a to 24d and the magnetic poles Mn and Ms are not limited to this, and the distance from the axis L to the outer peripheral surface may not be uniform in the circumferential direction. In this case, the distance at the point where the distance from the axis L to the outer peripheral surface is the longest in each of the protrusions 24a to 24d is the outermost diameter of each of the protrusions 24a to 24d, and the axis L in each of the magnetic poles Mn and Ms. The distance at the longest distance from the outer peripheral surface to the outer peripheral surface is defined as the outermost diameter of each of the magnetic poles Mn and Ms. The outermost diameters of the protrusions 24a to 24d are preferably set larger than the outermost diameters of the magnet magnetic poles Mn and Ms. In the example of FIG. 12, since the outer peripheral surface of each of the protrusions 24a to 24d and the outer peripheral surface of each of the magnetic poles Mn and Ms form an arc shape with the axis L as the center, the outer diameters D1 and D2 are respectively the protrusions. 24a to 24d and the outermost diameters of the magnetic poles Mn and Ms.
 ・図13に示すように、各磁石磁極Mn,Msを構成する永久磁石41n,41sをロータコア22に埋め込む態様とした埋込磁石型構造(IPM構造)に本発明を適用してもよい。このようなIPM構造においても、各磁石磁極Mn,Msと各突部24a~24dの配置、及び各磁石磁極Mn,Msと各突部24a~24dの開角度を上記実施形態と同様に設定可能である。 As shown in FIG. 13, the present invention may be applied to an embedded magnet type structure (IPM structure) in which the permanent magnets 41 n and 41 s constituting the magnetic poles Mn and Ms are embedded in the rotor core 22. Even in such an IPM structure, the arrangement of the magnetic poles Mn and Ms and the protrusions 24a to 24d and the open angles of the magnetic poles Mn and Ms and the protrusions 24a to 24d can be set in the same manner as in the above embodiment. It is.
 なお、図13に示す構成において、ロータコア22には、外周側に突出する一対の凸部42が形成され、該一対の凸部42にそれぞれ磁極対P(磁石磁極Mn,Ms)が構成されている。つまり、ロータコア22の各凸部42には、N極の磁石磁極Mnを構成する永久磁石41n(外周側がN極である永久磁石)と、S極の磁石磁極Msを構成する永久磁石41s(外周側がS極である永久磁石)とが埋設されている。 In the configuration shown in FIG. 13, the rotor core 22 is formed with a pair of convex portions 42 projecting to the outer peripheral side, and the pair of convex portions 42 is configured with magnetic pole pairs P (magnet magnetic poles Mn and Ms), respectively. Yes. That is, each convex portion 42 of the rotor core 22 has a permanent magnet 41n (permanent magnet having an N pole on the outer peripheral side) and a permanent magnet 41s (outer periphery) forming an S pole magnet magnetic pole Ms. A permanent magnet whose side is an S pole).
 また、各永久磁石41n,41sは、回転軸23の軸線Lを中心とする円弧状をなす。そして、N極の各永久磁石41nの周方向中心はそれぞれ前記基準線X4,X8と一致するように配置され、S極の各永久磁石41sの周方向中心はそれぞれ前記基準線X3,X7と一致するように配置されている。 Further, each permanent magnet 41n, 41s has an arc shape centered on the axis L of the rotating shaft 23. The center in the circumferential direction of each N-pole permanent magnet 41n is arranged to coincide with the reference lines X4 and X8, respectively, and the center in the circumferential direction of each S-pole permanent magnet 41s coincides with the reference lines X3 and X7, respectively. Are arranged to be.
 なお、図13に示す構成では、各凸部42の外周面は、軸線Lを中心とする同一円上に位置する円弧状をなし、該各凸部42の外周面の開角度は90°に設定されている。また、同例では、各凸部42におけるN極の永久磁石41nとS極の永久磁石41sとの間の周方向中心位置CP(隣り合う磁石磁極Mn,Msの境界位置)が、凸部42の周方向中心位置と一致するように構成されている。そして、磁石磁極Mn,Msの開角度θn,θsはそれぞれ、前記永久磁石41n,41s間の周方向中心位置CPから凸部42の外周面の周方向両端42a,42bまでの角度となっている。つまり、凸部42に構成される磁石磁極Mn,Msの開角度θn,θsはそれぞれ凸部42の開角度の1/2となるように設定され、同例では磁石磁極Mn,Msの開角度θn,θsがそれぞれ45°に設定されている。 In the configuration shown in FIG. 13, the outer peripheral surface of each convex portion 42 has an arc shape located on the same circle centered on the axis L, and the open angle of the outer peripheral surface of each convex portion 42 is 90 °. Is set. In the same example, the circumferential center position CP (boundary position between adjacent magnet magnetic poles Mn and Ms) between the N-pole permanent magnet 41n and the S-pole permanent magnet 41s in each convex portion 42 is the convex portion 42. It is comprised so that it may correspond with the circumferential direction center position. The opening angles θn and θs of the magnet magnetic poles Mn and Ms are angles from the circumferential center position CP between the permanent magnets 41n and 41s to the circumferential ends 42a and 42b of the outer peripheral surface of the convex portion 42, respectively. . That is, the open angles θn and θs of the magnetic poles Mn and Ms formed on the convex portion 42 are set to be ½ of the open angles of the convex portions 42, respectively. In this example, the open angles of the magnetic poles Mn and Ms are set. θn and θs are each set to 45 °.
 また、図14に示すロータ21は、図13に示す構成を変更したものであり、ロータコア22の各凸部42における永久磁石41n,41s間に磁気抵抗孔43が形成されている。図14に示す構成では、各永久磁石41n,41sは軸方向視で長方形をなし、軸方向から見たときの長辺を含む面(径方向内側面)がロータ21の径方向に対して直交するように設けられている。各磁気抵抗孔43は、永久磁石41n,41sの端部形状に応じた形状をなし、同例では、軸方向視で頂点の1つが径方向内側を向く略三角形状をなしている。各磁気抵抗孔43が形成されることによって、永久磁石41n,41sにおける短絡磁束(ロータコア22を通って短絡する磁束)の発生が抑制されるようになっている。なお、同例のように、凸部42に磁気抵抗孔43が形成された構成では、磁石磁極Mnの開角度θnは、磁気抵抗孔43の周方向一端から凸部42の外周面の周方向一端42aまでの角度となり、磁石磁極Msの開角度θsは、磁気抵抗孔43の周方向他端から凸部42の外周面の周方向他端42bまでの角度となる。 Further, the rotor 21 shown in FIG. 14 is obtained by changing the configuration shown in FIG. 13, and a magnetoresistive hole 43 is formed between the permanent magnets 41 n and 41 s in each convex portion 42 of the rotor core 22. In the configuration shown in FIG. 14, each of the permanent magnets 41 n and 41 s has a rectangular shape when viewed in the axial direction, and a surface (radial inner surface) including a long side when viewed from the axial direction is orthogonal to the radial direction of the rotor 21. It is provided to do. Each magnetoresistive hole 43 has a shape corresponding to the end shape of the permanent magnets 41n and 41s. In this example, one of the vertices has a substantially triangular shape when viewed in the axial direction and faces radially inward. By forming each magnetoresistive hole 43, the generation of short-circuit magnetic flux (magnetic flux that is short-circuited through the rotor core 22) in the permanent magnets 41n and 41s is suppressed. As in the same example, in the configuration in which the magnetoresistive hole 43 is formed in the convex portion 42, the opening angle θn of the magnet magnetic pole Mn is the circumferential direction of the outer peripheral surface of the convex portion 42 from one circumferential end of the magnetoresistive hole 43. The opening angle θs of the magnet magnetic pole Ms is an angle from the other circumferential end of the magnetoresistive hole 43 to the other circumferential end 42b of the outer peripheral surface of the convex portion 42.
 ・図14に示す構成の各磁石磁極Mn,Msでは、各永久磁石41n,41sの軸方向視における形状を長方形としたが、これに限定されるものではなく、例えば、軸線Lを中心とする円弧状としてもよい。 In each of the magnetic poles Mn and Ms having the configuration shown in FIG. 14, the shape of each permanent magnet 41 n and 41 s when viewed in the axial direction is a rectangle, but is not limited to this, for example, the axis L is the center. It may be arcuate.
 また、各磁石磁極Mn,Msを図15に示すような磁石構成としてもよい。同図に示す構成では、各磁石磁極Mn,Msは、ロータコア22(凸部42)に埋設された一対の永久磁石51をそれぞれ備えている。各永久磁石51は直方体をなし、各磁石磁極Mn,Msにおける一対の永久磁石51は、軸方向視で外周側に拡がる略V字状に配置されている。また、該一対の永久磁石51は、周方向における周方向中心線に対して線対称に設けられている。つまり、本例の場合、線対称をなす一対の永久磁石51の対称軸線が磁石磁極Mn,Msの周方向中心となっている。そして、各磁石磁極Mn,Msの配置は上記実施形態と同様であり、N極の各磁石磁極Mnの周方向中心(永久磁石51の対称軸線)がそれぞれ前記基準線X4,X8と一致するように配置され、S極の各磁石磁極Msの周方向中心(永久磁石51の対称軸線)がそれぞれ前記基準線X3,X7と一致するように配置されている。なお、各磁石磁極Mn,Msにおける一対の永久磁石51は、凸部42を周方向に2等分した角度範囲(同例では45°の範囲)に収まるように配置されている。 Further, the magnet magnetic poles Mn and Ms may have a magnet configuration as shown in FIG. In the configuration shown in the figure, each of the magnetic poles Mn and Ms includes a pair of permanent magnets 51 embedded in the rotor core 22 (convex portion 42). Each permanent magnet 51 has a rectangular parallelepiped shape, and the pair of permanent magnets 51 in each of the magnetic poles Mn and Ms are arranged in a substantially V shape that extends to the outer peripheral side when viewed in the axial direction. The pair of permanent magnets 51 are provided symmetrically with respect to the circumferential center line in the circumferential direction. That is, in the case of this example, the symmetry axis of the pair of permanent magnets 51 having line symmetry is the center in the circumferential direction of the magnet magnetic poles Mn and Ms. The arrangement of the magnet magnetic poles Mn and Ms is the same as that of the above embodiment, and the circumferential center (the axis of symmetry of the permanent magnet 51) of the N magnetic poles Mn coincides with the reference lines X4 and X8, respectively. And the center in the circumferential direction of each of the S magnetic poles Ms (the axis of symmetry of the permanent magnet 51) is arranged so as to coincide with the reference lines X3 and X7, respectively. Note that the pair of permanent magnets 51 in each of the magnetic poles Mn and Ms are arranged so as to be within an angular range (in the example, a 45 ° range) obtained by dividing the convex portion 42 into two equal parts in the circumferential direction.
 また、図15には、N極の磁石磁極Mn及びS極の磁石磁極Msの各永久磁石51の磁化方向を実線の矢印で示しており、矢印先端側がN極、矢印基端側がS極を表している。この矢印にて示されるように、N極の磁石磁極Mnにおける各永久磁石51は、該磁石磁極Mnの外周側をN極にするべく、互いに向かい合う面(磁極中心側の面)にN極が現れるように磁化されている。また、S極の磁石磁極Msにおける各永久磁石51は、該磁石磁極Msの外周側をS極にするべく、互いに向かい合う面(磁極中心側の面)にS極が現れるように磁化されている。 Further, in FIG. 15, the magnetization directions of the permanent magnets 51 of the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are indicated by solid arrows, and the tip end side of the arrow is the N pole, and the base end side of the arrow is the S pole. Represents. As indicated by this arrow, each permanent magnet 51 in the N-pole magnet magnetic pole Mn has N-poles on the surfaces facing each other (surface on the magnetic pole center side) so that the outer peripheral side of the magnet magnetic pole Mn is N-pole. Magnetized to appear. In addition, each permanent magnet 51 in the S magnetic pole Ms is magnetized so that the S pole appears on the surfaces facing each other (surface on the magnetic pole center side) so that the outer peripheral side of the magnet magnetic pole Ms becomes the S pole. .
 このような各磁石磁極Mn,Msの構成によれば、一対の永久磁石51が軸方向視で径方向外側に拡がる略V字をなすように埋設されるため、永久磁石51の外周側のロータコア体積(V字配置された一対の永久磁石51の間の磁石間コア部22bを含む部分の体積)を大きくとることが可能となる。それにより、リラクタンストルクを増やすことが可能となり、モータ10の高トルク化に寄与できる。 According to such a configuration of the magnet magnetic poles Mn and Ms, the pair of permanent magnets 51 are embedded so as to form a substantially V shape that expands radially outward when viewed in the axial direction. The volume (the volume of the portion including the inter-magnet core portion 22b between the pair of permanent magnets 51 arranged in a V shape) can be increased. As a result, the reluctance torque can be increased, which can contribute to an increase in torque of the motor 10.
 また、図16に示すロータ21は、図15に示す構成の各凸部42に対して、前記磁気抵抗孔43(図14参照)と同様の磁気抵抗孔52を設けたものである。磁気抵抗孔52は、凸部42に構成されたN極の磁石磁極MnとS極の磁石磁極Msとの間において、周方向に隣り合う永久磁石51の外周側端部間に形成され、これにより、該永久磁石51における短絡磁束(ロータコア22を通って短絡する磁束)の発生が抑制されるようになっている。なお、同構成においても、磁石磁極Mnの開角度θnは、磁気抵抗孔52の周方向一端から凸部42の外周面の周方向一端42aまでの角度となり、磁石磁極Msの開角度θsは、磁気抵抗孔52の周方向他端から凸部42の外周面の周方向他端42bまでの角度となる。 Further, the rotor 21 shown in FIG. 16 is provided with a magnetoresistive hole 52 similar to the magnetoresistive hole 43 (see FIG. 14) for each convex portion 42 having the configuration shown in FIG. The magnetoresistive holes 52 are formed between the outer peripheral side ends of the permanent magnets 51 adjacent in the circumferential direction between the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms formed in the convex portion 42. Thus, the generation of short-circuit magnetic flux (magnetic flux that is short-circuited through the rotor core 22) in the permanent magnet 51 is suppressed. Even in this configuration, the opening angle θn of the magnet magnetic pole Mn is an angle from one end in the circumferential direction of the magnetoresistive hole 52 to one end 42a in the circumferential direction of the outer peripheral surface of the convex portion 42, and the opening angle θs of the magnetic pole Ms is The angle is from the other circumferential end of the magnetoresistive hole 52 to the other circumferential end 42 b of the outer peripheral surface of the convex portion 42.
 ・図17に示すように、IPM構造のロータ21において、ロータコア22の各突部24g,24hの外径D1を磁石磁極Mn,Msの外径D2(磁石磁極Mn,Msにおけるロータコア22の外径)よりも大きく設定してもよい。このような構成によれば、ステータのティース12aの内周面との間のエアギャップ(隙間)が各磁石磁極Mn,Msよりも各突部24g,24hで小さくなる。つまり、各突部24g,24hがティース12aの内周面により接近するため、弱め界磁電流による前記鎖交磁束φy(図1参照)を増加させることができる。その結果、各相における合成誘起電圧をより小さく抑えることができ、モータ10のより一層の高回転化に寄与できる。 As shown in FIG. 17, in the rotor 21 having the IPM structure, the outer diameter D1 of each protrusion 24g, 24h of the rotor core 22 is the outer diameter D2 of the magnetic poles Mn, Ms (the outer diameter of the rotor core 22 at the magnetic poles Mn, Ms). ) May be set larger. According to such a configuration, the air gap (gap) between the stator teeth 12a and the inner peripheral surface of the stator becomes smaller at the protrusions 24g and 24h than at the magnetic poles Mn and Ms. That is, since each protrusion 24g, 24h comes closer to the inner peripheral surface of the tooth 12a, the interlinkage magnetic flux φy (see FIG. 1) due to the field weakening current can be increased. As a result, the combined induction voltage in each phase can be suppressed to a smaller value, which can contribute to further increase in the rotation speed of the motor 10.
 なお、図17に示す構成における磁石磁極Mn,Msの磁石構成や磁極対P間の突部の構成(個数等)は適宜変更可能であり、例えば、磁石磁極Mn,Msの磁石構成を図15や図16に示すようなV字配置としてもよい。 Note that the magnet configuration of the magnet magnetic poles Mn and Ms and the configuration (number and the like) of the protrusions between the magnetic pole pairs P in the configuration shown in FIG. 17 can be appropriately changed. For example, the magnet configuration of the magnet magnetic poles Mn and Ms is shown in FIG. Alternatively, a V-shaped arrangement as shown in FIG. 16 may be used.
 また、図17に示す構成では、ロータコア22の外周面(各突部24g,24hの外周面及び磁石磁極Mn,Msの外周面)を、軸線Lを中心とする円弧状に形成したが、これに特に限定されるものではない。 In the configuration shown in FIG. 17, the outer peripheral surface of the rotor core 22 (the outer peripheral surface of each protrusion 24g, 24h and the outer peripheral surface of the magnet magnetic poles Mn, Ms) is formed in an arc shape centered on the axis L. It is not specifically limited to.
 例えば、図18に示すように、各突部24g,24hの外周面を、軸線Lを中心とする楕円弧状に形成してもよい。なお、各突部24g,24hは、周方向中心位置で外径が最大(外径D1)となるように形成され、該外径D1が磁石磁極Mn,Msの外径D2よりも大きく設定されることが好ましい。なお、同図に示す例では、磁石磁極Mn,Msの外周面は円弧状(外径D2)をなし、各突部24g,24hの外径はその周方向全体に亘って磁石磁極Mn,Msの外径D2よりも大きくなるように構成されている。 For example, as shown in FIG. 18, the outer peripheral surfaces of the protrusions 24g and 24h may be formed in an elliptical arc shape with the axis L as the center. Each of the protrusions 24g and 24h is formed so that the outer diameter becomes maximum (outer diameter D1) at the circumferential center position, and the outer diameter D1 is set larger than the outer diameter D2 of the magnet magnetic poles Mn and Ms. It is preferable. In the example shown in the figure, the outer peripheral surfaces of the magnet magnetic poles Mn and Ms are arcuate (outer diameter D2), and the outer diameters of the protrusions 24g and 24h are the magnet magnetic poles Mn and Ms over the entire circumferential direction. It is comprised so that it may become larger than the outer diameter D2.
 また例えば、図19に示すように、ロータコア22の全周を、軸線Lを中心とする楕円状に形成してもよい。この場合、各磁極対Pにおける磁石磁極Mn,Msの境界部がロータコア22の楕円形状の短軸Lsと一致するように構成することが好ましい。このような構成によっても、各突部24g,24hの外径を磁石磁極Mn,Msの外径よりも大きく構成できる。 Further, for example, as shown in FIG. 19, the entire circumference of the rotor core 22 may be formed in an elliptical shape with the axis L as the center. In this case, it is preferable that the boundary between the magnetic poles Mn and Ms in each magnetic pole pair P coincides with the elliptical short axis Ls of the rotor core 22. Even with such a configuration, the outer diameters of the protrusions 24g and 24h can be configured to be larger than the outer diameters of the magnet magnetic poles Mn and Ms.
 上記の図18又は図19に示すような構成によれば、ステータのティース12aの内周面との間のエアギャップ(隙間)が各磁石磁極Mn,Msよりも各突部24g,24hで小さくなる。つまり、各突部24g,24hがティース12aの内周面により接近するため、弱め界磁電流による前記鎖交磁束φy(図1参照)を増加させることができる。その結果、各相における合成誘起電圧をより小さく抑えることができ、モータ10のより一層の高回転化に寄与できる。 According to the configuration shown in FIG. 18 or FIG. 19, the air gap (gap) between the stator teeth 12a and the inner peripheral surface of the stator is smaller at the protrusions 24g and 24h than at the magnetic poles Mn and Ms. Become. That is, since each protrusion 24g, 24h comes closer to the inner peripheral surface of the tooth 12a, the interlinkage magnetic flux φy (see FIG. 1) due to the field weakening current can be increased. As a result, the combined induction voltage in each phase can be suppressed to a smaller value, which can contribute to further increase in the rotation speed of the motor 10.
 ・図20に示す構成は、図13に示すIPM構造のロータ21のロータコア22にスリット孔(図5参照)が形成された構成である。図20に示すように、ロータコア22には、回転軸23の径方向に沿って延びる4つのスリット孔22c,22dが形成されている。スリット孔22cは、周方向に隣り合う突部24a,24bの間、及び周方向に隣り合う突部24c,24d間にそれぞれ対応して設けられている。また、スリット孔22dは、周方向に隣り合う磁石磁極Mn,Mn間の境界部にそれぞれ設けられている。また、各スリット孔22c,22dは、ロータコア22を軸方向に貫通している。これら各スリット孔22c,22dによって、ロータコア22内を通る永久磁石41n,41sの磁束が、周方向に隣り合う突部24a~24dに誘導され(図中、破線の矢印を参照)、これにより、各突部24a~24dが疑似的な磁極(コア磁極)として機能する。すなわち、N極の磁石磁極Mnと周方向に隣り合う突部24a,24cがS極のコア磁極Rsとして構成され、S極の磁石磁極Msと周方向に隣り合う突部24b,24dがN極のコア磁極Rnとして構成される。 The configuration shown in FIG. 20 is a configuration in which slit holes (see FIG. 5) are formed in the rotor core 22 of the rotor 21 having the IPM structure shown in FIG. As shown in FIG. 20, the rotor core 22 is formed with four slit holes 22 c and 22 d extending along the radial direction of the rotating shaft 23. The slit hole 22c is provided between the protrusions 24a and 24b adjacent in the circumferential direction and between the protrusions 24c and 24d adjacent in the circumferential direction. Moreover, the slit hole 22d is provided in the boundary part between the magnet magnetic poles Mn and Mn adjacent to each other in the circumferential direction. Each slit hole 22c, 22d penetrates the rotor core 22 in the axial direction. By these slit holes 22c and 22d, the magnetic fluxes of the permanent magnets 41n and 41s passing through the rotor core 22 are guided to the protrusions 24a to 24d adjacent to each other in the circumferential direction (see the broken arrows in the figure), thereby Each of the protrusions 24a to 24d functions as a pseudo magnetic pole (core magnetic pole). That is, the protrusions 24a and 24c adjacent to the N-pole magnet magnetic pole Mn in the circumferential direction are configured as the S-pole core magnetic pole Rs, and the protrusions 24b and 24d adjacent to the S-pole magnet magnetic pole Ms in the circumferential direction are set to the N pole. The core magnetic pole Rn is configured.
 なお、図20に示す構成では、各突部24a~24dのずれ角θa~θdは0°よりも大きく設定されている。つまり、各突部24a~24dは、基準線X1,X2,X5,X6に対してそれぞれ時計回り方向にずれた位置に設けられている。このような設定の場合には、各スリット孔22c,22dを周方向等間隔に設けるのではなく、各スリット孔22cを各突部24a~24dのずれ角θa~θdに応じて配置するのが好ましい。具体的には、一方のスリット孔22cが周方向における突部24a,24bの周方向中心C1,C2の間の中心位置に形成され、他方のスリット孔22cが周方向における突部24c,24dの周方向中心C3,C4の間の中心位置に形成されるのが好ましい。これにより、スリット孔22cが突部24a~24dに対して径方向に重ならないように構成することが可能となり、その結果、磁石磁極Mn,Msの磁束を周方向に隣り合う突部24a~24dに好適に誘導させることができる。なお、同図の例では、各突部24a~24dのずれ角θa~θdが全て等しい角度に設定されているが、これに限定されるものではない。 In the configuration shown in FIG. 20, the deviation angles θa to θd of the protrusions 24a to 24d are set larger than 0 °. That is, the protrusions 24a to 24d are provided at positions shifted in the clockwise direction with respect to the reference lines X1, X2, X5, and X6. In such a setting, the slit holes 22c and 22d are not provided at equal intervals in the circumferential direction, but the slit holes 22c are arranged according to the deviation angles θa to θd of the protrusions 24a to 24d. preferable. Specifically, one slit hole 22c is formed at the center position between the circumferential centers C1 and C2 of the protrusions 24a and 24b in the circumferential direction, and the other slit hole 22c is formed between the protrusions 24c and 24d in the circumferential direction. It is preferably formed at the center position between the circumferential centers C3 and C4. This makes it possible to configure the slit hole 22c so as not to overlap the protrusions 24a to 24d in the radial direction. As a result, the magnetic fluxes of the magnet magnetic poles Mn and Ms are adjacent to the protrusions 24a to 24d adjacent in the circumferential direction. Can be suitably induced. In the example shown in the figure, the deviation angles θa to θd of the protrusions 24a to 24d are all set to the same angle, but the present invention is not limited to this.
 また、図20の例では、各永久磁石41n,41sは、回転軸23の軸線Lを中心とする円弧状をなしているが、これに以外に例えば、図21に示すように、軸方向視で長方形をなす形状としてもよい。なお、図21に示す構成では、各永久磁石41n,41sは、軸方向から見たときの長辺を含む面(径方向内側面)がロータ21の径方向に対して直交するように設けられている。 In the example of FIG. 20, each permanent magnet 41n, 41s has an arc shape centered on the axis L of the rotating shaft 23. In addition to this, for example, as shown in FIG. The shape may be a rectangle. In the configuration shown in FIG. 21, each of the permanent magnets 41 n and 41 s is provided such that a surface (a radially inner side surface) including a long side when viewed from the axial direction is orthogonal to the radial direction of the rotor 21. ing.
 ・図22に示す構成では、図14に示すIPM構造のロータ21のロータコア22に対し、スリット孔22c,22d(図20参照)を形成している。同構成においても、各スリット孔22c,22dによって、ロータコア22内を通る磁石磁極Mn,Msの磁束が、周方向に隣り合う突部24a~24dに誘導され(図中、破線の矢印を参照)、それにより、各突部24a~24dが疑似的な磁極(コア磁極Rn,Rs)として機能する。 In the configuration shown in FIG. 22, slit holes 22c and 22d (see FIG. 20) are formed in the rotor core 22 of the rotor 21 having the IPM structure shown in FIG. Even in this configuration, the magnetic fluxes of the magnetic poles Mn and Ms passing through the rotor core 22 are guided to the projecting portions 24a to 24d adjacent in the circumferential direction by the slit holes 22c and 22d (see the broken arrows in the figure). Thereby, the protrusions 24a to 24d function as pseudo magnetic poles (core magnetic poles Rn, Rs).
 ・図23に示す構成では、図15に示すIPM構造のロータ21のロータコア22に対し、スリット孔22c,22d(図20参照)を形成している。同構成においても、各スリット孔22c,22dによって、ロータコア22内を通る磁石磁極Mn,Msの磁束が、周方向に隣り合う突部24a~24dに誘導され(図中、破線の矢印を参照)、それにより、各突部24a~24dが疑似的な磁極(コア磁極Rn,Rs)として機能する。 23, slit holes 22c and 22d (see FIG. 20) are formed in the rotor core 22 of the rotor 21 having the IPM structure shown in FIG. Even in this configuration, the magnetic fluxes of the magnetic poles Mn and Ms passing through the rotor core 22 are guided to the projecting portions 24a to 24d adjacent in the circumferential direction by the slit holes 22c and 22d (see the broken arrows in the figure). Thereby, the protrusions 24a to 24d function as pseudo magnetic poles (core magnetic poles Rn, Rs).
 なお、図23に示す構成では、スリット孔22dは、周方向に隣り合う磁石磁極Mn,Mn間の境界部に設けられたが、これに特に限定されるものではなく、スリット孔22dの配置等の構成を適宜変更してもよい。例えば、図24に示す構成では、スリット孔22dは、各磁石磁極Mn,Msに1つずつ設けられている。より詳しくは、スリット孔22dは、各磁石磁極Mn,Msの周方向中心線(基準線X3,X4,X7,X8)に沿ってそれぞれ設けられている。このような構成であっても、各スリット孔22c,22dによって、ロータコア22内を通る磁石磁極Mn,Msの磁束が、周方向に隣り合う突部24a~24dに誘導され(図中、破線の矢印を参照)、それにより、各突部24a~24dが疑似的な磁極(コア磁極Rn,Rs)として機能する。 In the configuration shown in FIG. 23, the slit hole 22d is provided at the boundary portion between the magnet magnetic poles Mn adjacent to each other in the circumferential direction. However, the present invention is not particularly limited thereto, and the arrangement of the slit hole 22d and the like. The configuration may be changed as appropriate. For example, in the configuration shown in FIG. 24, one slit hole 22d is provided for each magnet magnetic pole Mn, Ms. More specifically, the slit hole 22d is provided along the circumferential center line (reference line X3, X4, X7, X8) of each magnet magnetic pole Mn, Ms. Even in such a configuration, the magnetic fluxes of the magnetic poles Mn and Ms passing through the rotor core 22 are guided to the projecting portions 24a to 24d adjacent in the circumferential direction by the slit holes 22c and 22d (indicated by broken lines in the figure). Thereby, the protrusions 24a to 24d function as pseudo magnetic poles (core magnetic poles Rn and Rs).
 ・図25に示す構成では、図16に示すIPM構造のロータ21のロータコア22に対し、スリット孔22c,22d(図20参照)を形成している。同構成においても、各スリット孔22c,22dによって、ロータコア22内を通る磁石磁極Mn,Msの磁束が、周方向に隣り合う突部24a~24dに誘導され(図中、破線の矢印を参照)、それにより、各突部24a~24dが疑似的な磁極(コア磁極Rn,Rs)として機能する。なお、同図に示す構成では、各スリット孔22dを周方向に隣り合う磁石磁極Mn,Mn間の境界部に設けているが、各スリット孔22dを図24のように各磁石磁極Mn,Msの周方向中心線に沿って設けてもよい。 In the configuration shown in FIG. 25, slit holes 22c and 22d (see FIG. 20) are formed in the rotor core 22 of the rotor 21 having the IPM structure shown in FIG. Even in this configuration, the magnetic fluxes of the magnetic poles Mn and Ms passing through the rotor core 22 are guided to the projecting portions 24a to 24d adjacent in the circumferential direction by the slit holes 22c and 22d (see the broken arrows in the figure). Thereby, the protrusions 24a to 24d function as pseudo magnetic poles (core magnetic poles Rn, Rs). In the configuration shown in the figure, each slit hole 22d is provided at the boundary between the magnet magnetic poles Mn and Mn adjacent in the circumferential direction, but each slit hole 22d is provided in each magnet magnetic pole Mn and Ms as shown in FIG. You may provide along the circumferential direction centerline.
 ・図26に示す構成は、図11に示すロータ21のロータコア22に、回転軸23の径方向に沿って延びる4つのスリット孔22e,22fが形成された構成である。2つのスリット孔22eの径方向外側端部は、ロータコア22の前記突部24g,24hをそれぞれ部分的に周方向に分断するように形成されている。詳しくは、一方のスリット孔22eは、突部24gの周方向中心線L1上に形成され、該スリット孔22eの径方向外側端部は突部24g内にまで延びている。また、他方のスリット孔22eは、突部24hの周方向中心線L2上に形成され、該スリット孔22eの径方向外側端部は突部24h内にまで延びている。スリット孔22fは、周方向に隣り合う磁石磁極Mn,Mn間の境界部にそれぞれ設けられている。また、各スリット孔22e,22fは、ロータコア22を軸方向に貫通している。 The configuration shown in FIG. 26 is a configuration in which four slit holes 22e and 22f extending along the radial direction of the rotating shaft 23 are formed in the rotor core 22 of the rotor 21 shown in FIG. The radially outer ends of the two slit holes 22e are formed so as to partially divide the protrusions 24g and 24h of the rotor core 22 in the circumferential direction. Specifically, one slit hole 22e is formed on the circumferential center line L1 of the protrusion 24g, and the radially outer end of the slit hole 22e extends into the protrusion 24g. The other slit hole 22e is formed on the circumferential center line L2 of the protrusion 24h, and the radially outer end of the slit hole 22e extends into the protrusion 24h. The slit hole 22f is provided at each boundary between the magnetic poles Mn and Mn adjacent in the circumferential direction. The slit holes 22e and 22f penetrate the rotor core 22 in the axial direction.
 このような構成では、N極の磁石磁極Mnの磁束は、スリット孔22e,22fによって、突部24g,24hにおけるスリット孔22eよりも磁石磁極Mn寄りの部位に誘導される(図中、破線の矢印を参照)。これにより、突部24g,24hの当該部位がS極のコア磁極Rsとして機能する。また同様に、S極の磁石磁極Msの磁束は、スリット孔22e,22fによって、突部24g,24hにおけるスリット孔22eよりも磁石磁極Ms寄りの部位に誘導される(図中、破線の矢印を参照)。これにより、突部24g,24hの当該部位がN極のコア磁極Rnとして機能する。 In such a configuration, the magnetic flux of the N-pole magnet magnetic pole Mn is guided by the slit holes 22e and 22f to a portion closer to the magnet magnetic pole Mn than the slit hole 22e in the protrusions 24g and 24h (in the figure, a broken line). See arrow). Thereby, the said part of protrusion 24g, 24h functions as the core magnetic pole Rs of S pole. Similarly, the magnetic flux of the S-pole magnet magnetic pole Ms is guided to the part closer to the magnet magnetic pole Ms than the slit hole 22e in the protrusions 24g and 24h by the slit holes 22e and 22f (indicated by the broken arrow in the figure). reference). Thereby, the said part of protrusion 24g, 24h functions as the core magnetic pole Rn of N pole.
 ・図27に示す構成では、図17に示すロータ21のロータコア22に対し、スリット孔22e,22f(図26参照)を形成している。同構成においても、磁石磁極Mn,Msの磁束が各スリット孔22e,22fによって誘導されることで、各突部24g,24hにおけるスリット孔22eの周方向両側にコア磁極Rn,Rsがそれぞれ形成されるようになっている。 In the configuration shown in FIG. 27, slit holes 22e and 22f (see FIG. 26) are formed in the rotor core 22 of the rotor 21 shown in FIG. Also in this configuration, the magnetic poles Mn and Ms are guided by the slit holes 22e and 22f, so that the core magnetic poles Rn and Rs are formed on both sides in the circumferential direction of the slit hole 22e in the protrusions 24g and 24h. It has become so.
 ・図28に示す構成では、図18に示すロータ21のロータコア22に対し、スリット孔22e,22f(図26参照)を形成している。同構成においても、磁石磁極Mn,Msの磁束が各スリット孔22e,22fによって誘導されることで、各突部24g,24hにおけるスリット孔22eの周方向両側にコア磁極Rn,Rsがそれぞれ形成されるようになっている。 In the configuration shown in FIG. 28, slit holes 22e and 22f (see FIG. 26) are formed in the rotor core 22 of the rotor 21 shown in FIG. Also in this configuration, the magnetic poles Mn and Ms are guided by the slit holes 22e and 22f, so that the core magnetic poles Rn and Rs are formed on both sides in the circumferential direction of the slit hole 22e in the protrusions 24g and 24h. It has become so.
 ・図29に示す構成では、図19に示すロータ21のロータコア22に対し、スリット孔22e,22f(図26参照)を形成している。同図に示すように、各スリット孔22fは、各磁極対Pにおける磁石磁極Mn,Msの境界部、つまり、ロータコア22の楕円形状の短軸Ls上に設けられることが好ましい。また、各スリット孔22eは、ロータコア22の楕円形状の長軸Lt上に設けられることが好ましい。同構成においても、磁石磁極Mn,Msの磁束が各スリット孔22e,22fによって誘導されることで、各突部24g,24hにおけるスリット孔22eの周方向両側にコア磁極Rn,Rsがそれぞれ形成されるようになっている。 In the configuration shown in FIG. 29, slit holes 22e and 22f (see FIG. 26) are formed in the rotor core 22 of the rotor 21 shown in FIG. As shown in the figure, each slit hole 22 f is preferably provided on the boundary between the magnetic poles Mn and Ms in each magnetic pole pair P, that is, on the elliptical short axis Ls of the rotor core 22. Moreover, it is preferable that each slit hole 22e is provided on the elliptical long axis Lt of the rotor core 22. Also in this configuration, the magnetic poles Mn and Ms are guided by the slit holes 22e and 22f, so that the core magnetic poles Rn and Rs are formed on both sides in the circumferential direction of the slit hole 22e in the protrusions 24g and 24h. It has become so.
 ・図30に示す構成は、図7に示すロータ31のロータコア22に、回転軸23の径方向に沿って延びる2つのスリット孔22gが形成された構成である。一方のスリット孔22gは、突部24eの隣の磁石磁極Msと、当該磁石磁極Msの隣の磁石磁極Mnとの境界部に設けられている。他方のスリット孔22gは、突部24aの隣の磁石磁極Msと、当該磁石磁極Msの隣の磁石磁極Mnとの境界部に設けられている。このような構成によれば、各スリット孔22gの直近の各磁石磁極Msの磁束は、該スリット孔22gによってそれぞれ隣の突部24a,24eに誘導され、それにより、当該突部24a,24eがN極のコア磁極Rnとして機能するようになっている。 30 is a configuration in which two slit holes 22g extending along the radial direction of the rotating shaft 23 are formed in the rotor core 22 of the rotor 31 shown in FIG. One slit hole 22g is provided at the boundary between the magnet magnetic pole Ms adjacent to the protrusion 24e and the magnet magnetic pole Mn adjacent to the magnet magnetic pole Ms. The other slit hole 22g is provided at the boundary between the magnet magnetic pole Ms adjacent to the protrusion 24a and the magnet magnetic pole Mn adjacent to the magnet magnetic pole Ms. According to such a configuration, the magnetic flux of each magnetic pole Ms immediately adjacent to each slit hole 22g is guided to the adjacent protrusions 24a and 24e by the slit hole 22g, whereby the protrusions 24a and 24e are It functions as an N-pole core magnetic pole Rn.
 また、図31に示すように、一方のスリット孔22gを突部24eの隣の磁石磁極Msの周方向中心線(基準線X1)上に設け、他方のスリット孔22gを突部24aの隣の磁石磁極Msの周方向中心線(基準線X5)上に設けてもよい。このような構成によっても、突部24a,24eに対し、それらの隣の磁石磁極Msの磁束をスリット孔22gにて誘導させることができ、それにより、当該突部24a,24eがN極のコア磁極Rnとして機能するようになっている。 As shown in FIG. 31, one slit hole 22g is provided on the circumferential center line (reference line X1) of the magnetic pole Ms adjacent to the protrusion 24e, and the other slit hole 22g is adjacent to the protrusion 24a. You may provide on the circumferential center line (reference line X5) of the magnetic pole Ms. Even with such a configuration, the magnetic fluxes of the magnet poles Ms adjacent to the protrusions 24a and 24e can be guided by the slit hole 22g, so that the protrusions 24a and 24e have an N-pole core. It functions as the magnetic pole Rn.
 ・図32に示す構成は、図10に示すロータ31のロータコア22に、回転軸23の径方向に沿って延びる4つのスリット孔22h,22iが形成された構成である。2つのスリット孔22hは、周方向に隣り合う磁石磁極Mn,Msの境界部にそれぞれ設けられている。また、2つのスリット孔22iは、周方向に隣り合う突部24a,24bの間、及び周方向に隣り合う突部24d,24eの間にそれぞれ対応して設けられている。 32 is a configuration in which four slit holes 22h and 22i extending along the radial direction of the rotating shaft 23 are formed in the rotor core 22 of the rotor 31 shown in FIG. The two slit holes 22h are respectively provided at the boundary between the magnetic poles Mn and Ms adjacent in the circumferential direction. The two slit holes 22i are respectively provided between the protrusions 24a and 24b adjacent in the circumferential direction and between the protrusions 24d and 24e adjacent in the circumferential direction.
 このような構成によれば、各スリット孔22h,22iの磁束整流作用によって、各突部24a,24b,24d,24e,24fを疑似的な磁極(コア磁極)として機能させることができる。詳しくは、S極の磁石磁極Msと周方向に隣り合う突部24a,24eは、スリット孔22h,22iの磁束整流作用によって、N極のコア磁極Rnとして機能する。また、N極の磁石磁極Mnの周方向両側に配置された突部24b,24dは、各スリット孔22iの磁束整流作用によって、S極のコア磁極Rsとして機能する。そして、周方向においてN極の磁石磁極Mnに挟まれた位置に設けられた突部24fは、各スリット孔22hの磁束整流作用によって、S極のコア磁極Rsとして機能する。 According to such a configuration, the protrusions 24a, 24b, 24d, 24e, and 24f can function as pseudo magnetic poles (core magnetic poles) by the magnetic flux rectification action of the slit holes 22h and 22i. Specifically, the protrusions 24a and 24e adjacent to the S-pole magnet magnetic pole Ms in the circumferential direction function as the N-pole core magnetic pole Rn by the magnetic flux rectification action of the slit holes 22h and 22i. Further, the protrusions 24b and 24d arranged on both sides in the circumferential direction of the N-pole magnet magnetic pole Mn function as the S-pole core magnetic pole Rs by the magnetic flux rectification action of each slit hole 22i. The protrusion 24f provided at a position sandwiched between the N-pole magnet magnetic poles Mn in the circumferential direction functions as the S-pole core magnetic pole Rs by the magnetic flux rectifying action of each slit hole 22h.
 なお、上記したスリット孔の配置等の構成は、図32に示す構成に限定されるものではなく、例えば図33に示すように変更してもよい。図33に示す構成では、2つのスリット孔22iは、上記の図32の構成と同様に、周方向に隣り合う突部24a,24bの間、及び周方向に隣り合う突部24d,24eの間にそれぞれ対応して設けられている。また、ロータコア22には、径方向に沿って延びるスリット孔22kが、各磁石磁極Mn,Msの周方向中心に合わせてそれぞれ形成されている。このような構成によっても、各スリット孔22i,22kの磁束整流作用によって、各突部24a,24b,24d,24e,24fを疑似的な磁極(コア磁極Rn,Rs)として機能させることができる。 Note that the configuration such as the arrangement of the slit holes described above is not limited to the configuration shown in FIG. 32, and may be changed as shown in FIG. 33, for example. In the configuration shown in FIG. 33, the two slit holes 22i are provided between the projections 24a and 24b adjacent in the circumferential direction and between the projections 24d and 24e adjacent in the circumferential direction, as in the configuration of FIG. Are provided corresponding to each. The rotor core 22 is formed with slit holes 22k extending along the radial direction so as to be aligned with the circumferential centers of the magnet magnetic poles Mn and Ms. Even with such a configuration, the protrusions 24a, 24b, 24d, 24e, and 24f can function as pseudo magnetic poles (core magnetic poles Rn and Rs) by the magnetic flux rectifying action of the slit holes 22i and 22k.
 ・上記実施形態では、永久磁石25を焼結磁石としたが、これ以外に例えば、ボンド磁石としてもよい。
 ・上記実施形態では、ロータ21をステータ11の内周側に配置したインナロータ型のモータ10に本発明を具体化したが、これに特に限定されるものではなく、ロータをステータの外周側に配置したアウタロータ型のモータに本発明を具体化してもよい。
In the above embodiment, the permanent magnet 25 is a sintered magnet, but other than this, for example, a bonded magnet may be used.
In the above embodiment, the present invention is embodied in the inner rotor type motor 10 in which the rotor 21 is disposed on the inner peripheral side of the stator 11, but the invention is not particularly limited thereto, and the rotor is disposed on the outer peripheral side of the stator. The present invention may be embodied in an outer rotor type motor.
 ・上記実施形態では、ステータ11とロータ21とが径方向に対向するラジアルギャップ型のモータ10に本発明を具体化したが、これに特に限定されるものではなく、ステータとロータとが軸方向に対向するアキシャルギャップ型のモータに本発明を適用してもよい。 In the above embodiment, the present invention is embodied in the radial gap type motor 10 in which the stator 11 and the rotor 21 are opposed to each other in the radial direction. However, the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction. The present invention may be applied to an axial gap type motor that faces the motor.
 ・上記した実施形態並びに各変形例は適宜組み合わせてもよい。 -The above-mentioned embodiment and each modification may be combined suitably.

Claims (7)

  1.  巻線を有するステータと、
     前記巻線に駆動電流が供給されることで生じる回転磁界を受けて回転するロータと、を備え、
     前記ロータは、ロータコアと、周方向において互いに並設された第1磁石磁極、第2磁石磁極及び突部と、を含んでおり、
     前記第1磁石磁極は、前記ロータコアに設けられた永久磁石を用いており、
     前記第2磁石磁極は、前記ロータコアに設けられた永久磁石を用いており、前記第1磁石磁極に対して異極性であり、
     前記突部は、前記ロータコアにおいて径方向に突出形成されており、
     前記巻線は、第1の巻線と第2の巻線とを含んでおり、該第1の巻線と第2の巻線とは前記駆動電流によって互いに同一のタイミングで励磁され、かつ、直列接続されており、
     前記第1磁石磁極又は前記第2磁石磁極が前記第1の巻線と対向するロータの回転位置で、前記突部が前記第2の巻線と対向するように構成されている、モータ。
    A stator having windings;
    A rotor that rotates in response to a rotating magnetic field generated by supplying a driving current to the winding; and
    The rotor includes a rotor core, and a first magnet magnetic pole, a second magnet magnetic pole, and a protrusion that are arranged side by side in the circumferential direction,
    The first magnet magnetic pole uses a permanent magnet provided on the rotor core,
    The second magnet magnetic pole uses a permanent magnet provided on the rotor core, and has a different polarity with respect to the first magnet magnetic pole,
    The protrusion is formed to protrude in the radial direction in the rotor core,
    The winding includes a first winding and a second winding, and the first winding and the second winding are excited at the same timing by the drive current, and Connected in series,
    The motor configured such that the first magnet magnetic pole or the second magnet magnetic pole is at a rotational position of the rotor facing the first winding, and the protrusion is opposed to the second winding.
  2.  請求項1に記載のモータにおいて、
     前記突部は複数の突部のうちの少なくとも一つであり、
     前記第1及び第2磁石磁極の総数をn個として、ロータの回転軸線から径方向に延びる2n個の基準線を周方向において等角度間隔に設定し、
     前記第1及び第2磁石磁極は、それらの周方向中心が前記基準線のいずれかと一致するように配置され、
     周方向における前記第1及び第2磁石磁極の間には前記複数の突部が設けられており、
     該複数の突部の少なくとも1つは、その周方向中心が前記基準線に対してずれるように配置されている、モータ。
    The motor according to claim 1,
    The protrusion is at least one of a plurality of protrusions;
    The total number of the first and second magnet magnetic poles is n, and 2n reference lines extending in the radial direction from the rotation axis of the rotor are set at equiangular intervals in the circumferential direction,
    The first and second magnet magnetic poles are arranged so that their circumferential centers coincide with any of the reference lines,
    The plurality of protrusions are provided between the first and second magnet magnetic poles in the circumferential direction,
    At least one of the plurality of protrusions is a motor arranged such that a center in a circumferential direction thereof is shifted with respect to the reference line.
  3.  請求項1に記載のモータにおいて、
     前記第1及び第2磁石磁極の総数をn個として、ロータの回転軸線から径方向に延びる2n個の基準線を周方向において等角度間隔に設定し、
     前記第1及び第2磁石磁極は、それらの周方向中心が前記基準線のいずれかと一致するように配置され、
     周方向における前記第1及び第2磁石磁極の間には1つの前記突部が設けられており、
     該突部は、その周方向中心が前記周方向における前記第1及び第2磁石磁極の間の中心線に対してずれるように配置されている、モータ。
    The motor according to claim 1,
    The total number of the first and second magnet magnetic poles is n, and 2n reference lines extending in the radial direction from the rotation axis of the rotor are set at equiangular intervals in the circumferential direction,
    The first and second magnet magnetic poles are arranged so that their circumferential centers coincide with any of the reference lines,
    One protrusion is provided between the first and second magnet magnetic poles in the circumferential direction,
    The protrusion is disposed in such a manner that the center in the circumferential direction is deviated from the center line between the first and second magnet magnetic poles in the circumferential direction.
  4.  請求項1~3のいずれか1項に記載のモータにおいて、
     前記突部における前記ステータとの対向面の開角度が、前記第1及び第2磁石磁極における前記ステータとの対向面の開角度とは異なるように設定されている、モータ。
    The motor according to any one of claims 1 to 3,
    The motor in which the opening angle of the surface facing the stator in the protrusion is set to be different from the opening angle of the surface facing the stator in the first and second magnet magnetic poles.
  5.  請求項1~4のいずれか1項に記載のモータにおいて、
     前記突部の最外径が前記第1磁石磁極の最外径及び前記第2磁石磁極の最外径よりも大きく設定されているモータ。
    The motor according to any one of claims 1 to 4,
    A motor in which the outermost diameter of the protrusion is set larger than the outermost diameter of the first magnet magnetic pole and the outermost diameter of the second magnet magnetic pole.
  6.  請求項1~5のいずれか1項に記載のモータにおいて、
     前記第1及び第2磁石磁極はそれぞれ、前記永久磁石が前記ロータコアに埋設されてなる、モータ。
    The motor according to any one of claims 1 to 5,
    Each of the first and second magnet magnetic poles is a motor in which the permanent magnet is embedded in the rotor core.
  7.  請求項6に記載のモータにおいて、
     前記第1及び第2磁石磁極にはそれぞれ、一対の前記永久磁石が軸方向視で径方向外側に拡がる略V字をなすように設けられている、モータ。
    The motor according to claim 6, wherein
    Each of the first and second magnet magnetic poles is provided with a motor in which a pair of permanent magnets is provided so as to form a substantially V-shape extending radially outward as viewed in the axial direction.
PCT/JP2016/071105 2015-07-21 2016-07-19 Motor WO2017014212A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016003277.3T DE112016003277T5 (en) 2015-07-21 2016-07-19 engine
CN201680041589.7A CN107852049B (en) 2015-07-21 2016-07-19 Electric motor
US15/744,692 US10298078B2 (en) 2015-07-21 2016-07-19 Motor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015144309 2015-07-21
JP2015-144309 2015-07-21
JP2015-251813 2015-12-24
JP2015251813 2015-12-24
JP2016-120941 2016-06-17
JP2016120941A JP6711159B2 (en) 2015-07-21 2016-06-17 motor

Publications (1)

Publication Number Publication Date
WO2017014212A1 true WO2017014212A1 (en) 2017-01-26

Family

ID=57834457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071105 WO2017014212A1 (en) 2015-07-21 2016-07-19 Motor

Country Status (1)

Country Link
WO (1) WO2017014212A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285088A (en) * 1996-04-12 1997-10-31 Hitachi Ltd Permanent magnet dynamo-electric machine and motor-driven vehicle employing the same
JP2001346368A (en) * 2000-03-31 2001-12-14 Sanyo Denki Co Ltd Synchronous motor comprising a permanent magnet
JP2002252941A (en) * 2000-12-20 2002-09-06 Moric Co Ltd Permanent magnet type dynamo electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285088A (en) * 1996-04-12 1997-10-31 Hitachi Ltd Permanent magnet dynamo-electric machine and motor-driven vehicle employing the same
JP2001346368A (en) * 2000-03-31 2001-12-14 Sanyo Denki Co Ltd Synchronous motor comprising a permanent magnet
JP2002252941A (en) * 2000-12-20 2002-09-06 Moric Co Ltd Permanent magnet type dynamo electric machine

Similar Documents

Publication Publication Date Title
US11552514B2 (en) Motor
JP6677029B2 (en) motor
JP6589624B2 (en) motor
TW201112583A (en) Permanent magnet type synchronous motor
JP2016208805A (en) Rotor of rotary electric machine
JP6711159B2 (en) motor
JP6657928B2 (en) Motor and method of adjusting magnetic flux of motor
WO2017171037A1 (en) Rotor and method for designing rotor
WO2017014207A1 (en) Motor
JP2018085877A (en) Rotary electric machine
WO2018008475A1 (en) Motor
JP6607029B2 (en) motor
WO2017014211A1 (en) Motor
WO2017014212A1 (en) Motor
JP6481545B2 (en) motor
JP2017063594A (en) Brushless motor
JP2017143663A (en) Embedded magnet type rotary machine
WO2018135405A1 (en) Rotor and motor using same
JP6645352B2 (en) Rotating electric machine
JP6481546B2 (en) motor
JP6672914B2 (en) motor
JP6897614B2 (en) motor
JP5732788B2 (en) Rotating machine
WO2024009942A1 (en) Rotary electric machine
JP2016214053A (en) Motor system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016003277

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827772

Country of ref document: EP

Kind code of ref document: A1