WO2017014207A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2017014207A1
WO2017014207A1 PCT/JP2016/071097 JP2016071097W WO2017014207A1 WO 2017014207 A1 WO2017014207 A1 WO 2017014207A1 JP 2016071097 W JP2016071097 W JP 2016071097W WO 2017014207 A1 WO2017014207 A1 WO 2017014207A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
magnetic
magnetic pole
magnet
rotor
Prior art date
Application number
PCT/JP2016/071097
Other languages
French (fr)
Japanese (ja)
Inventor
洋次 山田
晃司 三上
晃尚 服部
横山 誠也
Original Assignee
アスモ 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015144305A external-priority patent/JP6481546B2/en
Priority claimed from JP2015144303A external-priority patent/JP6481545B2/en
Priority claimed from JP2015251817A external-priority patent/JP6607029B2/en
Priority claimed from JP2016050076A external-priority patent/JP6672914B2/en
Application filed by アスモ 株式会社 filed Critical アスモ 株式会社
Priority to DE112016003271.4T priority Critical patent/DE112016003271T5/en
Priority to CN201680041683.2A priority patent/CN107852051B/en
Priority to US15/745,213 priority patent/US11114909B2/en
Publication of WO2017014207A1 publication Critical patent/WO2017014207A1/en
Priority to US17/392,052 priority patent/US11552514B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Definitions

  • the present invention relates to a motor.
  • a permanent magnet motor such as a brushless motor includes, for example, a stator in which a winding is wound around a stator core and a rotor having a permanent magnet facing the stator as a magnetic pole, as shown in Patent Document 1, for example.
  • the rotor rotates by receiving a rotating magnetic field generated by supplying a drive current to the winding of the stator.
  • the higher the rotor is driven the greater the induced voltage generated in the stator winding due to the increase of the linkage flux by the permanent magnet of the rotor, and this induced voltage decreases the motor output. This hinders high motor rotation. Therefore, by reducing the magnetic force of the rotor magnetic poles, for example, by reducing the size of the permanent magnets of the rotor, it is possible to suppress the induced voltage when the rotor rotates at a high speed. Therefore, there is still room for improvement in this respect.
  • An object of the present invention is to provide a motor capable of increasing the rotation speed while suppressing a decrease in torque.
  • a motor includes a stator having windings and a rotor.
  • the rotor rotates in response to a rotating magnetic field generated by supplying a driving current to the winding.
  • the winding includes a first winding and a second winding, and the first winding and the second winding are excited at the same timing by the drive current.
  • the first winding and the second winding are connected in series.
  • the rotor includes a first magnetic pole part and a second magnetic pole part.
  • the second magnetic pole portion opposes the second winding at a rotational position of the rotor where the first magnetic pole portion opposes the first winding.
  • the second magnetic pole part is weaker in magnetic force applied to the stator than the first magnetic pole part.
  • FIG. 1 is a plan view of a motor according to a first embodiment of the present invention. It is an electric circuit diagram which shows the connection aspect of the coil
  • winding of FIG. (A) is a graph which shows the change of the induced voltage which arises in U phase winding at the time of rotor rotation in the motor of FIG. 1
  • (b) is the change of the induced voltage which arises in U phase winding at the time of rotor rotation in a conventional structure. It is a graph which shows. It is a top view of the rotor of another example of a 1st embodiment. It is a top view of the rotor of another example of a 1st embodiment. It is a top view of the rotor of another example of a 1st embodiment.
  • FIG. 11 is a sectional view taken along line 4-4 in FIG.
  • (A) is a graph which shows the change of the induced voltage which arises in U phase winding at the time of rotor rotation in the motor of FIG. 10
  • (b) is the change of the induced voltage which arises in U phase winding at the time of rotor rotation in a conventional structure.
  • (A) is a top view of the motor of 3rd Embodiment of this invention
  • (b) is a top view of the rotor of the same form. It is a top view of the rotor of another example of a 3rd embodiment. It is a top view of the rotor of another example of a 3rd embodiment. It is a top view of the rotor of another example of a 3rd embodiment. It is a top view of the rotor of another example of a 3rd embodiment. It is a top view of the rotor of another example of a 3rd embodiment. It is an electric circuit diagram which shows the connection aspect of the coil
  • FIG. 1 It is a top view of the rotor of another example of a 3rd embodiment. It is a top view of the rotor of another example of a 3rd embodiment.
  • (A) is a top view of the motor which concerns on embodiment,
  • (b) is a top view of a rotor.
  • (A) (b) It is explanatory drawing for demonstrating the magnetic effect
  • the motor 10 of the present embodiment is configured as a brushless motor, and a rotor 21 is arranged inside an annular stator 11.
  • the stator 11 includes a stator core 12 and a winding 13 wound around the stator core 12.
  • the stator core 12 is formed of a magnetic metal in a substantially annular shape, and has twelve teeth 12a extending radially inward at equal angular intervals in the circumferential direction.
  • windings 13 having the same number as the teeth 12a are provided, and each tooth 12a is wound in the same direction by concentrated winding. That is, twelve windings 13 are provided at equal intervals in the circumferential direction (30 ° intervals).
  • the windings 13 are classified into three phases according to the three-phase driving currents (U phase, V phase, W phase) supplied, and U1, V1, W1, U2 in order counterclockwise in FIG. , V2, W2, U3, V3, W3, U4, V4, W4.
  • the U-phase windings U1 to U4 are arranged at equal intervals in the circumferential direction (90 ° intervals).
  • the V-phase windings V1 to V4 are arranged at equal circumferential intervals (90 ° intervals).
  • the W-phase windings W1 to W4 are arranged at equal intervals in the circumferential direction (90 ° intervals).
  • the windings 13 are connected in series for each phase. That is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 each constitute a series circuit.
  • a series circuit of U-phase windings U1 to U4, a series circuit of V-phase windings V1 to V4, and a series circuit of W-phase windings W1 to W4 are star-connected.
  • the rotor 21 accommodated in the radially inner space of the stator 11 (the teeth 12 a) includes a rotor core 22 and eight permanent magnets 23 fixed to the outer peripheral surface of the rotor core 22.
  • the permanent magnet 23 is, for example, an anisotropic sintered magnet, and is composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like.
  • the rotor core 22 is formed of a magnetic metal in a substantially cylindrical shape, and a rotating shaft 24 is fixed at the center.
  • a pair of first and second magnet fixing surfaces 22 a and 22 b each having an arc shape centered on the axis L when viewed from the direction of the axis L of the rotating shaft 24 is formed.
  • the first magnet fixing surface 22a and the second magnet fixing surface 22b are alternately formed in the circumferential direction, and their circumferential widths (open angles around the axis L) are all equal (that is, 90 °). Yes.
  • the outer diameters of the pair of first magnet fixing surfaces 22a are the same, and the outer diameters of the pair of second magnet fixing surfaces 22b are also the same.
  • the outer diameter of the second magnet fixing surface 22b is smaller than the outer diameter of the first magnet fixing surface 22a.
  • Each permanent magnet 23 has the same material and the same shape, and the outer peripheral surface of each permanent magnet 23 has an arc shape centered on the axis L when viewed from the direction of the axis L of the rotating shaft 24. Further, the opening angle (circumferential width) around the axis L of each permanent magnet 23 is 45 °.
  • Each permanent magnet 23 is formed such that the magnetic orientation is directed in the radial direction, and the magnetic poles appearing on the outer circumferential side are alternately arranged in the circumferential direction.
  • Each of these permanent magnets 23 constitutes a magnetic pole of the rotor 21. That is, the rotor 21 is configured as an 8-pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (45 ° intervals).
  • the N pole portions 25a and 25b include two first N pole portions 25a made up of N pole permanent magnets 23 (permanent magnet N1 in FIG. 1) provided on each first magnet fixing surface 22a and each second pole portion 25a. It is divided into two second N-pole portions 25b made of N-pole permanent magnets 23 (permanent magnet N2 in FIG. 1) provided on the magnet fixing surface 22b and positioned radially inward from the permanent magnet N1.
  • the outer peripheral surface of the second N pole portion 25b (the outer peripheral surface of the permanent magnet N2) is located radially inward from the outer peripheral surface of the first N pole portion 25a (the outer peripheral surface of the permanent magnet N1).
  • the pair of first N pole portions 25a are provided at 180 ° facing positions in the circumferential direction
  • the pair of second N pole portions 25b are also provided at 180 ° facing positions in the circumferential direction. That is, the first N-pole portions 25a and the second N-pole portions 25b are alternately provided at equal circumferential intervals (90 ° intervals) in the circumferential direction.
  • the configuration of the N pole of the rotor 21 is the same for the S pole. That is, the four south pole portions 26a and 26b each formed by the permanent magnet 23 having the south pole on the outer circumferential side are configured at equal intervals in the circumferential direction (90 ° intervals).
  • the S pole portions 26a and 26b include two first S pole portions 26a made of S pole permanent magnets 23 (permanent magnet S1 in FIG. 1) provided on each first magnet fixing surface 22a, and each second. It is divided into two second S pole portions 26b formed of S pole permanent magnets 23 (permanent magnet S2 in FIG. 1) which are provided on the magnet fixing surface 22b and located radially inward of the permanent magnet S1.
  • the outer peripheral surface of the second S pole portion 26b (the outer peripheral surface of the permanent magnet S2) is positioned radially inward from the outer peripheral surface of the first S pole portion 26a (the outer peripheral surface of the permanent magnet S1).
  • the pair of first S pole portions 26a is provided at a 180 ° facing position in the circumferential direction
  • the pair of second S pole portions 26b is also provided at a 180 ° facing position in the circumferential direction. That is, the first S pole portion 26a and the second S pole portion 26b are alternately provided with the center positions in the circumferential direction at equal angular intervals (90 ° intervals).
  • the rotor 21 includes a first N pole portion 25a and a first S pole portion 26a as first magnetic pole portions, and a second N pole portion 25b and a second S pole portion 26b as second magnetic pole portions. Next, the operation of this embodiment will be described.
  • a three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively. Then, the windings U1 to W4 are excited at the same timing for each phase to generate a rotating magnetic field in the stator 11, and the rotor 21 rotates based on the rotating magnetic field. At this time, the magnetic poles formed on the stator 11 by the supply of the three-phase drive current are the same for the windings U1 to W4 of each phase.
  • the number of pole pairs of the rotor 21 (that is, the number of each of the N pole portions 25a and 25b and the S pole portions 26a and 26b) is the same as the number of the windings U1 to W4 of each phase (in this embodiment, “4 ]).
  • the rotor 21 rotates, for example, when one of the N pole portions 25a and 25b is opposed to the U phase winding U1 in the radial direction, the other N pole portions 25a and 25b are connected to the U phase windings U2 to U2.
  • U4 is opposed to each in the radial direction (see FIG. 1).
  • the outer peripheral surface of the second N pole portion 25b (the surface facing the stator 11) is located on the radially inner side with respect to the outer peripheral surface of the first N pole portion 25a, the radial direction between the second N pole portion 25b and the stator 11 is provided.
  • the air gap is wider at the second N pole portion 25b than at the first N pole portion 25a.
  • the magnetic force applied to the stator 11 for example, the U-phase windings U1 to U4
  • the N pole portions 25a and 25b of the rotor 21 is weaker at the second N pole portion 25b than at the first N pole portion 25a.
  • the interlinkage magnetic flux interlinking U4 is smaller than the interlinkage magnetic flux interlinking U-phase windings U1, U3 facing the first N pole portion 25a. Accordingly, the induced voltage generated in the U-phase windings U2 and U4 facing the second N pole portion 25b is smaller than the induced voltage generated in the U-phase windings U1 and U3 facing the first N pole portion 25a.
  • FIG. 3A shows the change in the induced voltage generated in the U-phase windings U1 to U4 during the rotation of the rotor in the present embodiment in a predetermined rotation range (90 °)
  • FIG. 4 shows changes in the induced voltage generated in the U-phase windings U1 to U4 during rotation of the rotor in the conventional configuration in a predetermined rotation range (90 °).
  • the conventional configuration is a configuration in which the magnetic poles of the rotor are uniform, that is, a configuration in which the rotor core 22 is cylindrical and the radial positions of the permanent magnets N2 and S2 are the same as those of the permanent magnets N1 and S1.
  • the second N pole portion 25b and the second S pole portion 26b are more stable than the first N pole portion 25a and the first S pole portion 26a, respectively.
  • the magnetic force to U1 to U4) is weak.
  • the second N-pole portion 25b and the second N-pole portion 25b and the first S-pole portion 26a with respect to the induced voltage vx generated in the U-phase windings U1 to U4 (eg, U-phase windings U1 and U3) facing the first N-pole portion 25a and the first S-pole portion 26a
  • the induced voltage vy generated in the U-phase windings U1 to U4 (for example, U-phase windings U2 and U4) facing the 2S pole portion 26b is reduced.
  • the combined induced voltage vu of the U-phase windings U1 to U4 has been described as an example, but the second N-pole portion 25b and the second-phase windings V1 to V4 and the W-phase windings W1 to W4 are similarly described.
  • a decrease in the synthesis induced voltage due to the 2S pole portion 26b occurs.
  • the windings 13 of the stator 11 are composed of four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current.
  • the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
  • the N pole of the rotor 21 includes a first N pole portion 25a having a permanent magnet N1, and the first N pole portion 25a is a first winding (for example, U phase winding) in any of the U, V, and W phases. And a second N pole portion 25b facing the second winding (for example, U-phase windings U2 and U4) in phase at the rotational position of the rotor 21 facing the lines U1 and U3).
  • the second N pole portion 25b is configured such that the magnetic force applied to the stator 11 is weaker than that of the first N pole portion 25a.
  • the first S pole portion 26 a having the permanent magnet S 1 and the first S pole portion 26 a of the first winding (for example, U, V, or W phase) And a second S pole portion 26b facing the second winding of the same phase (for example, the U-phase windings U2 and U4) at the rotational position of the rotor 21 facing the U-phase windings U1 and U3).
  • the second S pole portion 26b is configured such that the magnetic force applied to the stator 11 is weaker than that of the first S pole portion 26a.
  • the magnetic force (the magnetic force applied to the stator 11) of all the N pole portions (or S pole portions) facing the in-phase windings 13 in the rotor 21 is not weakened, but part of them.
  • the combined induction voltage for example, the combined induction voltage vu of the U phase
  • the torque reduction as much as possible. High rotation can be achieved.
  • the sum of the induced voltages generated in the respective windings for each phase becomes the combined induced voltage.
  • the voltage tends to increase.
  • the second N pole portion 25b and the second N pole portion 25b and the second S pole portion 26b are weakened by weakening the magnetic force of the second N pole portion 25b and the second S pole portion 26b as described above.
  • the effect of suppressing the combined induction voltage by the second S pole portion 26b can be obtained more remarkably, and it is more preferable to increase the rotation of the motor 10.
  • the number of first and second N pole portions 25a and 25b (first and second S pole portions 26a and 26b) of the rotor 21 is n (that is, two). That is, according to this configuration, the number of windings in each phase (the number of U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4) is an even number of 4 or more.
  • the first and second N pole portions 25a and 25b (first and second S pole portions 26a and 26b) of the rotor 21 are configured in the same number (half the number of windings in each phase).
  • first and second N pole portions 25a and 25b (first and second S pole portions 26a and 26b) of the rotor 21 can be alternately provided at equal intervals in the circumferential direction.
  • first and second N pole portions 25a and 25b (first and second S pole portions 26a and 26b) having different magnetic forces and masses are arranged in a balanced manner in the circumferential direction.
  • a mechanically balanced structure can be obtained.
  • the first and second N pole portions 25a, 25b are configured to have permanent magnets N1, N2 (permanent magnets S1, S2), respectively.
  • the outer peripheral surface of the portion 25b (second S pole portion 26b) is configured to be positioned radially inward from the outer peripheral surface of the first N pole portion 25a (second S pole portion 26b).
  • the magnetic force applied from the rotor 21 to the stator 11 is the first N pole portion 25a (The second S pole part 25b (second S pole part 26b) can be weaker than the first S pole part 26a), which is advantageous in terms of component management.
  • field weakening control may be performed when the rotor 21 is rotating at a high speed.
  • the field-weakening current supplied to the winding 13 can be kept small. Since the field weakening current can be reduced, the permanent magnets N1, N2, S1, and S2 are difficult to demagnetize during field weakening control, and the copper loss of the winding 13 can be suppressed. In other words, since the amount of flux linkage that can be reduced with the same amount of field-weakening current increases, higher rotation by field-weakening control can be obtained more effectively.
  • the permanent magnets N1 and N2 are the same magnet, and the permanent magnet N2 (permanent magnet S2) is disposed radially inward of the permanent magnet N1 (permanent magnet S1).
  • the magnetic force applied to the stator 11 by the second N pole portion 25b (second S pole portion 26b) is made weaker than that of the first N pole portion 25a (first S pole portion 26a).
  • the configuration for making the magnetic force applied to the stator 11 weaker at the second N pole portion 25b (second S pole portion 26b) than at the first N pole portion 25a (first S pole portion 26a) is limited to the above embodiment. is not.
  • each permanent magnet N2, S2 of the second N pole portion 25b and the second S pole portion 26b is defined as the first N pole.
  • the opening angle ⁇ 1 of each permanent magnet N1, S1 of the portion 25a and the first S pole portion 26a may be set narrower. According to such a configuration, the magnetic force applied from the rotor 21 to the stator 11 by the simple shape change of the permanent magnets N2 and S2 is greater than the first N pole portion 25a (first S pole portion 26a) than the second N pole portion 25b (first step).
  • the rotor core 22 has a simple configuration in which the outer peripheral surface is circular in an axial view (that is, a configuration in which there is no step by providing the first and second magnet fixing surfaces 22a and 22b on the outer peripheral surface of the rotor core 22). Is possible.
  • the radial thickness T2 of the permanent magnet N2 (permanent magnet S2) is made thinner than the radial thickness T1 of the permanent magnet N1 (permanent magnet S1), so that the stator 21 can move to the stator.
  • 11 may be weaker at the second N pole portion 25b (second S pole portion 26b) than at the first N pole portion 25a (first S pole portion 26a).
  • the magnetic force applied from the rotor 21 to the stator 11 by the simple shape change of the permanent magnets N1 and N2 is greater than the first N pole portion 25a (first S pole portion 26a) than the second N pole portion 25b (second S).
  • the pole portion 26b) can be weakened, and as a result, the induced voltage generated in the winding 13 can be kept small.
  • the magnetic force applied from the rotor 21 to the stator 11 by changing the shape of the permanent magnets N1 and N2 is greater than the first N pole portion 25a (first S pole portion 26a). Although it is weakened by (2nd S pole part 26b), it is not restricted to this.
  • the magnetic force applied from the rotor 21 to the stator 11 is the first N pole portion 25a ( It can be weaker than the first S pole part 26a) by the second N pole part 25b (second S pole part 26b).
  • the outer peripheral surface of the rotor core 22 can be made circular when viewed in the axial direction, and the shapes of the permanent magnets N1, N2, S1, and S2 can all be the same.
  • the first N pole portions 25a and the second N pole portions 25b in the rotor 21 are provided at positions opposed to each other by 180 ° in the circumferential direction.
  • the second S pole portions 26b are provided at 180 ° facing positions in the circumferential direction. That is, the first N pole portion 25a and the second N pole portion 25b are alternately arranged in the circumferential direction, and the first S pole portion 26a and the second S pole portion 26b are also alternately arranged in the circumferential direction. It is not something.
  • the second N pole portion 25b may be provided at a position where the first N pole portion 25a is opposed to 180 °
  • the second S pole portion 26b may be provided at a position where the first S pole portion 26a is opposed to 180 °.
  • the first magnet fixing surface 22a is formed on one half of the outer periphery of the rotor core 22, and the second magnet fixing surface 22b is formed on the other half.
  • the first N pole portion 25a and the first S pole portion 26a are alternately provided on one half of the outer periphery of the rotor core 22 (first magnet fixing surface 22a), and the second N pole is provided on the other half (second magnet fixing surface 22b).
  • the portions 25b and the second S pole portions 26b are alternately provided. Even with such a configuration, the induced voltage generated in the winding 13 can be kept small, and the motor 10 can be rotated at a high speed.
  • the first N pole portion 25a and the second N pole portion 25b are configured with the same number (half the number of windings 13 of each phase, which is two).
  • the number is not necessarily the same.
  • the number of the first N pole portions 25a may be three (or one), and the number of the second N pole portions 25b may be one (or three).
  • the same change may be made in the S pole of the rotor (first and second S pole portions 26a, 26b).
  • the second N pole portion 25b and the second S pole portion 26b having a weak magnetic force are provided in the N pole and the S pole of the rotor 21, respectively, but the present invention is not particularly limited thereto. That is, a magnetic pole part (second N pole part 25b or second S pole part 26b) having a weak magnetic force is provided only on one pole of the rotor 21, and all the other poles are the same magnetic pole part (first N pole part 25a or first S pole). Part 26a).
  • the windings of each phase that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series.
  • the winding mode may be changed as appropriate.
  • the windings U1 and U2 are connected in series, and the windings U3 and U4 are connected in series, and the series pair of the windings U1 and U2 and the windings U3 and U4. Are connected in parallel.
  • the windings V1 and V2 are connected in series, and the windings V3 and V4 are connected in series.
  • the series pair of the windings V1 and V2 and the series pair of the windings V3 and V4 are parallel. It is connected.
  • the windings W1, W2 are connected in series, and the windings W3, W4 are connected in series.
  • the series pair of the windings W1, W2 and the series pair of the windings W3, W4 Are connected in parallel.
  • the reduction of the induced voltage due to the provision of the second N pole part 25b (second S pole part 26b) having a weaker magnetic force than the first N pole part 25a (first S pole part 26a) is caused by the series connection of the windings U1 and U2. It will always occur in both the pair and the series pair of windings U3, U4. Since the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are parallel, the combined induction voltage vu in the entire U-phase winding is the combined induction voltage of the series pair of the windings U1 and U2. (And the combined induction voltage of the series pair of windings U3 and U4) (vx + vy), and the combined induction voltage vu can be effectively suppressed.
  • the winding U2 and the winding U3 are interchanged in the example shown in FIG. 7, that is, the windings U1, U3 having the same magnitude of the induced voltage are connected in series and the magnitude of the induced voltage is the same.
  • the reduction of the induced voltage due to the provision of the second N pole portion 25b (second S pole portion 26b) having a lower magnetic force than the first N pole portion 25a (first S pole portion 26a) is caused by the series connection of the windings U2 and U4. It occurs only in one of the series and the pair of windings U1 and U3, and the induced voltage does not decrease on the other side.
  • the first N pole portion 25a (or the first S pole portion 26a) and the second N pole portion 25b (or the second S pole) at a predetermined rotational position of the rotor 21.
  • the windings (for example, the U-phase winding U1 and the U-phase winding U2) opposed to the portion 26b) are connected in series.
  • the weak induced voltage generated in the windings of the same phase and the strong induced voltage can be added to obtain a combined induced voltage, and the combined induced voltage in each phase can be effectively suppressed.
  • the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are connected in parallel.
  • the present invention is not particularly limited to this, and the winding U1 , U2 and the series pair of windings U3, U4 may be separated, and a pair of inverters may be provided to supply a U-phase drive current to each of the separated series pairs. The same effect can be obtained by this configuration. The same change can be made in the V phase and the W phase.
  • winding was made into the star connection, it is good also as not only this but a delta connection, for example.
  • the rotor 21 has 8 poles and the number of windings 13 of the stator 11 is 12 (that is, the motor configuration has 8 poles and 12 slots).
  • the number of can be appropriately changed according to the configuration.
  • the number of poles of the rotor 21 and the number of windings 13 are appropriately changed so that the relationship between the number of poles of the rotor 21 and the number of windings 13 is 2n: 3n (where n is an integer of 2 or more). May be.
  • the number of pole portions 25b (second S pole portions 26b) can be made the same, and a magnetically balanced configuration can be achieved.
  • the relationship between the number of poles of the rotor 21 and the number of windings 13 is not necessarily 2n: 3n (where n is an integer equal to or greater than 2), for example, 10 poles 12 slots, 14 poles 12 slots, etc. It may be configured.
  • FIG. 8 shows an example of a motor 30 composed of 10 poles and 12 slots.
  • the same components as those in the above embodiment are denoted by the same reference numerals, detailed description thereof will be omitted, and different portions will be described in detail.
  • the twelve windings 13 of the stator 11 are classified according to the three-phase driving current (U phase, V phase, W phase) supplied, and in FIG.
  • U phase winding bar U1, bar U2, V phase winding bar V1 with respect to U phase windings U1, U2, V phase windings V1, V2 and W phase windings W1, W2 constituted by positive windings.
  • Bar V2, W-phase winding bar W1, bar W2 are constituted by reverse winding.
  • the U-phase winding U1 and the bar U1 are placed at positions facing each other by 180 °, and similarly, the U-phase winding U2 and the bar U2 are placed at positions facing each other by 180 °.
  • U-phase windings U1, U2, U1 and U2 are connected in series.
  • V-phase windings V1, V2, V1 and V2 are connected in series
  • W-phase winding W1. , W2, bar W1, and bar W2 are connected in series.
  • the U-phase windings U1, U2, U1 and U2 are supplied with U-phase drive current.
  • the reverse winding U-phase winding bars U1 and U2 are always excited with the opposite polarity (reverse phase) with respect to the forward winding U-phase windings U1 and U2, but the excitation timing is the same. .
  • the rotor 21 of the motor 30 is a 10-pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (36 ° intervals), and is configured as the same type as the rotor 21 shown in FIG. Yes. That is, the rotor 21 includes a first N pole portion 25a made of a permanent magnet N1, a second N pole portion 25b made of a permanent magnet N2, a first S pole portion 26a made of a permanent magnet S1, and a second S pole made of a permanent magnet S2.
  • the permanent magnets N2 and S2 are configured to be thinner in the radial direction than the permanent magnets N1 and S1.
  • first N pole portion 25a and the first S pole portion 26a are alternately provided in the half circumference (right half circumference in FIG. 8) of the rotor 21, and the second N pole portion 25b and the second S pole portion 26b ( The permanent magnets N2 and S2) are alternately provided in the remaining half circumference (left half circumference in FIG. 8) of the rotor 21.
  • the second S pole portion 26b is located on the opposite side (180 ° facing position) of the first N pole portion 25a, and the second N pole portion 25b is located on the opposite side of the first S pole portion 26a (180 ° facing position). Is configured to be located.
  • the first N pole portion 25a is composed of two
  • the first S pole portion 26a is three
  • the second N pole portion 25b is three
  • the second S pole portion 26b is composed of two
  • the present invention is not limited to this, and the first N-pole portion 25a may be composed of three
  • the first S-pole portion 26a may be two
  • the second N-pole portion 25b may be two
  • the second S-pole portion 26b may be three.
  • the same type of rotor 21 as in the example of FIG. 5 is used, but the same type as the rotor 21 shown in the above embodiment and FIG. 4 may be used.
  • the second N pole portion 25b when the rotor 21 rotates, for example, when the first S pole portion 26a faces the U phase winding U1 in the radial direction, the second N pole portion 25b is connected to the U phase winding bar U1 on the opposite side in the circumferential direction. Opposing in the radial direction (see FIG. 8).
  • the permanent magnet N2 constituting the second N pole portion 25b is thinner in the radial direction than the permanent magnet S1 constituting the first S pole portion 26a, the second N pole portion 25b is smaller than the first S pole portion 26a.
  • the magnetic force applied to the stator 11 is weakened.
  • the magnetic pole portions for example, the first S pole portion 26a and the second N pole portion
  • the windings 13 for example, the U-phase winding U1 and the bar U1 excited in opposite phases (same timing).
  • the magnetic forces are different from each other (that is, the other magnetic force is weaker than the other).
  • the combined induction voltage for example, the combined induction voltage of the U-phase winding U1 and the bar U1 generated in the antiphase winding 13 by the magnetic poles of the rotor 21 while suppressing the torque reduction as much as possible.
  • the rotation of the motor 30 can be increased.
  • the first N pole portion 25 a and the first S pole portion 26 a are provided on the half circumference of the rotor 21, and the second N pole portion 25 b and the second S pole portion 26 b are provided on the other half circumference of the rotor 21. It was.
  • the arrangement of the magnetic pole portions of the rotor 21 is not particularly limited to this, and the second S pole portion 26b is located on the opposite side of the first N pole portion 25a in the circumferential direction, and the first S pole portion 26a is opposite in the circumferential direction. If the 2nd N pole part 25b is located in the side, the arrangement
  • stator 11 it is not necessary that all the U-phase windings U1, U2, bar U1, and bar U2 are connected in series, and a pair of windings U1, U1 and a pair of windings U2, U2 are provided. It is good also as a structure which made each another separate serial pair. Moreover, it can change similarly also in V phase and W phase.
  • the present invention can also be applied to a 14 poles and 12 slots structure. Further, the present invention can also be applied to a configuration in which the number of rotor poles and the number of slots of 10 poles and 12 slots (or 14 poles and 12 slots) are equal.
  • FIG. 9 shows an example of the rotor 21 in the configuration of 20 poles and 24 slots.
  • the strong magnetic pole group Ma in which the first N pole portion 25a and the first S pole portion 26a are alternately arranged in the circumferential direction, and the second N pole portion 25b and the second S pole portion 26b are alternately arranged in the circumferential direction.
  • the weak magnetic pole groups Mb thus arranged are alternately arranged at an occupation angle of 90 ° in the circumferential direction of the rotor 21.
  • the N pole of the rotor 21 is composed of only the first N pole portion 25a and the second N pole portion 25b.
  • the magnetic force applied to the stator 11 is weaker than that of the second N pole portion 25b. You may provide the 3rd N pole part.
  • the permanent magnet 23 is a sintered magnet, but other than this, for example, a bonded magnet may be used.
  • the present invention is embodied in the inner rotor type motor 10 in which the rotor 21 is disposed on the inner peripheral side of the stator 11, but the invention is not particularly limited thereto, and the rotor is disposed on the outer peripheral side of the stator.
  • the outer rotor type motor may be embodied.
  • the present invention is embodied in the radial gap type motor 10 in which the stator 11 and the rotor 21 are opposed to each other in the radial direction.
  • the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction.
  • the present invention may be applied to an axial gap type motor that faces the motor.
  • the motor 110 of the present embodiment is configured as a brushless motor, and is configured by arranging a rotor 121 inside an annular stator 11. Since the configuration of the stator 11 is the same as that of the stator 11 of the first embodiment, detailed description thereof is omitted.
  • the winding 13 of the stator 11 is configured similarly to the winding 13 of the first embodiment, and has the configuration shown in FIG.
  • the rotor 121 is disposed between the rotating shaft 122, a pair of rotor cores 123n and 123s having the same shape, and the axial direction of the pair of rotor cores 123n and 123s. And a permanent magnet 124.
  • the rotor cores 123n and 123s are both made of a magnetic metal.
  • the rotor core that contacts the N pole side end surface of the permanent magnet 124 magnetized in the axial direction is referred to as the N pole side rotor core 123n
  • the rotor core that contacts the S pole side end surface of the permanent magnet 124 is the S pole side rotor core. 123s.
  • the N pole side rotor core 123n has a disk-shaped core base 125n, and a rotating shaft 122 is inserted through and fixed to the center of the core base 125n.
  • a plurality (four in this embodiment) of N pole side claw-shaped magnetic poles 126n and 127n are projected radially outward and extended in the axial direction on the outer peripheral portion of the core base 125n at equal intervals in the circumferential direction. Yes.
  • These N pole side claw-shaped magnetic poles 126n and 127n extend in the same direction in the axial direction.
  • the four N pole side claw-shaped magnetic poles 126n, 127n have a pair of first N pole side claw-shaped magnetic poles 126n (first magnetic pole portions) having an open angle ⁇ 1 (open angle with the axis L of the rotating shaft 122 as the center). ) And a pair of second N pole side claw-shaped magnetic poles 127n (second magnetic pole portions) having an opening angle ⁇ 2 narrower than the opening angle ⁇ 1. That is, the radially outer surface of the first N pole side claw-shaped magnetic pole 126n (the surface facing the stator 11) is wider in the circumferential direction than the radially outer surface of the second N pole side claw-shaped magnetic pole 127n.
  • the radially outer surfaces of the N-pole claw-shaped magnetic poles 126n and 127n are arcuate surfaces located on the same circle centered on the axis L of the rotating shaft 122 when viewed in the axial direction.
  • the thicknesses of the N-pole claw-shaped magnetic poles 126n and 127n are all the same.
  • the first N-pole claw-shaped magnetic pole 126n and the second N-pole claw-shaped magnetic pole 127n are alternately provided at their circumferential center positions at equal angular intervals (90 ° intervals). That is, the pair of first N pole side claw-shaped magnetic poles 126n are provided at positions facing each other by 180 ° in the circumferential direction. Similarly, the pair of second N pole side claw-shaped magnetic poles 127n are also provided at the positions facing each other by 180 °. ing.
  • the S pole side rotor core 123s has the same shape as the N pole side rotor core 123n, and corresponds to the core base 125n of the N pole side rotor core 123n, the first N pole side claw-shaped magnetic pole 126n, and the second N pole side claw-shaped magnetic pole 127n, respectively. It has a core base 125s, a first S pole side claw-shaped magnetic pole 126s (first magnetic pole part), and a second S pole side claw-shaped magnetic pole 127s (second magnetic pole part). That is, the opening angle ⁇ 2 of the second S pole side claw-shaped magnetic pole 127s is set to be narrower than the opening angle ⁇ 1 of the first S pole side claw-shaped magnetic pole 126s.
  • the S pole-side rotor core 123s is arranged between the N pole claw magnetic poles 126n and 127n to which the S pole claw magnetic poles 126s and 127s correspond respectively (the first N pole claw magnetic pole 126n and the second N pole claw magnetic pole 127n. Between the N pole rotor core 123n and the N pole rotor core 123n. More specifically, the claw-shaped magnetic poles 126n, 127n, 126s, and 127s are configured such that their circumferential center positions are equiangular intervals (45 ° intervals). Further, the N pole side claw-shaped magnetic poles 126n and 127n and the S pole side claw-shaped magnetic poles 126s and 127s are alternately arranged in the circumferential direction.
  • the permanent magnet 124 is disposed between the axial direction of the core base 125n of the N-pole rotor core 123n and the core base 125s of the S-pole rotor core 123s.
  • the permanent magnet 124 has an annular shape, and the rotating shaft 122 passes through the center of the permanent magnet 124.
  • the axial end surface of the permanent magnet 124 has a planar shape perpendicular to the axis L of the rotating shaft 122, and is in close contact with the inner end surfaces of the core bases 125n and 125s.
  • the outer diameter of the permanent magnet 124 corresponds with the outer diameter of each core base 125n, 125s.
  • the permanent magnet 124 is, for example, an anisotropic sintered magnet, and is composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like.
  • the N-pole claw-shaped magnetic poles 126n and 127n are radially spaced from the outer peripheral surface of the core base 125s of the S-pole rotor core 123s and the outer peripheral surface of the permanent magnet 124. Further, the axial front end surfaces of the N pole side claw-shaped magnetic poles 126n and 127n are configured at the same position in the axial direction as the outer end surface of the core base 125s.
  • the S pole side claw-shaped magnetic poles 126 s and 127 s are radially separated from the outer peripheral surface of the core base 125 n of the N pole side rotor core 123 n and the outer peripheral surface of the permanent magnet 124. Further, the axial front end surfaces of the S pole side claw-shaped magnetic poles 126s and 127s are configured at the same position in the axial direction as the outer end surface of the core base 125n.
  • the permanent magnet 124 is magnetized in the axial direction so that the core base 125n side is an N pole and the core base 125s side is an S pole. Due to the magnetic field of the permanent magnet 124, the N pole side claw-shaped magnetic poles 126n and 127n function as N poles, and the S pole side claw-shaped magnetic poles 126s and 127s function as S poles.
  • the rotor 121 of the present embodiment is a so-called Landel type rotor having eight poles (four N pole side claw-shaped magnetic poles 126n, 127n and four S pole side claw-shaped magnetic poles 126s, 127s) using the permanent magnet 124. It is configured as.
  • the number of poles of the rotor 121 is set to 2n (n is an integer equal to or greater than 2), and the number of windings 13 of the stator 11 is set to 3n.
  • the number of poles of the rotor 121 is set to “8”, and the number of windings 13 of the stator 11 is set to “12”.
  • a three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively.
  • the windings U1 to W4 are excited at the same timing for each phase to generate a rotating magnetic field in the stator 11, and the rotor 121 rotates based on the rotating magnetic field.
  • the magnetic poles formed on the side of the stator 11 by the supply of the three-phase drive current are the same for the windings U1 to W4 of each phase.
  • the number of pole pairs of the rotor 121 (that is, the number of each of the N pole-side claw-shaped magnetic poles 126n and 127n and the S pole-side claw-shaped magnetic poles 126s and 127s) is the same as the number of windings U1 to W4 of each phase ( In this embodiment, “4”).
  • the rotor 121 rotates, for example, when one of the S pole side claw-shaped magnetic poles 126s and 127s is opposed to the U-phase winding U1 in the radial direction, the other S pole side claw-shaped magnetic poles 126s and 127s are The U-phase windings U2 to U4 are opposed to each other in the radial direction (see FIG. 10).
  • the second S pole side claw-shaped magnetic pole 127s has a narrower opening angle than the first S pole side claw-shaped magnetic pole 126s (since the opening angle ⁇ 2 ⁇ open angle ⁇ 1 as described above), the S pole of the rotor 121
  • the magnetic force applied to the stator 11 is weaker at the second S pole side claw-shaped magnetic pole 127s than at the first S pole side claw-shaped magnetic pole 126s.
  • FIG. 13A shows a change in the induced voltage generated in the U-phase windings U1 to U4 during rotation of the rotor in the present embodiment in a predetermined rotation range (90 °)
  • FIG. 4 shows changes in the induced voltage generated in the U-phase windings U1 to U4 during rotation of the rotor in the conventional configuration in a predetermined rotation range (90 °).
  • the conventional configuration is a configuration in which each magnetic pole of the rotor is uniform, that is, a configuration in which each claw-shaped magnetic pole 126n, 127n, 126s, 127s of the rotor 121 has the same shape (the same opening angle).
  • the second S pole side claw-shaped magnetic pole 127s and the second N pole side claw-shaped magnetic pole 127n are replaced with the first S pole side claw-shaped magnetic pole 126s and the first N pole side claw, respectively.
  • the magnetic force to the stator 11 (U-phase windings U1 to U4) is weaker than that of the magnetic pole 126n.
  • the first The induced voltage vy generated in the U-phase windings U1 to U4 facing the 2S pole-side claw-shaped magnetic pole 127s and the second N-pole side claw-shaped magnetic pole 127n is reduced.
  • the combined induced voltage vu of the U-phase windings U1 to U4 has been described as an example, but the second S pole side claw-shaped magnetic pole is similarly applied to the V-phase windings V1 to V4 and the W-phase windings W1 to W4.
  • the resultant interlinkage magnetic flux decreases due to the narrow opening angle of 127s and the second N-pole claw-shaped magnetic pole 127n.
  • the windings 13 of the stator 11 are composed of four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current.
  • the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
  • the N pole of the rotor 121 includes a first N pole side claw-shaped magnetic pole 126n, and the first N pole side claw-shaped magnetic pole 126n has a first winding (for example, a U phase) in any of the U, V, and W phases.
  • the shape (open angle) of the second N-pole claw-shaped magnetic pole 127n is set so that the magnetic force applied to the stator 11 is weaker than that of the first N-pole claw-shaped magnetic pole 126n.
  • the first S pole side claw-shaped magnetic pole 126 s and the first S pole side claw-shaped magnetic pole 126 s are in the first winding (U, V, or W phase).
  • a second S pole side claw-shaped magnetic pole 127s facing the second winding for example, the U phase windings U2, U4 in phase at the rotational position of the rotor 121 facing the U phase windings U1, U3).
  • the shape (open angle) of the second S pole side claw-shaped magnetic pole 127s is set so that the magnetic force applied to the stator 11 is weaker than that of the first S pole side claw-shaped magnetic pole 126s.
  • the magnetic force (magnetic force applied to the stator) of all the N poles (or all the S poles) in the rotor 121 is not weakened, but a part thereof (second N pole side claw-shaped magnetic pole 127n). And the second S-pole claw-shaped magnetic pole 127s) is configured to weaken the magnetic force.
  • the combined induction voltage for example, the combined induction voltage vu of the U phase
  • the magnetic poles of the rotor 121 can be suppressed to a low level while suppressing a decrease in torque as much as possible. High rotation can be achieved.
  • the sum of the induced voltages generated in the respective windings for each phase becomes the combined induced voltage.
  • the voltage tends to increase.
  • the combined induced voltage is suppressed by weakening the magnetic force of the second N pole side claw-shaped magnetic pole 127n and the second S pole side claw-shaped magnetic pole 127s as described above. The effect can be obtained more remarkably, and it is more suitable for increasing the rotation speed of the motor.
  • the number of first and second N pole side claw-shaped magnetic poles 126n, 127n (first and second S pole side claw-shaped magnetic poles 126s, 127s) of the rotor 121 is n (that is, two).
  • n that is, two.
  • the first and second N pole side claw-shaped magnetic poles 126n and 127n (first and second S pole side claw-shaped magnetic poles 126s and 127s) of the rotor 121 are configured in the same number (half the number of windings of each phase). Is done.
  • the first and second N pole side claw-shaped magnetic poles 126n and 127n (first and second S pole side claw-shaped magnetic poles 126s and 127s) of the rotor 121 can be alternately provided at equal intervals in the circumferential direction.
  • the first and second N pole side claw-shaped magnetic poles 126n and 127n (first and second S pole side claw-shaped magnetic poles 126s and 127s) having different magnetic forces and masses are arranged in a balanced manner in the circumferential direction. Can be made magnetically and mechanically balanced.
  • field weakening control may be performed when the rotor 121 is rotating at a high speed.
  • the rotor 121 by providing the rotor 121 with the second N-pole claw-shaped magnetic pole 127n (second S-pole claw-shaped magnetic pole 127s), it becomes possible to suppress the field-weakening current supplied to the winding 13 to be small. Effects such as suppression of copper loss generated in the winding 13 can be obtained. In other words, since the amount of flux linkage that can be reduced with the same amount of field-weakening current increases, higher rotation by field-weakening control can be obtained more effectively.
  • the magnetic force to be applied is weaker at the second N-pole claw-shaped magnetic pole 127n than at the first N-pole claw-shaped magnetic pole 126n.
  • this may be realized by changing the shape of the second N-pole claw-shaped magnetic pole 127n.
  • the thickness (the radial thickness of the portion extending in the axial direction and the axial thickness of the portion extending in the radial direction) of the second N-pole claw-shaped magnetic pole 127n thinner than that of the first N-pole claw-shaped magnetic pole 126n.
  • the magnetic force applied to the stator 11 may be weaker at the second N pole side claw-shaped magnetic pole 127n than at the first N pole side claw-shaped magnetic pole 126n.
  • the same change may also be made in the S pole side rotor core 123s.
  • the second N-pole claw-shaped magnetic pole 127n applies to the stator 11 is weaker than the first N-pole claw-shaped magnetic pole 126n.
  • the configuration for relatively weakening the magnetic force of the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s is not limited to the above embodiment.
  • a magnetic force adjusting magnet 130 may be provided in the rotor 121 for making it relatively weaker.
  • the first N-pole claw-shaped magnetic pole 126n and the second S-pole claw-shaped magnetic pole 127s are formed to have the same opening angle.
  • the first S pole side claw-shaped magnetic pole 126s and the second S pole side claw-shaped magnetic pole 127s are also formed to have the same opening angle.
  • the magnetism adjusting magnets 130 are provided in pairs, and each of the first back magnet portions 131 (FIG. 15) is disposed on the back side (radially inward) of the portion extending in the axial direction in the first N pole side claw-shaped magnetic pole 126n. Reference) and a second back magnet part 132 disposed on the back side (in the radial direction) of the portion extending in the axial direction of the first S-pole claw-shaped magnetic pole 126s.
  • Each of the magnetic force adjusting magnets 130 includes a first inter-pole magnet portion 133 disposed between the first N-pole claw-shaped magnetic pole 126n and the second S-pole claw-shaped magnetic pole 127s adjacent thereto.
  • Each of the magnetic force adjusting magnets 130 includes a second interpole magnet portion 134 disposed between the first N pole side claw-shaped magnetic pole 126n and the first S pole side claw-shaped magnetic pole 126s adjacent thereto.
  • Each of the magnetic force adjusting magnets 130 includes a third interpole magnet portion 135 disposed between the first S pole side claw-shaped magnetic pole 126s and the second N pole side claw-shaped magnetic pole 127n adjacent thereto. Yes.
  • each of the pair of magnetism adjusting magnets 130 is configured as one component in which the magnet portions 131 to 135 are integrally formed.
  • the magnetic force adjusting magnet 130 is preferably composed of a bonded magnet (plastic magnet, rubber magnet, etc.) made of a rare earth magnet such as a neodymium magnet.
  • the first back magnet portion 131 is in contact with the first N-pole claw-shaped magnetic pole 126n on the radially outer side, and is in contact with the outer peripheral surfaces of the permanent magnet 124 and the core base 125s on the radially inner side.
  • the second back magnet part 132 is in contact with the first S pole side claw-shaped magnetic pole 126s on the radially outer side, and is in contact with the outer peripheral surfaces of the permanent magnet 124 and the core base 125n on the radially inner side.
  • the first back magnet part 131 is magnetized radially outward in order to suppress leakage magnetic flux from the first N pole side claw-shaped magnetic pole 126n to the back side (radially inside). That is, the first back magnet part 131 is magnetized in the radial direction so that the radially outer surface thereof becomes the N pole having the same polarity as the first N pole side claw-shaped magnetic pole 126n.
  • the second back magnet part 132 is magnetized radially outward so as to suppress the leakage magnetic flux from the first S pole side claw-shaped magnetic pole 126s to the back side (inside in the radial direction). That is, the second back magnet part 132 is magnetized in the radial direction so that its radially outer surface is the S pole having the same polarity as the first S pole side claw-shaped magnetic pole 126s.
  • the first inter-pole magnet portion 133 is magnetized in the circumferential direction so as to suppress the leakage magnetic flux in the circumferential direction of the first N-pole claw-shaped magnetic pole 126n. That is, the first inter-pole magnet section 133 is arranged in the circumferential direction so that the surface on the first N pole side claw-shaped magnetic pole 126n side in the circumferential direction is the N pole and the surface on the second S pole side claw magnetic pole 127s side is the S pole. Magnetized.
  • the second inter-pole magnet section 134 is magnetized in the circumferential direction in order to suppress leakage magnetic flux in the circumferential direction of the first N-pole claw-shaped magnetic pole 126n and the first S-pole claw-shaped magnetic pole 126s. That is, the second inter-pole magnet portion 134 is arranged in the circumferential direction so that the surface on the first N pole side claw-shaped magnetic pole 126n side in the circumferential direction is N pole and the surface on the first S pole side claw magnetic pole 126s side is S pole. Magnetized.
  • the third inter-pole magnet portion 135 is magnetized in the circumferential direction so as to suppress the leakage magnetic flux in the circumferential direction of the first S-pole claw-shaped magnetic pole 126s. That is, the third inter-pole magnet portion 135 is arranged in the circumferential direction so that the surface on the second N pole side claw-shaped magnetic pole 127n side in the circumferential direction is N pole and the surface on the first S pole side claw magnetic pole 126s side is S pole. Magnetized.
  • the leakage flux of the first N pole side claw-shaped magnetic pole 126n and the first S pole side claw-shaped magnetic pole 126s is suppressed by the magnet portions 131 to 135 of the magnetic force adjusting magnet 130.
  • the magnetic forces applied to the stator 11 by the first N-pole claw-shaped magnetic pole 126n and the first S-pole claw-shaped magnetic pole 126s are stronger than those of the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s, respectively. That is, the magnetic forces of the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s are relatively weak).
  • the combined flux linkage (for example, U-phase synthesized linkage flux ⁇ u) of the in-phase winding 13 by the magnetic poles of the rotor 121 can be suppressed to a minimum while suppressing a decrease in torque as much as possible.
  • the combined flux linkage in the in-phase winding 13 is suppressed to a low level, the induced voltage generated in the winding 13 can be suppressed to a low level, and as a result, the motor 110 can be rotated at a high speed.
  • the opening angle of the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s is not narrowed, but the addition of the magnetic force adjusting magnet 130 does not reduce the opening angle of the second N-pole claw-shaped magnetic pole 127n.
  • the magnetic force of the 2S pole side claw-shaped magnetic pole 127s is relatively weakened. For this reason, it can be said that it is a more effective structure at the point which ensures a torque.
  • the magnet parts 131 to 135 are integrally formed. However, as shown in FIG. 16, for example, the magnet parts 131 to 135 may be configured separately. Further, in the magnetic force adjusting magnet 130 shown in FIGS. 14 and 15, any one or more of the magnet portions 131 to 135 may be omitted. Further, in the example shown in FIGS. 14 and 15, the magnetization mode of the magnetic force adjusting magnet 130 may be polar anisotropic orientation.
  • the magnetic force on the back side (radially inner side) of the portion extending in the axial direction in the second N-pole claw-shaped magnetic pole 127 n is larger than that of the first back magnet unit 131. It is also possible to provide a back magnet part having a small diameter and suppress the leakage magnetic flux flowing from the second N-pole claw-shaped magnetic pole 127n to the back side by the back magnet part. Similarly, an interpole magnet portion having a smaller magnetic force than the interpole magnet portions 133 to 135 is provided on the circumferential side of the second N pole side claw-shaped magnetic pole 127n, and the second N pole is provided by the interpole magnet portion. You may comprise so that the leakage magnetic flux which flows into the circumferential direction from the side nail
  • the single first N pole side claw-shaped magnetic pole 126n and the single first S pole side claw-shaped magnetic pole 126s each constitute the first magnetic pole portion, and the single second N pole side claw-shaped magnetic pole 127n.
  • the single second S pole side claw-shaped magnetic pole 127s constitutes a second magnetic pole part having a magnetic force weaker than that of the first magnetic pole part, but is not particularly limited thereto.
  • the rotor 140 shown in FIGS. 17 and 18 includes first and second rotor cores 141 and 142 having the same shape, and a permanent magnet 124 disposed between the axial directions of the first and second rotor cores 141 and 142. And a pair of outer peripheral magnets 150 (magnetic force adjusting magnets).
  • the first rotor core 141 includes a disk-shaped core base 143 and a pair of first claw-shaped magnetic poles 144 formed to extend from the outer peripheral surface of the core base 143.
  • the pair of first claw-shaped magnetic poles 144 are formed at 180 ° facing positions in the circumferential direction.
  • Each first claw-shaped magnetic pole 144 protrudes radially outward from the outer peripheral surface of the core base 143 and extends in the axial direction (the same direction as each other).
  • a magnet fixing surface 145 to which the outer peripheral magnet 150 is fixed is formed on a half of the outer peripheral surface (radially outer surface) of the first claw-shaped magnetic pole 144, and the other half is from the magnet fixing surface 145.
  • a first salient pole portion 144a that protrudes radially outward is formed.
  • the second rotor core 142 has the same shape as the first rotor core 141, and corresponds to the core base 143 and the first claw-shaped magnetic pole 144 (first salient pole portion 144a) of the first rotor core 141, respectively.
  • a two-claw magnetic pole 147 (second salient pole portion 147a) is provided.
  • the second rotor core 142 is assembled to the first rotor core 141 such that each second claw-shaped magnetic pole 147 is disposed between the corresponding first claw-shaped magnetic poles 144. More specifically, the claw-shaped magnetic poles 144 and 147 are configured such that their circumferential center positions are at equal circumferential intervals (90 ° intervals). Further, the first claw-shaped magnetic poles 144 and the second claw-shaped magnetic poles 147 are alternately arranged in the circumferential direction.
  • the permanent magnet 124 is disposed between the axial directions of the core bases 143 and 146 of the first and second rotor cores 141 and 142, and the surface of the permanent magnet 124 on the first rotor core 141 (core base 143) side is arranged.
  • the north pole is magnetized in the axial direction so that the surface on the second rotor core 142 (core base 146) side becomes the south pole.
  • the permanent magnet 124 has substantially the same configuration as the permanent magnet 124 of the above embodiment, and thus detailed description thereof is omitted.
  • Each first claw-shaped magnetic pole 144 is radially spaced from the outer peripheral surface of the core base 146 of the second rotor core 142 and the outer peripheral surface of the permanent magnet 124.
  • the second claw-shaped magnetic pole 147 is radially spaced from the outer peripheral surface of the core base 143 of the first rotor core 141 and the outer peripheral surface of the permanent magnet 124.
  • the outer peripheral magnet 150 is provided across the magnet fixing surface 145 of the first claw-shaped magnetic pole 144 and the magnet fixing surface 145 of the second claw-shaped magnetic pole 147.
  • the outer peripheral magnet 150 includes an N pole portion 151 magnetized so that the N pole appears on the outer peripheral surface, and an S pole portion 152 magnetized so that the N pole appears on the outer peripheral surface.
  • 152 is fixed to the magnet fixing surface 145 of the first claw-shaped magnetic pole 144
  • the N pole portion 151 is fixed to the magnet fixing surface 145 of the second claw-shaped magnetic pole 147.
  • a magnet (S pole portion 152) having a polarity opposite to the magnetic pole (N pole) received by the first claw pole magnetic pole 144 by the magnetic field of the permanent magnet 124 is fixed to the magnet fixing surface 145 of the first claw pole magnetic pole 144.
  • a magnet (N pole portion 151) having a polarity opposite to that of the magnetic pole (S pole) received by the second claw pole magnetic pole 147 by the magnetic field of the permanent magnet 124 is fixed to the magnet fixing surface 145 of the second claw pole 147.
  • each outer peripheral magnet 150 (second magnetic pole portion) and the first and second salient pole portions 144a and 147a (first magnetic pole portion) in the axial direction view.
  • second magnetic pole portion and the first and second salient pole portions 144a and 147a (first magnetic pole portion) in the axial direction view.
  • first and second salient pole portions 144a and 147a first magnetic pole portion
  • the first salient pole portion 144a of the first claw-shaped magnetic pole 144 functions as an N pole by the magnetic field of the permanent magnet 124 and the magnetic field of the S pole portion 152 of the outer peripheral magnet 150.
  • the second salient pole part 147a of the second claw-shaped magnetic pole 147 functions as the S pole by the magnetic field of the permanent magnet 124 and the magnetic field of the N pole part 151 of the outer peripheral magnet 150.
  • the N pole portion 151 of each outer peripheral magnet 150 constitutes a part of the N pole of the rotor 140
  • the S pole portion 152 of each outer periphery magnet 150 constitutes a part of the S pole of the rotor 140.
  • the N pole is configured by the two first salient pole portions 144a and the two N pole portions 151
  • the S pole is configured by the two second salient pole portions 147a and the two S pole portions 152. As a whole, it is composed of 8 poles.
  • the arrangement relationship of the magnetic poles (first and second salient pole portions 144a, 147a, N pole portion 151, and S pole portion 152) of the rotor 140 of this example is the same as that of the rotor 121 of the above embodiment.
  • the first salient pole portion 144a is the first N pole side claw-shaped magnetic pole 126n of the above embodiment
  • the N pole portion 151 is the second N pole side claw-shaped magnetic pole 127n of the above embodiment
  • the second salient pole portion 147a is the above mentioned.
  • the first S pole side claw-shaped magnetic pole 126s of the embodiment and the S pole portion 152 correspond to the second S pole side claw-shaped magnetic pole 127s of the above embodiment, respectively.
  • the magnetic force applied to the stator 11 at the N pole of the rotor 140 can be made weaker at the N pole portion 151 than at the first salient pole portion 144a. Further, in the S pole of the rotor 140, the magnetic force applied to the stator 11 can be made weaker at the S pole portion 152 than at the second salient pole portion 147a. For this reason, as in the above embodiment, the combined flux linkage (for example, the U-phase combined flux linkage ⁇ u) of the in-phase winding 13 by the magnetic poles of the rotor 140 can be reduced while suppressing a reduction in torque as much as possible. .
  • the combined flux linkage for example, the U-phase combined flux linkage ⁇ u
  • the motor 110 can be rotated at a high speed.
  • the magnetic force applied to the stator 11 is set to the N pole portion 151 (S pole) by setting the magnetic characteristics of the permanent magnet 124 and the outer peripheral magnet 150 (N pole portion 151 and S pole portion 152). It is also possible to weaken the first salient pole portion 144a (second salient pole portion 147a) than the portion 152).
  • the outer peripheral magnet 150 integrally including the N pole portion 151 and the S pole portion 152 is used.
  • the configuration is not limited thereto, and the N pole portion 151 and the S pole portion 152 are divided. You may use the magnet made.
  • a back magnet part and an interpole magnet part as described in the examples of FIGS. 14 and 15 may be provided.
  • the same number of first N-pole claw-shaped magnetic poles 126n and second N-pole claw-shaped magnetic poles 127n (half the number of the windings 13 of each phase, two ), but the number is not necessarily the same.
  • the first N pole side claw-shaped magnetic pole 126n may be configured as three (or one) and the second N pole side claw-shaped magnetic pole 127n may be configured as one (or three).
  • the same change may also be made in the S pole side rotor core 123s.
  • the second N pole side claw-shaped magnetic pole 127n and the second S pole side claw-shaped magnetic pole 127s which have relatively weak magnetic forces, are provided for the N pole side rotor core 123n and the S pole side rotor core 123s of the rotor 121, respectively.
  • each second S pole side claw-shaped magnetic pole 127s is changed to the first S pole side claw-shaped magnetic pole 126s (that is, all claw-shaped magnetic poles provided in the S pole side rotor core 123s are the same).
  • the configuration may be a shape).
  • the windings of each phase that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series.
  • the winding mode may be changed as appropriate.
  • the windings U1, U2 are connected in series, and the windings U3, U4 are connected in series, and the series pair of the windings U1, U2 and the windings U3, U4.
  • the windings V1 and V2 are connected in series, and the windings V3 and V4 are connected in series.
  • the series pair of the windings V1 and V2 and the series pair of the windings V3 and V4 are parallel. It is connected.
  • the windings W1, W2 are connected in series, and the windings W3, W4 are connected in series.
  • the series pair of the windings W1, W2 and the series pair of the windings W3, W4 Are connected in parallel.
  • the induced voltage (the induced voltage) is equivalent to the winding U1 and the winding U3.
  • vx occurs, and induced voltages (the induced voltages vy) having the same magnitude are generated in the windings U2 and U4.
  • the combined induction voltage generated in the series pair of the windings U1 and U2 and the combined induction voltage generated in the series pair of the windings U3 and U4 are substantially equal (vx + vy).
  • the winding U2 and the winding U3 are interchanged in the example shown in FIG. 19, that is, the windings U1, U3 having the same magnitude of the induced voltage are connected in series, and the magnitude of the induced voltage is the same.
  • the induced voltage is reduced by providing the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s having a weak magnetic force, and the series pair of the windings U2 and U4 and the series of the windings U1 and U3 are reduced. It occurs only in one of the pairs, and the induced voltage does not decrease on the other.
  • the first N pole side claw-shaped magnetic pole 126n (or the first S pole side claw-shaped magnetic pole 126s) and the second N pole side at a predetermined rotational position of the rotor 121.
  • the windings (for example, U-phase windings U1, U2) facing the claw-shaped magnetic pole 127n (or the second S-pole claw-shaped magnetic pole 127s) are connected in series.
  • the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are connected in parallel.
  • U2 and the series pair of windings U3, U4 may be separated, and a pair of inverters may be provided to supply a U-phase drive current to each of the separated series pairs.
  • the same effect can be obtained by this configuration.
  • the same change can be made in the V phase and the W phase.
  • the rotor 121 has 8 poles and the number of windings 13 of the stator 11 is 12 (that is, the motor configuration has 8 poles and 12 slots).
  • the number of can be appropriately changed according to the configuration.
  • the number of poles of the rotor 121 and the number of windings 13 are appropriately changed so that the relationship between the number of poles of the rotor 121 and the number of windings 13 is 2n: 3n (where n is an integer of 2 or more). May be.
  • the number of pole pairs of the rotor 121 is an odd number, That is, the number of N poles and S poles is an odd number.
  • the first N pole side claw-shaped magnetic pole 126n and the second N pole side claw-shaped magnetic pole 127n cannot be the same number, resulting in a magnetically unbalanced configuration.
  • the first N-pole claw-shaped magnetic pole 126n and the second N-pole claw-shaped magnetic pole 127n in the configuration in which the greatest common divisor n of the number of poles of the rotor 121 and the number of windings 13 is an even number, the first N-pole claw-shaped magnetic pole 126n and the second N-pole claw-shaped magnetic pole 127n. And the same number, and a magnetically balanced configuration can be achieved.
  • the relationship between the number of poles of the rotor 121 and the number of windings 13 is not necessarily 2n: 3n (where n is an integer of 2 or more). For example, 10 poles 12 slots, 14 poles 12 slots, etc. It may be configured.
  • FIG. 20 shows an example of a motor 160 configured with 10 poles and 12 slots.
  • the same components as those in the above embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different portions will be described in detail.
  • the twelve windings 13 of the stator 11 are classified according to the supplied three-phase drive currents (U phase, V phase, W phase), and are counterclockwise in FIG.
  • U phase winding bar U1, bar U2, V phase winding bar V1 with respect to U phase windings U1, U2, V phase windings V1, V2 and W phase windings W1, W2 constituted by positive windings.
  • Bar V2, W-phase winding bar W1, bar W2 are constituted by reverse winding.
  • the U-phase winding U1 and the bar U1 are placed at positions facing each other by 180 °, and similarly, the U-phase winding U2 and the bar U2 are placed at positions facing each other by 180 °.
  • U-phase windings U1, U2, U1 and U2 are connected in series.
  • V-phase windings V1, V2, V1 and V2 are connected in series
  • W-phase winding W1. , W2, bar W1, and bar W2 are connected in series.
  • the U-phase windings U1, U2, U1 and U2 are supplied with U-phase drive current.
  • the positive winding U-phase winding U1 The U-phase winding bars U1 and U2 that are reversely wound with respect to U2 are always excited with the reverse polarity (reverse phase), but the excitation timing is the same. The same applies to the other phases (V phase and W phase).
  • the rotor 121 of the motor 160 is a 10 pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (36 ° intervals), and includes two first N pole side claw-shaped magnetic poles 126n and three first poles.
  • a 1S pole-side claw-shaped magnetic pole 126s, three second N-pole-side claw-shaped magnetic poles 127n, and two second S-pole-side claw-shaped magnetic poles 127s are provided.
  • the first N-pole claw-shaped magnetic pole 126 n and the first S-pole claw-shaped magnetic pole 126 s are alternately provided on the half circumference of the rotor 121, and the second N-pole claw-shaped magnetic pole 127 n and the second S-pole claw-shaped magnetic pole 127 s They are provided alternately in a half circle. Further, the second S pole-side claw-shaped magnetic pole 127s is located on the opposite side (180 ° opposite position) of the first N pole-side claw-shaped magnetic pole 126n, and the first S pole-side claw-shaped magnetic pole 126s is positioned on the opposite side (180 °). The second N-pole claw-shaped magnetic pole 127n is positioned at the (opposite position).
  • the numbers of the first and second N pole side claw-shaped magnetic poles 126n, 127n and the first and second S pole side claw-shaped magnetic poles 126s, 127s are not limited to the example of the 10-pole rotor of FIG.
  • the second N-pole claw-shaped magnetic pole 127n is U on the opposite side in the circumferential direction.
  • the phase winding bar U1 in the radial direction see FIG. 20. That is, the magnetic pole portions having different polarities (for example, the first S pole side claw-shaped magnetic pole 126s and the second N pole) respectively opposed to the windings 13 (for example, the U phase winding U1 and the bar U1) excited in opposite phases (same timing).
  • the magnetic forces are different from each other (that is, the other magnetic force is weaker than the other).
  • the combined induction voltage for example, the combined induction voltage of the U-phase winding U1 and the bar U1 generated in the anti-phase winding 13 by the magnetic poles of the rotor 121 can be suppressed to a low level while suppressing the decrease in torque as much as possible. As a result, high rotation of the motor 160 can be achieved.
  • the first N pole side claw-shaped magnetic pole 126n and the first S pole side claw-shaped magnetic pole 126s are provided on the half circumference of the rotor 121, and the second N pole side claw-shaped magnetic pole 127n and the second S pole side.
  • a claw-shaped magnetic pole 127 s was provided on the other half of the rotor 121.
  • the arrangement of the claw-shaped magnetic poles of the rotor 121 is not particularly limited to this, and the second S-pole claw-shaped magnetic pole 127s is located on the opposite side in the circumferential direction of the first N-pole claw-shaped magnetic pole 126n.
  • the arrangement of the claw-shaped magnetic poles of the rotor 121 can be changed as appropriate.
  • stator 11 it is not necessary that all the U-phase windings U1, U2, bar U1, and bar U2 are connected in series, and a pair of windings U1, U1 and a pair of windings U2, U2 are provided. It is good also as a structure which made each another separate serial pair. Moreover, it can change similarly also in V phase and W phase.
  • FIG. 20 shows an example of 10 poles and 12 slots, but the present invention can also be applied to a 14 poles and 12 slots structure. Further, the present invention can also be applied to a configuration in which the number of rotor poles and the number of slots of 10 poles and 12 slots (or 14 poles and 12 slots) are equal. In the case of a configuration in which the number of rotor poles and the number of slots of 10 poles and 12 slots (or 14 poles and 12 slots) are respectively doubled, the first N pole side claw-shaped magnetic pole 126n and the first S pole side claw-shaped magnetic pole 126s are surrounded.
  • the strong magnetic pole group alternately arranged in the direction and the weak magnetic pole group in which the second N-pole side claw-shaped magnetic pole 127n and the second S-pole side claw-like magnetic pole 127s are alternately arranged in the circumferential direction are alternately arranged in the circumferential direction. It is preferable to do. According to this configuration, the strong magnetic pole group and the weak magnetic pole group can be arranged with good balance in the circumferential direction, and the rotor 121 can be magnetically and mechanically balanced.
  • the claw-shaped magnetic poles formed on, for example, the N-pole rotor core 123n of the rotor 121 are the first N-pole claw-shaped magnetic poles 126n that constitute the first magnetic pole part and the second N that constitutes the second magnetic pole part. It consists only of the pole-side claw-shaped magnetic pole 127n.
  • the N pole rotor core 123n may be provided with a third N pole claw magnetic pole (third magnetic pole) whose magnetic force applied to the stator 11 is weaker than that of the second N pole claw magnetic pole 127n.
  • the rotor 121 is embodied as the inner rotor type motor 110 arranged on the inner peripheral side of the stator 11, but is not particularly limited to this, and the outer rotor type in which the rotor is arranged on the outer peripheral side of the stator It may be embodied in the motor.
  • the present invention is embodied in the radial gap type motor 110 in which the stator 11 and the rotor 121 are opposed to each other in the radial direction.
  • the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction.
  • the present invention may be applied to an axial gap type motor that faces the motor.
  • the motor 210 of the present embodiment is configured as a brushless motor, and is configured with a rotor 221 disposed inside an annular stator 11. Since the configuration of the stator 11 is the same as that of the stator 11 of the first embodiment, detailed description thereof is omitted.
  • the winding 13 of the stator 11 is configured similarly to the winding 13 of the first embodiment, and has the configuration shown in FIG.
  • the rotor 221 includes a rotor core 222 and a permanent magnet 223.
  • the rotor core 222 is formed of a magnetic metal in a substantially disk shape, and a rotating shaft 224 is fixed to the center portion.
  • Two magnet fixing portions 225 and four protrusions 226 are formed on the outer peripheral portion of the rotor core 222.
  • Each magnet fixing portion 225 is provided at a 180 ° facing position in the circumferential direction.
  • Two permanent magnets 223 are fixed to each of the magnet fixing portions 225, and a total of four permanent magnets 223 are provided on the outer peripheral portion of the rotor core 222.
  • the permanent magnets 223 have the same shape, and the outer peripheral surface of each permanent magnet 223 has an arc shape centered on the axis L when viewed from the direction of the axis L of the rotary shaft 224. Further, the opening angle (circumferential width) around the axis L of each permanent magnet 223 is 45 °.
  • the permanent magnet 223 is, for example, an anisotropic sintered magnet, and includes, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like.
  • Each permanent magnet 223 is formed so that the magnetic orientation is directed in the radial direction, and the two permanent magnets 223 provided in each magnet fixing portion 225 are configured such that the magnetic poles appearing on the outer peripheral side are different from each other. Yes. Further, the permanent magnet 223 having the same polarity is disposed at a 180 ° facing position in the circumferential direction. These permanent magnets 223 constitute a part of the magnetic poles of the rotor 221. Specifically, the permanent magnet 223 in which the N pole appears on the outer peripheral side constitutes the N magnetic pole Mn, and the permanent magnet 223 in which the S pole appears on the outer peripheral side constitutes the S magnetic pole Ms.
  • the protrusions 226 of the rotor core 222 are provided so as to be adjacent to each other in the circumferential direction two by two in the circumferential direction of the magnet fixing portion 225.
  • a gap K1 is formed between the circumferential directions of the pair of adjacent protrusions 226.
  • one of the pair of adjacent protrusions 226 is adjacent to the N-pole magnet magnetic pole Mn (peripheral magnet 223 having an N pole on the outer peripheral side) in the circumferential direction, and the S pole is generated by the magnetic field of the N-pole permanent magnet 223. Function as a magnetic pole (a salient pole Ps as a core magnetic pole).
  • the other protrusion 226 is adjacent to the S-pole magnet magnetic pole Ms (the outer peripheral side is the S-pole permanent magnet 223), and the magnetic field of the S-pole permanent magnet 223 causes the N-pole magnetic pole (projection as a core magnetic pole). It functions as a pole Pn).
  • the pair of N-pole salient poles Pn are arranged at 180 ° facing positions in the circumferential direction, and the pair of S-pole salient poles Ps are similarly arranged at 180 ° facing positions in the circumferential direction.
  • each protrusion 226 is formed in an arc shape that is located on the same circle as the outer peripheral surface of each permanent magnet 223 as viewed from the axial direction (on the same circle with the axis L of the rotation shaft 224 as the center). ing. Further, the opening angle of each protrusion 226 is set smaller than the opening angle of each permanent magnet 223. Further, between the salient poles Pn and Ps (projections 226) and the magnet poles Mn and Ms (permanent magnet 223) having different polarities, that is, the N pole salient poles Pn and the S pole magnet poles Ms. And gaps K2 are formed between the S pole salient pole Ps and the N pole magnet magnetic pole Mn.
  • the rotor 221 having the above configuration is configured as an 8-pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (45 ° intervals) on the outer peripheral surface (that is, the surface facing the stator 11).
  • the magnetic poles on the outer peripheral surface of the rotor 221 are N pole magnet magnetic poles Mn, S pole salient poles Ps, and N pole salient pole poles in order in the clockwise direction.
  • the Pn, S pole magnetic pole Ms, N pole magnetic pole Mn,... are repeated.
  • the magnet magnetic pole Mn and salient pole magnetic pole Pn constituting the N pole of the rotor 221 are alternately arranged at equal angular intervals (90 ° intervals) in the circumferential direction.
  • the magnet magnetic pole Ms and salient pole magnetic pole Ps which comprise are arrange
  • the rotor core 222 is formed with four slit holes 227 extending along the radial direction of the rotating shaft 224.
  • the slit holes 227 are arranged at intervals of 90 ° in the circumferential direction, and are respectively provided at a boundary portion between the salient poles Pn and Ps adjacent in the circumferential direction and a boundary portion between the magnet magnetic poles Mn and Mn adjacent in the circumferential direction. It has been.
  • each slit hole 227 extends along the radial direction from a position near the fixed hole 222a where the rotation shaft 224 of the rotor core 222 is fixed to a position near the permanent magnet 223 and the protrusion 226.
  • each slit hole 227 penetrates the rotor core 222 in the axial direction. Since each of these slit holes 227 is a gap and has a larger magnetic resistance than the magnetic metal rotor core 222, the magnetic flux of each permanent magnet 223 passing through the rotor core 222 by each slit hole 227 is applied to the adjacent salient poles Pn and Ps. It is suitably guided (see the broken arrow in FIG. 21 (a)).
  • the rotor 221 includes the magnet magnetic pole Mn and the magnet magnetic pole Ms as the first magnetic pole part, and the salient pole magnetic pole Pn and the salient pole magnetic pole Ps as the second magnetic pole part.
  • a three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively. Then, the windings U1 to W4 are excited at the same timing for each phase to generate a rotating magnetic field in the stator 11, and the rotor 221 rotates based on the rotating magnetic field. At this time, the magnetic poles formed on the stator 11 by the supply of the three-phase drive current are the same for the windings U1 to W4 of each phase.
  • the number of pole pairs of the rotor 221 (that is, the number of N poles and S poles) is the same as the number of windings U1 to W4 of each phase (“4” in this embodiment). Yes.
  • the rotor 221 rotates, for example, when one of the N poles (magnet magnetic pole Mn and salient pole Pn) of the rotor 221 is opposed to the U-phase winding U1 in the radial direction, the other N pole is U
  • the phase windings U2 to U4 are opposed to each other in the radial direction (see FIG. 21A).
  • half of the four N poles of the rotor 221 are constituted by salient pole magnetic poles Pn formed by the protrusions 226, and each salient pole magnetic pole Pn functions by the magnetic field of the permanent magnet 223 of the adjacent magnet magnetic pole Ms. Since the magnetic pole is a pseudo magnetic pole, the magnetic force applied to the stator 11 is weaker than the magnetic pole Mn by the permanent magnet 223. The same applies to the S pole of the rotor 221 (the salient pole magnetic pole Ps and the magnet magnetic pole Ms).
  • each interlinkage magnetic flux ⁇ x interlinking the U-phase windings U1 to U4 (U-phase windings U1 and U3 in the example shown in FIG. 21A) facing each magnet magnetic pole Mn.
  • Linkage magnetic flux ⁇ y interlinking U-phase windings U1 to U4 (U-phase windings U2 and U4 in the example shown in FIG. 21A) facing salient pole Pn is reduced. Therefore, an induced voltage generated in the U-phase winding (winding facing the salient pole magnetic pole Pn) in which the linkage flux ⁇ y is generated is applied to the U-phase winding (winding facing the magnet magnetic pole Mn) in which the linkage flux ⁇ x is generated. It becomes smaller than the induced voltage.
  • the combined induced voltage obtained by combining the induced voltages generated in the U-phase windings U1 to U4 is a pair of U-phase windings facing the salient pole Pn (in FIG. 21A, U-phase windings U2 and U4). ).
  • the reduction in the combined induced voltage when the U-phase windings U1 to U4 face the N pole (magnet magnetic pole Mn and salient pole Pn) of the rotor 221 has been described as an example, but the V-phase windings V1 to The same applies to the V4 and W-phase windings W1 to W4, and similarly, the resultant induced voltage due to the salient pole magnetic pole Ps also decreases at the S pole (magnet magnetic pole Ms and salient pole magnetic pole Ps) of the rotor 221.
  • the winding 13 of the stator 11 includes four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current.
  • the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
  • the N pole of the rotor 221 is composed of a magnet magnetic pole Mn using the permanent magnet 223 and a salient pole Pn using the protrusion 226 of the rotor core 222.
  • the N pole of the rotor 221 is a salient pole at the rotational position of the rotor 221 where the magnet magnetic pole Mn faces the first winding (for example, the U phase windings U1 and U3) of any of the U, V, and W phases.
  • the magnetic pole Pn is configured to face a second winding having the same phase (for example, U-phase windings U2 and U4).
  • the south pole of the rotor 221 includes a magnet magnetic pole Ms using the permanent magnet 223 and a salient pole magnetic pole Ps using the protrusion 226 of the rotor core 222.
  • the S pole of the rotor 221 is a salient pole at the rotational position of the rotor 221 where the magnet magnetic pole Ms faces the first winding (for example, the U phase windings U1 and U3) in any of the U, V, and W phases.
  • the magnetic pole Ps is configured to face a second winding having the same phase (for example, U-phase windings U2 and U4).
  • the magnetic force of all the N poles (or S poles) facing the in-phase winding 13 in the rotor 221 is not weakened, but a part of them is used as the salient pole magnetic pole Pn (the salient pole magnetic pole Ps).
  • the magnetic force is weakened.
  • the magnetic poles having a weak magnetic force with respect to the magnet magnetic poles Mn and Ms are constituted by the salient pole magnetic poles Pn and Ps formed by the protrusions 226 of the rotor core 222 (that is, a so-called continuous pole type rotor structure), Torque reduction due to weakening the magnetic force of some of the magnetic poles of the rotor 221 can be suppressed as much as possible.
  • the sum of the induced voltages generated in the respective windings for each phase becomes the combined induced voltage.
  • the voltage tends to increase. Therefore, by providing the salient poles Pn and Ps as described above in the configuration in which the winding 13 is in series in each phase, the effect of suppressing the combined induced voltage can be obtained more remarkably, and the motor high This is more suitable for rotation.
  • the number of magnet magnetic poles Mn, Ms and salient pole magnetic poles Pn, Ps of the rotor 221 is n (that is, two). That is, since the magnet magnetic poles Mn, Ms and salient pole magnetic poles Pn, Ps are composed of the same number (half the number of windings of each phase), the magnet magnetic pole Mn and salient pole magnetic pole Pn (magnet magnetic pole Ms and salient pole magnetic pole). Ps) can be alternately provided at equal intervals in the circumferential direction.
  • the magnet magnetic pole Mn and salient pole magnetic pole Pn (magnet magnetic pole Ms and salient pole magnetic pole Ps) having different magnetic force and mass are arranged in a balanced manner in the circumferential direction, and the rotor 221 is magnetically and mechanically balanced. It can be set as the outstanding structure.
  • the salient poles Pn and Ps are configured so as to be adjacent to the magnet poles Mn and Ms having different polarities using the permanent magnet 223 in the circumferential direction.
  • the magnetic pole Pn can be made to function suitably as an N pole.
  • the N-pole salient pole Pn and the S-pole salient pole Ps are configured to be adjacent to each other in the circumferential direction via the gap K1. That is, since the gap K1 is provided between the N salient pole Pn and the S salient pole Ps adjacent to each other, the magnetic flux amounts of the salient poles Pn and Ps of each pole are adjusted to a desired value. As a result, the output characteristics of the motor 210 can be easily adjusted.
  • the rotor core 222 is formed with a slit hole 227 (magnetic adjustment unit) for guiding the magnetic flux flowing through the rotor core 222.
  • a slit hole 227 magnetic adjustment unit
  • the amount of magnetic flux of the salient poles Pn and Ps magnetized by the permanent magnets 223 adjacent in the circumferential direction can be easily adjusted to a desired value, and as a result, the output characteristics of the motor 210 can be easily adjusted.
  • the slit hole 227 formed at the boundary between the magnet magnetic poles Mn and Mn adjacent in the circumferential direction suppresses a short circuit of the magnetic flux between the magnet magnetic poles Mn and Ms. Therefore, it is possible to suppress a decrease in the amount of magnetic flux from each magnet magnetic pole Mn, Ms toward the adjacent salient pole magnetic poles Pn, Ps, and as a result, it is possible to contribute to higher torque.
  • the magnet magnetic poles Mn and Ms are formed by fixing the permanent magnet 223 to the outer peripheral surface (magnet fixing portion 225) of the rotor core 222. That is, since the rotor 221 has a surface magnet type structure (SPM structure), it can contribute to an increase in torque of the motor 210.
  • SPM structure surface magnet type structure
  • field weakening control may be performed when the rotor 221 is rotating at a high speed.
  • the rotor 221 is provided with salient poles Pn and Ps that do not spontaneously generate magnetic flux, so that the field-weakening current supplied to the winding 13 can be kept small. Since the field weakening current can be reduced, the permanent magnet 223 is difficult to demagnetize during field weakening control, and the copper loss of the winding 13 can be suppressed. In other words, since the amount of flux linkage that can be reduced with the same amount of field-weakening current increases, higher rotation by field-weakening control can be obtained more effectively.
  • each magnet fixing portion 225 is provided in the circumferential direction of each magnet fixing portion 225.
  • each magnet fixing portion 225 is provided.
  • the slit hole 227 provided along the boundary between the salient poles Pn and Ps adjacent in the circumferential direction extends to the protrusion 226, thereby generating the magnetic flux of the permanent magnet 223. It is more preferable in terms of flowing through the salient pole magnetic poles Pn and Ps.
  • the configuration of the arrangement and shape of the slit holes 227 formed in the rotor core 222 is not limited to the above embodiment and the example shown in FIG. 22, and may be configured as shown in FIGS. 23 to 26, for example. . 23 to FIG. 26 show the type of the above embodiment (a type in which the protrusion 226 is divided into two) as an example, but the protrusion 226 as in the example shown in FIG. 22 is divided. It can be applied to other types.
  • the slit hole 227 is disposed at a position on the inner side in the radial direction of each permanent magnet 223 and corresponding to the circumferential center of each permanent magnet 223.
  • the magnetic flux of the permanent magnet 223 passing through the rotor core 222 is branched to both sides in the circumferential direction of the slit hole 227 (in FIG. 23, a broken line).
  • each slit hole 227 has a curved shape that is convex toward the inside in the radial direction. More specifically, each slit hole 227 extends radially inward of each permanent magnet 223 from the position corresponding to the circumferential center of each permanent magnet 223 to the inner peripheral side, and from there to the adjacent protrusion 226. It curves toward the vicinity of the boundary between the salient pole magnetic poles Pn and Ps. Even with such a configuration, it is possible to obtain substantially the same effect as in the example of FIG.
  • an auxiliary magnet 228 may be fitted in the slit hole 227.
  • the slit hole 227 and the auxiliary magnet 228 constitute a magnetic adjustment unit.
  • the auxiliary magnet 228 is composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like, and may be any configuration of a sintered magnet and a bonded magnet.
  • the auxiliary magnet 228 is provided in a slit hole (slit hole 227a in FIG. 25) provided at the boundary between the salient poles Pn and Ps adjacent in the circumferential direction. That is, the auxiliary magnet 228 is provided at the boundary between the N-pole salient pole Pn and the S-pole salient pole Ps.
  • the auxiliary magnet 228 has a magnetic orientation substantially along the circumferential direction of the rotor 221, and a surface near the salient pole magnetic pole Pn in the circumferential direction is an N pole, and a surface near the salient pole magnetic pole Ps in the circumferential direction is an S pole. It is magnetized to become.
  • the magnetic force applied from the rotor 221 to the stator 11 is weaker at the salient pole magnetic poles Pn and Ps than at the magnet magnetic poles Mn and Ms.
  • the output characteristics of the motor 210 can be easily adjusted by making the magnetic characteristics (residual magnetic flux density and coercive force) of the auxiliary magnet 228 different from those of the permanent magnet 223. Since the auxiliary magnet 228 is embedded in the rotor core 222 and is not easily affected by an external magnetic field, the coercive force can be set small (or the residual magnetic flux density can be set high).
  • FIG. 26 shows a configuration in which the same slit hole 227 as in FIG. 24 is applied to the configuration in which the auxiliary magnet 228 is provided.
  • the N pole magnet magnetic poles Mn and the salient pole magnetic poles Pn are provided at positions opposed to each other by 180 ° in the circumferential direction.
  • the poles Ps are provided at 180 ° opposing positions in the circumferential direction. That is, although the magnet magnetic pole Mn and the salient pole magnetic pole Pn are alternately arranged in the circumferential direction, and the magnet magnetic pole Ms and the salient pole magnetic pole Ps are also alternately arranged in the circumferential direction, it is not particularly limited to this.
  • an N-pole salient pole Pn may be provided at a position 180 ° opposite to the N-pole magnet magnetic pole Mn.
  • an S-pole salient pole Ps may be provided at a position 180 ° opposite to the S-pole magnet magnetic pole Ms.
  • the number of magnet magnetic poles Mn and salient poles Pn is the same number (for example, half of the number of windings 13 in each phase, ie, two) in the N pole of the rotor 221, for example.
  • the number of magnet magnetic poles Mn may be three (or one)
  • the number of salient pole magnetic poles Pn may be one (or three).
  • the same change may be made for the S pole (magnet magnetic pole Ms and salient pole Ps) of the rotor.
  • the salient pole magnetic pole Pn and the salient pole magnetic pole Ps are provided in the N pole and the S pole of the rotor 221, respectively.
  • the present invention is not limited to this.
  • only one pole of the rotor 221 is provided.
  • a salient pole may be provided, and the other pole may be composed entirely of magnet poles.
  • the windings of each phase that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series.
  • the winding mode may be changed as appropriate.
  • the windings U1, U2 are connected in series, and the windings U3, U4 are connected in series, and the series pair of the windings U1, U2 and the windings U3, U4.
  • the windings V1 and V2 are connected in series, and the windings V3 and V4 are connected in series.
  • the series pair of the windings V1 and V2 and the series pair of the windings V3 and V4 are parallel. It is connected.
  • the windings W1, W2 are connected in series, and the windings W3, W4 are connected in series.
  • the series pair of the windings W1, W2 and the series pair of the windings W3, W4 Are connected in parallel.
  • induced voltages having the same magnitude are generated in the winding U1 and the winding U3 in the U phase, for example.
  • induced voltages having the same magnitude are generated in the winding U2 and the winding U4.
  • the combined induced voltage generated in the series pair of the windings U1 and U2 is substantially equal to the combined induced voltage generated in the series pair of the windings U3 and U4.
  • the combined induced voltage in the entire U-phase winding is the combined induced voltage of the series pair of the windings U1 and U2 ( And the combined induction voltage of the series pair of windings U3 and U4), and the combined induction voltage in the entire U-phase winding can be effectively suppressed.
  • the winding U2 and the winding U3 are interchanged in the example shown in FIG. 27, that is, the windings U1 and U3 having the same magnitude of the induced voltage are connected in series and the magnitude of the induced voltage is the same.
  • the windings U2 and U4 are in series.
  • the reduction of the induced voltage due to the provision of the salient poles Pn and Ps occurs only in one of the series pair of the windings U2 and U4 and the series pair of the windings U1 and U3. Does not decrease.
  • the magnetic pole Mn magnet magnetic pole Ms
  • the salient pole magnetic pole Pn salient pole Ps
  • the windings U1, U2 are a series pair and the windings U3, U4 are a series pair, but the windings U1, U4 and the windings U2, U3 are respectively connected. Similar effects can be obtained as a series pair. The same change can be made in the V phase and the W phase.
  • the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are connected in parallel.
  • U2 and the series pair of windings U3, U4 may be separated, and a pair of inverters may be provided to supply a U-phase drive current to each of the separated series pairs.
  • the same effect can be obtained by this configuration.
  • the same change can be made in the V phase and the W phase.
  • the rotor 221 of the above embodiment has a surface magnet type structure (SPM structure) in which the permanent magnets 223 constituting the magnet magnetic poles Mn and Ms are fixed to the outer peripheral surface (magnet fixing portion 225) of the rotor core 222.
  • SPM structure surface magnet type structure
  • IPM structure embedded magnet type structure
  • a permanent magnet 223a is embedded in an inner portion of the outer peripheral surface 222b of the rotor core 222.
  • the outer peripheral surface 222b of the rotor core 222 has a circular shape when viewed in the axial direction, and the radially outer side surface and the radially inner side surface of each permanent magnet 223a constituting the magnetic poles Mn and Ms are viewed in the axial direction.
  • the arc shape is centered on the central axis of the rotor core 222 (the axis L of the rotating shaft 224).
  • the rotor 221 shown in FIG. 28 is configured as an 8-pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (45 ° intervals) on the outer peripheral surface 222b, as in the above embodiment. .
  • the magnetic pole adjacent to the N-pole magnet magnetic pole Mn in the circumferential direction is configured as a core magnetic pole Cs formed of a part of the rotor core 222,
  • the core magnetic pole Cs functions as an S magnetic pole by the magnetic field of the permanent magnet 223a of the magnet magnetic pole Mn.
  • the magnetic pole adjacent to the S magnetic pole Ms in the circumferential direction (the magnetic pole on the opposite side of the magnet magnetic pole Ms from the magnet magnetic pole Mn) is configured as a core magnetic pole Cn composed of a part of the rotor core 222.
  • Cn functions as a magnetic pole of N pole by the magnetic field of the permanent magnet 223a of the magnetic pole Ms.
  • the magnetic poles on the outer peripheral surface of the rotor 221 are, in order in the clockwise direction, N pole magnet poles Mn, S pole core poles Cs, N pole core poles Cn, S pole magnet poles Ms, and N pole magnet poles. Mn,... Are repeated. Further, the magnet magnetic pole Mn and the core magnetic pole Cn constituting the N pole of the rotor 221 are alternately arranged so that their circumferential center positions are equiangularly spaced (90 ° intervals). The magnetic pole Ms and the core magnetic pole Cs that constitute the S pole are alternately arranged so that their circumferential center positions are equiangularly spaced (90 ° intervals).
  • the rotor core 222 includes a pair of slit holes 231 extending in the radial direction at the boundary between the core magnetic poles Cn and Cs adjacent in the circumferential direction and the radial direction at the boundary between the magnetic magnetic poles Mn and Ms adjacent in the circumferential direction.
  • a pair of slit holes 232 extending along the line are formed. These slit holes 231 and 232 are alternately formed at equal intervals in the circumferential direction (90 ° intervals).
  • Each of the slit holes 231 and 232 is an air gap and penetrates the rotor core 222 in the axial direction. Further, each of the slit holes 231 and 232 has a rectangular shape when viewed in the axial direction. Further, the slit hole 231 between the core magnetic poles Cn and Cs extends from the position near the fixed hole 222a to the position near the outer peripheral surface 222b of the rotor core 222 along the radial direction. Further, the slit hole 232 between the magnet magnetic poles Mn and Ms extends from the position near the fixed hole 222a to the position near the permanent magnet 223a along the radial direction.
  • the magnetic resistance is larger than that of the magnetic metal rotor core 222. Therefore, the magnetic fluxes of the permanent magnets 223a passing through the rotor core 222 by the slit holes 231 and 232 are adjacent to each other. It is suitably guided to Cn and Cs (see broken line arrows in FIG. 28).
  • the permanent magnet 223 fixed to the outer peripheral surface of the rotor core 222 is directly opposed to the stator 11, so that a high torque can be obtained. It becomes easy to demagnetize.
  • the permanent magnet 223a constituting the magnet magnetic poles Mn and Ms is embedded in the rotor core 222, so that demagnetization of the permanent magnet 223 during field-weakening control can be suppressed. .
  • the rotor core 222 is formed with slit holes 231 and 232 (magnetic adjustment portions) for guiding the magnetic flux flowing in the rotor core 222.
  • slit holes 231 and 232 magnetic adjustment portions
  • the rotor 221 shown in FIG. 28 includes a magnet magnetic pole Mn and a magnet magnetic pole Ms as the first magnetic pole part, and a core magnetic pole Cn and a core magnetic pole Cs as the second magnetic pole part.
  • a rotor 221 shown in FIG. 29 is a further modification of the configuration shown in FIG. 28, and an auxiliary magnet 233 (magnetic adjustment unit) is provided in each slit hole 231 between the core magnetic poles Cn and Cs.
  • Each auxiliary magnet 233 is magnetized so that the surface near the core magnetic pole Cn in the circumferential direction is an N pole and the surface near the core magnetic pole Cs is an S pole.
  • the auxiliary magnet 233 is composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like, and may be any configuration of a sintered magnet and a bonded magnet.
  • the magnetic force applied from the rotor 221 to the stator 11 is weaker at the core magnetic poles Cn and Cs than at the magnetic poles Mn and Ms.
  • the location of the auxiliary magnet 233 is not limited to the slit hole 231 between the core magnetic poles Cn and Cs.
  • the auxiliary magnet 233 is provided in the slit hole 232 between the magnetic poles Mn and Ms. May be.
  • each auxiliary magnet 233 is preferably magnetized so that the surface near the magnet magnetic pole Ms in the circumferential direction is an N pole and the surface near the magnet magnetic pole Mn is an S pole. Even with the configuration as shown in FIG. 30, it is possible to increase the magnetic flux flowing through the core magnetic poles Cn and Cs, and as a result, it is possible to contribute to an increase in torque of the motor. In the configuration shown in FIG.
  • the auxiliary magnet 233 is provided at the radially inner end of the slit hole 232, but the arrangement position of the auxiliary magnet 233 in the slit hole 232 is limited to the configuration shown in FIG. Instead, it can be appropriately changed according to the configuration.
  • the rotor 221 shown in FIG. 31 is obtained by changing the configuration shown in FIG. 28, and a communication portion 234 that connects the slit hole 231 and the slit hole 232 at their inner end portions is formed.
  • the pair of support portions 222d that support the central portion 222c having the fixed hole 222a divide the slit hole 231 along the boundary portion between the core magnetic poles Cn and Cs. Is formed.
  • the communication part 234 becomes a magnetic resistance between the adjacent core magnetic poles Cn and Cs and between the adjacent magnet magnetic poles Mn and Ms at the radially inner ends of the slit holes 231 and 232.
  • the short-circuit magnetic flux that can be generated between the permanent magnets 223a constituting the magnet magnetic poles Mn and Ms by the communication portion 234 can be suppressed to a low level. For this reason, the magnetic flux which flows into core magnetic pole Cn, Cs increases, As a result, it can contribute to the high torque increase of a motor.
  • the rotor 221 shown in FIG. 32 is a modification of the configuration shown in FIG. 31.
  • a pair of support portions 222e that support the center portion 222c are along the boundary between the magnetic poles Mn and Ms.
  • the slit hole 232 is divided. According to this configuration, the central portion 222c of the rotor core 222 can be stably supported by the support portions 222d and 222e.
  • the rotor 221 shown in FIG. 33 is a further modification of the configuration shown in FIG. 32, and an auxiliary magnet 235 (magnetic adjustment part) is provided in each communication part 234.
  • the auxiliary magnet 235 provided in the communication portion 234 formed across the N-pole core magnetic pole Cn and the S-pole magnet magnetic pole Ms is magnetized so that the radially outer surface becomes the N pole.
  • the auxiliary magnet 235 provided in the communication portion 234 formed across the core magnetic pole Cs having the S pole and the magnet magnetic pole Mn having the N pole is magnetized so that the radially outer surface becomes the S pole. Yes.
  • each auxiliary magnet 235 (the end opposite to the slit hole 231) is set at a position corresponding to the boundary line between the core magnetic poles Cn and Cs and the magnet magnetic poles Mn and Ms. Even with the configuration as shown in FIG. 33, it is possible to increase the magnetic flux flowing through the core magnetic poles Cn and Cs. As a result, it is possible to contribute to an increase in torque of the motor.
  • the auxiliary magnet 235 is provided at a position near the core magnetic poles Cn and Cs in each communication portion 234.
  • the arrangement position of the auxiliary magnet 235 in the communication portion 234 is limited to the configuration shown in FIG. However, it can be appropriately changed according to the configuration.
  • the rotor 221 has 8 poles and the number of windings 13 of the stator 11 is 12 (that is, the motor configuration has 8 poles and 12 slots).
  • the number of can be appropriately changed according to the configuration.
  • the number of poles of the rotor 221 and the number of windings 13 are appropriately changed so that the relationship between the number of poles of the rotor 221 and the number of windings 13 is 2n: 3n (where n is an integer of 2 or more). May be.
  • the number of pole pairs of the rotor 221 is an odd number, That is, the number of N poles and S poles is an odd number. For this reason, for example, the number of magnet magnetic poles Mn and salient pole magnetic poles Pn cannot be the same, resulting in a magnetically unbalanced configuration.
  • the number of magnet magnetic poles Mn and salient poles Pn can be the same.
  • a magnetically balanced configuration can be achieved.
  • the relationship between the number of poles of the rotor 221 and the number of windings 13 is not necessarily 2n: 3n (where n is an integer of 2 or more). For example, 10 poles 12 slots, 14 poles 12 slots, etc. It may be configured.
  • FIG. 34 shows an example of a motor 230 configured with 10 poles and 12 slots.
  • the same components as those in the above embodiment are denoted by the same reference numerals, detailed description thereof will be omitted, and different portions will be described in detail.
  • the twelve windings 13 of the stator 11 are classified according to the supplied three-phase drive currents (U phase, V phase, W phase), and are counterclockwise in FIG.
  • U phase winding bar U1, bar U2, V phase winding bar V1 with respect to U phase windings U1, U2, V phase windings V1, V2 and W phase windings W1, W2 constituted by positive windings.
  • Bar V2, W-phase winding bar W1, bar W2 are constituted by reverse winding.
  • the U-phase winding U1 and the bar U1 are placed at positions facing each other by 180 °, and similarly, the U-phase winding U2 and the bar U2 are placed at positions facing each other by 180 °.
  • U-phase windings U1, U2, U1 and U2 are connected in series.
  • V-phase windings V1, V2, V1 and V2 are connected in series
  • W-phase winding W1. , W2, bar W1, and bar W2 are connected in series.
  • the U-phase windings U1, U2, U1 and U2 are supplied with U-phase drive current.
  • the reverse winding U-phase winding bars U1 and U2 are always excited with the opposite polarity (reverse phase) with respect to the forward winding U-phase windings U1 and U2, but the excitation timing is the same. .
  • the rotor 221 of the motor 230 is a 10-pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (36 ° intervals), and includes three magnet magnetic poles Mn, two magnet magnetic poles Ms, 2 Two salient poles Pn and three salient poles Ps are provided.
  • the magnetic poles of the rotor 221 are, in order in the clockwise direction, the S-pole magnet magnetic pole Ms, the N-pole magnet magnetic pole Mn, the S-pole salient pole Ps, the N-pole magnet magnetic pole Mn, and the S-pole magnet.
  • the magnetic pole Ms, the N pole salient pole Pn, the S pole salient pole Ps, the N pole magnet magnetic pole Mn, the S pole salient pole Ps, and the N pole salient pole Pn are located on the opposite side of the N-pole magnet magnetic pole Mn in the circumferential direction (180 ° facing position), and the N-pole is located on the opposite side in the circumferential direction of the S-pole magnet magnetic pole Ms (180 ° facing position).
  • the salient pole magnetic pole Pn of the pole is located.
  • the rotor core 222 is similar to the above embodiment at the positions corresponding to the boundary between the magnetic poles Mn and Ms adjacent in the circumferential direction and the boundary between the salient poles Pn and Ps adjacent in the circumferential direction.
  • the slit hole 227 is formed.
  • the number of magnet magnetic poles Mn, Ms and salient pole magnetic poles Pn, Ps is not limited to the example of the 10-pole rotor of FIG. 34.
  • a slit hole 227 as shown in FIG. 23 or FIG. 24 may be added, and an auxiliary magnet 228 is added to the slit hole 227a as shown in FIG. 25 or FIG. A fitted configuration may be added.
  • the N-pole salient pole Pn is placed on the U-phase winding on the opposite side in the circumferential direction. It faces the bar U1 in the radial direction (see FIG. 34).
  • one of the magnetic poles having different polarities facing the windings 13 (for example, the U-phase winding U1 and the bar U1) excited in opposite phases (same timing), one of which is composed of the magnet magnetic pole Ms (magnet magnetic pole Mn).
  • the other is composed of salient pole magnetic poles Pn (saliency pole magnetic poles Ps).
  • the arrangement of the magnetic poles of the rotor 221 is not limited to the example shown in FIG. 34.
  • the salient pole Ps is located on the opposite side of the magnet magnetic pole Mn in the circumferential direction, and the opposite side of the magnet magnetic pole Ms in the circumferential direction. As long as the salient pole magnetic pole Pn is positioned, the arrangement of the magnetic poles of the rotor 221 can be changed as appropriate.
  • stator 11 it is not necessary that all the U-phase windings U1, U2, bar U1, and bar U2 are connected in series, and the windings U1, bar U1, and windings U2, U2 are respectively connected in different series.
  • a paired configuration may be used. Moreover, it can change similarly also in V phase and W phase.
  • FIG. 34 shows an example of 10 poles and 12 slots, but the present invention can also be applied to a 14 poles and 12 slots structure. Further, the present invention can also be applied to a configuration in which the number of rotor poles and the number of slots of 10 poles and 12 slots (or 14 poles and 12 slots) are equal.
  • FIG. 34 shows an example of a type in which the protrusion 226 is divided into a plurality according to the magnetic pole, but the present invention can also be applied to a type in which the protrusion 226 is not divided as in the example shown in FIG. .
  • the magnetic flux guiding part (magnetic) for guiding the magnetic flux of the magnet magnetic poles Mn and Ms toward the circumferential center CL (the circumferential center of the projecting part 226) of the salient pole magnetic poles Pn and Ps (projecting part 226).
  • An adjustment unit may be provided in the rotor core 222.
  • a magnetic flux guiding recess 226a serving as the magnetic flux guiding portion is formed in the radially outer surface of each salient pole magnetic pole Pn, Ps. More specifically, on the radially outer side surface of each salient pole magnetic pole Pn (projection 226), the magnetic flux guiding recess 226a is formed at the end near the adjacent magnet magnetic pole Ms. Similarly, on the radially outer surface of each salient pole magnetic pole Ps (projection 226), the magnetic flux guiding recess 226a is formed at the end near the adjacent magnet magnetic pole Mn. In the example of FIG.
  • each magnetic flux guiding recess 226a is set to about 1 ⁇ 4 of the circumferential width of the protrusion 226. Further, the circumferential center CL of the protrusion 226 and the circumferential center of the permanent magnet 223 are set at equal circumferential intervals (45 ° intervals).
  • the magnetic flux ⁇ a directed from the magnet magnetic pole Ms (permanent magnet 223) to the adjacent salient pole magnetic pole Pn through the rotor core 222 is surrounded by the magnetic flux guiding recess 226a around the salient pole magnetic pole Pn (projection 226). It is guided toward the direction center CL.
  • the circumferential magnetic pole centers (peak positions of the magnetic flux density) of the magnetic poles of the rotor 221 that is, the magnetic magnetic poles Mn and Ms and the salient magnetic poles Pn and Ps
  • the circumferential magnetic pole centers (peak positions of the magnetic flux density) of the magnetic poles of the rotor 221 that is, the magnetic magnetic poles Mn and Ms and the salient magnetic poles Pn and Ps
  • it can contribute to higher torque.
  • the magnetic flux guiding portion (magnetic flux guiding recess 226a) is provided on the radially outer surface of the salient pole magnetic poles Pn, Ps.
  • the location where the magnetic flux guiding portion is provided is not limited thereto.
  • holes (gap portions) formed in the rotor core 222 in the salient pole magnetic poles Pn and Ps may function as the magnetic flux guiding portions.
  • the present invention is applied to the surface magnet type structure (SPM structure), but the present invention may be applied to an embedded magnet type structure (IPM structure).
  • SPM structure surface magnet type structure
  • IPM structure embedded magnet type structure
  • FIG. 35 An example of the rotor 221 applied to the IPM structure is shown in FIG.
  • the arrangement configuration of the magnetic poles (the circumferential positions of the magnetic poles Mn and Ms and the core magnetic poles Cn and Cs) is substantially the same as the IPM structure (for example, see the configuration of FIG. 28). .
  • the magnetic poles of the rotor 221 are arranged in order in the clockwise direction: N pole magnetic pole Mn, S pole core pole Cs, N pole core pole Cn, S pole magnet pole Ms, N pole magnet pole Mn,. ⁇ It has a structure that repeats.
  • each magnet magnetic pole Mn, Ms includes a pair of permanent magnets 241 embedded in the rotor core 222.
  • the pair of permanent magnets 241 is arranged in a substantially V shape that expands to the outer peripheral side when viewed in the axial direction, and on the magnetic pole center line in the circumferential direction (see the straight line L1 in FIG. 36). On the other hand, they are provided symmetrically.
  • Each permanent magnet 241 has a rectangular parallelepiped shape.
  • the pair of permanent magnets 241 in each of the magnetic poles Mn and Ms has an angular range (this example) when the rotor 221 is equally divided by the number of poles (the total number of the magnetic poles Mn and Ms and the core magnetic poles Cn and Cs) in the circumferential direction. In the range of 45 °.
  • the magnetization directions of the permanent magnets 241 of the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are indicated by solid arrows, and the tip end side of the arrow represents the N pole and the base end side of the arrow represents the S pole. ing.
  • the permanent magnets 241 in the N-pole magnet magnetic pole Mn face each other (the face on the magnetic pole center line side) so that the outer peripheral face of the magnet magnetic pole Mn is the N-pole. Is magnetized so that the N pole appears.
  • each permanent magnet 241 in the S magnetic pole Ms has the S poles appearing on the surfaces facing each other (the surface on the magnetic pole center line side) so that the outer peripheral surface of the magnet magnetic pole Ms becomes the S pole. Magnetized.
  • the rotor core 222 is formed with a pair of slit holes 231 extending along the radial direction at the boundary between the core magnetic poles Cn and Cs adjacent in the circumferential direction.
  • Each slit hole 231 extends from the position near the fixed hole 222a to the position near the outer peripheral surface 222b of the rotor core 222 along the radial direction.
  • the rotor core 222 is formed with a magnetoresistive hole 242 (magnetic adjustment portion) at a position on the inner peripheral side with respect to the pair of permanent magnets 241 in each magnet magnetic pole Mn, Ms.
  • Each magnetoresistive hole 242 is a rectangular hole that is long in the radial direction when viewed in the axial direction, and is provided at the circumferential center position of each magnet magnetic pole Mn, Ms. That is, in this example, the distance between the centers of the magnetic resistance holes 242 of the magnet magnetic poles Mn and Ms adjacent in the circumferential direction is set to 45 °.
  • Each slit hole 231 and each magnetoresistive hole 242 penetrate the rotor core 222 in the axial direction, and each slit hole 231 and each magnetoresistive hole 242 are voids. Thereby, each magnetoresistive hole 242 suppresses the short circuit of the magnetic flux between the magnet magnetic poles Mn and Ms adjacent in the circumferential direction, and each slit hole 231 causes the magnetic flux of the magnet magnetic poles Mn and Ms to pass through the core magnetic poles Cn and Cs. Suppresses short circuit. That is, the magnetic fluxes of the magnet magnetic poles Mn and Ms passing through the rotor core 222 are preferably guided to the adjacent core magnetic poles Cn and Cs by the slit holes 231 and the magnetic resistance holes 242.
  • gaps K3 and K4 are provided on the inner peripheral side and the outer peripheral side of each permanent magnet 241 respectively.
  • Each gap K3, K4 is a part of each magnet accommodation hole 244 formed in the rotor core 222 and accommodates each permanent magnet 241.
  • the inner peripheral side surface of each permanent magnet 241 faces each gap K3,
  • the inner peripheral side surface of each permanent magnet 241 is configured to face each gap K4. That is, a gap K3 is provided between the permanent magnet 241 and the radially inner end of the magnet accommodation hole 244, and a gap K4 is provided between the permanent magnet 241 and the radially outer end of the magnet accommodation hole 244. Yes.
  • the magnetic resistance of each of the gaps K3 and K4 can suppress the short circuit of the magnetic flux in each of the permanent magnets 241 (the magnetic flux of each permanent magnet 241 is shorted between its own N and S poles via the rotor core 222). It has become. That is, also by the gaps K3 and K4, the magnetic fluxes of the magnet magnetic poles Mn and Ms are preferably guided to the adjacent core magnetic poles Cn and Cs, which can contribute to higher torque.
  • a magnetic flux guiding hole 243 (magnetic flux guiding portion) for guiding the magnetic flux of the magnet magnetic poles Mn and Ms toward the circumferential center CL of the core magnetic poles Cn and Cs is formed.
  • Each magnetic flux guide hole 243 is provided at a position near the magnet magnetic poles Mn and Ms adjacent to each other in the circumferential direction in each of the core magnetic poles Cn and Cs. More specifically, in each of the core magnetic poles Cn and Cs, the magnetic flux guide hole 243 communicates with the magnet accommodation hole 244 (magnet accommodation hole 244a in FIG. 36) in which the nearest permanent magnet 241 is accommodated, and the magnet accommodation hole.
  • Each magnetic flux guide hole 243 is formed at a position corresponding to the radially outer end of the nearest permanent magnet 241.
  • the radial width of each magnetic flux guide hole 243 is set to 1 ⁇ 4 or less of the long side length of the permanent magnet 241 when viewed in the axial direction.
  • the magnetic flux ⁇ a directed from the magnet magnetic pole Ms to the adjacent core magnetic pole Cn through the rotor core 222 is guided toward the circumferential center CL of the core magnetic pole Cn by the magnetic flux guide hole 243.
  • the magnetic pole centers (the peak positions of the magnetic flux density) in the circumferential direction of the magnetic poles of the rotor 221 (namely, the magnetic magnetic poles Mn and Ms and the core magnetic poles Cn and Cs) are set at equal circumferential intervals (45 in the example of FIG. ° interval), and as a result, can contribute to higher torque.
  • the magnetoresistive hole 242 since a short circuit of the magnetic flux between the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms adjacent in the circumferential direction is suppressed by the magnetoresistive hole 242, it is adjacent to each magnet magnetic pole Mn, Ms. Decrease in the amount of magnetic flux toward the core magnetic poles Cn and Cs can be suppressed, and as a result, high torque can be contributed. Further, the magnetoresistive hole 242 is provided radially inward from the permanent magnet 241 in the magnet magnetic poles Mn and Ms in which the pair of permanent magnets 241 are arranged in a V shape, so that the magnetoresistive hole 242 is adjacent in the circumferential direction. Short-circuiting of the magnetic flux between the magnet poles Mn and Ms having different polarities can be suitably suppressed.
  • the core magnetic poles Cn and Cs adjacent in the circumferential direction are connected to each other at both ends in the radial direction of the slit hole 231.
  • the present invention is not limited to this, and the core magnetic poles Cn and Cs are connected to the slit hole. You may comprise so that any one of the radial direction inner side edge part of 231 and a radial direction outer side edge part may be connected.
  • each magnetoresistive hole 242 may extend radially inward to the inner peripheral surface (fixed hole 222a) of the rotor core 222.
  • the rotor 221 shown in FIG. 37 has a configuration in which the auxiliary magnet 251 (magnetic adjustment unit) is arranged in each slit hole 231 having the configuration shown in FIG. 36 and the auxiliary magnet 252 (magnetic adjustment unit) is arranged in each magnetic flux guide hole 243.
  • Each auxiliary magnet 251 is provided at a position closer to the inside in the radial direction in each slit hole 231. Note that the radial length of the auxiliary magnet 251 is set to be equal to or less than half the radial length of the slit hole 231.
  • each auxiliary magnet 251 is magnetized so that the surface near the core magnetic pole Cn in the circumferential direction is an N pole and the surface near the core magnetic pole Cs is an S pole.
  • the auxiliary magnet 252 provided in the magnetic flux guide hole 243 of the N-pole magnet magnetic pole Mn is magnetized so that the radially outer surface becomes the N-pole, and provided in the magnetic flux guide hole 243 of the S-pole magnet magnetic pole Ms.
  • the auxiliary magnet 252 thus magnetized is magnetized so that the radially outer surface becomes the south pole.
  • the auxiliary magnets 251 and 252 are made of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN magnet, a ferrite magnet, an alnico magnet, or the like, and may be any of a sintered magnet and a bonded magnet.
  • the magnetic flux flowing through the core magnetic poles Cn and Cs increases.
  • the magnetic force applied from the rotor 221 to the stator 11 is weaker at the core magnetic poles Cn and Cs than at the magnetic poles Mn and Ms.
  • the auxiliary magnet 251 is disposed in the slit hole 231 and the auxiliary magnet 252 is disposed in the magnetic flux guide hole 243.
  • any one of the auxiliary magnets 251 and 252 may be omitted.
  • the permanent magnet 223 is a sintered magnet, but other than this, for example, a bonded magnet may be used.
  • the present invention is embodied in the inner rotor type motor 210 in which the rotor 221 is disposed on the inner peripheral side of the stator 11.
  • the present invention is not particularly limited thereto, and the rotor is disposed on the outer peripheral side of the stator.
  • the present invention may be embodied in an outer rotor type motor.
  • the present invention is embodied in the radial gap type motor 210 in which the stator 11 and the rotor 221 are opposed to each other in the radial direction.
  • the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction.
  • the present invention may be applied to an axial gap type motor that faces the motor.
  • the motor 310 of the present embodiment is configured as a brushless motor, and is configured with a rotor 321 disposed inside an annular stator 11. Since the configuration of the stator 11 is the same as that of the stator 11 of the first embodiment, detailed description thereof is omitted.
  • the winding 13 of the stator 11 is also configured similarly to the winding 13 of the first embodiment.
  • the rotor 321 has an embedded magnet type structure (IPM structure) in which a permanent magnet 322 forming a magnetic pole is embedded in the rotor core 323.
  • the rotor core 323 is formed in a cylindrical shape by laminating a plurality of core sheets made of a circular plate-shaped magnetic metal in the axial direction, and a rotating shaft 324 is inserted and fixed at the center of the rotor core 323.
  • a fixing hole 323a is formed.
  • the rotor 321 is configured as an 8-pole rotor in which N poles and S poles are alternately set on the outer peripheral surface 323b of the rotor core 323.
  • the rotor 321 includes an N-pole magnet magnetic pole Mn, an S-pole magnet magnetic pole Ms, an N-pole core magnetic pole Cn, and an S-pole core magnetic pole Cs.
  • Each of the magnetic poles Mn and Ms is a magnetic pole using the permanent magnet 322, and each of the core magnetic poles Cn and Cs is a magnetic pole using a part of the rotor core 323.
  • Each of the magnetic poles Mn and Ms of the N pole and the S pole includes a pair of permanent magnets 322 embedded in the rotor core 323.
  • the pair of permanent magnets 322 are arranged in a substantially V shape that expands to the outer peripheral side when viewed in the axial direction, and a magnetic pole center line in the circumferential direction (straight line L1 in FIG. 38B). For reference).
  • Each permanent magnet 322 forms a rectangular parallelepiped.
  • the pair of permanent magnets 322 in each of the magnetic poles Mn and Ms is equally divided by the number of poles in the circumferential direction of the rotor 321 (the total number of the magnetic poles Mn and Ms and the core magnetic poles Cn and Cs, which is 8 in this embodiment). It is arranged so that it falls within the angle range (45 ° range in this embodiment).
  • Each permanent magnet 322 is, for example, an anisotropic sintered magnet, and includes, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN magnet, a ferrite magnet, an alnico magnet, or the like.
  • the magnetization directions of the permanent magnets 322 of the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are indicated by solid arrows, and the tip end side of the arrow is the N pole and the base end side of the arrow is the S pole.
  • the permanent magnets 322 in the N-pole magnet magnetic pole Mn are surfaces facing each other (the surface on the magnetic pole center line side) so that the outer peripheral surface of the magnet magnetic pole Mn is the N-pole. Is magnetized so that the N pole appears.
  • each permanent magnet 322 in the magnetic pole Ms having the S pole has the S poles appearing on the surfaces facing each other (the surface on the magnetic pole center line side) so that the outer peripheral surface of the magnetic pole Ms becomes the S pole. Magnetized.
  • the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are arranged adjacent to each other so that the distance between the circumferential center positions (magnetic pole centers) is 45 °.
  • a pair of the magnetic pole Mn and the magnetic pole Ms of the S pole is referred to as a magnetic pole pair P.
  • the two magnet magnetic pole pairs P are provided in the 180 degree opposing position of the circumferential direction. More specifically, the N-pole magnetic pole Mn of one magnet pole pair P and the N-pole magnet pole Mn of the other magnet pole pair P are disposed at positions opposite to each other by 180 °.
  • the S-pole magnet magnetic pole Ms of the pair P and the S-pole magnet magnetic pole Ms of the other magnet magnetic pole pair P are arranged at 180 ° opposite positions. That is, the magnetic poles Mn and Ms (permanent magnets 322) are provided so as to be point-symmetric about the axis L of the rotor 321 (the axis of the rotating shaft 324).
  • the opening angle ⁇ m (occupied angle) around the axis L of the magnet magnetic poles Mn and Ms is set to an angle (45 ° in this embodiment) obtained by equally dividing the rotor 321 by the number of poles in the circumferential direction. . That is, the opening angle of each magnetic pole pair P composed of the magnetic poles Mn and Ms adjacent in the circumferential direction is approximately 90 °.
  • the occupying angle of the pair of magnet magnetic pole pairs P is approximately 180 °, and the remaining range is a portion where the magnet is not disposed (non-magnet magnetic pole portion 325). That is, in the rotor core 323, a pair of magnet magnetic pole pairs P and a pair of non-magnet magnetic pole portions 325 are alternately configured at intervals of approximately 90 ° in the circumferential direction.
  • Each non-magnet magnetic pole portion 325 is provided with a pair of slit portions 326a and 326b as magnetic resistance portions.
  • each slit part 326a, 326b extends from the vicinity of the fixing hole 323a of the rotor core 323 to the vicinity of the outer peripheral surface 323b of the rotor core 323 along the radial direction.
  • Each slit 326a, 326b is a hole that penetrates the rotor core 323 in the axial direction.
  • each non-magnet magnetic pole portion 325 the pair of slit portions 326a and 326b are formed so as to be line symmetric with respect to the circumferential center line L2 of the non-magnet magnetic pole portion 325.
  • a portion near the N-pole magnetic pole Mn with respect to the circumferential center line L2 is a slit portion 326a
  • a portion near the S-pole magnet magnetic pole Ms is a slit portion 326b.
  • the angle formed by the circumferential center line L2 and the slit portions 326a and 326b is set to approximately 25 °.
  • the circumferential angle formed by the pair of slit portions 326a and 326b is set to about 50 °.
  • the angle formed by the pair of slit portions 326a and 326b of the non-magnet magnetic pole portion 325 is preferably set to be half or more of the open angle of the non-magnet magnetic pole portion 325 (approximately 90 ° in the present embodiment).
  • the angle formed by the circumferential center line L2 of the non-magnet magnetic pole portion 325 and the circumferential center line L3 of the magnet magnetic pole pair P is 90 °.
  • the rotor core 323 is formed with a magnetoresistive hole 327 at a position on the inner peripheral side of the pair of permanent magnets 322 in each of the magnetic poles Mn and Ms.
  • Each magnetoresistive hole 327 is a rectangular hole that is long in the radial direction when viewed in the axial direction, and is provided at the center position in the circumferential direction of each of the magnet magnetic poles Mn and Ms. In other words, in the present embodiment, the distance between the centers of the magnetoresistive holes 327 of the magnet magnetic poles Mn and Ms adjacent in the circumferential direction is set to 45 °.
  • Each magnetoresistive hole 327 passes through the rotor core 323 in the axial direction.
  • gaps K1 and K2 are provided on the inner peripheral side and the outer peripheral side of each permanent magnet 322, respectively.
  • Each gap K1, K2 is a part of each magnet accommodation hole 323c formed in the rotor core 323 for accommodating each permanent magnet 322, and the inner peripheral side surface of each permanent magnet 322 faces each gap K1, The inner peripheral side surface of the permanent magnet 322 is configured to face each gap K2. That is, a gap K1 is provided between the permanent magnet 322 and the radially inner end of the magnet accommodation hole 323c, and a gap K2 is provided between the permanent magnet 322 and the radially outer end of the magnet accommodation hole 323c. Yes.
  • Each magnetic resistance hole 327 suppresses a short circuit of magnetic flux between the magnet magnetic poles Mn and Ms in each magnet magnetic pole pair P, and suppresses a magnetic flux short circuit in each permanent magnet 322 by the gaps K1 and K2.
  • the magnetic flux (magnet magnetic flux) of the permanent magnet 322 of each magnet magnetic pole Mn, Ms is efficiently guided to the outer peripheral side of the magnet magnetic pole Mn, Ms and the non-magnetic magnetic pole portion 325 in the circumferential direction. ing.
  • each non-magnet magnetic pole portion 325 of the rotor core 323 is divided into three regions by a pair of slit portions 326a and 326b, and a region adjacent to the N-pole magnet magnetic pole Mn in the circumferential direction (the slit portion 326a and the magnet).
  • a region between the magnetic pole Mn and the magnetic pole Mn is configured as an S-pole core magnetic pole Cs.
  • a region adjacent to the S-pole magnet magnetic pole Ms in the circumferential direction (region between the slit 326b and the magnet magnetic pole Ms) is configured as an N-pole core magnetic pole Cn.
  • magnet magnetic flux flowing from the N-pole magnet magnetic pole Mn toward the circumferential non-magnet magnetic pole portion 325 is applied to the outer peripheral surface 323b of the rotor core 323 by the magnetic resistance of the slit portion 326a. Be directed towards.
  • the region adjacent to the N-pole magnet magnetic pole Mn in the non-magnet magnetic pole portion 325 functions as an S-pole core magnetic pole Cs (pseudo magnetic pole) by the magnet magnetic flux of the magnet magnetic pole Mn.
  • the magnetic flux that flows from the magnetic pole Ms of the S pole toward the circumferential non-magnet magnetic pole part 325 is applied to the outer peripheral surface 323b of the rotor core 323 by the magnetic resistance of the slit part 326b. Be directed towards.
  • a region adjacent to the S-pole magnet magnetic pole Ms in the non-magnet magnetic pole portion 325 functions as an N-pole core magnetic pole Cn (pseudo-magnetic pole) by the magnet magnetic flux of the magnet magnetic pole Ms.
  • each non-magnet magnetic pole portion 325 the region between the pair of slit portions 326a and 326b (that is, between the core magnetic poles Cn and Cs) (inter-slit core portion 328) is magnetized by the magnetic resistance of the slit portions 326a and 326b.
  • the magnetic poles Mn and Ms are configured not to be affected by the magnetic flux of the magnetic poles Ms and Ms. That is, the inter-slit core portion 328 of each non-magnet magnetic pole portion 325 is configured not to form a magnetic pole due to the magnet magnetic flux of the magnet magnetic poles Mn and Ms (permanent magnet 322).
  • the N-pole magnet magnetic pole Mn, the S-pole core magnetic pole Cs, the inter-slit core portion 328, the N-pole core magnetic pole Cn, and the S-pole magnet magnetic pole in order in the clockwise direction in the circumferential direction.
  • Ms, N magnetic poles Mn,... are repeated.
  • the opening angle ⁇ a (occupied angle) around the axis L of each inter-slit core portion 328 is substantially equal to the circumferential angle formed by the slit portions 326a and 326b, and is approximately 50 ° in the present embodiment. It has become. Further, the opening angle ⁇ c (occupied angle) around the axis L of each of the core magnetic poles Cn and Cs is determined based on the relationship in which the inter-slit core portion 328 is formed in each non-magnet magnetic pole portion 325. It is configured to be smaller than the angle ⁇ m (45 ° in the present embodiment).
  • a three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively.
  • the windings U1 to W4 are excited at the same timing for each phase, and a rotating magnetic field is generated in the stator 11.
  • the rotor 321 rotates by the interaction between the rotating magnetic field of the stator 11 and the magnetic flux of the magnetic poles of the rotor 321 (magnet magnetic poles Mn, Ms and core magnetic poles Cn, Cs).
  • the magnetic flux (magnetic flux outward in the radial direction) generated by the opposing N-pole magnet magnetic pole Mn is the flux linkage caused by the field weakening current (linkage magnetic flux in the radial inner direction).
  • the interlinkage magnetic flux ⁇ x that passes outward in the radial direction is generated in the U-phase windings U1 and U3.
  • the portion of the opposing rotor 321 is not a magnetic pole but an inter-slit core portion 328 that is hardly affected by the magnet magnetic flux.
  • the d-axis magnetic flux generated by the supply of the field weakening current (d-axis current) passes through the inter-slit core portion 328 (rotor core 323) without being substantially affected by the magnetic flux of the rotor 321.
  • the interlinkage magnetic flux ⁇ y passing inward in the radial direction based on the field weakening current is generated in the U-phase windings U2 and U4 without being canceled by the magnetic poles of the rotor 321. That is, in the U-phase windings U2 and U4, an interlinkage magnetic flux ⁇ y having a phase opposite to the interlinkage magnetic flux ⁇ x generated in the U-phase windings U1 and U3 by the magnetic pole Mn is generated.
  • induced voltages are generated in the U-phase windings U1 to U4 by the interlinkage magnetic fluxes ⁇ x and ⁇ y. Since the interlinkage magnetic fluxes ⁇ x and ⁇ y are in opposite phases as described above, an induced voltage generated in the U-phase windings U2 and U4 by the interlinkage magnetic flux ⁇ y and generated in the U-phase windings U1 and U3 by the interlinkage magnetic flux ⁇ x. The induced voltage has opposite polarity (reverse phase). For this reason, the combined induced voltage obtained by combining the induced voltages of the U-phase windings U1 to U4 is effectively reduced.
  • the above action also occurs when the S-pole magnet magnetic pole Ms faces the U-phase windings U1 and U3, for example. That is, when the S magnetic pole Ms faces the U-phase windings U1 and U3, the inter-slit core portion 328 faces the U-phase windings U2 and U4, respectively.
  • the voltage and the induced voltage generated in the U-phase windings U2 and U4 are in opposite phases, and the combined induced voltage of the U-phase windings U1 to U4 is effectively reduced.
  • the combined induced voltage of the U-phase windings U1 to U4 has been described as an example.
  • the inter-slit core portion 328 is added to the rotor core 323.
  • the composite induced voltage is reduced due to the provision of.
  • the magnet magnetic flux (magnetic flux outward in the radial direction) generated by the opposing N-pole magnet magnetic pole Mn is weakened. Is generated in the U-phase windings U1 and U3 and passes outward in the radial direction.
  • the core magnetic pole Cn facing the U-phase windings U2 and U4 is a pseudo magnetic pole having no magnet, and has a lower magnetic force applied to the stator 11 than the magnet magnetic pole Mn.
  • the interlinkage magnetic flux ⁇ y of the U-phase windings U2 and U4 facing the core magnetic pole Cn is smaller than the interlinkage magnetic flux ⁇ x of the U-phase windings U1 and U3 facing the magnet magnetic pole Mn.
  • the induced voltage generated in windings U2 and U4 is smaller than the induced voltage generated in U-phase windings U1 and U3.
  • the combined induced voltage obtained by synthesizing the induced voltages generated in the U-phase windings U1 to U4 is reduced by the decrease in the induced voltage in the U-phase windings U2 and U4.
  • the portion of the rotor 321 radially opposed to the U-phase windings U2 and U4 is the N-pole core magnetic pole Cn. Even in this case, the combined induction voltage of the U-phase windings U1 to U4 is reduced.
  • the decrease in the combined induction voltage when the U-phase windings U1 to U4 face the N pole of the rotor 321 has been described as an example.
  • the V-phase windings V1 to V4 and the W-phase windings W1 to W4 The same is true for the S pole of the rotor 321, and similarly, the combined induced voltage decreases due to the core portion 328 between the slits or the core magnetic pole Cs.
  • the sum of the induced voltages generated in the respective windings 13 for each phase becomes the combined induced voltage.
  • the induced voltage tends to increase. Therefore, by providing the inter-slit core portion 328 and the core magnetic poles Cn and Cs as described above in a configuration in which the winding 13 is in series in each phase, the effect of suppressing the combined induced voltage can be obtained more significantly. Therefore, it is more preferable to increase the rotation of the motor 310.
  • the field-weakening current supplied to the winding 13 can be kept small by the action of the core portion 328 between the slits or the core magnetic poles Cn and Cs. Since the field weakening current can be reduced, the permanent magnet 322 is difficult to demagnetize during field weakening control, and the copper loss of the winding 13 can be suppressed. In other words, the amount of interlinkage magnetic flux that can be reduced with the same amount of field-weakening current increases, so that higher rotation by field-weakening control can be obtained more effectively.
  • the windings 13 of the stator 11 are composed of four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current.
  • the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
  • the rotor 321 includes a U-phase winding U2 at a rotational position of the rotor 321 where the magnet magnetic pole Mn, Ms having the permanent magnet 322 and the magnet magnetic pole Mn (or the magnet magnetic pole Ms) face the U-phase windings U1, U3, for example. , U4 and the non-magnetic magnetic pole portion 325 of the rotor core 323 facing each other.
  • the non-magnet magnetic pole portion 325 of the rotor core 323 is weakened by the core magnetic poles Cn and Cs functioning as magnetic poles opposite to the magnetic poles Mn and Ms by the magnetic fluxes of the magnetic magnetic poles Mn and Ms and the windings 13 facing each other. It consists of an inter-slit core portion 328 (flux allowing portion) that allows generation of field magnetic flux (linkage flux ⁇ y).
  • the core magnetic poles Cn and Cs are pseudo magnetic poles having no magnet, and the magnetic force applied to the stator 11 is weaker than the magnet magnetic poles Mn and Ms. Can be suppressed.
  • the inter-slit core portion 328 allows the generation of field-weakening magnetic flux (interlinkage magnetic flux ⁇ y) in the opposing winding 13, so that the interlinkage magnetic flux ⁇ y is generated in the winding 13 facing the inter-slit core portion 328.
  • the induced voltage generated by the above is opposite in polarity to the induced voltage generated in the winding 13 facing the magnetic poles Mn and Ms. Thereby, the synthetic
  • the output characteristics (torque and rotation speed) of the motor 310 can be adjusted by changing the configuration of the pair of slit portions 326a and 326b formed in each non-magnet magnetic pole portion 325. Become.
  • the field weakening magnetic flux generated in the winding 13 at the time of field weakening control increases, which is advantageous for achieving high rotation.
  • desired motor characteristics can be obtained by setting the angle between the slit portions 326a and 326b.
  • the inter-slit core portion 328 is provided between the N-pole core magnetic pole Cn and the S-pole core magnetic pole Cs in the circumferential direction of the rotor 321, and the N-pole and S-pole core magnetic poles Cn, Cs are respectively It is configured to be adjacent to the magnet poles Mn and Ms having different polarities at a portion opposite to the core portion 328 between the slits in the circumferential direction. According to this configuration, since the core magnetic poles Cn and Cs are respectively interposed between the core portion 328 between the slits and the magnet magnetic poles Mn and Ms in the circumferential direction, the core portion 328 between the slits is the magnetic flux of the magnet magnetic poles Mn and Ms. The configuration can be made less susceptible to influence. Accordingly, the inter-slit core portion 328 is more preferable because it allows generation of field-weakening magnetic flux (linkage magnetic flux ⁇ y).
  • the opening angle ⁇ m of the magnet magnetic poles Mn and Ms facing the stator 11 is such that the core magnetic poles Cn and Cs face the stator 11 (the core magnetic poles Cn and Cs). It is set larger than the opening angle ⁇ c of the outer peripheral surface.
  • the opening angle ⁇ a of the surface facing the stator 11 in the core portion 328 between slits (the outer peripheral surface of the core portion 328 between slits) is set larger than the opening angle ⁇ c of the outer peripheral surfaces of the core magnetic poles Cn and Cs.
  • the rotor core 323 includes slit portions 326a and 326b as magnetoresistive portions between the core portions 328 between the slits adjacent to each other and the core magnetic poles Cn and Cs, the magnet magnetic pole Mn passing through the core magnetic poles Cn and Cs. It is possible to suppress the magnetic flux of Ms from flowing into the core portion 328 between slits.
  • the magnetoresistive portion between the core portion 328 between the slits and the core magnetic poles Cn and Cs is the slit portions 326 a and 326 b formed in the rotor core 323, so that the magnetoresistive portion can be easily configured in the rotor core 323. .
  • each non-magnet magnetic pole portion 325 is not limited to the above embodiment, and a magnetic flux allowing portion and a core magnetic pole Cn that allow each non-magnet magnetic pole portion 325 to generate a field weakening magnetic flux. , Cs can be appropriately changed to other configurations.
  • the slit portions 326a and 326b of the above embodiment may be connected to each other at the inner peripheral side end portion. According to such a structure, it can suppress more suitably that the magnetic flux of the magnet magnetic poles Mn and Ms which pass through the core magnetic poles Cn and Cs flows into the core part 328 between slits.
  • a plurality of bridge portions 331 may be formed at the radial intermediate portions of the slit portions 326a and 326b.
  • Each bridge portion 331 is formed on the rotor core 323, and is configured to connect a pair of side surfaces facing each other in the circumferential direction in each of the slit portions 326a and 326b.
  • the slit portions 326a and 326b are opened outward in the radial direction. According to such a configuration, the output characteristics (torque and rotation speed) of the motor 310 and the rigidity of the rotor core 323 can be easily adjusted by changing the configuration (number, axial direction, and radial dimension) of the bridge portion 331. It becomes possible.
  • an auxiliary magnet 332 may be provided in each of the slit portions 326a and 326b.
  • the magnetization directions of the permanent magnets 322 and the auxiliary magnets 332 are indicated by solid arrows, and the tip end side of the arrow represents the N pole and the arrow base end side represents the S pole.
  • Each auxiliary magnet 332 is a permanent magnet having a rectangular parallelepiped shape, and has a magnetization direction corresponding to the core magnetic poles Cn and Cs adjacent in the circumferential direction. That is, the auxiliary magnet 332 provided in the slit portion 326a is magnetized so that the surface near the core magnetic pole Cs adjacent in the circumferential direction becomes the S pole.
  • the auxiliary magnet 332 provided in the slit portion 326b is magnetized so that the surface near the core magnetic pole Cn adjacent in the circumferential direction becomes an N pole. According to such a configuration, the amount of magnetic flux of the core magnetic poles Cn and Cs can be increased by the auxiliary magnets 332 in the respective slit portions 326a and 326b, and a decrease in torque can be more suitably suppressed.
  • the bridge portion 331 formed in each of the slit portions 326a and 326b is used for positioning the auxiliary magnet 332 in the radial direction. Further, the bridge portion 331 prevents the auxiliary magnet 332 from falling off from the slit portions 326a and 326b to the outside in the radial direction. Further, in the configuration shown in FIG. 42, since the auxiliary magnet 332 is provided at a position closer to the inner peripheral side of each slit portion 326a, 326b, the magnetic flux of the auxiliary magnet 332 is changed to the outer peripheral side of the inter-slit core portion 328 (that is, It is difficult to flow in the field path of the field weakening magnetic flux. For this reason, it is possible to suppress the weak field magnetic flux from flowing through the core portion 328 between the slits by the magnetic flux of the auxiliary magnet 332 (that is, hindering high rotation).
  • the slit portions 326a and 326b of the non-magnet magnetic pole portion 325 are formed along the radial direction of the rotor 321, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • FIG. It is good also as an aspect which 326b does not follow the radial direction of the rotor 321.
  • each slit portion 326a, 326b is formed at a position on the outer peripheral side from the approximate center in the radial direction of the non-magnet magnetic pole portion 325, and the inner peripheral side end of each slit portion 326a, 326b is a non-magnet.
  • the magnetic pole portions 325 are configured to approach each other at a substantially central position in the radial direction.
  • the core part 333 between slits of the outer peripheral side rather than each slit part 326a, 326b in the non-magnet magnetic pole part 325 functions as a magnetic flux permission part.
  • the auxiliary magnet 334 is embedded in a portion on the radially inner side of the inter-slit core portion 333 (each slit portion 326a, 326b) in the non-magnet magnetic pole portion 325.
  • the auxiliary magnet 334 is disposed on the circumferential center line L2 of the non-magnet magnetic pole portion 325.
  • the auxiliary magnet 334 has a rectangular shape that is long in the radial direction when viewed in the axial direction, and a portion near the core magnetic pole Cn in the circumferential direction (a portion closer to the magnet magnetic pole Ms than the slit portion 326b in the non-magnet magnetic pole portion 325) is N poles.
  • the portion near the core magnetic pole Cs (the portion closer to the magnet magnetic pole Mn than the slit portion 326a in the non-magnetic magnetic pole portion 325) is magnetized so as to be the south pole (see the solid line arrow in FIG. 43).
  • the amount of magnetic flux of the core magnetic poles Cn and Cs can be increased by the auxiliary magnet 334, and a reduction in torque can be more suitably suppressed.
  • the auxiliary magnet 334 is provided on the radially inner side with respect to the slit portions 326a and 326b. For this reason, it can suppress that the magnetic flux of the auxiliary magnet 334 penetrate
  • an auxiliary magnet 332 may be provided in each of the slit portions 326a and 326b. Even in such a configuration, in order to suppress interference with the magnetic path of the field weakening magnetic flux, the auxiliary magnet 332 is preferably provided at a position closer to the inner peripheral side of each of the slit portions 326a and 326b.
  • the auxiliary magnets 332 and 334 in each of the above-described configurations are composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like. Further, the auxiliary magnets 332 and 334 may have any configuration of a sintered magnet and a bonded magnet.
  • the slit portions 326a and 326b penetrate the rotor core 323 in the axial direction.
  • the slit portions 326a and 326b are not limited to this, and the slits 326a and 326b are holes that do not penetrate the rotor core 323 in the axial direction.
  • the output characteristics (torque and rotation speed) of the motor 310 may be adjusted by changing the axial lengths of the portions 326a and 326b.
  • the slit portions 326a and 326b are formed as the magnetoresistive portions between the core portions 328 between the slits adjacent to each other and the core magnetic poles Cn and Cs.
  • the present invention is not particularly limited thereto.
  • the magnetoresistive portion between the core portion 328 between the slits and the core magnetic poles Cn and Cs may be configured by partially demagnetizing the rotor core 323 by laser irradiation.
  • the outer diameter D1 of the non-magnet magnetic pole portion 325 (that is, the outer diameter of each core magnetic pole Cn, Cs and the outer diameter of the core portion 328 between slits) is changed to the outer diameter of each magnet magnetic pole Mn, Ms.
  • the air gap (gap) between the stator teeth 12a and the inner peripheral surface of the stator becomes smaller at the non-magnet magnetic pole portion 325 than at the magnetic poles Mn and Ms. That is, since the core part 328 between slits of the non-magnet magnetic pole part 325 and the core magnetic poles Cn, Cs are closer to the inner peripheral surface of the tooth 12a, the field weakening magnetic flux is weakened to the core part 328 between slits and the core magnetic poles Cn, Cs. Becomes easier to pass. Thereby, the synthetic induction voltage in each phase can be suppressed to a smaller value, which can contribute to further higher rotation.
  • the magnetic flux allowing portion (inter-slit core portion 328) configured in the non-magnet magnetic pole portion 325 is integrally formed with the rotor core 323. That is, the rotor core 323 is configured as an integral part including the magnetic flux allowance portion (core portion 328 between slits).
  • the present invention is not limited thereto, and at least a part of the portion constituting the magnetic flux allowance portion may be configured separately. .
  • the rotor core 323 includes a core main body 351 having the same magnetic pole pair P and core magnetic poles Cn and Cs as in the above embodiment, and a separate core member 352 connected to the core main body 351. I have.
  • the core body 351 is formed in a substantially cylindrical shape from, for example, a cold rolled steel plate (SPCC) iron or the like, and a rotating shaft 324 is fixed to the center.
  • the core body 351 has an accommodation recess 353 that is recessed in the non-magnetic pole portion 325 of the rotor core 323 so as to be recessed radially inward from the outer peripheral surface of the core body 351.
  • Both end surfaces in the circumferential direction of the housing recess 353 have a planar shape along the radial direction, and connecting projections 354 projecting in the circumferential direction are formed in the housing recess 353 on the both end surfaces.
  • Each connecting convex portion 354 has a tapered shape in which the width along the radial direction of the rotor 321 extends from the protruding tip (circumferential tip).
  • an N-pole core magnetic pole Cn is formed between the housing recess 353 and the S-pole magnet magnetic pole Ms, and an S-pole is placed between the housing recess 353 and the N-pole magnet magnetic pole Mn.
  • a core magnetic pole Cs is configured.
  • a magnetoresistive hole 355 that penetrates the core body 351 in the axis L direction is formed in a radially inner portion of the housing recess 353 in the core body 351.
  • a separate core member 352 having a fan shape centered on the axis L of the rotating shaft 324 is housed.
  • the separate core member 352 is made of a material (for example, amorphous metal or permalloy) having a higher magnetic permeability than the core body 351 (for example, iron material).
  • the outer peripheral surface of the separate core member 352 has an arc shape centered on the axis L when viewed from the direction of the axis L of the rotation shaft 324.
  • the outer peripheral surface of the separate core member 352 and the outer peripheral surface of the core body 351 are , And are located on the same circle centered on the axis L.
  • Both end surfaces in the circumferential direction of the separate core member 352 have a planar shape along the radial direction, and are opposed to both end surfaces in the circumferential direction of the housing recess 353, respectively. That is, the separate core member 352 is disposed between the N-pole core magnetic pole Cn and the S-pole core magnetic pole Cs in the circumferential direction. And the connection recessed part 361 by which the connection convex part 354 of the core main body 351 is fitted is formed in the circumferential direction both end surface of the separate core member 352, respectively.
  • the separate core member 352 is fixed in the housing recess 353 by fitting the connection protrusions 354 to the connection recesses 361.
  • the separate core member 352 is configured to be line symmetric with respect to the circumferential center line L2 of the non-magnet magnetic pole portion 325. Further, the opening angle (occupation angle) around the axis L of the separate core member 352 is set in the same manner as the opening angle ⁇ a of the inter-slit core portion 328 of the above embodiment.
  • the inner diameter of the separate core member 352 is about half of the outer diameter of the rotor core 323 (the outer diameter of the core main body 351). You may set to more than half or less than half of the outer diameter of the rotor core 323.
  • the separate core member 352 functions as a magnetic flux allowing portion that allows generation of field-weakening magnetic flux, similar to the inter-slit core portion 328 of the above embodiment. Rotation can be achieved.
  • the separate core member 352 is configured separately from the core body 351 having the magnet magnetic poles Mn and Ms and the core magnetic poles Cn and Cs. For this reason, interference between the magnetic path of the field weakening magnetic flux (d-axis magnetic path) in the separate core member 352 and the magnetic paths of the magnetic poles Mn and Ms in the core body 351 can be suppressed. As a result, the field weakening magnetic flux can easily pass through the separate core member 352, thereby contributing to further higher rotation.
  • the separate core member 352 is made of a material having a higher magnetic permeability than the core main body 351, so that the weakening field magnetic flux can be more easily passed through the separate core member 352. As a result, it can contribute to further higher rotation.
  • at least the separate core member 352 is made of a material having high magnetic permeability
  • the core body 351 is made of an inexpensive iron material or the like, so that an increase in manufacturing cost can be suppressed while increasing the rotation speed. Can be achieved.
  • the separate core member 352 is more affected by the magnetic flux of the magnet magnetic poles Mn and Ms. It can be configured to be difficult to receive. Further, since the gaps K3 are provided between the separate core member 352 and the core magnetic poles Cn and Cs in the circumferential direction, interference of the magnetic poles Mn and Ms with respect to the field weakening magnetic flux passing through the separate core member 352 is prevented. It can be further suppressed.
  • the separate core member 352 is connected by the connecting protrusion 354 integrally formed with the core body 351.
  • the present invention is not limited to this, and for example, as shown in FIG.
  • the core body 351 and the separate core member 352 may be connected via a connecting member 362 that is separate from the 351 and the separate core member 352.
  • the connecting member 362 is provided across the separate core member 352 and the core body 351 on both sides of the separate core member 352 in the circumferential direction, and both end portions in the circumferential direction of each connecting member 362 are separate core members 352. Are fitted in connecting recesses 363 and 364 respectively formed on both end surfaces in the circumferential direction and on both end surfaces in the circumferential direction of the housing recess 353.
  • the radial installation position of the connecting member 362 is set to the radial center position of the separate core member 352.
  • each connecting member 362 has a tapered shape in which the radial width increases from the center in the circumferential direction to both ends in the circumferential direction.
  • the connecting member 362 is made of a material (for example, resin, stainless steel, brass, etc.) having a larger magnetic resistance than the core main body 351 and the separate core member 352.
  • the core main body 351 and the separate core member 352 can be configured to be connected only by the connecting member 362.
  • the magnetic material of the magnetic poles Mn and Ms of the core main body 351 is separated through the connecting member 362 by using a material having a larger magnetic resistance than the core main body 351 and the separate core member 352 as the constituent material of the connecting member 362.
  • the flow toward the member 352 can be suppressed.
  • the interference of the magnetic poles Mn and Ms with respect to the field weakening magnetic flux passing through the separate core member 352 can be further suppressed.
  • the gap K3 is provided between the housing recess 353 of the core body 351 and the separate core member 352.
  • the present invention is not limited to this.
  • a filler such as a resin is provided in the gap K3.
  • the filler may function as a connecting member that connects the core body 351 and the separate core member 352.
  • the separate core member 352 is mainly made of a material having an easy magnetization axis (a crystal orientation easy to be magnetized) in the circumferential direction. According to this, the field-weakening magnetic flux easily passes through the d-axis magnetic path in the separate core member 352, and as a result, it can contribute to further higher rotation.
  • a cylindrical cover member that covers the outer peripheral surface of the rotor 321 may be provided. According to this, it is possible to suppress the separate core member 352 from dropping from the core body 351 by the cover member.
  • the windings of each phase that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series.
  • the winding mode may be changed as appropriate.
  • U phase windings U1 and U2 are connected in series
  • U phase windings U3 and U4 are connected in series
  • a series pair of these U phase windings U1 and U2 is connected.
  • a series pair of U-phase windings U3 and U4 may be connected in parallel.
  • the rotor 321 has 8 poles and the number of windings 13 of the stator 11 is 12 (that is, the motor configuration has 8 poles and 12 slots).
  • the number of can be appropriately changed according to the configuration.
  • the magnetic pole Mn and the core magnetic pole Cn are configured in the same number (each two), but it is not always necessary to have the same number.
  • the number of magnet magnetic poles Mn may be three (or one) and the number of core magnetic poles Cn may be one (or three).
  • the same change may be made for the S pole (magnet magnetic pole Ms and core magnetic pole Cs) of the rotor.
  • the core magnetic pole Cn and the core magnetic pole Cs are provided in the N pole and the S pole of the rotor 321, respectively.
  • the present invention is not particularly limited thereto. May be provided, and the other pole may be composed entirely of magnet magnetic poles.
  • the pair of permanent magnets 322 embedded in the rotor core 323 are arranged in a substantially V shape that expands to the outer peripheral side when viewed in the axial direction.
  • the configuration of the permanent magnets in the magnet magnetic poles Mn and Ms can be changed as appropriate. For example, it is good also as a structure which has one permanent magnet per one magnetic pole Mn and Ms.
  • the rotor 321 of the above embodiment has an embedded magnet type structure (IPM structure) in which the permanent magnets 322 constituting the magnetic poles Mn and Ms are embedded in the rotor core 323, but the magnetic poles Mn and Ms are constituted.
  • the permanent magnet may be a surface magnet type structure (SPM structure) in which the outer peripheral surface of the rotor core 323 is fixed.
  • the permanent magnet 322 is a sintered magnet, but other than this, for example, a bonded magnet may be used.
  • the rotor core 323 has a laminated structure of the core sheets. However, other than this, for example, a green compact core or an integrated block formed by forging (cold forging), cutting, or the like may be used.
  • the present invention is embodied in the inner rotor type motor 310 in which the rotor 321 is disposed on the inner peripheral side of the stator 11.
  • the present invention is not particularly limited thereto, and the rotor is disposed on the outer peripheral side of the stator.
  • the present invention may be embodied in an outer rotor type motor.
  • the present invention is embodied in the radial gap type motor 310 in which the stator 11 and the rotor 321 face each other in the radial direction.
  • the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction.
  • the present invention may be applied to an axial gap type motor that faces the motor.

Abstract

A motor includes a stator having a winding, and a rotor. The rotor rotates by receiving a rotational magnetic field generated by drive current supplied to the winding. The winding includes a first winding and a second winding, the first and second windings both being excited at the same timing by the drive current. The first winding and the second winding are connected in series. The rotor includes a first magnetic pole section and a second magnetic pole section. The second magnetic pole section faces the second winding at the rotation position of the rotor at which the first magnetic pole section faces the first winding. The magnetic force exerted on the stator by the second magnetic pole section is weaker than that exerted by the first magnetic pole section.

Description

モータmotor
 本発明は、モータに関するものである。 The present invention relates to a motor.
 従来、ブラシレスモータ等の永久磁石モータは、例えば特許文献1に示されるように、ステータコアに巻線が巻装されてなるステータと、該ステータと対向する永久磁石を磁極としたロータとを備え、ステータの巻線に駆動電流が供給されることで生じる回転磁界を受けてロータが回転するようになっている。 Conventionally, a permanent magnet motor such as a brushless motor includes, for example, a stator in which a winding is wound around a stator core and a rotor having a permanent magnet facing the stator as a magnetic pole, as shown in Patent Document 1, for example. The rotor rotates by receiving a rotating magnetic field generated by supplying a drive current to the winding of the stator.
特開2014-135852号公報JP 2014-135852 A
 上記のような永久磁石モータでは、ロータが高回転駆動になるほど、ロータの永久磁石による鎖交磁束の増加によりステータの巻線に発生する誘起電圧が大きくなり、この誘起電圧がモータ出力を低下させ、モータの高回転化の妨げとなっている。そこで、ロータの永久磁石のサイズを小さくするなどしてロータ磁極の磁力を小さくすることで、ロータの高回転時における前記誘起電圧を抑えることが可能であるが、それでは、得られるトルクも減少してしまうため、この点においてなお改善の余地があった。 In the permanent magnet motor as described above, the higher the rotor is driven, the greater the induced voltage generated in the stator winding due to the increase of the linkage flux by the permanent magnet of the rotor, and this induced voltage decreases the motor output. This hinders high motor rotation. Therefore, by reducing the magnetic force of the rotor magnetic poles, for example, by reducing the size of the permanent magnets of the rotor, it is possible to suppress the induced voltage when the rotor rotates at a high speed. Therefore, there is still room for improvement in this respect.
 本発明の目的は、トルクの低下を抑えつつ高回転化を図ることができるモータを提供することにある。 An object of the present invention is to provide a motor capable of increasing the rotation speed while suppressing a decrease in torque.
 上記目的を達成するため、本発明の一態様に係るモータは、巻線を有するステータと、ロータとを含む。前記ロータは前記巻線に駆動電流が供給されることで生じる回転磁界を受けて回転する。前記巻線は第1の巻線と第2の巻線とを含んでおり、該第1の巻線と第2の巻線とは前記駆動電流によって互いに同一のタイミングで励磁される。前記第1の巻線と第2の巻線とは直列接続されている。前記ロータは、第1磁極部と第2磁極部とを含んでいる。該第2磁極部は、前記第1磁極部が前記第1の巻線と対向するロータの回転位置で前記第2の巻線と対向する。前記第2磁極部は、前記ステータに与える磁力が前記第1磁極部よりも弱い。 To achieve the above object, a motor according to one aspect of the present invention includes a stator having windings and a rotor. The rotor rotates in response to a rotating magnetic field generated by supplying a driving current to the winding. The winding includes a first winding and a second winding, and the first winding and the second winding are excited at the same timing by the drive current. The first winding and the second winding are connected in series. The rotor includes a first magnetic pole part and a second magnetic pole part. The second magnetic pole portion opposes the second winding at a rotational position of the rotor where the first magnetic pole portion opposes the first winding. The second magnetic pole part is weaker in magnetic force applied to the stator than the first magnetic pole part.
本発明の第1実施形態に係るモータの平面図である。1 is a plan view of a motor according to a first embodiment of the present invention. 図1の巻線の結線態様を示す電気回路図である。It is an electric circuit diagram which shows the connection aspect of the coil | winding of FIG. (a)は、図1のモータにおけるロータ回転時にU相巻線に生じる誘起電圧の変化を示すグラフであり、(b)は、従来構成においてロータ回転時にU相巻線に生じる誘起電圧の変化を示すグラフである。(A) is a graph which shows the change of the induced voltage which arises in U phase winding at the time of rotor rotation in the motor of FIG. 1, (b) is the change of the induced voltage which arises in U phase winding at the time of rotor rotation in a conventional structure. It is a graph which shows. 第1実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 1st embodiment. 第1実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 1st embodiment. 第1実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 1st embodiment. 第1実施形態の別例における巻線の結線態様を示す電気回路図である。It is an electric circuit diagram which shows the connection aspect of the coil | winding in the other example of 1st Embodiment. 第1実施形態の別例のモータの平面図である。It is a top view of the motor of another example of a 1st embodiment. 別例のロータの平面図である。It is a top view of the rotor of another example. 本発明の第2実施形態に係るモータの平面図である。It is a top view of the motor concerning a 2nd embodiment of the present invention. 図10のロータの斜視図である。It is a perspective view of the rotor of FIG. 図10における4-4線断面図である。FIG. 11 is a sectional view taken along line 4-4 in FIG. (a)は、図10のモータにおけるロータ回転時にU相巻線に生じる誘起電圧の変化を示すグラフであり、(b)は、従来構成においてロータ回転時にU相巻線に生じる誘起電圧の変化を示すグラフである。(A) is a graph which shows the change of the induced voltage which arises in U phase winding at the time of rotor rotation in the motor of FIG. 10, (b) is the change of the induced voltage which arises in U phase winding at the time of rotor rotation in a conventional structure. It is a graph which shows. 第2実施形態の別例のロータの斜視図である。It is a perspective view of the rotor of another example of 2nd Embodiment. 図14の別例のロータの分解斜視図である。It is a disassembled perspective view of the rotor of another example of FIG. 第2実施形態の別例のロータの分解斜視図である。It is a disassembled perspective view of the rotor of another example of 2nd Embodiment. 別例のロータの平面図である。It is a top view of the rotor of another example. 第2実施形態の別例のロータの分解斜視図である。It is a disassembled perspective view of the rotor of another example of 2nd Embodiment. 第2実施形態の別例における巻線の結線態様を示す電気回路図である。It is an electric circuit diagram which shows the connection mode of the coil | winding in another example of 2nd Embodiment. 第2実施形態の別例のモータの平面図である。It is a top view of the motor of another example of a 2nd embodiment. (a)は、本発明の第3実施形態のモータの平面図であり、(b)は、同形態のロータの平面図である。(A) is a top view of the motor of 3rd Embodiment of this invention, (b) is a top view of the rotor of the same form. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例における巻線の結線態様を示す電気回路図である。It is an electric circuit diagram which shows the connection aspect of the coil | winding in the other example of 3rd Embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のモータの平面図である。It is a top view of the motor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. 第3実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of a 3rd embodiment. (a)は、実施形態に係るモータの平面図であり、(b)は、ロータの平面図である。(A) is a top view of the motor which concerns on embodiment, (b) is a top view of a rotor. (a)(b)第4実施形態のモータにおける弱め界磁制御時の磁気作用を説明するための説明図である。(A) (b) It is explanatory drawing for demonstrating the magnetic effect | action at the time of the field-weakening control in the motor of 4th Embodiment. 第4実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of 4th Embodiment. 第4実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of 4th Embodiment. 第4実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of 4th Embodiment. 第4実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of 4th Embodiment. 第4実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of 4th Embodiment. 第4実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of 4th Embodiment. 第4実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of 4th Embodiment. 第4実施形態の別例のロータの平面図である。It is a top view of the rotor of another example of 4th Embodiment.
 以下、モータの第1実施形態について説明する。
 図1に示すように、本実施形態のモータ10は、ブラシレスモータとして構成され、円環状のステータ11の内側にロータ21が配置されて構成されている。
Hereinafter, a first embodiment of the motor will be described.
As shown in FIG. 1, the motor 10 of the present embodiment is configured as a brushless motor, and a rotor 21 is arranged inside an annular stator 11.
 [ステータの構成]
 ステータ11は、ステータコア12と、該ステータコア12に巻装された巻線13とを備えている。ステータコア12は、磁性金属にて略円環状に形成され、その周方向の等角度間隔においてそれぞれ径方向内側に延びる12個のティース12aを有している。
[Structure of stator]
The stator 11 includes a stator core 12 and a winding 13 wound around the stator core 12. The stator core 12 is formed of a magnetic metal in a substantially annular shape, and has twelve teeth 12a extending radially inward at equal angular intervals in the circumferential direction.
 巻線13は、ティース12aと同数の12個備えられ、各ティース12aにそれぞれ集中巻きにて同一方向に巻装されている。つまり、巻線13は、周方向等間隔(30°間隔)に12個設けられている。この巻線13は、供給される3相の駆動電流(U相、V相、W相)に応じて3相に分類され、図1において反時計回り方向に順に、U1、V1、W1、U2、V2、W2、U3、V3、W3、U4、V4、W4とする。 Twelve windings 13 having the same number as the teeth 12a are provided, and each tooth 12a is wound in the same direction by concentrated winding. That is, twelve windings 13 are provided at equal intervals in the circumferential direction (30 ° intervals). The windings 13 are classified into three phases according to the three-phase driving currents (U phase, V phase, W phase) supplied, and U1, V1, W1, U2 in order counterclockwise in FIG. , V2, W2, U3, V3, W3, U4, V4, W4.
 各相で見ると、U相巻線U1~U4は周方向等間隔(90°間隔)に配置されている。同様に、V相巻線V1~V4は、周方向等間隔(90°間隔)に配置されている。また、同様に、W相巻線W1~W4は、周方向等間隔(90°間隔)に配置されている。 Referring to each phase, the U-phase windings U1 to U4 are arranged at equal intervals in the circumferential direction (90 ° intervals). Similarly, the V-phase windings V1 to V4 are arranged at equal circumferential intervals (90 ° intervals). Similarly, the W-phase windings W1 to W4 are arranged at equal intervals in the circumferential direction (90 ° intervals).
 また、図2に示すように、巻線13は相毎に直列に接続されている。つまり、U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4はそれぞれ直列回路を構成している。なお、本実施形態では、U相巻線U1~U4の直列回路、V相巻線V1~V4の直列回路、及びW相巻線W1~W4の直列回路がスター結線されている。 Further, as shown in FIG. 2, the windings 13 are connected in series for each phase. That is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 each constitute a series circuit. In this embodiment, a series circuit of U-phase windings U1 to U4, a series circuit of V-phase windings V1 to V4, and a series circuit of W-phase windings W1 to W4 are star-connected.
 [ロータの構成]
 図1に示すように、ステータ11(ティース12a)の径方向内側の空間に収容されるロータ21は、ロータコア22と、ロータコア22の外周面に固着された8個の永久磁石23とを備えている。なお、永久磁石23は、例えば異方性の焼結磁石であり、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成される。
[Configuration of rotor]
As shown in FIG. 1, the rotor 21 accommodated in the radially inner space of the stator 11 (the teeth 12 a) includes a rotor core 22 and eight permanent magnets 23 fixed to the outer peripheral surface of the rotor core 22. Yes. The permanent magnet 23 is, for example, an anisotropic sintered magnet, and is composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like.
 ロータコア22は、磁性金属にて略円筒状に形成され、中心部に回転軸24が固定されている。ロータコア22の外周面には、回転軸24の軸線L方向から見て該軸線Lを中心とする円弧状をなすそれぞれ一対の第1及び第2磁石固着面22a,22bが形成されている。第1磁石固着面22a及び第2磁石固着面22bは周方向に交互に形成され、それらの周方向幅(軸線Lを中心とする開角度)は全て等しく(つまり、90°で)形成されている。また、一対の第1磁石固着面22aの外径は互いに同一であり、一対の第2磁石固着面22bの外径も互いに同一である。そして、第2磁石固着面22bの外径は、第1磁石固着面22aの外径よりも小さく形成されている。 The rotor core 22 is formed of a magnetic metal in a substantially cylindrical shape, and a rotating shaft 24 is fixed at the center. On the outer peripheral surface of the rotor core 22, a pair of first and second magnet fixing surfaces 22 a and 22 b each having an arc shape centered on the axis L when viewed from the direction of the axis L of the rotating shaft 24 is formed. The first magnet fixing surface 22a and the second magnet fixing surface 22b are alternately formed in the circumferential direction, and their circumferential widths (open angles around the axis L) are all equal (that is, 90 °). Yes. Further, the outer diameters of the pair of first magnet fixing surfaces 22a are the same, and the outer diameters of the pair of second magnet fixing surfaces 22b are also the same. The outer diameter of the second magnet fixing surface 22b is smaller than the outer diameter of the first magnet fixing surface 22a.
 永久磁石23は、1つの磁石固着面22a,22bにつき2個ずつ固着され、合計で8個の永久磁石23がロータコア22の外周面に設けられている。各永久磁石23は、同一材質、同一形状であり、各永久磁石23の外周面は、回転軸24の軸線L方向から見て該軸線Lを中心とする円弧状をなしている。また、各永久磁石23の軸線Lを中心とする開角度(周方向幅)は45°に形成されている。そして、各永久磁石23は、磁気配向が径方向を向くように形成され、外周側に現れる磁極が周方向において交互に異極となるように配設されている。これら各永久磁石23はロータ21の磁極を構成している。つまり、ロータ21は、N極・S極が周方向等間隔(45°間隔)に交互に設定された8極ロータとして構成されている。 Two permanent magnets 23 are fixed to each of the magnet fixing surfaces 22 a and 22 b, and a total of eight permanent magnets 23 are provided on the outer peripheral surface of the rotor core 22. Each permanent magnet 23 has the same material and the same shape, and the outer peripheral surface of each permanent magnet 23 has an arc shape centered on the axis L when viewed from the direction of the axis L of the rotating shaft 24. Further, the opening angle (circumferential width) around the axis L of each permanent magnet 23 is 45 °. Each permanent magnet 23 is formed such that the magnetic orientation is directed in the radial direction, and the magnetic poles appearing on the outer circumferential side are alternately arranged in the circumferential direction. Each of these permanent magnets 23 constitutes a magnetic pole of the rotor 21. That is, the rotor 21 is configured as an 8-pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (45 ° intervals).
 ロータ21において、外周側がN極の永久磁石23にてそれぞれ構成された4つのN極部25a,25bは、周方向等間隔(90°間隔)に構成されている。そして、N極部25a,25bは、各第1磁石固着面22aに設けられたN極の永久磁石23(図1中、永久磁石N1)からなる2つの第1N極部25aと、各第2磁石固着面22bに設けられて永久磁石N1よりも径方向内側に位置するN極の永久磁石23(図1中、永久磁石N2)からなる2つの第2N極部25bとに分けられる。 In the rotor 21, four N pole portions 25 a and 25 b each having an N pole permanent magnet 23 on the outer peripheral side are configured at equal circumferential intervals (90 ° intervals). The N pole portions 25a and 25b include two first N pole portions 25a made up of N pole permanent magnets 23 (permanent magnet N1 in FIG. 1) provided on each first magnet fixing surface 22a and each second pole portion 25a. It is divided into two second N-pole portions 25b made of N-pole permanent magnets 23 (permanent magnet N2 in FIG. 1) provided on the magnet fixing surface 22b and positioned radially inward from the permanent magnet N1.
 第2N極部25bの外周面(永久磁石N2の外周面)は、第1N極部25aの外周面(永久磁石N1の外周面)よりも径方向内側に位置している。また、一対の第1N極部25a同士は周方向において180°対向位置に設けられ、同様に、一対の第2N極部25b同士も周方向において180°対向位置に設けられている。つまり、これら第1N極部25aと第2N極部25bとは、周方向の中心位置が等角度間隔(90°間隔)に交互に設けられている。 The outer peripheral surface of the second N pole portion 25b (the outer peripheral surface of the permanent magnet N2) is located radially inward from the outer peripheral surface of the first N pole portion 25a (the outer peripheral surface of the permanent magnet N1). In addition, the pair of first N pole portions 25a are provided at 180 ° facing positions in the circumferential direction, and similarly, the pair of second N pole portions 25b are also provided at 180 ° facing positions in the circumferential direction. That is, the first N-pole portions 25a and the second N-pole portions 25b are alternately provided at equal circumferential intervals (90 ° intervals) in the circumferential direction.
 上記のロータ21のN極の構成はS極についても同様である。即ち、外周側がS極の永久磁石23にてそれぞれ構成された4つのS極部26a,26bは、周方向等間隔(90°間隔)に構成されている。そして、S極部26a,26bは、各第1磁石固着面22aに設けられたS極の永久磁石23(図1中、永久磁石S1)からなる2つの第1S極部26aと、各第2磁石固着面22bに設けられて永久磁石S1よりも径方向内側に位置するS極の永久磁石23(図1中、永久磁石S2)からなる2つの第2S極部26bとに分けられる。 The configuration of the N pole of the rotor 21 is the same for the S pole. That is, the four south pole portions 26a and 26b each formed by the permanent magnet 23 having the south pole on the outer circumferential side are configured at equal intervals in the circumferential direction (90 ° intervals). The S pole portions 26a and 26b include two first S pole portions 26a made of S pole permanent magnets 23 (permanent magnet S1 in FIG. 1) provided on each first magnet fixing surface 22a, and each second. It is divided into two second S pole portions 26b formed of S pole permanent magnets 23 (permanent magnet S2 in FIG. 1) which are provided on the magnet fixing surface 22b and located radially inward of the permanent magnet S1.
 第2S極部26bの外周面(永久磁石S2の外周面)は、第1S極部26aの外周面(永久磁石S1の外周面)よりも径方向内側に位置している。また、一対の第1S極部26a同士は周方向において180°対向位置に設けられ、一対の第2S極部26b同士も同様に周方向において180°対向位置に設けられている。つまり、これら第1S極部26aと第2S極部26bとは、周方向の中心位置が等角度間隔(90°間隔)に交互に設けられている。 The outer peripheral surface of the second S pole portion 26b (the outer peripheral surface of the permanent magnet S2) is positioned radially inward from the outer peripheral surface of the first S pole portion 26a (the outer peripheral surface of the permanent magnet S1). In addition, the pair of first S pole portions 26a is provided at a 180 ° facing position in the circumferential direction, and the pair of second S pole portions 26b is also provided at a 180 ° facing position in the circumferential direction. That is, the first S pole portion 26a and the second S pole portion 26b are alternately provided with the center positions in the circumferential direction at equal angular intervals (90 ° intervals).
 ロータ21は、第1磁極部としての第1N極部25a及び第1S極部26aと、第2磁極部としての第2N極部25b及び第2S極部26bとを含んでいる。
 次に、本実施形態の作用について説明する。
The rotor 21 includes a first N pole portion 25a and a first S pole portion 26a as first magnetic pole portions, and a second N pole portion 25b and a second S pole portion 26b as second magnetic pole portions.
Next, the operation of this embodiment will be described.
 図示しない駆動回路からそれぞれ120°の位相差を持つ3相の駆動電流(交流)がU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4にそれぞれ供給されると、各巻線U1~W4が相毎に同一タイミングで励磁されてステータ11に回転磁界が発生し、その回転磁界に基づいてロータ21が回転する。このとき、3相の駆動電流の供給によってステータ11に形成される磁極は、各相の巻線U1~W4毎で同極となる。 A three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively. Then, the windings U1 to W4 are excited at the same timing for each phase to generate a rotating magnetic field in the stator 11, and the rotor 21 rotates based on the rotating magnetic field. At this time, the magnetic poles formed on the stator 11 by the supply of the three-phase drive current are the same for the windings U1 to W4 of each phase.
 ここで、ロータ21の極対数(つまり、N極部25a,25bとS極部26a,26bのそれぞれの個数)は、各相の巻線U1~W4の個数と同数(本実施形態では「4」)で構成されている。これにより、ロータ21の回転時に、例えば、N極部25a,25bのうちの1つがU相巻線U1と径方向に対向するとき、他のN極部25a,25bがU相巻線U2~U4とそれぞれ径方向に対向するようになっている(図1参照)。 Here, the number of pole pairs of the rotor 21 (that is, the number of each of the N pole portions 25a and 25b and the S pole portions 26a and 26b) is the same as the number of the windings U1 to W4 of each phase (in this embodiment, “4 ]). Thus, when the rotor 21 rotates, for example, when one of the N pole portions 25a and 25b is opposed to the U phase winding U1 in the radial direction, the other N pole portions 25a and 25b are connected to the U phase windings U2 to U2. U4 is opposed to each in the radial direction (see FIG. 1).
 このとき、第2N極部25bの外周面(ステータ11との対向面)は、第1N極部25aの外周面よりも径方向内側に位置しているため、ステータ11との間の径方向のエアギャップが第1N極部25aに対し第2N極部25bで広くなる。これにより、ロータ21のN極部25a,25bがステータ11(例えば、U相巻線U1~U4)に与える磁力は、第1N極部25aよりも第2N極部25bで弱くなっている。このことは、ロータ21のS極部26a,26bにおいても同様である。 At this time, since the outer peripheral surface of the second N pole portion 25b (the surface facing the stator 11) is located on the radially inner side with respect to the outer peripheral surface of the first N pole portion 25a, the radial direction between the second N pole portion 25b and the stator 11 is provided. The air gap is wider at the second N pole portion 25b than at the first N pole portion 25a. Thus, the magnetic force applied to the stator 11 (for example, the U-phase windings U1 to U4) by the N pole portions 25a and 25b of the rotor 21 is weaker at the second N pole portion 25b than at the first N pole portion 25a. The same applies to the S pole portions 26a and 26b of the rotor 21.
 これにより、例えば図1に示すような、ロータ21のN極部25a,25bがU相巻線U1~U4とそれぞれ対向する回転位置において、第2N極部25bと対向するU相巻線U2,U4を鎖交する鎖交磁束は、第1N極部25aと対向するU相巻線U1,U3を鎖交する鎖交磁束に比べて少なくなる。従って、第2N極部25bと対向するU相巻線U2,U4に生じる誘起電圧は、第1N極部25aと対向するU相巻線U1,U3に生じる誘起電圧よりも小さくなる。 Thus, for example, as shown in FIG. 1, the U-phase windings U2 and U2 facing the second N-pole portions 25b at the rotational positions at which the N- pole portions 25a and 25b of the rotor 21 respectively face the U-phase windings U1 to U4. The interlinkage magnetic flux interlinking U4 is smaller than the interlinkage magnetic flux interlinking U-phase windings U1, U3 facing the first N pole portion 25a. Accordingly, the induced voltage generated in the U-phase windings U2 and U4 facing the second N pole portion 25b is smaller than the induced voltage generated in the U-phase windings U1 and U3 facing the first N pole portion 25a.
 ここで、図3(a)は、本実施形態におけるロータ回転時のU相巻線U1~U4に生じる誘起電圧の所定の回転範囲(90°)での変化を示し、図3(b)は、従来構成におけるロータ回転時のU相巻線U1~U4に生じる誘起電圧の所定の回転範囲(90°)での変化を示している。従来構成は、ロータの各磁極が一様である構成、つまり、ロータコア22を円筒形状として永久磁石N2,S2の径方向位置を永久磁石N1,S1と同じとした構成である。 Here, FIG. 3A shows the change in the induced voltage generated in the U-phase windings U1 to U4 during the rotation of the rotor in the present embodiment in a predetermined rotation range (90 °), and FIG. 4 shows changes in the induced voltage generated in the U-phase windings U1 to U4 during rotation of the rotor in the conventional configuration in a predetermined rotation range (90 °). The conventional configuration is a configuration in which the magnetic poles of the rotor are uniform, that is, a configuration in which the rotor core 22 is cylindrical and the radial positions of the permanent magnets N2 and S2 are the same as those of the permanent magnets N1 and S1.
 従来構成では、ロータの各磁極が一様であるため、U相巻線U1~U4のそれぞれにおける鎖交磁束の変化も一様である。このため、図3(b)に示すように、ロータ21の回転時において、U相巻線U1~U4で互いに等しい誘起電圧vxが生じる。そして、U相巻線U1~U4が直列の場合、各U相巻線U1~U4に生じる誘起電圧vxを合成した合成誘起電圧vu’は、各U相巻線U1~U4の誘起電圧vxの和(つまり、誘起電圧vxの4倍)となる。 In the conventional configuration, since the magnetic poles of the rotor are uniform, the change of the interlinkage magnetic flux in each of the U-phase windings U1 to U4 is also uniform. For this reason, as shown in FIG. 3B, when the rotor 21 rotates, the same induced voltage vx is generated in the U-phase windings U1 to U4. When the U-phase windings U1 to U4 are in series, the combined induced voltage vu ′ obtained by synthesizing the induced voltage vx generated in each U-phase winding U1 to U4 is the induced voltage vx of each U-phase winding U1 to U4. The sum (that is, four times the induced voltage vx).
 一方、図3(a)に示すように、本実施形態では、第2N極部25b及び第2S極部26bがそれぞれ第1N極部25a及び第1S極部26aよりもステータ11(U相巻線U1~U4)への磁力が弱く構成されている。これにより、第1N極部25a及び第1S極部26aと対向するU相巻線U1~U4(例えばU相巻線U1,U3)に生じる誘起電圧vxに対して、第2N極部25b及び第2S極部26bと対向するU相巻線U1~U4(例えばU相巻線U2,U4)に生じる誘起電圧vyが小さくなる。このため、各U相巻線U1~U4の誘起電圧を合成した合成誘起電圧vu(vu=vx×2+vy×2)が、第2N極部25b及び第2S極部26bと対向する一対のU相巻線での誘起電圧vyの減少分だけ減少し、図3(b)に示す従来構成での合成誘起電圧vu’と比較して小さくなる。なお、ここではU相巻線U1~U4の合成誘起電圧vuを例にとって説明したが、V相巻線V1~V4及びW相巻線W1~W4においても同様に、第2N極部25b及び第2S極部26bによる合成誘起電圧の減少が生じる。 On the other hand, as shown in FIG. 3 (a), in the present embodiment, the second N pole portion 25b and the second S pole portion 26b are more stable than the first N pole portion 25a and the first S pole portion 26a, respectively. The magnetic force to U1 to U4) is weak. As a result, the second N-pole portion 25b and the second N-pole portion 25b and the first S-pole portion 26a with respect to the induced voltage vx generated in the U-phase windings U1 to U4 (eg, U-phase windings U1 and U3) facing the first N-pole portion 25a and the first S-pole portion 26a The induced voltage vy generated in the U-phase windings U1 to U4 (for example, U-phase windings U2 and U4) facing the 2S pole portion 26b is reduced. Therefore, a combined induced voltage vu (vu = vx × 2 + vy × 2) obtained by synthesizing the induced voltages of the U-phase windings U1 to U4 is a pair of U-phases facing the second N-pole portion 25b and the second S-pole portion 26b. It decreases by the amount of decrease of the induced voltage vy in the winding, and becomes smaller than the combined induced voltage vu ′ in the conventional configuration shown in FIG. Here, the combined induced voltage vu of the U-phase windings U1 to U4 has been described as an example, but the second N-pole portion 25b and the second-phase windings V1 to V4 and the W-phase windings W1 to W4 are similarly described. A decrease in the synthesis induced voltage due to the 2S pole portion 26b occurs.
 次に、本実施形態の特徴的な利点を記載する。
 (1)ステータ11の巻線13は、供給される3相の駆動電流に応じた、それぞれ4つのU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4からなり、各相の4つの巻線はそれぞれ直列接続されている。つまり、ステータ11の巻線13は、各相において、直列接続された少なくとも2つの巻線(第1の巻線及び第2の巻線)を備える。
Next, characteristic advantages of this embodiment will be described.
(1) The windings 13 of the stator 11 are composed of four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current. Thus, the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
 また、ロータ21のN極は、永久磁石N1を有する第1N極部25aと、該第1N極部25aがU、V、W相のいずれかの相の第1の巻線(例えばU相巻線U1,U3)と対向するロータ21の回転位置で同相の第2の巻線(例えばU相巻線U2,U4)と対向する第2N極部25bとを備える。この第2N極部25bは、ステータ11に与える磁力が第1N極部25aよりも弱くなるように構成される。また、ロータ21のS極においても同様に、永久磁石S1を有する第1S極部26aと、該第1S極部26aがU、V、W相のいずれかの相の第1の巻線(例えばU相巻線U1,U3)と対向するロータ21の回転位置で同相の第2の巻線(例えばU相巻線U2,U4)と対向する第2S極部26bとを備える。この第2S極部26bは、ステータ11に与える磁力が第1S極部26aよりも弱くなるように構成される。 Further, the N pole of the rotor 21 includes a first N pole portion 25a having a permanent magnet N1, and the first N pole portion 25a is a first winding (for example, U phase winding) in any of the U, V, and W phases. And a second N pole portion 25b facing the second winding (for example, U-phase windings U2 and U4) in phase at the rotational position of the rotor 21 facing the lines U1 and U3). The second N pole portion 25b is configured such that the magnetic force applied to the stator 11 is weaker than that of the first N pole portion 25a. Similarly, in the S pole of the rotor 21, the first S pole portion 26 a having the permanent magnet S 1 and the first S pole portion 26 a of the first winding (for example, U, V, or W phase) And a second S pole portion 26b facing the second winding of the same phase (for example, the U-phase windings U2 and U4) at the rotational position of the rotor 21 facing the U-phase windings U1 and U3). The second S pole portion 26b is configured such that the magnetic force applied to the stator 11 is weaker than that of the first S pole portion 26a.
 このように、本実施形態では、ロータ21における同相の巻線13と対向する全てのN極部(又はS極部)の磁力(ステータ11に与える磁力)を弱めるのではなく、そのうちの一部の磁極部(第2N極部25b、第2S極部26b)の磁力を弱めるように構成される。これにより、トルクの低下を極力抑えつつも、ロータ21の磁極によって同相の巻線13に生じる合成誘起電圧(例えばU相の合成誘起電圧vu)を小さく抑えることができ、その結果、モータ10の高回転化を図ることができる。 As described above, in the present embodiment, the magnetic force (the magnetic force applied to the stator 11) of all the N pole portions (or S pole portions) facing the in-phase windings 13 in the rotor 21 is not weakened, but part of them. Are configured to weaken the magnetic force of the magnetic pole portions (second N pole portion 25b, second S pole portion 26b). As a result, it is possible to suppress the combined induction voltage (for example, the combined induction voltage vu of the U phase) generated in the in-phase winding 13 by the magnetic poles of the rotor 21 as much as possible while suppressing the torque reduction as much as possible. High rotation can be achieved.
 なお、本実施形態のように、巻線13が各相でそれぞれ直列とされた巻線態様では、相毎の各巻線でそれぞれ生じる誘起電圧の和が合成誘起電圧となることから、該合成誘起電圧が大きくなる傾向がある。このため、巻線13が各相でそれぞれ直列とされた構成において上記のように第2N極部25b及び第2S極部26bの磁力を弱めることで、その磁力を弱めた第2N極部25b及び第2S極部26bによる合成誘起電圧の抑制効果をより顕著に得ることができ、モータ10の高回転化を図るのにより好適となる。 Note that, in the winding mode in which the windings 13 are connected in series in each phase as in the present embodiment, the sum of the induced voltages generated in the respective windings for each phase becomes the combined induced voltage. The voltage tends to increase. For this reason, in the configuration in which the winding 13 is in series in each phase, the second N pole portion 25b and the second N pole portion 25b and the second S pole portion 26b are weakened by weakening the magnetic force of the second N pole portion 25b and the second S pole portion 26b as described above. The effect of suppressing the combined induction voltage by the second S pole portion 26b can be obtained more remarkably, and it is more preferable to increase the rotation of the motor 10.
 (2)U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4がそれぞれ2n個(nは2以上の整数であって、本実施形態ではn=2)で構成され、ロータ21の第1及び第2N極部25a,25b(第1及び第2S極部26a,26b)のそれぞれの個数がn個(つまり2個)で構成される。つまり、この構成によれば、各相の巻線の個数(U相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4のそれぞれの個数)が4以上の偶数で構成され、ロータ21の第1及び第2N極部25a,25b(第1及び第2S極部26a,26b)が互いに同数(各相の巻線の個数の半数)で構成される。 (2) 2n pieces of U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4 (n is an integer of 2 or more, and in this embodiment, n = 2) The number of first and second N pole portions 25a and 25b (first and second S pole portions 26a and 26b) of the rotor 21 is n (that is, two). That is, according to this configuration, the number of windings in each phase (the number of U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4) is an even number of 4 or more. The first and second N pole portions 25a and 25b (first and second S pole portions 26a and 26b) of the rotor 21 are configured in the same number (half the number of windings in each phase).
 このため、ロータ21の第1及び第2N極部25a,25b(第1及び第2S極部26a,26b)を周方向等間隔に交互に設けることが可能となる。これにより、磁力及び質量の異なる第1及び第2N極部25a,25b(第1及び第2S極部26a,26b)が周方向にバランスよく配置されることとなり、ロータ21を磁気的に、また機械的にバランスの優れた構成とすることができる。 Therefore, the first and second N pole portions 25a and 25b (first and second S pole portions 26a and 26b) of the rotor 21 can be alternately provided at equal intervals in the circumferential direction. As a result, the first and second N pole portions 25a and 25b (first and second S pole portions 26a and 26b) having different magnetic forces and masses are arranged in a balanced manner in the circumferential direction. A mechanically balanced structure can be obtained.
 (3)第1及び第2N極部25a,25b(第1及び第2S極部26a,26b)は、永久磁石N1,N2(永久磁石S1,S2)をそれぞれ有して構成され、第2N極部25b(第2S極部26b)の外周面が第1N極部25a(第2S極部26b)の外周面よりも径方向内側に位置するように構成される。この構成によれば、永久磁石N1,N2(永久磁石S1,S2)を同一の磁石(同一材質、同一形状の磁石)としつつも、ロータ21からステータ11に与える磁力を第1N極部25a(第1S極部26a)よりも第2N極部25b(第2S極部26b)で弱くすることができ、部品管理の点で有利となる。 (3) The first and second N pole portions 25a, 25b (first and second S pole portions 26a, 26b) are configured to have permanent magnets N1, N2 (permanent magnets S1, S2), respectively. The outer peripheral surface of the portion 25b (second S pole portion 26b) is configured to be positioned radially inward from the outer peripheral surface of the first N pole portion 25a (second S pole portion 26b). According to this configuration, while the permanent magnets N1 and N2 (permanent magnets S1 and S2) are the same magnet (the same material and the same shape magnet), the magnetic force applied from the rotor 21 to the stator 11 is the first N pole portion 25a ( The second S pole part 25b (second S pole part 26b) can be weaker than the first S pole part 26a), which is advantageous in terms of component management.
 なお、上記実施形態は、以下のように変更してもよい。
 ・上記実施形態では特に言及していないが、ロータ21の高回転時において弱め界磁制御を行ってもよい。上記実施形態では、ロータ21に第2N極部25b(第2S極部26b)が設けられることによって、巻線13に供給する弱め界磁電流を小さく抑えることが可能となる。そして、弱め界磁電流を小さくできることで、弱め界磁制御時に永久磁石N1,N2,S1,S2が減磁しづらくなり、また、巻線13の銅損を抑えることができる。また、換言すると、同等の弱め界磁電流量で低減できる鎖交磁束量が増加するため、弱め界磁制御による高回転化をより効果的に得ることができる。
In addition, you may change the said embodiment as follows.
Although not specifically mentioned in the above embodiment, field weakening control may be performed when the rotor 21 is rotating at a high speed. In the above embodiment, by providing the rotor 21 with the second N pole portion 25b (second S pole portion 26b), the field-weakening current supplied to the winding 13 can be kept small. Since the field weakening current can be reduced, the permanent magnets N1, N2, S1, and S2 are difficult to demagnetize during field weakening control, and the copper loss of the winding 13 can be suppressed. In other words, since the amount of flux linkage that can be reduced with the same amount of field-weakening current increases, higher rotation by field-weakening control can be obtained more effectively.
 ・上記実施形態では、永久磁石N1,N2(永久磁石S1,S2)を同一の磁石とし、永久磁石N2(永久磁石S2)を永久磁石N1(永久磁石S1)よりも径方向内側に配置することで、第2N極部25b(第2S極部26b)がステータ11に与える磁力を第1N極部25a(第1S極部26a)よりも弱くしている。しかしながら、ステータ11に与える磁力を第1N極部25a(第1S極部26a)よりも第2N極部25b(第2S極部26b)で弱くするための構成は、上記実施形態に限定されるものではない。 In the above embodiment, the permanent magnets N1 and N2 (permanent magnets S1 and S2) are the same magnet, and the permanent magnet N2 (permanent magnet S2) is disposed radially inward of the permanent magnet N1 (permanent magnet S1). Thus, the magnetic force applied to the stator 11 by the second N pole portion 25b (second S pole portion 26b) is made weaker than that of the first N pole portion 25a (first S pole portion 26a). However, the configuration for making the magnetic force applied to the stator 11 weaker at the second N pole portion 25b (second S pole portion 26b) than at the first N pole portion 25a (first S pole portion 26a) is limited to the above embodiment. is not.
 例えば、図4に示すように、第2N極部25b及び第2S極部26bの各永久磁石N2,S2の開角度θ2(回転軸24の軸線Lを中心とする開角度)を、第1N極部25a及び第1S極部26aの各永久磁石N1,S1の開角度θ1よりもそれぞれ狭く設定してもよい。このような構成によれば、永久磁石N2,S2の簡単な形状変更によって、ロータ21からステータ11に与える磁力を第1N極部25a(第1S極部26a)よりも第2N極部25b(第2S極部26b)で弱くすることができ、その結果、巻線13に生じる誘起電圧を小さく抑えることができる。また、ロータコア22の外周面が軸方向視で円形である簡素な構成(つまり、ロータコア22の外周面に第1及び第2磁石固着面22a,22bを設けることによる段差がない構成)とすることが可能となる。 For example, as shown in FIG. 4, the opening angle θ2 (opening angle about the axis L of the rotating shaft 24) of each permanent magnet N2, S2 of the second N pole portion 25b and the second S pole portion 26b is defined as the first N pole. The opening angle θ1 of each permanent magnet N1, S1 of the portion 25a and the first S pole portion 26a may be set narrower. According to such a configuration, the magnetic force applied from the rotor 21 to the stator 11 by the simple shape change of the permanent magnets N2 and S2 is greater than the first N pole portion 25a (first S pole portion 26a) than the second N pole portion 25b (first step). 2S pole portion 26b) can be weakened, and as a result, the induced voltage generated in winding 13 can be kept small. The rotor core 22 has a simple configuration in which the outer peripheral surface is circular in an axial view (that is, a configuration in which there is no step by providing the first and second magnet fixing surfaces 22a and 22b on the outer peripheral surface of the rotor core 22). Is possible.
 また、例えば図5に示すように、永久磁石N2(永久磁石S2)の径方向厚さT2を永久磁石N1(永久磁石S1)の径方向厚さT1よりも薄くすることで、ロータ21からステータ11に与える磁力を第1N極部25a(第1S極部26a)よりも第2N極部25b(第2S極部26b)で弱くしてもよい。このような構成によっても、永久磁石N1,N2の簡単な形状変更によって、ロータ21からステータ11に与える磁力を第1N極部25a(第1S極部26a)よりも第2N極部25b(第2S極部26b)で弱くすることができ、その結果、巻線13に生じる誘起電圧を小さく抑えることができる。 Further, as shown in FIG. 5, for example, the radial thickness T2 of the permanent magnet N2 (permanent magnet S2) is made thinner than the radial thickness T1 of the permanent magnet N1 (permanent magnet S1), so that the stator 21 can move to the stator. 11 may be weaker at the second N pole portion 25b (second S pole portion 26b) than at the first N pole portion 25a (first S pole portion 26a). Even with such a configuration, the magnetic force applied from the rotor 21 to the stator 11 by the simple shape change of the permanent magnets N1 and N2 is greater than the first N pole portion 25a (first S pole portion 26a) than the second N pole portion 25b (second S). The pole portion 26b) can be weakened, and as a result, the induced voltage generated in the winding 13 can be kept small.
 なお、図4及び図5に示す例では、永久磁石N1,N2の形状変更によって、ロータ21からステータ11に与える磁力を第1N極部25a(第1S極部26a)よりも第2N極部25b(第2S極部26b)で弱くしているが、これに限らない。例えば、永久磁石N2(永久磁石S2)の残留磁束密度を永久磁石N1(永久磁石S1)の残留磁束密度よりも小さく設定することで、ロータ21からステータ11に与える磁力を第1N極部25a(第1S極部26a)よりも第2N極部25b(第2S極部26b)で弱くすることができる。この構成によれば、ロータコア22の外周面を軸方向視で円形とし、更に、各永久磁石N1,N2,S1,S2の形状を全て同一とすることが可能となる。 In the example shown in FIGS. 4 and 5, the magnetic force applied from the rotor 21 to the stator 11 by changing the shape of the permanent magnets N1 and N2 is greater than the first N pole portion 25a (first S pole portion 26a). Although it is weakened by (2nd S pole part 26b), it is not restricted to this. For example, by setting the residual magnetic flux density of the permanent magnet N2 (permanent magnet S2) to be smaller than the residual magnetic flux density of the permanent magnet N1 (permanent magnet S1), the magnetic force applied from the rotor 21 to the stator 11 is the first N pole portion 25a ( It can be weaker than the first S pole part 26a) by the second N pole part 25b (second S pole part 26b). According to this configuration, the outer peripheral surface of the rotor core 22 can be made circular when viewed in the axial direction, and the shapes of the permanent magnets N1, N2, S1, and S2 can all be the same.
 ・上記実施形態では、ロータ21における第1N極部25a同士、及び第2N極部25b同士が周方向において180°対向位置に設けられ、S極においても同様に、第1S極部26a同士、及び第2S極部26b同士が周方向において180°対向位置に設けられる。つまり、第1N極部25aと第2N極部25bとが周方向に交互に配置され、第1S極部26aと第2S極部26bも周方向に交互に配置されるが、これに特に限定されるものではない。 In the above embodiment, the first N pole portions 25a and the second N pole portions 25b in the rotor 21 are provided at positions opposed to each other by 180 ° in the circumferential direction. The second S pole portions 26b are provided at 180 ° facing positions in the circumferential direction. That is, the first N pole portion 25a and the second N pole portion 25b are alternately arranged in the circumferential direction, and the first S pole portion 26a and the second S pole portion 26b are also alternately arranged in the circumferential direction. It is not something.
 例えば、図6に示すように、第1N極部25aの180°対向位置に第2N極部25bを設け、第1S極部26aの180°対向位置に第2S極部26bを設けてもよい。図6の例では、ロータコア22の外周の片側半分に第1磁石固着面22aが形成され、もう半分に第2磁石固着面22bが形成されている。そして、ロータコア22の外周の片側半分(第1磁石固着面22a)に第1N極部25aと第1S極部26aとが交互に設けられ、もう半分(第2磁石固着面22b)に第2N極部25bと第2S極部26bとが交互に設けられている。このような構成によっても、巻線13に生じる誘起電圧を小さく抑えることができ、モータ10の高回転化を図ることができる。 For example, as shown in FIG. 6, the second N pole portion 25b may be provided at a position where the first N pole portion 25a is opposed to 180 °, and the second S pole portion 26b may be provided at a position where the first S pole portion 26a is opposed to 180 °. In the example of FIG. 6, the first magnet fixing surface 22a is formed on one half of the outer periphery of the rotor core 22, and the second magnet fixing surface 22b is formed on the other half. The first N pole portion 25a and the first S pole portion 26a are alternately provided on one half of the outer periphery of the rotor core 22 (first magnet fixing surface 22a), and the second N pole is provided on the other half (second magnet fixing surface 22b). The portions 25b and the second S pole portions 26b are alternately provided. Even with such a configuration, the induced voltage generated in the winding 13 can be kept small, and the motor 10 can be rotated at a high speed.
 ・上記実施形態では、ロータ21の例えばN極において、第1N極部25aと第2N極部25bとを同数(各相の巻線13の個数の半数であって2個)で構成したが、必ずしも同数である必要はない。例えば、第1N極部25aを3個(又は1個)とし、第2N極部25bを1個(又は3個)として構成してもよい。また、ロータのS極(第1及び第2S極部26a,26b)においても同様の変更を行ってもよい。 In the above embodiment, for example, in the N pole of the rotor 21, the first N pole portion 25a and the second N pole portion 25b are configured with the same number (half the number of windings 13 of each phase, which is two). The number is not necessarily the same. For example, the number of the first N pole portions 25a may be three (or one), and the number of the second N pole portions 25b may be one (or three). The same change may be made in the S pole of the rotor (first and second S pole portions 26a, 26b).
 ・上記実施形態では、ロータ21のN極及びS極においてそれぞれ磁力の弱い第2N極部25b及び第2S極部26bを備えたが、これに特に限定されるものではない。つまり、ロータ21の一方の極のみに磁力の弱い磁極部(第2N極部25b又は第2S極部26b)を設け、他方の極を全て同一の磁極部(第1N極部25a又は第1S極部26a)として構成してもよい。 In the above embodiment, the second N pole portion 25b and the second S pole portion 26b having a weak magnetic force are provided in the N pole and the S pole of the rotor 21, respectively, but the present invention is not particularly limited thereto. That is, a magnetic pole part (second N pole part 25b or second S pole part 26b) having a weak magnetic force is provided only on one pole of the rotor 21, and all the other poles are the same magnetic pole part (first N pole part 25a or first S pole). Part 26a).
 ・上記実施形態では、各相の巻線、つまり、U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4がそれぞれ直列接続されたが、これに特に限定されるものではなく、巻線態様は適宜変更してもよい。 In the above embodiment, the windings of each phase, that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series. However, the winding mode may be changed as appropriate.
 例えば、図7に示す例では、U相において、巻線U1,U2が直列接続され、また、巻線U3,U4が直列接続され、それら巻線U1,U2の直列対と巻線U3,U4の直列対とが並列接続されている。V相においても同様に、巻線V1,V2が直列接続され、また、巻線V3,V4が直列接続され、それら巻線V1,V2の直列対と巻線V3,V4の直列対とが並列接続されている。また、W相においても同様に、巻線W1,W2が直列接続され、また、巻線W3,W4が直列接続され、それら巻線W1,W2の直列対と巻線W3,W4の直列対とが並列接続されている。 For example, in the example shown in FIG. 7, in the U phase, the windings U1 and U2 are connected in series, and the windings U3 and U4 are connected in series, and the series pair of the windings U1 and U2 and the windings U3 and U4. Are connected in parallel. Similarly, in the V phase, the windings V1 and V2 are connected in series, and the windings V3 and V4 are connected in series. The series pair of the windings V1 and V2 and the series pair of the windings V3 and V4 are parallel. It is connected. Similarly, in the W phase, the windings W1, W2 are connected in series, and the windings W3, W4 are connected in series. The series pair of the windings W1, W2 and the series pair of the windings W3, W4 Are connected in parallel.
 上記実施形態のロータ21の構成(図1参照)において図7の巻線態様を適用した場合、例えばU相において巻線U1及び巻線U3には互いに同等の大きさの誘起電圧(前記誘起電圧vx)が生じ、また、巻線U2及び巻線U4には互いに同等の大きさの誘起電圧(前記誘起電圧vy)が生じる。このため、巻線U1,U2の直列対で生じる合成誘起電圧と、巻線U3,U4の直列対で生じる合成誘起電圧とが略同等(vx+vy)となる。これにより、第1N極部25a(第1S極部26a)よりも磁力の弱い第2N極部25b(第2S極部26b)を設けたことによる誘起電圧の減少が、巻線U1,U2の直列対及び巻線U3,U4の直列対の両方において常に生じることとなる。そして、巻線U1,U2の直列対と巻線U3,U4の直列対とが並列であるため、U相巻線全体における合成誘起電圧vuは、巻線U1,U2の直列対の合成誘起電圧(及び巻線U3,U4の直列対の合成誘起電圧)と略同等(vx+vy)となり、該合成誘起電圧vuを効果的に抑制することができる。 When the winding mode of FIG. 7 is applied to the configuration of the rotor 21 of the above-described embodiment (see FIG. 1), for example, in the U phase, the windings U1 and U3 have induced voltages of the same magnitude (the induced voltage). vx) occurs, and induced voltages (the induced voltages vy) having the same magnitude are generated in the windings U2 and U4. For this reason, the combined induction voltage generated in the series pair of the windings U1 and U2 and the combined induction voltage generated in the series pair of the windings U3 and U4 are substantially equal (vx + vy). Thereby, the reduction of the induced voltage due to the provision of the second N pole part 25b (second S pole part 26b) having a weaker magnetic force than the first N pole part 25a (first S pole part 26a) is caused by the series connection of the windings U1 and U2. It will always occur in both the pair and the series pair of windings U3, U4. Since the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are parallel, the combined induction voltage vu in the entire U-phase winding is the combined induction voltage of the series pair of the windings U1 and U2. (And the combined induction voltage of the series pair of windings U3 and U4) (vx + vy), and the combined induction voltage vu can be effectively suppressed.
 ここで、図7に示す例において巻線U2と巻線U3を入れ替えた場合、すなわち、誘起電圧の大きさが同等である巻線U1,U3を直列とするとともに、誘起電圧の大きさが同等である巻線U2,U4を直列とした場合を考える。この場合、第1N極部25a(第1S極部26a)よりも磁力の弱い第2N極部25b(第2S極部26b)を設けたことによる誘起電圧の減少が、巻線U2,U4の直列対と巻線U1,U3の直列対のいずれか一方のみで生じ、他方では誘起電圧が減少しない。そして、巻線U1,U3の直列対と巻線U2,U4の直列対とが並列であることから、U相巻線全体における合成誘起電圧を効果的に抑制する点で不利となる。なお、各U相巻線U1~U4を並列とした場合においても同様に、U相巻線全体における合成誘起電圧を効果的に抑制する点で不利となる。 Here, when the winding U2 and the winding U3 are interchanged in the example shown in FIG. 7, that is, the windings U1, U3 having the same magnitude of the induced voltage are connected in series and the magnitude of the induced voltage is the same. Consider the case where the windings U2 and U4 are in series. In this case, the reduction of the induced voltage due to the provision of the second N pole portion 25b (second S pole portion 26b) having a lower magnetic force than the first N pole portion 25a (first S pole portion 26a) is caused by the series connection of the windings U2 and U4. It occurs only in one of the series and the pair of windings U1 and U3, and the induced voltage does not decrease on the other side. And since the series pair of winding U1, U3 and the series pair of winding U2, U4 are parallel, it is disadvantageous at the point which suppresses the synthetic | combination induced voltage in the whole U-phase winding effectively. Similarly, when the U-phase windings U1 to U4 are arranged in parallel, similarly, it is disadvantageous in that the combined induced voltage in the entire U-phase winding is effectively suppressed.
 以上のように、各相において巻線を直列とする場合には、ロータ21の所定の回転位置において第1N極部25a(又は第1S極部26a)と第2N極部25b(又は第2S極部26b)とにそれぞれ対向する巻線(例えばU相巻線U1とU相巻線U2)同士を直列接続する。これにより、同相の巻線に生じた弱い誘起電圧と強い誘起電圧とを足し合わせて合成誘起電圧とすることができ、各相における合成誘起電圧を効果的に抑制することができる。 As described above, when the windings are connected in series in each phase, the first N pole portion 25a (or the first S pole portion 26a) and the second N pole portion 25b (or the second S pole) at a predetermined rotational position of the rotor 21. The windings (for example, the U-phase winding U1 and the U-phase winding U2) opposed to the portion 26b) are connected in series. As a result, the weak induced voltage generated in the windings of the same phase and the strong induced voltage can be added to obtain a combined induced voltage, and the combined induced voltage in each phase can be effectively suppressed.
 なお、図7の例では、U相において、巻線U1,U2を直列対とするとともに、巻線U3,U4を直列対としたが、巻線U1,U4、及び巻線U2,U3をそれぞれ直列対としても同様の効果を得ることができる。また、V相及びW相においても同様の変更が可能である。 In the example of FIG. 7, in the U phase, the windings U1, U2 are a series pair and the windings U3, U4 are a series pair, but the windings U1, U4 and the windings U2, U3 are respectively Similar effects can be obtained as a series pair. The same change can be made in the V phase and the W phase.
 また、図7の例では、U相において、巻線U1,U2の直列対と巻線U3,U4の直列対とが並列接続されたが、これに特に限定されるものではなく、巻線U1,U2の直列対と巻線U3,U4の直列対とを分離し、その分離した直列対のそれぞれにU相の駆動電流を供給すべくインバータを一対設けてもよい。この構成によっても、同様の効果を得ることができる。また、V相及びW相においても同様の変更が可能である。 In the example of FIG. 7, in the U phase, the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are connected in parallel. However, the present invention is not particularly limited to this, and the winding U1 , U2 and the series pair of windings U3, U4 may be separated, and a pair of inverters may be provided to supply a U-phase drive current to each of the separated series pairs. The same effect can be obtained by this configuration. The same change can be made in the V phase and the W phase.
 また、上記実施形態(図2参照)及び図7に示す例では、巻線の結線態様をスター結線としたが、これに限らず、例えばデルタ結線としてもよい。
 ・上記実施形態では、ロータ21を8極とし、ステータ11の巻線13の個数を12個とした(つまり、8極12スロットのモータ構成とした)が、ロータ21の極数と巻線13の個数は構成に応じて適宜変更可能である。例えば、ロータ21の極数と巻線13の個数との関係が2n:3n(ただし、nは2以上の整数)となるように、ロータ21の極数と巻線13の個数を適宜変更してもよい。
Moreover, in the example shown in the said embodiment (refer FIG. 2) and FIG. 7, although the connection aspect of the coil | winding was made into the star connection, it is good also as not only this but a delta connection, for example.
In the above embodiment, the rotor 21 has 8 poles and the number of windings 13 of the stator 11 is 12 (that is, the motor configuration has 8 poles and 12 slots). The number of can be appropriately changed according to the configuration. For example, the number of poles of the rotor 21 and the number of windings 13 are appropriately changed so that the relationship between the number of poles of the rotor 21 and the number of windings 13 is 2n: 3n (where n is an integer of 2 or more). May be.
 なお、6極9スロットや10極15スロット等の構成とした場合(ロータ21の極数と巻線13の個数の最大公約数nが奇数の場合)には、ロータ21の極対数が奇数、つまり、N極、S極の各個数が奇数となる。このため、第1N極部25a(第1S極部26a)の個数と第2N極部25b(第2S極部26b)の個数とを同数にできず、磁気的にアンバランスな構成となってしまう。その点、上記実施形態のように、ロータ21の極数と巻線13の個数の最大公約数nが偶数である構成では、第1N極部25a(第1S極部26a)の個数と第2N極部25b(第2S極部26b)の個数とを同数とすることができ、磁気的にバランスの良い構成とすることが可能となる。 In the case of a configuration of 6 poles 9 slots, 10 poles 15 slots, etc. (when the number of poles of the rotor 21 and the greatest common divisor n of the number of windings 13 is an odd number), the number of pole pairs of the rotor 21 is an odd number, That is, the number of N poles and S poles is an odd number. For this reason, the number of the 1st N pole part 25a (1st S pole part 26a) and the number of the 2nd N pole part 25b (2nd S pole part 26b) cannot be made the same number, but it becomes a magnetically unbalanced structure. . In that regard, as in the above embodiment, in the configuration in which the greatest common divisor n of the number of poles of the rotor 21 and the number of windings 13 is an even number, the number of first N pole portions 25a (first S pole portions 26a) and second N The number of pole portions 25b (second S pole portions 26b) can be made the same, and a magnetically balanced configuration can be achieved.
 また、ロータ21の極数と巻線13の個数との関係は必ずしも2n:3n(ただし、nは2以上の整数)である必要はなく、例えば、10極12スロットや14極12スロット等で構成してもよい。 The relationship between the number of poles of the rotor 21 and the number of windings 13 is not necessarily 2n: 3n (where n is an integer equal to or greater than 2), for example, 10 poles 12 slots, 14 poles 12 slots, etc. It may be configured.
 図8には、10極12スロットで構成したモータ30の一例を示している。なお、図8の例では、上記実施形態と同一の構成については同一の符号を付してその詳細な説明は省略し、相異する部分について詳細に説明する。 FIG. 8 shows an example of a motor 30 composed of 10 poles and 12 slots. In the example of FIG. 8, the same components as those in the above embodiment are denoted by the same reference numerals, detailed description thereof will be omitted, and different portions will be described in detail.
 図8に示すモータ30において、ステータ11の12個の巻線13は、供給される3相の駆動電流(U相、V相、W相)に応じて分類され、図8において反時計回り方向に順に、U1、バーU2、バーV1、V2、W1、バーW2、バーU1、U2、V1、バーV2、バーW1、W2とする。なお、正巻きで構成されるU相巻線U1,U2、V相巻線V1,V2、W相巻線W1,W2に対し、U相巻線バーU1,バーU2、V相巻線バーV1,バーV2、W相巻線バーW1,バーW2は逆巻きで構成される。また、U相巻線U1,バーU1は互いに180°対向位置にされ、同様に、U相巻線U2,バーU2は互いに180°対向位置にされる。これは他相(V相及びW相)においても同様である。 In the motor 30 shown in FIG. 8, the twelve windings 13 of the stator 11 are classified according to the three-phase driving current (U phase, V phase, W phase) supplied, and in FIG. In this order, U1, bar U2, bar V1, V2, W1, bar W2, bar U1, U2, V1, bar V2, bar W1, W2. In addition, U phase winding bar U1, bar U2, V phase winding bar V1 with respect to U phase windings U1, U2, V phase windings V1, V2 and W phase windings W1, W2 constituted by positive windings. , Bar V2, W-phase winding bar W1, bar W2 are constituted by reverse winding. Further, the U-phase winding U1 and the bar U1 are placed at positions facing each other by 180 °, and similarly, the U-phase winding U2 and the bar U2 are placed at positions facing each other by 180 °. The same applies to the other phases (V phase and W phase).
 U相巻線U1,U2,バーU1,バーU2は直列に繋がって構成され、同様に、V相巻線V1,V2,バーV1,バーV2は直列に繋がって構成され、W相巻線W1,W2,バーW1,バーW2は直列に繋がって構成されている。そして、U相巻線U1,U2,バーU1,バーU2にはU相の駆動電流が供給される。これにより、正巻きのU相巻線U1,U2に対して逆巻きのU相巻線バーU1,バーU2は常に逆極性(逆位相)で励磁されることとなるが、励磁タイミングは同一である。このことは他相(V相及びW相)においても同様である。 U-phase windings U1, U2, U1 and U2 are connected in series. Similarly, V-phase windings V1, V2, V1 and V2 are connected in series, and W-phase winding W1. , W2, bar W1, and bar W2 are connected in series. The U-phase windings U1, U2, U1 and U2 are supplied with U-phase drive current. As a result, the reverse winding U-phase winding bars U1 and U2 are always excited with the opposite polarity (reverse phase) with respect to the forward winding U-phase windings U1 and U2, but the excitation timing is the same. . The same applies to the other phases (V phase and W phase).
 モータ30のロータ21は、N極・S極が周方向等間隔(36°間隔)に交互に設定された10極ロータであり、上記の図5に示すロータ21と同様のタイプとして構成されている。つまり、ロータ21は、永久磁石N1からなる第1N極部25aと、永久磁石N2からなる第2N極部25bと、永久磁石S1からなる第1S極部26aと、永久磁石S2からなる第2S極部26bとを備え、永久磁石N2,S2は永久磁石N1,S1よりも径方向に薄く構成されている。 The rotor 21 of the motor 30 is a 10-pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (36 ° intervals), and is configured as the same type as the rotor 21 shown in FIG. Yes. That is, the rotor 21 includes a first N pole portion 25a made of a permanent magnet N1, a second N pole portion 25b made of a permanent magnet N2, a first S pole portion 26a made of a permanent magnet S1, and a second S pole made of a permanent magnet S2. The permanent magnets N2 and S2 are configured to be thinner in the radial direction than the permanent magnets N1 and S1.
 また、第1N極部25a及び第1S極部26a(永久磁石N1,S1)はロータ21の半周(図8において右側半周)において交互に設けられ、第2N極部25b及び第2S極部26b(永久磁石N2,S2)はロータ21の残り半周(図8において左側半周)において交互に設けられている。また、第1N極部25aの周方向反対側(180°対向位置)に第2S極部26bが位置し、第1S極部26aの周方向反対側(180°対向位置)に第2N極部25bが位置するように構成されている。 Further, the first N pole portion 25a and the first S pole portion 26a (permanent magnets N1, S1) are alternately provided in the half circumference (right half circumference in FIG. 8) of the rotor 21, and the second N pole portion 25b and the second S pole portion 26b ( The permanent magnets N2 and S2) are alternately provided in the remaining half circumference (left half circumference in FIG. 8) of the rotor 21. Further, the second S pole portion 26b is located on the opposite side (180 ° facing position) of the first N pole portion 25a, and the second N pole portion 25b is located on the opposite side of the first S pole portion 26a (180 ° facing position). Is configured to be located.
 なお、図8の10極ロータの例では、第1N極部25aが2つ、第1S極部26aが3つ、第2N極部25bが3つ、第2S極部26bが2つで構成されているが、これに限らず、第1N極部25aが3つ、第1S極部26aが2つ、第2N極部25bが2つ、第2S極部26bが3つで構成してもよい。また、図8に示す例では、図5の例と同様のタイプのロータ21としたが、上記実施形態や上記の図4に示すロータ21と同様のタイプとしてもよい。 In the example of the 10-pole rotor of FIG. 8, the first N pole portion 25a is composed of two, the first S pole portion 26a is three, the second N pole portion 25b is three, and the second S pole portion 26b is composed of two. However, the present invention is not limited to this, and the first N-pole portion 25a may be composed of three, the first S-pole portion 26a may be two, the second N-pole portion 25b may be two, and the second S-pole portion 26b may be three. . In the example shown in FIG. 8, the same type of rotor 21 as in the example of FIG. 5 is used, but the same type as the rotor 21 shown in the above embodiment and FIG. 4 may be used.
 上記構成では、ロータ21の回転時において、例えば第1S極部26aがU相巻線U1と径方向に対向するとき、その周方向反対側において第2N極部25bがU相巻線バーU1と径方向に対向する(図8参照)。ここで、第2N極部25bを構成する永久磁石N2は、第1S極部26aを構成する永久磁石S1よりも径方向厚さが薄いことから、第1S極部26aよりも第2N極部25bでステータ11に与える磁力が弱くなっている。 In the above configuration, when the rotor 21 rotates, for example, when the first S pole portion 26a faces the U phase winding U1 in the radial direction, the second N pole portion 25b is connected to the U phase winding bar U1 on the opposite side in the circumferential direction. Opposing in the radial direction (see FIG. 8). Here, since the permanent magnet N2 constituting the second N pole portion 25b is thinner in the radial direction than the permanent magnet S1 constituting the first S pole portion 26a, the second N pole portion 25b is smaller than the first S pole portion 26a. Thus, the magnetic force applied to the stator 11 is weakened.
 このように、互いに逆位相(同一タイミング)で励磁される巻線13(例えばU相巻線U1,バーU1)とそれぞれ対向する異極の磁極部(例えば第1S極部26aと第2N極部25b)において互いの磁力が異なるように(つまり、一方に対してもう一方の磁力が弱くなるように)構成される。これにより、トルクの低下を極力抑えつつ、ロータ21の磁極によって逆位相の巻線13に生じる合成誘起電圧(例えばU相巻線U1,バーU1の合成誘起電圧)を小さく抑えることができ、その結果、モータ30の高回転化を図ることができる。 In this way, the magnetic pole portions (for example, the first S pole portion 26a and the second N pole portion) of opposite polarity respectively opposed to the windings 13 (for example, the U-phase winding U1 and the bar U1) excited in opposite phases (same timing). 25b), the magnetic forces are different from each other (that is, the other magnetic force is weaker than the other). As a result, it is possible to suppress the combined induction voltage (for example, the combined induction voltage of the U-phase winding U1 and the bar U1) generated in the antiphase winding 13 by the magnetic poles of the rotor 21 while suppressing the torque reduction as much as possible. As a result, the rotation of the motor 30 can be increased.
 なお、図8に示すロータ21の例では、第1N極部25a及び第1S極部26aをロータ21の半周に設け、第2N極部25b及び第2S極部26bをロータ21のもう半周に設けた。しかし、ロータ21の各磁極部の配置はこれに特に限定されるものではなく、第1N極部25aの周方向反対側に第2S極部26bが位置し、第1S極部26aの周方向反対側に第2N極部25bが位置する構成であれば、ロータ21の各磁極部の配置は適宜変更可能である。 In the example of the rotor 21 shown in FIG. 8, the first N pole portion 25 a and the first S pole portion 26 a are provided on the half circumference of the rotor 21, and the second N pole portion 25 b and the second S pole portion 26 b are provided on the other half circumference of the rotor 21. It was. However, the arrangement of the magnetic pole portions of the rotor 21 is not particularly limited to this, and the second S pole portion 26b is located on the opposite side of the first N pole portion 25a in the circumferential direction, and the first S pole portion 26a is opposite in the circumferential direction. If the 2nd N pole part 25b is located in the side, the arrangement | positioning of each magnetic pole part of the rotor 21 can be changed suitably.
 また、ステータ11において、各U相巻線U1,U2,バーU1,バーU2が全て直列に接続される必要はなく、巻線U1,バーU1の対と、巻線U2,バーU2の対をそれぞれ別の直列対とした構成としてもよい。また、V相及びW相においても同様に変更可能である。 Further, in the stator 11, it is not necessary that all the U-phase windings U1, U2, bar U1, and bar U2 are connected in series, and a pair of windings U1, U1 and a pair of windings U2, U2 are provided. It is good also as a structure which made each another separate serial pair. Moreover, it can change similarly also in V phase and W phase.
 また、図8には、10極12スロットで構成した例を示したが、14極12スロットの構成にも適用可能である。また、10極12スロット(又は14極12スロット)のロータ極数及びスロット数をそれぞれ等倍した構成にも適用可能である。 8 shows an example of 10 poles and 12 slots, but the present invention can also be applied to a 14 poles and 12 slots structure. Further, the present invention can also be applied to a configuration in which the number of rotor poles and the number of slots of 10 poles and 12 slots (or 14 poles and 12 slots) are equal.
 なお、図9には、20極24スロットの構成におけるロータ21の一例を示している。図9の例では、第1N極部25a及び第1S極部26aが周方向に交互に配置された強磁極群Maと、第2N極部25b及び第2S極部26bが周方向に交互に配置された弱磁極群Mbとが、ロータ21の周方向においてそれぞれ90°毎の占有角度で交互に配置されている。このように、強磁極群Maと弱磁極群Mbとを周方向にバランス良く配置することで、ロータ21を磁気的に、また機械的にバランスの優れた構成とすることができる。 FIG. 9 shows an example of the rotor 21 in the configuration of 20 poles and 24 slots. In the example of FIG. 9, the strong magnetic pole group Ma in which the first N pole portion 25a and the first S pole portion 26a are alternately arranged in the circumferential direction, and the second N pole portion 25b and the second S pole portion 26b are alternately arranged in the circumferential direction. The weak magnetic pole groups Mb thus arranged are alternately arranged at an occupation angle of 90 ° in the circumferential direction of the rotor 21. Thus, by arranging the strong magnetic pole group Ma and the weak magnetic pole group Mb in a balanced manner in the circumferential direction, the rotor 21 can be magnetically and mechanically balanced.
 ・上記実施形態では、ロータ21の例えばN極は第1N極部25aと第2N極部25bのみから構成されるが、これ以外に例えば、ステータ11に与える磁力が第2N極部25bよりも弱い第3N極部を備えてもよい。 In the above embodiment, for example, the N pole of the rotor 21 is composed of only the first N pole portion 25a and the second N pole portion 25b. However, for example, the magnetic force applied to the stator 11 is weaker than that of the second N pole portion 25b. You may provide the 3rd N pole part.
 ・上記実施形態では、永久磁石23を焼結磁石としたが、これ以外に例えば、ボンド磁石としてもよい。
 ・上記実施形態では、ロータ21をステータ11の内周側に配置したインナロータ型のモータ10に本発明を具体化したが、これに特に限定されるものではなく、ロータをステータの外周側に配置したアウタロータ型のモータに具体化してもよい。
In the above embodiment, the permanent magnet 23 is a sintered magnet, but other than this, for example, a bonded magnet may be used.
In the above embodiment, the present invention is embodied in the inner rotor type motor 10 in which the rotor 21 is disposed on the inner peripheral side of the stator 11, but the invention is not particularly limited thereto, and the rotor is disposed on the outer peripheral side of the stator. The outer rotor type motor may be embodied.
 ・上記実施形態では、ステータ11とロータ21とが径方向に対向するラジアルギャップ型のモータ10に本発明を具体化したが、これに特に限定されるものではなく、ステータとロータとが軸方向に対向するアキシャルギャップ型のモータに適用してもよい。 In the above embodiment, the present invention is embodied in the radial gap type motor 10 in which the stator 11 and the rotor 21 are opposed to each other in the radial direction. However, the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction. The present invention may be applied to an axial gap type motor that faces the motor.
 ・上記した実施形態並びに各変形例は適宜組み合わせてもよい。
 以下、モータの第2実施形態について説明する。
 図10に示すように、本実施形態のモータ110は、ブラシレスモータとして構成され、円環状のステータ11の内側にロータ121が配置されて構成されている。ステータ11の構成は第1実施形態のステータ11と同様であるため詳細な説明を省略する。ステータ11の巻線13も第1実施形態の巻線13と同様に構成されており、図2に示す構成を有している。
-You may combine embodiment mentioned above and each modification suitably.
Hereinafter, a second embodiment of the motor will be described.
As shown in FIG. 10, the motor 110 of the present embodiment is configured as a brushless motor, and is configured by arranging a rotor 121 inside an annular stator 11. Since the configuration of the stator 11 is the same as that of the stator 11 of the first embodiment, detailed description thereof is omitted. The winding 13 of the stator 11 is configured similarly to the winding 13 of the first embodiment, and has the configuration shown in FIG.
 [ロータの構成]
 図10、図11及び図12に示すように、ロータ121は、回転軸122と、互いに同一形状をなす一対のロータコア123n,123sと、該一対のロータコア123n,123sの軸方向間に配置された永久磁石124とを有している。なお、ロータコア123n,123sは共に磁性金属よりなる。また、以下の説明では、軸方向に磁化された永久磁石124のN極側端面と当接するロータコアをN極側ロータコア123nとし、永久磁石124のS極側端面と当接するロータコアをS極側ロータコア123sとする。
[Configuration of rotor]
As shown in FIGS. 10, 11 and 12, the rotor 121 is disposed between the rotating shaft 122, a pair of rotor cores 123n and 123s having the same shape, and the axial direction of the pair of rotor cores 123n and 123s. And a permanent magnet 124. The rotor cores 123n and 123s are both made of a magnetic metal. In the following description, the rotor core that contacts the N pole side end surface of the permanent magnet 124 magnetized in the axial direction is referred to as the N pole side rotor core 123n, and the rotor core that contacts the S pole side end surface of the permanent magnet 124 is the S pole side rotor core. 123s.
 N極側ロータコア123nは、円板状のコアベース125nを有し、そのコアベース125nの中心部に回転軸122が貫挿されて固定されている。コアベース125nの外周部には、周方向等間隔に複数(本実施形態では4つ)のN極側爪状磁極126n,127nが径方向外側に突出されるとともに軸方向に延出形成されている。これら各N極側爪状磁極126n,127nは、軸方向において同一方向に延出されている。 The N pole side rotor core 123n has a disk-shaped core base 125n, and a rotating shaft 122 is inserted through and fixed to the center of the core base 125n. A plurality (four in this embodiment) of N pole side claw-shaped magnetic poles 126n and 127n are projected radially outward and extended in the axial direction on the outer peripheral portion of the core base 125n at equal intervals in the circumferential direction. Yes. These N pole side claw-shaped magnetic poles 126n and 127n extend in the same direction in the axial direction.
 ここで、4つのN極側爪状磁極126n,127nは、開角度θ1(回転軸122の軸線Lを中心とする開角度)を有する一対の第1N極側爪状磁極126n(第1磁極部)と、前記開角度θ1よりも狭い開角度θ2を有する一対の第2N極側爪状磁極127n(第2磁極部)とからなる。つまり、第1N極側爪状磁極126nの径方向外側面(ステータ11との対向面)が、第2N極側爪状磁極127nの径方向外側面よりも周方向において幅広形状をなしている。なお、各N極側爪状磁極126n,127nの径方向外側面は、軸方向視において回転軸122の軸線Lを中心とする同一円上に位置する円弧面をなしている。また、各N極側爪状磁極126n,127nの厚み(径方向に延びる部分の軸方向厚み、及び軸方向に延びる部分の径方向厚み)は、全て同一とされている。 Here, the four N pole side claw-shaped magnetic poles 126n, 127n have a pair of first N pole side claw-shaped magnetic poles 126n (first magnetic pole portions) having an open angle θ1 (open angle with the axis L of the rotating shaft 122 as the center). ) And a pair of second N pole side claw-shaped magnetic poles 127n (second magnetic pole portions) having an opening angle θ2 narrower than the opening angle θ1. That is, the radially outer surface of the first N pole side claw-shaped magnetic pole 126n (the surface facing the stator 11) is wider in the circumferential direction than the radially outer surface of the second N pole side claw-shaped magnetic pole 127n. Note that the radially outer surfaces of the N-pole claw-shaped magnetic poles 126n and 127n are arcuate surfaces located on the same circle centered on the axis L of the rotating shaft 122 when viewed in the axial direction. The thicknesses of the N-pole claw-shaped magnetic poles 126n and 127n (the axial thickness of the portion extending in the radial direction and the radial thickness of the portion extending in the axial direction) are all the same.
 第1N極側爪状磁極126nと第2N極側爪状磁極127nとは、それらの周方向の中心位置が等角度間隔(90°間隔)に交互に設けられている。つまり、一対の第1N極側爪状磁極126n同士は周方向において180°対向位置に設けられ、同様に、一対の第2N極側爪状磁極127n同士も周方向において180°対向位置に設けられている。 The first N-pole claw-shaped magnetic pole 126n and the second N-pole claw-shaped magnetic pole 127n are alternately provided at their circumferential center positions at equal angular intervals (90 ° intervals). That is, the pair of first N pole side claw-shaped magnetic poles 126n are provided at positions facing each other by 180 ° in the circumferential direction. Similarly, the pair of second N pole side claw-shaped magnetic poles 127n are also provided at the positions facing each other by 180 °. ing.
 S極側ロータコア123sは、N極側ロータコア123nと同一形状であり、N極側ロータコア123nのコアベース125n、第1N極側爪状磁極126n及び第2N極側爪状磁極127nとそれぞれ対応する、コアベース125s、第1S極側爪状磁極126s(第1磁極部)及び第2S極側爪状磁極127s(第2磁極部)を有している。つまり、第2S極側爪状磁極127sの開角度θ2は、第1S極側爪状磁極126sの開角度θ1よりも狭く設定されている。 The S pole side rotor core 123s has the same shape as the N pole side rotor core 123n, and corresponds to the core base 125n of the N pole side rotor core 123n, the first N pole side claw-shaped magnetic pole 126n, and the second N pole side claw-shaped magnetic pole 127n, respectively. It has a core base 125s, a first S pole side claw-shaped magnetic pole 126s (first magnetic pole part), and a second S pole side claw-shaped magnetic pole 127s (second magnetic pole part). That is, the opening angle θ2 of the second S pole side claw-shaped magnetic pole 127s is set to be narrower than the opening angle θ1 of the first S pole side claw-shaped magnetic pole 126s.
 S極側ロータコア123sは、各S極側爪状磁極126s,127sがそれぞれ対応する各N極側爪状磁極126n,127n間(第1N極側爪状磁極126nと第2N極側爪状磁極127nとの間)に配置されるように、N極側ロータコア123nに対して組み付けられている。より詳しくは、各爪状磁極126n,127n,126s,127sは、それらの周方向の中心位置が等角度間隔(45°間隔)となるように構成されている。また、N極側爪状磁極126n,127nとS極側爪状磁極126s,127sとが周方向において交互に配置されている。 The S pole-side rotor core 123s is arranged between the N pole claw magnetic poles 126n and 127n to which the S pole claw magnetic poles 126s and 127s correspond respectively (the first N pole claw magnetic pole 126n and the second N pole claw magnetic pole 127n. Between the N pole rotor core 123n and the N pole rotor core 123n. More specifically, the claw-shaped magnetic poles 126n, 127n, 126s, and 127s are configured such that their circumferential center positions are equiangular intervals (45 ° intervals). Further, the N pole side claw-shaped magnetic poles 126n and 127n and the S pole side claw-shaped magnetic poles 126s and 127s are alternately arranged in the circumferential direction.
 N極側ロータコア123nのコアベース125nとS極側ロータコア123sのコアベース125sとの軸方向間には、前記永久磁石124が配置されている。永久磁石124は円環状をなし、その中央部を回転軸122が貫通している。なお、永久磁石124の軸方向端面は、回転軸122の軸線Lに対して垂直な平面状をなし、各コアベース125n,125sの各内側端面と密着している。また、本実施形態では、永久磁石124の外径は、各コアベース125n,125sの外径と一致している。また、永久磁石124は、例えば異方性の焼結磁石であり、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成される。 The permanent magnet 124 is disposed between the axial direction of the core base 125n of the N-pole rotor core 123n and the core base 125s of the S-pole rotor core 123s. The permanent magnet 124 has an annular shape, and the rotating shaft 122 passes through the center of the permanent magnet 124. The axial end surface of the permanent magnet 124 has a planar shape perpendicular to the axis L of the rotating shaft 122, and is in close contact with the inner end surfaces of the core bases 125n and 125s. Moreover, in this embodiment, the outer diameter of the permanent magnet 124 corresponds with the outer diameter of each core base 125n, 125s. The permanent magnet 124 is, for example, an anisotropic sintered magnet, and is composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like.
 各N極側爪状磁極126n,127nは、S極側ロータコア123sのコアベース125sの外周面、及び永久磁石124の外周面に対して径方向に離間されている。また、各N極側爪状磁極126n,127nの軸方向先端面は、コアベース125sの外側端面と軸方向において同位置に構成されている。 The N-pole claw-shaped magnetic poles 126n and 127n are radially spaced from the outer peripheral surface of the core base 125s of the S-pole rotor core 123s and the outer peripheral surface of the permanent magnet 124. Further, the axial front end surfaces of the N pole side claw-shaped magnetic poles 126n and 127n are configured at the same position in the axial direction as the outer end surface of the core base 125s.
 同様に、S極側爪状磁極126s,127sは、N極側ロータコア123nのコアベース125nの外周面、及び永久磁石124の外周面に対して径方向に離間されている。また、S極側爪状磁極126s,127sの軸方向先端面は、コアベース125nの外側端面と軸方向において同位置に構成されている。 Similarly, the S pole side claw-shaped magnetic poles 126 s and 127 s are radially separated from the outer peripheral surface of the core base 125 n of the N pole side rotor core 123 n and the outer peripheral surface of the permanent magnet 124. Further, the axial front end surfaces of the S pole side claw-shaped magnetic poles 126s and 127s are configured at the same position in the axial direction as the outer end surface of the core base 125n.
 永久磁石124は、コアベース125n側がN極、コアベース125s側がS極となるように軸方向に磁化されている。この永久磁石124の磁界によって、N極側爪状磁極126n,127nがN極として機能され、S極側爪状磁極126s,127sがS極として機能される。 The permanent magnet 124 is magnetized in the axial direction so that the core base 125n side is an N pole and the core base 125s side is an S pole. Due to the magnetic field of the permanent magnet 124, the N pole side claw-shaped magnetic poles 126n and 127n function as N poles, and the S pole side claw-shaped magnetic poles 126s and 127s function as S poles.
 このように、本実施形態のロータ121は、永久磁石124を用いた8極(4つのN極側爪状磁極126n,127n及び4つのS極側爪状磁極126s,127s)の所謂ランデル型ロータとして構成されている。 Thus, the rotor 121 of the present embodiment is a so-called Landel type rotor having eight poles (four N pole side claw-shaped magnetic poles 126n, 127n and four S pole side claw-shaped magnetic poles 126s, 127s) using the permanent magnet 124. It is configured as.
 すなわち、本実施形態のモータ110は、ロータ121の極数が2n(nは2以上の整数)に設定されるとともに、ステータ11の巻線13の個数が3nに設定され、具体的には、ロータ121の極数が「8」に設定され、ステータ11の巻線13の数が「12」に設定されている。 That is, in the motor 110 of the present embodiment, the number of poles of the rotor 121 is set to 2n (n is an integer equal to or greater than 2), and the number of windings 13 of the stator 11 is set to 3n. The number of poles of the rotor 121 is set to “8”, and the number of windings 13 of the stator 11 is set to “12”.
 次に、本実施形態の作用について説明する。
 図示しない駆動回路からそれぞれ120°の位相差を持つ3相の駆動電流(交流)がU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4にそれぞれ供給されると、各巻線U1~W4が相毎に同一タイミングで励磁されてステータ11に回転磁界が発生し、その回転磁界に基づいてロータ121が回転する。このとき、3相の駆動電流の供給によってステータ11側に形成される磁極は、各相の巻線U1~W4毎で同極となる。
Next, the operation of this embodiment will be described.
A three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively. Then, the windings U1 to W4 are excited at the same timing for each phase to generate a rotating magnetic field in the stator 11, and the rotor 121 rotates based on the rotating magnetic field. At this time, the magnetic poles formed on the side of the stator 11 by the supply of the three-phase drive current are the same for the windings U1 to W4 of each phase.
 ここで、ロータ121の極対数(つまり、N極側爪状磁極126n,127nとS極側爪状磁極126s,127sのそれぞれの個数)は、各相の巻線U1~W4の個数と同数(本実施形態では「4」)で構成されている。これにより、ロータ121の回転時に、例えば、S極側爪状磁極126s,127sのうちの1つがU相巻線U1と径方向に対向するとき、他のS極側爪状磁極126s,127sがU相巻線U2~U4とそれぞれ径方向に対向するようになっている(図10参照)。 Here, the number of pole pairs of the rotor 121 (that is, the number of each of the N pole-side claw-shaped magnetic poles 126n and 127n and the S pole-side claw-shaped magnetic poles 126s and 127s) is the same as the number of windings U1 to W4 of each phase ( In this embodiment, “4”). Thereby, when the rotor 121 rotates, for example, when one of the S pole side claw-shaped magnetic poles 126s and 127s is opposed to the U-phase winding U1 in the radial direction, the other S pole side claw-shaped magnetic poles 126s and 127s are The U-phase windings U2 to U4 are opposed to each other in the radial direction (see FIG. 10).
 このとき、第2S極側爪状磁極127sは、第1S極側爪状磁極126sよりも開角度が狭いため(前述のように開角度θ2<開角度θ1であるため)、ロータ121のS極がステータ11(例えば、U相巻線U1~U4)に与える磁力は、第1S極側爪状磁極126sよりも第2S極側爪状磁極127sで弱くなる。このことは、ロータ121のN極(N極側爪状磁極126n,127n)においても同様である。 At this time, the second S pole side claw-shaped magnetic pole 127s has a narrower opening angle than the first S pole side claw-shaped magnetic pole 126s (since the opening angle θ2 <open angle θ1 as described above), the S pole of the rotor 121 The magnetic force applied to the stator 11 (for example, the U-phase windings U1 to U4) is weaker at the second S pole side claw-shaped magnetic pole 127s than at the first S pole side claw-shaped magnetic pole 126s. The same applies to the N pole of the rotor 121 (N pole side claw-shaped magnetic poles 126n, 127n).
 これにより、例えば図10に示すような、ロータ121のN極がU相巻線U1~U4とそれぞれ対向する回転位置において、第2N極側爪状磁極127nと対向するU相巻線U2,U4を鎖交する鎖交磁束は、第1N極側爪状磁極126nと対向するU相巻線U1,U3を鎖交する鎖交磁束に比べて少なくなる。従って、第2N極側爪状磁極127nと対向するU相巻線U2,U4に生じる誘起電圧は、第1N極側爪状磁極126nと対向するU相巻線U1,U3に生じる誘起電圧よりも小さくなる。 Thus, for example, as shown in FIG. 10, the U-phase windings U2 and U4 facing the second N-pole claw-shaped magnetic pole 127n at the rotational positions where the N-pole of the rotor 121 faces the U-phase windings U1 to U4, respectively. Is less than the interlinkage flux interlinking the U-phase windings U1 and U3 facing the first N-pole claw-shaped magnetic pole 126n. Therefore, the induced voltage generated in the U-phase windings U2 and U4 facing the second N-pole claw-shaped magnetic pole 127n is more than the induced voltage generated in the U-phase windings U1 and U3 facing the first N-pole claw-shaped magnetic pole 126n. Get smaller.
 ここで、図13(a)は、本実施形態におけるロータ回転時のU相巻線U1~U4に生じる誘起電圧の所定の回転範囲(90°)での変化を示し、図13(b)は、従来構成におけるロータ回転時のU相巻線U1~U4に生じる誘起電圧の所定の回転範囲(90°)での変化を示している。従来構成は、ロータの各磁極が一様である構成、つまり、ロータ121の各爪状磁極126n,127n,126s,127sを全て同一形状(同一の開角度)とした構成である。 Here, FIG. 13A shows a change in the induced voltage generated in the U-phase windings U1 to U4 during rotation of the rotor in the present embodiment in a predetermined rotation range (90 °), and FIG. 4 shows changes in the induced voltage generated in the U-phase windings U1 to U4 during rotation of the rotor in the conventional configuration in a predetermined rotation range (90 °). The conventional configuration is a configuration in which each magnetic pole of the rotor is uniform, that is, a configuration in which each claw-shaped magnetic pole 126n, 127n, 126s, 127s of the rotor 121 has the same shape (the same opening angle).
 従来構成では、ロータの各磁極が一様であるため、U相巻線U1~U4のそれぞれにおける鎖交磁束の変化も一様である。このため、図13(b)に示すように、ロータ121の回転時において、U相巻線U1~U4で互いに等しい誘起電圧vxが生じる。そして、U相巻線U1~U4が直列の場合、各U相巻線U1~U4に生じる誘起電圧vxを合成した合成誘起電圧vu’は、各U相巻線U1~U4の誘起電圧vxの和(つまり、誘起電圧vxの4倍)となる。 In the conventional configuration, since the magnetic poles of the rotor are uniform, the change of the interlinkage magnetic flux in each of the U-phase windings U1 to U4 is also uniform. For this reason, as shown in FIG. 13B, when the rotor 121 rotates, the same induced voltage vx is generated in the U-phase windings U1 to U4. When the U-phase windings U1 to U4 are in series, the combined induced voltage vu ′ obtained by synthesizing the induced voltage vx generated in each U-phase winding U1 to U4 is the induced voltage vx of each U-phase winding U1 to U4. The sum (that is, four times the induced voltage vx).
 一方、図13(a)に示すように、本実施形態では、第2S極側爪状磁極127s及び第2N極側爪状磁極127nがそれぞれ第1S極側爪状磁極126s及び第1N極側爪状磁極126nよりもステータ11(U相巻線U1~U4)への磁力が弱く構成されている。これにより、第1S極側爪状磁極126s及び第1N極側爪状磁極126nと対向するU相巻線U1~U4(例えばU相巻線U2,U4)に生じる誘起電圧vxに対して、第2S極側爪状磁極127s及び第2N極側爪状磁極127nと対向するU相巻線U1~U4(例えばU相巻線U1,U3)に生じる誘起電圧vyが小さくなる。このため、各U相巻線U1~U4の誘起電圧を合成した合成誘起電圧vu(vu=vx×2+vy×2)が、第2S極側爪状磁極127s及び第2N極側爪状磁極127nと対向する一対のU相巻線での誘起電圧vyの減少分だけ減少し、図13(b)に示す従来構成での合成誘起電圧vu’と比較して小さくなる。なお、ここではU相巻線U1~U4の合成誘起電圧vuを例にとって説明したが、V相巻線V1~V4及びW相巻線W1~W4においても同様に、第2S極側爪状磁極127s及び第2N極側爪状磁極127nの開角度が狭いことによる合成鎖交磁束の減少が生じる。 On the other hand, as shown in FIG. 13A, in the present embodiment, the second S pole side claw-shaped magnetic pole 127s and the second N pole side claw-shaped magnetic pole 127n are replaced with the first S pole side claw-shaped magnetic pole 126s and the first N pole side claw, respectively. The magnetic force to the stator 11 (U-phase windings U1 to U4) is weaker than that of the magnetic pole 126n. Thus, with respect to the induced voltage vx generated in the U-phase windings U1 to U4 (for example, U-phase windings U2 and U4) facing the first S-pole claw-shaped magnetic pole 126s and the first N-pole claw-shaped magnetic pole 126n, the first The induced voltage vy generated in the U-phase windings U1 to U4 (for example, the U-phase windings U1 and U3) facing the 2S pole-side claw-shaped magnetic pole 127s and the second N-pole side claw-shaped magnetic pole 127n is reduced. Therefore, a combined induced voltage vu (vu = vx × 2 + vy × 2) obtained by synthesizing the induced voltages of the U-phase windings U1 to U4 is combined with the second S-pole claw-shaped magnetic pole 127s and the second N-pole claw-shaped magnetic pole 127n. It decreases by the amount of decrease of the induced voltage vy in the pair of opposing U-phase windings, and becomes smaller than the combined induced voltage vu ′ in the conventional configuration shown in FIG. Here, the combined induced voltage vu of the U-phase windings U1 to U4 has been described as an example, but the second S pole side claw-shaped magnetic pole is similarly applied to the V-phase windings V1 to V4 and the W-phase windings W1 to W4. The resultant interlinkage magnetic flux decreases due to the narrow opening angle of 127s and the second N-pole claw-shaped magnetic pole 127n.
 次に、本実施形態の特徴的な利点を記載する。
 (4)ステータ11の巻線13は、供給される3相の駆動電流に応じた、それぞれ4つのU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4からなり、各相の4つの巻線はそれぞれ直列接続されている。つまり、ステータ11の巻線13は、各相において、直列接続された少なくとも2つの巻線(第1の巻線及び第2の巻線)を備える。
Next, characteristic advantages of this embodiment will be described.
(4) The windings 13 of the stator 11 are composed of four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current. Thus, the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
 また、ロータ121のN極は、第1N極側爪状磁極126nと、該第1N極側爪状磁極126nがU、V、W相のいずれかの相の第1の巻線(例えばU相巻線U1,U3)と対向するロータ121の回転位置で同相の第2の巻線(例えばU相巻線U2,U4)と対向する第2N極側爪状磁極127nとを備える。この第2N極側爪状磁極127nは、ステータ11に与える磁力が第1N極側爪状磁極126nよりも弱くなるように形状(開角度)が設定される。また、ロータ121のS極においても同様に、第1S極側爪状磁極126sと、該第1S極側爪状磁極126sがU、V、W相のいずれかの相の第1の巻線(例えばU相巻線U1,U3)と対向するロータ121の回転位置で同相の第2の巻線(例えばU相巻線U2,U4)と対向する第2S極側爪状磁極127sとを備える。この第2S極側爪状磁極127sは、ステータ11に与える磁力が第1S極側爪状磁極126sよりも弱くなるように形状(開角度)が設定される。 In addition, the N pole of the rotor 121 includes a first N pole side claw-shaped magnetic pole 126n, and the first N pole side claw-shaped magnetic pole 126n has a first winding (for example, a U phase) in any of the U, V, and W phases. A second N pole side claw-shaped magnetic pole 127n facing a second winding (for example, U phase windings U2, U4) in phase at the rotational position of the rotor 121 facing the windings U1, U3). The shape (open angle) of the second N-pole claw-shaped magnetic pole 127n is set so that the magnetic force applied to the stator 11 is weaker than that of the first N-pole claw-shaped magnetic pole 126n. Similarly, in the S pole of the rotor 121, the first S pole side claw-shaped magnetic pole 126 s and the first S pole side claw-shaped magnetic pole 126 s are in the first winding (U, V, or W phase). For example, a second S pole side claw-shaped magnetic pole 127s facing the second winding (for example, the U phase windings U2, U4) in phase at the rotational position of the rotor 121 facing the U phase windings U1, U3). The shape (open angle) of the second S pole side claw-shaped magnetic pole 127s is set so that the magnetic force applied to the stator 11 is weaker than that of the first S pole side claw-shaped magnetic pole 126s.
 このように、本実施形態では、ロータ121における全てのN極(又は全てのS極)の磁力(ステータに与える磁力)を弱めるのではなく、そのうちの一部(第2N極側爪状磁極127n及び第2S極側爪状磁極127s)の磁力を弱めるように構成される。これにより、トルクの低下を極力抑えつつも、ロータ121の磁極によって同相の巻線13に生じる合成誘起電圧(例えばU相の合成誘起電圧vu)を小さく抑えることができ、その結果、モータ110の高回転化を図ることができる。 Thus, in the present embodiment, the magnetic force (magnetic force applied to the stator) of all the N poles (or all the S poles) in the rotor 121 is not weakened, but a part thereof (second N pole side claw-shaped magnetic pole 127n). And the second S-pole claw-shaped magnetic pole 127s) is configured to weaken the magnetic force. As a result, the combined induction voltage (for example, the combined induction voltage vu of the U phase) generated in the in-phase winding 13 by the magnetic poles of the rotor 121 can be suppressed to a low level while suppressing a decrease in torque as much as possible. High rotation can be achieved.
 なお、本実施形態のように、巻線13が各相でそれぞれ直列とされた巻線態様では、相毎の各巻線でそれぞれ生じる誘起電圧の和が合成誘起電圧となることから、該合成誘起電圧が大きくなる傾向がある。このため、巻線13が各相でそれぞれ直列とされた構成において上記のように第2N極側爪状磁極127n及び第2S極側爪状磁極127sの磁力を弱めることで、合成誘起電圧の抑制効果をより顕著に得ることができ、モータの高回転化を図るのにより好適となる。 Note that, in the winding mode in which the windings 13 are connected in series in each phase as in the present embodiment, the sum of the induced voltages generated in the respective windings for each phase becomes the combined induced voltage. The voltage tends to increase. For this reason, in the configuration in which the windings 13 are connected in series in each phase, the combined induced voltage is suppressed by weakening the magnetic force of the second N pole side claw-shaped magnetic pole 127n and the second S pole side claw-shaped magnetic pole 127s as described above. The effect can be obtained more remarkably, and it is more suitable for increasing the rotation speed of the motor.
 (5)U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4がそれぞれ2n個(nは2以上の整数であって、本実施形態ではn=2)で構成され、ロータ121の第1及び第2N極側爪状磁極126n,127n(第1及び第2S極側爪状磁極126s,127s)のそれぞれの個数がn個(つまり2個)で構成される。つまり、この構成によれば、各相の巻線の個数(U相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4のそれぞれの個数)が4以上の偶数で構成され、ロータ121の第1及び第2N極側爪状磁極126n,127n(第1及び第2S極側爪状磁極126s,127s)が互いに同数(各相の巻線の個数の半数)で構成される。 (5) 2n pieces of U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4 (n is an integer of 2 or more, and in this embodiment, n = 2) The number of first and second N pole side claw-shaped magnetic poles 126n, 127n (first and second S pole side claw-shaped magnetic poles 126s, 127s) of the rotor 121 is n (that is, two). The That is, according to this configuration, the number of windings in each phase (the number of U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4) is an even number of 4 or more. The first and second N pole side claw-shaped magnetic poles 126n and 127n (first and second S pole side claw-shaped magnetic poles 126s and 127s) of the rotor 121 are configured in the same number (half the number of windings of each phase). Is done.
 このため、ロータ121の第1及び第2N極側爪状磁極126n,127n(第1及び第2S極側爪状磁極126s,127s)を周方向等間隔に交互に設けることが可能となる。これにより、磁力及び質量の異なる第1及び第2N極側爪状磁極126n,127n(第1及び第2S極側爪状磁極126s,127s)が周方向にバランスよく配置されることとなり、ロータ121を磁気的に、また機械的にバランスの優れた構成とすることができる。 Therefore, the first and second N pole side claw-shaped magnetic poles 126n and 127n (first and second S pole side claw-shaped magnetic poles 126s and 127s) of the rotor 121 can be alternately provided at equal intervals in the circumferential direction. As a result, the first and second N pole side claw-shaped magnetic poles 126n and 127n (first and second S pole side claw-shaped magnetic poles 126s and 127s) having different magnetic forces and masses are arranged in a balanced manner in the circumferential direction. Can be made magnetically and mechanically balanced.
 なお、上記実施形態は、以下のように変更してもよい。
 ・上記実施形態では特に言及していないが、ロータ121の高回転時において弱め界磁制御を行ってもよい。上記実施形態では、ロータ121に第2N極側爪状磁極127n(第2S極側爪状磁極127s)が設けられることによって、巻線13に供給する弱め界磁電流を小さく抑えることが可能となり、巻線13に生じる銅損の抑制等の効果を得ることができる。また、換言すると、同等の弱め界磁電流量で低減できる鎖交磁束量が増加するため、弱め界磁制御による高回転化をより効果的に得ることができる。
In addition, you may change the said embodiment as follows.
Although not specifically mentioned in the above embodiment, field weakening control may be performed when the rotor 121 is rotating at a high speed. In the above embodiment, by providing the rotor 121 with the second N-pole claw-shaped magnetic pole 127n (second S-pole claw-shaped magnetic pole 127s), it becomes possible to suppress the field-weakening current supplied to the winding 13 to be small. Effects such as suppression of copper loss generated in the winding 13 can be obtained. In other words, since the amount of flux linkage that can be reduced with the same amount of field-weakening current increases, higher rotation by field-weakening control can be obtained more effectively.
 ・上記実施形態では、例えば、N極側ロータコア123nの第2N極側爪状磁極127nの開角度θ2を第1N極側爪状磁極126nの開角度θ1よりも狭く設定することで、ステータ11に与える磁力が第1N極側爪状磁極126nよりも第2N極側爪状磁極127nで弱くなるように構成した。しかしながら、これを第2N極側爪状磁極127nの他の形状変更によって実現してもよい。例えば、第2N極側爪状磁極127nの厚み(軸方向に延びる部分の径方向厚みや、径方向に延びる部分の軸方向厚み)を、第1N極側爪状磁極126nよりも薄くすることで、ステータ11に与える磁力が第1N極側爪状磁極126nよりも第2N極側爪状磁極127nで弱くなるようにしてもよい。また、S極側ロータコア123sにおいても同様の変更を行ってもよい。 In the above embodiment, for example, by setting the opening angle θ2 of the second N pole side claw-shaped magnetic pole 127n of the N pole side rotor core 123n to be narrower than the opening angle θ1 of the first N pole side claw-shaped magnetic pole 126n, The magnetic force to be applied is weaker at the second N-pole claw-shaped magnetic pole 127n than at the first N-pole claw-shaped magnetic pole 126n. However, this may be realized by changing the shape of the second N-pole claw-shaped magnetic pole 127n. For example, by making the thickness (the radial thickness of the portion extending in the axial direction and the axial thickness of the portion extending in the radial direction) of the second N-pole claw-shaped magnetic pole 127n thinner than that of the first N-pole claw-shaped magnetic pole 126n. The magnetic force applied to the stator 11 may be weaker at the second N pole side claw-shaped magnetic pole 127n than at the first N pole side claw-shaped magnetic pole 126n. The same change may also be made in the S pole side rotor core 123s.
 ・上記実施形態では、例えば、N極側ロータコア123nに形成した4つの爪状磁極のうちの一部(第2N極側爪状磁極127n)の形状を変えることで、第2N極側爪状磁極127nがステータ11に与える磁力を第1N極側爪状磁極126nよりも弱くしている。これは、S極側ロータコア123sについても同様である。しかしながら、第2N極側爪状磁極127n及び第2S極側爪状磁極127sの磁力を相対的に弱くするための構成は、上記実施形態に限定されるものではない。 In the above embodiment, for example, by changing the shape of a part of the four claw-shaped magnetic poles formed on the N-pole rotor core 123n (second N-pole claw-shaped magnetic pole 127n), the second N-pole claw-shaped magnetic pole The magnetic force 127n applies to the stator 11 is weaker than the first N-pole claw-shaped magnetic pole 126n. The same applies to the south pole side rotor core 123s. However, the configuration for relatively weakening the magnetic force of the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s is not limited to the above embodiment.
 例えば、図14及び図15に示すように、第2N極側爪状磁極127n及び第2S極側爪状磁極127sの磁力をそれぞれ第1N極側爪状磁極126n及び第1S極側爪状磁極126sよりも相対的に弱くさせるための磁力調整用磁石130をロータ121に設けてもよい。 For example, as shown in FIGS. 14 and 15, the magnetic forces of the second N-pole claw-shaped magnetic pole 127n and the second S-pole-claw-shaped magnetic pole 127s are changed to the first N-pole claw-shaped magnetic pole 126n and the first S-pole claw-shaped magnetic pole 126s, respectively. A magnetic force adjusting magnet 130 may be provided in the rotor 121 for making it relatively weaker.
 なお、図14及び図15に示す構成では、第1N極側爪状磁極126nと第2S極側爪状磁極127sとは開角度が等しく形成されている。同様に、第1S極側爪状磁極126sと第2S極側爪状磁極127sも開角度が等しく形成されている。 In the configuration shown in FIGS. 14 and 15, the first N-pole claw-shaped magnetic pole 126n and the second S-pole claw-shaped magnetic pole 127s are formed to have the same opening angle. Similarly, the first S pole side claw-shaped magnetic pole 126s and the second S pole side claw-shaped magnetic pole 127s are also formed to have the same opening angle.
 磁力調整用磁石130は対で設けられ、それぞれ、第1N極側爪状磁極126nにおける軸方向に延出する部位の背面側(径方向内側)に配置される第1背面磁石部131(図15参照)と、第1S極側爪状磁極126sにおける軸方向に延出する部位の背面側(径方向内側)に配置される第2背面磁石部132とを備えている。 The magnetism adjusting magnets 130 are provided in pairs, and each of the first back magnet portions 131 (FIG. 15) is disposed on the back side (radially inward) of the portion extending in the axial direction in the first N pole side claw-shaped magnetic pole 126n. Reference) and a second back magnet part 132 disposed on the back side (in the radial direction) of the portion extending in the axial direction of the first S-pole claw-shaped magnetic pole 126s.
 また、各磁力調整用磁石130は、第1N極側爪状磁極126nとそれと隣り合う第2S極側爪状磁極127sとの周方向間に配置される第1極間磁石部133を備えている。また、各磁力調整用磁石130は、第1N極側爪状磁極126nとそれと隣り合う第1S極側爪状磁極126sとの周方向間に配置される第2極間磁石部134を備えている。また、各磁力調整用磁石130は、第1S極側爪状磁極126sとそれと隣り合う第2N極側爪状磁極127nとの周方向間に配置される第3極間磁石部135とを備えている。 Each of the magnetic force adjusting magnets 130 includes a first inter-pole magnet portion 133 disposed between the first N-pole claw-shaped magnetic pole 126n and the second S-pole claw-shaped magnetic pole 127s adjacent thereto. . Each of the magnetic force adjusting magnets 130 includes a second interpole magnet portion 134 disposed between the first N pole side claw-shaped magnetic pole 126n and the first S pole side claw-shaped magnetic pole 126s adjacent thereto. . Each of the magnetic force adjusting magnets 130 includes a third interpole magnet portion 135 disposed between the first S pole side claw-shaped magnetic pole 126s and the second N pole side claw-shaped magnetic pole 127n adjacent thereto. Yes.
 なお、同例では、一対の磁力調整用磁石130はそれぞれ、各磁石部131~135が一体形成された1つの部品として構成されている。また、磁力調整用磁石130は、ネオジム磁石等の希土類磁石よりなるボンド磁石(プラスチックマグネット、ゴムマグネット等)にて構成されることが好ましい。 In the same example, each of the pair of magnetism adjusting magnets 130 is configured as one component in which the magnet portions 131 to 135 are integrally formed. The magnetic force adjusting magnet 130 is preferably composed of a bonded magnet (plastic magnet, rubber magnet, etc.) made of a rare earth magnet such as a neodymium magnet.
 第1背面磁石部131は、径方向外側において第1N極側爪状磁極126nと当接し、径方向内側において永久磁石124及びコアベース125sの各外周面と当接する。また、第2背面磁石部132は、径方向外側において第1S極側爪状磁極126sと当接し、径方向内側において永久磁石124及びコアベース125nの各外周面と当接する。 The first back magnet portion 131 is in contact with the first N-pole claw-shaped magnetic pole 126n on the radially outer side, and is in contact with the outer peripheral surfaces of the permanent magnet 124 and the core base 125s on the radially inner side. The second back magnet part 132 is in contact with the first S pole side claw-shaped magnetic pole 126s on the radially outer side, and is in contact with the outer peripheral surfaces of the permanent magnet 124 and the core base 125n on the radially inner side.
 図14及び図15中、実線の矢印は、磁力調整用磁石130の各磁石部131~135の磁化方向(S極からN極向き)を示している。第1背面磁石部131は、第1N極側爪状磁極126nから背面側(径方向内側)への漏れ磁束を抑えるべく、径方向外側に向かって磁化されている。つまり、第1背面磁石部131は、その径方向外側面が第1N極側爪状磁極126nと同極のN極となるように径方向に磁化されている。 14 and 15, solid arrows indicate the magnetization directions (from the S pole to the N pole) of the magnet portions 131 to 135 of the magnetic force adjusting magnet 130. The first back magnet part 131 is magnetized radially outward in order to suppress leakage magnetic flux from the first N pole side claw-shaped magnetic pole 126n to the back side (radially inside). That is, the first back magnet part 131 is magnetized in the radial direction so that the radially outer surface thereof becomes the N pole having the same polarity as the first N pole side claw-shaped magnetic pole 126n.
 同様に、第2背面磁石部132は、第1S極側爪状磁極126sから背面側(径方向内側)への漏れ磁束を抑えるべく、径方向外側に向かって磁化されている。つまり、第2背面磁石部132は、その径方向外側面が第1S極側爪状磁極126sと同極のS極となるように径方向に磁化されている。 Similarly, the second back magnet part 132 is magnetized radially outward so as to suppress the leakage magnetic flux from the first S pole side claw-shaped magnetic pole 126s to the back side (inside in the radial direction). That is, the second back magnet part 132 is magnetized in the radial direction so that its radially outer surface is the S pole having the same polarity as the first S pole side claw-shaped magnetic pole 126s.
 また、第1極間磁石部133は、第1N極側爪状磁極126nの周方向への漏れ磁束を抑えるべく、周方向に磁化されている。つまり、第1極間磁石部133は、周方向の第1N極側爪状磁極126n側の面がN極、第2S極側爪状磁極127s側の面がS極となるように周方向に磁化されている。 Further, the first inter-pole magnet portion 133 is magnetized in the circumferential direction so as to suppress the leakage magnetic flux in the circumferential direction of the first N-pole claw-shaped magnetic pole 126n. That is, the first inter-pole magnet section 133 is arranged in the circumferential direction so that the surface on the first N pole side claw-shaped magnetic pole 126n side in the circumferential direction is the N pole and the surface on the second S pole side claw magnetic pole 127s side is the S pole. Magnetized.
 第2極間磁石部134は、第1N極側爪状磁極126n及び第1S極側爪状磁極126sの周方向への漏れ磁束を抑えるべく、周方向に磁化されている。つまり、第2極間磁石部134は、周方向の第1N極側爪状磁極126n側の面がN極、第1S極側爪状磁極126s側の面がS極となるように周方向に磁化されている。 The second inter-pole magnet section 134 is magnetized in the circumferential direction in order to suppress leakage magnetic flux in the circumferential direction of the first N-pole claw-shaped magnetic pole 126n and the first S-pole claw-shaped magnetic pole 126s. That is, the second inter-pole magnet portion 134 is arranged in the circumferential direction so that the surface on the first N pole side claw-shaped magnetic pole 126n side in the circumferential direction is N pole and the surface on the first S pole side claw magnetic pole 126s side is S pole. Magnetized.
 第3極間磁石部135は、第1S極側爪状磁極126sの周方向への漏れ磁束を抑えるべく、周方向に磁化されている。つまり、第3極間磁石部135は、周方向の第2N極側爪状磁極127n側の面がN極、第1S極側爪状磁極126s側の面がS極となるように周方向に磁化されている。 The third inter-pole magnet portion 135 is magnetized in the circumferential direction so as to suppress the leakage magnetic flux in the circumferential direction of the first S-pole claw-shaped magnetic pole 126s. That is, the third inter-pole magnet portion 135 is arranged in the circumferential direction so that the surface on the second N pole side claw-shaped magnetic pole 127n side in the circumferential direction is N pole and the surface on the first S pole side claw magnetic pole 126s side is S pole. Magnetized.
 このような構成によれば、磁力調整用磁石130の各磁石部131~135によって、第1N極側爪状磁極126n及び第1S極側爪状磁極126sの漏れ磁束が抑えられる。それにより、第1N極側爪状磁極126n及び第1S極側爪状磁極126sのステータ11に与える磁力がそれぞれ第2N極側爪状磁極127n及び第2S極側爪状磁極127sよりも強くなる(つまり、第2N極側爪状磁極127n及び第2S極側爪状磁極127sの磁力が相対的に弱くなる)。このため、上記実施形態と同様に、トルクの低下を極力抑えつつ、ロータ121の磁極による同相の巻線13の合成鎖交磁束(例えばU相の合成鎖交磁束φu)を少なく抑えることができる。そして、同相の巻線13での合成鎖交磁束が少なく抑えられることで、該巻線13に生じる誘起電圧を小さく抑えることができ、その結果、モータ110の高回転化を図ることができる。 According to such a configuration, the leakage flux of the first N pole side claw-shaped magnetic pole 126n and the first S pole side claw-shaped magnetic pole 126s is suppressed by the magnet portions 131 to 135 of the magnetic force adjusting magnet 130. As a result, the magnetic forces applied to the stator 11 by the first N-pole claw-shaped magnetic pole 126n and the first S-pole claw-shaped magnetic pole 126s are stronger than those of the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s, respectively. That is, the magnetic forces of the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s are relatively weak). For this reason, as in the above embodiment, the combined flux linkage (for example, U-phase synthesized linkage flux φu) of the in-phase winding 13 by the magnetic poles of the rotor 121 can be suppressed to a minimum while suppressing a decrease in torque as much as possible. . Further, since the combined flux linkage in the in-phase winding 13 is suppressed to a low level, the induced voltage generated in the winding 13 can be suppressed to a low level, and as a result, the motor 110 can be rotated at a high speed.
 更に、上記構成では、第2N極側爪状磁極127n及び第2S極側爪状磁極127sの開角度を狭めるのではなく、磁力調整用磁石130の追加によって第2N極側爪状磁極127n及び第2S極側爪状磁極127sの磁力を相対的に弱くしている。このため、トルクを確保する点でより効果的な構成と言える。 Further, in the above configuration, the opening angle of the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s is not narrowed, but the addition of the magnetic force adjusting magnet 130 does not reduce the opening angle of the second N-pole claw-shaped magnetic pole 127n. The magnetic force of the 2S pole side claw-shaped magnetic pole 127s is relatively weakened. For this reason, it can be said that it is a more effective structure at the point which ensures a torque.
 なお、図14及び図15に示す例では、各磁石部131~135が一体形成されたが、例えば図16に示すように、各磁石部131~135をそれぞれ別体で構成してもよい。また、図14及び図15に示す例の磁力調整用磁石130において、磁石部131~135のいずれか1つ又は複数を省略した構成としてもよい。また、図14及び図15に示す例において、磁力調整用磁石130の着磁態様を極異方配向としてもよい。 In the example shown in FIGS. 14 and 15, the magnet parts 131 to 135 are integrally formed. However, as shown in FIG. 16, for example, the magnet parts 131 to 135 may be configured separately. Further, in the magnetic force adjusting magnet 130 shown in FIGS. 14 and 15, any one or more of the magnet portions 131 to 135 may be omitted. Further, in the example shown in FIGS. 14 and 15, the magnetization mode of the magnetic force adjusting magnet 130 may be polar anisotropic orientation.
 また、図14及び図15に示す例において、例えば、第2N極側爪状磁極127nにおける軸方向に延出する部位の背面側(径方向内側)に、前記第1背面磁石部131よりも磁力の小さい背面磁石部を設け、該背面磁石部によって第2N極側爪状磁極127nから背面側に流れる漏れ磁束を抑えるように構成してもよい。また、同様に、第2N極側爪状磁極127nの周方向側方に、前記各極間磁石部133~135よりも磁力の小さい極間磁石部を設け、該極間磁石部によって第2N極側爪状磁極127nから周方向へ流れる漏れ磁束を抑えるように構成してもよい。また、S極側においても同様の変更を行ってもよい。 Further, in the example shown in FIGS. 14 and 15, for example, the magnetic force on the back side (radially inner side) of the portion extending in the axial direction in the second N-pole claw-shaped magnetic pole 127 n is larger than that of the first back magnet unit 131. It is also possible to provide a back magnet part having a small diameter and suppress the leakage magnetic flux flowing from the second N-pole claw-shaped magnetic pole 127n to the back side by the back magnet part. Similarly, an interpole magnet portion having a smaller magnetic force than the interpole magnet portions 133 to 135 is provided on the circumferential side of the second N pole side claw-shaped magnetic pole 127n, and the second N pole is provided by the interpole magnet portion. You may comprise so that the leakage magnetic flux which flows into the circumferential direction from the side nail | claw-shaped magnetic pole 127n may be suppressed. The same change may be made on the S pole side.
 ・上記実施形態では、単一の第1N極側爪状磁極126n及び単一の第1S極側爪状磁極126sがそれぞれ第1磁極部を構成し、単一の第2N極側爪状磁極127n及び単一の第2S極側爪状磁極127sがそれぞれ前記第1磁極部よりも磁力が弱い第2磁極部を構成しているが、これに特に限定されるものではない。 In the above embodiment, the single first N pole side claw-shaped magnetic pole 126n and the single first S pole side claw-shaped magnetic pole 126s each constitute the first magnetic pole portion, and the single second N pole side claw-shaped magnetic pole 127n. The single second S pole side claw-shaped magnetic pole 127s constitutes a second magnetic pole part having a magnetic force weaker than that of the first magnetic pole part, but is not particularly limited thereto.
 例えば、図17及び図18に示すロータ140は、互いに同一形状をなす第1及び第2ロータコア141,142と、該第1及び第2ロータコア141,142の軸方向間に配置された永久磁石124と、一対の外周磁石150(磁力調整用磁石)とを備えている。 For example, the rotor 140 shown in FIGS. 17 and 18 includes first and second rotor cores 141 and 142 having the same shape, and a permanent magnet 124 disposed between the axial directions of the first and second rotor cores 141 and 142. And a pair of outer peripheral magnets 150 (magnetic force adjusting magnets).
 第1ロータコア141は、円板状のコアベース143と、そのコアベース143の外周面から延出形成された一対の第1爪状磁極144とを備えている。一対の第1爪状磁極144は、周方向において180°対向位置にそれぞれ形成されている。また、各第1爪状磁極144は、コアベース143の外周面から径方向外側に突出されるとともに軸方向(互いに同一方向)に延出形成されている。第1爪状磁極144の外周面(径方向外側面)における周方向の半分には、前記外周磁石150が固着される磁石固着面145が形成され、残りの半分には、磁石固着面145よりも径方向外側に突出する第1突極部144aが形成されている。 The first rotor core 141 includes a disk-shaped core base 143 and a pair of first claw-shaped magnetic poles 144 formed to extend from the outer peripheral surface of the core base 143. The pair of first claw-shaped magnetic poles 144 are formed at 180 ° facing positions in the circumferential direction. Each first claw-shaped magnetic pole 144 protrudes radially outward from the outer peripheral surface of the core base 143 and extends in the axial direction (the same direction as each other). A magnet fixing surface 145 to which the outer peripheral magnet 150 is fixed is formed on a half of the outer peripheral surface (radially outer surface) of the first claw-shaped magnetic pole 144, and the other half is from the magnet fixing surface 145. Also, a first salient pole portion 144a that protrudes radially outward is formed.
 第2ロータコア142は、第1ロータコア141と同一形状であり、該第1ロータコア141のコアベース143及び第1爪状磁極144(第1突極部144a)とそれぞれ対応する、コアベース146及び第2爪状磁極147(第2突極部147a)を有している。 The second rotor core 142 has the same shape as the first rotor core 141, and corresponds to the core base 143 and the first claw-shaped magnetic pole 144 (first salient pole portion 144a) of the first rotor core 141, respectively. A two-claw magnetic pole 147 (second salient pole portion 147a) is provided.
 第2ロータコア142は、各第2爪状磁極147がそれぞれ対応する第1爪状磁極144間に配置されるように、第1ロータコア141に対して組み付けられている。より詳しくは、爪状磁極144,147は、それらの周方向中心位置が周方向等間隔(90°間隔)となるように構成されている。また、第1爪状磁極144と第2爪状磁極147とが周方向において交互に配置されている。 The second rotor core 142 is assembled to the first rotor core 141 such that each second claw-shaped magnetic pole 147 is disposed between the corresponding first claw-shaped magnetic poles 144. More specifically, the claw-shaped magnetic poles 144 and 147 are configured such that their circumferential center positions are at equal circumferential intervals (90 ° intervals). Further, the first claw-shaped magnetic poles 144 and the second claw-shaped magnetic poles 147 are alternately arranged in the circumferential direction.
 また、第1及び第2ロータコア141,142のコアベース143,146の軸方向間には前記永久磁石124が配置され、この永久磁石124は、第1ロータコア141(コアベース143)側の面がN極、第2ロータコア142(コアベース146)側の面がS極となるように軸方向に磁化されている。なお、この永久磁石124は、上記実施形態の永久磁石124と略同様の構成であるため、詳細な説明は省略する。 The permanent magnet 124 is disposed between the axial directions of the core bases 143 and 146 of the first and second rotor cores 141 and 142, and the surface of the permanent magnet 124 on the first rotor core 141 (core base 143) side is arranged. The north pole is magnetized in the axial direction so that the surface on the second rotor core 142 (core base 146) side becomes the south pole. Note that the permanent magnet 124 has substantially the same configuration as the permanent magnet 124 of the above embodiment, and thus detailed description thereof is omitted.
 各第1爪状磁極144は、第2ロータコア142のコアベース146の外周面、及び永久磁石124の外周面に対して径方向に離間されている。同様に、第2爪状磁極147は、第1ロータコア141のコアベース143の外周面、及び永久磁石124の外周面に対して径方向に離間されている。 Each first claw-shaped magnetic pole 144 is radially spaced from the outer peripheral surface of the core base 146 of the second rotor core 142 and the outer peripheral surface of the permanent magnet 124. Similarly, the second claw-shaped magnetic pole 147 is radially spaced from the outer peripheral surface of the core base 143 of the first rotor core 141 and the outer peripheral surface of the permanent magnet 124.
 外周磁石150は、第1爪状磁極144の磁石固着面145と第2爪状磁極147の磁石固着面145とに跨って設けられている。詳述すると、外周磁石150は、外周面にN極が現れるように磁化されたN極部151と、外周面にN極が現れるように磁化されたS極部152とを備え、S極部152が第1爪状磁極144の磁石固着面145に固着され、N極部151が第2爪状磁極147の磁石固着面145に固着されている。つまり、第1爪状磁極144の磁石固着面145には、永久磁石124の磁界によって該第1爪状磁極144が受ける磁極(N極)と逆極性となる磁石(S極部152)が固着され、第2爪状磁極147の磁石固着面145には、永久磁石124の磁界によって該第2爪状磁極147が受ける磁極(S極)と逆極性となる磁石(N極部151)が固着されている。なお、本例では、軸方向視において各外周磁石150(第2磁極部)のN極部151及びS極部152と、第1及び第2突極部144a,147a(第1磁極部)とは、それらの外周面が回転軸122の軸線Lを中心とする同一円上に位置するように構成されている。 The outer peripheral magnet 150 is provided across the magnet fixing surface 145 of the first claw-shaped magnetic pole 144 and the magnet fixing surface 145 of the second claw-shaped magnetic pole 147. Specifically, the outer peripheral magnet 150 includes an N pole portion 151 magnetized so that the N pole appears on the outer peripheral surface, and an S pole portion 152 magnetized so that the N pole appears on the outer peripheral surface. 152 is fixed to the magnet fixing surface 145 of the first claw-shaped magnetic pole 144, and the N pole portion 151 is fixed to the magnet fixing surface 145 of the second claw-shaped magnetic pole 147. That is, a magnet (S pole portion 152) having a polarity opposite to the magnetic pole (N pole) received by the first claw pole magnetic pole 144 by the magnetic field of the permanent magnet 124 is fixed to the magnet fixing surface 145 of the first claw pole magnetic pole 144. Then, a magnet (N pole portion 151) having a polarity opposite to that of the magnetic pole (S pole) received by the second claw pole magnetic pole 147 by the magnetic field of the permanent magnet 124 is fixed to the magnet fixing surface 145 of the second claw pole 147. Has been. In this example, the N pole portion 151 and the S pole portion 152 of each outer peripheral magnet 150 (second magnetic pole portion) and the first and second salient pole portions 144a and 147a (first magnetic pole portion) in the axial direction view. Are configured such that their outer peripheral surfaces are located on the same circle centered on the axis L of the rotating shaft 122.
 上記構成のロータ140では、永久磁石124の磁界と外周磁石150のS極部152の磁界とによって、第1爪状磁極144の第1突極部144aがN極として機能される。また、同様に、永久磁石124の磁界と外周磁石150のN極部151の磁界とによって、第2爪状磁極147の第2突極部147aがS極として機能される。また、各外周磁石150のN極部151は、ロータ140のN極の一部を構成し、各外周磁石150のS極部152は、ロータ140のS極の一部を構成している。つまり、ロータ140は、2つの第1突極部144aと2つのN極部151とによってN極が構成され、2つの第2突極部147aと2つのS極部152とによってS極が構成されて、全体として8極で構成されている。 In the rotor 140 configured as described above, the first salient pole portion 144a of the first claw-shaped magnetic pole 144 functions as an N pole by the magnetic field of the permanent magnet 124 and the magnetic field of the S pole portion 152 of the outer peripheral magnet 150. Similarly, the second salient pole part 147a of the second claw-shaped magnetic pole 147 functions as the S pole by the magnetic field of the permanent magnet 124 and the magnetic field of the N pole part 151 of the outer peripheral magnet 150. Further, the N pole portion 151 of each outer peripheral magnet 150 constitutes a part of the N pole of the rotor 140, and the S pole portion 152 of each outer periphery magnet 150 constitutes a part of the S pole of the rotor 140. That is, in the rotor 140, the N pole is configured by the two first salient pole portions 144a and the two N pole portions 151, and the S pole is configured by the two second salient pole portions 147a and the two S pole portions 152. As a whole, it is composed of 8 poles.
 なお、本例のロータ140の磁極(第1及び第2突極部144a,147a及びN極部151及びS極部152)の配置関係については、上記実施形態のロータ121の磁極と同様である。即ち、第1突極部144aが上記実施形態の第1N極側爪状磁極126nと、N極部151が上記実施形態の第2N極側爪状磁極127nと、第2突極部147aが上記実施形態の第1S極側爪状磁極126sと、そして、S極部152が上記実施形態の第2S極側爪状磁極127sと、それぞれ対応している。 Note that the arrangement relationship of the magnetic poles (first and second salient pole portions 144a, 147a, N pole portion 151, and S pole portion 152) of the rotor 140 of this example is the same as that of the rotor 121 of the above embodiment. . That is, the first salient pole portion 144a is the first N pole side claw-shaped magnetic pole 126n of the above embodiment, the N pole portion 151 is the second N pole side claw-shaped magnetic pole 127n of the above embodiment, and the second salient pole portion 147a is the above mentioned. The first S pole side claw-shaped magnetic pole 126s of the embodiment and the S pole portion 152 correspond to the second S pole side claw-shaped magnetic pole 127s of the above embodiment, respectively.
 このような構成によれば、ロータ140のN極において、ステータ11に与える磁力を第1突極部144aよりもN極部151で弱くすることが可能となる。また、ロータ140のS極において、ステータ11に与える磁力を第2突極部147aよりもS極部152で弱くすることが可能となる。このため、上記実施形態と同様に、トルクの低下を極力抑えつつ、ロータ140の磁極による同相の巻線13の合成鎖交磁束(例えばU相の合成鎖交磁束φu)を少なく抑えることができる。そして、同相の巻線13での合成鎖交磁束が少なく抑えられることで、該巻線13に生じる誘起電圧を小さく抑えることができ、その結果、モータ110の高回転化を図ることができる。 According to such a configuration, the magnetic force applied to the stator 11 at the N pole of the rotor 140 can be made weaker at the N pole portion 151 than at the first salient pole portion 144a. Further, in the S pole of the rotor 140, the magnetic force applied to the stator 11 can be made weaker at the S pole portion 152 than at the second salient pole portion 147a. For this reason, as in the above embodiment, the combined flux linkage (for example, the U-phase combined flux linkage φu) of the in-phase winding 13 by the magnetic poles of the rotor 140 can be reduced while suppressing a reduction in torque as much as possible. . Further, since the combined flux linkage in the in-phase winding 13 is suppressed to a low level, the induced voltage generated in the winding 13 can be suppressed to a low level, and as a result, the motor 110 can be rotated at a high speed.
 なお、図17及び図18に示す例では、永久磁石124及び外周磁石150(N極部151及びS極部152)の磁気特性の設定によって、ステータ11に与える磁力をN極部151(S極部152)よりも第1突極部144a(第2突極部147a)で弱くすることも可能である。 In the example shown in FIGS. 17 and 18, the magnetic force applied to the stator 11 is set to the N pole portion 151 (S pole) by setting the magnetic characteristics of the permanent magnet 124 and the outer peripheral magnet 150 (N pole portion 151 and S pole portion 152). It is also possible to weaken the first salient pole portion 144a (second salient pole portion 147a) than the portion 152).
 また、図17及び図18に示す例では、N極部151及びS極部152を一体に有する外周磁石150を用いたが、これに限らず、N極部151とS極部152とが分割された磁石を用いてもよい。また、同例において、上記図14及び図15の例で説明したような背面磁石部及び極間磁石部を設けてもよい。 In the example shown in FIGS. 17 and 18, the outer peripheral magnet 150 integrally including the N pole portion 151 and the S pole portion 152 is used. However, the configuration is not limited thereto, and the N pole portion 151 and the S pole portion 152 are divided. You may use the magnet made. In the same example, a back magnet part and an interpole magnet part as described in the examples of FIGS. 14 and 15 may be provided.
 ・上記実施形態では、例えばN極側ロータコア123nにおいて、第1N極側爪状磁極126nと第2N極側爪状磁極127nとを同数(各相の巻線13の個数の半数であって2個)で構成したが、必ずしも同数である必要はない。例えば、第1N極側爪状磁極126nを3つ(又は1つ)とし、第2N極側爪状磁極127nを1つ個(又は3つ)として構成してもよい。また、S極側ロータコア123sにおいても同様の変更を行ってもよい。 In the above embodiment, for example, in the N-pole rotor core 123n, the same number of first N-pole claw-shaped magnetic poles 126n and second N-pole claw-shaped magnetic poles 127n (half the number of the windings 13 of each phase, two ), But the number is not necessarily the same. For example, the first N pole side claw-shaped magnetic pole 126n may be configured as three (or one) and the second N pole side claw-shaped magnetic pole 127n may be configured as one (or three). The same change may also be made in the S pole side rotor core 123s.
 ・上記実施形態では、ロータ121のN極側ロータコア123n及びS極側ロータコア123sに対し、磁力が相対的に弱い第2N極側爪状磁極127n及び第2S極側爪状磁極127sをそれぞれ設けたが、これに特に限定されるものではない。例えば、S極側ロータコア123sにおいては、各第2S極側爪状磁極127sを第1S極側爪状磁極126sに変更した構成(つまり、S極側ロータコア123sに設けられる全ての爪状磁極を同一形状とした構成)としてもよい。 In the above embodiment, the second N pole side claw-shaped magnetic pole 127n and the second S pole side claw-shaped magnetic pole 127s, which have relatively weak magnetic forces, are provided for the N pole side rotor core 123n and the S pole side rotor core 123s of the rotor 121, respectively. However, it is not particularly limited to this. For example, in the S pole side rotor core 123s, each second S pole side claw-shaped magnetic pole 127s is changed to the first S pole side claw-shaped magnetic pole 126s (that is, all claw-shaped magnetic poles provided in the S pole side rotor core 123s are the same). The configuration may be a shape).
 ・上記実施形態では、各相の巻線、つまり、U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4がそれぞれ直列接続されたが、これに特に限定されるものではなく、巻線態様は適宜変更してもよい。 In the above embodiment, the windings of each phase, that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series. However, the winding mode may be changed as appropriate.
 例えば、図19に示す例では、U相において、巻線U1,U2が直列接続され、また、巻線U3,U4が直列接続され、それら巻線U1,U2の直列対と巻線U3,U4の直列対とが並列接続されている。V相においても同様に、巻線V1,V2が直列接続され、また、巻線V3,V4が直列接続され、それら巻線V1,V2の直列対と巻線V3,V4の直列対とが並列接続されている。また、W相においても同様に、巻線W1,W2が直列接続され、また、巻線W3,W4が直列接続され、それら巻線W1,W2の直列対と巻線W3,W4の直列対とが並列接続されている。 For example, in the example shown in FIG. 19, in the U phase, the windings U1, U2 are connected in series, and the windings U3, U4 are connected in series, and the series pair of the windings U1, U2 and the windings U3, U4. Are connected in parallel. Similarly, in the V phase, the windings V1 and V2 are connected in series, and the windings V3 and V4 are connected in series. The series pair of the windings V1 and V2 and the series pair of the windings V3 and V4 are parallel. It is connected. Similarly, in the W phase, the windings W1, W2 are connected in series, and the windings W3, W4 are connected in series. The series pair of the windings W1, W2 and the series pair of the windings W3, W4 Are connected in parallel.
 上記実施形態のロータ121の構成(図10参照)において図19の巻線態様を適用した場合、例えばU相において巻線U1及び巻線U3には互いに同等の大きさの誘起電圧(前記誘起電圧vx)が生じ、また、巻線U2及び巻線U4には互いに同等の大きさの誘起電圧(前記誘起電圧vy)が生じる。このため、巻線U1,U2の直列対で生じる合成誘起電圧と、巻線U3,U4の直列対で生じる合成誘起電圧とが略同等(vx+vy)となる。これにより、磁力の弱い第2N極側爪状磁極127n及び第2S極側爪状磁極127sを設けたことによる誘起電圧の減少が、巻線U1,U2の直列対及び巻線U3,U4の直列対の両方において常に生じることとなる。そして、巻線U1,U2の直列対と巻線U3,U4の直列対とが並列であるため、U相巻線全体における合成誘起電圧vuは、巻線U1,U2の直列対の合成誘起電圧(及び巻線U3,U4の直列対の合成誘起電圧)と略同等(vx+vy)となり、該合成誘起電圧vuを効果的に抑制することができる。 In the configuration of the rotor 121 of the above embodiment (see FIG. 10), when the winding mode of FIG. 19 is applied, for example, in the U phase, the induced voltage (the induced voltage) is equivalent to the winding U1 and the winding U3. vx) occurs, and induced voltages (the induced voltages vy) having the same magnitude are generated in the windings U2 and U4. For this reason, the combined induction voltage generated in the series pair of the windings U1 and U2 and the combined induction voltage generated in the series pair of the windings U3 and U4 are substantially equal (vx + vy). As a result, a decrease in the induced voltage due to the provision of the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s having a weak magnetic force causes the series pair of the windings U1 and U2 and the series of the windings U3 and U4 to be reduced. Will always occur in both pairs. Since the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are parallel, the combined induction voltage vu in the entire U-phase winding is the combined induction voltage of the series pair of the windings U1 and U2. (And the combined induction voltage of the series pair of windings U3 and U4) (vx + vy), and the combined induction voltage vu can be effectively suppressed.
 ここで、図19に示す例において巻線U2と巻線U3を入れ替えた場合、すなわち、誘起電圧の大きさが同等である巻線U1,U3を直列とするとともに、誘起電圧の大きさが同等である巻線U2,U4を直列とした場合を考える。この場合、磁力の弱い第2N極側爪状磁極127n及び第2S極側爪状磁極127sを設けたことによる誘起電圧の減少が、巻線U2,U4の直列対と巻線U1,U3の直列対のいずれか一方のみで生じ、他方では誘起電圧が減少しない。そして、巻線U1,U3の直列対と巻線U2,U4の直列対とが並列であることから、U相巻線全体における合成誘起電圧を効果的に抑制する点で不利となる。なお、各U相巻線U1~U4を並列とした場合においても同様に、U相巻線全体における合成誘起電圧を効果的に抑制する点で不利となる。 Here, when the winding U2 and the winding U3 are interchanged in the example shown in FIG. 19, that is, the windings U1, U3 having the same magnitude of the induced voltage are connected in series, and the magnitude of the induced voltage is the same. Consider the case where the windings U2 and U4 are in series. In this case, the induced voltage is reduced by providing the second N-pole claw-shaped magnetic pole 127n and the second S-pole claw-shaped magnetic pole 127s having a weak magnetic force, and the series pair of the windings U2 and U4 and the series of the windings U1 and U3 are reduced. It occurs only in one of the pairs, and the induced voltage does not decrease on the other. And since the series pair of winding U1, U3 and the series pair of winding U2, U4 are parallel, it is disadvantageous at the point which suppresses the synthetic | combination induced voltage in the whole U-phase winding effectively. Similarly, when the U-phase windings U1 to U4 are arranged in parallel, similarly, it is disadvantageous in that the combined induced voltage in the entire U-phase winding is effectively suppressed.
 以上のように、各相において巻線を直列とする場合には、ロータ121の所定の回転位置において第1N極側爪状磁極126n(又は第1S極側爪状磁極126s)と第2N極側爪状磁極127n(又は第2S極側爪状磁極127s)とにそれぞれ対向する巻線(例えばU相巻線U1,U2)同士を直列接続する。これにより、同相の巻線に生じた弱い誘起電圧と強い誘起電圧とを足し合わせて合成誘起電圧とすることができ、各相における合成誘起電圧を効果的に抑制することができる。 As described above, when the windings are connected in series in each phase, the first N pole side claw-shaped magnetic pole 126n (or the first S pole side claw-shaped magnetic pole 126s) and the second N pole side at a predetermined rotational position of the rotor 121. The windings (for example, U-phase windings U1, U2) facing the claw-shaped magnetic pole 127n (or the second S-pole claw-shaped magnetic pole 127s) are connected in series. As a result, the weak induced voltage generated in the windings of the same phase and the strong induced voltage can be added to obtain a combined induced voltage, and the combined induced voltage in each phase can be effectively suppressed.
 なお、図19の例では、U相において、巻線U1,U2を直列対とするとともに、巻線U3,U4を直列対としたが、巻線U1,U4、及び巻線U2,U3をそれぞれ直列対としても同様の効果を得ることができる。また、V相及びW相においても同様の変更が可能である。 In the example of FIG. 19, in the U phase, the windings U1 and U2 are a series pair and the windings U3 and U4 are a series pair, but the windings U1 and U4 and the windings U2 and U3 are respectively Similar effects can be obtained as a series pair. The same change can be made in the V phase and the W phase.
 また、図19の例では、U相において、巻線U1,U2の直列対と巻線U3,U4の直列対とが並列接続されたが、これに特に限定されるものではなく、巻線U1,U2の直列対と巻線U3,U4の直列対とを分離し、その分離した直列対のそれぞれにU相の駆動電流を供給すべくインバータを一対設けてもよい。この構成によっても、同様の効果を得ることができる。また、V相及びW相においても同様の変更が可能である。 In the example of FIG. 19, in the U phase, the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are connected in parallel. , U2 and the series pair of windings U3, U4 may be separated, and a pair of inverters may be provided to supply a U-phase drive current to each of the separated series pairs. The same effect can be obtained by this configuration. The same change can be made in the V phase and the W phase.
 また、上記実施形態(図2参照)及び図19に示す例では、巻線の結線態様をスター結線としたが、これに限らず、例えばデルタ結線としてもよい。
 ・上記実施形態では、ロータ121を8極とし、ステータ11の巻線13の個数を12個とした(つまり、8極12スロットのモータ構成とした)が、ロータ121の極数と巻線13の個数は構成に応じて適宜変更可能である。例えば、ロータ121の極数と巻線13の個数との関係が2n:3n(ただし、nは2以上の整数)となるように、ロータ121の極数と巻線13の個数を適宜変更してもよい。
Moreover, in the example shown in the said embodiment (refer FIG. 2) and FIG. 19, although the connection aspect of the coil | winding was made into star connection, it is good also as not only this but delta connection, for example.
In the above embodiment, the rotor 121 has 8 poles and the number of windings 13 of the stator 11 is 12 (that is, the motor configuration has 8 poles and 12 slots). The number of can be appropriately changed according to the configuration. For example, the number of poles of the rotor 121 and the number of windings 13 are appropriately changed so that the relationship between the number of poles of the rotor 121 and the number of windings 13 is 2n: 3n (where n is an integer of 2 or more). May be.
 なお、6極9スロットや10極15スロット等の構成とした場合(ロータ121の極数と巻線13の個数の最大公約数nが奇数の場合)には、ロータ121の極対数が奇数、つまり、N極、S極の各個数が奇数となる。このため、例えば、第1N極側爪状磁極126nと第2N極側爪状磁極127nとを同数にできず、磁気的にアンバランスな構成となってしまう。その点、上記実施形態のように、ロータ121の極数と巻線13の個数の最大公約数nが偶数である構成では、第1N極側爪状磁極126nと第2N極側爪状磁極127nとを同数とすることができ、磁気的にバランスの良い構成とすることが可能となる。 In the case of a configuration of 6 poles 9 slots, 10 poles 15 slots, etc. (when the number of poles of the rotor 121 and the greatest common divisor n of the number of windings 13 is an odd number), the number of pole pairs of the rotor 121 is an odd number, That is, the number of N poles and S poles is an odd number. For this reason, for example, the first N pole side claw-shaped magnetic pole 126n and the second N pole side claw-shaped magnetic pole 127n cannot be the same number, resulting in a magnetically unbalanced configuration. In that regard, as in the above embodiment, in the configuration in which the greatest common divisor n of the number of poles of the rotor 121 and the number of windings 13 is an even number, the first N-pole claw-shaped magnetic pole 126n and the second N-pole claw-shaped magnetic pole 127n. And the same number, and a magnetically balanced configuration can be achieved.
 また、ロータ121の極数と巻線13の個数との関係は必ずしも2n:3n(ただし、nは2以上の整数)である必要はなく、例えば、10極12スロットや14極12スロット等で構成してもよい。 In addition, the relationship between the number of poles of the rotor 121 and the number of windings 13 is not necessarily 2n: 3n (where n is an integer of 2 or more). For example, 10 poles 12 slots, 14 poles 12 slots, etc. It may be configured.
 図20には、10極12スロットで構成したモータ160の一例を示している。なお、図20の例では、上記実施形態と同一の構成については同一の符号を付してその詳細な説明は省略し、相異する部分について詳細に説明する。 FIG. 20 shows an example of a motor 160 configured with 10 poles and 12 slots. In the example of FIG. 20, the same components as those in the above embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different portions will be described in detail.
 図20に示すモータ160において、ステータ11の12個の巻線13は、供給される3相の駆動電流(U相、V相、W相)に応じて分類され、図20において反時計回り方向に順に、U1、バーU2、バーV1、V2、W1、バーW2、バーU1、U2、V1、バーV2、バーW1、W2とする。なお、正巻きで構成されるU相巻線U1,U2、V相巻線V1,V2、W相巻線W1,W2に対し、U相巻線バーU1,バーU2、V相巻線バーV1,バーV2、W相巻線バーW1,バーW2は逆巻きで構成される。また、U相巻線U1,バーU1は互いに180°対向位置にされ、同様に、U相巻線U2,バーU2は互いに180°対向位置にされる。これは他相(V相及びW相)においても同様である。 In the motor 160 shown in FIG. 20, the twelve windings 13 of the stator 11 are classified according to the supplied three-phase drive currents (U phase, V phase, W phase), and are counterclockwise in FIG. In this order, U1, bar U2, bar V1, V2, W1, bar W2, bar U1, U2, V1, bar V2, bar W1, W2. In addition, U phase winding bar U1, bar U2, V phase winding bar V1 with respect to U phase windings U1, U2, V phase windings V1, V2 and W phase windings W1, W2 constituted by positive windings. , Bar V2, W-phase winding bar W1, bar W2 are constituted by reverse winding. Further, the U-phase winding U1 and the bar U1 are placed at positions facing each other by 180 °, and similarly, the U-phase winding U2 and the bar U2 are placed at positions facing each other by 180 °. The same applies to the other phases (V phase and W phase).
 U相巻線U1,U2,バーU1,バーU2は直列に繋がって構成され、同様に、V相巻線V1,V2,バーV1,バーV2は直列に繋がって構成され、W相巻線W1,W2,バーW1,バーW2は直列に繋がって構成されている。そして、U相巻線U1,U2,バーU1,バーU2にはU相の駆動電流が供給される。これにより、正巻きのU相巻線U1,
U2に対して逆巻きのU相巻線バーU1,バーU2は常に逆極性(逆位相)で励磁されることとなるが、励磁タイミングは同一である。このことは他相(V相及びW相)においても同様である。
U-phase windings U1, U2, U1 and U2 are connected in series. Similarly, V-phase windings V1, V2, V1 and V2 are connected in series, and W-phase winding W1. , W2, bar W1, and bar W2 are connected in series. The U-phase windings U1, U2, U1 and U2 are supplied with U-phase drive current. As a result, the positive winding U-phase winding U1,
The U-phase winding bars U1 and U2 that are reversely wound with respect to U2 are always excited with the reverse polarity (reverse phase), but the excitation timing is the same. The same applies to the other phases (V phase and W phase).
 モータ160のロータ121は、N極・S極が周方向等間隔(36°間隔)に交互に設定された10極ロータであって、2つの第1N極側爪状磁極126nと、3つの第1S極側爪状磁極126sと、3つの第2N極側爪状磁極127nと、2つの第2S極側爪状磁極127sとを備えている。第1N極側爪状磁極126n及び第1S極側爪状磁極126sはロータ121の半周において交互に設けられ、第2N極側爪状磁極127n及び第2S極側爪状磁極127sはロータ121のもう半周において交互に設けられている。また、第1N極側爪状磁極126nの周方向反対側(180°対向位置)に第2S極側爪状磁極127sが位置し、第1S極側爪状磁極126sの周方向反対側(180°対向位置)に第2N極側爪状磁極127nが位置するように構成されている。 The rotor 121 of the motor 160 is a 10 pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (36 ° intervals), and includes two first N pole side claw-shaped magnetic poles 126n and three first poles. A 1S pole-side claw-shaped magnetic pole 126s, three second N-pole-side claw-shaped magnetic poles 127n, and two second S-pole-side claw-shaped magnetic poles 127s are provided. The first N-pole claw-shaped magnetic pole 126 n and the first S-pole claw-shaped magnetic pole 126 s are alternately provided on the half circumference of the rotor 121, and the second N-pole claw-shaped magnetic pole 127 n and the second S-pole claw-shaped magnetic pole 127 s They are provided alternately in a half circle. Further, the second S pole-side claw-shaped magnetic pole 127s is located on the opposite side (180 ° opposite position) of the first N pole-side claw-shaped magnetic pole 126n, and the first S pole-side claw-shaped magnetic pole 126s is positioned on the opposite side (180 °). The second N-pole claw-shaped magnetic pole 127n is positioned at the (opposite position).
 なお、第1及び第2N極側爪状磁極126n,127nと第1及び第2S極側爪状磁極126s,127sの各個数は、図20の10極ロータの例に限られるものではない。例えば、第1N極側爪状磁極126nが3つ、第1S極側爪状磁極126sが2つ、第2N極側爪状磁極127nが2つ、そして、第2S極側爪状磁極127sが3つで構成してもよい。 The numbers of the first and second N pole side claw-shaped magnetic poles 126n, 127n and the first and second S pole side claw-shaped magnetic poles 126s, 127s are not limited to the example of the 10-pole rotor of FIG. For example, three first N-pole claw-shaped magnetic poles 126n, two first S-pole claw-shaped magnetic poles 126s, two second N-pole claw-shaped magnetic poles 127n, and two second S-pole claw-shaped magnetic poles 127s. You may comprise.
 上記構成では、ロータ121の回転時において、例えば第1S極側爪状磁極126sがU相巻線U1と径方向に対向するとき、その周方向反対側において第2N極側爪状磁極127nがU相巻線バーU1と径方向に対向するようになっている(図20参照)。つまり、互いに逆位相(同一タイミング)で励磁される巻線13(例えばU相巻線U1,バーU1)とそれぞれ対向する異極の磁極部(例えば第1S極側爪状磁極126sと第2N極側爪状磁極127n)において互いの磁力が異なるように(つまり、一方に対してもう一方の磁力が弱くなるように)構成される。これにより、トルクの低下を極力抑えつつ、ロータ121の磁極によって逆位相の巻線13に生じる合成誘起電圧(例えばU相巻線U1,バーU1の合成誘起電圧)を小さく抑えることができ、その結果、モータ160の高回転化を図ることができる。 In the above configuration, when the rotor 121 rotates, for example, when the first S-pole claw-shaped magnetic pole 126s faces the U-phase winding U1 in the radial direction, the second N-pole claw-shaped magnetic pole 127n is U on the opposite side in the circumferential direction. Opposite the phase winding bar U1 in the radial direction (see FIG. 20). That is, the magnetic pole portions having different polarities (for example, the first S pole side claw-shaped magnetic pole 126s and the second N pole) respectively opposed to the windings 13 (for example, the U phase winding U1 and the bar U1) excited in opposite phases (same timing). In the side claw-shaped magnetic pole 127n), the magnetic forces are different from each other (that is, the other magnetic force is weaker than the other). As a result, the combined induction voltage (for example, the combined induction voltage of the U-phase winding U1 and the bar U1) generated in the anti-phase winding 13 by the magnetic poles of the rotor 121 can be suppressed to a low level while suppressing the decrease in torque as much as possible. As a result, high rotation of the motor 160 can be achieved.
 なお、図20に示すロータ121の例では、第1N極側爪状磁極126n及び第1S極側爪状磁極126sをロータ121の半周に設け、第2N極側爪状磁極127n及び第2S極側爪状磁極127sをロータ121のもう半周に設けた。しかし、ロータ121の各爪状磁極の配置はこれに特に限定されるものではなく、第1N極側爪状磁極126nの周方向反対側に第2S極側爪状磁極127sが位置し、第1S極側爪状磁極126sの周方向反対側に第2N極側爪状磁極127nが位置する構成であれば、ロータ121の各爪状磁極の配置は適宜変更可能である。 In the example of the rotor 121 shown in FIG. 20, the first N pole side claw-shaped magnetic pole 126n and the first S pole side claw-shaped magnetic pole 126s are provided on the half circumference of the rotor 121, and the second N pole side claw-shaped magnetic pole 127n and the second S pole side. A claw-shaped magnetic pole 127 s was provided on the other half of the rotor 121. However, the arrangement of the claw-shaped magnetic poles of the rotor 121 is not particularly limited to this, and the second S-pole claw-shaped magnetic pole 127s is located on the opposite side in the circumferential direction of the first N-pole claw-shaped magnetic pole 126n. If the second N-pole claw-shaped magnetic pole 127n is positioned on the opposite side of the pole-side claw-shaped magnetic pole 126s in the circumferential direction, the arrangement of the claw-shaped magnetic poles of the rotor 121 can be changed as appropriate.
 また、ステータ11において、各U相巻線U1,U2,バーU1,バーU2が全て直列に接続される必要はなく、巻線U1,バーU1の対と、巻線U2,バーU2の対をそれぞれ別の直列対とした構成としてもよい。また、V相及びW相においても同様に変更可能である。 Further, in the stator 11, it is not necessary that all the U-phase windings U1, U2, bar U1, and bar U2 are connected in series, and a pair of windings U1, U1 and a pair of windings U2, U2 are provided. It is good also as a structure which made each another separate serial pair. Moreover, it can change similarly also in V phase and W phase.
 また、図20には、10極12スロットで構成した例を示したが、14極12スロットの構成にも適用可能である。また、10極12スロット(又は14極12スロット)のロータ極数及びスロット数をそれぞれ等倍した構成にも適用可能である。なお、10極12スロット(又は14極12スロット)のロータ極数及びスロット数をそれぞれ等倍した構成の場合には、第1N極側爪状磁極126n及び第1S極側爪状磁極126sが周方向に交互に配置された強磁極群と、第2N極側爪状磁極127n及び第2S極側爪状磁極127sが周方向に交互に配置された弱磁極群とを、周方向に交互に配置することが好ましい。この構成によれば、前記強磁極群と前記弱磁極群とを周方向にバランス良く配置することができ、ロータ121を磁気的に、また機械的にバランスの優れた構成とすることができる。 FIG. 20 shows an example of 10 poles and 12 slots, but the present invention can also be applied to a 14 poles and 12 slots structure. Further, the present invention can also be applied to a configuration in which the number of rotor poles and the number of slots of 10 poles and 12 slots (or 14 poles and 12 slots) are equal. In the case of a configuration in which the number of rotor poles and the number of slots of 10 poles and 12 slots (or 14 poles and 12 slots) are respectively doubled, the first N pole side claw-shaped magnetic pole 126n and the first S pole side claw-shaped magnetic pole 126s are surrounded. The strong magnetic pole group alternately arranged in the direction and the weak magnetic pole group in which the second N-pole side claw-shaped magnetic pole 127n and the second S-pole side claw-like magnetic pole 127s are alternately arranged in the circumferential direction are alternately arranged in the circumferential direction. It is preferable to do. According to this configuration, the strong magnetic pole group and the weak magnetic pole group can be arranged with good balance in the circumferential direction, and the rotor 121 can be magnetically and mechanically balanced.
 ・上記実施形態では、ロータ121の例えばN極側ロータコア123nに形成される爪状磁極は、第1磁極部を構成する第1N極側爪状磁極126nと、第2磁極部を構成する第2N極側爪状磁極127nのみからなる。しかしながら、これ以外に例えば、ステータ11に与える磁力が第2N極側爪状磁極127nよりも弱い第3N極側爪状磁極(第3磁極部)をN極側ロータコア123nに備えてもよい。 In the above embodiment, the claw-shaped magnetic poles formed on, for example, the N-pole rotor core 123n of the rotor 121 are the first N-pole claw-shaped magnetic poles 126n that constitute the first magnetic pole part and the second N that constitutes the second magnetic pole part. It consists only of the pole-side claw-shaped magnetic pole 127n. However, for example, the N pole rotor core 123n may be provided with a third N pole claw magnetic pole (third magnetic pole) whose magnetic force applied to the stator 11 is weaker than that of the second N pole claw magnetic pole 127n.
 ・上記実施形態では、ロータ121をステータ11の内周側に配置したインナロータ型のモータ110に具体化したが、これに特に限定されるものではなく、ロータをステータの外周側に配置したアウタロータ型のモータに具体化してもよい。 In the above embodiment, the rotor 121 is embodied as the inner rotor type motor 110 arranged on the inner peripheral side of the stator 11, but is not particularly limited to this, and the outer rotor type in which the rotor is arranged on the outer peripheral side of the stator It may be embodied in the motor.
 ・上記実施形態では、ステータ11とロータ121とが径方向に対向するラジアルギャップ型のモータ110に本発明を具体化したが、これに特に限定されるものではなく、ステータとロータとが軸方向に対向するアキシャルギャップ型のモータに適用してもよい。 In the above embodiment, the present invention is embodied in the radial gap type motor 110 in which the stator 11 and the rotor 121 are opposed to each other in the radial direction. However, the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction. The present invention may be applied to an axial gap type motor that faces the motor.
 ・上記した実施形態並びに各変形例は適宜組み合わせてもよい。
 以下、モータの第3実施形態について説明する。
 図21(a)に示すように、本実施形態のモータ210は、ブラシレスモータとして構成され、円環状のステータ11の内側にロータ221が配置されて構成されている。ステータ11の構成は第1実施形態のステータ11と同様であるため詳細な説明を省略する。ステータ11の巻線13も第1実施形態の巻線13と同様に構成されており、図2に示す構成を有している。
-You may combine embodiment mentioned above and each modification suitably.
Hereinafter, a third embodiment of the motor will be described.
As shown in FIG. 21A, the motor 210 of the present embodiment is configured as a brushless motor, and is configured with a rotor 221 disposed inside an annular stator 11. Since the configuration of the stator 11 is the same as that of the stator 11 of the first embodiment, detailed description thereof is omitted. The winding 13 of the stator 11 is configured similarly to the winding 13 of the first embodiment, and has the configuration shown in FIG.
 [ロータの構成]
 図21(b)に示すように、ロータ221は、ロータコア222と永久磁石223とを備えている。ロータコア222は、磁性金属にて略円盤状に形成され、中心部に回転軸224が固定されている。ロータコア222の外周部には、2つの磁石固定部225及び4つの突部226が形成されている。
[Configuration of rotor]
As illustrated in FIG. 21B, the rotor 221 includes a rotor core 222 and a permanent magnet 223. The rotor core 222 is formed of a magnetic metal in a substantially disk shape, and a rotating shaft 224 is fixed to the center portion. Two magnet fixing portions 225 and four protrusions 226 are formed on the outer peripheral portion of the rotor core 222.
 各磁石固定部225は、周方向において180°対向位置に設けられている。これら磁石固定部225にはそれぞれ2つの永久磁石223が固着され、合計で4個の永久磁石223がロータコア222の外周部に設けられている。 Each magnet fixing portion 225 is provided at a 180 ° facing position in the circumferential direction. Two permanent magnets 223 are fixed to each of the magnet fixing portions 225, and a total of four permanent magnets 223 are provided on the outer peripheral portion of the rotor core 222.
 永久磁石223は、互いに同一形状であり、各永久磁石223の外周面は、回転軸224の軸線L方向から見て該軸線Lを中心とする円弧状をなしている。また、各永久磁石223の軸線Lを中心とする開角度(周方向幅)は45°に形成されている。なお、永久磁石223は、例えば異方性の焼結磁石であり、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成される。 The permanent magnets 223 have the same shape, and the outer peripheral surface of each permanent magnet 223 has an arc shape centered on the axis L when viewed from the direction of the axis L of the rotary shaft 224. Further, the opening angle (circumferential width) around the axis L of each permanent magnet 223 is 45 °. The permanent magnet 223 is, for example, an anisotropic sintered magnet, and includes, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like.
 各永久磁石223は、磁気配向が径方向を向くように形成され、各磁石固定部225に設けられた2つの永久磁石223は、外周側に現れる磁極が互いに異極となるように構成されている。また、永久磁石223は、同極のものが周方向において180°対向位置に配置されている。これら永久磁石223は、ロータ221の一部の磁極を構成している。詳しくは、外周側にN極が現れる永久磁石223がN極の磁石磁極Mnを構成し、外周側にS極が現れる永久磁石223がS極の磁石磁極Msを構成している。 Each permanent magnet 223 is formed so that the magnetic orientation is directed in the radial direction, and the two permanent magnets 223 provided in each magnet fixing portion 225 are configured such that the magnetic poles appearing on the outer peripheral side are different from each other. Yes. Further, the permanent magnet 223 having the same polarity is disposed at a 180 ° facing position in the circumferential direction. These permanent magnets 223 constitute a part of the magnetic poles of the rotor 221. Specifically, the permanent magnet 223 in which the N pole appears on the outer peripheral side constitutes the N magnetic pole Mn, and the permanent magnet 223 in which the S pole appears on the outer peripheral side constitutes the S magnetic pole Ms.
 ロータコア222の突部226は、磁石固定部225の周方向間において2つずつ、周方向に隣り合うように設けられている。この互いに隣り合う一対の突部226の周方向間には空隙K1が形成されている。また、この互いに隣り合う一対の突部226の一方は、N極の磁石磁極Mn(外周側がN極の永久磁石223)と周方向に隣り合い、そのN極の永久磁石223の磁界によってS極の磁極(コア磁極としての突極磁極Ps)として機能する。同様に、他方の突部226は、S極の磁石磁極Ms(外周側がS極の永久磁石223)と隣り合い、そのS極の永久磁石223の磁界によってN極の磁極(コア磁極としての突極磁極Pn)として機能する。この一対のN極の突極磁極Pnは周方向において180°対向位置に配置され、一対のS極の突極磁極Psも同様に周方向において180°対向位置に配置されている。なお、各突部226の外周面は、軸方向から見て各永久磁石223の外周面と同一円上(回転軸224の軸線Lを中心とする同一円上)に位置する円弧状に形成されている。また、各突部226の開角度は、各永久磁石223の開角度よりも小さく設定されている。また、互いに異極となる突極磁極Pn,Ps(突部226)と磁石磁極Mn,Ms(永久磁石223)との間、つまり、N極の突極磁極PnとS極の磁石磁極Msとの間、及びS極の突極磁極PsとN極の磁石磁極Mnとの間にはそれぞれ空隙K2が形成されている。 The protrusions 226 of the rotor core 222 are provided so as to be adjacent to each other in the circumferential direction two by two in the circumferential direction of the magnet fixing portion 225. A gap K1 is formed between the circumferential directions of the pair of adjacent protrusions 226. In addition, one of the pair of adjacent protrusions 226 is adjacent to the N-pole magnet magnetic pole Mn (peripheral magnet 223 having an N pole on the outer peripheral side) in the circumferential direction, and the S pole is generated by the magnetic field of the N-pole permanent magnet 223. Function as a magnetic pole (a salient pole Ps as a core magnetic pole). Similarly, the other protrusion 226 is adjacent to the S-pole magnet magnetic pole Ms (the outer peripheral side is the S-pole permanent magnet 223), and the magnetic field of the S-pole permanent magnet 223 causes the N-pole magnetic pole (projection as a core magnetic pole). It functions as a pole Pn). The pair of N-pole salient poles Pn are arranged at 180 ° facing positions in the circumferential direction, and the pair of S-pole salient poles Ps are similarly arranged at 180 ° facing positions in the circumferential direction. The outer peripheral surface of each protrusion 226 is formed in an arc shape that is located on the same circle as the outer peripheral surface of each permanent magnet 223 as viewed from the axial direction (on the same circle with the axis L of the rotation shaft 224 as the center). ing. Further, the opening angle of each protrusion 226 is set smaller than the opening angle of each permanent magnet 223. Further, between the salient poles Pn and Ps (projections 226) and the magnet poles Mn and Ms (permanent magnet 223) having different polarities, that is, the N pole salient poles Pn and the S pole magnet poles Ms. And gaps K2 are formed between the S pole salient pole Ps and the N pole magnet magnetic pole Mn.
 上記構成のロータ221は、その外周面(即ちステータ11との対向面)において、N極・S極が周方向等間隔(45°間隔)に交互に設定された8極ロータとして構成されている。具体的には、ロータ221の外周面(即ちステータ11との対向面)の磁極が、時計回り方向において順に、N極の磁石磁極Mn、S極の突極磁極Ps、N極の突極磁極Pn、S極の磁石磁極Ms、N極の磁石磁極Mn、・・・を繰り返す構成となっている。また、ロータ221のN極を構成する磁石磁極Mnと突極磁極Pnとは、周方向の中心位置が等角度間隔(90°間隔)に交互に配置され、同様に、ロータ221のS極を構成する磁石磁極Msと突極磁極Psとは、周方向の中心位置が等角度間隔(90°間隔)に交互に配置されている。 The rotor 221 having the above configuration is configured as an 8-pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (45 ° intervals) on the outer peripheral surface (that is, the surface facing the stator 11). . Specifically, the magnetic poles on the outer peripheral surface of the rotor 221 (that is, the surface facing the stator 11) are N pole magnet magnetic poles Mn, S pole salient poles Ps, and N pole salient pole poles in order in the clockwise direction. The Pn, S pole magnetic pole Ms, N pole magnetic pole Mn,... Are repeated. Further, the magnet magnetic pole Mn and salient pole magnetic pole Pn constituting the N pole of the rotor 221 are alternately arranged at equal angular intervals (90 ° intervals) in the circumferential direction. The magnet magnetic pole Ms and salient pole magnetic pole Ps which comprise are arrange | positioned alternately by the center position of the circumferential direction at equal angular intervals (90 degree space | interval).
 ロータコア222には、回転軸224の径方向に沿って延びる4つのスリット孔227が形成されている。スリット孔227は周方向に90°間隔に配設され、周方向に隣り合う突極磁極Pn,Ps間の境界部と、周方向に隣り合う磁石磁極Mn,Mn間の境界部とにそれぞれ設けられている。また、各スリット孔227は、ロータコア222における回転軸224が固定された固定孔222aの近傍位置から径方向に沿って永久磁石223及び突部226の近傍位置まで延びている。なお、本実施形態では、各スリット孔227はロータコア222を軸方向に貫通している。これら各スリット孔227内は空隙であり、磁性金属のロータコア222よりも磁気抵抗が大きいため、各スリット孔227によってロータコア222内を通る各永久磁石223の磁束が隣り合う突極磁極Pn,Psに好適に誘導されるようになっている(図21(a)の破線の矢印を参照)。 The rotor core 222 is formed with four slit holes 227 extending along the radial direction of the rotating shaft 224. The slit holes 227 are arranged at intervals of 90 ° in the circumferential direction, and are respectively provided at a boundary portion between the salient poles Pn and Ps adjacent in the circumferential direction and a boundary portion between the magnet magnetic poles Mn and Mn adjacent in the circumferential direction. It has been. In addition, each slit hole 227 extends along the radial direction from a position near the fixed hole 222a where the rotation shaft 224 of the rotor core 222 is fixed to a position near the permanent magnet 223 and the protrusion 226. In this embodiment, each slit hole 227 penetrates the rotor core 222 in the axial direction. Since each of these slit holes 227 is a gap and has a larger magnetic resistance than the magnetic metal rotor core 222, the magnetic flux of each permanent magnet 223 passing through the rotor core 222 by each slit hole 227 is applied to the adjacent salient poles Pn and Ps. It is suitably guided (see the broken arrow in FIG. 21 (a)).
 すなわち、ロータ221は、第1磁極部としての磁石磁極Mn及び磁石磁極Msと、第2磁極部としての突極磁極Pn及び突極磁極Psとを含んでいる。
 次に、本実施形態の作用について説明する。
That is, the rotor 221 includes the magnet magnetic pole Mn and the magnet magnetic pole Ms as the first magnetic pole part, and the salient pole magnetic pole Pn and the salient pole magnetic pole Ps as the second magnetic pole part.
Next, the operation of this embodiment will be described.
 図示しない駆動回路からそれぞれ120°の位相差を持つ3相の駆動電流(交流)がU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4にそれぞれ供給されると、各巻線U1~W4が相毎に同一タイミングで励磁されてステータ11に回転磁界が発生し、その回転磁界に基づいてロータ221が回転する。このとき、3相の駆動電流の供給によってステータ11に形成される磁極は、各相の巻線U1~W4毎で同極となる。 A three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively. Then, the windings U1 to W4 are excited at the same timing for each phase to generate a rotating magnetic field in the stator 11, and the rotor 221 rotates based on the rotating magnetic field. At this time, the magnetic poles formed on the stator 11 by the supply of the three-phase drive current are the same for the windings U1 to W4 of each phase.
 上記したように、ロータ221の極対数(つまり、N極とS極のそれぞれの個数)は、各相の巻線U1~W4の個数と同数(本実施形態では「4」)で構成されている。これにより、ロータ221の回転時に、例えば、ロータ221のN極(磁石磁極Mn及び突極磁極Pn)のうちの1つがU相巻線U1と径方向に対向するとき、他のN極がU相巻線U2~U4とそれぞれ径方向に対向するようになっている(図21(a)参照)。 As described above, the number of pole pairs of the rotor 221 (that is, the number of N poles and S poles) is the same as the number of windings U1 to W4 of each phase (“4” in this embodiment). Yes. Thereby, when the rotor 221 rotates, for example, when one of the N poles (magnet magnetic pole Mn and salient pole Pn) of the rotor 221 is opposed to the U-phase winding U1 in the radial direction, the other N pole is U The phase windings U2 to U4 are opposed to each other in the radial direction (see FIG. 21A).
 ここで、ロータ221の4つのN極は、そのうちの半分が突部226による突極磁極Pnで構成され、その各突極磁極Pnは、隣り合う磁石磁極Msの永久磁石223の磁界によって機能する擬似的な磁極であるため、永久磁石223による磁石磁極Mnに比べてステータ11に与える磁力が弱くなっている。これは、ロータ221のS極(突極磁極Ps及び磁石磁極Ms)においても同様である。 Here, half of the four N poles of the rotor 221 are constituted by salient pole magnetic poles Pn formed by the protrusions 226, and each salient pole magnetic pole Pn functions by the magnetic field of the permanent magnet 223 of the adjacent magnet magnetic pole Ms. Since the magnetic pole is a pseudo magnetic pole, the magnetic force applied to the stator 11 is weaker than the magnetic pole Mn by the permanent magnet 223. The same applies to the S pole of the rotor 221 (the salient pole magnetic pole Ps and the magnet magnetic pole Ms).
 これにより、例えば、各磁石磁極Mnと対向するU相巻線U1~U4(図21(a)に示す例ではU相巻線U1,U3)を鎖交する鎖交磁束φxに対して、各突極磁極Pnと対向するU相巻線U1~U4(図21(a)に示す例ではU相巻線U2,U4)を鎖交する鎖交磁束φyが減少される。従って、鎖交磁束φyが生じるU相巻線(突極磁極Pnと対向する巻線)に生じる誘起電圧は、鎖交磁束φxが生じるU相巻線(磁石磁極Mnと対向する巻線)に生じる誘起電圧よりも小さくなる。このため、各U相巻線U1~U4に生じる誘起電圧を合成した合成誘起電圧は、突極磁極Pnと対向する一対のU相巻線(図21(a)ではU相巻線U2,U4)での誘起電圧の減少分だけ減少する。なお、ここではU相巻線U1~U4がロータ221のN極(磁石磁極Mn及び突極磁極Pn)と対向するときの合成誘起電圧の減少を例にとって説明したが、V相巻線V1~V4及びW相巻線W1~W4においても同様であり、また、ロータ221のS極(磁石磁極Ms及び突極磁極Ps)においても同様に突極磁極Psによる合成誘起電圧の減少が生じる。 Accordingly, for example, each interlinkage magnetic flux φx interlinking the U-phase windings U1 to U4 (U-phase windings U1 and U3 in the example shown in FIG. 21A) facing each magnet magnetic pole Mn. Linkage magnetic flux φy interlinking U-phase windings U1 to U4 (U-phase windings U2 and U4 in the example shown in FIG. 21A) facing salient pole Pn is reduced. Therefore, an induced voltage generated in the U-phase winding (winding facing the salient pole magnetic pole Pn) in which the linkage flux φy is generated is applied to the U-phase winding (winding facing the magnet magnetic pole Mn) in which the linkage flux φx is generated. It becomes smaller than the induced voltage. Therefore, the combined induced voltage obtained by combining the induced voltages generated in the U-phase windings U1 to U4 is a pair of U-phase windings facing the salient pole Pn (in FIG. 21A, U-phase windings U2 and U4). ). Here, the reduction in the combined induced voltage when the U-phase windings U1 to U4 face the N pole (magnet magnetic pole Mn and salient pole Pn) of the rotor 221 has been described as an example, but the V-phase windings V1 to The same applies to the V4 and W-phase windings W1 to W4, and similarly, the resultant induced voltage due to the salient pole magnetic pole Ps also decreases at the S pole (magnet magnetic pole Ms and salient pole magnetic pole Ps) of the rotor 221.
 次に、本実施形態の特徴的な利点を記載する。
 (6)ステータ11の巻線13は、供給される3相の駆動電流に応じた、それぞれ4つのU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4からなり、各相の4つの巻線はそれぞれ直列接続されている。つまり、ステータ11の巻線13は、各相において、直列接続された少なくとも2つの巻線(第1の巻線及び第2の巻線)を備える。
Next, characteristic advantages of this embodiment will be described.
(6) The winding 13 of the stator 11 includes four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current. Thus, the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
 また、ロータ221のN極は、永久磁石223を用いる磁石磁極Mnと、ロータコア222の突部226を用いる突極磁極Pnとからなる。ロータ221のN極は、磁石磁極MnがU、V、W相のいずれかの相の第1の巻線(例えばU相巻線U1,U3)と対向するロータ221の回転位置で、突極磁極Pnが同相の第2の巻線(例えばU相巻線U2,U4)と対向するように構成される。また、ロータ221のS極も同様に、永久磁石223を用いる磁石磁極Msと、ロータコア222の突部226を用いる突極磁極Psとからなる。ロータ221のS極は、磁石磁極MsがU、V、W相のいずれかの相の第1の巻線(例えばU相巻線U1,U3)と対向するロータ221の回転位置で、突極磁極Psが同相の第2の巻線(例えばU相巻線U2,U4)と対向するように構成される。 The N pole of the rotor 221 is composed of a magnet magnetic pole Mn using the permanent magnet 223 and a salient pole Pn using the protrusion 226 of the rotor core 222. The N pole of the rotor 221 is a salient pole at the rotational position of the rotor 221 where the magnet magnetic pole Mn faces the first winding (for example, the U phase windings U1 and U3) of any of the U, V, and W phases. The magnetic pole Pn is configured to face a second winding having the same phase (for example, U-phase windings U2 and U4). Similarly, the south pole of the rotor 221 includes a magnet magnetic pole Ms using the permanent magnet 223 and a salient pole magnetic pole Ps using the protrusion 226 of the rotor core 222. The S pole of the rotor 221 is a salient pole at the rotational position of the rotor 221 where the magnet magnetic pole Ms faces the first winding (for example, the U phase windings U1 and U3) in any of the U, V, and W phases. The magnetic pole Ps is configured to face a second winding having the same phase (for example, U-phase windings U2 and U4).
 この構成によれば、ロータ221における同相の巻線13と対向する全てのN極(又はS極)の磁力を弱めるのではなく、そのうちの一部を突極磁極Pn(突極磁極Ps)として磁力を弱めている。これにより、トルクの低下を極力抑えつつも、ロータ221の磁極によって同相の巻線13に生じる合成誘起電圧を小さく抑えることができ、その結果、モータ210の高回転化を図ることができる。また、磁石磁極Mn,Msに対して磁力の弱い磁極を、ロータコア222の突部226による突極磁極Pn,Psで構成している(つまり、所謂コンシクエントポール型のロータ構造としている)ため、ロータ221の一部の磁極の磁力を弱くすることによるトルク低下を極力抑えることができる。 According to this configuration, the magnetic force of all the N poles (or S poles) facing the in-phase winding 13 in the rotor 221 is not weakened, but a part of them is used as the salient pole magnetic pole Pn (the salient pole magnetic pole Ps). The magnetic force is weakened. As a result, it is possible to suppress the combined induction voltage generated in the in-phase winding 13 by the magnetic poles of the rotor 221 as much as possible while suppressing a reduction in torque as much as possible. As a result, it is possible to increase the rotation of the motor 210. Further, since the magnetic poles having a weak magnetic force with respect to the magnet magnetic poles Mn and Ms are constituted by the salient pole magnetic poles Pn and Ps formed by the protrusions 226 of the rotor core 222 (that is, a so-called continuous pole type rotor structure), Torque reduction due to weakening the magnetic force of some of the magnetic poles of the rotor 221 can be suppressed as much as possible.
 なお、本実施形態のように、巻線13が各相でそれぞれ直列とされた巻線態様では、相毎の各巻線でそれぞれ生じる誘起電圧の和が合成誘起電圧となることから、該合成誘起電圧が大きくなる傾向がある。このため、巻線13が各相でそれぞれ直列とされた構成において上記のように突極磁極Pn,Psを設けることで、合成誘起電圧の抑制効果をより顕著に得ることができ、モータの高回転化を図るのにより好適となる。 Note that, in the winding mode in which the windings 13 are connected in series in each phase as in the present embodiment, the sum of the induced voltages generated in the respective windings for each phase becomes the combined induced voltage. The voltage tends to increase. Therefore, by providing the salient poles Pn and Ps as described above in the configuration in which the winding 13 is in series in each phase, the effect of suppressing the combined induced voltage can be obtained more remarkably, and the motor high This is more suitable for rotation.
 (7)U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4がそれぞれ2n個(nは2以上の整数であって、本実施形態ではn=2)で構成され、ロータ221の磁石磁極Mn,Ms及び突極磁極Pn,Psのそれぞれの個数がn個(つまり2個)で構成される。つまり、磁石磁極Mn,Ms及び突極磁極Pn,Psが互いに同数(各相の巻線の個数の半数)で構成されるため、磁石磁極Mnと突極磁極Pn(磁石磁極Msと突極磁極Ps)とを周方向等間隔に交互に設けることが可能となる。これにより、磁力及び質量の異なる磁石磁極Mnと突極磁極Pn(磁石磁極Msと突極磁極Ps)が周方向にバランスよく配置されることとなり、ロータ221を磁気的に、また機械的にバランスの優れた構成とすることができる。 (7) 2n pieces of U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4 (n is an integer of 2 or more, and in this embodiment, n = 2) The number of magnet magnetic poles Mn, Ms and salient pole magnetic poles Pn, Ps of the rotor 221 is n (that is, two). That is, since the magnet magnetic poles Mn, Ms and salient pole magnetic poles Pn, Ps are composed of the same number (half the number of windings of each phase), the magnet magnetic pole Mn and salient pole magnetic pole Pn (magnet magnetic pole Ms and salient pole magnetic pole). Ps) can be alternately provided at equal intervals in the circumferential direction. As a result, the magnet magnetic pole Mn and salient pole magnetic pole Pn (magnet magnetic pole Ms and salient pole magnetic pole Ps) having different magnetic force and mass are arranged in a balanced manner in the circumferential direction, and the rotor 221 is magnetically and mechanically balanced. It can be set as the outstanding structure.
 (8)突極磁極Pn,Psは、永久磁石223を用いた異極の磁石磁極Mn,Msと周方向において隣り合うように構成されるため、例えばS極の磁石磁極Msの磁界によって突極磁極Pnを好適にN極として機能させることができる。 (8) The salient poles Pn and Ps are configured so as to be adjacent to the magnet poles Mn and Ms having different polarities using the permanent magnet 223 in the circumferential direction. The magnetic pole Pn can be made to function suitably as an N pole.
 (9)互いに異極となる突極磁極Pn,Psと磁石磁極Mn,Msとの間に空隙K2が設けられるため、突極磁極Pn,Psと磁石磁極Mn,Msとの境界部分における磁束密度の急峻な変化を抑制することができ、その結果、トルク脈動の低減に寄与できる。 (9) Since the gap K2 is provided between the salient poles Pn, Ps and the magnet poles Mn, Ms having different polarities, the magnetic flux density at the boundary between the salient pole poles Pn, Ps and the magnet poles Mn, Ms. As a result, it is possible to reduce torque pulsation.
 (10)N極の突極磁極PnとS極の突極磁極Psとが空隙K1を介して周方向に隣り合うように構成される。つまり、互いに隣り合うN極の突極磁極PnとS極の突極磁極Psとの間に空隙K1が設けられるため、各極の突極磁極Pn,Psの磁束量を所望の値に調整しやすく、その結果、モータ210の出力特性を容易に調整することが可能となる。 (10) The N-pole salient pole Pn and the S-pole salient pole Ps are configured to be adjacent to each other in the circumferential direction via the gap K1. That is, since the gap K1 is provided between the N salient pole Pn and the S salient pole Ps adjacent to each other, the magnetic flux amounts of the salient poles Pn and Ps of each pole are adjusted to a desired value. As a result, the output characteristics of the motor 210 can be easily adjusted.
 (11)ロータコア222には、該ロータコア222内を流れる磁束を誘導するためのスリット孔227(磁気調整部)が形成されている。この構成によれば、周方向に隣り合う永久磁石223によって磁化される突極磁極Pn,Psの磁束量を所望の値に調整しやすく、その結果、モータ210の出力特性を容易に調整することが可能となる。具体的には、周方向に隣り合う磁石磁極Mn,Mn間の境界部に形成されたスリット孔227は、該磁石磁極Mn,Ms間の磁束の短絡を抑制する。そのため、各磁石磁極Mn,Msから隣りの突極磁極Pn,Psに向かう磁束量の低下を抑えることができ、その結果、高トルク化に寄与できる。 (11) The rotor core 222 is formed with a slit hole 227 (magnetic adjustment unit) for guiding the magnetic flux flowing through the rotor core 222. According to this configuration, the amount of magnetic flux of the salient poles Pn and Ps magnetized by the permanent magnets 223 adjacent in the circumferential direction can be easily adjusted to a desired value, and as a result, the output characteristics of the motor 210 can be easily adjusted. Is possible. Specifically, the slit hole 227 formed at the boundary between the magnet magnetic poles Mn and Mn adjacent in the circumferential direction suppresses a short circuit of the magnetic flux between the magnet magnetic poles Mn and Ms. Therefore, it is possible to suppress a decrease in the amount of magnetic flux from each magnet magnetic pole Mn, Ms toward the adjacent salient pole magnetic poles Pn, Ps, and as a result, it is possible to contribute to higher torque.
 (12)磁石磁極Mn,Msは、永久磁石223がロータコア222の外周面(磁石固定部225)に固着されてなる。つまり、ロータ221が表面磁石型構造(SPM構造)をなすため、モータ210の高トルク化に寄与できる。 (12) The magnet magnetic poles Mn and Ms are formed by fixing the permanent magnet 223 to the outer peripheral surface (magnet fixing portion 225) of the rotor core 222. That is, since the rotor 221 has a surface magnet type structure (SPM structure), it can contribute to an increase in torque of the motor 210.
 なお、上記実施形態は、以下のように変更してもよい。
 ・上記実施形態では特に言及していないが、ロータ221の高回転時において弱め界磁制御を行ってもよい。上記実施形態では、自発的に磁束を発さない突極磁極Pn,Psをロータ221が備えることによって、巻線13に供給する弱め界磁電流を小さく抑えることが可能となる。そして、弱め界磁電流を小さくできることで、弱め界磁制御時に永久磁石223が減磁しづらくなり、また、巻線13の銅損を抑えることができる。また、換言すると、同等の弱め界磁電流量で低減できる鎖交磁束量が増加するため、弱め界磁制御による高回転化をより効果的に得ることができる。
In addition, you may change the said embodiment as follows.
Although not specifically mentioned in the above embodiment, field weakening control may be performed when the rotor 221 is rotating at a high speed. In the above embodiment, the rotor 221 is provided with salient poles Pn and Ps that do not spontaneously generate magnetic flux, so that the field-weakening current supplied to the winding 13 can be kept small. Since the field weakening current can be reduced, the permanent magnet 223 is difficult to demagnetize during field weakening control, and the copper loss of the winding 13 can be suppressed. In other words, since the amount of flux linkage that can be reduced with the same amount of field-weakening current increases, higher rotation by field-weakening control can be obtained more effectively.
 ・上記実施形態では、ロータコア222の突部226は、各磁石固定部225の周方向間において2つずつ設けられたが、これに以外に例えば、図22に示すように、各磁石固定部225の周方向間において1つずつ設けてもよい。なお、図22に示すように、周方向に隣り合う突極磁極Pn,Ps間の境界部に沿って設けられたスリット孔227が突部226まで延出されることが、永久磁石223の磁束を突極磁極Pn,Psに流す点でより好ましい。 In the above embodiment, two protrusions 226 of the rotor core 222 are provided in the circumferential direction of each magnet fixing portion 225. However, in addition to this, as shown in FIG. 22, for example, each magnet fixing portion 225 is provided. One may be provided between the circumferential directions. As shown in FIG. 22, the slit hole 227 provided along the boundary between the salient poles Pn and Ps adjacent in the circumferential direction extends to the protrusion 226, thereby generating the magnetic flux of the permanent magnet 223. It is more preferable in terms of flowing through the salient pole magnetic poles Pn and Ps.
 ・ロータコア222に形成するスリット孔227の配置及び形状等の構成は、上記実施形態や図22に示す例に限定されるものではなく、例えば、図23~図26に示すような構成としてもよい。なお、図23~図26では、上記実施形態のタイプ(突部226が2つに分割されたタイプ)を例にとって示しているが、図22に示す例のような突部226が分割されていないタイプにも適用可能である。 The configuration of the arrangement and shape of the slit holes 227 formed in the rotor core 222 is not limited to the above embodiment and the example shown in FIG. 22, and may be configured as shown in FIGS. 23 to 26, for example. . 23 to FIG. 26 show the type of the above embodiment (a type in which the protrusion 226 is divided into two) as an example, but the protrusion 226 as in the example shown in FIG. 22 is divided. It can be applied to other types.
 図23に示す例では、スリット孔227は、各永久磁石223の径方向内側であって、該各永久磁石223の周方向中心に対応する位置に配置されている。このように、永久磁石223の径方向内側にスリット孔227を配置することで、ロータコア222内部を通過する永久磁石223の磁束がスリット孔227の周方向両側に分岐される(図23中、破線の矢印を参照)。これにより、永久磁石223の径方向内側におけるスリット孔227の周方向位置に応じて、各永久磁石223における隣り合う突部226(突極磁極Pn,Ps)との間の磁束量、及び隣り合う永久磁石223(磁石磁極Mn,Ms)との間の磁束量を決定することができ、モータ210の出力特性をより好適に調整することが可能となる。 In the example shown in FIG. 23, the slit hole 227 is disposed at a position on the inner side in the radial direction of each permanent magnet 223 and corresponding to the circumferential center of each permanent magnet 223. Thus, by arranging the slit hole 227 on the radially inner side of the permanent magnet 223, the magnetic flux of the permanent magnet 223 passing through the rotor core 222 is branched to both sides in the circumferential direction of the slit hole 227 (in FIG. 23, a broken line). (See arrow for.) Thereby, according to the circumferential direction position of the slit hole 227 in the radial direction inner side of the permanent magnet 223, the amount of magnetic flux between the adjacent protrusions 226 (the salient pole magnetic poles Pn and Ps) in each permanent magnet 223 and the adjacent ones. The amount of magnetic flux between the permanent magnet 223 (magnet magnetic poles Mn, Ms) can be determined, and the output characteristics of the motor 210 can be adjusted more suitably.
 また、図24に示す例では、各スリット孔227は、径方向内側に向かって凸となる湾曲形状をなしている。より詳しくは、各スリット孔227は、各永久磁石223の径方向内側であって該各永久磁石223の周方向中心に対応する位置から内周側に延びるとともに、そこから隣り合う突部226に向かって湾曲して突極磁極Pn,Ps同士の境界付近まで延びている。このような構成によっても、上記の図23の例と略同様の効果を得ることができる。 In the example shown in FIG. 24, each slit hole 227 has a curved shape that is convex toward the inside in the radial direction. More specifically, each slit hole 227 extends radially inward of each permanent magnet 223 from the position corresponding to the circumferential center of each permanent magnet 223 to the inner peripheral side, and from there to the adjacent protrusion 226. It curves toward the vicinity of the boundary between the salient pole magnetic poles Pn and Ps. Even with such a configuration, it is possible to obtain substantially the same effect as in the example of FIG.
 また、例えば図25に示すように、スリット孔227に補助磁石228を嵌め込んだ構成としてもよい。なお、この構成では、スリット孔227及び補助磁石228が磁気調整部を構成している。また、補助磁石228は、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成され、また、焼結磁石及びボンド磁石のいずれの構成でもよい。 Further, for example, as shown in FIG. 25, an auxiliary magnet 228 may be fitted in the slit hole 227. In this configuration, the slit hole 227 and the auxiliary magnet 228 constitute a magnetic adjustment unit. The auxiliary magnet 228 is composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like, and may be any configuration of a sintered magnet and a bonded magnet.
 図25に示す例では、補助磁石228は、周方向に隣り合う突極磁極Pn,Ps間の境界部に設けられたスリット孔(図25中、スリット孔227a)に設けられている。つまり、補助磁石228は、N極の突極磁極PnとS極の突極磁極Psとの境界部に設けられている。そして、補助磁石228は、ロータ221の周方向に略沿った磁気配向を有し、周方向の突極磁極Pn寄りの面がN極、周方向の突極磁極Ps寄りの面がS極となるように磁化されている。 In the example shown in FIG. 25, the auxiliary magnet 228 is provided in a slit hole (slit hole 227a in FIG. 25) provided at the boundary between the salient poles Pn and Ps adjacent in the circumferential direction. That is, the auxiliary magnet 228 is provided at the boundary between the N-pole salient pole Pn and the S-pole salient pole Ps. The auxiliary magnet 228 has a magnetic orientation substantially along the circumferential direction of the rotor 221, and a surface near the salient pole magnetic pole Pn in the circumferential direction is an N pole, and a surface near the salient pole magnetic pole Ps in the circumferential direction is an S pole. It is magnetized to become.
 このような構成によれば、突極磁極Pn,Psには、永久磁石223の磁束だけでなく補助磁石228の磁束も流れるため、突極磁極Pn,Psに流れる磁束が増加し、その結果、モータ210の高トルク化に寄与できる。なお、この場合においても、ロータ221からステータ11に与える磁力が、磁石磁極Mn,Msよりも突極磁極Pn,Psで弱くなるように構成することが好ましい。 According to such a configuration, not only the magnetic flux of the permanent magnet 223 but also the magnetic flux of the auxiliary magnet 228 flows to the salient pole magnetic poles Pn and Ps, so that the magnetic flux flowing to the salient pole magnetic poles Pn and Ps increases. This can contribute to a higher torque of the motor 210. Even in this case, it is preferable that the magnetic force applied from the rotor 221 to the stator 11 is weaker at the salient pole magnetic poles Pn and Ps than at the magnet magnetic poles Mn and Ms.
 また、同例では、永久磁石223に対する補助磁石228の磁気特性(残留磁束密度や保磁力)を異ならせることで、モータ210の出力特性を容易に調整することが可能となる。なお、補助磁石228は、ロータコア222内部に埋設されることから外部磁界の影響を受けにくいため、保磁力を小さく設定(又は残留磁束密度を高く設定)することが可能である。 In this example, the output characteristics of the motor 210 can be easily adjusted by making the magnetic characteristics (residual magnetic flux density and coercive force) of the auxiliary magnet 228 different from those of the permanent magnet 223. Since the auxiliary magnet 228 is embedded in the rotor core 222 and is not easily affected by an external magnetic field, the coercive force can be set small (or the residual magnetic flux density can be set high).
 また、補助磁石228を設けた構成において、上記の図23や図24と同様のスリット孔227を適用した構成としてもよい。なお、図26には、補助磁石228を設けた構成において、上記の図24と同様のスリット孔227を適用した構成を示している。 Further, in the configuration in which the auxiliary magnet 228 is provided, a configuration in which the slit hole 227 similar to that in the above FIG. 23 and FIG. 24 is applied may be adopted. FIG. 26 shows a configuration in which the same slit hole 227 as in FIG. 24 is applied to the configuration in which the auxiliary magnet 228 is provided.
 ・上記実施形態のロータ221では、N極の磁石磁極Mn同士、及び突極磁極Pn同士がそれぞれ周方向において180°対向位置に設けられ、S極においても同様に、磁石磁極Ms同士、及び突極磁極Ps同士がそれぞれ周方向において180°対向位置に設けられる。つまり、磁石磁極Mnと突極磁極Pnとが周方向に交互に配置され、磁石磁極Msと突極磁極Psも周方向に交互に配置されるが、これに特に限定されるものではない。例えば、N極の磁石磁極Mnの180°対向位置にN極の突極磁極Pnを設けてもよい。また同様に、S極の磁石磁極Msの180°対向位置にS極の突極磁極Psを設けてもよい。 In the rotor 221 of the above-described embodiment, the N pole magnet magnetic poles Mn and the salient pole magnetic poles Pn are provided at positions opposed to each other by 180 ° in the circumferential direction. The poles Ps are provided at 180 ° opposing positions in the circumferential direction. That is, although the magnet magnetic pole Mn and the salient pole magnetic pole Pn are alternately arranged in the circumferential direction, and the magnet magnetic pole Ms and the salient pole magnetic pole Ps are also alternately arranged in the circumferential direction, it is not particularly limited to this. For example, an N-pole salient pole Pn may be provided at a position 180 ° opposite to the N-pole magnet magnetic pole Mn. Similarly, an S-pole salient pole Ps may be provided at a position 180 ° opposite to the S-pole magnet magnetic pole Ms.
 ・上記実施形態では、ロータ221の例えばN極において、磁石磁極Mnと突極磁極Pnとを同数(各相の巻線13の個数の半数であって2個)で構成したが、必ずしも同数である必要はない。例えば、磁石磁極Mnを3個(又は1個)とし、突極磁極Pnを1個(又は3個)として構成してもよい。また、ロータのS極(磁石磁極Ms及び突極磁極Ps)においても同様の変更を行ってもよい。 In the above embodiment, the number of magnet magnetic poles Mn and salient poles Pn is the same number (for example, half of the number of windings 13 in each phase, ie, two) in the N pole of the rotor 221, for example. There is no need. For example, the number of magnet magnetic poles Mn may be three (or one), and the number of salient pole magnetic poles Pn may be one (or three). The same change may be made for the S pole (magnet magnetic pole Ms and salient pole Ps) of the rotor.
 ・上記実施形態では、ロータ221のN極及びS極において突極磁極Pn及び突極磁極Psをそれぞれ備えたが、これに特に限定されるものではなく、例えば、ロータ221の一方の極のみに突極磁極を設け、他方の極を全て磁石磁極で構成してもよい。 In the above embodiment, the salient pole magnetic pole Pn and the salient pole magnetic pole Ps are provided in the N pole and the S pole of the rotor 221, respectively. However, the present invention is not limited to this. For example, only one pole of the rotor 221 is provided. A salient pole may be provided, and the other pole may be composed entirely of magnet poles.
 ・上記実施形態では、各相の巻線、つまり、U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4がそれぞれ直列接続されたが、これに特に限定されるものではなく、巻線態様は適宜変更してもよい。 In the above embodiment, the windings of each phase, that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series. However, the winding mode may be changed as appropriate.
 例えば、図27に示す例では、U相において、巻線U1,U2が直列接続され、また、巻線U3,U4が直列接続され、それら巻線U1,U2の直列対と巻線U3,U4の直列対とが並列接続されている。V相においても同様に、巻線V1,V2が直列接続され、また、巻線V3,V4が直列接続され、それら巻線V1,V2の直列対と巻線V3,V4の直列対とが並列接続されている。また、W相においても同様に、巻線W1,W2が直列接続され、また、巻線W3,W4が直列接続され、それら巻線W1,W2の直列対と巻線W3,W4の直列対とが並列接続されている。 For example, in the example shown in FIG. 27, in the U phase, the windings U1, U2 are connected in series, and the windings U3, U4 are connected in series, and the series pair of the windings U1, U2 and the windings U3, U4. Are connected in parallel. Similarly, in the V phase, the windings V1 and V2 are connected in series, and the windings V3 and V4 are connected in series. The series pair of the windings V1 and V2 and the series pair of the windings V3 and V4 are parallel. It is connected. Similarly, in the W phase, the windings W1, W2 are connected in series, and the windings W3, W4 are connected in series. The series pair of the windings W1, W2 and the series pair of the windings W3, W4 Are connected in parallel.
 上記実施形態のロータ221の構成(図21参照)において図27の巻線態様を適用した場合、例えばU相において巻線U1及び巻線U3には互いに同等の大きさの誘起電圧が生じる。また、巻線U2及び巻線U4には互いに同等の大きさの誘起電圧が生じる。このため、巻線U1,U2の直列対で生じる合成誘起電圧と、巻線U3,U4の直列対で生じる合成誘起電圧とが略同等となる。これにより、突極磁極Pn,Psを設けたことによる誘起電圧の減少が、巻線U1,U2の直列対及び巻線U3,U4の直列対の両方において常に生じることとなる。そして、巻線U1,U2の直列対と巻線U3,U4の直列対とが並列であるため、U相巻線全体における合成誘起電圧は、巻線U1,U2の直列対の合成誘起電圧(及び巻線U3,U4の直列対の合成誘起電圧)と略同等となり、該U相巻線全体における合成誘起電圧を効果的に抑制することができる。 27 is applied to the configuration of the rotor 221 of the above embodiment (see FIG. 21), for example, induced voltages having the same magnitude are generated in the winding U1 and the winding U3 in the U phase, for example. In addition, induced voltages having the same magnitude are generated in the winding U2 and the winding U4. For this reason, the combined induced voltage generated in the series pair of the windings U1 and U2 is substantially equal to the combined induced voltage generated in the series pair of the windings U3 and U4. Thereby, the reduction of the induced voltage due to the provision of the salient poles Pn and Ps always occurs in both the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4. Since the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are parallel, the combined induced voltage in the entire U-phase winding is the combined induced voltage of the series pair of the windings U1 and U2 ( And the combined induction voltage of the series pair of windings U3 and U4), and the combined induction voltage in the entire U-phase winding can be effectively suppressed.
 ここで、図27に示す例において巻線U2と巻線U3を入れ替えた場合、すなわち、誘起電圧の大きさが同等である巻線U1,U3を直列とするとともに、誘起電圧の大きさが同等である巻線U2,U4を直列とした場合を考える。この場合、突極磁極Pn,Psを設けたことによる誘起電圧の減少が、巻線U2,U4の直列対と巻線U1,U3の直列対のいずれか一方のみで生じ、他方では誘起電圧が減少しない。そして、巻線U1,U3の直列対と巻線U2,U4の直列対とが並列であることから、U相巻線全体における合成誘起電圧を効果的に抑制する点で不利となる。なお、各U相巻線U1~U4を並列とした場合においても同様に、U相巻線全体における合成誘起電圧を効果的に抑制する点で不利となる。 Here, when the winding U2 and the winding U3 are interchanged in the example shown in FIG. 27, that is, the windings U1 and U3 having the same magnitude of the induced voltage are connected in series and the magnitude of the induced voltage is the same. Consider the case where the windings U2 and U4 are in series. In this case, the reduction of the induced voltage due to the provision of the salient poles Pn and Ps occurs only in one of the series pair of the windings U2 and U4 and the series pair of the windings U1 and U3. Does not decrease. And since the series pair of winding U1, U3 and the series pair of winding U2, U4 are parallel, it is disadvantageous at the point which suppresses the synthetic | combination induced voltage in the whole U-phase winding effectively. Similarly, when the U-phase windings U1 to U4 are arranged in parallel, similarly, it is disadvantageous in that the combined induced voltage in the entire U-phase winding is effectively suppressed.
 以上のように、各相において巻線を直列とする場合には、ロータ221の所定の回転位置において磁石磁極Mn(磁石磁極Ms)と突極磁極Pn(突極磁極Ps)とにそれぞれ対向する巻線(例えばU相巻線U1とU相巻線U2)同士を直列接続することで、同相の巻線に生じた弱い誘起電圧と強い誘起電圧とを足し合わせて合成誘起電圧とすることができ、各相における合成誘起電圧を効果的に抑制することができる。 As described above, when the windings are arranged in series in each phase, the magnetic pole Mn (magnet magnetic pole Ms) and the salient pole magnetic pole Pn (saliency pole Ps) are opposed to each other at a predetermined rotational position of the rotor 221. By connecting the windings (for example, the U-phase winding U1 and the U-phase winding U2) in series, the weak induced voltage generated in the same-phase winding and the strong induced voltage are added to form a combined induced voltage. And the combined induction voltage in each phase can be effectively suppressed.
 なお、図27の例では、U相において、巻線U1,U2を直列対とするとともに、巻線U3,U4を直列対としたが、巻線U1,U4、及び巻線U2,U3をそれぞれ直列対としても同様の効果を得ることができる。また、V相及びW相においても同様の変更が可能である。 In the example of FIG. 27, in the U phase, the windings U1, U2 are a series pair and the windings U3, U4 are a series pair, but the windings U1, U4 and the windings U2, U3 are respectively connected. Similar effects can be obtained as a series pair. The same change can be made in the V phase and the W phase.
 また、図27の例では、U相において、巻線U1,U2の直列対と巻線U3,U4の直列対とが並列接続されたが、これに特に限定されるものではなく、巻線U1,U2の直列対と巻線U3,U4の直列対とを分離し、その分離した直列対のそれぞれにU相の駆動電流を供給すべくインバータを一対設けてもよい。この構成によっても、同様の効果を得ることができる。また、V相及びW相においても同様の変更が可能である。 In the example of FIG. 27, in the U-phase, the series pair of the windings U1 and U2 and the series pair of the windings U3 and U4 are connected in parallel. , U2 and the series pair of windings U3, U4 may be separated, and a pair of inverters may be provided to supply a U-phase drive current to each of the separated series pairs. The same effect can be obtained by this configuration. The same change can be made in the V phase and the W phase.
 また、上記実施形態(図2参照)及び図27に示す例では、巻線の結線態様をスター結線としたが、これに限らず、例えばデルタ結線としてもよい。
 ・上記実施形態のロータ221は、磁石磁極Mn,Msを構成する永久磁石223がロータコア222の外周面(磁石固定部225)に固着された表面磁石型構造(SPM構造)をなしているが、例えば図28に示すように、ロータコア222の外周面222bよりも内側部分に永久磁石223aを埋め込む態様とした埋込磁石型構造(IPM構造)としてもよい。
Moreover, in the example shown in the said embodiment (refer FIG. 2) and FIG. 27, although the connection aspect of the coil | winding was made into the star connection, it is good not only as this but a delta connection, for example.
The rotor 221 of the above embodiment has a surface magnet type structure (SPM structure) in which the permanent magnets 223 constituting the magnet magnetic poles Mn and Ms are fixed to the outer peripheral surface (magnet fixing portion 225) of the rotor core 222. For example, as shown in FIG. 28, an embedded magnet type structure (IPM structure) may be employed in which a permanent magnet 223a is embedded in an inner portion of the outer peripheral surface 222b of the rotor core 222.
 図28に示す例では、ロータコア222の外周面222bは軸方向視で円形をなし、磁石磁極Mn,Msを構成する各永久磁石223aの径方向外側面及び径方向内側面は、軸方向視において、ロータコア222の中心軸(回転軸224の軸線L)を中心とする円弧状をなしている。 In the example shown in FIG. 28, the outer peripheral surface 222b of the rotor core 222 has a circular shape when viewed in the axial direction, and the radially outer side surface and the radially inner side surface of each permanent magnet 223a constituting the magnetic poles Mn and Ms are viewed in the axial direction. The arc shape is centered on the central axis of the rotor core 222 (the axis L of the rotating shaft 224).
 また、図28に示すロータ221は、上記実施形態と同様に、外周面222bにおいてN極・S極が周方向等間隔(45°間隔)に交互に設定された8極ロータとして構成されている。具体的には、N極の磁石磁極Mnと周方向に隣り合う磁極(磁石磁極Mnについて磁石磁極Msとは反対側の磁極)は、ロータコア222の一部からなるコア磁極Csとして構成され、該コア磁極Csは、磁石磁極Mnの永久磁石223aの磁界によってS極の磁極として機能する。同様に、S極の磁石磁極Msと周方向に隣り合う磁極(磁石磁極Msについて磁石磁極Mnとは反対側の磁極)は、ロータコア222の一部からなるコア磁極Cnとして構成され、該コア磁極Cnは、磁石磁極Msの永久磁石223aの磁界によってN極の磁極として機能する。 The rotor 221 shown in FIG. 28 is configured as an 8-pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (45 ° intervals) on the outer peripheral surface 222b, as in the above embodiment. . Specifically, the magnetic pole adjacent to the N-pole magnet magnetic pole Mn in the circumferential direction (the magnetic pole on the opposite side of the magnet magnetic pole Mn from the magnet magnetic pole Ms) is configured as a core magnetic pole Cs formed of a part of the rotor core 222, The core magnetic pole Cs functions as an S magnetic pole by the magnetic field of the permanent magnet 223a of the magnet magnetic pole Mn. Similarly, the magnetic pole adjacent to the S magnetic pole Ms in the circumferential direction (the magnetic pole on the opposite side of the magnet magnetic pole Ms from the magnet magnetic pole Mn) is configured as a core magnetic pole Cn composed of a part of the rotor core 222. Cn functions as a magnetic pole of N pole by the magnetic field of the permanent magnet 223a of the magnetic pole Ms.
 つまり、ロータ221の外周面の磁極は、時計回り方向において順に、N極の磁石磁極Mn、S極のコア磁極Cs、N極のコア磁極Cn、S極の磁石磁極Ms、N極の磁石磁極Mn、・・・を繰り返す構成となっている。また、ロータ221のN極を構成する磁石磁極Mnとコア磁極Cnとは、それらの周方向の中心位置が等角度間隔(90°間隔)となるように交互に配置され、同様に、ロータ221のS極を構成する磁石磁極Msとコア磁極Csとは、それらの周方向の中心位置が等角度間隔(90°間隔)となるように交互に配置されている。 That is, the magnetic poles on the outer peripheral surface of the rotor 221 are, in order in the clockwise direction, N pole magnet poles Mn, S pole core poles Cs, N pole core poles Cn, S pole magnet poles Ms, and N pole magnet poles. Mn,... Are repeated. Further, the magnet magnetic pole Mn and the core magnetic pole Cn constituting the N pole of the rotor 221 are alternately arranged so that their circumferential center positions are equiangularly spaced (90 ° intervals). The magnetic pole Ms and the core magnetic pole Cs that constitute the S pole are alternately arranged so that their circumferential center positions are equiangularly spaced (90 ° intervals).
 ロータコア222には、周方向に隣り合うコア磁極Cn,Cs間の境界部において径方向に沿って延びる一対のスリット孔231と、周方向に隣り合う磁石磁極Mn,Ms間の境界部において径方向に沿って延びる一対のスリット孔232とが形成されている。これらスリット孔231,232は、周方向等間隔(90°間隔)に交互に形成されている。 The rotor core 222 includes a pair of slit holes 231 extending in the radial direction at the boundary between the core magnetic poles Cn and Cs adjacent in the circumferential direction and the radial direction at the boundary between the magnetic magnetic poles Mn and Ms adjacent in the circumferential direction. A pair of slit holes 232 extending along the line are formed. These slit holes 231 and 232 are alternately formed at equal intervals in the circumferential direction (90 ° intervals).
 各スリット孔231,232内は空隙であり、ロータコア222を軸方向に貫通している。また、各スリット孔231,232は、軸方向視で長方形をなしている。また、コア磁極Cn,Cs間のスリット孔231は、固定孔222aの近傍位置から径方向に沿ってロータコア222の外周面222bの近傍位置まで延びている。また、磁石磁極Mn,Ms間のスリット孔232は、固定孔222aの近傍位置から径方向に沿って永久磁石223aの近傍位置まで延びている。 Each of the slit holes 231 and 232 is an air gap and penetrates the rotor core 222 in the axial direction. Further, each of the slit holes 231 and 232 has a rectangular shape when viewed in the axial direction. Further, the slit hole 231 between the core magnetic poles Cn and Cs extends from the position near the fixed hole 222a to the position near the outer peripheral surface 222b of the rotor core 222 along the radial direction. Further, the slit hole 232 between the magnet magnetic poles Mn and Ms extends from the position near the fixed hole 222a to the position near the permanent magnet 223a along the radial direction.
 これらスリット孔231,232内が空隙であることから、磁性金属のロータコア222よりも磁気抵抗が大きいため、各スリット孔231,232によってロータコア222内を通る各永久磁石223aの磁束が隣り合うコア磁極Cn,Csに好適に誘導されるようになっている(図28の破線の矢印を参照)。 Since the slit holes 231 and 232 are air gaps, the magnetic resistance is larger than that of the magnetic metal rotor core 222. Therefore, the magnetic fluxes of the permanent magnets 223a passing through the rotor core 222 by the slit holes 231 and 232 are adjacent to each other. It is suitably guided to Cn and Cs (see broken line arrows in FIG. 28).
 上記実施形態のようなSPM構造のロータ221では、ロータコア222の外周面に固着された永久磁石223がステータ11と直接的に対向することから高いトルクが得られるものの、弱め界磁制御時に永久磁石223が減磁しやすくなる。その点、IPM構造のロータ221では、磁石磁極Mn,Msを構成する永久磁石223aがロータコア222に埋設されていることから、弱め界磁制御時における永久磁石223の減磁を抑制することが可能となる。 In the rotor 221 having the SPM structure as in the above embodiment, the permanent magnet 223 fixed to the outer peripheral surface of the rotor core 222 is directly opposed to the stator 11, so that a high torque can be obtained. It becomes easy to demagnetize. In that regard, in the rotor 221 having the IPM structure, the permanent magnet 223a constituting the magnet magnetic poles Mn and Ms is embedded in the rotor core 222, so that demagnetization of the permanent magnet 223 during field-weakening control can be suppressed. .
 また、ロータコア222には、該ロータコア222内を流れる磁束を誘導するためのスリット孔231,232(磁気調整部)が形成されている。この構成によれば、周方向に隣り合う永久磁石223aによって磁化されるコア磁極Cn,Csの磁束量を所望の値に調整しやすく、その結果、モータの出力特性を容易に調整することが可能となる。なお、図28に示す例において、コア磁極Cn,Cs間のスリット孔231を省略してもよい。 Further, the rotor core 222 is formed with slit holes 231 and 232 (magnetic adjustment portions) for guiding the magnetic flux flowing in the rotor core 222. According to this configuration, it is easy to adjust the magnetic flux amount of the core magnetic poles Cn and Cs magnetized by the permanent magnets 223a adjacent in the circumferential direction to a desired value, and as a result, the output characteristics of the motor can be easily adjusted. It becomes. In the example shown in FIG. 28, the slit hole 231 between the core magnetic poles Cn and Cs may be omitted.
 すなわち、図28に示すロータ221は、第1磁極部としての磁石磁極Mn及び磁石磁極Msと、第2磁極部としてのコア磁極Cn及びコア磁極Csとを含んでいる。
 また、図29に示すロータ221は、図28に示す構成を更に変更したものであり、コア磁極Cn,Cs間の各スリット孔231内に補助磁石233(磁気調整部)が設けられている。各補助磁石233は、周方向におけるコア磁極Cn寄りの面がN極、コア磁極Cs寄りの面がS極となるように磁化されている。なお、補助磁石233は、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成され、また、焼結磁石及びボンド磁石のいずれの構成でもよい。
That is, the rotor 221 shown in FIG. 28 includes a magnet magnetic pole Mn and a magnet magnetic pole Ms as the first magnetic pole part, and a core magnetic pole Cn and a core magnetic pole Cs as the second magnetic pole part.
A rotor 221 shown in FIG. 29 is a further modification of the configuration shown in FIG. 28, and an auxiliary magnet 233 (magnetic adjustment unit) is provided in each slit hole 231 between the core magnetic poles Cn and Cs. Each auxiliary magnet 233 is magnetized so that the surface near the core magnetic pole Cn in the circumferential direction is an N pole and the surface near the core magnetic pole Cs is an S pole. The auxiliary magnet 233 is composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like, and may be any configuration of a sintered magnet and a bonded magnet.
 このような構成によれば、コア磁極Cn,Csには、永久磁石223aの磁束だけでなく補助磁石233の磁束も流れるため、コア磁極Cn,Csに流れる磁束が増加し、その結果、モータの高トルク化に寄与できる。なお、この場合においても、ロータ221からステータ11に与える磁力が、磁石磁極Mn,Msよりもコア磁極Cn,Csで弱くなるように構成することが好ましい。 According to such a configuration, not only the magnetic flux of the permanent magnet 223a but also the magnetic flux of the auxiliary magnet 233 flows through the core magnetic poles Cn and Cs, so that the magnetic flux flowing through the core magnetic poles Cn and Cs increases. Can contribute to higher torque. Even in this case, it is preferable that the magnetic force applied from the rotor 221 to the stator 11 is weaker at the core magnetic poles Cn and Cs than at the magnetic poles Mn and Ms.
 なお、補助磁石233の配置箇所は、コア磁極Cn,Cs間のスリット孔231に限られるものではなく、図30に示すように、磁石磁極Mn,Ms間のスリット孔232に補助磁石233を設けてもよい。この場合、各補助磁石233は、周方向における磁石磁極Ms寄りの面がN極、磁石磁極Mn寄りの面がS極となるように磁化されることが好ましい。図30のような構成によっても、コア磁極Cn,Csに流れる磁束を増加させることが可能となり、その結果、モータの高トルク化に寄与できる。なお、図30に示す構成では、補助磁石233をスリット孔232における径方向の内側端部に設けたが、スリット孔232内における補助磁石233の配置位置は図30に示す構成に限定されるものではなく、構成に応じて適宜変更可能である。 The location of the auxiliary magnet 233 is not limited to the slit hole 231 between the core magnetic poles Cn and Cs. As shown in FIG. 30, the auxiliary magnet 233 is provided in the slit hole 232 between the magnetic poles Mn and Ms. May be. In this case, each auxiliary magnet 233 is preferably magnetized so that the surface near the magnet magnetic pole Ms in the circumferential direction is an N pole and the surface near the magnet magnetic pole Mn is an S pole. Even with the configuration as shown in FIG. 30, it is possible to increase the magnetic flux flowing through the core magnetic poles Cn and Cs, and as a result, it is possible to contribute to an increase in torque of the motor. In the configuration shown in FIG. 30, the auxiliary magnet 233 is provided at the radially inner end of the slit hole 232, but the arrangement position of the auxiliary magnet 233 in the slit hole 232 is limited to the configuration shown in FIG. Instead, it can be appropriately changed according to the configuration.
 また、図31に示すロータ221は、図28に示す構成を変更したものであり、スリット孔231とスリット孔232とをそれらの内側端部で連通する連通部234が形成されている。なお、図31に示す例では、ロータコア222において、固定孔222aを有する中心部222cを支持する一対の支持部222dがコア磁極Cn,Cs間の境界部に沿ってスリット孔231を分断するように形成されている。連通部234は、スリット孔231,232の径方向内側端部において、隣り合うコア磁極Cn,Csの間、及び隣り合う磁石磁極Mn,Msの間の磁気抵抗となる。このような構成によれば、連通部234によって磁石磁極Mn,Msを構成する永久磁石223aの間で生じうる短絡磁束を少なく抑えることができる。このため、コア磁極Cn,Csに流れる磁束が増加し、その結果、モータの高トルク化に寄与できる。 Further, the rotor 221 shown in FIG. 31 is obtained by changing the configuration shown in FIG. 28, and a communication portion 234 that connects the slit hole 231 and the slit hole 232 at their inner end portions is formed. In the example shown in FIG. 31, in the rotor core 222, the pair of support portions 222d that support the central portion 222c having the fixed hole 222a divide the slit hole 231 along the boundary portion between the core magnetic poles Cn and Cs. Is formed. The communication part 234 becomes a magnetic resistance between the adjacent core magnetic poles Cn and Cs and between the adjacent magnet magnetic poles Mn and Ms at the radially inner ends of the slit holes 231 and 232. According to such a configuration, the short-circuit magnetic flux that can be generated between the permanent magnets 223a constituting the magnet magnetic poles Mn and Ms by the communication portion 234 can be suppressed to a low level. For this reason, the magnetic flux which flows into core magnetic pole Cn, Cs increases, As a result, it can contribute to the high torque increase of a motor.
 また、図32に示すロータ221は、図31に示す構成を更に変更したものであり、ロータコア222において、中心部222cを支持する一対の支持部222eが磁石磁極Mn,Ms間の境界部に沿ってスリット孔232を分断するように形成されている。この構成によれば、支持部222d,222eによってロータコア222の中心部222cを安定して支持することが可能となる。なお、図32に示す例において、支持部222dを省略した構成としてもよい。 Further, the rotor 221 shown in FIG. 32 is a modification of the configuration shown in FIG. 31. In the rotor core 222, a pair of support portions 222e that support the center portion 222c are along the boundary between the magnetic poles Mn and Ms. The slit hole 232 is divided. According to this configuration, the central portion 222c of the rotor core 222 can be stably supported by the support portions 222d and 222e. In addition, in the example shown in FIG. 32, it is good also as a structure which abbreviate | omitted support part 222d.
 また、図33に示すロータ221は、図32に示す構成を更に変更したものであり、各連通部234内に補助磁石235(磁気調整部)が設けられている。N極のコア磁極CnとS極の磁石磁極Msとに跨って形成された連通部234内に設けられた補助磁石235は、径方向外側の面がN極となるように磁化されている。また、S極のコア磁極CsとN極の磁石磁極Mnとに跨って形成された連通部234内に設けられた補助磁石235は、径方向外側の面がS極となるように磁化されている。なお、各補助磁石235の一端部(スリット孔231とは反対側の端部)は、コア磁極Cn,Csと磁石磁極Mn,Msとの境界線に対応する位置に設定されている。図33のような構成によっても、コア磁極Cn,Csに流れる磁束を増加させることが可能となり、その結果、モータの高トルク化に寄与できる。なお、図33に示す構成では、補助磁石235を各連通部234におけるコア磁極Cn,Cs寄りの位置に設けたが、連通部234内における補助磁石235の配置位置は図33に示す構成に限定されるものではなく、構成に応じて適宜変更可能である。 Further, the rotor 221 shown in FIG. 33 is a further modification of the configuration shown in FIG. 32, and an auxiliary magnet 235 (magnetic adjustment part) is provided in each communication part 234. The auxiliary magnet 235 provided in the communication portion 234 formed across the N-pole core magnetic pole Cn and the S-pole magnet magnetic pole Ms is magnetized so that the radially outer surface becomes the N pole. Further, the auxiliary magnet 235 provided in the communication portion 234 formed across the core magnetic pole Cs having the S pole and the magnet magnetic pole Mn having the N pole is magnetized so that the radially outer surface becomes the S pole. Yes. One end of each auxiliary magnet 235 (the end opposite to the slit hole 231) is set at a position corresponding to the boundary line between the core magnetic poles Cn and Cs and the magnet magnetic poles Mn and Ms. Even with the configuration as shown in FIG. 33, it is possible to increase the magnetic flux flowing through the core magnetic poles Cn and Cs. As a result, it is possible to contribute to an increase in torque of the motor. In the configuration shown in FIG. 33, the auxiliary magnet 235 is provided at a position near the core magnetic poles Cn and Cs in each communication portion 234. However, the arrangement position of the auxiliary magnet 235 in the communication portion 234 is limited to the configuration shown in FIG. However, it can be appropriately changed according to the configuration.
 ・上記実施形態では、ロータ221を8極とし、ステータ11の巻線13の個数を12個とした(つまり、8極12スロットのモータ構成とした)が、ロータ221の極数と巻線13の個数は構成に応じて適宜変更可能である。例えば、ロータ221の極数と巻線13の個数との関係が2n:3n(ただし、nは2以上の整数)となるように、ロータ221の極数と巻線13の個数を適宜変更してもよい。 In the above embodiment, the rotor 221 has 8 poles and the number of windings 13 of the stator 11 is 12 (that is, the motor configuration has 8 poles and 12 slots). The number of can be appropriately changed according to the configuration. For example, the number of poles of the rotor 221 and the number of windings 13 are appropriately changed so that the relationship between the number of poles of the rotor 221 and the number of windings 13 is 2n: 3n (where n is an integer of 2 or more). May be.
 なお、6極9スロットや10極15スロット等の構成とした場合(ロータ221の極数と巻線13の個数の最大公約数nが奇数の場合)には、ロータ221の極対数が奇数、つまり、N極、S極の各数が奇数となる。このため、例えば、磁石磁極Mnと突極磁極Pnとを同数にできず、磁気的にアンバランスな構成となってしまう。その点、上記実施形態のように、ロータ221の極数と巻線13の個数の最大公約数nが偶数である構成では、磁石磁極Mnと突極磁極Pnとを同数とすることができ、磁気的にバランスの良い構成とすることが可能となる。 In the case of a configuration of 6 poles 9 slots, 10 poles 15 slots, etc. (when the greatest common divisor n of the number of poles of the rotor 221 and the number of windings 13 is an odd number), the number of pole pairs of the rotor 221 is an odd number, That is, the number of N poles and S poles is an odd number. For this reason, for example, the number of magnet magnetic poles Mn and salient pole magnetic poles Pn cannot be the same, resulting in a magnetically unbalanced configuration. In that respect, in the configuration in which the greatest common divisor n of the number of rotors 221 and the number of windings 13 is an even number as in the above-described embodiment, the number of magnet magnetic poles Mn and salient poles Pn can be the same. A magnetically balanced configuration can be achieved.
 また、ロータ221の極数と巻線13の個数との関係は必ずしも2n:3n(ただし、nは2以上の整数)である必要はなく、例えば、10極12スロットや14極12スロット等で構成してもよい。 Further, the relationship between the number of poles of the rotor 221 and the number of windings 13 is not necessarily 2n: 3n (where n is an integer of 2 or more). For example, 10 poles 12 slots, 14 poles 12 slots, etc. It may be configured.
 図34には、10極12スロットで構成したモータ230の一例を示している。なお、図34の例では、上記実施形態と同一の構成については同一の符号を付してその詳細な説明は省略し、相異する部分について詳細に説明する。 FIG. 34 shows an example of a motor 230 configured with 10 poles and 12 slots. In the example of FIG. 34, the same components as those in the above embodiment are denoted by the same reference numerals, detailed description thereof will be omitted, and different portions will be described in detail.
 図34に示すモータ230において、ステータ11の12個の巻線13は、供給される3相の駆動電流(U相、V相、W相)に応じて分類され、図34において反時計回り方向に順に、U1、バーU2、バーV1、V2、W1、バーW2、バーU1、U2、V1、バーV2、バーW1、W2とする。なお、正巻きで構成されるU相巻線U1,U2、V相巻線V1,V2、W相巻線W1,W2に対し、U相巻線バーU1,バーU2、V相巻線バーV1,バーV2、W相巻線バーW1,バーW2は逆巻きで構成される。また、U相巻線U1,バーU1は互いに180°対向位置にされ、同様に、U相巻線U2,バーU2は互いに180°対向位置にされる。これは他相(V相及びW相)においても同様である。 In the motor 230 shown in FIG. 34, the twelve windings 13 of the stator 11 are classified according to the supplied three-phase drive currents (U phase, V phase, W phase), and are counterclockwise in FIG. In this order, U1, bar U2, bar V1, V2, W1, bar W2, bar U1, U2, V1, bar V2, bar W1, W2. In addition, U phase winding bar U1, bar U2, V phase winding bar V1 with respect to U phase windings U1, U2, V phase windings V1, V2 and W phase windings W1, W2 constituted by positive windings. , Bar V2, W-phase winding bar W1, bar W2 are constituted by reverse winding. Further, the U-phase winding U1 and the bar U1 are placed at positions facing each other by 180 °, and similarly, the U-phase winding U2 and the bar U2 are placed at positions facing each other by 180 °. The same applies to the other phases (V phase and W phase).
 U相巻線U1,U2,バーU1,バーU2は直列に繋がって構成され、同様に、V相巻線V1,V2,バーV1,バーV2は直列に繋がって構成され、W相巻線W1,W2,バーW1,バーW2は直列に繋がって構成されている。そして、U相巻線U1,U2,バーU1,バーU2にはU相の駆動電流が供給される。これにより、正巻きのU相巻線U1,U2に対して逆巻きのU相巻線バーU1,バーU2は常に逆極性(逆位相)で励磁されることとなるが、励磁タイミングは同一である。このことは他相(V相及びW相)においても同様である。 U-phase windings U1, U2, U1 and U2 are connected in series. Similarly, V-phase windings V1, V2, V1 and V2 are connected in series, and W-phase winding W1. , W2, bar W1, and bar W2 are connected in series. The U-phase windings U1, U2, U1 and U2 are supplied with U-phase drive current. As a result, the reverse winding U-phase winding bars U1 and U2 are always excited with the opposite polarity (reverse phase) with respect to the forward winding U-phase windings U1 and U2, but the excitation timing is the same. . The same applies to the other phases (V phase and W phase).
 モータ230のロータ221は、N極・S極が周方向等間隔(36°間隔)に交互に設定された10極ロータであって、3つの磁石磁極Mnと、2つの磁石磁極Msと、2つの突極磁極Pnと、3つの突極磁極Psとを備えている。具体的には、ロータ221の磁極が、時計回り方向において順に、S極の磁石磁極Ms、N極の磁石磁極Mn、S極の突極磁極Ps、N極の磁石磁極Mn、S極の磁石磁極Ms、N極の突極磁極Pn、S極の突極磁極Ps、N極の磁石磁極Mn、S極の突極磁極Ps、N極の突極磁極Pnとなるように構成されている。つまり、N極の磁石磁極Mnの周方向反対側(180°対向位置)にS極の突極磁極Psが位置し、S極の磁石磁極Msの周方向反対側(180°対向位置)にN極の突極磁極Pnが位置するように構成されている。また、ロータコア222には、周方向に隣り合う磁石磁極Mn,Ms間の境界部、及び周方向に隣り合う突極磁極Pn,Ps間の境界部にそれぞれ対応する位置に、上記実施形態と同様のスリット孔227が形成されている。 The rotor 221 of the motor 230 is a 10-pole rotor in which N poles and S poles are alternately set at equal intervals in the circumferential direction (36 ° intervals), and includes three magnet magnetic poles Mn, two magnet magnetic poles Ms, 2 Two salient poles Pn and three salient poles Ps are provided. Specifically, the magnetic poles of the rotor 221 are, in order in the clockwise direction, the S-pole magnet magnetic pole Ms, the N-pole magnet magnetic pole Mn, the S-pole salient pole Ps, the N-pole magnet magnetic pole Mn, and the S-pole magnet. The magnetic pole Ms, the N pole salient pole Pn, the S pole salient pole Ps, the N pole magnet magnetic pole Mn, the S pole salient pole Ps, and the N pole salient pole Pn. That is, the S-pole salient pole Ps is located on the opposite side of the N-pole magnet magnetic pole Mn in the circumferential direction (180 ° facing position), and the N-pole is located on the opposite side in the circumferential direction of the S-pole magnet magnetic pole Ms (180 ° facing position). The salient pole magnetic pole Pn of the pole is located. Further, the rotor core 222 is similar to the above embodiment at the positions corresponding to the boundary between the magnetic poles Mn and Ms adjacent in the circumferential direction and the boundary between the salient poles Pn and Ps adjacent in the circumferential direction. The slit hole 227 is formed.
 なお、磁石磁極Mn,Ms及び突極磁極Pn,Psの各個数は、図34の10極ロータの例に限られるものではなく、例えば、磁石磁極Mnが2つ、磁石磁極Msが3つ、突極磁極Pnが3つ、突極磁極Psが2つで構成してもよい。また、図34に示す例のロータ221において、図23又は図24に示すようなスリット孔227を追加してもよく、また、図25や図26に示すようなスリット孔227aに補助磁石228を嵌め込んだ構成を追加してもよい。 The number of magnet magnetic poles Mn, Ms and salient pole magnetic poles Pn, Ps is not limited to the example of the 10-pole rotor of FIG. 34. For example, two magnet magnetic poles Mn, three magnet magnetic poles Ms, You may comprise three salient pole magnetic poles Pn and two salient pole magnetic poles Ps. Also, in the rotor 221 of the example shown in FIG. 34, a slit hole 227 as shown in FIG. 23 or FIG. 24 may be added, and an auxiliary magnet 228 is added to the slit hole 227a as shown in FIG. 25 or FIG. A fitted configuration may be added.
 上記構成では、ロータ221の回転時において、例えばS極の磁石磁極MsがU相巻線U1と径方向に対向するとき、その周方向反対側においてN極の突極磁極PnがU相巻線バーU1と径方向に対向するようになっている(図34参照)。つまり、互いに逆位相(同一タイミング)で励磁される巻線13(例えばU相巻線U1,バーU1)とそれぞれ対向する異極の磁極において、その一方が磁石磁極Ms(磁石磁極Mn)で構成され、他方が突極磁極Pn(突極磁極Ps)で構成されている。これにより、トルクの低下を極力抑えつつ、ロータ221の磁極によって逆位相の巻線13に生じる合成誘起電圧(例えばU相巻線U1,バーU1の合成誘起電圧)を小さく抑えることができ、その結果、モータ230の高回転化を図ることができる。 In the above configuration, when the rotor 221 rotates, for example, when the S-pole magnet magnetic pole Ms faces the U-phase winding U1 in the radial direction, the N-pole salient pole Pn is placed on the U-phase winding on the opposite side in the circumferential direction. It faces the bar U1 in the radial direction (see FIG. 34). In other words, one of the magnetic poles having different polarities facing the windings 13 (for example, the U-phase winding U1 and the bar U1) excited in opposite phases (same timing), one of which is composed of the magnet magnetic pole Ms (magnet magnetic pole Mn). The other is composed of salient pole magnetic poles Pn (saliency pole magnetic poles Ps). As a result, it is possible to suppress the combined induction voltage (for example, the combined induction voltage of the U-phase winding U1 and the bar U1) generated in the anti-phase winding 13 by the magnetic poles of the rotor 221 as much as possible while suppressing a decrease in torque. As a result, high rotation of the motor 230 can be achieved.
 なお、ロータ221の各磁極の配置は、図34に示す例に限定されるものではなく、磁石磁極Mnの周方向反対側に突極磁極Psが位置し、磁石磁極Msの周方向反対側に突極磁極Pnが位置する構成であれば、ロータ221の各磁極の配置は適宜変更可能である。 The arrangement of the magnetic poles of the rotor 221 is not limited to the example shown in FIG. 34. The salient pole Ps is located on the opposite side of the magnet magnetic pole Mn in the circumferential direction, and the opposite side of the magnet magnetic pole Ms in the circumferential direction. As long as the salient pole magnetic pole Pn is positioned, the arrangement of the magnetic poles of the rotor 221 can be changed as appropriate.
 また、ステータ11において、各U相巻線U1,U2,バーU1,バーU2が全て直列に接続される必要はなく、巻線U1,バーU1、及び巻線U2,バーU2をそれぞれ別の直列対とした構成としてもよい。また、V相及びW相においても同様に変更可能である。 Further, in the stator 11, it is not necessary that all the U-phase windings U1, U2, bar U1, and bar U2 are connected in series, and the windings U1, bar U1, and windings U2, U2 are respectively connected in different series. A paired configuration may be used. Moreover, it can change similarly also in V phase and W phase.
 また、図34には、10極12スロットで構成した例を示したが、14極12スロットの構成にも適用可能である。また、10極12スロット(又は14極12スロット)のロータ極数及びスロット数をそれぞれ等倍した構成にも適用可能である。また、図34では、突部226を磁極に応じて複数に分割したタイプを例にとって示しているが、図22に示す例のような突部226が分割されていないタイプにも適用可能である。 FIG. 34 shows an example of 10 poles and 12 slots, but the present invention can also be applied to a 14 poles and 12 slots structure. Further, the present invention can also be applied to a configuration in which the number of rotor poles and the number of slots of 10 poles and 12 slots (or 14 poles and 12 slots) are equal. FIG. 34 shows an example of a type in which the protrusion 226 is divided into a plurality according to the magnetic pole, but the present invention can also be applied to a type in which the protrusion 226 is not divided as in the example shown in FIG. .
 ・上記実施形態において、磁石磁極Mn,Msの磁束を突極磁極Pn,Ps(突部226)の周方向中心CL(突部226の周方向中心)に向かって導くための磁束誘導部(磁気調整部)をロータコア222に設けてもよい。 In the above embodiment, the magnetic flux guiding part (magnetic) for guiding the magnetic flux of the magnet magnetic poles Mn and Ms toward the circumferential center CL (the circumferential center of the projecting part 226) of the salient pole magnetic poles Pn and Ps (projecting part 226). An adjustment unit) may be provided in the rotor core 222.
 例えば、図35に示す構成では、各突極磁極Pn,Psの径方向外側面に前記磁束誘導部としての磁束誘導凹部226aが凹設されている。より詳しくは、各突極磁極Pn(突部226)の径方向外側面において、磁束誘導凹部226aは、隣り合う磁石磁極Ms寄りの端部に形成されている。また同様に、各突極磁極Ps(突部226)の径方向外側面において、磁束誘導凹部226aは、隣り合う磁石磁極Mn寄りの端部に形成されている。なお、図35の例では、各磁束誘導凹部226aは、突部226の周方向幅のおよそ1/4程度に設定されている。また、突部226の周方向中心CL及び永久磁石223の周方向中心は、周方向等間隔(45°間隔)に設定されている。 For example, in the configuration shown in FIG. 35, a magnetic flux guiding recess 226a serving as the magnetic flux guiding portion is formed in the radially outer surface of each salient pole magnetic pole Pn, Ps. More specifically, on the radially outer side surface of each salient pole magnetic pole Pn (projection 226), the magnetic flux guiding recess 226a is formed at the end near the adjacent magnet magnetic pole Ms. Similarly, on the radially outer surface of each salient pole magnetic pole Ps (projection 226), the magnetic flux guiding recess 226a is formed at the end near the adjacent magnet magnetic pole Mn. In the example of FIG. 35, each magnetic flux guiding recess 226a is set to about ¼ of the circumferential width of the protrusion 226. Further, the circumferential center CL of the protrusion 226 and the circumferential center of the permanent magnet 223 are set at equal circumferential intervals (45 ° intervals).
 このような構成によれば、例えば、磁石磁極Ms(永久磁石223)からロータコア222を通じて隣りの突極磁極Pnに向かう磁束φaは、磁束誘導凹部226aによって突極磁極Pn(突部226)の周方向中心CLに向かって誘導される。これにより、ロータ221の磁極(即ち、各磁石磁極Mn,Ms及び各突極磁極Pn,Ps)における周方向の磁極中心(磁束密度のピーク位置)を、周方向等間隔(同図の例では45°間隔)に構成することができ、その結果、高トルク化に寄与できる。 According to such a configuration, for example, the magnetic flux φa directed from the magnet magnetic pole Ms (permanent magnet 223) to the adjacent salient pole magnetic pole Pn through the rotor core 222 is surrounded by the magnetic flux guiding recess 226a around the salient pole magnetic pole Pn (projection 226). It is guided toward the direction center CL. As a result, the circumferential magnetic pole centers (peak positions of the magnetic flux density) of the magnetic poles of the rotor 221 (that is, the magnetic magnetic poles Mn and Ms and the salient magnetic poles Pn and Ps) are equally spaced in the circumferential direction (in the example of FIG. 45 ° intervals), and as a result, it can contribute to higher torque.
 なお、図35に示す例では、突極磁極Pn,Psの径方向外側面に、前記磁束誘導部(磁束誘導凹部226a)を設けたが、該磁束誘導部を設ける箇所はこれに限らず、例えば、突極磁極Pn,Psにおいてロータコア222に形成した孔(空隙部)を磁束誘導部として機能させてもよい。 In the example shown in FIG. 35, the magnetic flux guiding portion (magnetic flux guiding recess 226a) is provided on the radially outer surface of the salient pole magnetic poles Pn, Ps. However, the location where the magnetic flux guiding portion is provided is not limited thereto. For example, holes (gap portions) formed in the rotor core 222 in the salient pole magnetic poles Pn and Ps may function as the magnetic flux guiding portions.
 また、図35では、表面磁石型構造(SPM構造)に本発明を適用しているが、埋込磁石型構造(IPM構造)に本発明を適用してもよい。
 IPM構造に適用したロータ221の一例を図36に示す。同図に示すロータ221では、磁極の配置構成(各磁石磁極Mn,Ms及びコア磁極Cn,Csの周方向位置)は、上記のIPM構造(例えば図28の構成を参照)と略同様である。つまり、ロータ221の磁極は、時計回り方向において順に、N極の磁石磁極Mn、S極のコア磁極Cs、N極のコア磁極Cn、S極の磁石磁極Ms、N極の磁石磁極Mn、・・・を繰り返す構成となっている。
In FIG. 35, the present invention is applied to the surface magnet type structure (SPM structure), but the present invention may be applied to an embedded magnet type structure (IPM structure).
An example of the rotor 221 applied to the IPM structure is shown in FIG. In the rotor 221 shown in the figure, the arrangement configuration of the magnetic poles (the circumferential positions of the magnetic poles Mn and Ms and the core magnetic poles Cn and Cs) is substantially the same as the IPM structure (for example, see the configuration of FIG. 28). . That is, the magnetic poles of the rotor 221 are arranged in order in the clockwise direction: N pole magnetic pole Mn, S pole core pole Cs, N pole core pole Cn, S pole magnet pole Ms, N pole magnet pole Mn,.・ It has a structure that repeats.
 図36に示す構成では、各磁石磁極Mn,Msは、ロータコア222に埋設された一対の永久磁石241を備えている。各磁石磁極Mn,Msにおいて、一対の永久磁石241は、軸方向視で外周側に拡がる略V字状に配置されるとともに、周方向における磁極中心線(図36中の直線L1を参照)に対して線対称に設けられている。なお、各永久磁石241は直方体をなす。また、各磁石磁極Mn,Msにおける一対の永久磁石241は、ロータ221を周方向において極数(磁石磁極Mn,Ms及びコア磁極Cn,Csの総数)で等分したときの角度範囲(本例では45°の範囲)に収まるように配置されている。 36, each magnet magnetic pole Mn, Ms includes a pair of permanent magnets 241 embedded in the rotor core 222. In the configuration shown in FIG. In each of the magnetic poles Mn and Ms, the pair of permanent magnets 241 is arranged in a substantially V shape that expands to the outer peripheral side when viewed in the axial direction, and on the magnetic pole center line in the circumferential direction (see the straight line L1 in FIG. 36). On the other hand, they are provided symmetrically. Each permanent magnet 241 has a rectangular parallelepiped shape. In addition, the pair of permanent magnets 241 in each of the magnetic poles Mn and Ms has an angular range (this example) when the rotor 221 is equally divided by the number of poles (the total number of the magnetic poles Mn and Ms and the core magnetic poles Cn and Cs) in the circumferential direction. In the range of 45 °.
 また、図36では、N極の磁石磁極Mn及びS極の磁石磁極Msの各永久磁石241の磁化方向を実線の矢印で示しており、矢印先端側がN極、矢印基端側がS極を表している。この矢印にて示されるように、N極の磁石磁極Mnにおける各永久磁石241は、該磁石磁極Mnの外周側の面をN極にするべく、互いに向かい合う面(前記磁極中心線側の面)にN極が現れるように磁化されている。また、S極の磁石磁極Msにおける各永久磁石241は、該磁石磁極Msの外周側の面をS極にするべく、互いに向かい合う面(前記磁極中心線側の面)にS極が現れるように磁化されている。 In FIG. 36, the magnetization directions of the permanent magnets 241 of the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are indicated by solid arrows, and the tip end side of the arrow represents the N pole and the base end side of the arrow represents the S pole. ing. As indicated by the arrows, the permanent magnets 241 in the N-pole magnet magnetic pole Mn face each other (the face on the magnetic pole center line side) so that the outer peripheral face of the magnet magnetic pole Mn is the N-pole. Is magnetized so that the N pole appears. In addition, each permanent magnet 241 in the S magnetic pole Ms has the S poles appearing on the surfaces facing each other (the surface on the magnetic pole center line side) so that the outer peripheral surface of the magnet magnetic pole Ms becomes the S pole. Magnetized.
 ロータコア222には、周方向に隣り合うコア磁極Cn,Cs間の境界部において径方向に沿って延びる一対のスリット孔231が形成されている。各スリット孔231は、固定孔222aの近傍位置から径方向に沿ってロータコア222の外周面222bの近傍位置まで延びている。 The rotor core 222 is formed with a pair of slit holes 231 extending along the radial direction at the boundary between the core magnetic poles Cn and Cs adjacent in the circumferential direction. Each slit hole 231 extends from the position near the fixed hole 222a to the position near the outer peripheral surface 222b of the rotor core 222 along the radial direction.
 また、ロータコア222には、各磁石磁極Mn,Msにおける一対の永久磁石241よりも内周側位置に磁気抵抗孔242(磁気調整部)が形成されている。各磁気抵抗孔242は、軸方向視において径方向に沿って長い長方形の孔であり、各磁石磁極Mn,Msの周方向中心位置に設けられている。つまり、本例では、周方向に隣り合う磁石磁極Mn,Msの各磁気抵抗孔242の中心間が45°に設定されている。 Further, the rotor core 222 is formed with a magnetoresistive hole 242 (magnetic adjustment portion) at a position on the inner peripheral side with respect to the pair of permanent magnets 241 in each magnet magnetic pole Mn, Ms. Each magnetoresistive hole 242 is a rectangular hole that is long in the radial direction when viewed in the axial direction, and is provided at the circumferential center position of each magnet magnetic pole Mn, Ms. That is, in this example, the distance between the centers of the magnetic resistance holes 242 of the magnet magnetic poles Mn and Ms adjacent in the circumferential direction is set to 45 °.
 各スリット孔231及び各磁気抵抗孔242は、ロータコア222を軸方向に貫通しており、各スリット孔231内及び各磁気抵抗孔242内は空隙である。これにより、各磁気抵抗孔242は、周方向に隣り合う磁石磁極Mn,Ms間での磁束の短絡を抑制し、各スリット孔231は、磁石磁極Mn,Msの磁束がコア磁極Cn,Csを通じて短絡することを抑制する。つまり、各スリット孔231及び各磁気抵抗孔242によって、ロータコア222内を通る各磁石磁極Mn,Msの磁束が隣り合うコア磁極Cn,Csに好適に誘導されるようになっている。 Each slit hole 231 and each magnetoresistive hole 242 penetrate the rotor core 222 in the axial direction, and each slit hole 231 and each magnetoresistive hole 242 are voids. Thereby, each magnetoresistive hole 242 suppresses the short circuit of the magnetic flux between the magnet magnetic poles Mn and Ms adjacent in the circumferential direction, and each slit hole 231 causes the magnetic flux of the magnet magnetic poles Mn and Ms to pass through the core magnetic poles Cn and Cs. Suppresses short circuit. That is, the magnetic fluxes of the magnet magnetic poles Mn and Ms passing through the rotor core 222 are preferably guided to the adjacent core magnetic poles Cn and Cs by the slit holes 231 and the magnetic resistance holes 242.
 また、各永久磁石241の内周側及び外周側にはそれぞれ空隙K3,K4が設けられている。各空隙K3,K4は、ロータコア222に形成された、各永久磁石241をそれぞれ収容する各磁石収容孔244の一部であり、各永久磁石241の内周側側面が各空隙K3に面し、各永久磁石241の内周側側面が各空隙K4に面するように構成されている。つまり、永久磁石241と磁石収容孔244の径方向内側端部との間に空隙K3が設けられ、永久磁石241と磁石収容孔244の径方向外側端部との間に空隙K4が設けられている。 Further, gaps K3 and K4 are provided on the inner peripheral side and the outer peripheral side of each permanent magnet 241 respectively. Each gap K3, K4 is a part of each magnet accommodation hole 244 formed in the rotor core 222 and accommodates each permanent magnet 241. The inner peripheral side surface of each permanent magnet 241 faces each gap K3, The inner peripheral side surface of each permanent magnet 241 is configured to face each gap K4. That is, a gap K3 is provided between the permanent magnet 241 and the radially inner end of the magnet accommodation hole 244, and a gap K4 is provided between the permanent magnet 241 and the radially outer end of the magnet accommodation hole 244. Yes.
 これら各空隙K3,K4の磁気抵抗によって、各永久磁石241のそれぞれにおける磁束の短絡(各永久磁石241の磁束がロータコア222を介して自身のN・S極間で短絡すること)を抑制できるようになっている。つまり、各空隙K3,K4によっても、各磁石磁極Mn,Msの磁束が隣り合うコア磁極Cn,Csに好適に誘導され、高トルク化に寄与できる。 The magnetic resistance of each of the gaps K3 and K4 can suppress the short circuit of the magnetic flux in each of the permanent magnets 241 (the magnetic flux of each permanent magnet 241 is shorted between its own N and S poles via the rotor core 222). It has become. That is, also by the gaps K3 and K4, the magnetic fluxes of the magnet magnetic poles Mn and Ms are preferably guided to the adjacent core magnetic poles Cn and Cs, which can contribute to higher torque.
 ここで、本例のロータコア222には、磁石磁極Mn,Msの磁束をコア磁極Cn,Csの周方向中心CLに向かって導くための磁束誘導孔243(磁束誘導部)が形成されている。各磁束誘導孔243は、各コア磁極Cn,Csにおいて周方向に隣り合う磁石磁極Mn,Ms寄りの位置に設けられている。より詳しくは、各コア磁極Cn,Csにおいて、磁束誘導孔243は、直近の永久磁石241が収容された磁石収容孔244(図36中、磁石収容孔244a)と連通するとともに、該磁石収容孔244aから周方向に沿ってコア磁極Cn,Cs内まで延びるように形成されている。また、各磁束誘導孔243は、前記直近の永久磁石241の径方向外側端部に対応する位置に形成されている。なお、各磁束誘導孔243の径方向幅は、軸方向視における永久磁石241の長辺長さの1/4以下に設定されている。 Here, in the rotor core 222 of this example, a magnetic flux guiding hole 243 (magnetic flux guiding portion) for guiding the magnetic flux of the magnet magnetic poles Mn and Ms toward the circumferential center CL of the core magnetic poles Cn and Cs is formed. Each magnetic flux guide hole 243 is provided at a position near the magnet magnetic poles Mn and Ms adjacent to each other in the circumferential direction in each of the core magnetic poles Cn and Cs. More specifically, in each of the core magnetic poles Cn and Cs, the magnetic flux guide hole 243 communicates with the magnet accommodation hole 244 (magnet accommodation hole 244a in FIG. 36) in which the nearest permanent magnet 241 is accommodated, and the magnet accommodation hole. It is formed to extend from 244a into the core magnetic poles Cn and Cs along the circumferential direction. Each magnetic flux guide hole 243 is formed at a position corresponding to the radially outer end of the nearest permanent magnet 241. The radial width of each magnetic flux guide hole 243 is set to ¼ or less of the long side length of the permanent magnet 241 when viewed in the axial direction.
 このような構成によれば、例えば、磁石磁極Msからロータコア222を通じて隣りのコア磁極Cnに向かう磁束φaは、磁束誘導孔243によってコア磁極Cnの周方向中心CLに向かって誘導される。これにより、ロータ221の磁極(即ち、各磁石磁極Mn,Ms及び各コア磁極Cn,Cs)における周方向の磁極中心(磁束密度のピーク位置)を、周方向等間隔(同図の例では45°間隔)に構成することができ、その結果、高トルク化に寄与できる。 According to such a configuration, for example, the magnetic flux φa directed from the magnet magnetic pole Ms to the adjacent core magnetic pole Cn through the rotor core 222 is guided toward the circumferential center CL of the core magnetic pole Cn by the magnetic flux guide hole 243. As a result, the magnetic pole centers (the peak positions of the magnetic flux density) in the circumferential direction of the magnetic poles of the rotor 221 (namely, the magnetic magnetic poles Mn and Ms and the core magnetic poles Cn and Cs) are set at equal circumferential intervals (45 in the example of FIG. ° interval), and as a result, can contribute to higher torque.
 また、本例の磁石磁極Mn,Msの構成(永久磁石241の配置構成)によれば、永久磁石241の外周側のロータコア体積(外周コア部22gの体積)を大きくとることが可能となるため、リラクタンストルクを増やすことが可能となり、より一層の高トルク化に寄与できる。 In addition, according to the configuration of the magnet magnetic poles Mn and Ms of this example (arrangement configuration of the permanent magnet 241), it is possible to increase the rotor core volume (volume of the outer core portion 22g) on the outer peripheral side of the permanent magnet 241. Thus, the reluctance torque can be increased, which can contribute to further increase in torque.
 また、本例では、周方向に隣り合うN極の磁石磁極MnとS極の磁石磁極Msとの間の磁束の短絡が磁気抵抗孔242によって抑制されるため、各磁石磁極Mn,Msから隣りのコア磁極Cn,Csに向かう磁束量の低下を抑えることができ、その結果、高トルク化に寄与できる。更に、磁気抵抗孔242は、一対の永久磁石241がV字配置された磁石磁極Mn,Msにおいて、該永久磁石241よりも径方向内側に設けられるため、磁気抵抗孔242によって周方向に隣接する異極の磁石磁極Mn,Ms間の磁束の短絡を好適に抑制することができる。 Further, in this example, since a short circuit of the magnetic flux between the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms adjacent in the circumferential direction is suppressed by the magnetoresistive hole 242, it is adjacent to each magnet magnetic pole Mn, Ms. Decrease in the amount of magnetic flux toward the core magnetic poles Cn and Cs can be suppressed, and as a result, high torque can be contributed. Further, the magnetoresistive hole 242 is provided radially inward from the permanent magnet 241 in the magnet magnetic poles Mn and Ms in which the pair of permanent magnets 241 are arranged in a V shape, so that the magnetoresistive hole 242 is adjacent in the circumferential direction. Short-circuiting of the magnetic flux between the magnet poles Mn and Ms having different polarities can be suitably suppressed.
 なお、本例では、周方向に隣接するコア磁極Cn,Cs同士がスリット孔231の径方向両端部で繋がる構成となっているが、これに限らず、該コア磁極Cn,Cs同士がスリット孔231の径方向内側端部及び径方向外側端部のいずれか一方で繋がるように構成してもよい。また、図36に示す例において、各磁気抵抗孔242をロータコア222の内周面(固定孔222a)まで径方向内側に延ばしてもよい。 In this example, the core magnetic poles Cn and Cs adjacent in the circumferential direction are connected to each other at both ends in the radial direction of the slit hole 231. However, the present invention is not limited to this, and the core magnetic poles Cn and Cs are connected to the slit hole. You may comprise so that any one of the radial direction inner side edge part of 231 and a radial direction outer side edge part may be connected. In the example shown in FIG. 36, each magnetoresistive hole 242 may extend radially inward to the inner peripheral surface (fixed hole 222a) of the rotor core 222.
 また、図36に示す構成を以下に示すように変更してもよい。図37に示すロータ221は、図36に示す構成の各スリット孔231に補助磁石251(磁気調整部)を、各磁束誘導孔243に補助磁石252(磁気調整部)を配置した構成である。各補助磁石251は、各スリット孔231内の径方向内側寄りの位置に設けられている。なお、補助磁石251の径方向長さは、スリット孔231の径方向長さの半分以下に設定されている。 Also, the configuration shown in FIG. 36 may be changed as shown below. The rotor 221 shown in FIG. 37 has a configuration in which the auxiliary magnet 251 (magnetic adjustment unit) is arranged in each slit hole 231 having the configuration shown in FIG. 36 and the auxiliary magnet 252 (magnetic adjustment unit) is arranged in each magnetic flux guide hole 243. Each auxiliary magnet 251 is provided at a position closer to the inside in the radial direction in each slit hole 231. Note that the radial length of the auxiliary magnet 251 is set to be equal to or less than half the radial length of the slit hole 231.
 図37においても、各永久磁石241及び各補助磁石251,252の磁化方向を実線の矢印で示しており、矢印先端側がN極、矢印基端側がS極を表している。この矢印にて示されるように、各補助磁石251は、周方向におけるコア磁極Cn寄りの面がN極、コア磁極Cs寄りの面がS極となるように磁化されている。また、N極の磁石磁極Mnの磁束誘導孔243に設けられた補助磁石252は、径方向外側の面がN極となるように磁化され、S極の磁石磁極Msの磁束誘導孔243に設けられた補助磁石252は、径方向外側の面がS極となるように磁化されている。なお、補助磁石251,252は、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成され、また、焼結磁石及びボンド磁石のいずれの構成でもよい。 Also in FIG. 37, the magnetization directions of the permanent magnets 241 and the auxiliary magnets 251 and 252 are indicated by solid arrows, and the tip end side of the arrow represents the N pole and the base end side of the arrow represents the S pole. As indicated by the arrows, each auxiliary magnet 251 is magnetized so that the surface near the core magnetic pole Cn in the circumferential direction is an N pole and the surface near the core magnetic pole Cs is an S pole. The auxiliary magnet 252 provided in the magnetic flux guide hole 243 of the N-pole magnet magnetic pole Mn is magnetized so that the radially outer surface becomes the N-pole, and provided in the magnetic flux guide hole 243 of the S-pole magnet magnetic pole Ms. The auxiliary magnet 252 thus magnetized is magnetized so that the radially outer surface becomes the south pole. The auxiliary magnets 251 and 252 are made of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN magnet, a ferrite magnet, an alnico magnet, or the like, and may be any of a sintered magnet and a bonded magnet.
 このような構成によれば、コア磁極Cn,Csには、隣り合う磁石磁極Mn,Msの磁束だけでなく補助磁石251,252の磁束も流れるため、コア磁極Cn,Csに流れる磁束が増加し、その結果、モータの高トルク化に寄与できる。なお、この場合においても、ロータ221からステータ11に与える磁力が、磁石磁極Mn,Msよりもコア磁極Cn,Csで弱くなるように構成することが好ましい。 According to such a configuration, since not only the magnetic fluxes of the adjacent magnet magnetic poles Mn and Ms but also the magnetic fluxes of the auxiliary magnets 251 and 252 flow in the core magnetic poles Cn and Cs, the magnetic flux flowing through the core magnetic poles Cn and Cs increases. As a result, it is possible to contribute to higher torque of the motor. Even in this case, it is preferable that the magnetic force applied from the rotor 221 to the stator 11 is weaker at the core magnetic poles Cn and Cs than at the magnetic poles Mn and Ms.
 なお、図37に示す例では、スリット孔231に補助磁石251を、磁束誘導孔243に補助磁石252をそれぞれ配置したが、補助磁石251,252のいずれか一方を省略した構成としてもよい。 In the example shown in FIG. 37, the auxiliary magnet 251 is disposed in the slit hole 231 and the auxiliary magnet 252 is disposed in the magnetic flux guide hole 243. However, any one of the auxiliary magnets 251 and 252 may be omitted.
 ・上記実施形態では、永久磁石223を焼結磁石としたが、これ以外に例えば、ボンド磁石としてもよい。
 ・上記実施形態では、ロータ221をステータ11の内周側に配置したインナロータ型のモータ210に本発明を具体化したが、これに特に限定されるものではなく、ロータをステータの外周側に配置したアウタロータ型のモータに本発明を具体化してもよい。
In the above embodiment, the permanent magnet 223 is a sintered magnet, but other than this, for example, a bonded magnet may be used.
In the above embodiment, the present invention is embodied in the inner rotor type motor 210 in which the rotor 221 is disposed on the inner peripheral side of the stator 11. However, the present invention is not particularly limited thereto, and the rotor is disposed on the outer peripheral side of the stator. The present invention may be embodied in an outer rotor type motor.
 ・上記実施形態では、ステータ11とロータ221とが径方向に対向するラジアルギャップ型のモータ210に本発明を具体化したが、これに特に限定されるものではなく、ステータとロータとが軸方向に対向するアキシャルギャップ型のモータに本発明を適用してもよい。 In the above embodiment, the present invention is embodied in the radial gap type motor 210 in which the stator 11 and the rotor 221 are opposed to each other in the radial direction. However, the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction. The present invention may be applied to an axial gap type motor that faces the motor.
 ・上記した実施形態並びに各変形例は適宜組み合わせてもよい。
 以下、モータの第4実施形態について説明する。
 図38(a)に示すように、本実施形態のモータ310は、ブラシレスモータとして構成され、円環状のステータ11の内側にロータ321が配置されて構成されている。ステータ11の構成は第1実施形態のステータ11と同様であるため詳細な説明を省略する。ステータ11の巻線13も第1実施形態の巻線13と同様に構成されている。
-You may combine embodiment mentioned above and each modification suitably.
Hereinafter, a fourth embodiment of the motor will be described.
As shown in FIG. 38A, the motor 310 of the present embodiment is configured as a brushless motor, and is configured with a rotor 321 disposed inside an annular stator 11. Since the configuration of the stator 11 is the same as that of the stator 11 of the first embodiment, detailed description thereof is omitted. The winding 13 of the stator 11 is also configured similarly to the winding 13 of the first embodiment.
 [ロータの構成]
 図38(b)に示すように、ロータ321は、磁極を形成する永久磁石322がロータコア323に埋設された埋込磁石型構造(IPM構造)をなす。なお、ロータコア323は、円形板状の磁性金属からなる複数のコアシートが軸方向に積層されることにより円筒状に構成され、該ロータコア323の中心部には、回転軸324が挿入固定される固定孔323aが形成されている。
[Configuration of rotor]
As shown in FIG. 38B, the rotor 321 has an embedded magnet type structure (IPM structure) in which a permanent magnet 322 forming a magnetic pole is embedded in the rotor core 323. The rotor core 323 is formed in a cylindrical shape by laminating a plurality of core sheets made of a circular plate-shaped magnetic metal in the axial direction, and a rotating shaft 324 is inserted and fixed at the center of the rotor core 323. A fixing hole 323a is formed.
 ロータ321は、ロータコア323の外周面323bにおいてN極・S極が交互に設定された8極ロータとして構成されている。具体的には、ロータ321は、N極の磁石磁極Mn、S極の磁石磁極Ms、N極のコア磁極Cn、及びS極のコア磁極Csをそれぞれ一対備えている。各磁石磁極Mn,Msは、永久磁石322を用いた磁極であり、各コア磁極Cn,Csは、ロータコア323の一部を用いた磁極である。 The rotor 321 is configured as an 8-pole rotor in which N poles and S poles are alternately set on the outer peripheral surface 323b of the rotor core 323. Specifically, the rotor 321 includes an N-pole magnet magnetic pole Mn, an S-pole magnet magnetic pole Ms, an N-pole core magnetic pole Cn, and an S-pole core magnetic pole Cs. Each of the magnetic poles Mn and Ms is a magnetic pole using the permanent magnet 322, and each of the core magnetic poles Cn and Cs is a magnetic pole using a part of the rotor core 323.
 N極及びS極の各磁石磁極Mn,Msは、ロータコア323に埋設された一対の永久磁石322を備えている。各磁石磁極Mn,Msにおいて、一対の永久磁石322は、軸方向視で外周側に拡がる略V字状に配置されるとともに、周方向における磁極中心線(図38(b)中の直線L1を参照)に対して線対称に設けられている。なお、各永久磁石322は直方体をなす。また、各磁石磁極Mn,Msにおける一対の永久磁石322は、ロータ321を周方向において極数(磁石磁極Mn,Ms及びコア磁極Cn,Csの総数であり、本実施形態では8)で等分したときの角度範囲(本実施形態では45°の範囲)に収まるように配置されている。なお、各永久磁石322は、例えば異方性の焼結磁石であり、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成される。 Each of the magnetic poles Mn and Ms of the N pole and the S pole includes a pair of permanent magnets 322 embedded in the rotor core 323. In each of the magnetic poles Mn and Ms, the pair of permanent magnets 322 are arranged in a substantially V shape that expands to the outer peripheral side when viewed in the axial direction, and a magnetic pole center line in the circumferential direction (straight line L1 in FIG. 38B). For reference). Each permanent magnet 322 forms a rectangular parallelepiped. The pair of permanent magnets 322 in each of the magnetic poles Mn and Ms is equally divided by the number of poles in the circumferential direction of the rotor 321 (the total number of the magnetic poles Mn and Ms and the core magnetic poles Cn and Cs, which is 8 in this embodiment). It is arranged so that it falls within the angle range (45 ° range in this embodiment). Each permanent magnet 322 is, for example, an anisotropic sintered magnet, and includes, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN magnet, a ferrite magnet, an alnico magnet, or the like.
 図38(b)には、N極の磁石磁極Mn及びS極の磁石磁極Msの各永久磁石322の磁化方向を実線の矢印で示しており、矢印先端側がN極、矢印基端側がS極を表している。この矢印にて示されるように、N極の磁石磁極Mnにおける各永久磁石322は、該磁石磁極Mnの外周側の面をN極にするべく、互いに向かい合う面(前記磁極中心線側の面)にN極が現れるように磁化されている。また、S極の磁石磁極Msにおける各永久磁石322は、該磁石磁極Msの外周側の面をS極にするべく、互いに向かい合う面(前記磁極中心線側の面)にS極が現れるように磁化されている。 In FIG. 38 (b), the magnetization directions of the permanent magnets 322 of the N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are indicated by solid arrows, and the tip end side of the arrow is the N pole and the base end side of the arrow is the S pole. Represents. As indicated by the arrows, the permanent magnets 322 in the N-pole magnet magnetic pole Mn are surfaces facing each other (the surface on the magnetic pole center line side) so that the outer peripheral surface of the magnet magnetic pole Mn is the N-pole. Is magnetized so that the N pole appears. In addition, each permanent magnet 322 in the magnetic pole Ms having the S pole has the S poles appearing on the surfaces facing each other (the surface on the magnetic pole center line side) so that the outer peripheral surface of the magnetic pole Ms becomes the S pole. Magnetized.
 N極の磁石磁極MnとS極の磁石磁極Msとは、互いの周方向の中心位置(磁極中心)の間隔が45°となるように隣接配置されており、その隣接配置されたN極の磁石磁極MnとS極の磁石磁極Msの対を磁石磁極対Pとする。そして、本実施形態のロータ321では、2つの磁石磁極対Pが周方向の180°対向位置に設けられている。より詳しくは、一方の磁石磁極対PのN極の磁石磁極Mnと、他方の磁石磁極対PのN極の磁石磁極Mnとは互いに180°対向位置に配置され、同様に、一方の磁石磁極対PのS極の磁石磁極Msと、他方の磁石磁極対PのS極の磁石磁極Msとは互いに180°対向位置に配置されている。つまり、各磁石磁極Mn,Ms(各永久磁石322)は、ロータ321の軸線L(回転軸324の軸線)を中心として点対称となるように設けられている。 The N-pole magnet magnetic pole Mn and the S-pole magnet magnetic pole Ms are arranged adjacent to each other so that the distance between the circumferential center positions (magnetic pole centers) is 45 °. A pair of the magnetic pole Mn and the magnetic pole Ms of the S pole is referred to as a magnetic pole pair P. And in the rotor 321 of this embodiment, the two magnet magnetic pole pairs P are provided in the 180 degree opposing position of the circumferential direction. More specifically, the N-pole magnetic pole Mn of one magnet pole pair P and the N-pole magnet pole Mn of the other magnet pole pair P are disposed at positions opposite to each other by 180 °. The S-pole magnet magnetic pole Ms of the pair P and the S-pole magnet magnetic pole Ms of the other magnet magnetic pole pair P are arranged at 180 ° opposite positions. That is, the magnetic poles Mn and Ms (permanent magnets 322) are provided so as to be point-symmetric about the axis L of the rotor 321 (the axis of the rotating shaft 324).
 また、各磁石磁極Mn,Msの軸線Lを中心とする開角度θm(占有角度)は、ロータ321を周方向において極数で等分した角度(本実施形態では45°)に設定されている。つまり、周方向に隣接する磁石磁極Mn,Msからなる各磁石磁極対Pの開角度は、略90°となっている。 Further, the opening angle θm (occupied angle) around the axis L of the magnet magnetic poles Mn and Ms is set to an angle (45 ° in this embodiment) obtained by equally dividing the rotor 321 by the number of poles in the circumferential direction. . That is, the opening angle of each magnetic pole pair P composed of the magnetic poles Mn and Ms adjacent in the circumferential direction is approximately 90 °.
 ここで、ロータコア323の周方向において、一対の磁石磁極対Pの占有角度は略180°であり、残りの範囲は磁石が配置されない部分(非磁石磁極部325)となっている。つまり、ロータコア323には、一対の磁石磁極対Pと一対の非磁石磁極部325とが周方向において略90°毎に交互に構成されている。 Here, in the circumferential direction of the rotor core 323, the occupying angle of the pair of magnet magnetic pole pairs P is approximately 180 °, and the remaining range is a portion where the magnet is not disposed (non-magnet magnetic pole portion 325). That is, in the rotor core 323, a pair of magnet magnetic pole pairs P and a pair of non-magnet magnetic pole portions 325 are alternately configured at intervals of approximately 90 ° in the circumferential direction.
 各非磁石磁極部325には、磁気抵抗部としての一対のスリット部326a,326bが設けられている。本実施形態では、各スリット部326a,326bは、ロータコア323の固定孔323aの近傍位置から径方向に沿ってロータコア323の外周面323bの近傍位置まで延びている。また、各スリット部326a,326bは、ロータコア323を軸方向に貫通する孔である。 Each non-magnet magnetic pole portion 325 is provided with a pair of slit portions 326a and 326b as magnetic resistance portions. In this embodiment, each slit part 326a, 326b extends from the vicinity of the fixing hole 323a of the rotor core 323 to the vicinity of the outer peripheral surface 323b of the rotor core 323 along the radial direction. Each slit 326a, 326b is a hole that penetrates the rotor core 323 in the axial direction.
 各非磁石磁極部325において、一対のスリット部326a,326bは、非磁石磁極部325の周方向中心線L2に対して線対称となるように形成されている。なお、周方向中心線L2に対してN極の磁石磁極Mn寄りのものをスリット部326aとし、S極の磁石磁極Ms寄りのものをスリット部326bとしている。本実施形態では、ロータ321の周方向において、前記周方向中心線L2とスリット部326a,326bとのなす角度がおよそ25°に設定されている。つまり、各非磁石磁極部325において、一対のスリット部326a,326bがなす周方向の角度はおよそ50°に設定されている。このように、非磁石磁極部325の一対のスリット部326a,326bがなす角度は、非磁石磁極部325の開角度(本実施形態では略90°)の半分以上に設定されることが好ましい。なお、非磁石磁極部325の周方向中心線L2と、磁石磁極対Pの周方向中心線L3(隣接する磁石磁極Mn,Msの境界線)とのなす角度は90°となっている。 In each non-magnet magnetic pole portion 325, the pair of slit portions 326a and 326b are formed so as to be line symmetric with respect to the circumferential center line L2 of the non-magnet magnetic pole portion 325. Note that a portion near the N-pole magnetic pole Mn with respect to the circumferential center line L2 is a slit portion 326a, and a portion near the S-pole magnet magnetic pole Ms is a slit portion 326b. In the present embodiment, in the circumferential direction of the rotor 321, the angle formed by the circumferential center line L2 and the slit portions 326a and 326b is set to approximately 25 °. That is, in each non-magnet magnetic pole portion 325, the circumferential angle formed by the pair of slit portions 326a and 326b is set to about 50 °. Thus, the angle formed by the pair of slit portions 326a and 326b of the non-magnet magnetic pole portion 325 is preferably set to be half or more of the open angle of the non-magnet magnetic pole portion 325 (approximately 90 ° in the present embodiment). The angle formed by the circumferential center line L2 of the non-magnet magnetic pole portion 325 and the circumferential center line L3 of the magnet magnetic pole pair P (boundary line between the adjacent magnet magnetic poles Mn and Ms) is 90 °.
 また、ロータコア323には、各磁石磁極Mn,Msにおける一対の永久磁石322よりも内周側位置に磁気抵抗孔327が形成されている。各磁気抵抗孔327は、軸方向視において径方向に長い長方形の孔であり、各磁石磁極Mn,Msの周方向中心位置に設けられている。つまり、本実施形態では、周方向に隣接する磁石磁極Mn,Msの磁気抵抗孔327の中心間が45°に設定されている。また、各磁気抵抗孔327は、ロータコア323を軸方向に貫通している。 The rotor core 323 is formed with a magnetoresistive hole 327 at a position on the inner peripheral side of the pair of permanent magnets 322 in each of the magnetic poles Mn and Ms. Each magnetoresistive hole 327 is a rectangular hole that is long in the radial direction when viewed in the axial direction, and is provided at the center position in the circumferential direction of each of the magnet magnetic poles Mn and Ms. In other words, in the present embodiment, the distance between the centers of the magnetoresistive holes 327 of the magnet magnetic poles Mn and Ms adjacent in the circumferential direction is set to 45 °. Each magnetoresistive hole 327 passes through the rotor core 323 in the axial direction.
 また、各永久磁石322の内周側及び外周側にはそれぞれ空隙K1,K2が設けられている。各空隙K1,K2は、ロータコア323に形成された、各永久磁石322を収容する各磁石収容孔323cの一部であり、各永久磁石322の内周側側面が各空隙K1に面し、各永久磁石322の内周側側面が各空隙K2に面するように構成されている。つまり、永久磁石322と磁石収容孔323cの径方向内側端部との間に空隙K1が設けられ、永久磁石322と磁石収容孔323cの径方向外側端部との間に空隙K2が設けられている。 Further, gaps K1 and K2 are provided on the inner peripheral side and the outer peripheral side of each permanent magnet 322, respectively. Each gap K1, K2 is a part of each magnet accommodation hole 323c formed in the rotor core 323 for accommodating each permanent magnet 322, and the inner peripheral side surface of each permanent magnet 322 faces each gap K1, The inner peripheral side surface of the permanent magnet 322 is configured to face each gap K2. That is, a gap K1 is provided between the permanent magnet 322 and the radially inner end of the magnet accommodation hole 323c, and a gap K2 is provided between the permanent magnet 322 and the radially outer end of the magnet accommodation hole 323c. Yes.
 上記の各磁気抵抗孔327によって、各磁石磁極対Pにおける磁石磁極Mn,Ms間での磁束の短絡が抑制され、また、空隙K1,K2によって各永久磁石322における磁束の短絡が抑制される。これらによって、各磁石磁極Mn,Msの永久磁石322の磁束(磁石磁束)が、該磁石磁極Mn,Msの外周側、及び周方向の非磁石磁極部325に効率的に誘導されるようになっている。 Each magnetic resistance hole 327 suppresses a short circuit of magnetic flux between the magnet magnetic poles Mn and Ms in each magnet magnetic pole pair P, and suppresses a magnetic flux short circuit in each permanent magnet 322 by the gaps K1 and K2. As a result, the magnetic flux (magnet magnetic flux) of the permanent magnet 322 of each magnet magnetic pole Mn, Ms is efficiently guided to the outer peripheral side of the magnet magnetic pole Mn, Ms and the non-magnetic magnetic pole portion 325 in the circumferential direction. ing.
 ここで、ロータコア323の各非磁石磁極部325は、一対のスリット部326a,326bによって3つの領域に区画され、そのうちのN極の磁石磁極Mnと周方向に隣り合う領域(スリット部326aと磁石磁極Mnとの間の領域)は、S極のコア磁極Csとして構成される。また、S極の磁石磁極Msと周方向に隣り合う領域(スリット部326bと磁石磁極Msとの間の領域)は、N極のコア磁極Cnとして構成される。 Here, each non-magnet magnetic pole portion 325 of the rotor core 323 is divided into three regions by a pair of slit portions 326a and 326b, and a region adjacent to the N-pole magnet magnetic pole Mn in the circumferential direction (the slit portion 326a and the magnet). A region between the magnetic pole Mn and the magnetic pole Mn is configured as an S-pole core magnetic pole Cs. A region adjacent to the S-pole magnet magnetic pole Ms in the circumferential direction (region between the slit 326b and the magnet magnetic pole Ms) is configured as an N-pole core magnetic pole Cn.
 詳述すると、N極の磁石磁極Mnから周方向の非磁石磁極部325(磁石磁極Msと隣接しない部分)に向かって流れる磁石磁束は、スリット部326aの磁気抵抗によってロータコア323の外周面323bに向かって誘導される。これにより、非磁石磁極部325におけるN極の磁石磁極Mnと隣り合う領域が、該磁石磁極Mnの磁石磁束によってS極のコア磁極Cs(疑似磁極)として機能するようになっている。 More specifically, magnet magnetic flux flowing from the N-pole magnet magnetic pole Mn toward the circumferential non-magnet magnetic pole portion 325 (portion not adjacent to the magnet magnetic pole Ms) is applied to the outer peripheral surface 323b of the rotor core 323 by the magnetic resistance of the slit portion 326a. Be directed towards. Thereby, the region adjacent to the N-pole magnet magnetic pole Mn in the non-magnet magnetic pole portion 325 functions as an S-pole core magnetic pole Cs (pseudo magnetic pole) by the magnet magnetic flux of the magnet magnetic pole Mn.
 また同様に、S極の磁石磁極Msから周方向の非磁石磁極部325(磁石磁極Mnと隣接しない部分)に向かって流れる磁石磁束は、スリット部326bの磁気抵抗によってロータコア323の外周面323bに向かって誘導される。これにより、非磁石磁極部325におけるS極の磁石磁極Msと隣り合う領域が、該磁石磁極Msの磁石磁束によってN極のコア磁極Cn(疑似磁極)として機能するようになっている。 Similarly, the magnetic flux that flows from the magnetic pole Ms of the S pole toward the circumferential non-magnet magnetic pole part 325 (the part not adjacent to the magnetic pole Mn) is applied to the outer peripheral surface 323b of the rotor core 323 by the magnetic resistance of the slit part 326b. Be directed towards. As a result, a region adjacent to the S-pole magnet magnetic pole Ms in the non-magnet magnetic pole portion 325 functions as an N-pole core magnetic pole Cn (pseudo-magnetic pole) by the magnet magnetic flux of the magnet magnetic pole Ms.
 そして、各非磁石磁極部325において、一対のスリット部326a,326b間(つまり、コア磁極Cn,Cs間)の領域(スリット間コア部328)は、該スリット部326a,326bの磁気抵抗によって磁石磁極Mn,Msの磁石磁束の影響をほぼ受けないように構成されている。つまり、各非磁石磁極部325のスリット間コア部328には、磁石磁極Mn,Ms(永久磁石322)の磁石磁束による磁極が形成されないように構成されている。 In each non-magnet magnetic pole portion 325, the region between the pair of slit portions 326a and 326b (that is, between the core magnetic poles Cn and Cs) (inter-slit core portion 328) is magnetized by the magnetic resistance of the slit portions 326a and 326b. The magnetic poles Mn and Ms are configured not to be affected by the magnetic flux of the magnetic poles Ms and Ms. That is, the inter-slit core portion 328 of each non-magnet magnetic pole portion 325 is configured not to form a magnetic pole due to the magnet magnetic flux of the magnet magnetic poles Mn and Ms (permanent magnet 322).
 上記のような構成のロータ321では、周方向の時計回りに順に、N極の磁石磁極Mn、S極のコア磁極Cs、スリット間コア部328、N極のコア磁極Cn、S極の磁石磁極Ms、N極の磁石磁極Mn、・・・を繰り返す構成となっている。 In the rotor 321 having the above-described configuration, the N-pole magnet magnetic pole Mn, the S-pole core magnetic pole Cs, the inter-slit core portion 328, the N-pole core magnetic pole Cn, and the S-pole magnet magnetic pole in order in the clockwise direction in the circumferential direction. Ms, N magnetic poles Mn,... Are repeated.
 なお、各スリット間コア部328の軸線Lを中心とする開角度θa(占有角度)は、上記したスリット部326a,326bがなす周方向の角度とほぼ等しく、本実施形態では、およそ50°となっている。また、各コア磁極Cn,Csの軸線Lを中心とする開角度θc(占有角度)は、各非磁石磁極部325にスリット間コア部328を形成した関係から、各磁石磁極Mn,Msの開角度θm(本実施形態では45°)よりも小さく構成されている。 Note that the opening angle θa (occupied angle) around the axis L of each inter-slit core portion 328 is substantially equal to the circumferential angle formed by the slit portions 326a and 326b, and is approximately 50 ° in the present embodiment. It has become. Further, the opening angle θc (occupied angle) around the axis L of each of the core magnetic poles Cn and Cs is determined based on the relationship in which the inter-slit core portion 328 is formed in each non-magnet magnetic pole portion 325. It is configured to be smaller than the angle θm (45 ° in the present embodiment).
 次に、本実施形態の作用について説明する。
 図示しない駆動回路からそれぞれ120°の位相差を持つ3相の駆動電流(交流)がU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4にそれぞれ供給されると、各巻線U1~W4が相毎に同一タイミングで励磁されてステータ11に回転磁界が発生する。そして、そのステータ11の回転磁界とロータ321の磁極(磁石磁極Mn,Ms及びコア磁極Cn,Cs)の磁束との相互作用によってロータ321が回転する。
Next, the operation of this embodiment will be described.
A three-phase drive current (AC) having a phase difference of 120 ° is supplied from a drive circuit (not shown) to the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4, respectively. Then, the windings U1 to W4 are excited at the same timing for each phase, and a rotating magnetic field is generated in the stator 11. Then, the rotor 321 rotates by the interaction between the rotating magnetic field of the stator 11 and the magnetic flux of the magnetic poles of the rotor 321 (magnet magnetic poles Mn, Ms and core magnetic poles Cn, Cs).
 ロータ321の高速回転時においては、巻線13に弱め界磁電流(d軸電流)を供給する弱め界磁制御が実行される。ここで、弱め界磁制御による磁気作用を図39(a)、39(b)に従って説明する。なお、図39(a)、39(b)では、説明の便宜上、ステータ11の構成としてU相のみを図示し、その他の相については図示を省略している。 When the rotor 321 rotates at high speed, field weakening control for supplying a field weakening current (d-axis current) to the winding 13 is executed. Here, the magnetic action by the field weakening control will be described with reference to FIGS. 39 (a) and 39 (b). 39 (a) and 39 (b), for convenience of explanation, only the U phase is shown as the configuration of the stator 11, and the other phases are not shown.
 ロータ321の高速回転時(弱め界磁制御時)における、図39(a)に示すようなロータ321の回転位置、すなわち、N極の磁石磁極MnがU相巻線U1,U3と径方向に対向するとともに、スリット間コア部328がU相巻線U2,U4と径方向に対向するロータ321の回転位置を例にとって説明する。このとき、U相巻線U1,U3では、対向するN極の磁石磁極Mnが発する磁石磁束(径方向外側への磁束)が弱め界磁電流による鎖交磁束(径方向内側への鎖交磁束)を上回り、U相巻線U1,U3には径方向外側に向かって通過する鎖交磁束φxが発生する。 The rotational position of the rotor 321 as shown in FIG. 39A during the high-speed rotation of the rotor 321 (during field weakening control), that is, the N-pole magnet magnetic pole Mn faces the U-phase windings U1 and U3 in the radial direction. In addition, an explanation will be given by taking as an example the rotational position of the rotor 321 in which the core portion 328 between the slits faces the U-phase windings U2 and U4 in the radial direction. At this time, in the U-phase windings U1 and U3, the magnetic flux (magnetic flux outward in the radial direction) generated by the opposing N-pole magnet magnetic pole Mn is the flux linkage caused by the field weakening current (linkage magnetic flux in the radial inner direction). ), And the interlinkage magnetic flux φx that passes outward in the radial direction is generated in the U-phase windings U1 and U3.
 一方、U相巻線U2,U4では、対向するロータ321の部位が磁極ではなく前記磁石磁束の影響をほぼ受けないスリット間コア部328である。このため、弱め界磁電流(d軸電流)の供給によって生じるd軸磁束は、ロータ321の磁石磁束の影響をほぼ受けずに、スリット間コア部328(ロータコア323)内を通過する。これにより、U相巻線U2,U4には、弱め界磁電流に基づく径方向内側に向かって通過する鎖交磁束φyが、ロータ321の磁極によって打ち消されることなく発生する。つまり、U相巻線U2,U4には、磁石磁極MnによってU相巻線U1,U3に生じる鎖交磁束φxとは逆位相の鎖交磁束φyが発生する。 On the other hand, in the U-phase windings U2 and U4, the portion of the opposing rotor 321 is not a magnetic pole but an inter-slit core portion 328 that is hardly affected by the magnet magnetic flux. For this reason, the d-axis magnetic flux generated by the supply of the field weakening current (d-axis current) passes through the inter-slit core portion 328 (rotor core 323) without being substantially affected by the magnetic flux of the rotor 321. As a result, the interlinkage magnetic flux φy passing inward in the radial direction based on the field weakening current is generated in the U-phase windings U2 and U4 without being canceled by the magnetic poles of the rotor 321. That is, in the U-phase windings U2 and U4, an interlinkage magnetic flux φy having a phase opposite to the interlinkage magnetic flux φx generated in the U-phase windings U1 and U3 by the magnetic pole Mn is generated.
 このとき、各U相巻線U1~U4には、鎖交磁束φx,φyによる誘起電圧が生じる。上記のように鎖交磁束φx,φyは互いに逆位相であるため、鎖交磁束φyによってU相巻線U2,U4に生じる誘起電圧と、鎖交磁束φxによってU相巻線U1,U3に生じる誘起電圧とは、互いに逆極性(逆位相)となる。このため、U相巻線U1~U4の誘起電圧を合成した合成誘起電圧が効果的に減少されるようになっている。 At this time, induced voltages are generated in the U-phase windings U1 to U4 by the interlinkage magnetic fluxes φx and φy. Since the interlinkage magnetic fluxes φx and φy are in opposite phases as described above, an induced voltage generated in the U-phase windings U2 and U4 by the interlinkage magnetic flux φy and generated in the U-phase windings U1 and U3 by the interlinkage magnetic flux φx. The induced voltage has opposite polarity (reverse phase). For this reason, the combined induced voltage obtained by combining the induced voltages of the U-phase windings U1 to U4 is effectively reduced.
 なお、上記の作用は、S極の磁石磁極Msが例えばU相巻線U1,U3と対向するときにも同様に生じる。つまり、S極の磁石磁極MsがU相巻線U1,U3と対向するとき、スリット間コア部328がU相巻線U2,U4とそれぞれ対向するため、U相巻線U1,U3で生じる誘起電圧とU相巻線U2,U4で生じる誘起電圧とが逆位相となり、U相巻線U1~U4の合成誘起電圧が効果的に減少される。 It should be noted that the above action also occurs when the S-pole magnet magnetic pole Ms faces the U-phase windings U1 and U3, for example. That is, when the S magnetic pole Ms faces the U-phase windings U1 and U3, the inter-slit core portion 328 faces the U-phase windings U2 and U4, respectively. The voltage and the induced voltage generated in the U-phase windings U2 and U4 are in opposite phases, and the combined induced voltage of the U-phase windings U1 to U4 is effectively reduced.
 また、上記ではU相巻線U1~U4の合成誘起電圧を例にとって説明したが、V相巻線V1~V4及びW相巻線W1~W4においても同様に、ロータコア323にスリット間コア部328を設けたことによる合成誘起電圧の減少が生じる。 In the above description, the combined induced voltage of the U-phase windings U1 to U4 has been described as an example. Similarly, in the V-phase windings V1 to V4 and the W-phase windings W1 to W4, the inter-slit core portion 328 is added to the rotor core 323. The composite induced voltage is reduced due to the provision of.
 次に、ロータ321の高速回転時(弱め界磁制御時)において、ロータ321が図39(b)に示すような回転位置にあるとき、すなわち、N極の磁石磁極MnがU相巻線U1,U3と径方向に対向し、かつ、N極のコア磁極CnがU相巻線U2,U4と径方向に対向するときの磁気作用について説明する。 Next, when the rotor 321 is in the rotational position as shown in FIG. 39B during the high-speed rotation of the rotor 321 (during field weakening control), that is, the N-pole magnet magnetic pole Mn is the U-phase winding U1, U3. And the magnetic action when the N-pole core magnetic pole Cn is opposed to the U-phase windings U2 and U4 in the radial direction.
 このときにおいても、U相巻線U1,U3では、対向するN極の磁石磁極Mnが発する磁石磁束(径方向外側への磁束)が弱め界磁電流による鎖交磁束(径方向内側への鎖交磁束)を上回り、U相巻線U1,U3には径方向外側に向かって通過する鎖交磁束φxが発生する。 Even at this time, in the U-phase windings U1 and U3, the magnet magnetic flux (magnetic flux outward in the radial direction) generated by the opposing N-pole magnet magnetic pole Mn is weakened. Is generated in the U-phase windings U1 and U3 and passes outward in the radial direction.
 一方、U相巻線U2,U4と対向するコア磁極Cnは、磁石を有しない疑似磁極であり、磁石磁極Mnに比べてステータ11に与える磁力が弱い。これにより、磁石磁極Mnと対向するU相巻線U1,U3の鎖交磁束φxに比べて、コア磁極Cnと対向するU相巻線U2,U4の鎖交磁束φyが少なくなるため、U相巻線U2,U4に生じる誘起電圧がU相巻線U1,U3に生じる誘起電圧よりも小さくなる。従って、U相巻線U1~U4に生じる誘起電圧を合成した合成誘起電圧は、U相巻線U2,U4での誘起電圧の減少分だけ減少する。このように、N極の磁石磁極MnがU相巻線U1,U3と径方向に対向するとき、U相巻線U2,U4と径方向に対向するロータ321の部位がN極のコア磁極Cnであるときにおいても、U相巻線U1~U4の合成誘起電圧の減少が生じるようになっている。 On the other hand, the core magnetic pole Cn facing the U-phase windings U2 and U4 is a pseudo magnetic pole having no magnet, and has a lower magnetic force applied to the stator 11 than the magnet magnetic pole Mn. Thereby, the interlinkage magnetic flux φy of the U-phase windings U2 and U4 facing the core magnetic pole Cn is smaller than the interlinkage magnetic flux φx of the U-phase windings U1 and U3 facing the magnet magnetic pole Mn. The induced voltage generated in windings U2 and U4 is smaller than the induced voltage generated in U-phase windings U1 and U3. Therefore, the combined induced voltage obtained by synthesizing the induced voltages generated in the U-phase windings U1 to U4 is reduced by the decrease in the induced voltage in the U-phase windings U2 and U4. Thus, when the N-pole magnet magnetic pole Mn is opposed to the U-phase windings U1 and U3 in the radial direction, the portion of the rotor 321 radially opposed to the U-phase windings U2 and U4 is the N-pole core magnetic pole Cn. Even in this case, the combined induction voltage of the U-phase windings U1 to U4 is reduced.
 なお、上記ではU相巻線U1~U4がロータ321のN極と対向するときの合成誘起電圧の減少を例にとって説明したが、V相巻線V1~V4及びW相巻線W1~W4においても同様であり、また、ロータ321のS極においても同様にスリット間コア部328又はコア磁極Csによる合成誘起電圧の減少が生じる。 In the above description, the decrease in the combined induction voltage when the U-phase windings U1 to U4 face the N pole of the rotor 321 has been described as an example. However, in the V-phase windings V1 to V4 and the W-phase windings W1 to W4, The same is true for the S pole of the rotor 321, and similarly, the combined induced voltage decreases due to the core portion 328 between the slits or the core magnetic pole Cs.
 また、本実施形態のように、巻線13が各相でそれぞれ直列とされた巻線態様では、相毎の各巻線13でそれぞれ生じる誘起電圧の和が合成誘起電圧となることから、該合成誘起電圧が大きくなる傾向がある。このため、巻線13が各相でそれぞれ直列とされた構成において上記のようにスリット間コア部328及びコア磁極Cn,Csを設けることで、合成誘起電圧の抑制効果をより顕著に得ることができ、モータ310の高回転化を図るのにより好適となる。 Further, in the winding mode in which the windings 13 are connected in series in each phase as in the present embodiment, the sum of the induced voltages generated in the respective windings 13 for each phase becomes the combined induced voltage. The induced voltage tends to increase. Therefore, by providing the inter-slit core portion 328 and the core magnetic poles Cn and Cs as described above in a configuration in which the winding 13 is in series in each phase, the effect of suppressing the combined induced voltage can be obtained more significantly. Therefore, it is more preferable to increase the rotation of the motor 310.
 また、上記のスリット間コア部328又はコア磁極Cn,Csの作用によって、巻線13に供給する弱め界磁電流を小さく抑えることが可能となっている。そして、弱め界磁電流を小さくできることで、弱め界磁制御時に永久磁石322が減磁しづらくなり、また、巻線13の銅損を抑えることができる。これを換言すると、同等の弱め界磁電流量で低減できる鎖交磁束量が増加するため、弱め界磁制御による高回転化をより効果的に得ることができるようになっている。 Further, the field-weakening current supplied to the winding 13 can be kept small by the action of the core portion 328 between the slits or the core magnetic poles Cn and Cs. Since the field weakening current can be reduced, the permanent magnet 322 is difficult to demagnetize during field weakening control, and the copper loss of the winding 13 can be suppressed. In other words, the amount of interlinkage magnetic flux that can be reduced with the same amount of field-weakening current increases, so that higher rotation by field-weakening control can be obtained more effectively.
 次に、本実施形態の特徴的な利点を記載する。
 (13)ステータ11の巻線13は、供給される3相の駆動電流に応じた、それぞれ4つのU相巻線U1~U4、V相巻線V1~V4及びW相巻線W1~W4からなり、各相の4つの巻線はそれぞれ直列接続されている。つまり、ステータ11の巻線13は、各相において、直列接続された少なくとも2つの巻線(第1の巻線及び第2の巻線)を備える。
Next, characteristic advantages of this embodiment will be described.
(13) The windings 13 of the stator 11 are composed of four U-phase windings U1 to U4, V-phase windings V1 to V4, and W-phase windings W1 to W4, respectively, corresponding to the supplied three-phase driving current. Thus, the four windings of each phase are connected in series. That is, the winding 13 of the stator 11 includes at least two windings (first winding and second winding) connected in series in each phase.
 また、ロータ321は、永久磁石322を有する磁石磁極Mn,Msと、磁石磁極Mn(又は磁石磁極Ms)が例えばU相巻線U1,U3と対向するロータ321の回転位置でU相巻線U2,U4と対向するロータコア323の非磁石磁極部325とを備える。そして、このロータコア323の非磁石磁極部325は、磁石磁極Mn,Msの磁束によって該磁石磁極Mn,Msとは反対の磁極として機能するコア磁極Cn,Csと、対向する巻線13での弱め界磁磁束(鎖交磁束φy)の発生を許容するスリット間コア部328(磁束許容部)とからなる。 The rotor 321 includes a U-phase winding U2 at a rotational position of the rotor 321 where the magnet magnetic pole Mn, Ms having the permanent magnet 322 and the magnet magnetic pole Mn (or the magnet magnetic pole Ms) face the U-phase windings U1, U3, for example. , U4 and the non-magnetic magnetic pole portion 325 of the rotor core 323 facing each other. The non-magnet magnetic pole portion 325 of the rotor core 323 is weakened by the core magnetic poles Cn and Cs functioning as magnetic poles opposite to the magnetic poles Mn and Ms by the magnetic fluxes of the magnetic magnetic poles Mn and Ms and the windings 13 facing each other. It consists of an inter-slit core portion 328 (flux allowing portion) that allows generation of field magnetic flux (linkage flux φy).
 この構成によれば、コア磁極Cn,Csは磁石を有しない疑似磁極であり、磁石磁極Mn,Msに比べてステータ11に与える磁力が弱いため、各相の巻線13における合成誘起電圧を小さく抑えることができる。また、スリット間コア部328は、対向する巻線13での弱め界磁磁束(鎖交磁束φy)の発生を許容するため、該スリット間コア部328と対向する巻線13で鎖交磁束φyによって生じる誘起電圧は、磁石磁極Mn,Msと対向する巻線13で生じる誘起電圧に対して逆極性となる。これにより、各相の巻線13における合成誘起電圧をより一層小さく抑えることができる。このような非磁石磁極部325のコア磁極Cn,Cs及びスリット間コア部328の作用によって、モータ310の高回転化を図ることができる。 According to this configuration, the core magnetic poles Cn and Cs are pseudo magnetic poles having no magnet, and the magnetic force applied to the stator 11 is weaker than the magnet magnetic poles Mn and Ms. Can be suppressed. Further, the inter-slit core portion 328 allows the generation of field-weakening magnetic flux (interlinkage magnetic flux φy) in the opposing winding 13, so that the interlinkage magnetic flux φy is generated in the winding 13 facing the inter-slit core portion 328. The induced voltage generated by the above is opposite in polarity to the induced voltage generated in the winding 13 facing the magnetic poles Mn and Ms. Thereby, the synthetic | combination induced voltage in the coil | winding 13 of each phase can be suppressed further smaller. Due to the actions of the core magnetic poles Cn and Cs of the non-magnet magnetic pole part 325 and the core part 328 between slits, the motor 310 can be rotated at a high speed.
 ここで、ロータコア323の非磁石磁極部325を全てコア磁極Cn,Csとした構成(各非磁石磁極部325にスリット部を1つのみ設けた構成)を考えると、トルクは稼げるものの、コア磁極Cn,Csの磁力が弱め界磁磁束の発生を妨げてしまい、高回転化を図るのに不利となる。そこで、本実施形態のように、スリット間コア部328とコア磁極Cn,Csを非磁石磁極部325に形成することで、トルクの低下を極力抑えつつ高回転化を図ることができる。 Here, considering the configuration in which all the non-magnet magnetic pole portions 325 of the rotor core 323 are the core magnetic poles Cn and Cs (configuration in which each non-magnet magnetic pole portion 325 has only one slit portion), although the torque can be increased, the core magnetic pole The magnetic force of Cn and Cs weakens and prevents the generation of field magnetic flux, which is disadvantageous for achieving high rotation. Therefore, as in the present embodiment, by forming the inter-slit core portion 328 and the core magnetic poles Cn and Cs in the non-magnet magnetic pole portion 325, it is possible to achieve high rotation while suppressing a decrease in torque as much as possible.
 また、本実施形態では、各非磁石磁極部325に形成された一対のスリット部326a,326bの構成を変更することによって、モータ310の出力特性(トルク及び回転数)を調整する事が可能となる。 In the present embodiment, the output characteristics (torque and rotation speed) of the motor 310 can be adjusted by changing the configuration of the pair of slit portions 326a and 326b formed in each non-magnet magnetic pole portion 325. Become.
 例えば、各非磁石磁極部325における一対のスリット部326a,326bがなす角度が大きいほど、スリット間コア部328の開角度θaが大きく、また、コア磁極Cn,Csの開角度θcが小さくなる。これにより、弱め界磁制御時に巻線13に生じる弱め界磁磁束が増加し、高回転化を図るのに有利な構成となる。一方、各非磁石磁極部325における一対のスリット部326a,326bがなす角度が小さいほど、スリット間コア部328の開角度θaが小さく、また、コア磁極Cn,Csの開角度θcが大きくなり、高トルク化を図るのに有利な構成となる。従って、スリット部326a,326b間の角度の設定によって、所望のモータ特性を得ることが可能となる。 For example, the larger the angle formed by the pair of slit portions 326a and 326b in each non-magnet magnetic pole portion 325, the larger the opening angle θa of the inter-slit core portion 328 and the smaller the opening angle θc of the core magnetic poles Cn and Cs. As a result, the field weakening magnetic flux generated in the winding 13 at the time of field weakening control increases, which is advantageous for achieving high rotation. On the other hand, the smaller the angle formed by the pair of slit portions 326a and 326b in each non-magnet magnetic pole portion 325, the smaller the opening angle θa of the inter-slit core portion 328, and the larger the opening angle θc of the core magnetic poles Cn and Cs. This is an advantageous configuration for achieving high torque. Therefore, desired motor characteristics can be obtained by setting the angle between the slit portions 326a and 326b.
 (14)スリット間コア部328は、ロータ321の周方向においてN極のコア磁極CnとS極のコア磁極Csとの間に設けられ、N極及びS極のコア磁極Cn,Csはそれぞれ、周方向のスリット間コア部328とは反対側の部分で異極の磁石磁極Mn,Msと隣り合うように構成される。この構成によれば、周方向においてスリット間コア部328と磁石磁極Mn,Msとの間にコア磁極Cn,Csがそれぞれ介在されるため、スリット間コア部328が磁石磁極Mn,Msの磁束の影響をより受けにくい構成とすることができる。これにより、スリット間コア部328が弱め界磁磁束(鎖交磁束φy)の発生を許容するのにより好適な構成となる。 (14) The inter-slit core portion 328 is provided between the N-pole core magnetic pole Cn and the S-pole core magnetic pole Cs in the circumferential direction of the rotor 321, and the N-pole and S-pole core magnetic poles Cn, Cs are respectively It is configured to be adjacent to the magnet poles Mn and Ms having different polarities at a portion opposite to the core portion 328 between the slits in the circumferential direction. According to this configuration, since the core magnetic poles Cn and Cs are respectively interposed between the core portion 328 between the slits and the magnet magnetic poles Mn and Ms in the circumferential direction, the core portion 328 between the slits is the magnetic flux of the magnet magnetic poles Mn and Ms. The configuration can be made less susceptible to influence. Accordingly, the inter-slit core portion 328 is more preferable because it allows generation of field-weakening magnetic flux (linkage magnetic flux φy).
 (15)磁石磁極Mn,Msにおけるステータ11との対向面(磁石磁極Mn,Msの外周面)の開角度θmが、コア磁極Cn,Csにおけるステータ11との対向面(コア磁極Cn,Csの外周面)の開角度θcよりも大きく設定される。これにより、磁石磁極Mn,Msの磁力、及び該磁石磁極Mn,Msの磁束によって疑似的な磁極として機能するコア磁極Cn,Csの磁力を確保でき、トルクの低下をより好適に抑えることができる。 (15) The opening angle θm of the magnet magnetic poles Mn and Ms facing the stator 11 (the outer peripheral surface of the magnet magnetic poles Mn and Ms) is such that the core magnetic poles Cn and Cs face the stator 11 (the core magnetic poles Cn and Cs). It is set larger than the opening angle θc of the outer peripheral surface. As a result, the magnetic force of the magnet magnetic poles Mn and Ms and the magnetic force of the core magnetic poles Cn and Cs that function as pseudo magnetic poles can be secured by the magnetic flux of the magnet magnetic poles Mn and Ms, and the reduction in torque can be more suitably suppressed. .
 (16)スリット間コア部328におけるステータ11との対向面(スリット間コア部328の外周面)の開角度θaが、コア磁極Cn,Csの外周面の開角度θcよりも大きく設定されるため、高回転化により適した構成とすることができる。 (16) The opening angle θa of the surface facing the stator 11 in the core portion 328 between slits (the outer peripheral surface of the core portion 328 between slits) is set larger than the opening angle θc of the outer peripheral surfaces of the core magnetic poles Cn and Cs. Thus, a configuration suitable for higher rotation can be obtained.
 (17)ロータコア323は、互いに隣り合うスリット間コア部328とコア磁極Cn,Csとの間に磁気抵抗部としてのスリット部326a,326bを備えるため、コア磁極Cn,Csを通る磁石磁極Mn,Msの磁束がスリット間コア部328に流れることを抑制できる。 (17) Since the rotor core 323 includes slit portions 326a and 326b as magnetoresistive portions between the core portions 328 between the slits adjacent to each other and the core magnetic poles Cn and Cs, the magnet magnetic pole Mn passing through the core magnetic poles Cn and Cs. It is possible to suppress the magnetic flux of Ms from flowing into the core portion 328 between slits.
 また、スリット間コア部328とコア磁極Cn,Csとの間の磁気抵抗部をロータコア323に形成したスリット部326a,326bとすることで、磁気抵抗部をロータコア323に容易に構成することができる。 Further, the magnetoresistive portion between the core portion 328 between the slits and the core magnetic poles Cn and Cs is the slit portions 326 a and 326 b formed in the rotor core 323, so that the magnetoresistive portion can be easily configured in the rotor core 323. .
 なお、上記実施形態は、以下のように変更してもよい。
 ・各非磁石磁極部325におけるスリット部326a,326bの構成は上記実施形態に限定されるものではなく、各非磁石磁極部325に弱め界磁磁束の発生を許容する磁束許容部とコア磁極Cn,Csとが形成される構成であれば、その他の構成に適宜変更可能である。
In addition, you may change the said embodiment as follows.
The configuration of the slit portions 326a and 326b in each non-magnet magnetic pole portion 325 is not limited to the above embodiment, and a magnetic flux allowing portion and a core magnetic pole Cn that allow each non-magnet magnetic pole portion 325 to generate a field weakening magnetic flux. , Cs can be appropriately changed to other configurations.
 例えば、図40に示すように、上記実施形態のスリット部326a,326b同士を内周側端部で繋いだ構成としてもよい。このような構成によれば、コア磁極Cn,Csを通る磁石磁極Mn,Msの磁束がスリット間コア部328に流れることをより好適に抑制できる。 For example, as shown in FIG. 40, the slit portions 326a and 326b of the above embodiment may be connected to each other at the inner peripheral side end portion. According to such a structure, it can suppress more suitably that the magnetic flux of the magnet magnetic poles Mn and Ms which pass through the core magnetic poles Cn and Cs flows into the core part 328 between slits.
 また、例えば図41に示すように、各スリット部326a,326bの径方向中間部に複数のブリッジ部331を形成してもよい。各ブリッジ部331は、ロータコア323に形成されるものであって、各スリット部326a,326bにおける周方向に対向する一対の側面間を繋ぐように構成されている。なお、図41の構成では、各スリット部326a,326bは、径方向外側に開放されている。このような構成によれば、ブリッジ部331の構成(個数や軸方向及び径方向の寸法)の変更によって、モータ310の出力特性(トルク及び回転数)、及びロータコア323の剛性を容易に調整することが可能となる。 Further, for example, as shown in FIG. 41, a plurality of bridge portions 331 may be formed at the radial intermediate portions of the slit portions 326a and 326b. Each bridge portion 331 is formed on the rotor core 323, and is configured to connect a pair of side surfaces facing each other in the circumferential direction in each of the slit portions 326a and 326b. In the configuration of FIG. 41, the slit portions 326a and 326b are opened outward in the radial direction. According to such a configuration, the output characteristics (torque and rotation speed) of the motor 310 and the rigidity of the rotor core 323 can be easily adjusted by changing the configuration (number, axial direction, and radial dimension) of the bridge portion 331. It becomes possible.
 また、例えば図42に示すように、各スリット部326a,326b内に補助磁石332を設けてもよい。なお、図42には、各永久磁石322及び各補助磁石332の磁化方向を実線の矢印で示しており、矢印先端側がN極、矢印基端側がS極を表している。各補助磁石332は、直方体状をなす永久磁石であって、周方向に隣り合うコア磁極Cn,Csに対応した磁化方向を有している。すなわち、スリット部326aに設けられた補助磁石332は、周方向に隣り合うコア磁極Cs寄りの面がS極となるように磁化されている。また、スリット部326bに設けられた補助磁石332は、周方向に隣り合うコア磁極Cn寄りの面がN極となるように磁化されている。このような構成によれば、各スリット部326a,326b内の補助磁石332によってコア磁極Cn,Csの磁束量を増加させることができ、トルクの低下をより好適に抑えることができる。 For example, as shown in FIG. 42, an auxiliary magnet 332 may be provided in each of the slit portions 326a and 326b. In FIG. 42, the magnetization directions of the permanent magnets 322 and the auxiliary magnets 332 are indicated by solid arrows, and the tip end side of the arrow represents the N pole and the arrow base end side represents the S pole. Each auxiliary magnet 332 is a permanent magnet having a rectangular parallelepiped shape, and has a magnetization direction corresponding to the core magnetic poles Cn and Cs adjacent in the circumferential direction. That is, the auxiliary magnet 332 provided in the slit portion 326a is magnetized so that the surface near the core magnetic pole Cs adjacent in the circumferential direction becomes the S pole. Further, the auxiliary magnet 332 provided in the slit portion 326b is magnetized so that the surface near the core magnetic pole Cn adjacent in the circumferential direction becomes an N pole. According to such a configuration, the amount of magnetic flux of the core magnetic poles Cn and Cs can be increased by the auxiliary magnets 332 in the respective slit portions 326a and 326b, and a decrease in torque can be more suitably suppressed.
 なお、図42に示す構成では、各スリット部326a,326bに形成した前記ブリッジ部331を、補助磁石332の径方向の位置決めに用いている。また、このブリッジ部331によって、スリット部326a,326bからの補助磁石332の径方向外側への脱落が防止される。また、図42に示す構成では、補助磁石332が各スリット部326a,326bの内周側寄りの位置に設けられているため、補助磁石332の磁束がスリット間コア部328の外周側(つまり、弱め界磁磁束の磁路側)に流れにくくなっている。このため、補助磁石332の磁束によってスリット間コア部328に弱め界磁磁束が流れにくくなること(つまり、高回転化の妨げになること)を抑制できる。 In the configuration shown in FIG. 42, the bridge portion 331 formed in each of the slit portions 326a and 326b is used for positioning the auxiliary magnet 332 in the radial direction. Further, the bridge portion 331 prevents the auxiliary magnet 332 from falling off from the slit portions 326a and 326b to the outside in the radial direction. Further, in the configuration shown in FIG. 42, since the auxiliary magnet 332 is provided at a position closer to the inner peripheral side of each slit portion 326a, 326b, the magnetic flux of the auxiliary magnet 332 is changed to the outer peripheral side of the inter-slit core portion 328 (that is, It is difficult to flow in the field path of the field weakening magnetic flux. For this reason, it is possible to suppress the weak field magnetic flux from flowing through the core portion 328 between the slits by the magnetic flux of the auxiliary magnet 332 (that is, hindering high rotation).
 また、上記実施形態では、非磁石磁極部325の各スリット部326a,326bがロータ321の径方向に沿って形成されたが、これに限らず、例えば図43に示すように、スリット部326a,326bがロータ321の径方向に沿わない態様としてもよい。 Further, in the above embodiment, the slit portions 326a and 326b of the non-magnet magnetic pole portion 325 are formed along the radial direction of the rotor 321, but the present invention is not limited to this. For example, as shown in FIG. It is good also as an aspect which 326b does not follow the radial direction of the rotor 321. FIG.
 図43に示す構成では、各スリット部326a,326bは、非磁石磁極部325の径方向の略中央から外周側の位置に形成され、各スリット部326a,326bの内周側端部が非磁石磁極部325の径方向の略中央位置で互いに接近するように構成されている。そして、非磁石磁極部325における各スリット部326a,326bよりも外周側のスリット間コア部333が磁束許容部として機能する。 In the configuration shown in FIG. 43, each slit portion 326a, 326b is formed at a position on the outer peripheral side from the approximate center in the radial direction of the non-magnet magnetic pole portion 325, and the inner peripheral side end of each slit portion 326a, 326b is a non-magnet. The magnetic pole portions 325 are configured to approach each other at a substantially central position in the radial direction. And the core part 333 between slits of the outer peripheral side rather than each slit part 326a, 326b in the non-magnet magnetic pole part 325 functions as a magnetic flux permission part.
 また、図43に示す構成では、非磁石磁極部325におけるスリット間コア部333(各スリット部326a,326b)よりも径方向内側の部位に補助磁石334が埋設されている。この補助磁石334は、非磁石磁極部325の周方向中心線L2上に配置されている。また、補助磁石334は、軸方向視において径方向に長い長方形をなし、周方向のコア磁極Cn寄りの部位(非磁石磁極部325におけるスリット部326bよりも磁石磁極Ms寄りの部位)がN極、コア磁極Cs寄りの部位(非磁石磁極部325におけるスリット部326aよりも磁石磁極Mn寄りの部位)がS極となるように磁化されている(図43中の実線矢印を参照)。 Further, in the configuration shown in FIG. 43, the auxiliary magnet 334 is embedded in a portion on the radially inner side of the inter-slit core portion 333 (each slit portion 326a, 326b) in the non-magnet magnetic pole portion 325. The auxiliary magnet 334 is disposed on the circumferential center line L2 of the non-magnet magnetic pole portion 325. Further, the auxiliary magnet 334 has a rectangular shape that is long in the radial direction when viewed in the axial direction, and a portion near the core magnetic pole Cn in the circumferential direction (a portion closer to the magnet magnetic pole Ms than the slit portion 326b in the non-magnet magnetic pole portion 325) is N poles. The portion near the core magnetic pole Cs (the portion closer to the magnet magnetic pole Mn than the slit portion 326a in the non-magnetic magnetic pole portion 325) is magnetized so as to be the south pole (see the solid line arrow in FIG. 43).
 このような構成によれば、補助磁石334によってコア磁極Cn,Csの磁束量を増加させることができ、トルクの低下をより好適に抑えることができる。更に、同構成では、補助磁石334がスリット部326a,326bよりも径方向内側に設けられる。このため、各スリット部326a,326bによって補助磁石334の磁束がスリット間コア部333に侵入することが抑制され、補助磁石332の磁束が高回転化の妨げになることを抑制できる。 According to such a configuration, the amount of magnetic flux of the core magnetic poles Cn and Cs can be increased by the auxiliary magnet 334, and a reduction in torque can be more suitably suppressed. Further, in this configuration, the auxiliary magnet 334 is provided on the radially inner side with respect to the slit portions 326a and 326b. For this reason, it can suppress that the magnetic flux of the auxiliary magnet 334 penetrate | invades into the core part 333 between slits by each slit part 326a, 326b, and it can suppress that the magnetic flux of the auxiliary magnet 332 prevents high rotation.
 また、図43に示す構成において、更なるトルク向上を目指す場合、例えば図44に示すように、各スリット部326a,326b内に補助磁石332を設けてもよい。このような構成の場合においても、弱め界磁磁束の磁路との干渉を抑制するために、補助磁石332を各スリット部326a,326bの内周側寄りの位置に設けることが好ましい。 In the configuration shown in FIG. 43, when aiming at further torque improvement, for example, as shown in FIG. 44, an auxiliary magnet 332 may be provided in each of the slit portions 326a and 326b. Even in such a configuration, in order to suppress interference with the magnetic path of the field weakening magnetic flux, the auxiliary magnet 332 is preferably provided at a position closer to the inner peripheral side of each of the slit portions 326a and 326b.
 なお、上記各構成における補助磁石332,334は、例えばネオジム磁石、サマリウムコバルト(SmCo)磁石、SmFeN系磁石、フェライト磁石、アルニコ磁石等で構成されることが好ましい。また、補助磁石332,334は、焼結磁石及びボンド磁石のいずれの構成でもよい。 In addition, it is preferable that the auxiliary magnets 332 and 334 in each of the above-described configurations are composed of, for example, a neodymium magnet, a samarium cobalt (SmCo) magnet, an SmFeN-based magnet, a ferrite magnet, an alnico magnet, or the like. Further, the auxiliary magnets 332 and 334 may have any configuration of a sintered magnet and a bonded magnet.
 ・上記実施形態では、各スリット部326a,326bはロータコア323を軸方向に貫通しているが、これに限らず、スリット部326a,326bを、ロータコア323を軸方向に貫通しない穴とし、該スリット部326a,326bの軸方向長さを変更することによって、モータ310の出力特性(トルク及び回転数)を調整してもよい。 In the above embodiment, the slit portions 326a and 326b penetrate the rotor core 323 in the axial direction. However, the slit portions 326a and 326b are not limited to this, and the slits 326a and 326b are holes that do not penetrate the rotor core 323 in the axial direction. The output characteristics (torque and rotation speed) of the motor 310 may be adjusted by changing the axial lengths of the portions 326a and 326b.
 ・上記実施形態のロータコア323では、互いに隣り合うスリット間コア部328とコア磁極Cn,Csとの間に磁気抵抗部としてスリット部326a,326bを形成したが、これに特に限定されるものではない。例えば、レーザ照射によってロータコア323を部分的に非磁性化させることによって、スリット間コア部328とコア磁極Cn,Csとの間の磁気抵抗部を構成してもよい。 In the rotor core 323 of the above embodiment, the slit portions 326a and 326b are formed as the magnetoresistive portions between the core portions 328 between the slits adjacent to each other and the core magnetic poles Cn and Cs. However, the present invention is not particularly limited thereto. . For example, the magnetoresistive portion between the core portion 328 between the slits and the core magnetic poles Cn and Cs may be configured by partially demagnetizing the rotor core 323 by laser irradiation.
 ・図45に示すように、非磁石磁極部325の外径D1(つまり、各コア磁極Cn,Csの外径及びスリット間コア部328の外径)を、各磁石磁極Mn,Msの外径D2よりも大きく構成してもよい。 As shown in FIG. 45, the outer diameter D1 of the non-magnet magnetic pole portion 325 (that is, the outer diameter of each core magnetic pole Cn, Cs and the outer diameter of the core portion 328 between slits) is changed to the outer diameter of each magnet magnetic pole Mn, Ms. You may comprise larger than D2.
 このような構成によれば、ステータのティース12aの内周面との間のエアギャップ(隙間)が、各磁石磁極Mn,Msよりも非磁石磁極部325で小さくなる。つまり、非磁石磁極部325のスリット間コア部328及び各コア磁極Cn,Csがティース12aの内周面により接近するため、該スリット間コア部328及び各コア磁極Cn,Csに弱め界磁磁束がより通りやすくなる。これにより、各相における合成誘起電圧をより小さく抑えることができ、より一層の高回転化に寄与できる。 According to such a configuration, the air gap (gap) between the stator teeth 12a and the inner peripheral surface of the stator becomes smaller at the non-magnet magnetic pole portion 325 than at the magnetic poles Mn and Ms. That is, since the core part 328 between slits of the non-magnet magnetic pole part 325 and the core magnetic poles Cn, Cs are closer to the inner peripheral surface of the tooth 12a, the field weakening magnetic flux is weakened to the core part 328 between slits and the core magnetic poles Cn, Cs. Becomes easier to pass. Thereby, the synthetic induction voltage in each phase can be suppressed to a smaller value, which can contribute to further higher rotation.
 ・上記実施形態のロータ321では、非磁石磁極部325に構成された磁束許容部(スリット間コア部328)がロータコア323に一体形成されている。つまり、ロータコア323が磁束許容部(スリット間コア部328)を含む一体部品として構成されたが、これに限らず、磁束許容部を構成する部位の少なくとも一部を別体として構成してもよい。 In the rotor 321 of the above-described embodiment, the magnetic flux allowing portion (inter-slit core portion 328) configured in the non-magnet magnetic pole portion 325 is integrally formed with the rotor core 323. That is, the rotor core 323 is configured as an integral part including the magnetic flux allowance portion (core portion 328 between slits). However, the present invention is not limited thereto, and at least a part of the portion constituting the magnetic flux allowance portion may be configured separately. .
 例えば、図46に示す構成では、ロータコア323は、上記実施形態と同様の磁石磁極対P及びコア磁極Cn,Csを有するコア本体351と、コア本体351に連結された別体コア部材352とを備えている。 For example, in the configuration shown in FIG. 46, the rotor core 323 includes a core main body 351 having the same magnetic pole pair P and core magnetic poles Cn and Cs as in the above embodiment, and a separate core member 352 connected to the core main body 351. I have.
 コア本体351は、例えば冷間圧延鋼板(SPCC)の鉄材等から略円筒状に形成され、中心部には回転軸324が固定されている。また、コア本体351は、ロータコア323の非磁石磁極部325において、該コア本体351の外周面から径方向内側に窪むように凹設された収容凹部353を有している。収容凹部353の周方向両端面は径方向に沿った平面状をなし、該両端面には収容凹部353内に周方向に突出する連結凸部354がそれぞれ形成されている。各連結凸部354は、突出先端(周方向先端)にかけてロータ321の径方向に沿った幅が拡がるテーパ状をなしている。 The core body 351 is formed in a substantially cylindrical shape from, for example, a cold rolled steel plate (SPCC) iron or the like, and a rotating shaft 324 is fixed to the center. In addition, the core body 351 has an accommodation recess 353 that is recessed in the non-magnetic pole portion 325 of the rotor core 323 so as to be recessed radially inward from the outer peripheral surface of the core body 351. Both end surfaces in the circumferential direction of the housing recess 353 have a planar shape along the radial direction, and connecting projections 354 projecting in the circumferential direction are formed in the housing recess 353 on the both end surfaces. Each connecting convex portion 354 has a tapered shape in which the width along the radial direction of the rotor 321 extends from the protruding tip (circumferential tip).
 コア本体351において、収容凹部353とS極の磁石磁極Msの周方向間にはN極のコア磁極Cnが構成され、収容凹部353とN極の磁石磁極Mnの周方向間にはS極のコア磁極Csが構成されている。また、コア本体351における収容凹部353の径方向内側部位には、コア本体351を軸線L方向に貫通する磁気抵抗孔355が形成されている。この磁気抵抗孔355によって、周方向において非磁石磁極部325を挟んで構成される磁石磁極Mn,Ms間での磁束の短絡が抑制されている。 In the core body 351, an N-pole core magnetic pole Cn is formed between the housing recess 353 and the S-pole magnet magnetic pole Ms, and an S-pole is placed between the housing recess 353 and the N-pole magnet magnetic pole Mn. A core magnetic pole Cs is configured. In addition, a magnetoresistive hole 355 that penetrates the core body 351 in the axis L direction is formed in a radially inner portion of the housing recess 353 in the core body 351. By this magnetoresistive hole 355, the short circuit of the magnetic flux between the magnetic poles Mn and Ms constituted by sandwiching the non-magnetic magnetic pole portion 325 in the circumferential direction is suppressed.
 コア本体351の収容凹部353には、回転軸324の軸線Lを中心とする扇状をなす別体コア部材352が収容されている。別体コア部材352は、コア本体351(例えば鉄材)よりも透磁率の高い材料(例えばアモルファス金属やパーマロイ等)で構成されている。別体コア部材352の外周面は、回転軸324の軸線L方向から見て該軸線Lを中心とする円弧状をなし、該別体コア部材352の外周面とコア本体351の外周面とは、軸線Lを中心とする同一円上に位置するように構成されている。 In the housing recess 353 of the core body 351, a separate core member 352 having a fan shape centered on the axis L of the rotating shaft 324 is housed. The separate core member 352 is made of a material (for example, amorphous metal or permalloy) having a higher magnetic permeability than the core body 351 (for example, iron material). The outer peripheral surface of the separate core member 352 has an arc shape centered on the axis L when viewed from the direction of the axis L of the rotation shaft 324. The outer peripheral surface of the separate core member 352 and the outer peripheral surface of the core body 351 are , And are located on the same circle centered on the axis L.
 別体コア部材352の周方向両端面は、径方向に沿った平面状をなすとともに、収容凹部353の周方向両端面とそれぞれ対向している。つまり、別体コア部材352は、周方向においてN極のコア磁極CnとS極のコア磁極Csとの間に配置されている。そして、別体コア部材352の周方向両端面には、コア本体351の連結凸部354が嵌合される連結凹部361がそれぞれ形成されている。これら各連結凹部361に対する各連結凸部354の嵌合によって、別体コア部材352が収容凹部353内で固定されている。 Both end surfaces in the circumferential direction of the separate core member 352 have a planar shape along the radial direction, and are opposed to both end surfaces in the circumferential direction of the housing recess 353, respectively. That is, the separate core member 352 is disposed between the N-pole core magnetic pole Cn and the S-pole core magnetic pole Cs in the circumferential direction. And the connection recessed part 361 by which the connection convex part 354 of the core main body 351 is fitted is formed in the circumferential direction both end surface of the separate core member 352, respectively. The separate core member 352 is fixed in the housing recess 353 by fitting the connection protrusions 354 to the connection recesses 361.
 別体コア部材352の固定状態において、別体コア部材352の周方向両端面と収容凹部353の周方向両端面との間、及び別体コア部材352の径方向内側面と収容凹部353の径方向内側面との間には、空隙K3が設けられている。また、各連結凹部361と該各連結凹部361に嵌合された各連結凸部354との周方向間には、空隙K4が設けられている。つまり、別体コア部材352は、連結凹部361の径方向両側面のみでコア本体351(連結凸部354)と接触している。 In the fixed state of the separate core member 352, between the circumferential direction both end faces of the separate core member 352 and the circumferential end faces of the receiving recess 353, and the radial inner side surface of the separate core member 352 and the diameter of the receiving recess 353 A gap K3 is provided between the inner side surface in the direction. In addition, a gap K4 is provided between the connection concave portions 361 and the connection convex portions 354 fitted in the connection concave portions 361 in the circumferential direction. That is, the separate core member 352 is in contact with the core main body 351 (the connecting convex portion 354) only on the both radial sides of the connecting concave portion 361.
 なお、別体コア部材352は、非磁石磁極部325の周方向中心線L2に対して線対称となるように構成されている。また、別体コア部材352の軸線Lを中心とする開角度(占有角度)は、上記実施形態のスリット間コア部328の開角度θaと同様に設定されている。また、図46に示す構成では、別体コア部材352の内径をロータコア323の外径(コア本体351の外径)の半分程度としているが、これに限らず、別体コア部材352の内径をロータコア323の外径の半分以上又は半分以下に設定してもよい。 The separate core member 352 is configured to be line symmetric with respect to the circumferential center line L2 of the non-magnet magnetic pole portion 325. Further, the opening angle (occupation angle) around the axis L of the separate core member 352 is set in the same manner as the opening angle θa of the inter-slit core portion 328 of the above embodiment. In the configuration shown in FIG. 46, the inner diameter of the separate core member 352 is about half of the outer diameter of the rotor core 323 (the outer diameter of the core main body 351). You may set to more than half or less than half of the outer diameter of the rotor core 323.
 このような構成によれば、別体コア部材352が、上記実施形態のスリット間コア部328と略同様に、弱め界磁磁束の発生を許容する磁束許容部として機能するため、モータ310の高回転化を図ることができる。そして、同構成では、別体コア部材352が、磁石磁極Mn,Ms及びコア磁極Cn,Csを有するコア本体351とは別体として構成される。このため、別体コア部材352における弱め界磁磁束の磁路(d軸磁路)と、コア本体351における磁石磁極Mn,Msの磁束の磁路との干渉を抑制できる。これにより、別体コア部材352に弱め界磁磁束が通り易くなることで、より一層の高回転化に寄与できる。 According to such a configuration, the separate core member 352 functions as a magnetic flux allowing portion that allows generation of field-weakening magnetic flux, similar to the inter-slit core portion 328 of the above embodiment. Rotation can be achieved. In the same configuration, the separate core member 352 is configured separately from the core body 351 having the magnet magnetic poles Mn and Ms and the core magnetic poles Cn and Cs. For this reason, interference between the magnetic path of the field weakening magnetic flux (d-axis magnetic path) in the separate core member 352 and the magnetic paths of the magnetic poles Mn and Ms in the core body 351 can be suppressed. As a result, the field weakening magnetic flux can easily pass through the separate core member 352, thereby contributing to further higher rotation.
 更に、同構成では、別体コア部材352は、コア本体351よりも透磁率の高い材料で構成されるため、別体コア部材352に弱め界磁磁束をより一層通り易くすることができ、その結果、更なる高回転化に寄与できる。また、ロータコア323の構成部品において、少なくとも別体コア部材352を透磁率の高い材料で構成し、コア本体351を安価な鉄材等で構成することで、製造コストの増加を抑えつつ、高回転化を図ることができる。 Further, in the same configuration, the separate core member 352 is made of a material having a higher magnetic permeability than the core main body 351, so that the weakening field magnetic flux can be more easily passed through the separate core member 352. As a result, it can contribute to further higher rotation. Further, in the component parts of the rotor core 323, at least the separate core member 352 is made of a material having high magnetic permeability, and the core body 351 is made of an inexpensive iron material or the like, so that an increase in manufacturing cost can be suppressed while increasing the rotation speed. Can be achieved.
 また更に、周方向における別体コア部材352と磁石磁極Mn,Msとの間にコア磁極Cn,Csがそれぞれ介在されるため、別体コア部材352が磁石磁極Mn,Msの磁束の影響をより受けにくい構成とすることができる。また、周方向における別体コア部材352とコア磁極Cn,Csとの間にそれぞれ空隙K3が設けられるため、別体コア部材352を通る弱め界磁磁束に対する磁石磁極Mn,Msの磁束の干渉をより一層抑制できる。 Furthermore, since the core magnetic poles Cn and Cs are respectively interposed between the separate core member 352 and the magnet magnetic poles Mn and Ms in the circumferential direction, the separate core member 352 is more affected by the magnetic flux of the magnet magnetic poles Mn and Ms. It can be configured to be difficult to receive. Further, since the gaps K3 are provided between the separate core member 352 and the core magnetic poles Cn and Cs in the circumferential direction, interference of the magnetic poles Mn and Ms with respect to the field weakening magnetic flux passing through the separate core member 352 is prevented. It can be further suppressed.
 ・上記の図46に示す構成では、別体コア部材352がコア本体351に一体形成された連結凸部354にて連結されたが、これに限らず、例えば図47に示すように、コア本体351及び別体コア部材352とは別体をなす連結部材362を介してコア本体351と別体コア部材352とを連結してもよい。 In the configuration shown in FIG. 46, the separate core member 352 is connected by the connecting protrusion 354 integrally formed with the core body 351. However, the present invention is not limited to this, and for example, as shown in FIG. The core body 351 and the separate core member 352 may be connected via a connecting member 362 that is separate from the 351 and the separate core member 352.
 連結部材362は、別体コア部材352の周方向両側のそれぞれにおいて該別体コア部材352とコア本体351とに跨って設けられ、各連結部材362の周方向両端部が、別体コア部材352の周方向両端面及び収容凹部353の周方向両端面にそれぞれ形成された連結凹部363,364に嵌合されている。なお、連結部材362の径方向の設置位置は、別体コア部材352の径方向中心位置に設定されている。また、各連結部材362は、周方向中心部から周方向両端にかけて径方向幅が拡がるテーパ状をなしている。この連結部材362によって、コア本体351(収容凹部353)と別体コア部材352とが互いに接触しない態様で連結されている。また、連結部材362は、コア本体351及び別体コア部材352よりも磁気抵抗の大きい材料(例えば、樹脂、ステンレス鋼、真鍮等)で構成されている。 The connecting member 362 is provided across the separate core member 352 and the core body 351 on both sides of the separate core member 352 in the circumferential direction, and both end portions in the circumferential direction of each connecting member 362 are separate core members 352. Are fitted in connecting recesses 363 and 364 respectively formed on both end surfaces in the circumferential direction and on both end surfaces in the circumferential direction of the housing recess 353. The radial installation position of the connecting member 362 is set to the radial center position of the separate core member 352. In addition, each connecting member 362 has a tapered shape in which the radial width increases from the center in the circumferential direction to both ends in the circumferential direction. By this connecting member 362, the core main body 351 (accommodating recess 353) and the separate core member 352 are connected so as not to contact each other. The connecting member 362 is made of a material (for example, resin, stainless steel, brass, etc.) having a larger magnetic resistance than the core main body 351 and the separate core member 352.
 このような構成によれば、コア本体351と別体コア部材352とが連結部材362のみで繋がるように構成できる。そして、連結部材362の構成材料に、コア本体351及び別体コア部材352よりも磁気抵抗の大きい材料を用いることで、コア本体351の磁石磁極Mn,Msの磁束が連結部材362を通じて別体コア部材352に向かって流れることを抑制できる。その結果、別体コア部材352を通る弱め界磁磁束に対する磁石磁極Mn,Msの磁束の干渉をより一層抑制できる。なお、図47に示す構成では、コア本体351の収容凹部353と別体コア部材352との間に空隙K3が設けられているが、これに限らず、例えば、空隙K3に樹脂等の充填材を充填し、該充填材を、コア本体351と別体コア部材352とを連結する連結部材として機能させてもよい。 According to such a configuration, the core main body 351 and the separate core member 352 can be configured to be connected only by the connecting member 362. The magnetic material of the magnetic poles Mn and Ms of the core main body 351 is separated through the connecting member 362 by using a material having a larger magnetic resistance than the core main body 351 and the separate core member 352 as the constituent material of the connecting member 362. The flow toward the member 352 can be suppressed. As a result, the interference of the magnetic poles Mn and Ms with respect to the field weakening magnetic flux passing through the separate core member 352 can be further suppressed. In the configuration shown in FIG. 47, the gap K3 is provided between the housing recess 353 of the core body 351 and the separate core member 352. However, the present invention is not limited to this. For example, a filler such as a resin is provided in the gap K3. And the filler may function as a connecting member that connects the core body 351 and the separate core member 352.
 また、上記の図46及び図47に示すような構成において、別体コア部材352は、主に周方向に磁化容易軸(磁化され易い結晶方位)を持つ材料で構成されていることが好ましい。これによれば、別体コア部材352におけるd軸磁路において弱め界磁磁束が通り易くなり、その結果、より一層の高回転化に寄与できる。 46 and 47, it is preferable that the separate core member 352 is mainly made of a material having an easy magnetization axis (a crystal orientation easy to be magnetized) in the circumferential direction. According to this, the field-weakening magnetic flux easily passes through the d-axis magnetic path in the separate core member 352, and as a result, it can contribute to further higher rotation.
 また、上記の図46及び図47に示すような構成において、ロータ321の外周面を被覆する円筒状のカバー部材を設けてもよい。これによれば、別体コア部材352がコア本体351から脱落することをカバー部材によって抑制できる。 46 and 47, a cylindrical cover member that covers the outer peripheral surface of the rotor 321 may be provided. According to this, it is possible to suppress the separate core member 352 from dropping from the core body 351 by the cover member.
 ・上記実施形態では、各相の巻線、つまり、U相巻線U1~U4、V相巻線V1~V4、及びW相巻線W1~W4がそれぞれ直列接続されたが、これに特に限定されるものではなく、巻線態様は適宜変更してもよい。例えば、変更例としてU相を例にとって説明すると、U相巻線U1,U2を直列接続し、また、U相巻線U3,U4を直列接続し、それらU相巻線U1,U2の直列対とU相巻線U3,U4の直列対とを並列接続してもよい。 In the above embodiment, the windings of each phase, that is, the U-phase windings U1 to U4, the V-phase windings V1 to V4, and the W-phase windings W1 to W4 are connected in series. However, the winding mode may be changed as appropriate. For example, when the U phase is taken as an example of modification, U phase windings U1 and U2 are connected in series, U phase windings U3 and U4 are connected in series, and a series pair of these U phase windings U1 and U2 is connected. And a series pair of U-phase windings U3 and U4 may be connected in parallel.
 ・上記実施形態では、ロータ321を8極とし、ステータ11の巻線13の個数を12個とした(つまり、8極12スロットのモータ構成とした)が、ロータ321の極数と巻線13の個数は構成に応じて適宜変更可能である。 In the above embodiment, the rotor 321 has 8 poles and the number of windings 13 of the stator 11 is 12 (that is, the motor configuration has 8 poles and 12 slots). The number of can be appropriately changed according to the configuration.
 ・上記実施形態では、ロータ321の例えばN極において、磁石磁極Mnとコア磁極Cnとを同数(それぞれ2個)で構成したが、必ずしも同数である必要はない。例えば、磁石磁極Mnを3個(又は1個)とし、コア磁極Cnを1個(又は3個)として構成してもよい。また、ロータのS極(磁石磁極Ms及びコア磁極Cs)においても同様の変更を行ってもよい。 In the above embodiment, for example, in the N pole of the rotor 321, the magnetic pole Mn and the core magnetic pole Cn are configured in the same number (each two), but it is not always necessary to have the same number. For example, the number of magnet magnetic poles Mn may be three (or one) and the number of core magnetic poles Cn may be one (or three). The same change may be made for the S pole (magnet magnetic pole Ms and core magnetic pole Cs) of the rotor.
 ・上記実施形態では、ロータ321のN極及びS極においてコア磁極Cn及びコア磁極Csをそれぞれ備えたが、これに特に限定されるものではなく、例えば、ロータ321の一方の極のみにコア磁極を設け、他方の極を全て磁石磁極で構成してもよい。 In the above embodiment, the core magnetic pole Cn and the core magnetic pole Cs are provided in the N pole and the S pole of the rotor 321, respectively. However, the present invention is not particularly limited thereto. May be provided, and the other pole may be composed entirely of magnet magnetic poles.
 ・上記実施形態の各磁石磁極Mn,Msでは、ロータコア323に埋設される一対の永久磁石322が軸方向視で外周側に拡がる略V字状に配置される構成としたが、これに特に限定されるものではなく、磁石磁極Mn,Msにおける永久磁石の構成は適宜変更可能である。例えば、1つの磁石磁極Mn,Msにつき1つの永久磁石を有する構成としてもよい。 In each of the magnetic poles Mn and Ms of the above-described embodiment, the pair of permanent magnets 322 embedded in the rotor core 323 are arranged in a substantially V shape that expands to the outer peripheral side when viewed in the axial direction. However, the configuration of the permanent magnets in the magnet magnetic poles Mn and Ms can be changed as appropriate. For example, it is good also as a structure which has one permanent magnet per one magnetic pole Mn and Ms.
 また、上記実施形態のロータ321は、磁石磁極Mn,Msを構成する永久磁石322がロータコア323に埋設された埋込磁石型構造(IPM構造)をなしているが、磁石磁極Mn,Msを構成する永久磁石がロータコア323の外周面に固着された表面磁石型構造(SPM構造)としてもよい。 Further, the rotor 321 of the above embodiment has an embedded magnet type structure (IPM structure) in which the permanent magnets 322 constituting the magnetic poles Mn and Ms are embedded in the rotor core 323, but the magnetic poles Mn and Ms are constituted. The permanent magnet may be a surface magnet type structure (SPM structure) in which the outer peripheral surface of the rotor core 323 is fixed.
 ・上記実施形態では、永久磁石322を焼結磁石としたが、これ以外に例えば、ボンド磁石としてもよい。
 ・上記実施形態では、ロータコア323を前記コアシートの積層構造としたが、これ以外に例えば、圧粉体コアや、鍛造(冷間鍛造)や切削等で成形した一体ブロックとしてもよい。
In the above embodiment, the permanent magnet 322 is a sintered magnet, but other than this, for example, a bonded magnet may be used.
In the above embodiment, the rotor core 323 has a laminated structure of the core sheets. However, other than this, for example, a green compact core or an integrated block formed by forging (cold forging), cutting, or the like may be used.
 ・上記実施形態では、ロータ321をステータ11の内周側に配置したインナロータ型のモータ310に本発明を具体化したが、これに特に限定されるものではなく、ロータをステータの外周側に配置したアウタロータ型のモータに本発明を具体化してもよい。 In the above embodiment, the present invention is embodied in the inner rotor type motor 310 in which the rotor 321 is disposed on the inner peripheral side of the stator 11. However, the present invention is not particularly limited thereto, and the rotor is disposed on the outer peripheral side of the stator. The present invention may be embodied in an outer rotor type motor.
 ・上記実施形態では、ステータ11とロータ321とが径方向に対向するラジアルギャップ型のモータ310に本発明を具体化したが、これに特に限定されるものではなく、ステータとロータとが軸方向に対向するアキシャルギャップ型のモータに本発明を適用してもよい。 In the above embodiment, the present invention is embodied in the radial gap type motor 310 in which the stator 11 and the rotor 321 face each other in the radial direction. However, the present invention is not particularly limited thereto, and the stator and the rotor are in the axial direction. The present invention may be applied to an axial gap type motor that faces the motor.
 ・上記した実施形態並びに各変形例は適宜組み合わせてもよい。 -The above-mentioned embodiment and each modification may be combined suitably.

Claims (46)

  1.  巻線を有するステータと、
     前記巻線に駆動電流が供給されることで生じる回転磁界を受けて回転するロータと、を備え、
     前記巻線は第1の巻線と第2の巻線とを含んでおり、該第1の巻線と第2の巻線とは前記駆動電流によって互いに同一のタイミングで励磁され、かつ、直列接続されており、
     前記ロータは、
      第1磁極部と、
      前記第1磁極部が前記第1の巻線と対向するロータの回転位置で前記第2の巻線と対向し、前記ステータに与える磁力が前記第1磁極部よりも弱い第2磁極部と
    を含んでいるモータ。
    A stator having windings;
    A rotor that rotates in response to a rotating magnetic field generated by supplying a driving current to the winding; and
    The winding includes a first winding and a second winding, and the first winding and the second winding are excited at the same timing by the drive current and are connected in series. Connected,
    The rotor is
    A first magnetic pole portion;
    The first magnetic pole portion is opposed to the second winding at the rotational position of the rotor facing the first winding, and the second magnetic pole portion has a magnetic force applied to the stator that is weaker than that of the first magnetic pole portion. Including motor.
  2.  請求項1に記載のモータにおいて、
     前記巻線は、供給される3相の駆動電流に応じた、それぞれ2n個のU相巻線、V相巻線及びW相巻線を含んでおり、
     nは2以上の整数であり、
     前記第1及び第2磁極部のそれぞれの個数がn個であるモータ。
    The motor according to claim 1,
    Each of the windings includes 2n U-phase windings, V-phase windings, and W-phase windings according to the supplied three-phase driving current.
    n is an integer greater than or equal to 2,
    A motor in which each of the first and second magnetic pole portions is n.
  3.  請求項2に記載のモータにおいて、
     前記第1磁極部及び前記第2磁極部は、周方向等間隔に交互に設けられているモータ。
    The motor according to claim 2,
    The motor in which the first magnetic pole part and the second magnetic pole part are provided alternately at equal intervals in the circumferential direction.
  4.  請求項1~3のいずれか1項に記載のモータにおいて、
     前記第1及び第2磁極部は永久磁石をそれぞれ有しており、
     前記第2磁極部の外周面が前記第1磁極部の外周面よりも径方向内側に位置しているモータ。
    The motor according to any one of claims 1 to 3,
    The first and second magnetic pole portions each have a permanent magnet;
    A motor in which an outer peripheral surface of the second magnetic pole part is positioned radially inward from an outer peripheral surface of the first magnetic pole part.
  5.  請求項1~4のいずれか1項に記載のモータにおいて、
     前記第1及び第2磁極部は永久磁石をそれぞれ有しており、
     前記第2磁極部の永久磁石のロータ軸線を中心とする開角度が、前記第1磁極部の永久磁石のロータ軸線を中心とする開角度よりも狭いモータ。
    The motor according to any one of claims 1 to 4,
    The first and second magnetic pole portions each have a permanent magnet;
    A motor in which an opening angle around the rotor axis of the permanent magnet of the second magnetic pole portion is narrower than an opening angle around the rotor axis of the permanent magnet of the first magnetic pole portion.
  6.  請求項1~5のいずれか1項に記載のモータにおいて、
     前記第1及び第2磁極部は永久磁石をそれぞれ有しており、
     前記第2磁極部の永久磁石の径方向厚さが前記第1磁極部の永久磁石の径方向厚さよりも薄いモータ。
    The motor according to any one of claims 1 to 5,
    The first and second magnetic pole portions each have a permanent magnet;
    The motor in which the radial thickness of the permanent magnet of the second magnetic pole portion is thinner than the radial thickness of the permanent magnet of the first magnetic pole portion.
  7.  請求項1~6のいずれか1項に記載のモータにおいて、
     前記第1及び第2磁極部は永久磁石をそれぞれ有しており、
     前記第2磁極部の永久磁石の残留磁束密度が前記第1磁極部の永久磁石の残留磁束密度よりも小さいモータ。
    The motor according to any one of claims 1 to 6,
    The first and second magnetic pole portions each have a permanent magnet;
    A motor having a residual magnetic flux density of the permanent magnet of the second magnetic pole portion smaller than a residual magnetic flux density of the permanent magnet of the first magnetic pole portion.
  8.  請求項1~7のいずれか1項に記載のモータにおいて、
     前記モータは弱め界磁制御を実行可能に構成されているモータ。
    The motor according to any one of claims 1 to 7,
    The motor is configured to be capable of performing field-weakening control.
  9.  請求項1に記載のモータにおいて、
     前記ロータは、
      周方向に複数の爪状磁極をそれぞれ有し、互いの爪状磁極が周方向に交互となる態様で組み付けられる一対のロータコアと、
      該一対のロータコアの軸方向間に配置され該軸方向に磁化されることで前記爪状磁極を磁極として機能させる永久磁石とを含んでおり、
     前記ロータの磁極は、前記第1磁極部と前記第2磁極部とを含んでいるモータ。
    The motor according to claim 1,
    The rotor is
    A pair of rotor cores each having a plurality of claw-shaped magnetic poles in the circumferential direction and assembled in a manner in which the claw-shaped magnetic poles alternate in the circumferential direction;
    A permanent magnet disposed between the pair of rotor cores in the axial direction and magnetized in the axial direction to cause the claw-shaped magnetic pole to function as a magnetic pole,
    The rotor magnetic pole includes the first magnetic pole part and the second magnetic pole part.
  10.  請求項9に記載のモータにおいて、
     前記巻線は、供給される3相の駆動電流に応じた、それぞれ2n個のU相巻線、V相巻線及びW相巻線を含んでおり、
     nは2以上の整数であり、
     前記第1及び第2磁極部のそれぞれの個数がn個であるモータ。
    The motor according to claim 9, wherein
    Each of the windings includes 2n U-phase windings, V-phase windings, and W-phase windings according to the supplied three-phase driving current.
    n is an integer greater than or equal to 2,
    A motor in which each of the first and second magnetic pole portions is n.
  11.  請求項10に記載のモータにおいて、
     前記第1磁極部及び前記第2磁極部は、周方向等間隔に交互に設けられているモータ。
    The motor according to claim 10, wherein
    The motor in which the first magnetic pole part and the second magnetic pole part are provided alternately at equal intervals in the circumferential direction.
  12.  請求項9~11のいずれか1項に記載のモータにおいて、
     前記第1及び第2磁極部は、それぞれ単一の前記爪状磁極から構成され、
     前記第1磁極部をなす前記爪状磁極と前記第2磁極部をなす前記爪状磁極とは、互いに形状が異なっているモータ。
    The motor according to any one of claims 9 to 11,
    Each of the first and second magnetic pole portions is composed of a single claw-shaped magnetic pole,
    The claw-shaped magnetic poles forming the first magnetic pole part and the claw-shaped magnetic poles forming the second magnetic pole part have different shapes from each other.
  13.  請求項12に記載のモータにおいて、
     前記第2磁極部をなす前記爪状磁極は、前記第1磁極部をなす前記爪状磁極よりも開角度が狭いモータ。
    The motor according to claim 12, wherein
    The claw-shaped magnetic pole forming the second magnetic pole part has a narrower opening angle than the claw-shaped magnetic pole forming the first magnetic pole part.
  14.  請求項9~13のいずれか1項に記載のモータにおいて、
     前記ロータは、前記第2磁極部の前記磁力を前記第1磁極部よりも弱くさせるための磁力調整用磁石を含んでいるモータ。
    The motor according to any one of claims 9 to 13,
    The rotor includes a magnetic force adjusting magnet for making the magnetic force of the second magnetic pole part weaker than that of the first magnetic pole part.
  15.  請求項14に記載のモータにおいて、
     前記第1及び第2磁極部は、それぞれ単一の前記爪状磁極から構成され、
     前記磁力調整用磁石は、前記第1磁極部をなす前記爪状磁極の背面側に配置され該爪状磁極から背面側へ流れる漏れ磁束を抑えるべく磁化された背面磁石部を含んでいるモータ。
    The motor according to claim 14, wherein
    Each of the first and second magnetic pole portions is composed of a single claw-shaped magnetic pole,
    The magnetic force adjusting magnet includes a back magnet portion that is arranged on the back side of the claw-shaped magnetic pole that forms the first magnetic pole portion and is magnetized to suppress leakage magnetic flux flowing from the claw-shaped magnetic pole to the back side.
  16.  請求項14又は15に記載のモータにおいて、
     前記第1及び第2磁極部は、それぞれ単一の前記爪状磁極から構成され、
     前記磁力調整用磁石は、前記第1磁極をなす前記爪状磁極の周方向側方に配置され該爪状磁極から周方向へ流れる漏れ磁束を抑えるべく磁化された極間磁石部を含んでいるモータ。
    The motor according to claim 14 or 15,
    Each of the first and second magnetic pole portions is composed of a single claw-shaped magnetic pole,
    The magnet for adjusting magnetic force includes an inter-pole magnet portion that is arranged on the side in the circumferential direction of the claw-shaped magnetic pole that forms the first magnetic pole and is magnetized so as to suppress leakage magnetic flux flowing in the circumferential direction from the claw-shaped magnetic pole. motor.
  17.  請求項14に記載のモータにおいて、
     前記磁力調整用磁石が前記爪状磁極の外周面に設けられ、該爪状磁極における前記磁力調整用磁石が設けられていない部位が前記第1磁極部及び前記第2磁極部のいずれか一方を構成し、
     前記磁力調整用磁石が前記第1磁極部及び前記第2磁極部のいずれか他方を構成するモータ。
    The motor according to claim 14, wherein
    The magnetic force adjusting magnet is provided on the outer peripheral surface of the claw-shaped magnetic pole, and a portion of the claw-shaped magnetic pole where the magnetic force adjusting magnet is not provided is one of the first magnetic pole part and the second magnetic pole part. Configure
    The motor in which the magnet for adjusting magnetic force constitutes the other of the first magnetic pole part and the second magnetic pole part.
  18.  請求項9~17のいずれか1項に記載のモータにおいて、
     前記モータは弱め界磁制御を実行可能に構成されているモータ。
    The motor according to any one of claims 9 to 17,
    The motor is configured to be capable of performing field-weakening control.
  19.  請求項1に記載のモータにおいて、
     前記第1磁極部は永久磁石を用いる磁石磁極であり、
     前記第2磁極部はロータコアの一部を用いるコア磁極であるモータ。
    The motor according to claim 1,
    The first magnetic pole portion is a magnetic pole using a permanent magnet,
    The motor in which the second magnetic pole portion is a core magnetic pole using a part of a rotor core.
  20.  請求項19に記載のモータにおいて、
     前記巻線は、供給される3相の駆動電流に応じた、それぞれ2n個のU相巻線、V相巻線及びW相巻線を含んでおり、
     nは2以上の整数であり、
     前記磁石磁極と前記コア磁極のそれぞれの個数がn個であるモータ。
    The motor according to claim 19,
    Each of the windings includes 2n U-phase windings, V-phase windings, and W-phase windings according to the supplied three-phase driving current.
    n is an integer greater than or equal to 2,
    A motor in which the number of each of the magnet magnetic pole and the core magnetic pole is n.
  21.  請求項20に記載のモータにおいて、
     前記磁石磁極及び前記コア磁極は、周方向等間隔に交互に設けられているモータ。
    The motor according to claim 20, wherein
    The motor in which the magnet magnetic pole and the core magnetic pole are alternately provided at equal intervals in the circumferential direction.
  22.  請求項19~21のいずれか1項に記載のモータにおいて、
     前記コア磁極は、前記永久磁石を用いた異極の磁石磁極と周方向において隣り合っているモータ。
    The motor according to any one of claims 19 to 21,
    The core magnetic pole is a motor adjacent to the magnet pole of a different polarity using the permanent magnet in the circumferential direction.
  23.  請求項22に記載のモータにおいて、
     前記コア磁極と前記異極の磁石磁極との間に空隙が設けられているモータ。
    The motor according to claim 22,
    A motor in which a gap is provided between the core magnetic pole and the magnet pole having a different polarity.
  24.  請求項19~23のいずれか1項に記載のモータにおいて、
     前記ロータのN極及びS極の各々は前記磁石磁極及び前記コア磁極を含んでおり、
     N極の前記コア磁極とS極の前記コア磁極とが空隙を介して周方向に隣り合っているモータ。
    The motor according to any one of claims 19 to 23,
    Each of the N pole and S pole of the rotor includes the magnet magnetic pole and the core magnetic pole,
    A motor in which the core magnetic pole of N pole and the core magnetic pole of S pole are adjacent to each other through a gap in the circumferential direction.
  25.  請求項19~24のいずれか1項に記載のモータにおいて、
     前記ロータコアには、該ロータコア内を流れる磁束を調整するための磁気調整部が設けられているモータ。
    The motor according to any one of claims 19 to 24,
    The motor in which the magnetic adjustment part for adjusting the magnetic flux which flows through the inside of the rotor core is provided in the rotor core.
  26.  請求項25に記載のモータにおいて、
     前記磁気調整部は、前記ロータコアに埋設され前記コア磁極に磁束を流す補助磁石を含んでいるモータ。
    The motor according to claim 25,
    The magnetic adjustment unit is a motor including an auxiliary magnet embedded in the rotor core and causing a magnetic flux to flow through the core magnetic pole.
  27.  請求項25又は26に記載のモータにおいて、
     前記コア磁極は、前記永久磁石を用いた異極の磁石磁極と周方向において隣り合っており、
     前記磁気調整部は、前記磁石磁極の磁束を隣りの前記コア磁極の周方向中心に向かって導く磁束誘導部を含んでいるモータ。
    The motor according to claim 25 or 26,
    The core magnetic pole is adjacent to the magnet pole of a different polarity using the permanent magnet in the circumferential direction,
    The said magnetic adjustment part is a motor containing the magnetic flux guidance | guide part which guides the magnetic flux of the said magnetic pole toward the circumferential direction center of the said adjacent core magnetic pole.
  28.  請求項25~27のいずれか1項に記載のモータにおいて、
     前記ロータのN極及びS極の各々は前記磁石磁極及び前記コア磁極を含んでおり、
     N極の前記磁石磁極とS極の前記磁石磁極とが周方向に隣り合っており、
     N極の前記磁石磁極におけるS極の前記磁石磁極とは反対側にはS極の前記コア磁極が設けられており、
     S極の前記磁石磁極におけるN極の前記磁石磁極とは反対側にはN極の前記コア磁極が設けられており、
     前記磁気調整部は、周方向に隣り合うN極の前記磁石磁極とS極の前記磁石磁極との間の磁束の短絡を抑制するように構成されているモータ。
    The motor according to any one of claims 25 to 27,
    Each of the N pole and S pole of the rotor includes the magnet magnetic pole and the core magnetic pole,
    The N magnetic pole and the S magnetic pole are adjacent in the circumferential direction,
    The S magnetic pole is provided on the opposite side of the N magnetic pole to the S magnetic pole,
    On the opposite side of the S magnetic pole from the N magnetic pole, the N magnetic core is provided.
    The said magnetic adjustment part is a motor comprised so that the short circuit of the magnetic flux between the magnet pole of the N pole adjacent to the circumferential direction and the magnet pole of the S pole may be suppressed.
  29.  請求項19~28のいずれか1項に記載のモータにおいて、
     前記磁石磁極は、前記ロータコアと、該ロータコアの外周面に固着された前記永久磁石とを含んでいるモータ。
    The motor according to any one of claims 19 to 28,
    The magnet magnetic pole includes the rotor core and the permanent magnet fixed to the outer peripheral surface of the rotor core.
  30.  請求項19~28のいずれか1項に記載のモータにおいて、
     前記磁石磁極は、前記ロータコアと、該ロータコアに埋設された前記永久磁石と含んでいるモータ。
    The motor according to any one of claims 19 to 28,
    The magnet magnetic pole includes the rotor core and the permanent magnet embedded in the rotor core.
  31.  請求項28に記載のモータにおいて、
     前記磁石磁極は、前記ロータコアと、該ロータコアに埋設された前記永久磁石と含んでおり、
     N極及びS極の前記磁石磁極の各々は一対の前記永久磁石を含んでおり、
     前記一対の前記永久磁石は軸方向視で径方向外側に拡がる略V字をなしているモータ。
    The motor according to claim 28,
    The magnet magnetic pole includes the rotor core and the permanent magnet embedded in the rotor core,
    Each of the magnetic poles of N and S poles includes a pair of permanent magnets,
    The pair of permanent magnets are substantially V-shaped motors extending outward in the radial direction when viewed in the axial direction.
  32.  請求項31に記載のモータにおいて、
     前記磁気調整部は、N極及びS極の前記磁石磁極のそれぞれにおける前記永久磁石よりも径方向内側に設けられているモータ。
    The motor according to claim 31, wherein
    The said magnetic adjustment part is a motor provided in the radial inside rather than the said permanent magnet in each of the said magnetic pole of N pole and S pole.
  33.  請求項31又は32に記載のモータにおいて、
     前記ロータコアは、前記各永久磁石をそれぞれ収容する複数の磁石収容孔を有しており、
     前記磁石収容孔の径方向端部と該磁石収容孔に収容された前記永久磁石との間に空隙が設けられているモータ。
    The motor according to claim 31 or 32,
    The rotor core has a plurality of magnet accommodation holes for accommodating the permanent magnets, respectively.
    A motor in which a gap is provided between a radial end of the magnet housing hole and the permanent magnet housed in the magnet housing hole.
  34.  請求項19~33のいずれか1項に記載のモータにおいて、
     前記モータは弱め界磁制御を実行可能に構成されているモータ。
    The motor according to any one of claims 19 to 33,
    The motor is configured to be capable of performing field-weakening control.
  35.  請求項19に記載のモータにおいて、
     前記ロータは、
     前記ロータコアの一部からなり、前記磁石磁極が前記第1の巻線と対向するロータの回転位置で前記第2の巻線と対向する磁束許容部をさらに含んでおり、
     該磁束許容部は、前記第2の巻線での弱め界磁電流による鎖交磁束の発生を許容するように構成されているモータ。
    The motor according to claim 19,
    The rotor is
    The magnetic core further comprises a magnetic flux allowing portion that is part of the rotor core and that faces the second winding at a rotational position of the rotor where the magnet magnetic pole faces the first winding,
    The magnetic flux allowing portion is a motor configured to allow the generation of the interlinkage magnetic flux by the field weakening current in the second winding.
  36.  請求項35に記載のモータにおいて、
     前記ロータのN極及びS極の各々は前記磁石磁極及び前記コア磁極を含んでおり、
     前記磁束許容部は、前記ロータの周方向においてN極の前記コア磁極とS極の前記コア磁極との間に設けられ、
     N極及びS極の前記コア磁極はそれぞれ、前記周方向の前記磁束許容部とは反対側で異極の前記磁石磁極と隣り合っているモータ。
    36. The motor of claim 35.
    Each of the N pole and S pole of the rotor includes the magnet magnetic pole and the core magnetic pole,
    The magnetic flux allowing portion is provided between the core magnetic pole of N pole and the core magnetic pole of S pole in the circumferential direction of the rotor,
    The N and S core magnetic poles are respectively adjacent to the magnet poles having different polarities on the side opposite to the circumferential magnetic flux allowing portion.
  37.  請求項36に記載のモータにおいて、
     前記磁石磁極における前記ステータとの対向面の開角度が、前記コア磁極における前記ステータとの対向面の開角度よりも大きいモータ。
    The motor of claim 36.
    A motor in which an opening angle of the magnet magnetic pole facing the stator is larger than an opening angle of the core magnetic pole facing the stator.
  38.  請求項36又は37に記載のモータにおいて、
     前記磁束許容部における前記ステータとの対向面の開角度が、前記コア磁極における前記ステータとの対向面の開角度よりも大きいモータ。
    The motor according to claim 36 or 37,
    The motor in which the opening angle of the surface facing the stator in the magnetic flux allowing portion is larger than the opening angle of the surface facing the stator in the core magnetic pole.
  39.  請求項36~38のいずれか1項に記載のモータにおいて、
     前記ロータコアは、互いに隣り合う前記磁束許容部と前記コア磁極との間に位置する磁気抵抗部をさらに含んでいるモータ。
    The motor according to any one of claims 36 to 38,
    The rotor core further includes a magnetoresistive portion positioned between the magnetic flux allowing portion and the core magnetic pole adjacent to each other.
  40.  請求項39に記載のモータにおいて、
     前記磁気抵抗部は、前記ロータコアに設けられたスリット部であるモータ。
    40. The motor of claim 39, wherein
    The motor in which the magnetoresistive portion is a slit portion provided in the rotor core.
  41.  請求項40に記載のモータにおいて、
     前記スリット部内に補助磁石が設けられているモータ。
    The motor according to claim 40,
    A motor in which an auxiliary magnet is provided in the slit portion.
  42.  請求項36~41のいずれか1項に記載のモータにおいて、
     前記ロータは、前記コア磁極に磁束を流す補助磁石をさらに含んでおり、
     該補助磁石は、前記ロータコアにおける前記磁束許容部よりも径方向内側の部位に埋設されているモータ。
    The motor according to any one of claims 36 to 41,
    The rotor further includes an auxiliary magnet for flowing a magnetic flux to the core magnetic pole,
    The auxiliary magnet is a motor embedded in a portion radially inward of the magnetic flux allowing portion in the rotor core.
  43.  請求項35~42のいずれか1項に記載のモータにおいて、
     前記ロータコアは、
      前記磁石磁極及び前記コア磁極を有するコア本体と、
      該コア本体に連結された別体部品であって前記磁束許容部の少なくとも一部を構成する別体コア部材と、
    を含んでいるモータ。
    The motor according to any one of claims 35 to 42,
    The rotor core is
    A core body having the magnet magnetic pole and the core magnetic pole;
    A separate core member connected to the core body and constituting at least a part of the magnetic flux allowing portion; and
    Including motor.
  44.  請求項43に記載のモータにおいて、
     前記別体コア部材は、前記コア本体よりも透磁率が高い材料で構成されているモータ。
    45. The motor of claim 43.
    The separate core member is a motor made of a material having a higher magnetic permeability than the core body.
  45.  請求項43又は44に記載のモータにおいて、
     前記ロータのN極及びS極の各々は前記磁石磁極及び前記コア磁極を含んでおり、
     前記磁束許容部を構成する前記別体コア部材は、前記ロータの周方向においてN極の前記コア磁極とS極の前記コア磁極との間に設けられ、
     N極及びS極の前記コア磁極はそれぞれ、前記周方向の前記別体コア部材とは反対側で異極の前記磁石磁極と隣り合っており、
     前記周方向における前記別体コア部材とN極及びS極の前記コア磁極との間にはそれぞれ空隙が設けられているモータ。
    The motor according to claim 43 or 44,
    Each of the N pole and S pole of the rotor includes the magnet magnetic pole and the core magnetic pole,
    The separate core member constituting the magnetic flux allowing portion is provided between the core magnetic pole of N pole and the core magnetic pole of S pole in the circumferential direction of the rotor,
    The north and south poles of the core magnetic poles are adjacent to the magnet poles of different polarities on the side opposite to the separate core member in the circumferential direction,
    A motor in which a gap is provided between the separate core member in the circumferential direction and the core poles of N and S poles.
  46.  請求項43~45のいずれか1項に記載のモータにおいて、
     前記コア本体及び前記別体コア部材は、連結部材を介して互いに連結されており、
     該連結部材は、前記コア本体及び前記別体コア部材よりも磁気抵抗の大きい材料で構成されているモータ。
    The motor according to any one of claims 43 to 45,
    The core body and the separate core member are connected to each other via a connecting member,
    The connecting member is a motor made of a material having a larger magnetic resistance than the core body and the separate core member.
PCT/JP2016/071097 2015-07-21 2016-07-19 Motor WO2017014207A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016003271.4T DE112016003271T5 (en) 2015-07-21 2016-07-19 engine
CN201680041683.2A CN107852051B (en) 2015-07-21 2016-07-19 Electric motor
US15/745,213 US11114909B2 (en) 2015-07-21 2016-07-19 Motor
US17/392,052 US11552514B2 (en) 2015-07-21 2021-08-02 Motor

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2015-144303 2015-07-21
JP2015-144304 2015-07-21
JP2015144305A JP6481546B2 (en) 2015-07-21 2015-07-21 motor
JP2015144304 2015-07-21
JP2015144303A JP6481545B2 (en) 2015-07-21 2015-07-21 motor
JP2015-144305 2015-07-21
JP2015251817A JP6607029B2 (en) 2015-07-21 2015-12-24 motor
JP2015-251816 2015-12-24
JP2015-251817 2015-12-24
JP2015251816 2015-12-24
JP2016-050076 2016-03-14
JP2016050076A JP6672914B2 (en) 2015-12-24 2016-03-14 motor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/745,213 A-371-Of-International US11114909B2 (en) 2015-07-21 2016-07-19 Motor
US17/392,052 Division US11552514B2 (en) 2015-07-21 2021-08-02 Motor

Publications (1)

Publication Number Publication Date
WO2017014207A1 true WO2017014207A1 (en) 2017-01-26

Family

ID=57834437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071097 WO2017014207A1 (en) 2015-07-21 2016-07-19 Motor

Country Status (1)

Country Link
WO (1) WO2017014207A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108173403A (en) * 2018-01-19 2018-06-15 华中科技大学 A kind of pole-changing expansion speed permanent magnet synchronous motor
US10454047B2 (en) * 2016-04-21 2019-10-22 Samsung Display Co., Ltd. Flexible display device
AU2017431234B2 (en) * 2017-09-05 2021-09-09 Mitsubishi Electric Corporation Consequent pole-type motor, electric motor, compressor, air blower, and air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065415A (en) * 2003-08-13 2005-03-10 Fuji Electric Holdings Co Ltd Magnetic pole position detector for permanent-magnet synchronous motor
JP2011101544A (en) * 2009-11-09 2011-05-19 Daikin Industries Ltd Rotary electric machine
WO2013073263A1 (en) * 2011-11-14 2013-05-23 株式会社安川電機 Motor and motor system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065415A (en) * 2003-08-13 2005-03-10 Fuji Electric Holdings Co Ltd Magnetic pole position detector for permanent-magnet synchronous motor
JP2011101544A (en) * 2009-11-09 2011-05-19 Daikin Industries Ltd Rotary electric machine
WO2013073263A1 (en) * 2011-11-14 2013-05-23 株式会社安川電機 Motor and motor system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10454047B2 (en) * 2016-04-21 2019-10-22 Samsung Display Co., Ltd. Flexible display device
US11088336B2 (en) 2016-04-21 2021-08-10 Samsung Display Co., Ltd. Flexible display device
AU2017431234B2 (en) * 2017-09-05 2021-09-09 Mitsubishi Electric Corporation Consequent pole-type motor, electric motor, compressor, air blower, and air conditioner
US11342802B2 (en) 2017-09-05 2022-05-24 Mitsubishi Electric Corporation Consequent-pole type rotor, electric motor, compressor, blower, and air conditioner
CN108173403A (en) * 2018-01-19 2018-06-15 华中科技大学 A kind of pole-changing expansion speed permanent magnet synchronous motor
CN108173403B (en) * 2018-01-19 2019-12-17 华中科技大学 Pole-changing speed-expanding permanent magnet synchronous motor

Similar Documents

Publication Publication Date Title
US11552514B2 (en) Motor
CN107852050B (en) Electric motor
CN108432091B (en) Electric motor
CN107579642B (en) Electric motor
WO2017014207A1 (en) Motor
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP6657928B2 (en) Motor and method of adjusting magnetic flux of motor
WO2017171037A1 (en) Rotor and method for designing rotor
JP6607029B2 (en) motor
WO2017014211A1 (en) Motor
JP6711159B2 (en) motor
JP2018085877A (en) Rotary electric machine
WO2018008475A1 (en) Motor
WO2022113181A1 (en) Permanent magnet synchronous motor
JP2018098936A (en) Magnet unit
JP6481545B2 (en) motor
JP6672914B2 (en) motor
JP5324025B2 (en) Rotating electric machine
WO2018135405A1 (en) Rotor and motor using same
JP6481546B2 (en) motor
CN113615041A (en) Rotating electrical machine
JP2018117489A (en) Rotor and motor using the same
JP2018061378A (en) Dynamo-electric machine
WO2017014212A1 (en) Motor
CN115552766A (en) Rotating electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016003271

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827767

Country of ref document: EP

Kind code of ref document: A1