WO2017013989A1 - Exhaust gas purifier - Google Patents

Exhaust gas purifier Download PDF

Info

Publication number
WO2017013989A1
WO2017013989A1 PCT/JP2016/068633 JP2016068633W WO2017013989A1 WO 2017013989 A1 WO2017013989 A1 WO 2017013989A1 JP 2016068633 W JP2016068633 W JP 2016068633W WO 2017013989 A1 WO2017013989 A1 WO 2017013989A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
heat storage
heating
storage unit
exhaust gas
Prior art date
Application number
PCT/JP2016/068633
Other languages
French (fr)
Japanese (ja)
Inventor
浩康 河内
野口 幸宏
康 佐竹
松栄 上田
進 長野
直樹 馬場
明 志知
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2017013989A1 publication Critical patent/WO2017013989A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to an exhaust gas purification device that activates a catalyst device attached to an exhaust system of an internal combustion engine to purify exhaust gas.
  • Patent Document 1 In a catalyst device attached to an exhaust system of an internal combustion engine, it is preferable to raise the temperature of the catalyst to a temperature at which exhaust purification performance is sufficiently exhibited.
  • the technique disclosed in Patent Document 1 relates to control for warming a catalyst using an electric heater before starting an engine internal combustion engine which is an internal combustion engine.
  • the energization time of the electric heater is determined from the temperature of the catalyst. That is, when the temperature of the catalyst is lower than a predetermined value, the electric heater is energized, and when the temperature of the catalyst is equal to or higher than the predetermined value, the electric heater is not energized.
  • Patent Document 1 The technique disclosed in Patent Document 1 is suitable for control for raising the temperature of the catalyst in a low temperature state before starting the engine.
  • the electric heater may continue to be energized even though the catalyst is already activated. In such a case, power is wasted. For example, if the purification rate at the catalyst inlet and outlet is already sufficient, but the temperature at the center of the catalyst is still low, controlling the energization of the electric heater using the temperature at the center of the catalyst will waste current. Will continue.
  • the heat source is only the electric heater, it is necessary to constantly monitor the state of the in-vehicle battery that is the power source of the electric heater.
  • An object of the present invention is to obtain an exhaust emission control device in which energy consumption, including power consumption and fuel consumption for increasing the temperature to promote the activity of a catalyst device attached to an exhaust system of an internal combustion engine, is reduced, and catalyst activity is improved at an early stage. There is.
  • an exhaust gas purification device that purifies exhaust gas by activating the catalytic device by raising the temperature of the catalytic device attached to the exhaust system of the internal combustion engine.
  • the exhaust purification device is attached to the upstream side of the catalyst device in the exhaust system, stores heat by the desorption reaction of the fluid medium, and dissipates heat by the adsorption reaction with the fluid medium.
  • Adsorption of a fluid medium that circulates through the chemical heat storage unit comprising a storage unit that can circulate the medium and that stores the fluid medium, and a flow rate control unit that controls opening and closing of the circulation path between the chemical heat storage unit and the storage unit.
  • a heating device that heats the exhaust gas discharged from the internal combustion engine using heat, an adjustment means that can adjust the temperature of the exhaust gas discharged from the internal combustion engine by controlling the combustion timing of the internal combustion engine, and a purification rate of the catalyst device
  • the purification rate of the purification device and the purification rate of the catalyst device acquired from the purification rate acquisition unit is lower than a predetermined value, the exhaust flowing upstream from the catalyst device is heated by driving the heating device or adjusting the adjustment unit.
  • You It has a heating control means.
  • the heating device includes a chemical heat storage unit and a storage unit.
  • the chemical heat storage section is chemically stored.
  • the heating control unit controls the drive of the heating device or adjusts the combustion timing by the adjustment unit to adjust the upstream side of the catalyst device. Heat the flowing exhaust.
  • the flow control unit of the heating device is controlled to open the circulation path between the chemical heat storage unit and the storage unit.
  • the temperature of the catalyst device is increased and activated, and the exhaust gas purification rate is improved.
  • the adjusting means is applied, the exhaust gas flowing in the exhaust system is heated by a heat source different from the heating device. This also activates the catalyst device and improves the exhaust gas purification rate.
  • the heating function using the heating device and the adjusting means is provided as means for heating the exhaust gas of the internal combustion engine. Thereby, even if any of a heating apparatus and an adjustment means becomes unnecessary, activation of a catalyst apparatus can be maintained.
  • the heating device and the adjusting means can be used in combination, or can be used alternately, or one can function as a spare for the other.
  • the above exhaust purification apparatus has a state detection means for detecting a state including at least one of the temperature or the pressure of the fluid medium in the chemical heat storage section and the storage section, and the heating control means uses the detection result of the state detection means. Based on the calculation of the amount of the fluid medium held in either the chemical heat storage unit or the storage unit, and when the amount of the fluid medium stored in the storage unit is greater than or equal to a predetermined amount, the drive of the heating device is controlled and the catalyst device It is also preferable to heat the exhaust gas flowing upstream.
  • the state detection means detects at least one of temperature and pressure of the fluid medium in the chemical heat storage section and the storage section of the heating device. For example, when a temperature sensor cheaper than the pressure sensor is provided, the pressure can be obtained by conversion. On the other hand, the detection accuracy is higher when the contact pressure is directly detected using a pressure sensor. Therefore, in consideration of price and accuracy, either the temperature sensor or the pressure sensor may be selected or used in combination.
  • the heating control means calculates the amount of the fluid medium held in either the chemical heat storage section or the storage section based on the detection result of the state detection means. In addition, since the total amount of the fluid medium basically does not change, it is only necessary to calculate the possessed amount of one of the chemical heat storage unit and the storage unit. Here, when the holding amount of the fluid medium in the storage unit is greater than or equal to a predetermined amount, the fluid medium can be normally circulated. Therefore, the driving of the heating device is controlled to heat the exhaust gas flowing upstream from the catalyst device. .
  • the combustion timing control of the adjusting means is after-injection or retarded-angle injection of the internal combustion engine selected according to the load state of the internal combustion engine, and the heating control means cannot use the adjusting means and the heating device In this case, it is preferable to use for exhaust heating.
  • the adjusting means can adjust the temperature of the exhaust gas discharged from the internal combustion engine by after-combustion or retarded combustion of the internal combustion engine selected according to the load state of the internal combustion engine. Therefore, the combustion timing control of the internal combustion engine is used for heating the exhaust when the heating device cannot be used. In this case, for example, by controlling the flow rate control unit of the heating device to close the circulation path between the chemical heat storage unit and the storage unit, the exhaust gas can be heated and then efficiently moved to the catalyst device.
  • the purification rate acquisition means is provided on the upstream side and the downstream side of the catalyst device, respectively, and one or more purification rate determination sensors of a CO sensor, a THC sensor, and a NO x sensor, and a catalyst It is preferable to include a calculation unit that calculates the ratio of the downstream purification rate discrimination sensor to the detection value of the upstream purification rate discrimination sensor as the purification rate of the apparatus.
  • the transition state of the exhaust components between the upstream side and the downstream side of the catalyst device becomes the purification rate. Therefore, by calculating any of the CO sensor, THC sensor, and NO x sensor on the upstream side and downstream side of the catalyst device, the purification rate is calculated based on the ratio of the amount of the detected component contained in the exhaust gas. Can do.
  • the exhaust gas purification apparatus includes a bed temperature detection sensor for detecting the bed temperature of the catalyst device, and the purification rate acquisition unit estimates the purification rate based on the bed temperature by the bed temperature detection sensor.
  • the purification rate can be estimated from the bed temperature by the bed temperature detection sensor.
  • the exhaust purification apparatus preferably includes a bed temperature detection sensor for detecting the bed temperature of the catalyst device, and the bed temperature by the bed temperature detection sensor is used for determining whether or not the heating control of the exhaust by the heating control means is necessary.
  • the heating control means does not need to heat the exhaust gas passing through the catalyst device and the pressure of the chemical heat storage section is stored when the amount of the fluid medium in the storage section is equal to or less than a predetermined value.
  • the flow control section is controlled to close the circulation path between the chemical heat storage section and the storage section, and the adjustment means is desorbed from the fluid medium in the chemical heat storage section.
  • the flow rate control unit is controlled to open the circulation path between the chemical heat storage unit and the storage unit It is preferable.
  • the amount of fluid medium held in the storage part of the heating device may be below a predetermined value.
  • the heating control means confirms that it is not necessary to heat the exhaust gas passing through the catalyst device.
  • it confirms that the pressure of a chemical heat storage part is lower than the pressure of a storage part.
  • the flow rate control unit of the heating device is controlled so that the circulation path between the chemical heat storage unit and the storage unit is closed.
  • the fluid medium in the chemical heat storage unit is heated and pressurized by heating the exhaust gas by the adjusting means.
  • an adjustment means is used for the heating for the pressurization of the fluid medium in a chemical heat storage part.
  • the heating of the exhaust by the adjusting unit is finished, and the flow rate control unit of the heating device is controlled to control the chemical heat storage unit and the storage unit Open the circuit between them.
  • energy consumption including power consumption and fuel consumption for increasing the temperature of the catalyst device attached to the exhaust system of the internal combustion engine is promoted, and the catalyst activity is improved early.
  • FIG. 1 is a schematic view of an exhaust system of an internal combustion engine to which an exhaust emission control device according to an embodiment of the present invention is attached.
  • (A) is a temperature-pressure characteristic diagram of the fluid medium applied to the heating device
  • (B) is a pressure-residual property diagram of the fluid medium applied to the heating device.
  • 7 is a flowchart showing an exhaust heating control routine.
  • (A) is a flowchart showing a combustion timing control routine
  • (B) is a flowchart showing a combustion timing OFF operation control routine.
  • (A) is a graph showing the relationship between the crank angle and the injection amount in the after injection control
  • (B) is a graph showing the relationship between the crank angle and the injection amount in the retard injection control.
  • the characteristic view which shows the result of having compared this embodiment with two types of comparative examples about the relationship between the control form of a heating apparatus, and input energy.
  • the flowchart which shows a heating apparatus reproduction
  • the flowchart which shows the heating apparatus forced regeneration control of step 226 of FIG.
  • An internal combustion engine is an engine mounted on a vehicle, and is a prime mover that burns fuel inside the engine and converts thermal energy of combustion gas into mechanical energy.
  • an engine control unit 14 is connected to the internal combustion engine 12.
  • the internal combustion engine 12 is a diesel engine, heavy oil or light oil as fuel is injected into high-pressure and high-temperature air in the cylinder and burned.
  • the engine control unit 14 controls the fuel injection amount, fuel injection timing, and the like.
  • An exhaust pipe 16 for exhausting combustion gas (hereinafter referred to as “exhaust”) is attached to the internal combustion engine 12. The exhaust gas passes through the exhaust pipe 16 and is discharged out of the internal combustion engine 12.
  • a catalyst device 18 mainly constituting the exhaust purification device 10 is attached to the exhaust pipe 16.
  • the catalytic device 18 reduces NO x contained in the combustion gas and decomposes it into harmless N 2 .
  • the exhaust purification device 10 further includes a heating device 20 provided in the exhaust pipe 16 between the internal combustion engine 12 and the catalyst device 18 and for heating the exhaust.
  • the exhaust gas purification device 10 also has a function as adjusting means for heating the exhaust gas by controlling the combustion timing of the internal combustion engine 12 by the engine control unit 14.
  • the adjusting means mainly adjusts the temperature of the exhaust discharged to the exhaust pipe 16 under after-injection control or retarded-angle injection control as combustion timing control by the engine control unit 14.
  • the exhaust gas heating by the heating device 20 and the exhaust gas temperature adjustment by the adjusting means improve the catalytic activity by the catalyst device 18.
  • the heating device 20 and the adjusting means constitute a part of the exhaust purification device 10 together with the catalyst device 18.
  • the heating device 20 and the adjusting means are controlled by a heating control device 24 connected to the engine control unit 14.
  • the heating device 20 is a chemical heat storage heater and is attached around the exhaust pipe 16.
  • the heating device 20 includes a heat storage heater unit 26 as a chemical heat storage unit.
  • the heat storage heater unit 26 has a ring-shaped housing structure.
  • a chemical heat storage material is accommodated in the internal space of the heat storage heater section 26.
  • ammonia NH 3 is used as the fluid medium.
  • the lower end of the circulation pipe 28 is connected to the outer peripheral surface of the heat storage heater portion 26.
  • the internal space of the heat storage heater portion 26 communicates with the internal space of the circulation pipe 28.
  • the upper end of the circulation pipe 28 is connected to a box-shaped storage section 30 (hereinafter referred to as a heat storage storage 30) that stores a fluid medium.
  • the internal space of the circulation pipe 28 is communicated with the internal space of the heat storage 30. For this reason, the heat storage heater unit 26 and the heat storage 30 are communicated with each other via the circulation pipe 28.
  • the fluid medium can flow between the heat storage heater 26 and the heat storage 30 due to a pressure difference between the heat storage heater 26 and the heat storage 30.
  • An opening / closing valve 32 as a flow rate control unit is attached to an intermediate portion of the circulation pipe 28.
  • By opening / closing the opening / closing valve 32 the flow of the fluid medium can be controlled.
  • the opening / closing valve 32 when the opening / closing valve 32 is opened, the fluid medium can flow between the heat storage heater unit 26 and the heat storage 30 and when the opening / closing valve 32 is closed, the heat storage heater unit 26 is opened. And the fluid storage medium between the heat storage 30 and the heat storage 30 are impossible.
  • the heat storage heater section 26 is filled with magnesium bromide (MgBr 2 ) as a chemical heat storage material.
  • MgBr 2 generates heat due to a chemical reaction (adsorption reaction) with ammonia as a fluid medium. For this reason, when the fluid medium flows from the heat storage 30 to the heat storage heater 26 due to the pressure difference between the heat storage 30 and the heat storage heater 26, the heat storage heater 26 heats the exhaust gas passing through the exhaust pipe 16. To do.
  • the exhaust gas heated by the heating device 20 reaches the catalyst device 18, the bed temperature of the catalyst device 18 is raised by the heat of the exhaust gas, and the catalyst function is activated. In particular, it is preferable to activate the catalyst function by raising the bed temperature of the catalyst device 18 in a transition period that is stable from the start of the internal combustion engine 12.
  • the catalyst device 18 is sufficiently activated, and the amount of heat of the exhaust is sufficient, it is not necessary to raise the bed temperature by the exhaust.
  • the chemical heat storage material accommodated in the heat storage heater unit 26 is heated by the heat of the exhaust.
  • a desorption reaction in which the fluid medium is desorbed from the chemical heat storage material occurs, whereby the heat of the exhaust is stored.
  • the pressure of the heat storage heater unit 26 becomes higher than the pressure of the heat storage storage 30, the fluid medium flows from the heat storage heater unit 26 to the heat storage storage 30.
  • the heat storage 30 stores a necessary and sufficient amount of fluid medium. That is, the heating device 20 can circulate and use the fluid medium for the heat treatment of the exhaust.
  • the adjustment control is control of the internal combustion engine 12 by the engine control unit 14. As the adjustment control, either after-injection control shown in FIG. 5A or retarded-angle injection control shown in FIG. 5B is selected and executed.
  • the after injection control combustion is continued by injecting fuel after the main injection with a smaller fuel injection amount than the main injection.
  • the exhaust temperature when a valve (not shown) communicating with the exhaust pipe 16 is opened is higher than the exhaust temperature when there is no after injection.
  • the retarded angle injection control the main injection itself at the calculated crank angle (steady injection angle) is delayed (retarded angle control) to burn the fuel.
  • the exhaust temperature when the valve communicating with the exhaust pipe 16 is opened becomes higher than the exhaust temperature at the steady injection angle.
  • the heating control device 24 includes a valve control unit 34, an adjustment control instruction unit 36, and a main control unit 38.
  • the valve control unit 34 controls the open / close valve 32 provided in the heating device 20.
  • the adjustment control instruction unit 36 instructs the engine control unit 14 to adjust the exhaust temperature.
  • the main control unit 38 comprehensively controls the valve control unit 34 and the adjustment control instruction unit 36 based on the purification rate of the catalyst device 18.
  • a heat storage heater section temperature sensor 40 is attached to the heat storage heater section 26.
  • the regenerative heater section temperature sensor 40 is connected to the main control section 38 via a detection signal line.
  • a heat storage temperature sensor 42 is attached to the heat storage 30.
  • the heat storage temperature sensor 42 is also connected to the main controller 38 via a detection signal line.
  • the main control unit 38 calculates the pressure based on the detected temperature. That is, as shown in FIG. 2A, the relationship between the temperature and pressure of the container containing ammonia is linearly approximated in the use region and is almost directly proportional. Therefore, the main control unit 38 recognizes the pressure of the fluid medium stored in the heat storage heater unit 26 by detecting the temperature by the heat storage heater unit temperature sensor 40. Further, the main control unit 38 recognizes the pressure of the fluid medium stored in the heat storage 30 by detecting the temperature by the heat storage temperature sensor 42.
  • the relationship between the pressure and the amount of the fluid medium also has a linear correlation.
  • the characteristic curve may differ depending on the temperature. For this reason, for example, when calculating
  • the heat storage heater part temperature sensor 40 and the heat storage storage temperature sensor 42 were used, instead of the inexpensive temperature sensor, pressure sensors may be attached to the heat storage heater part 26 and the heat storage storage 30 in order to place importance on accuracy. Good. Moreover, you may use a temperature sensor and a pressure sensor together.
  • a bed temperature detection sensor 44 that detects the bed temperature of the catalyst device 18 is attached to the catalyst device 18.
  • the bed temperature detection sensor 44 is connected to the main control unit 38 via a detection signal line.
  • NO x sensors 46 in and 46 out are attached to the upstream side (near the inlet) and the downstream side (near the outlet) of the catalyst device 18 in the exhaust pipe 16, respectively.
  • the NO x sensors 46 in and 46 out are connected to the purification rate calculation unit 48 via detection signal lines.
  • the purification rate calculation unit 48 illustrated in FIG. 1 is separate from the heating control unit 24, but may be a part of the heating control unit 24.
  • the purification rate calculation unit 48 is connected to the main control unit 38 and outputs the calculation result (purification rate S) to the main control unit 38.
  • the heating control unit 24 analyzes the state of the internal combustion engine 12 such as the start time, the transition period, and the steady operation timing based on the internal combustion engine control information input from the engine control unit 14.
  • the heating control unit 24 executes exhaust heating control suitable for the state of the internal combustion engine 12. For example, when the internal combustion engine 12 is started, a desired catalytic activity may not be obtained because the purification rate of the catalyst device 18 is low and the bed temperature is low. Therefore, the heating control device 24 uses the heating device 20 to heat the exhaust. By heating the exhaust, the bed temperature of the catalyst device 18 is raised and the catalyst device 18 is activated.
  • Exhaust heating control is executed while constantly monitoring the bed temperature and purification rate of the catalyst device 18.
  • the heating control can be changed according to the state of the internal combustion engine 12 as the state transition of the internal combustion engine 12, that is, as the state transitions from the start time to the transition period and the steady operation timing.
  • the heating control includes heating unnecessary.
  • the engine control unit 14 controls the combustion timing of the internal combustion engine 12.
  • the heating control device 24 maintains the activity of the catalyst device 18 by executing the control of the combustion timing of the internal combustion engine 12 instead of the heating by the heating device 20 when the heating device 20 cannot be used. Can do.
  • FIGS. 3, 4 (A) and 4 (B) The order of signal detection and determination executed in each step of all flowcharts of this embodiment including FIG. 3, FIG. 4 (A), and FIG. 4 (B) may be appropriately changed.
  • step 100 it is determined whether or not the internal combustion engine 12 is in operation.
  • the determination as to whether or not the vehicle is in operation is performed in order to determine whether or not fuel injection is being performed.
  • “Not in operation” refers to an operation stop state in which combustion control is not performed. Apart from the operation suspension state, for example, the fuel cut control performed when the vehicle is going down a long hill may be “not in operation”.
  • step 100 When a negative determination is made in step 100 (N in step 100), it is not necessary to heat the exhaust because the internal combustion engine 12 is not in operation. Therefore, the control flow moves to step 102.
  • step 100 When an affirmative determination is made in step 100 (Y in step 100), the internal combustion engine 12 is in operation and the catalyst device 18 needs to be activated. Therefore, the control flow proceeds to step 106, and it is determined whether or not the purification rate of the catalyst device 18 is equal to or higher than a reference value.
  • step 106 If an affirmative determination is made in step 106 (Y in step 106), that is, if it is determined that the purification rate is equal to or higher than the reference value, it is not necessary to heat the exhaust. Therefore, the control flow moves to step 102. If a negative determination is made in step 106 (N in step 106), the exhaust rate needs to be heated because the purification rate is less than the reference value. Therefore, the control flow proceeds to step 108 and it is determined whether or not the catalyst bed temperature is equal to or higher than the reference value.
  • step 108 When an affirmative determination is made in step 108 (Y in step 108), that is, since the bed temperature of the catalyst device 18 is stable, there is no need to heat the exhaust. Therefore, the control flow moves to step 102. Thus, when the control flow goes to Step 102 through Step 100, Step 106, and Step 108, the opening / closing valve 32 of the heating device 20 is closed, and this routine is finished. If a negative determination is made in step 108 (N in step 108), the control flow moves to step 110 because all the conditions that require exhaust heating are complete.
  • step 110 the remaining amount of the fluid medium (NH 3) of the heat storage storage 30 is detected.
  • the control flow proceeds to step 128, and after the opening / closing valve 32 is closed, the process proceeds to step 130.
  • step 130 fuel injection timing control of the internal combustion engine 12 is executed based on an instruction from the adjustment control instruction unit 36 instead of the heating device 20. That is, the adjustment (mainly heating) of the exhaust temperature based on the catalyst bed temperature of the catalyst device 18 used in the internal combustion engine 12 is started, and this routine ends.
  • step 120 after the temperature of the heat storage heater unit 26 and the temperature of the heat storage 30 are detected, the control flow proceeds to step 122.
  • step 122 based on the detected temperature, the equilibrium pressure Ph of the fluid medium (NH 3 ) of the heat storage heater section 26 is calculated.
  • step 124 the equilibrium pressure Ps of the fluid medium (NH 3 ) of the heat storage 30 is calculated. Then, the control flow moves to step 126.
  • step 126 the equilibrium pressure Ph of the fluid medium (NH 3 ) of the heat storage heater section 26 is compared with the equilibrium pressure Ps of the fluid medium (NH 3 ) of the heat storage 30 (Ph: Ps).
  • Ph equilibrium pressure
  • Ps equilibrium pressure of the fluid medium
  • the control flow proceeds to step 128, and after the opening / closing valve 32 is closed, the process proceeds to step 130.
  • step 130 fuel injection timing control of the internal combustion engine 12 is executed based on an instruction from the adjustment control instruction unit 36 instead of the heating device 20. That is, the heating control based on the catalyst bed temperature of the catalyst device 18 used in the internal combustion engine 12 is started, and this routine ends.
  • step 126 if it is determined in step 126 that Ph ⁇ Ps, it is determined that the fluid medium (NH 3 ) flows properly and the exhaust heating function is sufficient. Therefore, the control flow moves to step 132, and the opening / closing valve 32 is opened. Therefore, the fluid medium (NH 3 ) is supplied to the heat storage heater unit 26, the exhaust heating control by the heating device 20 is started, and this routine ends.
  • step 150 it is determined whether or not the injection timing control is possible. If a negative determination is made in step 150 (N in step 150), this routine ends. If an affirmative determination is made in step 150 (Y in step 150), the control flow proceeds to step 151, and the load information of the internal combustion engine 12 is acquired. Subsequently, the control flow proceeds to step 152, and the load state of the internal combustion engine 12 is determined.
  • step 152 If it is determined in step 152 that the internal combustion engine 12 has a low load, the control flow proceeds to step 154, the after injection control shown in FIG. 5 (A) is started, and this routine ends. On the other hand, if it is determined in step 152 that the internal combustion engine 12 is at a medium load or a high load, the control flow proceeds to step 156 and the retarded injection control shown in FIG. finish. During the retarded angle injection control in step 156, the fuel injection amount is increased to maintain the torque.
  • step 160 it is determined whether or not the injection timing control is being performed. If a negative determination is made in step 160 (N in step 160), this routine ends. On the other hand, if an affirmative determination is made in step 160 (Y in step 160), the control flow moves to step 162. In step 162, a signal is taken from the purification rate calculation unit 48. Next, the control flow proceeds to step 164, and it is determined whether the purification rate is equal to or higher than a reference value. If a negative determination is made in step 164 (N in step 164), it is determined that exhaust heating needs to be continued, and this routine ends. On the other hand, when an affirmative determination is made in step 164 (Y in step 164), the control flow proceeds to step 165, and it is determined whether the bed temperature of the catalyst device is equal to or higher than a predetermined value.
  • step 165 If a negative determination is made in step 165 (N in step 165), it is determined that exhaust heating needs to be continued, and this routine ends. On the other hand, if an affirmative determination is made in step 165 (Y in step 165), the exhaust gas heating is unnecessary, and the control flow moves to step 166. And injection timing control is complete
  • the exhaust gas heating by the heating device 20 is preferentially selected.
  • the exhaust heating function of the heating device 20 is sufficient, exhaust heating using the heating device 20 is performed.
  • exhaust heating using fuel injection timing control by the internal combustion engine 12 is executed.
  • the control based on the combined use of the catalyst bed temperature and the purification rate according to this embodiment has an input energy of Less is enough.
  • step 200 it is determined whether or not the catalyst device 18 is already under temperature increase control. If an affirmative determination is made in step 200 (Y in step 200), this routine ends. On the other hand, if a negative determination is made in step 200 (N in step 200), the control flow proceeds to step 202, and after detecting the bed temperature (catalyst bed temperature) of the catalyst device 18, the process proceeds to step 204.
  • step 204 it is determined whether the catalyst bed temperature is equal to or higher than a reference value.
  • a negative determination is made in step 204 (N in step 204)
  • priority is given to using the heat of the exhaust gas obtained by the injection timing control of the internal combustion engine for the activation of the catalyst device 18. For this reason, this routine ends without performing the regeneration of the injection timing control of the internal combustion engine.
  • an affirmative determination is made in step 204 (Y in step 204)
  • the heat of the exhaust gas obtained by the injection timing control of the internal combustion engine does not need to be used for the activation of the catalyst device 18 and is used for the regeneration of the heating device 20. Is available. Therefore, the control flow moves to step 206.
  • step 206 the temperature of the heat storage heater unit 26 and the temperature of the heat storage 30 are detected. Then, the control flow moves to step 208. In step 208, the equilibrium pressure Ph of the fluid medium (NH 3 ) of the heat storage heater unit 26 is calculated based on the detected temperature. Next, the control flow proceeds to step 210, where the equilibrium pressure Ps of the fluid medium (NH 3 ) of the heat storage 30 is calculated. Then, the control flow moves to step 212.
  • step 212 the remaining amount of the fluid medium (NH 3 ) in the heat storage 30 is detected. If it is determined in step 212 that the remaining amount of the fluid medium (NH 3 ) in the heat storage 30 is greater than or equal to a predetermined value, it is determined that regeneration control is not necessary, and the control flow proceeds to step 214.
  • step 214 it is determined whether or not the opening / closing valve 32 is open. If the determination in step 214 is affirmative, that is, if the opening / closing valve 32 is open (Y in step 214), the opening / closing valve 32 is closed in step 216. In addition, the fluid medium (NH 3 ) is not supplied to the heat storage heater unit 26, and the control flow proceeds to step 218. On the other hand, if a negative determination is made in step 214 (N in step 214), the control flow proceeds to step 218.
  • step 218 it is determined whether or not the injection timing of the internal combustion engine is being controlled. If an affirmative determination is made in step 218 (Y in step 218), the injection timing control of the internal combustion engine ends in step 220, and this routine ends. On the other hand, if a negative determination is made in step 218, that is, if the injection timing control of the internal combustion engine is not being executed (N in step 218), this routine ends.
  • step 212 when it is determined that the remaining amount of the fluid medium (NH 3 ) in the heat storage 30 is less than the predetermined value (N in step 212), it is determined that regeneration control is necessary, and the control flow proceeds to step 222. .
  • step 222 the equilibrium pressure Ph of the fluid medium (NH 3 ) of the heat storage heater unit 26 calculated in step 208 and step 210 is compared with the equilibrium pressure Ps of the fluid medium (NH 3 ) of the heat storage 30. (Ph: Ps). If it is determined that Ph ⁇ Ps, the control flow proceeds to step 224, and the opening / closing valve 32 is opened.
  • step 228 a timer counter Ct used for forced regeneration control to be described later is reset (Ct ⁇ 0), and this routine ends.
  • step 222 if it is determined in step 222 that Ph ⁇ Ps, normal playback is impossible, and the control flow proceeds to step 226. Then, forced regeneration control of the heating device 20 is executed, and this routine ends.
  • the forced regeneration control in step 226 is control in which the exhaust device heated by the injection timing control of the internal combustion engine heats the heating device 20 to pressurize the heating device 20 so that Ph ⁇ Ps.
  • step 250 the temperature of the heat storage heater section 26 is detected.
  • step 252 it is determined whether or not the temperature of the heat storage heater unit 26 is equal to or higher than a predetermined value. If an affirmative determination is made in step 252 (Y in step 252), that is, if the temperature of the heat storage heater unit 26 is determined to be equal to or higher than a predetermined value, the control flow proceeds to step 254, and the injection timing control of the internal combustion engine is possible. It is determined whether or not.
  • step 254 If a negative determination is made in step 254 (N in step 254), the routine ends. On the other hand, if an affirmative determination is made in step 254 (Y in step 254), the control flow proceeds to step 256, and load information of the internal combustion engine is acquired. Subsequently, the control flow proceeds to step 258, and the load state of the internal combustion engine 12 is determined.
  • step 258 When it is determined in step 258 that the internal combustion engine 12 has a low load, the control flow proceeds to step 260, and after the after injection control shown in FIG. 5A is started, the process proceeds to step 264. On the other hand, if it is determined in step 258 that the internal combustion engine 12 has a medium load or a high load, the control flow proceeds to step 262 and the injection control shown in FIG. Transition. During the retarded angle injection control in step 262, the fuel injection amount is increased to maintain the torque.
  • step 264 the injection timing control of the internal combustion engine 12 is started for forced regeneration of the heating device 20. Then, the control flow moves to step 266.
  • step 266 a timer counter Ct, which will be described later, is reset (Ct ⁇ 0), and this routine ends.
  • step 252 If a negative determination is made in step 252 (N in step 252), that is, if the temperature of the heat storage heater unit 26 is lower than a predetermined value, a considerable amount of heat is required for regeneration. Therefore, in order to wait for the regeneration control, the control flow shifts to step 268 and the timer counter Ct is incremented (Ct ⁇ Ct + 1), and then shifts to step 270.
  • the increment of the timer counter Ct in step 268 functions as a timer by accumulating the count value every time the routine of FIG. 8 is repeated.
  • step 270 the count-up value Cs is read out.
  • step 272 it is determined whether or not the current count value Ct exceeds the count-up value Cs (Ct> Cs). If an affirmative determination is made in step 272 (Ct> Cs), the control flow moves to step 270. On the other hand, if a negative determination is made in step 272, this routine ends.
  • the exhaust system structure according to the modified example has a nitrogen oxide purification function in addition to the exhaust gas temperature raising function according to the present embodiment, so that the exhaust purification device 50 is configured comprehensively.
  • the exhaust system structure according to the modification is intended for the internal combustion engine 12 of a diesel engine, as in the present embodiment.
  • the exhaust gas purification apparatus 10 having the exhaust gas heating function described in the present embodiment is disposed on the exhaust pipe 16 on the downstream side of the internal combustion engine 12.
  • the exhaust pipe 16 is provided with a selective reduction catalyst 54 that purifies nitrogen oxides (NO x ) with urea supplied into the exhaust pipe 16.
  • An oxidation catalyst 56 is provided between the internal combustion engine 12 and the selective reduction catalyst 54 in the exhaust pipe 16.
  • a device having a nitrogen oxide purification function supplies a diesel particulate filter (hereinafter referred to as DPF) 58 disposed downstream of the oxidation catalyst 56, a urea injection device 62 having a urea addition valve 60, and a urea injection device 62. And a urea tank 64 for storing the urea water.
  • the urea addition valve 60 injects and adds urea water into the exhaust pipe 16 between the DPF 58 and the selective reduction catalyst 54.
  • An NO x sensor 66 and a temperature sensor 70 are disposed in the exhaust pipe 16 upstream of the selective reduction catalyst 54.
  • a NO x sensor 68 may be disposed in the exhaust pipe 16 on the downstream side of the selective reduction catalyst 54.
  • the selective reduction catalyst 54 is a NO x reduction catalyst.
  • urea water supplied to the exhaust pipe 16 by the urea addition valve 60 is converted into ammonia gas, and flows into the selective reduction catalyst 54 together with the exhaust gas.
  • the ammonia gas, NO x in the exhaust gas is selectively reduced or decomposed. As a result, the NO x gas in the exhaust gas is purified and released into the atmosphere.
  • the urea injection device 62 includes a urea pump (not shown) for sucking the urea water stored in the urea tank 64 through the suction pipe 72.
  • the urea water sucked out by the urea pump through the suction pipe 72 is supplied to the exhaust pipe 16 through the supply pipe 74 and the urea addition valve 60.
  • a filter (not shown) is provided at the end of the suction pipe 72 near the urea tank 64.
  • the urea water stored in the urea tank 64 is supplied to the exhaust pipe 16 after foreign matters and the like are removed by a filter.
  • NH 3 (ammonia) is used as the fluid medium, but CO 2 (carbon dioxide), H 2 O (water), or the like may be used.
  • the chemical heat storage material of the heat storage heater unit 26 may be magnesium chloride (MgCl 2 ) or calcium oxide (CaO) other than magnesium bromide (Mg).
  • MgCl 2 magnesium chloride
  • CaO calcium oxide
  • H 2 O (water) may be selected as the fluid medium.
  • the on-off valve 32 as the flow rate control unit may be either an electric valve or a pressure valve. Moreover, not only the on-off valve 32 but an electric, mechanical, or thermal displacement pump may be used. Furthermore, a plurality of circulation pipes may be arranged, and the opening / closing valve 32 or the pump and the check valve may be used in combination.
  • the heat storage heater unit 26 is attached around the exhaust pipe 16, but the heat storage heater unit 26 may be disposed inside the exhaust pipe 16.
  • the heat storage heater unit 26 is disposed inside the exhaust pipe 16, for example, a plurality of flat heater units and a plurality of corrugated fins (heat exchange units) are alternately stacked to form the heat storage heater unit 26. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

In the present invention, exhaust gas heating by a heating device is preferentially selected when activation of a catalytic device is necessary. When the heating device has sufficient capability to heat exhaust gas, the heating device is used to heat the exhaust gas. When the capability of the heating device to heat the exhaust gas is insufficient, combustion timing control for an internal combustion engine is employed to heat the exhaust gas. This reduces unnecessary power consumption, and improves purification efficiency of the catalytic device.

Description

排気浄化装置Exhaust purification device
 本発明は、内燃機関の排気系に取り付けられた触媒装置を活性させて、排気を浄化する排気浄化装置に関する。 The present invention relates to an exhaust gas purification device that activates a catalyst device attached to an exhaust system of an internal combustion engine to purify exhaust gas.
 内燃機関の排気系に取り付けられた触媒装置では、排気浄化性能が十分に発揮される温度にまで、触媒を昇温させることが好ましい。特許文献1に開示の技術は、内燃機関であるエンジン内燃機関の始動前に、電気ヒータを用いて触媒を暖める制御に関する。特許文献1では、触媒の温度から、電気ヒータの通電時間が定められている。すなわち、触媒の温度が所定値未満の場合、電気ヒータは通電され、触媒の温度が所定値以上の場合、電気ヒータは通電されない。 In a catalyst device attached to an exhaust system of an internal combustion engine, it is preferable to raise the temperature of the catalyst to a temperature at which exhaust purification performance is sufficiently exhibited. The technique disclosed in Patent Document 1 relates to control for warming a catalyst using an electric heater before starting an engine internal combustion engine which is an internal combustion engine. In Patent Document 1, the energization time of the electric heater is determined from the temperature of the catalyst. That is, when the temperature of the catalyst is lower than a predetermined value, the electric heater is energized, and when the temperature of the catalyst is equal to or higher than the predetermined value, the electric heater is not energized.
 特許文献1に開示の技術は、エンジン始動前の低温状態で触媒を昇温させるための制御に適している。しかしながら、エンジン動作中、触媒の温度計測箇所によっては既に触媒が活性されているにも関わらず、電気ヒータの通電が継続されることがある。このような場合、電力が無駄に消費される。例えば、触媒の入口や出口での浄化率は既に十分であるのに、触媒の中央での温度が依然として低い場合、触媒の中央の温度を用いて電気ヒータの通電を制御すると、通電が無駄に継続される。また、熱源が電気ヒータのみであることから、電気ヒータの電力源である車載バッテリの状態を、常に監視する必要がある。 The technique disclosed in Patent Document 1 is suitable for control for raising the temperature of the catalyst in a low temperature state before starting the engine. However, during engine operation, depending on the temperature measurement location of the catalyst, the electric heater may continue to be energized even though the catalyst is already activated. In such a case, power is wasted. For example, if the purification rate at the catalyst inlet and outlet is already sufficient, but the temperature at the center of the catalyst is still low, controlling the energization of the electric heater using the temperature at the center of the catalyst will waste current. Will continue. In addition, since the heat source is only the electric heater, it is necessary to constantly monitor the state of the in-vehicle battery that is the power source of the electric heater.
特開平10-169433号公報JP-A-10-169433
 本発明の目的は、内燃機関の排気系に取り付けられた触媒装置の活性を促す昇温のための消費電力及び燃費を含む消費エネルギーが低減され、早期に触媒活性が向上する排気浄化装置を得ることにある。 An object of the present invention is to obtain an exhaust emission control device in which energy consumption, including power consumption and fuel consumption for increasing the temperature to promote the activity of a catalyst device attached to an exhaust system of an internal combustion engine, is reduced, and catalyst activity is improved at an early stage. There is.
 上記問題点を解決するため、本発明の第一の態様によれば、内燃機関の排気系に取り付けられた触媒装置を昇温することで、触媒装置を活性させて排気を浄化する排気浄化装置が提供される。排気浄化装置は、排気系における触媒装置よりも上流側に取り付けられ流動性媒体の脱着反応により蓄熱しかつ流動性媒体との吸着反応により放熱する化学蓄熱部、化学蓄熱部との間で流動性媒体が循環可能でありかつ流動性媒体を貯留する貯留部、及び化学蓄熱部と貯留部との間の循環路を開閉制御する流量制御部を備え、化学蓄熱部を流通する流動性媒体の吸着熱を用いて内燃機関から排出された排気を加熱する加熱装置と、内燃機関の燃焼時期制御により内燃機関から排出される排気の温度を調整可能な調整手段と、触媒装置の浄化率を取得する浄化率取得手段と、浄化率取得手段から取得した触媒装置の浄化率が所定の値よりも低い場合に、加熱装置の駆動又は調整手段の調整によって、触媒装置よりも上流側を流れる排気を加熱する加熱制御手段と、を有する。 In order to solve the above problems, according to the first aspect of the present invention, an exhaust gas purification device that purifies exhaust gas by activating the catalytic device by raising the temperature of the catalytic device attached to the exhaust system of the internal combustion engine. Is provided. The exhaust purification device is attached to the upstream side of the catalyst device in the exhaust system, stores heat by the desorption reaction of the fluid medium, and dissipates heat by the adsorption reaction with the fluid medium. Adsorption of a fluid medium that circulates through the chemical heat storage unit, comprising a storage unit that can circulate the medium and that stores the fluid medium, and a flow rate control unit that controls opening and closing of the circulation path between the chemical heat storage unit and the storage unit. A heating device that heats the exhaust gas discharged from the internal combustion engine using heat, an adjustment means that can adjust the temperature of the exhaust gas discharged from the internal combustion engine by controlling the combustion timing of the internal combustion engine, and a purification rate of the catalyst device When the purification rate of the purification device and the purification rate of the catalyst device acquired from the purification rate acquisition unit is lower than a predetermined value, the exhaust flowing upstream from the catalyst device is heated by driving the heating device or adjusting the adjustment unit. You It has a heating control means.
 本発明によれば、加熱装置は、化学蓄熱部と貯留部とを備える。化学蓄熱部と貯留部との間を流動性媒体が循環することで、化学蓄熱部が化学的に蓄熱される。加熱制御手段は、浄化率取得手段から取得した触媒装置の浄化率が所定の値よりも低い場合に、加熱装置の駆動を制御又は調整手段による燃焼時期の調整によって、触媒装置よりも上流側を流れる排気を加熱する。例えば、加熱装置の流動制御部を制御して化学蓄熱部と貯留部との間の循環路を開放する。これにより、化学蓄熱部と貯留部との間を流動性媒体が循環し、化学蓄熱部で排気との間で熱交換が行われることで、排気が加熱される。これにより、触媒装置が昇温されて活性化し、排気の浄化率が向上する。調整手段を適用した場合は、加熱装置とは異なる熱源により、排気系の流動する排気が加熱される。これによっても、触媒装置が活性化し、排気の浄化率が向上する。このように、内燃機関の排気を加熱する手段として、加熱装置と調整手段とを用いた加熱機能を備える。これにより、加熱装置及び調整手段の何れかが使用不要となっても、触媒装置の活性化を維持することができる。この場合、加熱装置と調整手段とを併用したり、交互に使用したり、一方を他方の予備として機能させたりすることができる。 According to the present invention, the heating device includes a chemical heat storage unit and a storage unit. As the fluid medium circulates between the chemical heat storage section and the storage section, the chemical heat storage section is chemically stored. When the purification rate of the catalyst device acquired from the purification rate acquisition unit is lower than a predetermined value, the heating control unit controls the drive of the heating device or adjusts the combustion timing by the adjustment unit to adjust the upstream side of the catalyst device. Heat the flowing exhaust. For example, the flow control unit of the heating device is controlled to open the circulation path between the chemical heat storage unit and the storage unit. Thereby, a fluid medium circulates between a chemical heat storage part and a storage part, and exhaust gas is heated by heat exchange being performed between exhaust gas in a chemical heat storage part. As a result, the temperature of the catalyst device is increased and activated, and the exhaust gas purification rate is improved. When the adjusting means is applied, the exhaust gas flowing in the exhaust system is heated by a heat source different from the heating device. This also activates the catalyst device and improves the exhaust gas purification rate. Thus, the heating function using the heating device and the adjusting means is provided as means for heating the exhaust gas of the internal combustion engine. Thereby, even if any of a heating apparatus and an adjustment means becomes unnecessary, activation of a catalyst apparatus can be maintained. In this case, the heating device and the adjusting means can be used in combination, or can be used alternately, or one can function as a spare for the other.
 上記の排気浄化装置において、化学蓄熱部及び貯留部における流動性媒体の温度又は圧力の少なくとも1つを含む状態を検出する状態検出手段を有し、加熱制御手段は、状態検出手段の検出結果に基づいて、化学蓄熱部又は貯留部の何れかにおける流動性媒体の保有量を演算し、貯留部における流動性媒体の保有量が所定以上ある場合に、加熱装置の駆動を制御して触媒装置よりも上流側を流れる排気を加熱することが好ましい。 In the above exhaust purification apparatus, it has a state detection means for detecting a state including at least one of the temperature or the pressure of the fluid medium in the chemical heat storage section and the storage section, and the heating control means uses the detection result of the state detection means. Based on the calculation of the amount of the fluid medium held in either the chemical heat storage unit or the storage unit, and when the amount of the fluid medium stored in the storage unit is greater than or equal to a predetermined amount, the drive of the heating device is controlled and the catalyst device It is also preferable to heat the exhaust gas flowing upstream.
 状態検出手段は、加熱装置の化学蓄熱部及び貯留部における流動性媒体の温度及び圧力の少なくとも一方を検出する。例えば、圧力センサよりも廉価な温度センサを備えた場合、換算によって圧力を得ることができる。一方、圧力センサを用いて接圧力を直接検出した方が、検出の精度は高い。よって、価格と精度とを考慮して、温度センサ及び圧力センサのいずれか一方を選択してもよく、併用してもよい。 The state detection means detects at least one of temperature and pressure of the fluid medium in the chemical heat storage section and the storage section of the heating device. For example, when a temperature sensor cheaper than the pressure sensor is provided, the pressure can be obtained by conversion. On the other hand, the detection accuracy is higher when the contact pressure is directly detected using a pressure sensor. Therefore, in consideration of price and accuracy, either the temperature sensor or the pressure sensor may be selected or used in combination.
 加熱制御手段では、状態検出手段の検出結果に基づいて、化学蓄熱部又は貯留部の何れかにおける流動性媒体の保有量を演算する。なお、基本的に流動性媒体の総量は変化しないため、化学蓄熱部及び貯留部の一方の保有量を演算すればよい。ここで、貯留部における流動性媒体の保有量が所定以上ある場合に、流動性媒体が正常に循環できるため、加熱装置の駆動を制御して、触媒装置よりも上流側を流れる排気を加熱する。 The heating control means calculates the amount of the fluid medium held in either the chemical heat storage section or the storage section based on the detection result of the state detection means. In addition, since the total amount of the fluid medium basically does not change, it is only necessary to calculate the possessed amount of one of the chemical heat storage unit and the storage unit. Here, when the holding amount of the fluid medium in the storage unit is greater than or equal to a predetermined amount, the fluid medium can be normally circulated. Therefore, the driving of the heating device is controlled to heat the exhaust gas flowing upstream from the catalyst device. .
 上記の排気浄化装置において、調整手段の燃焼時期制御が、内燃機関の負荷状態により選択される内燃機関のアフター噴射又は遅角噴射であり、加熱制御手段は、調整手段を、加熱装置が使用不能な場合の排気加熱に用いることが好ましい。 In the above exhaust purification apparatus, the combustion timing control of the adjusting means is after-injection or retarded-angle injection of the internal combustion engine selected according to the load state of the internal combustion engine, and the heating control means cannot use the adjusting means and the heating device In this case, it is preferable to use for exhaust heating.
 調整手段は、内燃機関の負荷状態により選択される内燃機関のアフター燃焼又は遅角燃焼によって、内燃機関から排出される排気の温度を調整可能である。そこで、内燃機関の燃焼時期制御を、加熱装置が使用不能な場合の排気加熱に用いる。この場合、例えば、加熱装置の流量制御部を制御して化学蓄熱部と貯留部との間の循環路を閉塞することで、排気を加熱してから触媒装置へ効率良く移動させることができる。 The adjusting means can adjust the temperature of the exhaust gas discharged from the internal combustion engine by after-combustion or retarded combustion of the internal combustion engine selected according to the load state of the internal combustion engine. Therefore, the combustion timing control of the internal combustion engine is used for heating the exhaust when the heating device cannot be used. In this case, for example, by controlling the flow rate control unit of the heating device to close the circulation path between the chemical heat storage unit and the storage unit, the exhaust gas can be heated and then efficiently moved to the catalyst device.
 上記の排気浄化装置において、浄化率取得手段は、触媒装置の上流側及び下流側にそれぞれ設けられかつCOセンサ、THCセンサ及びNOセンサの何れか1つ又は複数の浄化率判別センサと、触媒装置の浄化率として上流側の浄化率判別センサの検出値に対する下流側の浄化率判別センサの比を演算する演算部とを備えることが好ましい。 In the above exhaust purification apparatus, the purification rate acquisition means is provided on the upstream side and the downstream side of the catalyst device, respectively, and one or more purification rate determination sensors of a CO sensor, a THC sensor, and a NO x sensor, and a catalyst It is preferable to include a calculation unit that calculates the ratio of the downstream purification rate discrimination sensor to the detection value of the upstream purification rate discrimination sensor as the purification rate of the apparatus.
 浄化率は、触媒装置の上流側と下流側との排気の成分の遷移状態(下流側/上流側の演算値)が浄化率となる。そこで、COセンサ、THCセンサ及びNOセンサの何れかを触媒装置の上流側及び下流側にそれぞれ配置することで、排気に含まれる検出成分の量の比に基づいて、浄化率を演算することができる。 As for the purification rate, the transition state of the exhaust components between the upstream side and the downstream side of the catalyst device (the calculated value on the downstream side / upstream side) becomes the purification rate. Therefore, by calculating any of the CO sensor, THC sensor, and NO x sensor on the upstream side and downstream side of the catalyst device, the purification rate is calculated based on the ratio of the amount of the detected component contained in the exhaust gas. Can do.
 上記の排気浄化装置において、触媒装置の床温度を検出する床温検出センサを有し、浄化率取得手段が、床温検出センサによる床温度に基づいて浄化率を推定することが好ましい。 It is preferable that the exhaust gas purification apparatus includes a bed temperature detection sensor for detecting the bed temperature of the catalyst device, and the purification rate acquisition unit estimates the purification rate based on the bed temperature by the bed temperature detection sensor.
 床温検出センサによる床温度から、浄化率を推定することができる。
 上記の排気浄化装置において、触媒装置の床温度を検出する床温検出センサを有し、床温検出センサによる床温度を、加熱制御手段による排気の加熱制御の要否判定に用いることが好ましい。
The purification rate can be estimated from the bed temperature by the bed temperature detection sensor.
The exhaust purification apparatus preferably includes a bed temperature detection sensor for detecting the bed temperature of the catalyst device, and the bed temperature by the bed temperature detection sensor is used for determining whether or not the heating control of the exhaust by the heating control means is necessary.
 床温検出センサによる触媒装置の床温度の検出値を、排気の加熱の要否の判定要件に加えることで、より精度の高い判定が可能となる。
 上記の排気浄化装置において、加熱制御手段は、貯留部の流動性媒体の保有量が所定値以下の場合に、触媒装置を通過する排気を加熱する必要がないこと及び化学蓄熱部の圧力が貯留部の圧力よりも低いことを条件に、流量制御部を制御して化学蓄熱部と貯留部との間の循環路を閉塞した状態で、調整手段を、化学蓄熱部での流動性媒体の脱着反応のための加熱に用い、化学蓄熱部の圧力が貯留部の圧力よりも所定以上高くなった時点で、流量制御部を制御して化学蓄熱部と貯留部との間の循環路を開放することが好ましい。
By adding the detection value of the bed temperature of the catalyst device by the bed temperature detection sensor to the determination requirement for the necessity of heating the exhaust gas, it is possible to make a determination with higher accuracy.
In the above exhaust purification apparatus, the heating control means does not need to heat the exhaust gas passing through the catalyst device and the pressure of the chemical heat storage section is stored when the amount of the fluid medium in the storage section is equal to or less than a predetermined value. With the condition that the pressure is lower than the pressure in the section, the flow control section is controlled to close the circulation path between the chemical heat storage section and the storage section, and the adjustment means is desorbed from the fluid medium in the chemical heat storage section. Used for heating for reaction, when the pressure of the chemical heat storage unit becomes higher than the pressure of the storage unit by a predetermined level or more, the flow rate control unit is controlled to open the circulation path between the chemical heat storage unit and the storage unit It is preferable.
 加熱装置の貯留部の流動性媒体の保有量が所定値以下の場合がある。この場合、加熱制御手段では、触媒装置を通過する排気を加熱する必要がないことを確認する。また、加熱制御手段では、化学蓄熱部の圧力が貯留部の圧力よりも低いことを確認する。その後、加熱装置の流量制御部を制御して化学蓄熱部と貯留部との間の循環路を閉塞した状態とする。循環路を閉塞した状態で、調整手段によって排気を加熱することにより、化学蓄熱部での流動性媒体が加熱され、加圧される。また、加熱制御手段では、調整手段を、化学蓄熱部での流動性媒体の加圧のための加熱に用いる。このとき、化学蓄熱部の圧力が貯留部の圧力よりも所定以上高くなった時点で、調整手段による排気の加熱を終了すると共に、加熱装置の流量制御部を制御して化学蓄熱部と貯留部との間の循環路を開放する。これにより、化学蓄熱部の圧力が貯留部の圧力よりも高いため、流動性媒体は化学蓄熱部から貯留部へ流動し、貯留部に流動性媒体を貯留することができる。このため、加熱装置は再生され、次の排気の加熱に用いることができる。 The amount of fluid medium held in the storage part of the heating device may be below a predetermined value. In this case, the heating control means confirms that it is not necessary to heat the exhaust gas passing through the catalyst device. Moreover, in a heating control means, it confirms that the pressure of a chemical heat storage part is lower than the pressure of a storage part. Thereafter, the flow rate control unit of the heating device is controlled so that the circulation path between the chemical heat storage unit and the storage unit is closed. In the state where the circulation path is closed, the fluid medium in the chemical heat storage unit is heated and pressurized by heating the exhaust gas by the adjusting means. Moreover, in a heating control means, an adjustment means is used for the heating for the pressurization of the fluid medium in a chemical heat storage part. At this time, when the pressure of the chemical heat storage unit becomes higher than the pressure of the storage unit by a predetermined amount or more, the heating of the exhaust by the adjusting unit is finished, and the flow rate control unit of the heating device is controlled to control the chemical heat storage unit and the storage unit Open the circuit between them. Thereby, since the pressure of a chemical heat storage part is higher than the pressure of a storage part, a fluid medium can flow from a chemical heat storage part to a storage part, and can store a fluid medium in a storage part. Therefore, the heating device is regenerated and can be used for heating the next exhaust.
 本発明では、内燃機関の排気系に取り付けられた触媒装置の活性を促す昇温のための消費電力及び燃費を含む消費エネルギーが低減され、早期に触媒活性が向上する。 In the present invention, energy consumption including power consumption and fuel consumption for increasing the temperature of the catalyst device attached to the exhaust system of the internal combustion engine is promoted, and the catalyst activity is improved early.
本発明の一実施形態に係る排気浄化装置が取り付けられた内燃機関の排気系の概略図。1 is a schematic view of an exhaust system of an internal combustion engine to which an exhaust emission control device according to an embodiment of the present invention is attached. (A)は加熱装置に適用される流動性媒体の温度-圧力特性図、(B)は加熱装置に適用される流動性媒体の圧力-残量特性図。(A) is a temperature-pressure characteristic diagram of the fluid medium applied to the heating device, and (B) is a pressure-residual property diagram of the fluid medium applied to the heating device. 排気加熱制御ルーチンを示すフローチャート。7 is a flowchart showing an exhaust heating control routine. (A)は燃焼時期制御ルーチンを示すフローチャート、(B)は燃焼時期のオフ動作制御ルーチンを示すフローチャート。(A) is a flowchart showing a combustion timing control routine, (B) is a flowchart showing a combustion timing OFF operation control routine. (A)はアフター噴射制御におけるクランク角と噴射量との関係を示すグラフ、(B)は遅角噴射制御におけるクランク角と噴射量との関係を示すグラフ。(A) is a graph showing the relationship between the crank angle and the injection amount in the after injection control, and (B) is a graph showing the relationship between the crank angle and the injection amount in the retard injection control. 加熱装置の制御形態と投入エネルギーとの関係について、本実施形態を2種類の比較例と比較した結果を示す特性図。The characteristic view which shows the result of having compared this embodiment with two types of comparative examples about the relationship between the control form of a heating apparatus, and input energy. 加熱装置再生制御ルーチンを示すフローチャート。The flowchart which shows a heating apparatus reproduction | regeneration control routine. 図7のステップ226の加熱装置強制再生制御を示すフローチャート。The flowchart which shows the heating apparatus forced regeneration control of step 226 of FIG. 変形例に係る排気浄化装置が設けられた内燃機関の排気系の概略図。The schematic diagram of the exhaust system of the internal-combustion engine provided with the exhaust emission control device concerning a modification.
 以下、本発明の排気浄化装置を内燃機関の排気系に取り付けた一実施形態を図1~図8にしたがって説明する。内燃機関は、車両に搭載されるエンジンであり、機関の内部で燃料が燃焼し、燃焼ガスの熱エネルギーを機械的エネルギーに変換する原動機である。 Hereinafter, an embodiment in which the exhaust emission control device of the present invention is attached to an exhaust system of an internal combustion engine will be described with reference to FIGS. An internal combustion engine is an engine mounted on a vehicle, and is a prime mover that burns fuel inside the engine and converts thermal energy of combustion gas into mechanical energy.
 図1に示すように、内燃機関12には、エンジン制御部14が接続されている。内燃機関12がディーゼルエンジンの場合、燃料としての重油または軽油が、シリンダー内の高圧高温の空気中に噴射されて、燃焼される。エンジン制御部14は、燃料噴射量、燃料噴射時期等を制御する。内燃機関12には、燃焼ガス(以下、「排気」という)を排出するための排気管16が取り付けられている。排気は、排気管16を通過して、内燃機関12の外へ排出される。 As shown in FIG. 1, an engine control unit 14 is connected to the internal combustion engine 12. When the internal combustion engine 12 is a diesel engine, heavy oil or light oil as fuel is injected into high-pressure and high-temperature air in the cylinder and burned. The engine control unit 14 controls the fuel injection amount, fuel injection timing, and the like. An exhaust pipe 16 for exhausting combustion gas (hereinafter referred to as “exhaust”) is attached to the internal combustion engine 12. The exhaust gas passes through the exhaust pipe 16 and is discharged out of the internal combustion engine 12.
 排気管16には、排気浄化装置10を主に構成する触媒装置18が取り付けられている。触媒装置18は、燃焼ガスに含まれるNOを還元して、無害のNに分解する。排気浄化装置10は、更に、内燃機関12と触媒装置18との間の排気管16に設けられかつ排気を加熱するための加熱装置20を有している。排気浄化装置10は、加熱装置20により排気を加熱する機能に加え、エンジン制御部14により内燃機関12の燃焼時期を制御して排気を加熱する調整手段としての機能も備えている。調整手段は、エンジン制御部14による燃焼時期制御としてアフター噴射制御又は遅角噴射制御の下、排気管16に排出される排気の温度を、主に加熱して、調節する。 A catalyst device 18 mainly constituting the exhaust purification device 10 is attached to the exhaust pipe 16. The catalytic device 18 reduces NO x contained in the combustion gas and decomposes it into harmless N 2 . The exhaust purification device 10 further includes a heating device 20 provided in the exhaust pipe 16 between the internal combustion engine 12 and the catalyst device 18 and for heating the exhaust. In addition to the function of heating the exhaust gas by the heating device 20, the exhaust gas purification device 10 also has a function as adjusting means for heating the exhaust gas by controlling the combustion timing of the internal combustion engine 12 by the engine control unit 14. The adjusting means mainly adjusts the temperature of the exhaust discharged to the exhaust pipe 16 under after-injection control or retarded-angle injection control as combustion timing control by the engine control unit 14.
 加熱装置20による排気加熱、及び調整手段による排気温度調整は、触媒装置18による触媒活性を向上させる。加熱装置20及び調整手段は、触媒装置18と共に、排気浄化装置10の一部を構成する。加熱装置20及び調整手段は、エンジン制御部14に接続された加熱制御装置24によって、制御される。 The exhaust gas heating by the heating device 20 and the exhaust gas temperature adjustment by the adjusting means improve the catalytic activity by the catalyst device 18. The heating device 20 and the adjusting means constitute a part of the exhaust purification device 10 together with the catalyst device 18. The heating device 20 and the adjusting means are controlled by a heating control device 24 connected to the engine control unit 14.
 図1に示すように、加熱装置20は、化学蓄熱ヒータであり、排気管16の周囲に取り付けられている。加熱装置20は、化学蓄熱部としての蓄熱ヒータ部26を備えている。蓄熱ヒータ部26は、輪状筐体構造を有している。蓄熱ヒータ部26の内部空間には、化学蓄熱材が収容されている。本実施形態では、流動性媒体としてアンモニア(NH)が用いられている。 As shown in FIG. 1, the heating device 20 is a chemical heat storage heater and is attached around the exhaust pipe 16. The heating device 20 includes a heat storage heater unit 26 as a chemical heat storage unit. The heat storage heater unit 26 has a ring-shaped housing structure. A chemical heat storage material is accommodated in the internal space of the heat storage heater section 26. In the present embodiment, ammonia (NH 3) is used as the fluid medium.
 また、蓄熱ヒータ部26の外周面には、循環パイプ28の下端が接続されている。蓄熱ヒータ部26の内部空間は、循環パイプ28の内部空間に連通されている。循環パイプ28の上端は、流動性媒体を貯留する箱形構造の貯留部30(以下、蓄熱ストレージ30」という)に接続されている。循環パイプ28の内部空間は、蓄熱ストレージ30の内部空間に連通されている。このため、蓄熱ヒータ部26と蓄熱ストレージ30とは、循環パイプ28を介して互いに連通されている。流動性媒体は、蓄熱ヒータ部26と蓄熱ストレージ30との間の圧力差により、蓄熱ヒータ部26と蓄熱ストレージ30との間を相互に流動可能である。 Further, the lower end of the circulation pipe 28 is connected to the outer peripheral surface of the heat storage heater portion 26. The internal space of the heat storage heater portion 26 communicates with the internal space of the circulation pipe 28. The upper end of the circulation pipe 28 is connected to a box-shaped storage section 30 (hereinafter referred to as a heat storage storage 30) that stores a fluid medium. The internal space of the circulation pipe 28 is communicated with the internal space of the heat storage 30. For this reason, the heat storage heater unit 26 and the heat storage 30 are communicated with each other via the circulation pipe 28. The fluid medium can flow between the heat storage heater 26 and the heat storage 30 due to a pressure difference between the heat storage heater 26 and the heat storage 30.
 循環パイプ28の中間部には、流量制御部としての開閉バルブ32が取り付けられている。開閉バルブ32の開閉によって、流動性媒体の流動が制御可能となる。例えば、最も単純な制御形態として、開閉バルブ32が開放したときに蓄熱ヒータ部26と蓄熱ストレージ30との間の流動性媒体の流動を可能とし、開閉バルブ32を閉塞したときに蓄熱ヒータ部26と蓄熱ストレージ30との間の流動性媒体の流動を不可能とする。 An opening / closing valve 32 as a flow rate control unit is attached to an intermediate portion of the circulation pipe 28. By opening / closing the opening / closing valve 32, the flow of the fluid medium can be controlled. For example, as the simplest control mode, when the opening / closing valve 32 is opened, the fluid medium can flow between the heat storage heater unit 26 and the heat storage 30 and when the opening / closing valve 32 is closed, the heat storage heater unit 26 is opened. And the fluid storage medium between the heat storage 30 and the heat storage 30 are impossible.
 蓄熱ヒータ部26には、化学蓄熱材としての臭化マグネシウム(MgBr)が充填されている。MgBrは、流動性媒体としてのアンモニアとの化学反応(吸着反応)によって、発熱する。このため、蓄熱ストレージ30と蓄熱ヒータ部26との間の圧力差により、蓄熱ストレージ30から蓄熱ヒータ部26へ流動性媒体が流動すると、蓄熱ヒータ部26は、排気管16を通過する排気を加熱する。加熱装置20により加熱された排気が触媒装置18へ到達すると、排気の熱により触媒装置18の床温度が昇温し、触媒機能を活性化させる。特に、内燃機関12の始動から安定する過渡期に、触媒装置18の床温度の昇温により、触媒機能を活性化することが好ましい。 The heat storage heater section 26 is filled with magnesium bromide (MgBr 2 ) as a chemical heat storage material. MgBr 2 generates heat due to a chemical reaction (adsorption reaction) with ammonia as a fluid medium. For this reason, when the fluid medium flows from the heat storage 30 to the heat storage heater 26 due to the pressure difference between the heat storage 30 and the heat storage heater 26, the heat storage heater 26 heats the exhaust gas passing through the exhaust pipe 16. To do. When the exhaust gas heated by the heating device 20 reaches the catalyst device 18, the bed temperature of the catalyst device 18 is raised by the heat of the exhaust gas, and the catalyst function is activated. In particular, it is preferable to activate the catalyst function by raising the bed temperature of the catalyst device 18 in a transition period that is stable from the start of the internal combustion engine 12.
 一方、内燃機関12が十分に暖機され、触媒装置18が十分に活性化し、かつ排気の熱量が十分である場合、排気による床温度の昇温は不要となる。このとき、排気の熱により、蓄熱ヒータ部26に収容されている化学蓄熱材が加熱される。すると、化学蓄熱材から流動性媒体が脱着する脱着反応が生じ、それにより、排気の熱が蓄熱される。この結果、蓄熱ヒータ部26の圧力が蓄熱ストレージ30の圧力よりも高くなると、蓄熱ヒータ部26から蓄熱ストレージ30へ流動性媒体が流動する。その結果、蓄熱ストレージ30には、必要十分な量の流動性媒体が貯留される。すなわち、加熱装置20は、排気の加熱処理のために、流動性媒体の循環利用が可能となる。 On the other hand, when the internal combustion engine 12 is sufficiently warmed up, the catalyst device 18 is sufficiently activated, and the amount of heat of the exhaust is sufficient, it is not necessary to raise the bed temperature by the exhaust. At this time, the chemical heat storage material accommodated in the heat storage heater unit 26 is heated by the heat of the exhaust. As a result, a desorption reaction in which the fluid medium is desorbed from the chemical heat storage material occurs, whereby the heat of the exhaust is stored. As a result, when the pressure of the heat storage heater unit 26 becomes higher than the pressure of the heat storage storage 30, the fluid medium flows from the heat storage heater unit 26 to the heat storage storage 30. As a result, the heat storage 30 stores a necessary and sufficient amount of fluid medium. That is, the heating device 20 can circulate and use the fluid medium for the heat treatment of the exhaust.
 次に、燃焼時期制御による排気温度調整について説明する。
 調整制御は、エンジン制御部14による内燃機関12の制御である。調整制御として、図5(A)に示すアフター噴射制御、又は図5(B)に示す遅角噴射制御の何れかが選択されて実行される。
Next, exhaust temperature adjustment by combustion timing control will be described.
The adjustment control is control of the internal combustion engine 12 by the engine control unit 14. As the adjustment control, either after-injection control shown in FIG. 5A or retarded-angle injection control shown in FIG. 5B is selected and executed.
 アフター噴射制御では、メイン噴射後にメイン噴射よりも少量の燃料噴射量で燃料を噴射することで、燃焼が継続される。この結果、排気管16へ連通する図示しないバルブが開放するときの排気温度が、アフター噴射がないときの排気温度よりも、高くなる。また、遅角噴射制御では、計算上のクランク角(定常噴射角度)でのメイン噴射自体を遅延させて(遅角制御)、燃料を燃焼させる。この結果、排気管16へ連通するバルブが開放するときの排気温度が、定常噴射角度のときの排気温度よりも、高くなる。遅角噴射の場合、トルクを保持するために、燃料噴射量を増加することが好ましい。 In the after injection control, combustion is continued by injecting fuel after the main injection with a smaller fuel injection amount than the main injection. As a result, the exhaust temperature when a valve (not shown) communicating with the exhaust pipe 16 is opened is higher than the exhaust temperature when there is no after injection. In the retarded angle injection control, the main injection itself at the calculated crank angle (steady injection angle) is delayed (retarded angle control) to burn the fuel. As a result, the exhaust temperature when the valve communicating with the exhaust pipe 16 is opened becomes higher than the exhaust temperature at the steady injection angle. In the case of retarded injection, it is preferable to increase the fuel injection amount in order to maintain the torque.
 加熱制御装置24は、バルブ制御部34と、調整制御指示部36と、主制御部38とを備えている。バルブ制御部34は、加熱装置20に設けられた開閉バルブ32を制御する。調整制御指示部36は、エンジン制御部14へ排気温度の調整制御を指示する。主制御部38は、触媒装置18の浄化率に基づいて、バルブ制御部34及び調整制御指示部36を総合的に制御する。蓄熱ヒータ部26には、蓄熱ヒータ部温度センサ40が取り付けられている。蓄熱ヒータ部温度センサ40は、検出信号線介して、主制御部38に接続されている。蓄熱ストレージ30には、蓄熱ストレージ温度センサ42が取り付けられている。蓄熱ストレージ温度センサ42も、検出信号線を介して主制御部38に接続されている。 The heating control device 24 includes a valve control unit 34, an adjustment control instruction unit 36, and a main control unit 38. The valve control unit 34 controls the open / close valve 32 provided in the heating device 20. The adjustment control instruction unit 36 instructs the engine control unit 14 to adjust the exhaust temperature. The main control unit 38 comprehensively controls the valve control unit 34 and the adjustment control instruction unit 36 based on the purification rate of the catalyst device 18. A heat storage heater section temperature sensor 40 is attached to the heat storage heater section 26. The regenerative heater section temperature sensor 40 is connected to the main control section 38 via a detection signal line. A heat storage temperature sensor 42 is attached to the heat storage 30. The heat storage temperature sensor 42 is also connected to the main controller 38 via a detection signal line.
 主制御部38は、検出された温度に基づいて、圧力を演算する。すなわち、図2(A)に示すように、アンモニアを収容する容器の温度と圧力との関係は、使用領域において線形に近似し、ほぼ正比例である。従って、主制御部38は、蓄熱ヒータ部温度センサ40による温度検出によって、蓄熱ヒータ部26に貯留されている流動性媒体の圧力を認識する。また、主制御部38は、蓄熱ストレージ温度センサ42による温度検出によって、蓄熱ストレージ30に貯留されている流動性媒体の圧力を認識する。 The main control unit 38 calculates the pressure based on the detected temperature. That is, as shown in FIG. 2A, the relationship between the temperature and pressure of the container containing ammonia is linearly approximated in the use region and is almost directly proportional. Therefore, the main control unit 38 recognizes the pressure of the fluid medium stored in the heat storage heater unit 26 by detecting the temperature by the heat storage heater unit temperature sensor 40. Further, the main control unit 38 recognizes the pressure of the fluid medium stored in the heat storage 30 by detecting the temperature by the heat storage temperature sensor 42.
 また、図2(B)に示すように、圧力と流動性媒体の量との関係も線形の相関関係を有している。なお、温度によって特性曲線が異なる場合がある。このため、例えば、蓄熱ストレージ30に貯留されている流動性媒体の保有量を求める場合、蓄熱ストレージ30の温度を蓄熱ストレージ温度センサ42により検出し、検出した温度から圧力を換算し、さらに、換算した圧力から流動性媒体の保有量である残量を得ることができる。なお、蓄熱ヒータ部温度センサ40と蓄熱ストレージ温度センサ42を用いたが、廉価である温度センサに代えて、精度を重視するために蓄熱ヒータ部26及び蓄熱ストレージ30にそれぞれ圧力センサを取り付けてもよい。また、温度センサと圧力センサとを、併用してもよい。 Further, as shown in FIG. 2B, the relationship between the pressure and the amount of the fluid medium also has a linear correlation. Note that the characteristic curve may differ depending on the temperature. For this reason, for example, when calculating | requiring the holding | maintenance amount of the fluid medium currently stored by the thermal storage 30, the temperature of the thermal storage 30 is detected by the thermal storage temperature sensor 42, pressure is converted from the detected temperature, Furthermore, conversion The remaining amount, which is the amount of the fluid medium, can be obtained from the applied pressure. In addition, although the heat storage heater part temperature sensor 40 and the heat storage storage temperature sensor 42 were used, instead of the inexpensive temperature sensor, pressure sensors may be attached to the heat storage heater part 26 and the heat storage storage 30 in order to place importance on accuracy. Good. Moreover, you may use a temperature sensor and a pressure sensor together.
 触媒装置18には、触媒装置18の床温度を検出する床温検出センサ44が取り付けられている。床温検出センサ44は、検出信号線を介して主制御部38に接続されている。また、排気管16における触媒装置18の上流側(入口近傍)と下流側(出口近傍)とには、それぞれNOセンサ46in、46outが取り付けられている。NOセンサ46in、46outは、検出信号線を介して浄化率演算部48に接続されている。図1に示す浄化率演算部48は、加熱制御部24と別体であるが、加熱制御部24の一部であってもよい。 A bed temperature detection sensor 44 that detects the bed temperature of the catalyst device 18 is attached to the catalyst device 18. The bed temperature detection sensor 44 is connected to the main control unit 38 via a detection signal line. Further, NO x sensors 46 in and 46 out are attached to the upstream side (near the inlet) and the downstream side (near the outlet) of the catalyst device 18 in the exhaust pipe 16, respectively. The NO x sensors 46 in and 46 out are connected to the purification rate calculation unit 48 via detection signal lines. The purification rate calculation unit 48 illustrated in FIG. 1 is separate from the heating control unit 24, but may be a part of the heating control unit 24.
 浄化率演算部48は、NOセンサ46in、46outのそれぞれから入力された検出値に基づいて、触媒装置18に入る排気中の窒素酸化物の量Ninと触媒装置から出る排気中の窒素酸化物の量Noutとの比(浄化率S)を演算する(S=Nin/Nout)。浄化率演算部48は、主制御部38に接続されると共に、上記の演算結果(浄化率S)を、主制御部38へ出力する。 The purification rate calculation unit 48 determines the amount of nitrogen oxides N in in the exhaust gas entering the catalytic device 18 and the exhaust gas in the exhaust gas from the catalytic device based on the detection values input from the NO x sensors 46 in and 46 out . A ratio (purification rate S) with the amount N out of nitrogen oxide is calculated (S = N in / N out ). The purification rate calculation unit 48 is connected to the main control unit 38 and outputs the calculation result (purification rate S) to the main control unit 38.
 加熱制御部24は、始動時、過渡期、定常運転時期等の内燃機関12の状態を、エンジン制御部14から入力された内燃機関制御情報に基づいて解析する。そして、加熱制御部24は、内燃機関12の状態に適した排気の加熱制御を実行する。例えば、内燃機関12の始動時は、触媒装置18の浄化率が低く、床温度が低いため、所望の触媒活性を得ることができない場合がある。そこで、加熱制御装置24は、加熱装置20を用いて、排気を加熱する。排気の加熱によって、触媒装置18の床温度が昇温し、触媒装置18が活性化する。 The heating control unit 24 analyzes the state of the internal combustion engine 12 such as the start time, the transition period, and the steady operation timing based on the internal combustion engine control information input from the engine control unit 14. The heating control unit 24 executes exhaust heating control suitable for the state of the internal combustion engine 12. For example, when the internal combustion engine 12 is started, a desired catalytic activity may not be obtained because the purification rate of the catalyst device 18 is low and the bed temperature is low. Therefore, the heating control device 24 uses the heating device 20 to heat the exhaust. By heating the exhaust, the bed temperature of the catalyst device 18 is raised and the catalyst device 18 is activated.
 排気の加熱制御は、触媒装置18の床温度及び浄化率を常に監視しながら、実行される。内燃機関12の状態の遷移、すなわち、始動時から過渡期、定常運転時期へと遷移するに従い、内燃機関12の状態に応じて、加熱制御を変更可能である。上記の加熱制御には、加熱不要も含まれる。 Exhaust heating control is executed while constantly monitoring the bed temperature and purification rate of the catalyst device 18. The heating control can be changed according to the state of the internal combustion engine 12 as the state transition of the internal combustion engine 12, that is, as the state transitions from the start time to the transition period and the steady operation timing. The heating control includes heating unnecessary.
 また、本実施形態では、加熱装置20に加え、エンジン制御部14により内燃機関12の燃焼時期を制御することも行われる。このため、加熱制御装置24は、加熱装置20が使用不能な場合、加熱装置20による加熱に代えて、内燃機関12の燃焼時期の制御を実行することで、触媒装置18の活性を維持することができる。 In this embodiment, in addition to the heating device 20, the engine control unit 14 controls the combustion timing of the internal combustion engine 12. For this reason, the heating control device 24 maintains the activity of the catalyst device 18 by executing the control of the combustion timing of the internal combustion engine 12 instead of the heating by the heating device 20 when the heating device 20 cannot be used. Can do.
 以下、本実施形態の作用を図3、図4(A)及び図4(B)のフローチャートに従い説明する。図3、図4(A)及び図4(B)を含む本実施形態の全てのフローチャートの各ステップで実行される信号検出や判定の順序を、適宜入れ替えてもよい。 Hereinafter, the operation of the present embodiment will be described with reference to the flowcharts of FIGS. 3, 4 (A) and 4 (B). The order of signal detection and determination executed in each step of all flowcharts of this embodiment including FIG. 3, FIG. 4 (A), and FIG. 4 (B) may be appropriately changed.
 図3に示す排気加熱制御ルーチンでは、まず、ステップ100において、内燃機関12が運転中か否かが判断される。運転中か否かの判断は、燃料噴射が実行されているか否かを判断するために行われる。「運転中ではない」とは、燃焼制御が行われていない運転休止状態を指す。運転休止状態とは別に、例えば、車両が長い坂を下っているときに実施される燃料カット制御中を、「運転中ではない」としてもよい。 In the exhaust heating control routine shown in FIG. 3, first, in step 100, it is determined whether or not the internal combustion engine 12 is in operation. The determination as to whether or not the vehicle is in operation is performed in order to determine whether or not fuel injection is being performed. “Not in operation” refers to an operation stop state in which combustion control is not performed. Apart from the operation suspension state, for example, the fuel cut control performed when the vehicle is going down a long hill may be “not in operation”.
 ステップ100で否定判定された場合(ステップ100のN)、内燃機関12が運転中ではないため、排気を加熱する必要はない。よって、制御フローがステップ102へ移行する。ステップ100で肯定判定された場合(ステップ100のY)、内燃機関12が運転中であり、触媒装置18を活性する必要がある。よって、制御フローがステップ106へ移行して、触媒装置18の浄化率が基準値以上か否かが判断される。 When a negative determination is made in step 100 (N in step 100), it is not necessary to heat the exhaust because the internal combustion engine 12 is not in operation. Therefore, the control flow moves to step 102. When an affirmative determination is made in step 100 (Y in step 100), the internal combustion engine 12 is in operation and the catalyst device 18 needs to be activated. Therefore, the control flow proceeds to step 106, and it is determined whether or not the purification rate of the catalyst device 18 is equal to or higher than a reference value.
 ステップ106で肯定判定された場合(ステップ106のY)、すなわち、浄化率が基準値以上と判断された場合、排気を加熱する必要はない。よって、制御フローがステップ102へ移行する。ステップ106で否定判定された場合(ステップ106のN)、浄化率が基準値未満であるため、排気を加熱する必要がある。よって、制御フローがステップ108へ移行して、触媒床温度が基準値以上か否かが判断される。 If an affirmative determination is made in step 106 (Y in step 106), that is, if it is determined that the purification rate is equal to or higher than the reference value, it is not necessary to heat the exhaust. Therefore, the control flow moves to step 102. If a negative determination is made in step 106 (N in step 106), the exhaust rate needs to be heated because the purification rate is less than the reference value. Therefore, the control flow proceeds to step 108 and it is determined whether or not the catalyst bed temperature is equal to or higher than the reference value.
 ステップ108で肯定判定された場合(ステップ108のY)、すなわち、触媒装置18の床温度は安定しているため、排気を加熱する必要はない。よって、制御フローがステップ102へ移行する。こうして、制御フローがステップ100、ステップ106、ステップ108を経てステップ102に移行すると、加熱装置20の開閉バルブ32が閉止されて、このルーチンは終了する。ステップ108で否定判定された場合(ステップ108のN)、排気加熱を必要とする条件が全て揃っているため、制御フローがステップ110へ移行する。 When an affirmative determination is made in step 108 (Y in step 108), that is, since the bed temperature of the catalyst device 18 is stable, there is no need to heat the exhaust. Therefore, the control flow moves to step 102. Thus, when the control flow goes to Step 102 through Step 100, Step 106, and Step 108, the opening / closing valve 32 of the heating device 20 is closed, and this routine is finished. If a negative determination is made in step 108 (N in step 108), the control flow moves to step 110 because all the conditions that require exhaust heating are complete.
 ステップ110では、蓄熱ストレージ30の流動性媒体(NH)の残量が検出される。流動性媒体(NH)の残量が所定値未満と判定された場合、加熱装置20による排気加熱能力が不適正であると判断される。よって、制御フローがステップ128へ移行し、開閉バルブ32が閉止されてから、ステップ130へ移行する。ステップ130では、加熱装置20に代わり、調整制御指示部36からの指示に基づき、内燃機関12の燃料の噴射時期制御が実行される。すなわち、内燃機関12に用いた触媒装置18の触媒床温度に基づく排気温度の調整(主に加熱)が開始されて、このルーチンは終了する。 In step 110, the remaining amount of the fluid medium (NH 3) of the heat storage storage 30 is detected. When it is determined that the remaining amount of the fluid medium (NH 3 ) is less than the predetermined value, it is determined that the exhaust gas heating capability by the heating device 20 is inappropriate. Therefore, the control flow proceeds to step 128, and after the opening / closing valve 32 is closed, the process proceeds to step 130. In step 130, fuel injection timing control of the internal combustion engine 12 is executed based on an instruction from the adjustment control instruction unit 36 instead of the heating device 20. That is, the adjustment (mainly heating) of the exhaust temperature based on the catalyst bed temperature of the catalyst device 18 used in the internal combustion engine 12 is started, and this routine ends.
 一方、流動性媒体(NH)の残量が所定以上と判定された場合、加熱装置20による排気加熱機能が適正であると判断される。よって、制御フローがステップ120へ移行する。ステップ120では、蓄熱ヒータ部26の温度と蓄熱ストレージ30の温度とが検出されてから、制御フローがステップ122へ移行する。ステップ122では、検出した温度に基づいて、蓄熱ヒータ部26の流動性媒体(NH)の平衡圧Phが演算される。次いで、ステップ124では、蓄熱ストレージ30の流動性媒体(NH)の平衡圧Psが演算される。そして、制御フローがステップ126へ移行する。 On the other hand, when it is determined that the remaining amount of the fluid medium (NH 3 ) is equal to or greater than the predetermined value, it is determined that the exhaust heating function by the heating device 20 is appropriate. Therefore, the control flow moves to step 120. In step 120, after the temperature of the heat storage heater unit 26 and the temperature of the heat storage 30 are detected, the control flow proceeds to step 122. In step 122, based on the detected temperature, the equilibrium pressure Ph of the fluid medium (NH 3 ) of the heat storage heater section 26 is calculated. Next, at step 124, the equilibrium pressure Ps of the fluid medium (NH 3 ) of the heat storage 30 is calculated. Then, the control flow moves to step 126.
 ステップ126では、蓄熱ヒータ部26の流動性媒体(NH)の平衡圧Phと蓄熱ストレージ30の流動性媒体(NH)の平衡圧Psとが比較される(Ph:Ps)。Ph≧Psと判定された場合、流動性媒体(NH)が適正に流動せず、排気加熱機能が不十分であると判断される。よって、制御フローがステップ128へ移行し、開閉バルフ32が閉止されてから、ステップ130へ移行する。ステップ130では、加熱装置20に代わり、調整制御指示部36の指示に基づき、内燃機関12の燃料の噴射時期制御が実行される。すなわち、内燃機関12に用いた触媒装置18の触媒床温度に基づく加熱制御が開始されて、このルーチンは終了する。 In step 126, the equilibrium pressure Ph of the fluid medium (NH 3 ) of the heat storage heater section 26 is compared with the equilibrium pressure Ps of the fluid medium (NH 3 ) of the heat storage 30 (Ph: Ps). When it is determined that Ph ≧ Ps, it is determined that the fluid medium (NH 3 ) does not flow properly and the exhaust heating function is insufficient. Therefore, the control flow proceeds to step 128, and after the opening / closing valve 32 is closed, the process proceeds to step 130. In step 130, fuel injection timing control of the internal combustion engine 12 is executed based on an instruction from the adjustment control instruction unit 36 instead of the heating device 20. That is, the heating control based on the catalyst bed temperature of the catalyst device 18 used in the internal combustion engine 12 is started, and this routine ends.
 一方、ステップ126でPh<Psと判定された場合、流動性媒体(NH)が適正に流動し、排気加熱機能が十分であると判断される。よって、制御フローがステップ132へ移行し、開閉バルブ32が開放される。よって、蓄熱ヒータ部26に流動性媒体(NH)が供給され、加熱装置20による排気加熱制御が開始されて、このルーチンは終了する。 On the other hand, if it is determined in step 126 that Ph <Ps, it is determined that the fluid medium (NH 3 ) flows properly and the exhaust heating function is sufficient. Therefore, the control flow moves to step 132, and the opening / closing valve 32 is opened. Therefore, the fluid medium (NH 3 ) is supplied to the heat storage heater unit 26, the exhaust heating control by the heating device 20 is started, and this routine ends.
 図4(A)に示す内燃機関12の噴射時期制御ルーチンでは、まず、ステップ150において、噴射時期制御が可能か否かが判断される。ステップ150で否定判定された場合(ステップ150のN)、このルーチンは終了する。また、ステップ150で肯定判定された場合(ステップ150のY)、制御フローがステップ151へ移行し、内燃機関12の負荷情報が取得される。次いで、制御フローがステップ152へ移行して、内燃機関12の負荷状態が判別される。 In the injection timing control routine of the internal combustion engine 12 shown in FIG. 4A, first, at step 150, it is determined whether or not the injection timing control is possible. If a negative determination is made in step 150 (N in step 150), this routine ends. If an affirmative determination is made in step 150 (Y in step 150), the control flow proceeds to step 151, and the load information of the internal combustion engine 12 is acquired. Subsequently, the control flow proceeds to step 152, and the load state of the internal combustion engine 12 is determined.
 ステップ152で内燃機関12が低負荷であると判定された場合、制御フローがステップ154へ移行し、図5(A)に示すアフター噴射制御が開始されて、このルーチンは終了する。一方、ステップ152で内燃機関12が中負荷又は高負荷であると判定された場合、制御フローがステップ156へ移行し、図5(B)に示す遅角噴射制御が開始されて、このルーチンは終了する。ステップ156の遅角噴射制御時は、トルク保持のため燃料噴射量を増加する。 If it is determined in step 152 that the internal combustion engine 12 has a low load, the control flow proceeds to step 154, the after injection control shown in FIG. 5 (A) is started, and this routine ends. On the other hand, if it is determined in step 152 that the internal combustion engine 12 is at a medium load or a high load, the control flow proceeds to step 156 and the retarded injection control shown in FIG. finish. During the retarded angle injection control in step 156, the fuel injection amount is increased to maintain the torque.
 図4(B)に示す噴射時期制御の終了動作制御ルーチンでは、まず、ステップ160において、噴射時期制御中か否かが判断される。ステップ160で否定判定された場合(ステップ160のN)、このルーチンは終了する。一方、ステップ160で肯定判定された場合(ステップ160のY)、制御フローがステップ162へ移行する。ステップ162では、浄化率演算部48から信号が取り込まれる。次いで、制御フローがステップ164へ移行して、浄化率が基準値以上か否かが判断される。ステップ164で否定判定された場合(ステップ164のN)、排気加熱を継続する必要があると判断されて、このルーチンは終了する。一方、ステップ164で肯定判定された場合(ステップ164のY)、制御フローがステップ165へ移行して、触媒装置の床温度が所定以上か否かが判断される。 In the injection timing control end operation control routine shown in FIG. 4B, first, in step 160, it is determined whether or not the injection timing control is being performed. If a negative determination is made in step 160 (N in step 160), this routine ends. On the other hand, if an affirmative determination is made in step 160 (Y in step 160), the control flow moves to step 162. In step 162, a signal is taken from the purification rate calculation unit 48. Next, the control flow proceeds to step 164, and it is determined whether the purification rate is equal to or higher than a reference value. If a negative determination is made in step 164 (N in step 164), it is determined that exhaust heating needs to be continued, and this routine ends. On the other hand, when an affirmative determination is made in step 164 (Y in step 164), the control flow proceeds to step 165, and it is determined whether the bed temperature of the catalyst device is equal to or higher than a predetermined value.
 ステップ165で否定判定された場合(ステップ165のN)、排気加熱を継続する必要があると判断され、このルーチンは終了する。一方、ステップ165で肯定判定された場合(ステップ165のY)、排気加熱が不要であるため、制御フローがステップ166へ移行する。そして、噴射時期制御が終了し、このルーチンは終了する。 If a negative determination is made in step 165 (N in step 165), it is determined that exhaust heating needs to be continued, and this routine ends. On the other hand, if an affirmative determination is made in step 165 (Y in step 165), the exhaust gas heating is unnecessary, and the control flow moves to step 166. And injection timing control is complete | finished and this routine is complete | finished.
 本実施形態によれば、触媒装置18を活性する必要があるとき、優先的に加熱装置20による排気加熱が選択される。また、加熱装置20の排気加熱機能が十分の場合は、加熱装置20を用いた排気加熱が実行される。一方、加熱装置20の排気加熱機能が不十分の場合は、内燃機関12による燃料噴射時期制御を用いた排気加熱が実行される。これらによって、投入エネルギーが抑制され、触媒装置18の浄化率が効果的に向上する。 According to the present embodiment, when the catalyst device 18 needs to be activated, the exhaust gas heating by the heating device 20 is preferentially selected. In addition, when the exhaust heating function of the heating device 20 is sufficient, exhaust heating using the heating device 20 is performed. On the other hand, when the exhaust heating function of the heating device 20 is insufficient, exhaust heating using fuel injection timing control by the internal combustion engine 12 is executed. By these, input energy is suppressed and the purification rate of the catalytic device 18 is effectively improved.
 図6に示すように、比較例としての触媒床温に基づく制御と、浄化率に基づく制御とに比べ、本実施形態に係る触媒床温と浄化率との併用に基づく制御では、投入エネルギーが少なくて済む。 As shown in FIG. 6, compared to the control based on the catalyst bed temperature as a comparative example and the control based on the purification rate, the control based on the combined use of the catalyst bed temperature and the purification rate according to this embodiment has an input energy of Less is enough.
 次に、加熱装置20の再生制御ルーチンについて説明する。
 図7に示す加熱装置20の再生制御ルーチンでは、まず、ステップ200において、既に触媒装置18が昇温制御中であるか否かが判断される。ステップ200で肯定判定された場合(ステップ200のY)、このルーチンは終了する。一方、ステップ200で否定判定された場合(ステップ200のN)、制御フローがステップ202へ移行し、触媒装置18の床温度(触媒床温)を検出してから、ステップ204へ移行する。
Next, the regeneration control routine of the heating device 20 will be described.
In the regeneration control routine of the heating device 20 shown in FIG. 7, first, in step 200, it is determined whether or not the catalyst device 18 is already under temperature increase control. If an affirmative determination is made in step 200 (Y in step 200), this routine ends. On the other hand, if a negative determination is made in step 200 (N in step 200), the control flow proceeds to step 202, and after detecting the bed temperature (catalyst bed temperature) of the catalyst device 18, the process proceeds to step 204.
 ステップ204では、触媒床温が基準値以上か否かが判断される。ステップ204で否定判定された場合(ステップ204のN)、内燃機関の噴射時期制御で得た排気の熱を触媒装置18の活性化に利用することが優先される。このため、内燃機関の噴射時期制御の再生を行わずに、このルーチンは終了する。一方、ステップ204で肯定判定された場合(ステップ204のY)、内燃機関の噴射時期制御で得た排気の熱は、触媒装置18の活性化に利用する必要がなく、加熱装置20の再生に利用可能である。このため、制御フローがステップ206へ移行する。 In step 204, it is determined whether the catalyst bed temperature is equal to or higher than a reference value. When a negative determination is made in step 204 (N in step 204), priority is given to using the heat of the exhaust gas obtained by the injection timing control of the internal combustion engine for the activation of the catalyst device 18. For this reason, this routine ends without performing the regeneration of the injection timing control of the internal combustion engine. On the other hand, when an affirmative determination is made in step 204 (Y in step 204), the heat of the exhaust gas obtained by the injection timing control of the internal combustion engine does not need to be used for the activation of the catalyst device 18 and is used for the regeneration of the heating device 20. Is available. Therefore, the control flow moves to step 206.
 ステップ206では、蓄熱ヒータ部26の温度と蓄熱ストレージ30の温度とがそれぞれ検出される。そして、制御フローがステップ208へ移行する。ステップ208では、検出した温度に基づいて、蓄熱ヒータ部26の流動性媒体(NH)の平衡圧Phが演算される。次いで、制御フローがステップ210へ移行し、ステップ210では、蓄熱ストレージ30の流動性媒体(NH)の平衡圧Psが演算される。そして、制御フローがステップ212へ移行する。 In step 206, the temperature of the heat storage heater unit 26 and the temperature of the heat storage 30 are detected. Then, the control flow moves to step 208. In step 208, the equilibrium pressure Ph of the fluid medium (NH 3 ) of the heat storage heater unit 26 is calculated based on the detected temperature. Next, the control flow proceeds to step 210, where the equilibrium pressure Ps of the fluid medium (NH 3 ) of the heat storage 30 is calculated. Then, the control flow moves to step 212.
 ステップ212では、蓄熱ストレージ30の流動性媒体(NH)の残量が検出される。ステップ212で蓄熱ストレージ30の流動性媒体(NH)の残量が所定値以上と判定された場合、再生制御が不要であると判断され、制御フローがステップ214へ移行する。ステップ214では、開閉バルブ32が開放されているか否かが判断される。ステップ214で肯定判定された場合、即ち、開閉バルブ32が開放されている場合(ステップ214のY)、ステップ216で開閉バルブ32が閉止される。また、蓄熱ヒータ部26へ流動性媒体(NH)が供給されなくなり、制御フローがステップ218へ移行する。一方、ステップ214で否定判定された場合(ステップ214のN)、制御フローがステップ218へ移行する。 In step 212, the remaining amount of the fluid medium (NH 3 ) in the heat storage 30 is detected. If it is determined in step 212 that the remaining amount of the fluid medium (NH 3 ) in the heat storage 30 is greater than or equal to a predetermined value, it is determined that regeneration control is not necessary, and the control flow proceeds to step 214. In step 214, it is determined whether or not the opening / closing valve 32 is open. If the determination in step 214 is affirmative, that is, if the opening / closing valve 32 is open (Y in step 214), the opening / closing valve 32 is closed in step 216. In addition, the fluid medium (NH 3 ) is not supplied to the heat storage heater unit 26, and the control flow proceeds to step 218. On the other hand, if a negative determination is made in step 214 (N in step 214), the control flow proceeds to step 218.
 ステップ218では、内燃機関の噴射時期制御中か否かが判断される。ステップ218で肯定判定された場合(ステップ218のY)、ステップ220で内燃機関の噴射時期制御が終了し、このルーチンは終了する。一方、ステップ218で否定判定された場合、即ち、内燃機関の噴射時期制御が実行されていない場合(ステップ218のN)、このルーチンは終了する。 In step 218, it is determined whether or not the injection timing of the internal combustion engine is being controlled. If an affirmative determination is made in step 218 (Y in step 218), the injection timing control of the internal combustion engine ends in step 220, and this routine ends. On the other hand, if a negative determination is made in step 218, that is, if the injection timing control of the internal combustion engine is not being executed (N in step 218), this routine ends.
 ステップ212において、蓄熱ストレージ30の流動性媒体(NH)の残量が所定値未満と判定された場合(ステップ212のN)、再生制御が必要と判断され、制御フローがステップ222へ移行する。ステップ222では、ステップ208及びステップ210でそれぞれ演算した蓄熱ヒータ部26の流動性媒体(NH)の平衡圧Phと蓄熱ストレージ30の流動性媒体(NH)の平衡圧Psとが比較される(Ph:Ps)。Ph≧Psと判定された場合、制御フローがステップ224へ移行して、開閉バルブ32が開放される。また、蓄熱ストレージ30に流動性媒体(NH)が供給されて(以下、「通常再生」という)、制御フローがステップ228へ移行する。ステップ228では、後述する強制再生制御に用いられるタイマカウンタCtがリセット(Ct←0)されて、このルーチンは終了する。 In step 212, when it is determined that the remaining amount of the fluid medium (NH 3 ) in the heat storage 30 is less than the predetermined value (N in step 212), it is determined that regeneration control is necessary, and the control flow proceeds to step 222. . In step 222, the equilibrium pressure Ph of the fluid medium (NH 3 ) of the heat storage heater unit 26 calculated in step 208 and step 210 is compared with the equilibrium pressure Ps of the fluid medium (NH 3 ) of the heat storage 30. (Ph: Ps). If it is determined that Ph ≧ Ps, the control flow proceeds to step 224, and the opening / closing valve 32 is opened. In addition, the fluid medium (NH 3 ) is supplied to the heat storage 30 (hereinafter referred to as “normal regeneration”), and the control flow proceeds to step 228. In step 228, a timer counter Ct used for forced regeneration control to be described later is reset (Ct ← 0), and this routine ends.
 一方、ステップ222でPh<Psと判定された場合、通常再生が不可能であるため、制御フローがステップ226へ移行する。そして、加熱装置20の強制再生制御が実行されて、このルーチンは終了する。ステップ226の強制再生制御は、内燃機関の噴射時期制御で加熱された排気が加熱装置20を加熱することで、加熱装置20が加圧されて、Ph≧Psとする制御である。 On the other hand, if it is determined in step 222 that Ph <Ps, normal playback is impossible, and the control flow proceeds to step 226. Then, forced regeneration control of the heating device 20 is executed, and this routine ends. The forced regeneration control in step 226 is control in which the exhaust device heated by the injection timing control of the internal combustion engine heats the heating device 20 to pressurize the heating device 20 so that Ph ≧ Ps.
 図8に示す加熱装置20の強制再生制御ルーチンでは、まず、ステップ250において、蓄熱ヒータ部26の温度が検出される。次いで、制御フローがステップ252へ移行して、蓄熱ヒータ部26の温度が所定以上か否かが判断される。ステップ252で肯定判定された場合(ステップ252のY)、すなわち、蓄熱ヒータ部26の温度が所定以上と判断された場合、制御フローがステップ254へ移行して、内燃機関の噴射時期制御が可能か否かが判断される。 In the forced regeneration control routine of the heating device 20 shown in FIG. 8, first, in step 250, the temperature of the heat storage heater section 26 is detected. Next, the control flow proceeds to step 252, and it is determined whether or not the temperature of the heat storage heater unit 26 is equal to or higher than a predetermined value. If an affirmative determination is made in step 252 (Y in step 252), that is, if the temperature of the heat storage heater unit 26 is determined to be equal to or higher than a predetermined value, the control flow proceeds to step 254, and the injection timing control of the internal combustion engine is possible. It is determined whether or not.
 ステップ254で否定判定された場合(ステップ254のN)、ルーチンは終了する。一方、ステップ254で肯定判定された場合(ステップ254のY)、制御フローがステップ256へ移行して、内燃機関の負荷情報が取得される。次いで、制御フローがステップ258へ移行して、内燃機関12の負荷状態が判別される。 If a negative determination is made in step 254 (N in step 254), the routine ends. On the other hand, if an affirmative determination is made in step 254 (Y in step 254), the control flow proceeds to step 256, and load information of the internal combustion engine is acquired. Subsequently, the control flow proceeds to step 258, and the load state of the internal combustion engine 12 is determined.
 ステップ258で内燃機関12が低負荷であると判定された場合、制御フローがステップ260へ移行し、図5(A)に示すアフター噴射制御が開始されてから、ステップ264へ移行する。一方、ステップ258で内燃機関12が中負荷又は高負荷であると判定された場合、制御フローがステップ262へ移行して、図5(B)に示す噴射制御が開始されてから、ステップ264へ移行する。ステップ262の遅角噴射制御時は、トルク保持のため燃料噴射量を増加する。 When it is determined in step 258 that the internal combustion engine 12 has a low load, the control flow proceeds to step 260, and after the after injection control shown in FIG. 5A is started, the process proceeds to step 264. On the other hand, if it is determined in step 258 that the internal combustion engine 12 has a medium load or a high load, the control flow proceeds to step 262 and the injection control shown in FIG. Transition. During the retarded angle injection control in step 262, the fuel injection amount is increased to maintain the torque.
 ステップ264では、加熱装置20の強制再生用として内燃機関12の噴射時期制御が開始される。そして、制御フローがステップ266へ移行する。ステップ266では、後述するタイマカウンタCtがリセット(Ct←0)されて、このルーチンは終了する。 In step 264, the injection timing control of the internal combustion engine 12 is started for forced regeneration of the heating device 20. Then, the control flow moves to step 266. In step 266, a timer counter Ct, which will be described later, is reset (Ct ← 0), and this routine ends.
 ステップ252で否定判定された場合(ステップ252のN)、すなわち、蓄熱ヒータ部26の温度が所定未満である場合、再生するには相当の熱量が必要である。よって、再生制御を待機するべく、制御フローがステップ268へ移行し、タイマカウンタCtがインクリメント(Ct←Ct+1)されてから、ステップ270へ移行する。ステップ268のタイマカウンタCtのインクリメントは、図8のルーチンが繰り返しされる毎にカウント値が累積されることで、タイマとして機能する。 If a negative determination is made in step 252 (N in step 252), that is, if the temperature of the heat storage heater unit 26 is lower than a predetermined value, a considerable amount of heat is required for regeneration. Therefore, in order to wait for the regeneration control, the control flow shifts to step 268 and the timer counter Ct is incremented (Ct ← Ct + 1), and then shifts to step 270. The increment of the timer counter Ct in step 268 functions as a timer by accumulating the count value every time the routine of FIG. 8 is repeated.
 ステップ270では、カウントアップ値Csが読み出される。次いでステップ272では、現在のカウント値Ctがカウントアップ値Csを超えたか(Ct>Cs)否かが判断される。ステップ272で肯定判定(Ct>Cs)された場合、制御フローがステップ270へ移行する。一方、ステップ272で否定判定された場合、このルーチンは終了する。 In step 270, the count-up value Cs is read out. Next, at step 272, it is determined whether or not the current count value Ct exceeds the count-up value Cs (Ct> Cs). If an affirmative determination is made in step 272 (Ct> Cs), the control flow moves to step 270. On the other hand, if a negative determination is made in step 272, this routine ends.
 (変形例)
 本実施形態では、排気浄化装置10として、排気を昇温することに特化した構成を説明した。次に、尿素を供給して窒素酸化物を浄化する選択還元触媒を含めた排気浄化装置50について説明する。
(Modification)
In the present embodiment, the configuration specialized in raising the temperature of the exhaust gas as the exhaust gas purification device 10 has been described. Next, an exhaust purification device 50 including a selective reduction catalyst that purifies nitrogen oxides by supplying urea will be described.
 図9に示すように、変形例に係る排気系構造は、本実施形態に係る排気昇温機能に加え、窒素酸化物浄化機能を有することで、総合的に排気浄化装置50を構成している。
 変形例に係る排気系構造は、本実施形態と同様に、ディーゼルエンジンの内燃機関12を対象としている。本実施形態で説明した排気加熱機能を有する排気浄化装置10は、排気管16における内燃機関12の下流側に配置されている。また、排気管16には、排気管16中に供給される尿素により窒素酸化物(NO)を浄化する選択還元触媒54が設けられている。また、酸化触媒56が、排気管16における内燃機関12と選択還元触媒54との間に設けられている。
As shown in FIG. 9, the exhaust system structure according to the modified example has a nitrogen oxide purification function in addition to the exhaust gas temperature raising function according to the present embodiment, so that the exhaust purification device 50 is configured comprehensively. .
The exhaust system structure according to the modification is intended for the internal combustion engine 12 of a diesel engine, as in the present embodiment. The exhaust gas purification apparatus 10 having the exhaust gas heating function described in the present embodiment is disposed on the exhaust pipe 16 on the downstream side of the internal combustion engine 12. The exhaust pipe 16 is provided with a selective reduction catalyst 54 that purifies nitrogen oxides (NO x ) with urea supplied into the exhaust pipe 16. An oxidation catalyst 56 is provided between the internal combustion engine 12 and the selective reduction catalyst 54 in the exhaust pipe 16.
 窒素酸化物浄化機能を有する装置は、酸化触媒56の下流側に配置されたディーゼルパティキュレートフィルタ(以下DPFという)58と、尿素添加弁60を有する尿素噴射装置62と、尿素噴射装置62に供給される尿素水を蓄えておく尿素タンク64とを備えている。尿素添加弁60は、DPF58と選択還元触媒54との間の排気管16中に、尿素水を噴射して添加する。 A device having a nitrogen oxide purification function supplies a diesel particulate filter (hereinafter referred to as DPF) 58 disposed downstream of the oxidation catalyst 56, a urea injection device 62 having a urea addition valve 60, and a urea injection device 62. And a urea tank 64 for storing the urea water. The urea addition valve 60 injects and adds urea water into the exhaust pipe 16 between the DPF 58 and the selective reduction catalyst 54.
 選択還元触媒54よりも上流側の排気管16中には、NOセンサ66と温度センサ70とが配置されている。また、選択還元触媒54よりも下流側の排気管16中には、NOセンサ68が配置される場合がある。 An NO x sensor 66 and a temperature sensor 70 are disposed in the exhaust pipe 16 upstream of the selective reduction catalyst 54. In addition, a NO x sensor 68 may be disposed in the exhaust pipe 16 on the downstream side of the selective reduction catalyst 54.
 選択還元触媒54は、NO還元触媒である。選択還元触媒54には、尿素添加弁60により排気管16に供給された尿素水が転換されてアンモニアガスとなり、排気ガスと共に流入される。選択還元触媒54では、アンモニアガスにより、排気ガス中のNOが選択的に還元又は分解される。これにより、排気ガス中のNOガスが浄化されて大気中に放出される。 The selective reduction catalyst 54 is a NO x reduction catalyst. To the selective reduction catalyst 54, urea water supplied to the exhaust pipe 16 by the urea addition valve 60 is converted into ammonia gas, and flows into the selective reduction catalyst 54 together with the exhaust gas. In the selective reduction catalyst 54, the ammonia gas, NO x in the exhaust gas is selectively reduced or decomposed. As a result, the NO x gas in the exhaust gas is purified and released into the atmosphere.
 尿素噴射装置62は、尿素タンク64に貯留された尿素水を吸入管72を介して吸い出すための図示しない尿素ポンプを備えている。尿素ポンプにより吸入管72を介して吸い出された尿素水は、供給管74及び尿素添加弁60を介して、排気管16に供給される。吸入管72の尿素タンク64近傍の端部には、図示しないフィルタが設けられている。尿素タンク64に貯留された尿素水は、フィルタによって異物等が除去されてから、排気管16に供給される。 The urea injection device 62 includes a urea pump (not shown) for sucking the urea water stored in the urea tank 64 through the suction pipe 72. The urea water sucked out by the urea pump through the suction pipe 72 is supplied to the exhaust pipe 16 through the supply pipe 74 and the urea addition valve 60. A filter (not shown) is provided at the end of the suction pipe 72 near the urea tank 64. The urea water stored in the urea tank 64 is supplied to the exhaust pipe 16 after foreign matters and the like are removed by a filter.
 本実施形態及び変形例では、流動性媒体として、NH(アンモニア)を用いたが、CO(二酸化炭素)やHO(水)等を用いてもよい。併せて、蓄熱ヒータ部26の化学蓄熱材は、臭化マグネシウム(Mg)以外に、塩化マグネシウム(MgCl)又は酸化カルシウム(CaO)等であってもよい。例えば、化学蓄熱材が酸化カルシウム(CaO)の場合、流動性媒体にHO(水)を選択すればよい。 In the present embodiment and the modification, NH 3 (ammonia) is used as the fluid medium, but CO 2 (carbon dioxide), H 2 O (water), or the like may be used. In addition, the chemical heat storage material of the heat storage heater unit 26 may be magnesium chloride (MgCl 2 ) or calcium oxide (CaO) other than magnesium bromide (Mg). For example, when the chemical heat storage material is calcium oxide (CaO), H 2 O (water) may be selected as the fluid medium.
 本実施形態及び変形例において、流量制御部としての開閉バルブ32は、電動バルブ及び圧力バルブの何れであってもよい。また、開閉バルブ32に限らず、電動式、機械式、熱変位式のポンプを用いてもよい。更に、複数の循環パイプを配置して、開閉バルブ32又はポンプと逆止弁とを併用してもよい。 In the present embodiment and the modification, the on-off valve 32 as the flow rate control unit may be either an electric valve or a pressure valve. Moreover, not only the on-off valve 32 but an electric, mechanical, or thermal displacement pump may be used. Furthermore, a plurality of circulation pipes may be arranged, and the opening / closing valve 32 or the pump and the check valve may be used in combination.
 本実施形態では、蓄熱ヒータ部26を排気管16の周囲に取り付けたが、排気管16の内部に蓄熱ヒータ部26を配置してもよい。排気管16の内部に蓄熱ヒータ部26を配置する場合、例えば、複数の偏平形状のヒータ部と複数の波型フィン(熱交換部)とを交互に積み重ねて、蓄熱ヒータ部26を構成してもよい。 In the present embodiment, the heat storage heater unit 26 is attached around the exhaust pipe 16, but the heat storage heater unit 26 may be disposed inside the exhaust pipe 16. When the heat storage heater unit 26 is disposed inside the exhaust pipe 16, for example, a plurality of flat heater units and a plurality of corrugated fins (heat exchange units) are alternately stacked to form the heat storage heater unit 26. Also good.

Claims (7)

  1. 内燃機関の排気系に取り付けられた触媒装置を昇温することで、触媒装置を活性させて排気を浄化する排気浄化装置であって、
     前記排気系における前記触媒装置よりも上流側に取り付けられ前記流動性媒体の脱着反応により蓄熱しかつ前記流動性媒体との吸着反応により放熱する化学蓄熱部、前記化学蓄熱部との間で前記流動性媒体が循環可能でありかつ前記流動性媒体を貯留する貯留部、及び前記化学蓄熱部と前記貯留部との間の循環路を開閉制御する流量制御部を備え、前記化学蓄熱部を流通する前記流動性媒体の吸着熱を用いて前記内燃機関から排出された排気を加熱する加熱装置と、
     前記内燃機関の燃焼時期制御により前記内燃機関から排出される排気の温度を調整可能な調整手段と、
     前記触媒装置の浄化率を取得する浄化率取得手段と、
     前記浄化率取得手段から取得した前記触媒装置の浄化率が所定の値よりも低い場合に、前記加熱装置の駆動又は前記調整手段の調整によって、前記触媒装置よりも上流側を流れる排気を加熱する加熱制御手段と、
     を有する排気浄化装置。
    An exhaust purification device that purifies exhaust by activating the catalyst device by raising the temperature of the catalyst device attached to the exhaust system of the internal combustion engine,
    A chemical heat storage unit that is attached upstream of the catalyst device in the exhaust system and stores heat by a desorption reaction of the fluid medium and dissipates heat by an adsorption reaction with the fluid medium, and the flow between the chemical heat storage unit And a flow rate control unit that controls opening and closing of a circulation path between the chemical heat storage unit and the storage unit, and is distributed through the chemical heat storage unit. A heating device for heating the exhaust gas discharged from the internal combustion engine using heat of adsorption of the fluid medium;
    Adjusting means capable of adjusting the temperature of the exhaust gas discharged from the internal combustion engine by controlling the combustion timing of the internal combustion engine;
    A purification rate obtaining means for obtaining a purification rate of the catalyst device;
    When the purification rate of the catalyst device acquired from the purification rate acquisition unit is lower than a predetermined value, the exhaust gas flowing upstream from the catalyst device is heated by driving the heating device or adjusting the adjustment unit. Heating control means;
    Exhaust gas purification apparatus.
  2. 請求項1記載の排気浄化装置は、更に、
     前記化学蓄熱部及び前記貯留部における前記流動性媒体の温度又は圧力の少なくとも1つを含む状態を検出する状態検出手段を有し、
     前記加熱制御手段は、
     前記状態検出手段の検出結果に基づいて、前記化学蓄熱部又は前記貯留部の何れかにおける流動性媒体の保有量を演算し、
     前記貯留部における流動性媒体の保有量が所定以上ある場合に、前記加熱装置の駆動を制御して前記触媒装置よりも上流側を流れる排気を加熱する、排気浄化装置。
    The exhaust emission control device according to claim 1, further comprising:
    Having a state detecting means for detecting a state including at least one of temperature and pressure of the fluid medium in the chemical heat storage section and the storage section;
    The heating control means includes
    Based on the detection result of the state detection means, calculate the amount of fluid medium held in either the chemical heat storage unit or the storage unit,
    An exhaust emission control device that heats exhaust gas flowing upstream from the catalyst device by controlling driving of the heating device when the amount of the fluid medium in the storage unit is greater than or equal to a predetermined amount.
  3. 請求項1又は2記載の排気浄化装置において、
     前記調整手段の燃焼時期制御が、前記内燃機関の負荷状態により選択される内燃機関のアフター噴射又は遅角噴射であり、
     前記加熱制御手段は、
     前記調整手段を、前記加熱装置が使用不能な場合の排気加熱に用いる、排気浄化装置。
    The exhaust emission control device according to claim 1 or 2,
    The combustion timing control of the adjusting means is after-injection or retarded-injection of the internal combustion engine selected according to the load state of the internal combustion engine;
    The heating control means includes
    An exhaust emission control device, wherein the adjusting means is used for exhaust gas heating when the heating device cannot be used.
  4. 請求項1~3のいずれか一項に記載の排気浄化装置において、
     前記浄化率取得手段は、
     前記触媒装置の上流側及び下流側にそれぞれ設けられ、COセンサ、THCセンサ及びNOセンサの何れか1つ又は複数の浄化率判別センサと、
     前記触媒装置の浄化率として、上流側の浄化率判別センサの検出値に対する下流側の浄化率判別センサの比を演算する演算部と、
     を備える、排気浄化装置。
    The exhaust emission control device according to any one of claims 1 to 3,
    The purification rate acquisition means includes
    Provided on the upstream side and the downstream side of the catalyst device, respectively, one or a plurality of purification rate determination sensors of a CO sensor, a THC sensor and a NO x sensor;
    As the purification rate of the catalyst device, a calculation unit that calculates the ratio of the downstream purification rate discrimination sensor to the detection value of the upstream purification rate discrimination sensor;
    An exhaust emission control device.
  5. 請求項1~4のいずれか一項に記載の排気浄化装置は、更に、
     前記触媒装置の床温度を検出する床温検出センサを有し、
     前記浄化率取得手段が、前記床温検出センサによる床温度に基づいて浄化率を推定する、排気浄化装置。
    The exhaust emission control device according to any one of claims 1 to 4, further comprising:
    Having a bed temperature detection sensor for detecting the bed temperature of the catalyst device;
    The exhaust emission control device, wherein the purification rate acquisition means estimates a purification rate based on a bed temperature by the bed temperature detection sensor.
  6. 請求項1~4のいずれか一項に記載の排気浄化装置は、更に、
     前記触媒装置の床温度を検出する床温検出センサを有し、
     前記床温検出センサによる床温度を、前記加熱制御手段による排気の加熱制御の要否判定に用いる、排気浄化装置。
    The exhaust emission control device according to any one of claims 1 to 4, further comprising:
    Having a bed temperature detection sensor for detecting the bed temperature of the catalyst device;
    An exhaust gas purification apparatus that uses the bed temperature by the bed temperature detection sensor to determine whether or not the heating control of the exhaust by the heating control means is necessary.
  7. 請求項1~6のいずれか一項に記載の排気浄化装置において、
     前記加熱制御手段は、
     前記貯留部の前記流動性媒体の保有量が所定値以下の場合に、
     前記触媒装置を通過する排気を加熱する必要がないこと、及び前記化学蓄熱部の圧力が前記貯留部の圧力よりも低いことを条件に、
     前記流量制御部を制御して前記化学蓄熱部と前記貯留部との間の循環路を閉塞した状態で、
     前記調整手段を、前記化学蓄熱部での前記流動性媒体の脱着反応のための加熱に用い、
     前記化学蓄熱部の圧力が前記貯留部の圧力よりも所定以上高くなった時点で、前記流量制御部を制御して前記化学蓄熱部と前記貯留部との間の循環路を開放する、排気浄化装置。
    The exhaust emission control device according to any one of claims 1 to 6,
    The heating control means includes
    When the amount of the fluid medium in the storage unit is a predetermined value or less,
    On the condition that it is not necessary to heat the exhaust gas passing through the catalyst device, and that the pressure of the chemical heat storage unit is lower than the pressure of the storage unit,
    In a state of controlling the flow rate control unit and closing the circulation path between the chemical heat storage unit and the storage unit,
    The adjusting means is used for heating for the desorption reaction of the fluid medium in the chemical heat storage unit,
    Exhaust gas purification that controls the flow rate control unit to open the circulation path between the chemical heat storage unit and the storage unit when the pressure of the chemical heat storage unit becomes higher than the pressure of the storage unit by a predetermined amount or more. apparatus.
PCT/JP2016/068633 2015-07-17 2016-06-23 Exhaust gas purifier WO2017013989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015142586A JP2017025729A (en) 2015-07-17 2015-07-17 Exhaust emission control device
JP2015-142586 2015-07-17

Publications (1)

Publication Number Publication Date
WO2017013989A1 true WO2017013989A1 (en) 2017-01-26

Family

ID=57834052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068633 WO2017013989A1 (en) 2015-07-17 2016-06-23 Exhaust gas purifier

Country Status (2)

Country Link
JP (1) JP2017025729A (en)
WO (1) WO2017013989A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112715A (en) * 1984-11-08 1986-05-30 Toyota Motor Corp Exhaust purifying apparatus for diesel engine
JPH04347320A (en) * 1991-05-21 1992-12-02 Toyota Motor Corp Catalyst heating device
JPH10169433A (en) * 1996-12-10 1998-06-23 Mitsubishi Motors Corp Preheating control device for catalyst
JP2013133727A (en) * 2011-12-26 2013-07-08 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2014051972A (en) * 2012-08-09 2014-03-20 Toyota Central R&D Labs Inc Catalytic reaction device and vehicle
JP2014084763A (en) * 2012-10-22 2014-05-12 Toyota Motor Corp Control device of internal combustion engine
JP2014134187A (en) * 2013-01-14 2014-07-24 Denso Corp Electric heating catalyst warming-up control device
JP2015081519A (en) * 2013-10-21 2015-04-27 株式会社豊田自動織機 Exhaust gas purification system
JP2016102433A (en) * 2014-11-27 2016-06-02 株式会社豊田自動織機 Exhaust emission control method for engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112715A (en) * 1984-11-08 1986-05-30 Toyota Motor Corp Exhaust purifying apparatus for diesel engine
JPH04347320A (en) * 1991-05-21 1992-12-02 Toyota Motor Corp Catalyst heating device
JPH10169433A (en) * 1996-12-10 1998-06-23 Mitsubishi Motors Corp Preheating control device for catalyst
JP2013133727A (en) * 2011-12-26 2013-07-08 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2014051972A (en) * 2012-08-09 2014-03-20 Toyota Central R&D Labs Inc Catalytic reaction device and vehicle
JP2014084763A (en) * 2012-10-22 2014-05-12 Toyota Motor Corp Control device of internal combustion engine
JP2014134187A (en) * 2013-01-14 2014-07-24 Denso Corp Electric heating catalyst warming-up control device
JP2015081519A (en) * 2013-10-21 2015-04-27 株式会社豊田自動織機 Exhaust gas purification system
JP2016102433A (en) * 2014-11-27 2016-06-02 株式会社豊田自動織機 Exhaust emission control method for engine

Also Published As

Publication number Publication date
JP2017025729A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP4888480B2 (en) Control device for exhaust purification system
US8356470B2 (en) Method of controlling NOx purification system and NOx purification system
JP4645639B2 (en) Exhaust purification device
JP6187385B2 (en) Exhaust gas purification device for internal combustion engine
JP2009108863A (en) Exhaust system for engine
JP2005201276A (en) System for minimizing amount of nox to be released from nox trap and its method
JP2010261331A (en) Exhaust purification device
WO2009110373A1 (en) Exhaust gas purifier for internal combustion engine
JP6252075B2 (en) Exhaust gas purification system and exhaust gas purification method
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
US20180179935A1 (en) Exhaust gas purification apparatus for an internal combustion engine
CN114728236A (en) System and method for operating a passive nitrogen oxide adsorber in an exhaust aftertreatment system
JP4792424B2 (en) Exhaust gas purification device for internal combustion engine
JP2010168927A (en) Exhaust emission control method and exhaust emission control system
JP5118460B2 (en) Exhaust purification device
WO2017013989A1 (en) Exhaust gas purifier
US10830120B2 (en) Heating system
JP2009036080A (en) Exhaust emission control device of internal combustion engine
JP6570255B2 (en) Control device and control method for reducing agent injection device
JP6107563B2 (en) Chemical heat storage device
JP5871074B2 (en) Additive supply device for internal combustion engine
JP2012137036A (en) Exhaust purification system and method for controlling the same
JP6376064B2 (en) Exhaust purification equipment
JP7298512B2 (en) Exhaust purification system and its control method
JP7403274B2 (en) Reducing agent supply control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827553

Country of ref document: EP

Kind code of ref document: A1