JP2010168927A - Exhaust emission control method and exhaust emission control system - Google Patents

Exhaust emission control method and exhaust emission control system Download PDF

Info

Publication number
JP2010168927A
JP2010168927A JP2009010226A JP2009010226A JP2010168927A JP 2010168927 A JP2010168927 A JP 2010168927A JP 2009010226 A JP2009010226 A JP 2009010226A JP 2009010226 A JP2009010226 A JP 2009010226A JP 2010168927 A JP2010168927 A JP 2010168927A
Authority
JP
Japan
Prior art keywords
gas
oxygen concentration
exhaust gas
exhaust
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009010226A
Other languages
Japanese (ja)
Other versions
JP5287282B2 (en
Inventor
Takayuki Sakamoto
隆行 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009010226A priority Critical patent/JP5287282B2/en
Publication of JP2010168927A publication Critical patent/JP2010168927A/en
Application granted granted Critical
Publication of JP5287282B2 publication Critical patent/JP5287282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control method and an exhaust emission control system which enable the catalyst of an exhaust emission control device installed in an exhaust passage to quickly reach an activation temperature zone during the warm-up of an engine after the starting, can form a reduction atmosphere, as necessary, on the catalyst of the exhaust emission control device while suppressing the deterioration of fuel consumption after the warm-up of the engine, and can easily achieve a high EGR rate in EGR control. <P>SOLUTION: It is configured to selectively supply a high oxygen-concentration gas A1 or a low oxygen-concentration gas A2 to the gas supply line of a combustor 13 for raising the temperature of the exhaust gas G which is disposed in the exhaust passage 11 of an internal combustion engine 10. While the exhaust gas G is raised in temperature, the high oxygen-concentration gas A2 is supplied to the combustor 13. While the temperature rise of the exhaust gas G is not required, the low oxygen-concentration gas A2 is supplied to the exhaust passage 11. Further, during the EGR, the low oxygen-concentration gas A2 is added to an EGR gas Ge. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の始動後、排気通路に設けられた排気ガス浄化装置の触媒が活性化温度領域に達するまで、排気ガス温度を上昇させるために使用する燃焼器に対し、空気中の酸素よりも数倍高い濃度の高酸素濃度ガスを供給して、燃焼器での燃焼速度を高めるための排気ガス浄化方法及び排気ガス浄化システムに関する。   The present invention relates to a combustor used for raising the exhaust gas temperature until the catalyst of the exhaust gas purification device provided in the exhaust passage reaches the activation temperature region after starting the internal combustion engine. The present invention relates to an exhaust gas purification method and an exhaust gas purification system for supplying a high oxygen concentration gas having a concentration several times higher than that to increase the combustion speed in a combustor.

自動車搭載等の内燃機関においては、内燃機関の排気ガスを浄化するために、内燃機関の排気通路に排気ガス浄化装置(後処理装置)を設けて、排気通路の排気ガスを浄化している。この排気ガス浄化装置としては、未燃炭化水素(HC)や一酸化炭素(CO)を酸化する酸化触媒(DOC)、NOxを浄化するNOx吸蔵還元型触媒(LNT)、微粒子状物質(PM)を浄化するDPFや触媒付きDPF(CSF)等が用いられている。   In an internal combustion engine mounted on an automobile or the like, in order to purify the exhaust gas of the internal combustion engine, an exhaust gas purification device (post-treatment device) is provided in the exhaust passage of the internal combustion engine to purify the exhaust gas in the exhaust passage. This exhaust gas purifying device includes an oxidation catalyst (DOC) that oxidizes unburned hydrocarbons (HC) and carbon monoxide (CO), a NOx occlusion reduction catalyst (LNT) that purifies NOx, and particulate matter (PM). For example, a DPF that purifies water or a DPF with a catalyst (CSF) is used.

これらの排気ガス浄化装置においては、内燃機関の始動開始直後のような、排気ガス浄化装置の触媒温度が低く、触媒の活性化温度領域(動作温度領域)に到達していない運転状態では、内燃機関から排出される未燃HCの量が多いので、排気ガスの規制値を満足するためにも、この未燃HCの低減は不可欠である。   In these exhaust gas purifying devices, the internal combustion engine is in an operating state where the catalyst temperature of the exhaust gas purifying device is low and has not reached the activation temperature region (operating temperature region) of the exhaust gas purification device, such as immediately after the start of the internal combustion engine. Since the amount of unburned HC discharged from the engine is large, the reduction of unburned HC is indispensable in order to satisfy the exhaust gas regulation value.

この対策として、排気通路に、燃料を燃焼する燃焼器を設けて、排気ガスの昇温が必要な時に、この燃焼器で燃料を燃焼させて、この燃焼ガスにより排気ガス浄化装置に流入する排気ガスを加熱して昇温させることが有効であり、例えば、排気浄化手段の上流側に噴霧燃焼器を設けて、燃料の燃焼により排気温度を上昇させる内燃機関の排気系制御システムが提案されている(例えば、特許文献1参照。)。   As a countermeasure, a combustor that burns fuel is provided in the exhaust passage, and when the exhaust gas needs to be heated, the fuel is burned by the combustor and the exhaust gas flowing into the exhaust gas purification device by the combustion gas. It is effective to raise the temperature by heating the gas. For example, there has been proposed an exhaust system control system for an internal combustion engine in which a spray combustor is provided upstream of the exhaust purification means and the exhaust temperature is raised by fuel combustion. (For example, refer to Patent Document 1).

しかしながら、内燃機関の始動直後においては、排気ガス浄化装置の加熱と昇温のために燃焼器等により燃焼を行っても、燃料の着火と燃料の燃焼までには数分程度の時間を必要とし、その上、燃焼器等からの燃焼ガスで高温になった排気ガスが排気ガス浄化装置に流入しても、排気ガス浄化装置の熱容量分だけ触媒が活性化する温度に昇温するまでの間、数分間程度の時間が必要となる。   However, immediately after starting the internal combustion engine, even if combustion is performed by a combustor or the like for heating and raising the temperature of the exhaust gas purifying device, it takes about several minutes to ignite the fuel and burn the fuel. In addition, even if the exhaust gas heated to high temperature by the combustion gas from the combustor or the like flows into the exhaust gas purification device, the temperature rises to a temperature at which the catalyst is activated by the heat capacity of the exhaust gas purification device. , It takes a few minutes.

そのため、燃焼器等の触媒加熱手段を備えた場合でもあっても、内燃機関の始動後、触媒加熱手段による触媒温度上昇までの数分間はHC低減に対して解決方法がなく、HC排出を抑制できないという問題があった。   Therefore, even if equipped with catalyst heating means such as a combustor, there is no solution for HC reduction for a few minutes after the start of the internal combustion engine until the catalyst temperature rises by the catalyst heating means, suppressing HC emissions There was a problem that I could not.

即ち、排気ガス浄化装置の触媒を加熱する手段として燃焼器を使う場合には、内燃機関の始動後において、燃焼器による触媒温度の上昇までの時間をできるだけ短くして、未燃HCが排気ガス浄化装置の下流側に排出されるのを抑制する必要がある。   That is, when a combustor is used as a means for heating the catalyst of the exhaust gas purification device, after the internal combustion engine is started, the time until the catalyst temperature rises by the combustor is shortened as much as possible so that the unburned HC is exhausted. It is necessary to suppress discharge to the downstream side of the purification device.

これに関連して、酸素富化の空気を燃焼器に用いて燃焼を促進する方法が提案され、例えば、吸気通路から酸素富化空気をDPF再生用の再生バーナーに導くDPFの再生装置が提案されている(例えば、特許文献2参照。)。また、内燃機関の始動から暖機運転にいたる低温始動時に、酸素あるいは酸素富化空気を排気ガス浄化用触媒に供給して、触媒で未燃分の酸化反応を促進して反応熱により触媒の暖機を促進することと、同時に燃焼用補助燃料を添加し、点火源を設置することが提案されている(例えば、特許文献3参照。)。   In relation to this, a method for promoting combustion using oxygen-enriched air in a combustor has been proposed, for example, a DPF regeneration device for guiding oxygen-enriched air from an intake passage to a regeneration burner for DPF regeneration is proposed. (For example, see Patent Document 2). In addition, oxygen or oxygen-enriched air is supplied to the exhaust gas purifying catalyst at the time of low temperature starting from the start of the internal combustion engine to the warm-up operation, and the oxidation reaction of the unburned matter is promoted by the catalyst, and the reaction heat It has been proposed to promote warm-up and simultaneously add auxiliary fuel for combustion and install an ignition source (see, for example, Patent Document 3).

特開2004−257323公報JP 2004-257323 A 特開平6−25508号公報JP-A-6-25508 特開平5−141229号公報JP-A-5-141229

本発明は、上記の状況を鑑みてなされたものであり、その目的は、エンジン始動後においては、排気ガスの温度を上昇させるための燃焼器に高酸素濃度ガスを供給して、燃焼器における燃焼速度を高めて、迅速に排気通路に設けられた排気ガス浄化装置の触媒を活性化温度領域に到達させることができ、エンジン暖機後においては、燃焼器から低酸素濃度ガスを供給して、排気ガス浄化装置の排気ガス浄化能力の回復のための制御では還元雰囲気を形成でき、更に、EGRのための制御では容易に高EGR率を達成できる排気ガス浄化方法及び排気ガス浄化システムを提供することにある。   The present invention has been made in view of the above situation, and its purpose is to supply a high oxygen concentration gas to a combustor for raising the temperature of exhaust gas after the engine is started. By increasing the combustion speed, the catalyst of the exhaust gas purification device provided in the exhaust passage can be quickly reached the activation temperature region, and after warming up the engine, a low oxygen concentration gas is supplied from the combustor. Provided is an exhaust gas purification method and an exhaust gas purification system that can form a reducing atmosphere in the control for recovering the exhaust gas purification capacity of the exhaust gas purification device, and that can easily achieve a high EGR rate in the control for EGR. There is to do.

上記の目的を達成するための本発明の排気ガス浄化方法は、内燃機関の排気通路の排気ガスを昇温するための燃焼器を備えた排気ガス浄化システムにおいて、前記燃焼器のガス供給ラインに酸素富化装置を設けて、高酸素濃度ガスと低酸素濃度ガスを選択的に供給するように構成すると共に、排気ガスを昇温させるときに高酸素濃度ガスを前記燃焼器に供給し、排気ガスを昇温させないときに低酸素濃度ガスを前記排気通路に供給し、更に、EGRを行うときにEGRガスに低酸素濃度ガスを加えることを特徴とする方法である。   In order to achieve the above object, an exhaust gas purification method of the present invention provides an exhaust gas purification system including a combustor for raising the temperature of exhaust gas in an exhaust passage of an internal combustion engine, to a gas supply line of the combustor. An oxygen enricher is provided to selectively supply a high oxygen concentration gas and a low oxygen concentration gas, and when the exhaust gas is heated, the high oxygen concentration gas is supplied to the combustor, and the exhaust gas is exhausted. A low oxygen concentration gas is supplied to the exhaust passage when the temperature of the gas is not raised, and the low oxygen concentration gas is added to the EGR gas when performing EGR.

上記の目的を達成するための本発明の排気ガス浄化システムは、内燃機関の排気通路の排気ガスを昇温するための燃焼器を備えた排気ガス浄化システムにおいて、前記燃焼器のガス供給ラインに酸素富化装置を設けて、高酸素濃度ガスと低酸素濃度ガスを選択的に供給するガス供給手段を設けると共に、このガス供給手段が、排気ガスを昇温させるときに高酸素濃度ガスを前記燃焼器に供給し、排気ガスを昇温させないときに低酸素濃度ガスを排気通路に供給し、更に、EGRを行うときにEGRガスに低酸素濃度ガスを加えるように構成される。   In order to achieve the above object, an exhaust gas purification system of the present invention is an exhaust gas purification system including a combustor for raising the temperature of exhaust gas in an exhaust passage of an internal combustion engine. An oxygen enrichment device is provided to provide gas supply means for selectively supplying a high oxygen concentration gas and a low oxygen concentration gas. When the gas supply means raises the temperature of the exhaust gas, the high oxygen concentration gas is The low oxygen concentration gas is supplied to the exhaust passage when the exhaust gas is not heated and supplied to the combustor, and the low oxygen concentration gas is added to the EGR gas when EGR is performed.

本発明に係る排気ガス浄化方法及び排気ガス浄化システムによれば、排気ガスの昇温時に、高酸素濃度ガスを燃焼器に供給することにより、排気ガスの昇温を促進し、この排気ガスが流入する排気ガス浄化装置の触媒温度が上昇するまでの時間を短縮することができる。これにより、大気からの吸入空気だけを使用する場合よりも短い時間で触媒温度を活性化温度領域まで到達させることができるので、排気ガス浄化装置の下流側へのHC排出量を低減することができる。   According to the exhaust gas purification method and the exhaust gas purification system according to the present invention, when the exhaust gas is heated, the high oxygen concentration gas is supplied to the combustor to promote the temperature rise of the exhaust gas. The time until the catalyst temperature of the inflowing exhaust gas purification device rises can be shortened. As a result, the catalyst temperature can reach the activation temperature region in a shorter time than when only the intake air from the atmosphere is used, so that the amount of HC emission downstream of the exhaust gas purification device can be reduced. it can.

また、排気ガスの昇温不要時には低酸素濃度ガス(高窒素濃度ガス)を排気通路に供給することにより、排気ガス浄化装置の浄化能力再生のために繰り返し行うリッチ空燃比制御において排気ガス中の未燃炭化水素濃度を高めて、浄化能力の再生を促進することができる。例えば、NOx吸蔵還元型触媒を用いている場合には、定期的に行うNOx吸蔵能力の回復のためのリッチ空燃比制御において、放出されたNOxの還元処理に必要な燃料液滴の微粒化を低酸素濃度のガスで促進することができ、触媒上の酸素を極短時間で消費させて、NOx吸蔵能力を回復することが短時間でできるようになるので、NOx吸蔵及び浄化性能が向上する。   When exhaust gas temperature rise is not required, a low oxygen concentration gas (high nitrogen concentration gas) is supplied to the exhaust passage so that the exhaust gas in the exhaust gas can be repeatedly controlled in the rich air-fuel ratio control for regenerating the purification capacity of the exhaust gas purification device. It is possible to increase the concentration of unburned hydrocarbons and promote the regeneration of the purification capacity. For example, when a NOx occlusion reduction type catalyst is used, atomization of fuel droplets necessary for reduction processing of released NOx is performed in the rich air-fuel ratio control for recovery of the NOx occlusion capability performed periodically. NOx occlusion and purification performance is improved because it can be promoted with a low oxygen concentration gas and the oxygen on the catalyst can be consumed in a very short time to restore the NOx occlusion capability. .

更に、内燃機関の筒内(シリンダ内)の燃焼過程で生成するNOxを低減するために行われるEGR(排気再循環)時に、EGRガスに低酸素濃度ガスを加えることにより、EGR率を著しく大きくすることができるので、緩慢な燃焼反応の促進を図ることができ、NOxの発生量を低減できる。   Further, during the EGR (exhaust gas recirculation) performed to reduce NOx generated in the combustion process (inside cylinder) of the internal combustion engine, the EGR rate is significantly increased by adding a low oxygen concentration gas to the EGR gas. Therefore, the slow combustion reaction can be promoted, and the amount of NOx generated can be reduced.

本発明の実施の形態の排気ガス浄化システムの構成を示した図である。It is the figure which showed the structure of the exhaust-gas purification system of embodiment of this invention. ガス混合式燃料噴射弁の一例を模式的に示した図である。It is the figure which showed typically an example of the gas mixing type fuel injection valve. 窒素酸素分離ユニットにおける高酸素濃度ガス充填時のガスの流れを示した図である。It is the figure which showed the gas flow at the time of high oxygen concentration gas filling in a nitrogen oxygen separation unit. 窒素酸素分離ユニットにおける低酸素濃度ガス充填時のガスの流れを示した図である。It is the figure which showed the flow of the gas at the time of low oxygen concentration gas filling in a nitrogen oxygen separation unit. 高酸素濃度ガスと低酸素濃度ガスの充填制御のための制御フローの一例を示した図である。It is the figure which showed an example of the control flow for filling control of high oxygen concentration gas and low oxygen concentration gas. 燃焼器におけるアシストガスの切替のための制御フローの一例を示した図である。It is the figure which showed an example of the control flow for switching of the assist gas in a combustor. 合成ゼオライトの特性を示した平衡等温吸着線図である。It is an equilibrium isothermal adsorption diagram showing the characteristics of a synthetic zeolite. 活性炭を利用した場合のガスの吸着圧力と吸着量との関係を示した図である。It is the figure which showed the relationship between the adsorption pressure of gas at the time of using activated carbon, and adsorption amount. 活性炭を利用した場合のガスの吸着時間と平衡達成率の関係を示した図である。It is the figure which showed the relationship between the adsorption time of gas at the time of using activated carbon, and an equilibrium achievement rate.

以下、本発明に係る実施の形態の排気ガス浄化方法及び排気ガス浄化システムについて、図面を参照しながら説明する。図1に、本発明の実施の形態の排気ガス浄化システム1の構成を示す。   Hereinafter, an exhaust gas purification method and an exhaust gas purification system according to embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of an exhaust gas purification system 1 according to an embodiment of the present invention.

この排気ガス浄化システム1では、エンジン(内燃機関)10の排気通路11に、排気ガス浄化装置12が配設されている。また、この排気ガス浄化装置12の上流側に、燃焼ガスと噴霧燃料を供給できる燃焼器13が配置されている。また、酸素富化システムとして、酸素富化用コンプレッサー20、窒素分離ユニット21、高酸素濃度ガス貯蔵装置22、低酸素濃度ガス貯蔵装置23等が配置されている。   In the exhaust gas purification system 1, an exhaust gas purification device 12 is disposed in an exhaust passage 11 of an engine (internal combustion engine) 10. A combustor 13 that can supply combustion gas and sprayed fuel is disposed upstream of the exhaust gas purification device 12. In addition, as an oxygen enrichment system, an oxygen enrichment compressor 20, a nitrogen separation unit 21, a high oxygen concentration gas storage device 22, a low oxygen concentration gas storage device 23, and the like are arranged.

排気ガス浄化装置12は、排気ガスG中の有害成分を浄化する触媒を担持したNOx浄化触媒ユニット等の幾つかの排気ガス浄化ユニットの組み合わせで形成される。NOx吸蔵還元型触媒を担持したNOx浄化触媒ユニットを用いる場合には、このNOx浄化触媒ユニットは、排気ガス中のNOxを浄化するために、モノリス触媒で形成される。このモノリス触媒のコージェライトハニカム等の担持体に酸化アルミニウム、酸化チタン等の触媒コート層を設ける。この触媒コート層に、白金(Pt)、パラジウム(Pd)等の触媒金属と、バリウム(Ba)等のNOx吸蔵材(NOx吸蔵物質)とからなるNOx吸蔵還元触媒を担持させて構成される。   The exhaust gas purification device 12 is formed by a combination of several exhaust gas purification units such as a NOx purification catalyst unit carrying a catalyst that purifies harmful components in the exhaust gas G. When a NOx purification catalyst unit carrying a NOx storage reduction catalyst is used, the NOx purification catalyst unit is formed of a monolith catalyst in order to purify NOx in the exhaust gas. A catalyst coat layer of aluminum oxide, titanium oxide or the like is provided on a carrier such as a cordierite honeycomb of the monolith catalyst. This catalyst coat layer is configured to carry a NOx occlusion reduction catalyst comprising a catalyst metal such as platinum (Pt) or palladium (Pd) and a NOx occlusion material (NOx occlusion material) such as barium (Ba).

このNOx吸蔵還元型触媒は、酸素濃度が高い排気ガスの状態、即ち、リーン空燃比状態の時に、排気ガス中のNOxをNOx吸蔵材が吸蔵することにより、排気ガス中のNOxを浄化し、酸素濃度が低いか空燃比が1より小さいリッチ空燃比状態か、あるいは、空燃比が1のストイキ空燃比状態の時に、吸蔵したNOxを放出すると共に、この放出されたNOxを触媒金属の触媒作用により還元することにより、大気中へのNOxの流出を防止する。   This NOx occlusion reduction type catalyst purifies NOx in the exhaust gas by the NOx occlusion material storing NOx in the exhaust gas when the oxygen concentration is high, that is, in the lean air-fuel ratio state, When the oxygen concentration is low, the air / fuel ratio is less than 1 or the air / fuel ratio is 1 or the stoichiometric air / fuel ratio is 1, the stored NOx is released and the released NOx is converted to catalytic metal catalyst. By reducing with NO, the outflow of NOx to the atmosphere is prevented.

このNOx吸蔵還元型触媒は、リーン空燃比状態が継続すると、NOx吸蔵材が硝酸塩に変化してしまうため、NOx吸蔵能力が飽和する前に、排気ガスGをリッチ空燃比状態にする再生制御を行って、吸蔵したNOxを放出及び還元して、NOx吸蔵能力を回復している。   In this NOx occlusion reduction type catalyst, if the lean air-fuel ratio state continues, the NOx occlusion material changes to nitrate, so that the regeneration control to make the exhaust gas G rich in the air-fuel ratio state before the NOx occlusion capacity is saturated. The NOx occlusion capacity is restored by releasing and reducing the occluded NOx.

なお、この実施の形態では、排気ガス浄化装置12としてNOx吸蔵還元型触媒を担持したNOx浄化ユニットを用いた例を示すが、これに限定されず、排気ガスに対する浄化性能を回復するために排気ガスを一時的にリッチ空燃比制御等の空燃比制御を行う必要がある排気ガス浄化装置であればよい。例えば、硫黄被毒を回復する必要がある酸化触媒(DOC)や選択還元型NOx触媒(SCR)や触媒付きフィルタ(CSF)等の排気ガス浄化ユニットであってもよい。   In this embodiment, an example in which a NOx purification unit carrying a NOx occlusion reduction type catalyst is used as the exhaust gas purification device 12 is shown. However, the present invention is not limited to this, and the exhaust gas is recovered in order to recover the purification performance for the exhaust gas. Any exhaust gas purifying apparatus that needs to perform air-fuel ratio control such as rich air-fuel ratio control temporarily may be used. For example, an exhaust gas purification unit such as an oxidation catalyst (DOC), a selective reduction type NOx catalyst (SCR), or a filter with catalyst (CSF) that needs to recover sulfur poisoning may be used.

燃焼器13は、例えば、図2に示すような外部混合式二流体噴射弁を使用して構成される。この構成では、図1に示すように、インジェクター式燃料噴射部13aと燃料供給用配管13bとガス供給用配管13cとガス切替弁13dと着火装置(図示しない)を有している。燃料供給用配管13bはシリンダ内への燃料供給用配管18と接続している。また、ガス切替弁13dは高酸素濃度ガス供給配管24と低酸素濃度ガス供給配管25aと接続し、ガス供給用配管13cに高濃度酸素ガスA1と低濃度酸素ガスA2との一方を選択して供給できるように構成される。着火装置は、グロープラグ等のヒータ類や着火プラグ等の熱源で形成され、これらは通電により高温となる。   The combustor 13 is configured using, for example, an external mixing type two-fluid injection valve as shown in FIG. As shown in FIG. 1, this configuration includes an injector fuel injection unit 13a, a fuel supply pipe 13b, a gas supply pipe 13c, a gas switching valve 13d, and an ignition device (not shown). The fuel supply pipe 13b is connected to the fuel supply pipe 18 into the cylinder. The gas switching valve 13d is connected to the high oxygen concentration gas supply pipe 24 and the low oxygen concentration gas supply pipe 25a, and selects one of the high concentration oxygen gas A1 and the low concentration oxygen gas A2 as the gas supply pipe 13c. Configured to supply. The ignition device is formed by a heater such as a glow plug or a heat source such as an ignition plug, and these are heated to high temperatures when energized.

この燃焼器13では、インジェクター式燃料噴射部13aの周りに高圧のガス(高酸素濃度ガスA1又は低酸素濃度ガスA2)を噴射させて、このガスと燃料fの液滴との混合ガスを生成する。この混合ガスの生成により、燃料fを燃焼させる場合には着火を促進する。また、未燃燃料の供給の場合は、排気ガス中の燃料fの均等分散を図る。   In this combustor 13, a high-pressure gas (high oxygen concentration gas A 1 or low oxygen concentration gas A 2) is injected around the injector type fuel injection unit 13 a to generate a mixed gas of this gas and fuel f droplets. To do. The generation of this mixed gas promotes ignition when the fuel f is burned. In the case of supplying unburned fuel, the fuel f in the exhaust gas is evenly dispersed.

次に、酸素富化システムについて説明する。図1に示すように、酸素富化用コンプレッサー20の入口20aは、流路切替弁26を介して、ターボチャージャ14のコンプレッサーの出口側の吸気通路15の接続部15aに接続されている。また、酸素富化用コンプレッサー20の出口20bは、空気取入配管19に接続されている。   Next, an oxygen enrichment system will be described. As shown in FIG. 1, the inlet 20 a of the oxygen-enriching compressor 20 is connected to a connecting portion 15 a of an intake passage 15 on the outlet side of the compressor of the turbocharger 14 via a flow path switching valve 26. The outlet 20 b of the oxygen enriching compressor 20 is connected to the air intake pipe 19.

窒素分離ユニット21は、図1、図3及び図4に示すように、吸着容器21iに空気取入配管19と、高酸素濃度供給配管21bと低酸素濃度ガス供給配管21cを接続して構成される。空気取入配管19は、酸素富化用コンプレッサー20の出口20bに接続され、流路切替弁21aが配置されている。また、高酸素濃度供給配管21bは吸着容器21iと高酸素濃度ガス貯蔵装置22の貯蔵容器22iの開閉弁22aとの間を接続している。低酸素濃度ガス供給配管21cは吸着容器21iと低酸素濃度ガス貯蔵装置23の貯蔵容器23iの開閉弁23aとの間を接続し、減圧ポンプ21eが配置されている。また、吸着容器21iに冷却水Wを流して冷却するための冷却水用配管21fが接続されている。   As shown in FIGS. 1, 3, and 4, the nitrogen separation unit 21 is configured by connecting an air intake pipe 19, a high oxygen concentration supply pipe 21b, and a low oxygen concentration gas supply pipe 21c to an adsorption vessel 21i. The The air intake pipe 19 is connected to the outlet 20b of the oxygen enriching compressor 20, and a flow path switching valve 21a is disposed. The high oxygen concentration supply pipe 21 b connects between the adsorption container 21 i and the on-off valve 22 a of the storage container 22 i of the high oxygen concentration gas storage device 22. The low oxygen concentration gas supply pipe 21c connects between the adsorption vessel 21i and the open / close valve 23a of the storage vessel 23i of the low oxygen concentration gas storage device 23, and a decompression pump 21e is disposed. Further, a cooling water pipe 21f for cooling the adsorbing vessel 21i by flowing the cooling water W is connected.

高酸素濃度ガス貯蔵装置22では、貯蔵容器22iに開閉弁22a,22b,22c,第1酸素濃度センサ22d及び第1圧力サンサ22eが設けられている。更に、低酸素濃度ガス貯蔵装置23では、貯蔵容器23iに開閉弁23a,23b,23c,第2酸素濃度センサ23d及び第2圧力センサ23eが設けられている。   In the high oxygen concentration gas storage device 22, the storage container 22i is provided with on-off valves 22a, 22b, 22c, a first oxygen concentration sensor 22d, and a first pressure sensor 22e. Further, in the low oxygen concentration gas storage device 23, the storage container 23i is provided with on-off valves 23a, 23b, 23c, a second oxygen concentration sensor 23d, and a second pressure sensor 23e.

そして、これらの配置関係をまとめると、酸素富化用コンプレッサー20が空気取入配管19により窒素分離ユニット21の吸着容器21iに流路切替弁21aを介して接続される。また、この窒素分離ユニット21が、高酸素濃度ガス供給配管21bにより高酸素濃度ガス貯蔵装置22の貯蔵容器22iに開閉弁22aを介して接続されると共に、低酸素濃度ガス供給配管21cにより低酸素濃度ガス貯蔵装置23の貯蔵容器23iに減圧ポンプ21eと開閉弁23aを介して接続される。   When these arrangement relationships are summarized, the oxygen-enriching compressor 20 is connected to the adsorption vessel 21i of the nitrogen separation unit 21 via the flow path switching valve 21a by the air intake pipe 19. Further, the nitrogen separation unit 21 is connected to a storage container 22i of the high oxygen concentration gas storage device 22 by a high oxygen concentration gas supply pipe 21b via an on-off valve 22a, and low oxygen concentration by a low oxygen concentration gas supply pipe 21c. The concentration gas storage device 23 is connected to a storage container 23i through a decompression pump 21e and an on-off valve 23a.

更に、高酸素濃度ガス貯蔵装置22の貯蔵容器22iが開閉弁22cに接続される高酸素濃度ガス供給配管24により、燃焼器13のガス切替弁13dに接続され、低酸素濃度ガス貯蔵装置23の貯蔵容器23iも開閉弁23cを介して低酸素濃度ガス供給配管25aによりガス切替弁13dに接続される。   Further, the storage container 22i of the high oxygen concentration gas storage device 22 is connected to the gas switching valve 13d of the combustor 13 by the high oxygen concentration gas supply pipe 24 connected to the on-off valve 22c, and the low oxygen concentration gas storage device 23 The storage container 23i is also connected to the gas switching valve 13d by the low oxygen concentration gas supply pipe 25a through the on-off valve 23c.

また、低酸素濃度ガス供給配管25bにより、低酸素濃度ガス貯蔵装置23の開閉弁23bと流路切替弁26とを接続し、ターボチャージャ14のコンプレッサーの出口側の吸気通路15に余剰の低酸素濃度ガスA2を放出できるようにする。更に、この低酸素濃度ガス供給配管25bの分岐配管27をEGR通路16のEGR弁17に接続し、EGRの時に低酸素濃度ガスA2を供給できるように構成する。   Further, the open / close valve 23b of the low oxygen concentration gas storage device 23 and the flow path switching valve 26 are connected by a low oxygen concentration gas supply pipe 25b, and excess low oxygen concentration is supplied to the intake passage 15 on the outlet side of the compressor of the turbocharger 14. The concentration gas A2 can be released. Further, the branch pipe 27 of the low oxygen concentration gas supply pipe 25b is connected to the EGR valve 17 of the EGR passage 16 so that the low oxygen concentration gas A2 can be supplied during EGR.

次に、窒素分離ユニット21における酸素富化について説明する。窒素分離ユニット21では、酸素富化のために合成ゼオライトや分子ふるい活性炭を用いる。   Next, oxygen enrichment in the nitrogen separation unit 21 will be described. The nitrogen separation unit 21 uses synthetic zeolite or molecular sieve activated carbon for oxygen enrichment.

合成ゼオライトを用いる場合には細孔径が0.0005μm〜0.001μm程度であり、図7に示すように、電気的に極性を持つ窒素が選択的に吸着され、この傾向は高圧ほど大きくなる。そこで大気圧から3気圧程度に加圧する動作を繰り返しながら、処理ガスAを冷却して常温付近の温度に保持すれば、窒素と酸素に分離できる。この間に生成されたガスA1,A2をそれぞれ貯蔵容器22i,23iに加圧して冷却貯蔵する。この場合には、加圧しながら吸着させる過程で窒素を選択的に吸着させることで、吸着されずに残った酸素を得ると共に、加圧状態から元の圧力に戻する減圧処理で窒素を得る。   When synthetic zeolite is used, the pore diameter is about 0.0005 μm to 0.001 μm, and as shown in FIG. 7, electrically polar nitrogen is selectively adsorbed, and this tendency increases as the pressure increases. Therefore, if the processing gas A is cooled and kept at a temperature near room temperature while repeating the operation of pressurizing from atmospheric pressure to about 3 atmospheres, it can be separated into nitrogen and oxygen. Gases A1 and A2 generated during this time are pressurized and stored in storage containers 22i and 23i, respectively. In this case, nitrogen is selectively adsorbed in the process of being adsorbed while being pressurized, so that oxygen remaining without being adsorbed is obtained, and nitrogen is obtained by a depressurization process for returning from the pressurized state to the original pressure.

この合成ゼオライトを用いる窒素分離ユニット21では、高酸素濃度ガス充填時は、流路切替弁21aを切り替えて、酸素富化用コンプレッサー20の空気Aを取り入れて、窒素吸着体を充填した吸着容器21i内で加圧して、窒素吸収体に窒素を吸着させて、ガスの酸素濃度を95%程度に高めて、この高酸素濃度ガスA1を高酸素濃度ガス貯蔵装置22の貯蔵容器22iに供給して貯蔵する。   In the nitrogen separation unit 21 using this synthetic zeolite, when the high oxygen concentration gas is filled, the flow path switching valve 21a is switched, the air A of the oxygen enriching compressor 20 is taken in, and the adsorption vessel 21i filled with a nitrogen adsorbent. Pressure is applied to the nitrogen absorber, and the oxygen concentration of the gas is increased to about 95%, and the high oxygen concentration gas A1 is supplied to the storage container 22i of the high oxygen concentration gas storage device 22. Store.

一方、必要な高酸素濃度ガス量を確保するために、再度、酸素分離処理を行う必要がある。この前処理として既に吸着している窒素を脱離・放出する減圧処理を、減圧ポンプ21eを用いて行う。この過程で放出される窒素に富む低酸素濃度ガスA2を低酸素濃度ガス貯蔵装置23の貯蔵容器23i内に供給し減圧して充填する。   On the other hand, in order to secure a necessary high oxygen concentration gas amount, it is necessary to perform oxygen separation treatment again. As this pretreatment, a decompression process for desorbing and releasing nitrogen that has already been adsorbed is performed using the decompression pump 21e. The nitrogen-rich low oxygen concentration gas A2 released in this process is supplied into the storage container 23i of the low oxygen concentration gas storage device 23 and filled under reduced pressure.

この合成ゼオライトを用いる方法では、窒素を高圧(例えば、180kPa)で吸着させるために、吸着容器21i内の圧力を高める加圧工程と、窒素の吸着により、空気中から酸素を選別し、高酸素濃度を得るための高圧維持工程と、窒素の吸着が飽和状態に至って、酸素の選別能力が低下するのを防止するために吸着容器21i内の圧力を低圧(例えば、48kPa)にして、吸着した窒素を窒素吸着体から放出させる減圧工程と、吸着させた窒素を十分に放出させるために、吸着容器21iの圧力を低圧状態に維持する低圧維持工程とを繰り返し行う。   In the method using the synthetic zeolite, in order to adsorb nitrogen at a high pressure (for example, 180 kPa), oxygen is selected from the air by a pressurizing step for increasing the pressure in the adsorption vessel 21i and adsorption of nitrogen. The high-pressure maintenance step for obtaining the concentration and the adsorption in the adsorption vessel 21i were reduced to a low pressure (for example, 48 kPa) in order to prevent the nitrogen adsorption from reaching saturation and the oxygen sorting ability from being lowered. The depressurization step for releasing nitrogen from the nitrogen adsorbent and the low pressure maintaining step for maintaining the pressure in the adsorption vessel 21i in a low pressure state are repeated in order to sufficiently release the adsorbed nitrogen.

また、分子ふるい活性炭を用いる場合では、図8に示すように、吸着圧力による窒素に対する選択的吸着を期待できないが、図9に示すように、窒素と酸素では吸着速度に大きな差があり、この吸着速度は圧力に依存する。そこで、大気圧から3気圧程度に加圧する動作を繰り返しながら、処理ガスAを冷却して常温付近の温度に保持すれば、窒素と酸素に分離できる。この間に生成されたガスA1,A2をそれぞれ貯蔵容器22i,23iに加圧して冷却貯蔵する。この場合には、一定圧力下の吸着過程で、吸着速度の早い酸素を吸着させて窒素を分離し、この後で行う減圧処理で酸素を放出して酸素を得る。   Further, when molecular sieve activated carbon is used, as shown in FIG. 8, selective adsorption to nitrogen by adsorption pressure cannot be expected. However, as shown in FIG. 9, there is a large difference in adsorption rate between nitrogen and oxygen. The adsorption rate depends on the pressure. Therefore, if the processing gas A is cooled and kept at a temperature near room temperature while repeating the operation of pressurizing from atmospheric pressure to about 3 atmospheres, it can be separated into nitrogen and oxygen. Gases A1 and A2 generated during this time are pressurized and stored in storage containers 22i and 23i, respectively. In this case, in the adsorption process under a constant pressure, oxygen having a high adsorption rate is adsorbed to separate nitrogen, and oxygen is released in a subsequent decompression process to obtain oxygen.

この分子ふるい活性炭を用いる窒素分離ユニット21では、低酸素濃度ガス充填時は、流路切替弁21aを切り替えて、酸素富化用コンプレッサー20の空気Aを取り入れて、酸素吸着体(活性炭)を充填した吸着容器21i内で加圧して、酸素吸収体に酸素を吸着させて、ガスの酸素濃度を95%程度に低めて、この低酸素濃度ガスA2を低酸素濃度ガス貯蔵装置23の貯蔵容器23iに供給して貯蔵する。   In the nitrogen separation unit 21 using the molecular sieve activated carbon, when the low oxygen concentration gas is charged, the flow path switching valve 21a is switched to take in the air A of the oxygen enriching compressor 20 and fill the oxygen adsorbent (activated carbon). The pressure is increased in the adsorption vessel 21i so that oxygen is adsorbed by the oxygen absorber, the oxygen concentration of the gas is lowered to about 95%, and the low oxygen concentration gas A2 is stored in the storage vessel 23i of the low oxygen concentration gas storage device 23. To supply and store.

一方、必要な低酸素濃度ガス量を確保するために、再度、窒素分離処理を行う必要がある。この前処理として既に吸着している酸素を脱離・放出する減圧処理を、減圧ポンプを用いて行う。なお、この場合には、減圧ポンプ21eは高酸素濃度ガス供給配管21bではなく低酸素濃度ガス供給配管21cに配置される。この減圧過程で放出される酸素に富む高酸素濃度ガスA1を高酸素濃度ガス貯蔵装置22の貯蔵容器22i内に供給し減圧して充填する。   On the other hand, in order to secure a necessary low oxygen concentration gas amount, it is necessary to perform nitrogen separation again. As this pretreatment, a decompression process for desorbing and releasing oxygen that has already been adsorbed is performed using a decompression pump. In this case, the decompression pump 21e is arranged not in the high oxygen concentration gas supply pipe 21b but in the low oxygen concentration gas supply pipe 21c. The oxygen-rich high oxygen concentration gas A1 released in this decompression process is supplied into the storage container 22i of the high oxygen concentration gas storage device 22 and filled under reduced pressure.

この分子ふるい活性炭を用いる方法では、酸素を高圧(例えば、690kPa)で吸着させるために、吸着容器21i内の圧力を高める加圧工程と、酸素の吸着により、空気中から窒素を選別し、低酸素濃度を得るための高圧維持工程と、酸素の吸着が飽和状態に至って、窒素の選別能力が低下するのを防止するために吸着容器21i内の圧力を低圧(例えば、48kPa)にして、吸着した酸素を酸素吸着体から放出させる減圧工程と、吸着させた酸素を十分に放出させるために、吸着容器21iの圧力を低圧状態に維持する低圧維持工程とを繰り返し行う。   In this method using molecular sieve activated carbon, in order to adsorb oxygen at a high pressure (for example, 690 kPa), nitrogen is selected from the air by a pressurizing step for increasing the pressure in the adsorption vessel 21i and adsorption of oxygen. The high pressure maintaining step for obtaining the oxygen concentration and the adsorption in the adsorption vessel 21i are set to a low pressure (for example, 48 kPa) in order to prevent the adsorption of oxygen from reaching saturation and reducing the nitrogen sorting ability. The depressurization step for releasing the oxygen from the oxygen adsorbent and the low pressure maintaining step for maintaining the pressure in the adsorption vessel 21i in a low pressure state are repeated in order to sufficiently release the adsorbed oxygen.

以下では、説明の煩雑さをさけるために、合成ゼオライトを用いる場合について説明する。なお、分子ふるい活性炭を用いる場合には、「窒素」と「酸素」を入れ替え、「高酸素濃度」と「低酸素濃度」を入れ替えればよい。   Below, in order to avoid the complexity of explanation, the case where synthetic zeolite is used is explained. When molecular sieve activated carbon is used, “nitrogen” and “oxygen” may be interchanged, and “high oxygen concentration” and “low oxygen concentration” may be interchanged.

つまり、窒素分離ユニット21における酸素富化においては、エンジンが吸入する空気Aは窒素と酸素を含み、これに微量のアルゴンを含む構成となっているので、空気A中で約21%の体積濃度を占める酸素を窒素やアルゴンと分離する。分離した酸素を一定圧力の状態で貯蔵する低圧の吸着容器(タンク)21iを配置し、必要値まで圧力が上昇したら酸素の分離動作を停止する。この過程で排出される窒素が多い低酸素濃度ガスA2も高酸素濃度ガス貯蔵装置22とは別置きの低酸素濃度ガス貯蔵装置23に貯蔵する。この低酸素濃度ガスA2も必要圧力値までの貯蔵とし、酸素分離過程で生成される不要な低酸素濃度ガスA2は、流路切替弁21aの切替により配管21dから大気中へ排出する。   That is, in the oxygen enrichment in the nitrogen separation unit 21, the air A taken in by the engine contains nitrogen and oxygen, and contains a small amount of argon. Therefore, the volume concentration in the air A is about 21%. Is separated from nitrogen and argon. A low-pressure adsorption container (tank) 21i for storing the separated oxygen at a constant pressure is arranged, and when the pressure rises to a necessary value, the oxygen separation operation is stopped. The low oxygen concentration gas A2 having a large amount of nitrogen discharged in this process is also stored in the low oxygen concentration gas storage device 23 separately from the high oxygen concentration gas storage device 22. This low oxygen concentration gas A2 is also stored up to the required pressure value, and unnecessary low oxygen concentration gas A2 generated in the oxygen separation process is discharged into the atmosphere from the pipe 21d by switching the flow path switching valve 21a.

次に、各弁の弁操作について説明する。高酸素濃度ガスの充填時には、開閉弁22aが開弁され、その他の開閉弁22b,22c,23a,23b,23cが閉弁される。流路切替弁21aはガス供給配管19と窒素分離ユニット21の吸着容器21iを連通させるように弁操作される。また、流路切替弁26はコンプレッサーの入口15aから空気を吸引するように弁操作される。なお、貯蔵容器22iの圧力が大きくなったときに、開閉弁22bを開弁して高酸素濃度ガスA1を外に排出して高酸素濃度ガスA1の充填圧力を調整できるようにする。   Next, the valve operation of each valve will be described. When the high oxygen concentration gas is filled, the on-off valve 22a is opened, and the other on-off valves 22b, 22c, 23a, 23b, 23c are closed. The flow path switching valve 21a is operated so that the gas supply pipe 19 and the adsorption container 21i of the nitrogen separation unit 21 are communicated with each other. The flow path switching valve 26 is operated so as to suck air from the compressor inlet 15a. When the pressure in the storage container 22i increases, the on-off valve 22b is opened to discharge the high oxygen concentration gas A1 to the outside so that the filling pressure of the high oxygen concentration gas A1 can be adjusted.

また、低酸素濃度ガスの充填時には、開閉弁23aが開弁され、その他の開閉弁22a,22b,22c,23b,23cが閉弁される。流路切替弁21aは 大気に開放された配管21dと窒素分離ユニット21の吸着容器21iを連通させるように弁操作される。また、流路切替弁26はコンプレッサーの入口15aと低酸素ガス貯蔵装置23とが連通するように弁操作される。なお、貯蔵容器23iの圧力が大きくなったときに、開閉弁23bを開弁して低酸素濃度ガスA2を吸気通路15に排出して低酸素濃度ガスA2の充填圧力を調整できるようにする。   When the low oxygen concentration gas is filled, the on-off valve 23a is opened, and the other on-off valves 22a, 22b, 22c, 23b, 23c are closed. The flow path switching valve 21a is operated so that the pipe 21d opened to the atmosphere communicates with the adsorption container 21i of the nitrogen separation unit 21. The flow path switching valve 26 is operated so that the compressor inlet 15a and the low oxygen gas storage device 23 communicate with each other. When the pressure in the storage container 23i increases, the on-off valve 23b is opened to discharge the low oxygen concentration gas A2 to the intake passage 15 so that the filling pressure of the low oxygen concentration gas A2 can be adjusted.

次に、高酸素濃度ガスA1と低酸素濃度ガスA2との充填時の制御について、図5の制御フローを参照しながら説明する。この制御フローでは、上級の制御フローから呼ばれてスタートすると、ステップS11でエンジン10の稼動を確認する。エンジン10が稼動されていない場合は、ステップ12の処理停止に行き、各開閉弁を停止状態に合った状態に制御してから、リターンに行き、制御を終了する。   Next, the control at the time of filling with the high oxygen concentration gas A1 and the low oxygen concentration gas A2 will be described with reference to the control flow of FIG. In this control flow, starting from an advanced control flow, operation of the engine 10 is confirmed in step S11. If the engine 10 is not in operation, the process is stopped in step 12 and each on-off valve is controlled to a state suitable for the stop state, and then the process goes to return and the control is terminated.

また、ステップS11でエンジン10の稼動が確認されると、ステップS13で高酸素濃度ガス充填処理を行う。次のステップS14で高酸素濃度ガス貯蔵装置22の貯蔵容器22iの第1圧力センサ22cで検出された第1圧力Poが予め設定された第1上限圧力Pfoを超えたか否かを判定する。   When the operation of the engine 10 is confirmed in step S11, a high oxygen concentration gas filling process is performed in step S13. In the next step S14, it is determined whether or not the first pressure Po detected by the first pressure sensor 22c of the storage container 22i of the high oxygen concentration gas storage device 22 exceeds a preset first upper limit pressure Pfo.

ステップS14の判定で第1圧力Poが第1上限圧力Pfoを超えていない場合には(NO)には、超えるまで、ステップS13に戻り高酸素濃度ガス充填処理を繰り返し行う。ステップS14の判定で第1圧力Poが第1上限圧力Pfoを超えた場合には(YES)には、ステップS15に行き、高酸素濃度ガス貯蔵装置22の貯蔵容器22iの第1酸素濃度センサ22dで検出された第1酸素濃度Coが予め設定された第1酸素濃度Cfo(例えば、95%に設定される)を超えたか否かを判定する。   If it is determined in step S14 that the first pressure Po does not exceed the first upper limit pressure Pfo (NO), the process returns to step S13 and repeats the high oxygen concentration gas filling process until it exceeds. If the first pressure Po exceeds the first upper limit pressure Pfo in the determination of step S14 (YES), the process goes to step S15, and the first oxygen concentration sensor 22d of the storage container 22i of the high oxygen concentration gas storage device 22 is reached. It is determined whether or not the first oxygen concentration Co detected in step S1 exceeds a preset first oxygen concentration Cfo (for example, set to 95%).

このステップS15の判定で、第1酸素濃度Coが第1酸素濃度Cfoを超えていない場合には(NO)、超えるまで、ステップS13に戻り高酸素濃度ガス充填処理を繰り返し行う。高酸素濃度ガス貯蔵装置22の貯蔵容器22iの圧力が大きくなると、貯蔵していた高酸素濃度ガスA1は安全弁としての開閉弁22bから放出され、新しい高酸素濃度ガスA1が供給されて、高酸素濃度ガス貯蔵装置22の貯蔵容器22i内の高酸素濃度ガスA1の酸素濃度が高められる。   If it is determined in step S15 that the first oxygen concentration Co does not exceed the first oxygen concentration Cfo (NO), the process returns to step S13 and repeats the high oxygen concentration gas filling process until it exceeds (NO). When the pressure of the storage container 22i of the high oxygen concentration gas storage device 22 is increased, the stored high oxygen concentration gas A1 is released from the on-off valve 22b as a safety valve, and a new high oxygen concentration gas A1 is supplied. The oxygen concentration of the high oxygen concentration gas A1 in the storage container 22i of the concentration gas storage device 22 is increased.

また、ステップS15の判定で、第1酸素濃度Coが第1酸素濃度Cfoを超えた場合場合には(YES)、ステップS16に行き、低酸素濃度ガス充填処理を行う。次のステップS17で低酸素濃度ガス貯蔵装置23の貯蔵容器23iの第2圧力センサ23eで検出された第2圧力Pnが、予め設定された第2上限圧力Pfnを超えたか否かを判定する。   If it is determined in step S15 that the first oxygen concentration Co exceeds the first oxygen concentration Cfo (YES), the process goes to step S16 to perform a low oxygen concentration gas filling process. In the next step S17, it is determined whether or not the second pressure Pn detected by the second pressure sensor 23e of the storage container 23i of the low oxygen concentration gas storage device 23 has exceeded a preset second upper limit pressure Pfn.

ステップS17の判定で第2圧力Pnが第2上限圧力Pfnを超えていない場合には(NO)には、超えるまで、ステップS16に戻り低酸素濃度ガス充填処理を繰り返し行う。ステップS17の判定で第2圧力Pnが第2上限圧力Pfnを超えた場合には(YES)には、ステップS18に行き、低酸素濃度ガス貯蔵装置23の貯蔵容器23iの第2酸素濃度センサ23dで検出された第2酸素濃度Cnが予め設定された第2酸素濃度Cfn(例えば、5%に設定される)より低くなったか否かを判定する。   If the second pressure Pn does not exceed the second upper limit pressure Pfn in the determination in step S17 (NO), the process returns to step S16 until it exceeds, and the low oxygen concentration gas filling process is repeated. If the second pressure Pn exceeds the second upper limit pressure Pfn in the determination of step S17 (YES), the process goes to step S18, and the second oxygen concentration sensor 23d of the storage container 23i of the low oxygen concentration gas storage device 23 is reached. It is determined whether or not the second oxygen concentration Cn detected in step 2 is lower than a second oxygen concentration Cfn set in advance (for example, set to 5%).

このステップS18の判定で、第2酸素濃度Cnが第2酸素濃度Cfnを超えていない場合には(NO)、超えるまで、ステップS16に戻り低酸素濃度ガス充填処理を繰り返し行う。低酸素濃度ガス貯蔵装置23の貯蔵容器23iの圧力が大きくなると、貯蔵していた低酸素濃度ガスA2は安全弁としての開閉弁23bから放出され、新しい低酸素濃度ガスA2が供給されて、低酸素濃度ガス貯蔵装置23の貯蔵容器23i内の低酸素濃度ガスA2の酸素濃度が低められる。   If it is determined in step S18 that the second oxygen concentration Cn does not exceed the second oxygen concentration Cfn (NO), the process returns to step S16 and repeats the low oxygen concentration gas filling process until it exceeds (NO). When the pressure in the storage container 23i of the low oxygen concentration gas storage device 23 is increased, the stored low oxygen concentration gas A2 is released from the on-off valve 23b as a safety valve, and a new low oxygen concentration gas A2 is supplied. The oxygen concentration of the low oxygen concentration gas A2 in the storage container 23i of the concentration gas storage device 23 is lowered.

そして、ステップS18の判定で、第2酸素濃度Cnが第2酸素濃度Cfnを超えている場合には(YES)、ステップS11に戻り、ステップS11〜ステップS18を繰り返す。なお、各ステップの途中でエンジンの稼動が停止されると、割り込みの発生により、ステップ12の処理停止に行き、各開閉弁を停止状態に合った状態に制御してから、リターンに行き、制御を終了する。   If it is determined in step S18 that the second oxygen concentration Cn exceeds the second oxygen concentration Cfn (YES), the process returns to step S11, and steps S11 to S18 are repeated. If the engine is stopped in the middle of each step, the processing of step 12 is stopped due to the occurrence of an interrupt, and each on-off valve is controlled to be in a state that matches the stopped state, and then the control is returned to return. Exit.

次に、上記の排気ガス浄化システム1における排気ガス浄化方法について説明する。この排気ガス浄化方法においては、エンジン始動直後では、燃焼器13に供給した燃料fを燃焼させるために着火装置に通電して加熱すると共に、高圧ガスとして高濃度酸素ガスA1を使用して、高濃度の酸素により酸化反応速度を高め、燃料の着火を促進する。これにより、排気ガス浄化装置13の触媒の温度を排気ガス浄化反応に十分な活性化温度領域に迅速に到達させることができる。その結果、暖機のための燃料が少なくて済むと共に、短時間で排気ガス浄化能力を発揮できるようになるので排気ガス浄化性能が向上する。   Next, an exhaust gas purification method in the exhaust gas purification system 1 will be described. In this exhaust gas purification method, immediately after starting the engine, the ignition device is energized and heated to burn the fuel f supplied to the combustor 13, and the high-concentration oxygen gas A1 is used as the high-pressure gas. Concentration of oxygen increases the oxidation reaction rate and promotes fuel ignition. As a result, the temperature of the catalyst of the exhaust gas purification device 13 can be quickly reached in the activation temperature region sufficient for the exhaust gas purification reaction. As a result, the amount of fuel for warming up can be reduced, and the exhaust gas purification performance can be exhibited in a short time, so that the exhaust gas purification performance is improved.

一方、エンジンが暖機し、排気ガス浄化装置13の触媒も活性化温度以上に昇温しており、燃焼器13を使用した排気ガス昇温処理が不要な温度領域では、即ち、燃焼器13からの酸化反応熱を必要としない温度領域では、高酸素濃度ガスA1の供給を低酸素濃度ガスA2の供給へと切り替えて、低酸素濃度ガスA2の供給を排気ガス浄化装置12の状態に応じて行う。例えば、この低酸素濃度ガスA2の供給により、排気ガス浄化装置12のNOx吸蔵還元型触媒のNOx再生制御の場合のリッチ空燃比制御を行う。この低酸素濃度ガスA2を使用することにより、燃費の悪化を回避しながら、排気ガス中の酸素濃度を低くして、排気ガスをリッチ状態(低酸素状態)とする。これにより、触媒においては還元雰囲気とすることができ、効率よくNOx吸蔵能力を回復することができる。   On the other hand, the engine is warmed up and the catalyst of the exhaust gas purification device 13 is also heated to the activation temperature or higher, and in the temperature range where the exhaust gas temperature increasing process using the combustor 13 is unnecessary, that is, the combustor 13. In the temperature range where no heat of oxidation reaction is required, the supply of the high oxygen concentration gas A1 is switched to the supply of the low oxygen concentration gas A2, and the supply of the low oxygen concentration gas A2 depends on the state of the exhaust gas purification device 12. Do it. For example, by supplying the low oxygen concentration gas A2, rich air-fuel ratio control in the case of NOx regeneration control of the NOx occlusion reduction type catalyst of the exhaust gas purification device 12 is performed. By using this low oxygen concentration gas A2, the oxygen concentration in the exhaust gas is lowered and the exhaust gas is made rich (low oxygen state) while avoiding deterioration of fuel consumption. Thereby, it can be set as a reducing atmosphere in a catalyst, and NOx occlusion ability can be recovered efficiently.

このガスA1,A2の切替は、例えば、図6に示すような制御フローに基づいて行われる。この図6の制御フローが上級の制御フローから呼ばれてスタートすると、ステップS21でエンジンの稼動を確認する。エンジンが稼動されていない場合は、ステップ22の処理停止に行き、各開閉弁を停止状態に合った状態に制御してから、リターンに行き、制御を終了する。   The switching between the gases A1 and A2 is performed based on a control flow as shown in FIG. 6, for example. When the control flow of FIG. 6 is called from the advanced control flow and started, the operation of the engine is confirmed in step S21. If the engine is not in operation, the process goes to step 22 to stop the process and control each on-off valve to a state that matches the stop state, then goes to return and ends the control.

また、ステップS21でエンジンの稼動が確認されると、ステップS23で、ガス供給の開始信号を受けているか否かを判定する。ガス供給の開始信号を受け取っていない場合には、予め設定された時間(開始信号の受信の判定のインターバルに関係する時間)を経過した後、ステップS23に戻る。   When the engine operation is confirmed in step S21, it is determined in step S23 whether or not a gas supply start signal is received. When the gas supply start signal has not been received, after a preset time (time related to the start signal reception determination interval) has elapsed, the process returns to step S23.

ステップS23でガス供給の開始信号を受けていると判定されると、次のステップS24で排気ガス浄化装置12の入口に設けた入口側温度センサ12aで検出された入口排気ガス温度Tbが予め設定された温度閾値Tfより低いか否かを判定する。   If it is determined in step S23 that a gas supply start signal has been received, the inlet exhaust gas temperature Tb detected by the inlet side temperature sensor 12a provided at the inlet of the exhaust gas purification device 12 is set in advance in step S24. It is determined whether it is lower than the set temperature threshold value Tf.

ステップS24の判定で入口排気ガス温度Tbが温度閾値Tfより低い場合には(YES)には、ステップS25で、高酸素濃度ガスA1の供給を行い、入口排気ガス温度Tbが温度閾値Tf以上の場合には(NO)には、ステップS26で、低高酸素濃度ガスA2の供給を行う。これらのガスA1,A2の供給は、供給の停止信号を受けるまで行い、受けるとステップS26のガス供給の停止に行く。   If it is determined in step S24 that the inlet exhaust gas temperature Tb is lower than the temperature threshold Tf (YES), in step S25, the high oxygen concentration gas A1 is supplied, and the inlet exhaust gas temperature Tb is equal to or higher than the temperature threshold Tf. In this case (NO), the low and high oxygen concentration gas A2 is supplied in step S26. The supply of these gases A1 and A2 is performed until a supply stop signal is received, and then the gas supply is stopped in step S26.

ステップS26でガス供給を停止した後、ステップS21に戻り、ステップS21〜ステップS26を繰り返す。なお、各ステップの途中でエンジンの稼動が停止されると、割り込みの発生により、ステップ22の処理停止に行き、各開閉弁を停止状態に合った状態に制御してから、リターンに行き、制御を終了する。   After stopping the gas supply in step S26, the process returns to step S21, and steps S21 to S26 are repeated. If the engine operation is stopped in the middle of each step, the processing of step 22 is stopped due to the occurrence of an interrupt, and each on-off valve is controlled to a state suitable for the stopped state, and then the return is performed. Exit.

次に、EGR時の低酸素濃度ガス供給について説明する。エンジンのシリンダ内の燃焼過程で生成するNOxを低減するために行われるEGR時には、低酸素濃度ガス貯蔵装置23の開閉弁23bから低酸素濃度ガス供給配管25bと分岐管27経由で、EGR弁17に低酸素濃度ガスA2を供給することにより、シリンダ内の酸素濃度を新気AとEGRガスGeの場合に較べて、酸素濃度を低くしてEGR率を大きくすることができる。シリンダ内の燃焼反応を緩慢な燃焼反応にすることができ、NOxの発生量を低減できる。   Next, the low oxygen concentration gas supply during EGR will be described. At the time of EGR performed to reduce NOx generated in the combustion process in the cylinder of the engine, the EGR valve 17 is connected from the open / close valve 23b of the low oxygen concentration gas storage device 23 via the low oxygen concentration gas supply pipe 25b and the branch pipe 27. By supplying the low oxygen concentration gas A2 to the oxygen concentration in the cylinder, the oxygen concentration can be lowered and the EGR rate can be increased as compared with the fresh air A and the EGR gas Ge. The combustion reaction in the cylinder can be made a slow combustion reaction, and the amount of NOx generated can be reduced.

上記の排気ガス浄化方法及び排気ガス浄化システム1によれば、エンジンの始動時等の排気ガスの昇温が必要な時には、高酸素濃度ガスA1を燃焼器13に供給することにより、排気ガスの昇温を促進し、この排気ガスが流入する排気ガス浄化装置12の触媒温度の活性化温度領域までの上昇時間を短縮することができる。これにより、エンジン始動時の未燃HCの排気ガス浄化装置13の下流側への排出量を減少できると共に、排気ガス浄化装置13の排気ガス浄化能力を短時間で上昇させることができるので、全体的に見た排気ガス浄化性能を向上させることができる。   According to the exhaust gas purification method and the exhaust gas purification system 1 described above, when it is necessary to raise the temperature of the exhaust gas, such as when the engine is started, the high oxygen concentration gas A1 is supplied to the combustor 13 to The temperature rise can be promoted, and the rise time to the activation temperature region of the catalyst temperature of the exhaust gas purification device 12 into which the exhaust gas flows can be shortened. As a result, the amount of unburned HC discharged at the start of the engine to the downstream side of the exhaust gas purification device 13 can be reduced, and the exhaust gas purification capability of the exhaust gas purification device 13 can be increased in a short time. As a result, the exhaust gas purification performance can be improved.

また、排気ガスの昇温不要時には低酸素濃度ガスA2を排気通路11に供給することにより、排気ガス浄化装置12の浄化能力再生のために繰り返し行うリッチ空燃比制御において排気ガス中の未燃HC濃度を高めて、浄化能力の再生を促進することができる。例えば、NOx吸蔵還元型触媒を用いている場合には、定期的に行うNOx吸蔵能力の回復のためのリッチ空燃比制御において、放出されたNOxの還元処理に必要な燃料の微粒化を低酸素濃度ガスA2で促進することができ、触媒上の酸素を極短時間で消費させて、還元雰囲気にしてNOx吸蔵能力を回復することが短時間でできるようになるので、NOx吸蔵及び浄化性能が向上する。   Further, when the temperature of the exhaust gas does not need to be raised, the low oxygen concentration gas A2 is supplied to the exhaust passage 11 so that the unburned HC in the exhaust gas can be obtained in the rich air-fuel ratio control that is repeatedly performed to regenerate the purification capacity of the exhaust gas purification device 12. The concentration can be increased to promote regeneration of the purification capacity. For example, when a NOx occlusion reduction type catalyst is used, in the rich air-fuel ratio control for recovering the NOx occlusion ability that is performed periodically, the atomization of fuel required for the reduction treatment of released NOx is reduced by low oxygen. The concentration gas A2 can be promoted, and the oxygen on the catalyst can be consumed in a very short time to restore the NOx storage capacity in a reducing atmosphere, so that the NOx storage and purification performance is improved. improves.

更に、エンジンのシリンダ内の燃焼過程で生成するNOxを低減するために行われるEGR時に、EGRガスGeに低酸素濃度ガスA2を加えることにより、EGR率を著しく大きくすることができるので、シリンダ内において緩慢な燃焼反応の促進を図ることができ、NOxの発生量を低減できる。   Furthermore, the EGR rate can be remarkably increased by adding the low oxygen concentration gas A2 to the EGR gas Ge during EGR performed to reduce NOx generated in the combustion process in the cylinder of the engine. In this case, the slow combustion reaction can be promoted and the amount of NOx generated can be reduced.

本発明の排気ガス浄化方法及び排気ガス浄化システムは、排気ガスの昇温時の排気ガスの昇温の促進効果により、短時間での触媒温度の活性化温度領域への到達で、排気ガス浄化装置の下流側へのHC排出量を低減することができる。また、排気ガスの昇温不要時には、低酸素濃度ガス(高窒素濃度ガス)の排気通路への供給で、排気ガス浄化装置の浄化能力再生のためのリッチ空燃比制御における排気ガス中の未燃炭化水素濃度を高めて、浄化能力の再生を促進することができる。更に、EGR時に、EGRガスへの低酸素濃度ガスの付加により、EGR率を著しく大きくすることができ、NOxの発生量を低減できる。   The exhaust gas purification method and the exhaust gas purification system according to the present invention achieve the exhaust gas purification by reaching the activation temperature region of the catalyst temperature in a short time due to the effect of promoting the temperature rise of the exhaust gas when the temperature of the exhaust gas is raised. The amount of HC discharged to the downstream side of the apparatus can be reduced. When exhaust gas temperature rise is not required, low oxygen concentration gas (high nitrogen concentration gas) is supplied to the exhaust passage and unburned in the exhaust gas in rich air-fuel ratio control for regenerating the purification capacity of the exhaust gas purification device. It is possible to increase the hydrocarbon concentration and promote the regeneration of the purification capacity. Furthermore, at the time of EGR, by adding a low oxygen concentration gas to the EGR gas, the EGR rate can be remarkably increased, and the amount of NOx generated can be reduced.

従って、本発明の排気ガス浄化方法及び排気ガス浄化システムは、自動車に搭載するの内燃機関等の排気通路における排気ガス浄化方法及び排気ガス浄化システムとして利用できる。   Therefore, the exhaust gas purification method and the exhaust gas purification system of the present invention can be used as an exhaust gas purification method and an exhaust gas purification system in an exhaust passage of an internal combustion engine or the like mounted on an automobile.

1 排気ガス浄化システム
10 エンジン(内燃機関)
11 排気通路
12 排気ガス浄化装置
13 燃焼器
13c ガス供給用配管
13d ガス切替弁
16 EGR通路
17 EGR弁
19 ガス供給配管
20 酸素富化用コンプレッサー
21 窒素分離ユニット
21b 高酸素濃度ガス供給配管
21c 低酸素濃度ガス供給配管
22 高酸素濃度ガス貯蔵装置
22i 貯蔵容器
22d 第1酸素濃度センサ
22e 第1圧力サンサ
23 低酸素濃度ガス貯蔵装置
23i 貯蔵容器
23d 第2酸素濃度センサ
23e 第2圧力センサ
24 高酸素濃度ガス供給配管
25a,25b 低酸素濃度ガス供給配管
26 流路切替弁
A 空気(新気)
A1 高濃度酸素ガス
A2 低濃度酸素ガス
Cfo 第1酸素濃度
Cfn 第2酸素濃度
Cn 第2酸素濃度
Co 第1酸素濃度
f 燃料
G 排気ガス
Ge EGRガス
Pfn 第2上限圧力
Po 第1圧力
Pfo 第1上限圧力
Pn 第2圧力
Tb 入口排気ガス温度
Tf 温度閾値
W 冷却水
1 Exhaust gas purification system 10 Engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 11 Exhaust passage 12 Exhaust gas purification apparatus 13 Combustor 13c Gas supply piping 13d Gas switching valve 16 EGR passage 17 EGR valve 19 Gas supply piping 20 Oxygen-enriching compressor 21 Nitrogen separation unit 21b High oxygen concentration gas supply piping 21c Low oxygen Concentration gas supply pipe 22 High oxygen concentration gas storage device 22i Storage container 22d First oxygen concentration sensor 22e First pressure sensor 23 Low oxygen concentration gas storage device 23i Storage container 23d Second oxygen concentration sensor 23e Second pressure sensor 24 High oxygen concentration Gas supply piping 25a, 25b Low oxygen concentration gas supply piping 26 Flow path switching valve A Air (fresh air)
A1 High concentration oxygen gas A2 Low concentration oxygen gas Cfo 1st oxygen concentration Cfn 2nd oxygen concentration Cn 2nd oxygen concentration Co 1st oxygen concentration f Fuel G Exhaust gas Ge EGR gas Pfn 2nd upper limit pressure Po 1st pressure Pfo 1st Upper limit pressure Pn Second pressure Tb Inlet exhaust gas temperature Tf Temperature threshold W Cooling water

Claims (2)

内燃機関の排気通路の排気ガスを昇温するための燃焼器を備えた排気ガス浄化システムにおいて、前記燃焼器のガス供給ラインに酸素富化装置を設けて、高酸素濃度ガスと低酸素濃度ガスを選択的に供給するように構成すると共に、排気ガスを昇温させるときに高酸素濃度ガスを前記燃焼器に供給し、排気ガスを昇温させないときに低酸素濃度ガスを前記排気通路に供給し、更に、EGRを行うときにEGRガスに低酸素濃度ガスを加えることを特徴とする排気ガス浄化方法。   In an exhaust gas purification system provided with a combustor for raising the temperature of exhaust gas in an exhaust passage of an internal combustion engine, an oxygen enrichment device is provided in a gas supply line of the combustor so that a high oxygen concentration gas and a low oxygen concentration gas are provided. The high oxygen concentration gas is supplied to the combustor when the temperature of the exhaust gas is raised, and the low oxygen concentration gas is supplied to the exhaust passage when the temperature of the exhaust gas is not raised. And an exhaust gas purification method characterized by adding a low oxygen concentration gas to the EGR gas when performing EGR. 内燃機関の排気通路の排気ガスを昇温するための燃焼器を備えた排気ガス浄化システムにおいて、前記燃焼器のガス供給ラインに酸素富化装置を設けて、高酸素濃度ガスと低酸素濃度ガスを選択的に供給するガス供給手段を設けると共に、このガス供給手段が、排気ガスを昇温させるときに高酸素濃度ガスを前記燃焼器に供給し、排気ガスを昇温させないときに低酸素濃度ガスを排気通路に供給し、更に、EGRを行うときにEGRガスに低酸素濃度ガスを加えることを特徴とする排気ガス浄化システム。   In an exhaust gas purification system provided with a combustor for raising the temperature of exhaust gas in an exhaust passage of an internal combustion engine, an oxygen enrichment device is provided in a gas supply line of the combustor so that a high oxygen concentration gas and a low oxygen concentration gas are provided. The gas supply means supplies a high oxygen concentration gas to the combustor when raising the temperature of the exhaust gas, and the low oxygen concentration when not raising the temperature of the exhaust gas. An exhaust gas purification system, characterized in that a gas is supplied to an exhaust passage and a low oxygen concentration gas is added to EGR gas when EGR is performed.
JP2009010226A 2009-01-20 2009-01-20 Exhaust gas purification method and exhaust gas purification system Expired - Fee Related JP5287282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010226A JP5287282B2 (en) 2009-01-20 2009-01-20 Exhaust gas purification method and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010226A JP5287282B2 (en) 2009-01-20 2009-01-20 Exhaust gas purification method and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2010168927A true JP2010168927A (en) 2010-08-05
JP5287282B2 JP5287282B2 (en) 2013-09-11

Family

ID=42701306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010226A Expired - Fee Related JP5287282B2 (en) 2009-01-20 2009-01-20 Exhaust gas purification method and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP5287282B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032708A (en) * 2011-08-01 2013-02-14 Denso Corp Gas supply apparatus for internal combustion engine
JP2014077371A (en) * 2012-10-09 2014-05-01 Hino Motors Ltd Exhaust gas emission control device
JP2015033911A (en) * 2013-08-09 2015-02-19 いすゞ自動車株式会社 Hybrid vehicle and control method thereof
US9212586B2 (en) 2012-05-29 2015-12-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
CN112282909A (en) * 2020-10-30 2021-01-29 潍柴动力股份有限公司 Engine exhaust system, control method thereof and engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366382B2 (en) 2020-05-21 2023-10-23 国立大学法人九州大学 Method for producing ester compounds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131821A (en) * 1983-01-18 1984-07-28 Mitsui Eng & Shipbuild Co Ltd Boiler
JPH05141229A (en) * 1991-03-20 1993-06-08 Hitachi Ltd Method for purifying exhaust gas of automobile engine
JP2001303941A (en) * 2000-04-25 2001-10-31 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2002155740A (en) * 2000-11-24 2002-05-31 Hino Motors Ltd Exhaust emission treatment device of engine
JP2004257323A (en) * 2003-02-26 2004-09-16 Toyota Motor Corp Exhaust system control system of internal combustion engine
JP2006275020A (en) * 2005-03-30 2006-10-12 Denso Corp Exhaust temperature control device
JP2007285281A (en) * 2006-04-20 2007-11-01 Isuzu Motors Ltd Supercharged internal combustion engine provided with oxygen enriching device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131821A (en) * 1983-01-18 1984-07-28 Mitsui Eng & Shipbuild Co Ltd Boiler
JPH05141229A (en) * 1991-03-20 1993-06-08 Hitachi Ltd Method for purifying exhaust gas of automobile engine
JP2001303941A (en) * 2000-04-25 2001-10-31 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2002155740A (en) * 2000-11-24 2002-05-31 Hino Motors Ltd Exhaust emission treatment device of engine
JP2004257323A (en) * 2003-02-26 2004-09-16 Toyota Motor Corp Exhaust system control system of internal combustion engine
JP2006275020A (en) * 2005-03-30 2006-10-12 Denso Corp Exhaust temperature control device
JP2007285281A (en) * 2006-04-20 2007-11-01 Isuzu Motors Ltd Supercharged internal combustion engine provided with oxygen enriching device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032708A (en) * 2011-08-01 2013-02-14 Denso Corp Gas supply apparatus for internal combustion engine
US9062631B2 (en) 2011-08-01 2015-06-23 Denso Corporation Gas supply apparatus for internal combustion engine
US9212586B2 (en) 2012-05-29 2015-12-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
JP2014077371A (en) * 2012-10-09 2014-05-01 Hino Motors Ltd Exhaust gas emission control device
JP2015033911A (en) * 2013-08-09 2015-02-19 いすゞ自動車株式会社 Hybrid vehicle and control method thereof
CN112282909A (en) * 2020-10-30 2021-01-29 潍柴动力股份有限公司 Engine exhaust system, control method thereof and engine

Also Published As

Publication number Publication date
JP5287282B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5131391B2 (en) Exhaust gas purification device for internal combustion engine
US7117667B2 (en) NOx adsorber aftertreatment system for internal combustion engines
KR101326348B1 (en) Exhaust purification system of internal combustion engine
US7377101B2 (en) Plasma fuel converter NOx adsorber system for exhaust aftertreatment
JP5287282B2 (en) Exhaust gas purification method and exhaust gas purification system
US6820414B2 (en) Adsorber aftertreatment system having downstream soot filter
KR101317411B1 (en) System of regenerating gasoline particulate filter and method thereof
JP2009540189A (en) Improved hybrid NOX prevention system
WO2009133771A1 (en) Exhaust gas purification method and exhaust gas purificaton system
KR20140020251A (en) Exhaust system including nox reduction catalyst and egr circuit
JP2006242020A (en) Exhaust emission control device
JP5152415B2 (en) Exhaust gas purification device for internal combustion engine
JP5282568B2 (en) Exhaust gas purification method and exhaust gas purification system
WO2012014330A1 (en) Exhaust purification apparatus for internal combustion engine
JP6743498B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP4934082B2 (en) Exhaust purification device
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
KR101316867B1 (en) System for purifying exhaust gas and method thereof
WO2009113650A1 (en) Method for controlling exhaust gas purification apparatus
JP2010196569A (en) Exhaust emission control system and exhaust emission control method
JP2003035135A (en) Exhaust emission control device
JP2010281266A (en) Exhaust emission control device for internal combustion engine
JP2009215977A (en) Exhaust emission control device
JP2009216021A (en) Exhaust emission control device
KR100282601B1 (en) Exhaust aftertreatment device for lean burn cars

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

LAPS Cancellation because of no payment of annual fees