JPS61112715A - Exhaust purifying apparatus for diesel engine - Google Patents

Exhaust purifying apparatus for diesel engine

Info

Publication number
JPS61112715A
JPS61112715A JP59234042A JP23404284A JPS61112715A JP S61112715 A JPS61112715 A JP S61112715A JP 59234042 A JP59234042 A JP 59234042A JP 23404284 A JP23404284 A JP 23404284A JP S61112715 A JPS61112715 A JP S61112715A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
filter
throttle valve
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59234042A
Other languages
Japanese (ja)
Other versions
JPH0559245B2 (en
Inventor
Kotaro Hayashi
孝太郎 林
Tokuta Inoue
井上 悳太
Toshiaki Tanaka
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59234042A priority Critical patent/JPS61112715A/en
Publication of JPS61112715A publication Critical patent/JPS61112715A/en
Publication of JPH0559245B2 publication Critical patent/JPH0559245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To burn articulates and remove NOX by disposing NOX reducing catalyst in an exhaust path of an engine and providing a catalyst temperature raising means for maintaining said catalyst at temperature of about 300 deg.C-400 deg.C. CONSTITUTION:In an exhaust path of an engine are provided at least one of Co, Fe and Ni, rate earth elements and a filter 10 coated with NOX recuding catalyst comprising platinum group metal. A catalyst temperature raising means is provided to maintain the reducing catalyst temperature at about 300 deg.C-400 deg.C. The first catalyst temperature raising means controls a throttle valve 25 such that an electromagnetic change-over valve 26 is changed over to control the opening of the throttle valve 25 according to the rotational frequency and load of the engine. The second catalyst temperature raising means controls a heater and when the temperature cannot be raised only by the throttle control, current is supplied to an electric heater 22.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はディーゼル機関の排気浄化装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to an exhaust purification device for a diesel engine.

従来の技術 ディーゼル機関は空気過剰のもとて作動せしめられるた
めにディーゼル機関の排気ガス中には高濃度の酸素が存
在し、従ってガソリン機関に対して使用されている還元
触媒或いは三元触媒をもってしてはディーゼル機関の排
気ガス中のNOxを低減することはできない。従って従
来より排気ガス中のNOxを低減するためには触媒が用
いられておらず、排気ガスを最循環したり或いは燃料噴
射時間を調整することによりNOxを低減しようとして
いるのが現状である。
BACKGROUND OF THE INVENTION Since diesel engines are operated with excess air, there is a high concentration of oxygen in the exhaust gas of diesel engines, so the reduction catalyst or three-way catalyst used for gasoline engines is However, it is not possible to reduce NOx in the exhaust gas of a diesel engine. Therefore, conventionally, catalysts have not been used to reduce NOx in exhaust gas, and the current situation is to try to reduce NOx by recirculating the exhaust gas or adjusting the fuel injection time.

なお、ディーゼル機関の排気ガス中に含まれるパティキ
ュレートをフィルタにより捕獲し、このフィルタに捕獲
されたパティキュレートを燃焼除去するためるに吸気通
路に設けた絞り弁を絞るようにしたディーゼル機関が特
開昭59−150921号公報に記載されている。この
ディーゼル機関では吸気通路に設けた絞り弁を絞ること
により排気温度を上昇させてフィルタに捕獲されたパテ
ィキュレートを燃焼せしめるものであり、NOxを除去
することはできない。
In addition, a diesel engine that captures particulates contained in the exhaust gas of a diesel engine with a filter and throttles a throttle valve installed in the intake passage in order to burn and remove the particulates captured by the filter has been disclosed in Japanese Patent Publication. It is described in Publication No. 59-150921. In this diesel engine, the exhaust gas temperature is raised by throttling a throttle valve provided in the intake passage to burn particulates captured by the filter, and NOx cannot be removed.

発明が解決しようとする問題点 このように従来のディーゼル機関においてはNOxを触
媒により除去することは行っておらず、再循環排気ガス
等によりNOxを除去するようにしてもNOxを十分に
除去することはできない。
Problems to be Solved by the Invention As described above, in conventional diesel engines, NOx is not removed using a catalyst, and even if NOx is removed using recirculated exhaust gas, etc., NOx is not sufficiently removed. It is not possible.

問題点を解決するための手段 上記問題点を解決するために本発明によれば機関排気通
路にCo、Fe、Niから選ばれた少とも一つの金属と
希土類元素と白金族金属からなるNOx還元触媒を配置
し、還元触媒の温度をほぼ300度から400度に維持
する触媒昇温手段を具備している。
Means for Solving the Problems In order to solve the above problems, according to the present invention, the engine exhaust passage is equipped with a NOx reducing material made of at least one metal selected from Co, Fe, and Ni, a rare earth element, and a platinum group metal. The catalyst is provided with catalyst temperature increasing means for maintaining the temperature of the reduction catalyst at approximately 300 to 400 degrees.

実施例 第1図を参照すると、1は機関本体、2は吸気マニホル
ド、3は吸気マニホルド2の集合部に連結された吸気ダ
クト、4は排気マニホルド(図示せず)に連結された排
気ダクト、5は排気ダクト4の出口に連結された排気タ
ーボチャージャ、6は排気ターボチャージャ5の出口に
連結された排気管、7は排気管6に連結された別の排気
管を夫夫示す。排気管6はその内部に主通路8と、主通
路8をバイパスするバイパス通路9とを具備し、主通路
8内には円筒状のフィルタ10が配置される。一方、バ
イパス通路9内には負圧ダイアフラム式アクチュエータ
11によって作動せしめられるバイパス弁12が挿入さ
れ、このバイパス弁12は通常閉弁状態に保持される。
Embodiment Referring to FIG. 1, 1 is an engine main body, 2 is an intake manifold, 3 is an intake duct connected to a gathering part of the intake manifold 2, 4 is an exhaust duct connected to an exhaust manifold (not shown), 5 is an exhaust turbocharger connected to the outlet of the exhaust duct 4; 6 is an exhaust pipe connected to the outlet of the exhaust turbocharger 5; and 7 is another exhaust pipe connected to the exhaust pipe 6. The exhaust pipe 6 includes a main passage 8 and a bypass passage 9 that bypasses the main passage 8. A cylindrical filter 10 is disposed within the main passage 8. On the other hand, a bypass valve 12 operated by a negative pressure diaphragm actuator 11 is inserted into the bypass passage 9, and this bypass valve 12 is normally kept in a closed state.

従って排気ガスは通常矢印Aで示すようにフィルタ10
内を通り、排気管7を経て大気に放出される。アクチュ
エータ11はその内部に負圧室を有し、負圧室内に負圧
が加わったときにはバイパス弁12を全開し、負圧室内
に大気圧が作用したときにはバイパス弁12を閉鎖する
。この負圧室は電子制御ユニット13の出力信号によっ
て制御される電磁切換弁14を介して負圧源又は大気に
選択に連結される。
Therefore, the exhaust gas is normally filtered through the filter 10 as shown by arrow A.
It passes through the interior and is discharged to the atmosphere through the exhaust pipe 7. The actuator 11 has a negative pressure chamber therein, and fully opens the bypass valve 12 when negative pressure is applied to the negative pressure chamber, and closes the bypass valve 12 when atmospheric pressure acts within the negative pressure chamber. This negative pressure chamber is selectively connected to a negative pressure source or to the atmosphere via an electromagnetic switching valve 14 controlled by an output signal of an electronic control unit 13.

電子制御ユニット13はディジタルコンピュータからな
り、双方向性バス15によって相互に接続されたRAM
 (ランダムアクセスメモリ)16、ROM(IJ−ド
オンリメモリ)17、CPU(フィクロピロセッサ)1
8、入力ポート19および出力ポート20を具備する。
The electronic control unit 13 consists of a digital computer, with RAM interconnected by a bidirectional bus 15.
(Random access memory) 16, ROM (IJ-only memory) 17, CPU (ficro processor) 1
8, an input port 19 and an output port 20.

電磁切換弁14は駆動回路21を介して出力ポート20
に接続される。
The electromagnetic switching valve 14 is connected to the output port 20 via the drive circuit 21.
connected to.

一方、フィルタ10の人口部には放射状に配列された電
気ヒータ22が配置され、この電気ヒータ22は駆動回
路23を介して出力ポート20に接続される。更に、フ
ィルタ10内にはフィルタ10の温度を検出する温度セ
ンサ24が挿入され、この温度センサ24はAD変換器
25を介して入力ポート19に接続される。
On the other hand, radially arranged electric heaters 22 are arranged in the artificial part of the filter 10, and the electric heaters 22 are connected to the output port 20 via a drive circuit 23. Furthermore, a temperature sensor 24 is inserted into the filter 10 to detect the temperature of the filter 10, and this temperature sensor 24 is connected to the input port 19 via an AD converter 25.

一方、吸気ダクト3内には負圧ダイアフラム式アクチュ
エータ24によって開閉制御される絞り弁25が配置さ
れる。アクチュエータ24はダイアフラムによって分離
された負圧室と大気圧室とを有し、負圧室は電磁切換弁
26を介して負圧源又は大気に選択的に連結される。ア
クチュエータ24のダイアフラムは制御ロッド27を介
して絞り弁25の弁軸28にリンク連結される。アクチ
ュエータ24の負圧室内に負圧が加わると絞り弁25は
閉弁方向に回動せしめられ、アクチュエータ24の負圧
室内に大気圧が作用すると絞り弁25は開弁方向に回動
せしめられる。電磁切換弁26は駆動回路29を介して
出力ポート20に接続される。絞り弁25の弁軸28に
は絞り弁25の開度を検出する絞り弁開度センサ30が
取付けられ、この絞り弁開度センサ30はAD変換器3
1を介して入力ポート19に接続される。また、機関負
荷を検出する負荷センサ、例えば燃料噴射ポンプのラッ
ク位置を検出する負荷センサ32がAD変換器33を介
して入力ポート19に接続され、機関回転数に比例して
パルスを発生する回転数センサ33が入力ポート19に
接続される。CPU18内においては回転数センサ33
の出力パルスから機関回転数が計算される。
On the other hand, a throttle valve 25 whose opening and closing are controlled by a negative pressure diaphragm actuator 24 is disposed within the intake duct 3 . The actuator 24 has a negative pressure chamber and an atmospheric pressure chamber separated by a diaphragm, and the negative pressure chamber is selectively connected to a negative pressure source or the atmosphere via an electromagnetic switching valve 26. The diaphragm of the actuator 24 is linked via a control rod 27 to a valve shaft 28 of a throttle valve 25 . When negative pressure is applied within the negative pressure chamber of the actuator 24, the throttle valve 25 is rotated in the valve closing direction, and when atmospheric pressure is applied within the negative pressure chamber of the actuator 24, the throttle valve 25 is rotated in the valve opening direction. The electromagnetic switching valve 26 is connected to the output port 20 via a drive circuit 29. A throttle valve opening sensor 30 that detects the opening of the throttle valve 25 is attached to the valve shaft 28 of the throttle valve 25, and this throttle valve opening sensor 30 is connected to the AD converter 3.
1 to the input port 19. In addition, a load sensor that detects the engine load, for example, a load sensor 32 that detects the rack position of a fuel injection pump, is connected to the input port 19 via an AD converter 33, and the load sensor 32 detects the rack position of the fuel injection pump. A number sensor 33 is connected to input port 19 . Inside the CPU 18, the rotation speed sensor 33
The engine speed is calculated from the output pulse.

フィルタ10は三次元網目構造をなすコージライトにγ
−アルミナをコーティングしたものであり、排気ガス中
のパティキュレート高沸点HCは排気ガスがフィルタ1
0内を流れる間に網目構造体により捕獲されて網目構造
体内に付着堆積せしめられる。なお、このフィルタ10
は排圧をさほど高めることなくパティキュレート高沸点
11cを捕獲できればよいのでフィルタlOの内部形状
は、ハニカム形状、モノリス形状、ペレット形状等どの
ような形状でもよい。
The filter 10 is made of cordierite with a three-dimensional network structure.
- It is coated with alumina, and the particulate high boiling point HC in the exhaust gas is removed from the filter 1.
While flowing through the mesh structure, it is captured by the mesh structure and deposited inside the mesh structure. Note that this filter 10
Since it is sufficient to capture the particulate high boiling point 11c without increasing the exhaust pressure so much, the internal shape of the filter IO may be any shape such as a honeycomb shape, a monolith shape, or a pellet shape.

本発明によればγ−アルミナをコーティングしたコージ
ライトからなる担体上にco、Fe、Niから選ばれた
少くとも一つの金属と希土IN(La。
According to the present invention, at least one metal selected from Co, Fe, and Ni and rare earth IN (La) are coated on a support made of cordierite coated with γ-alumina.

Th、Ce等)と白金族金属(Pt、Rh、Ru。Th, Ce, etc.) and platinum group metals (Pt, Rh, Ru.

Pd、Os、Ir等)の三成分からなる触媒が担持され
る。これらの触媒は過剰酸素のもとてNOxに対して強
い還元性を有することが判明しているがこの強い還元性
は後述するように一定の温度範囲において発揮される。
A catalyst consisting of three components (Pd, Os, Ir, etc.) is supported. It has been found that these catalysts have strong reducing properties against NOx in the presence of excess oxygen, and this strong reducing property is exhibited within a certain temperature range as will be described later.

次にこのような触媒を担持した担体の製造方法およびN
Oxの浄化性能について説明する。
Next, a method for producing a carrier supporting such a catalyst and N
Ox purification performance will be explained.

担体としては前述したようにT−アルミナをコーティン
グした三次元網目構造のコージライトを用いる。
As described above, cordierite having a three-dimensional network structure coated with T-alumina is used as the carrier.

まず始めに硝酸コバルト、硝酸ランタンの混合液中に担
体を浸漬し、Co、Laを担体上に含浸させる。次いで
60℃の温風を所定時間吹き当てて乾燥させる。
First, a carrier is immersed in a mixed solution of cobalt nitrate and lanthanum nitrate to impregnate Co and La onto the carrier. Then, it is dried by blowing warm air at 60° C. for a predetermined period of time.

次いでptの酸性硝酸溶液中に担体を浸漬してPtを担
体上に吸着させる。次いで60℃の温風。
Next, the carrier is immersed in an acidic nitric acid solution of PT to adsorb Pt onto the carrier. Next, warm air at 60℃.

を所定時間吹き当てて乾燥させる。Spray on it for a specified period of time and let it dry.

次いで担体を10%アンモニア水溶液の20℃飽和蒸気
中に10分間さらした後、400℃の水素雰囲気中に4
0分間さらしてH2還元を行ない、担体上に単体のCo
を形成する。
The carrier was then exposed to 20°C saturated steam of 10% ammonia aqueous solution for 10 minutes, and then exposed to 400°C hydrogen atmosphere for 4 minutes.
H2 reduction is performed by exposing for 0 minutes, and single Co is deposited on the carrier.
form.

なお、NOxの還元触媒としてはまず始めにC。Note that C is the first NOx reduction catalyst.

とLaを担体上に最初に担持させ、次いでptを担体上
に担持せしめるのが好ましいことが判明している。
It has been found that it is preferable to first deposit La and La on the carrier and then deposit pt on the carrier.

第4図は斯くして得られた担体を排気通路内に配置して
NOxの浄化性能を試験した結果を示している。この担
体は容積が約2000cn(で約360gのアルミナを
コーティングしてあり、co、La+ptの量は夫々約
8.8g、4.0 g、 1.2 gである。
FIG. 4 shows the results of testing the NOx purification performance of the carrier thus obtained by placing it in an exhaust passage. The carrier has a volume of about 2000 cn and is coated with about 360 g of alumina, and the amounts of co, La+pt are about 8.8 g, 4.0 g, and 1.2 g, respectively.

第4・図において破線は機関回転数が2000 r、p
、mのときを示しており、実線は機関回転数が300O
r、p、mのときを示している。また第4図において縦
軸CはNOxの浄化率を示しており、横軸Tは担体の温
度を示している。第4図から担体の温度が350℃付近
においてNOxの浄化率がピークになることがわかる。
In Figure 4, the broken line indicates the engine speed is 2000 r, p.
, m, and the solid line indicates when the engine speed is 300O
The cases of r, p, and m are shown. Further, in FIG. 4, the vertical axis C shows the NOx purification rate, and the horizontal axis T shows the temperature of the carrier. It can be seen from FIG. 4 that the NOx purification rate reaches its peak when the carrier temperature is around 350°C.

なお、第4図においてTの区間、即ち担体の温度が約3
00℃から400℃の間においてかなり浄化率が高く、
この温度範囲Tに担体の温度を維持しておけば高いNO
x浄化率が得られることがわかる。
In addition, in FIG. 4, the section T, that is, the temperature of the carrier is about 3
The purification rate is quite high between 00℃ and 400℃,
If the temperature of the carrier is maintained within this temperature range T, the NO
It can be seen that x purification rate can be obtained.

前述したように第1図に示すバイパス弁12は通常閉弁
せしめられており、従って通常排気ガスはフィルタ10
および主通路8を通って外気中に排出される。フィルタ
10はγ−アルミナをコーティングした三次元網目構造
のコージライトを担体としその上にCo、Fe、Niか
ら選ばれた少くとも一つの金属と希土類元素と白金族金
属の三成分からなる触媒を担持したものからなる。従っ
てこのフィルタ10を用いて高いNOxの浄化効率を得
るにはフィルタ10を300℃から400℃の間、好ま
しくは350℃程度に維持することが必要となる。
As mentioned above, the bypass valve 12 shown in FIG.
and is discharged into the outside air through the main passage 8. The filter 10 has a three-dimensional network structure of cordierite coated with γ-alumina as a carrier, and a catalyst made of three components of at least one metal selected from Co, Fe, and Ni, a rare earth element, and a platinum group metal on the carrier. It consists of what it carries. Therefore, in order to obtain high NOx purification efficiency using this filter 10, it is necessary to maintain the filter 10 at a temperature between 300°C and 400°C, preferably around 350°C.

次に第2図に示すフローチャートを参照してフィルタ1
0を350℃程度に維持する方法について説明する。第
2図を参照するとまず始めにステップ40において温度
センサ24の出力信号からフィルタ10の温度tを検出
する。次いでステップ41においてフィルタ塩tが一定
時間低温状態下にあるとセットされるフラグがセ・ノド
されてし)るか否かが判別される。通常このフラグはリ
セットされており、従ってステップ42に進む。ステッ
プ42ではフィルタ塩tが340℃以下であるか否かが
判別され、t<340°Cであればステ・ノブ43に進
む。ステップ43ではタイマがセットされているか否か
が判別され、タイマがセ・ノドされていなければステッ
プ44においてタイマをセットする。このタイマは一定
時間経過するとリセットされる。次いでステップ45で
はタイマにより定められた一定時間経過したか否かが判
別される。この時間は例えば30秒である。一定時間経
過していないときにはステ・ノブ46に進んで絞り弁2
5の絞り制御が行なわれる。
Next, referring to the flowchart shown in Fig. 2, filter 1 is
A method for maintaining the temperature at about 350°C will be explained. Referring to FIG. 2, first, in step 40, the temperature t of the filter 10 is detected from the output signal of the temperature sensor 24. Next, in step 41, it is determined whether a flag that is set when the filter salt t has been in a low temperature state for a certain period of time has been set. Normally this flag will be reset, so step 42 is reached. In step 42, it is determined whether the filter salt t is below 340°C, and if t<340°C, the process proceeds to step knob 43. In step 43, it is determined whether or not the timer is set, and if the timer is not set, the timer is set in step 44. This timer is reset after a certain period of time. Next, in step 45, it is determined whether a certain period of time determined by a timer has elapsed. This time is, for example, 30 seconds. If a certain period of time has not elapsed, proceed to the steering knob 46 and close the throttle valve 2.
5 aperture control is performed.

絞り弁25を絞ると機関シリンダ内に供給される過剰な
空気量が減少し、その結果排気ガスの温度が上昇する。
Throttling the throttle valve 25 reduces the amount of excess air supplied into the engine cylinder, resulting in an increase in the temperature of the exhaust gas.

しかしながら絞り弁25を絞りすぎると燃焼が悪化する
。どの程度絞ると燃焼が悪化するかはわかっており、従
って燃焼が悪化しない範囲で最も排気ガス温が高くなる
かもはじめかられかっている。燃焼が悪化しない範囲で
最も排気ガス温が高くなる絞り弁25の開度と、機関回
転数および機関負荷との関係は予めROM17内に記憶
されており、ステップ46ではこの関係に従って絞り弁
25の開度が制御される。即ち、機関回転数および負荷
によって定まる絞り弁開度よりも大きくなれば電磁切換
弁26を切替えてアクチュエータ24の負圧室を負圧源
に連通させることにより絞り弁25の開度を小さくし、
機関回転数および負荷によって定まる絞り弁開度よりも
小さくなれば電磁切換弁26を切替えてアクチュエータ
24の負圧室を大気に開放することにより絞り弁25の
開度を大きくする。このようにして絞り弁25の開度が
機関回転数および機関負荷により定まる一定開度に保持
され、斯くして排気ガス温が上昇せしめられる。
However, if the throttle valve 25 is throttled too much, combustion will deteriorate. It is known to what extent the exhaust gas temperature will be the highest without deteriorating combustion, and it is also known from the beginning how much throttle the throttle will worsen combustion. The relationship between the opening degree of the throttle valve 25 at which the exhaust gas temperature is highest within a range that does not deteriorate combustion, the engine speed, and the engine load is stored in advance in the ROM 17, and in step 46, the throttle valve 25 is opened according to this relationship. The opening degree is controlled. That is, if the throttle valve opening is larger than the throttle valve opening determined by the engine speed and load, the electromagnetic switching valve 26 is switched to communicate the negative pressure chamber of the actuator 24 with the negative pressure source, thereby reducing the throttle valve 25 opening.
When the opening degree of the throttle valve becomes smaller than the opening degree determined by the engine speed and load, the opening degree of the throttle valve 25 is increased by switching the electromagnetic switching valve 26 and opening the negative pressure chamber of the actuator 24 to the atmosphere. In this way, the opening degree of the throttle valve 25 is maintained at a constant opening degree determined by the engine speed and engine load, and thus the exhaust gas temperature is raised.

次いでフィルタ10の温度tが340°Cよりも高くな
ればステップ47に進んでフィルタ塩tが360°Cよ
りも高いか否かが判別され、t≦360℃であればその
まま絞り制御が続行される。t〉360℃になればステ
ップ48に進んで絞り弁制御が停止され、絞り弁25は
全開状態に保持される。従ってフィルタ10は340℃
から360℃の範囲に維持されるので排気ガス中のNO
xが良好に浄化されることになる。
Next, if the temperature t of the filter 10 becomes higher than 340°C, the process proceeds to step 47, where it is determined whether the filter salt t is higher than 360°C, and if t≦360°C, the aperture control continues. Ru. When the temperature reaches t>360° C., the process proceeds to step 48, where the throttle valve control is stopped and the throttle valve 25 is kept fully open. Therefore, the temperature of the filter 10 is 340℃
to 360°C, NO in the exhaust gas is
x will be well purified.

一方、ステップ45において一定時間経過した場合、即
ちt<340°Cの状態が一定時間経過す・るとステッ
プ49に進んでフラグがセットされる。
On the other hand, if a certain period of time has elapsed in step 45, that is, if the state of t<340°C has elapsed for a certain period of time, the process proceeds to step 49 and a flag is set.

従って以後はステップ41からステップ50に進む。ス
テップ50ではフィルタ10の温度tが340℃よりも
小さいか否かが判別され、t〈340℃の場合にはステ
ップ51において電気ヒータ22が作動せしめられる。
Therefore, the process proceeds from step 41 to step 50. In step 50, it is determined whether the temperature t of the filter 10 is smaller than 340°C, and if t<340°C, the electric heater 22 is activated in step 51.

次いでステップ46に進む、t≧340℃になるとステ
ップ52に進んでフィルタ塩tが360℃よりも小さい
か否かが判別され、t≦360℃であればステップ51
に進んでヒータ22が作動し続けられる。次いでステッ
プ46に進む。従ってヒータ22が作動せしめられてい
る間、絞り制御も行なわれていることがわかる。t>3
60℃になるとステップ53においてヒータ22の作動
が停止せしめられ、次いでステップ54においてフラグ
がリセットされるために再び絞り弁25による絞り制御
のみが続行して行なわれる。
Next, the process proceeds to step 46. When t≧340°C, the process proceeds to step 52, where it is determined whether the filter salt t is smaller than 360°C. If t≦360°C, the process proceeds to step 51.
The heater 22 continues to operate. The process then proceeds to step 46. Therefore, it can be seen that the aperture control is also being performed while the heater 22 is being operated. t>3
When the temperature reaches 60° C., the operation of the heater 22 is stopped in step 53, and the flag is then reset in step 54, so that only the throttle control by the throttle valve 25 continues to be performed again.

このように本発明によれば絞り制御のみによってフィル
タ塩tを340℃から360℃の範囲に維持できれば絞
り制御のみによってフィルタ塩tを制御し、絞り制御の
みによってフィルタ塩tを340℃以上に維持できない
ときはヒータ制御も同時に行なうようにしている。従っ
て前者の場合には絞り制御が触媒昇温手段を構成し、後
者の場合には絞り制御およびヒータ制御が触媒昇温手段
を構成する。
As described above, according to the present invention, if filter salt t can be maintained within the range of 340°C to 360°C only by throttling control, filter salt t is controlled only by throttling control, and filter salt t is maintained at 340°C or higher only by throttling control. When this is not possible, heater control is also performed at the same time. Therefore, in the former case, the throttle control constitutes the catalyst temperature raising means, and in the latter case, the throttle control and the heater control constitute the catalyst temperature raising means.

また、フィルタIOの網目構造体内にはパティキュレー
ト高沸点HCが捕獲される。フィルタ10が再生時期に
なったら、即ち機関回転数の積算値が一定値以上になっ
たら(この場合には不揮発性のRAMを設ける)又はフ
ィルタ10の上流の背圧が一定値以上になったら(この
場合には排気管6内に圧力センサを取付ける)電磁切換
弁14が作動せしめられてバイパス弁12が開弁せしめ
られ、次いでヒータ22が作動せしめられてフィルタ1
0に堆積したパティキュレート高沸点HCが燃焼せしめ
られる。このような再生処理は公知であるのでここでは
詳述しない。しかしながら第1図に示す実施例はパティ
キュレート捕獲用のフィルタ10をNOxの還元用とし
て共用したところに一つの特徴がある。この場合、フィ
ルタ10に捕獲されたパティキュレート高沸点HCがN
Oxの還元剤として作用するので特に有効である。
Furthermore, particulate high boiling point HC is captured within the mesh structure of the filter IO. When it is time for the filter 10 to regenerate, that is, when the integrated value of the engine rotational speed exceeds a certain value (in this case, a non-volatile RAM is provided) or when the back pressure upstream of the filter 10 becomes above a certain value. (In this case, a pressure sensor is installed inside the exhaust pipe 6.) The electromagnetic switching valve 14 is operated to open the bypass valve 12, and then the heater 22 is operated to open the filter 1.
The particulate high boiling point HC deposited on the 0 is burned. Since such regeneration processing is well known, it will not be described in detail here. However, one feature of the embodiment shown in FIG. 1 is that the filter 10 for capturing particulates is also used for reducing NOx. In this case, the particulate high boiling point HC captured in the filter 10 is N
It is particularly effective because it acts as a reducing agent for Ox.

第3図に別の実施例を示す。この実施例では排気管4に
モノリス触媒60を内臓した触媒コンバータ61が連結
される。このモノリス触媒6oは第1図に示すフィルタ
10と同様にT−−アルミナをコーティングしたコージ
ライトを担体とし、この担体上にCo、Fe、Niから
選ばれた少くとも一つの金属と希土類金属と白金族金属
とを担持させたものである。ただ、このモノリス触媒6
゜は排気ガスの流れ方向にまっすぐに延びる多数の孔が
穿設されているのでパティキュレートを捕獲する能力は
あまりない。この実施例においても絞り弁25とヒータ
22は第1図の実施例と同様に制御される。
Another embodiment is shown in FIG. In this embodiment, a catalytic converter 61 containing a monolithic catalyst 60 is connected to the exhaust pipe 4. Similar to the filter 10 shown in FIG. 1, this monolithic catalyst 6o uses cordierite coated with T--alumina as a carrier, and on this carrier, at least one metal selected from Co, Fe, and Ni and a rare earth metal are added. It supports platinum group metals. However, this monolith catalyst 6
゜ has a large number of holes extending straight in the flow direction of exhaust gas, so it does not have much ability to capture particulates. In this embodiment as well, the throttle valve 25 and heater 22 are controlled in the same manner as in the embodiment shown in FIG.

なお、車両走行中に絞り弁25を絞ると前述したように
排気ガス温が上昇するが同時に排気ガス中のNOxの還
元剤として作用するHC,Go。
Note that when the throttle valve 25 is throttled while the vehicle is running, the exhaust gas temperature increases as described above, but at the same time, HC and Go act as reducing agents for NOx in the exhaust gas.

パティキュレートおよびパティキュレート中の5OF(
/ffl状ハイドロカーボン)が増大し、これらによっ
てもNOxの浄化を促進することができる。なお、燃料
噴射時期を遅らせると後燃えを生ずるために排気ガス温
が上昇し、上述の排気ガス中の還元剤の量も増大するの
で絞り制御、ヒータ制御に加えて更に燃料噴射時期を制
御することもできる。
Particulates and 5OF in particulates (
/ffl-like hydrocarbons), and these can also promote NOx purification. Note that if the fuel injection timing is delayed, afterburning occurs and the exhaust gas temperature rises, and the amount of reducing agent in the exhaust gas mentioned above also increases, so in addition to throttle control and heater control, the fuel injection timing is further controlled. You can also do that.

発明の効果 過剰酸素のもとでもNOxを還元しうる触媒を用い、し
かもその触媒が最も高い浄化性能を有するように触媒担
体の温度を制御することによりディーゼル機関の排気ガ
ス中のNOxを良好に浄化することができる。。
Effects of the Invention By using a catalyst that can reduce NOx even in the presence of excess oxygen and controlling the temperature of the catalyst carrier so that the catalyst has the highest purification performance, NOx in the exhaust gas of a diesel engine can be effectively reduced. Can be purified. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はディーゼル機関の全体図、第2図はフローチャ
ート、第3図はディーゼル機関の別の実施例を示す全体
図、第4図は担体温度とNOxの浄化率との関係を示す
図である。 1・・・機関本体、3・・・吸気ダクト、4.6.7・
・・排気管、8・・・主通路、9・・・バイパス通路、
10・・・フィルタ、工2・・・バイパス弁、13・・
・電子制御ユニット、22・・・電気ヒータ、25・・
・絞り弁。
Fig. 1 is an overall diagram of a diesel engine, Fig. 2 is a flowchart, Fig. 3 is an overall diagram showing another embodiment of the diesel engine, and Fig. 4 is a diagram showing the relationship between carrier temperature and NOx purification rate. be. 1... Engine body, 3... Intake duct, 4.6.7.
...Exhaust pipe, 8...Main passage, 9...Bypass passage,
10...filter, work 2...bypass valve, 13...
・Electronic control unit, 22... Electric heater, 25...
- Throttle valve.

Claims (1)

【特許請求の範囲】[Claims] 機関排気通路にCo、Fe、Niから選ばれた少とも一
つの金属と希土類元素と白金族金属からなるNOx還元
触媒を配置し、該還元触媒の温度をほぼ300℃から4
00℃に維持する触媒昇温手段を具備したディーゼル機
関の排気浄化装置。
A NOx reduction catalyst made of at least one metal selected from Co, Fe, and Ni, a rare earth element, and a platinum group metal is arranged in the engine exhaust passage, and the temperature of the reduction catalyst is increased from approximately 300°C to 4°C.
An exhaust purification device for a diesel engine equipped with a catalyst temperature raising means to maintain the temperature at 00°C.
JP59234042A 1984-11-08 1984-11-08 Exhaust purifying apparatus for diesel engine Granted JPS61112715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59234042A JPS61112715A (en) 1984-11-08 1984-11-08 Exhaust purifying apparatus for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59234042A JPS61112715A (en) 1984-11-08 1984-11-08 Exhaust purifying apparatus for diesel engine

Publications (2)

Publication Number Publication Date
JPS61112715A true JPS61112715A (en) 1986-05-30
JPH0559245B2 JPH0559245B2 (en) 1993-08-30

Family

ID=16964656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59234042A Granted JPS61112715A (en) 1984-11-08 1984-11-08 Exhaust purifying apparatus for diesel engine

Country Status (1)

Country Link
JP (1) JPS61112715A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140810A (en) * 1986-12-04 1988-06-13 Cataler Kogyo Kk Particulate burning catalyst filter
EP0433772A2 (en) * 1989-12-06 1991-06-26 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
JPH0387915U (en) * 1989-12-27 1991-09-09
JPH0447113A (en) * 1990-06-13 1992-02-17 Nissan Motor Co Ltd Exhaust gas purification device for engine
US5108977A (en) * 1987-03-31 1992-04-28 Kabushiki Kaisha Riken Catalyst for cleaning exhaust gas
JPH0489818U (en) * 1990-12-17 1992-08-05
EP0516692A1 (en) * 1990-02-27 1992-12-09 Orbital Eng Pty Exhaust emission control.
US5211010A (en) * 1990-12-26 1993-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for a diesel engine
EP0598916A1 (en) * 1992-06-12 1994-06-01 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine
US5331809A (en) * 1989-12-06 1994-07-26 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
EP0629771A2 (en) * 1993-06-11 1994-12-21 Toyota Jidosha Kabushiki Kaisha An engine exhaust gas purification device
US5388406A (en) * 1991-10-29 1995-02-14 Toyota Jidosha Kabushiki Kaisha NOx decreasing apparatus for an internal combustion engine
US5471836A (en) * 1991-10-14 1995-12-05 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5473887A (en) * 1991-10-03 1995-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US6161378A (en) * 1996-06-10 2000-12-19 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas internal combustion engine
US6182443B1 (en) 1999-02-09 2001-02-06 Ford Global Technologies, Inc. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent
WO2001053664A3 (en) * 2000-01-19 2002-01-10 Volkswagen Ag Method for temporarily increasing exhaust gas temperature of an internal combustion engine
EP1035313A3 (en) * 1999-03-05 2002-05-02 Bayerische Motoren Werke Aktiengesellschaft Method and apparatus for increasing the exhaust gas temperature
US6596247B1 (en) 1996-10-25 2003-07-22 Hitachi, Ltd. Method for purifying exhaust gas from internal combustion engines
WO2004104389A1 (en) * 2003-05-22 2004-12-02 Umicore Ag & Co. Kg Method of purifying the exhaust gas of a diesel engine by means of a diesel oxidation catalyst
WO2017013989A1 (en) * 2015-07-17 2017-01-26 株式会社 豊田自動織機 Exhaust gas purifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121324A (en) * 1978-03-15 1979-09-20 Toyota Motor Corp Catalyst heater
JPS57156020A (en) * 1981-02-26 1982-09-27 Uhde Gmbh Method of removing nox gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121324A (en) * 1978-03-15 1979-09-20 Toyota Motor Corp Catalyst heater
JPS57156020A (en) * 1981-02-26 1982-09-27 Uhde Gmbh Method of removing nox gas

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140810A (en) * 1986-12-04 1988-06-13 Cataler Kogyo Kk Particulate burning catalyst filter
US5108977A (en) * 1987-03-31 1992-04-28 Kabushiki Kaisha Riken Catalyst for cleaning exhaust gas
EP0433772A2 (en) * 1989-12-06 1991-06-26 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
US5331809A (en) * 1989-12-06 1994-07-26 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
JPH0387915U (en) * 1989-12-27 1991-09-09
EP0516692A1 (en) * 1990-02-27 1992-12-09 Orbital Eng Pty Exhaust emission control.
JPH0447113A (en) * 1990-06-13 1992-02-17 Nissan Motor Co Ltd Exhaust gas purification device for engine
JPH0489818U (en) * 1990-12-17 1992-08-05
US5211010A (en) * 1990-12-26 1993-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for a diesel engine
US5473887A (en) * 1991-10-03 1995-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5471836A (en) * 1991-10-14 1995-12-05 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5388406A (en) * 1991-10-29 1995-02-14 Toyota Jidosha Kabushiki Kaisha NOx decreasing apparatus for an internal combustion engine
EP0598916A1 (en) * 1992-06-12 1994-06-01 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine
EP0598916A4 (en) * 1992-06-12 1998-08-19 Toyota Motor Co Ltd Exhaust emission control system for internal combustion engine.
EP0629771A2 (en) * 1993-06-11 1994-12-21 Toyota Jidosha Kabushiki Kaisha An engine exhaust gas purification device
EP0629771A3 (en) * 1993-06-11 1998-07-29 Toyota Jidosha Kabushiki Kaisha An engine exhaust gas purification device
US6397582B1 (en) 1996-06-10 2002-06-04 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US6161378A (en) * 1996-06-10 2000-12-19 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas internal combustion engine
US7093432B2 (en) 1996-06-10 2006-08-22 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US6596247B1 (en) 1996-10-25 2003-07-22 Hitachi, Ltd. Method for purifying exhaust gas from internal combustion engines
US6182443B1 (en) 1999-02-09 2001-02-06 Ford Global Technologies, Inc. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent
EP1035313A3 (en) * 1999-03-05 2002-05-02 Bayerische Motoren Werke Aktiengesellschaft Method and apparatus for increasing the exhaust gas temperature
WO2001053664A3 (en) * 2000-01-19 2002-01-10 Volkswagen Ag Method for temporarily increasing exhaust gas temperature of an internal combustion engine
WO2004104389A1 (en) * 2003-05-22 2004-12-02 Umicore Ag & Co. Kg Method of purifying the exhaust gas of a diesel engine by means of a diesel oxidation catalyst
WO2017013989A1 (en) * 2015-07-17 2017-01-26 株式会社 豊田自動織機 Exhaust gas purifier

Also Published As

Publication number Publication date
JPH0559245B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
JPS61112715A (en) Exhaust purifying apparatus for diesel engine
EP1270885B1 (en) Device for purifying exhaust gas of diesel engines
EP2732141B1 (en) Method and device for reactivating exhaust-gas purification systems of diesel engines with low-pressure egr
JPH01159029A (en) Exhaust gas purification apparatus of diesel engines
JP3951899B2 (en) Diesel engine exhaust purification system
JP3799758B2 (en) Catalyst regeneration device for internal combustion engine
JP2002276405A (en) Exhaust emission control device of diesel engine
JP3216382B2 (en) Exhaust gas purification method for diesel engine
JPH0666208A (en) Exhaust gas reflux device of diesel engine
US8105542B2 (en) Engine exhaust gas purifier
JPH1068315A (en) Emission control device for internal combustion engine
JPH1047112A (en) Exhaust emission control device for internal combustion engine
JP2001115824A (en) Exhaust emission control device for engine
JP2000220437A (en) Exhaust emission control device of internal combustion engine
JP3641964B2 (en) Exhaust gas purification device for internal combustion engine
WO2007029339A1 (en) Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification
JPS5979024A (en) Exhaust-gas purifying apparatus for diesel engine
JP2622907B2 (en) Exhaust gas purification device
JP2004092413A (en) Exhaust aftertreatment system
JPH05156933A (en) Exhaust emission control device for internal combustion engine
JPH0835419A (en) Exhaust emission control device of alcohol diesel engine
JP3113065B2 (en) Exhaust gas purification device
JPH1061429A (en) Exhaust emission control device for internal combustion engine
JPH01182517A (en) Exhaust emission control device for diesel engine
JPS62113814A (en) Diesel engine exhaust gas processing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees