WO2017013802A1 - 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム - Google Patents

結合自由エネルギーの算出方法、及び算出装置、並びにプログラム Download PDF

Info

Publication number
WO2017013802A1
WO2017013802A1 PCT/JP2015/071031 JP2015071031W WO2017013802A1 WO 2017013802 A1 WO2017013802 A1 WO 2017013802A1 JP 2015071031 W JP2015071031 W JP 2015071031W WO 2017013802 A1 WO2017013802 A1 WO 2017013802A1
Authority
WO
WIPO (PCT)
Prior art keywords
binding
target molecule
calculation
free energy
anchor points
Prior art date
Application number
PCT/JP2015/071031
Other languages
English (en)
French (fr)
Inventor
谷田 義明
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP15898960.8A priority Critical patent/EP3327604B1/en
Priority to JP2017529426A priority patent/JP6489218B2/ja
Priority to PCT/JP2015/071031 priority patent/WO2017013802A1/ja
Publication of WO2017013802A1 publication Critical patent/WO2017013802A1/ja
Priority to US15/860,134 priority patent/US11501849B2/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/30Drug targeting using structural data; Docking or binding prediction
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/20Protein or domain folding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • G16B5/30Dynamic-time models

Definitions

  • This case relates to a calculation method and a calculation device for binding free energy between a target molecule and a binding calculation target molecule, and a program for executing the calculation method.
  • the search for drug candidate molecules means searching for a compound (ligand) that strongly interacts with a target molecule involved in a target disease (target disease) as a drug candidate. Therefore, screening of compounds based on the three-dimensional structure of the target molecule by computers is actively performed.
  • SBDD Structure-Based Drug Design
  • a drug candidate molecule or a fragment thereof in this specification, a drug candidate
  • binding calculation target molecules It is important to quantitatively predict the binding activity (binding free energy) of molecules and fragments collectively referred to as binding calculation target molecules).
  • binding calculation target molecules In quantitative binding activity prediction, it is necessary to perform calculation while maintaining the relationship with the standard state for direct comparison with experimental values. Therefore, conventionally, a potential for constraining the distance between the target molecule and the binding calculation target molecule is introduced to limit the structure space that the molecule can take.
  • the calculation accuracy of the binding free energy between the target molecule and the binding calculation target molecule may be lowered.
  • the object of the present invention is to provide a binding free energy calculation method and a calculation device capable of improving the calculation accuracy of the binding free energy between the target molecule and the binding calculation target molecule, and a program for executing the calculation method. .
  • the disclosed binding free energy calculation method is a calculation method of binding free energy between a binding calculation target molecule and a target molecule using a computer, Including a plurality of steps of adding a distance constraint potential between the binding calculation target molecule and the target molecule,
  • the anchor points of the binding calculation target molecules in the plurality of steps are the same anchor points, and the anchor points of the target molecules in the plurality of steps are different anchor points.
  • the disclosed program is a program for causing a computer to calculate the binding free energy between a binding calculation target molecule and a target molecule, A plurality of steps of adding a distance constraint potential between the binding calculation target molecule and the target molecule;
  • the anchor points of the binding calculation target molecules in the plurality of steps are the same anchor points, and the anchor points of the target molecules in the plurality of steps are different anchor points.
  • the disclosed binding free energy calculation device is a binding free energy calculation device between a binding calculation target molecule and a target molecule, An adding unit that performs a plurality of steps of adding a distance constraint potential between the binding calculation target molecule and the target molecule;
  • the anchor points of the binding calculation target molecules in the plurality of steps are the same anchor points, and the anchor points of the target molecules in the plurality of steps are different anchor points.
  • the calculation accuracy of the binding free energy between the binding calculation target molecule and the target molecule can be improved.
  • the calculation accuracy of the binding free energy between the binding calculation target molecule and the target molecule can be improved.
  • the calculation accuracy of the binding free energy between the binding calculation target molecule and the target molecule can be improved.
  • FIG. 1 is an example of a conventional calculation result of binding free energy.
  • FIG. 2A is an example of a stable structure when the distance constraint potential is set.
  • FIG. 2B is another example of the stable structure when the distance constraint potential is set.
  • FIG. 3 is an example of a combined free energy terrain.
  • FIG. 4A is a schematic diagram of a binding structure between a target molecule T and a binding calculation target molecule L.
  • FIG. 4B is a schematic diagram of a binding free energy surface.
  • FIG. 4C is a schematic diagram of a binding free energy surface.
  • FIG. 5 is a calculation result of the binding free energy in the case of the distance constraint potential P2.
  • FIG. 6 is a conceptual diagram of an example of an alchemical route calculation method.
  • FIG. 6 is a conceptual diagram of an example of an alchemical route calculation method.
  • FIG. 7 is a schematic diagram for explaining an example of a method for setting a plurality of anchor points of a target molecule.
  • FIG. 8 is a flowchart of an example of the disclosed method for calculating binding free energy.
  • FIG. 9 is a hardware configuration example of the disclosed binding free energy calculation apparatus.
  • the disclosed method for calculating the binding free energy is a method for calculating the binding free energy between the binding calculation target molecule and the target molecule using a computer.
  • the inventor of the disclosed technology examined the cause of the decrease in the calculation accuracy when calculating the binding free energy between the binding calculation target molecule and the target molecule using the addition of the distance constraint potential.
  • RNA was used as the target molecule.
  • Theophylline molecule was used as the binding target molecule.
  • 1O15 accumulated in the protein data bank (PDB) was used.
  • PDB protein data bank
  • AMBER99 / parmbsc0 was used.
  • the theophylline molecule was optimized in vacuum using a 6-31G * base, and RESP was used for the point charge and general amber force field (GAFF) was used for the force field.
  • the center of gravity of the theophylline molecule was used as the anchor point of the theophylline molecule.
  • the RNA anchor point was determined at the coordinates of the U23 C1 ′ atom.
  • the calculation was performed by a molecular dynamics method using Gromacs.
  • the results are shown in FIG.
  • the horizontal axis represents the simulation time (ns), and each plot represents the binding free energy value between the time from 0.5 ns to the plot. That is, the 1 ns plot represents the binding free energy value for the time from 0.5 ns to 1 ns, and the 10 ns plot represents the binding free energy value for the time from 0.5 ns to 10 ns. From FIG. 1, it can be confirmed that the binding free energy value is not stable even when the calculation time elapses.
  • the bond free energy of this system is -8.9 kcal / mol in the experimental results.
  • it is ⁇ 7.56 ⁇ 0.47 kcal / mol (10 ns plot). That is, in the above calculation, the calculation accuracy is low.
  • the calculation accuracy of the bond free energy decreases. I guessed. That is, as shown in FIG. 2A and FIG. 2B, when one distance constraint potential is set and there are two or more stable structures that can be taken by the target molecule T and the binding calculation target molecule L, the binding free energy The calculation accuracy decreases.
  • P 1 is an anchor point of the target molecule T.
  • FIG. 3 is a coupled free energy landscape. From the combined free energy topography, it can be seen that there are two stable structures (A, B; where the stable structure B is a metastable state) of similar size.
  • A, B a calculated value corresponding to the abundance ratio of the two stable structures (A, B) may be calculated.
  • the two stable structures are localized. The calculated value according to the abundance ratio of the structure is not calculated. For this reason, it has been found that the calculation accuracy is lowered.
  • FIG. 4A is a schematic diagram of a binding structure between a target molecule T and a binding calculation target molecule L.
  • FIG. 4A the binding calculation target molecule L exists in the binding site of the target molecule T.
  • the distance constraint potential between the target molecule T and binding calculation object molecules L when the anchor point of the target molecule T was P 1 and P1.
  • the distance constraint potential between the target molecule T and the binding calculation target molecule L when the anchor point of the target molecule is P 2 (P 2 is different from P 1 ) is P 2 .
  • a schematic diagram of the binding free energy surface was created with the distances restrained by the distance restraining potentials P1 and P2 being d 1 and d 2 (FIGS. 4B and 4C). Note that the distances d 1 and d 2 are not fixed values and are usually in a certain numerical range.
  • the sampling space S1 in the case of the distance constraint potential P1 includes a stable structure B that is a metastable state in addition to the stable structure A. Therefore, in the calculation of the binding free energy using the distance constraint potential P1, the calculation accuracy is lowered due to the influence of the stable structure B (FIG. 1).
  • the sampling space S2 in the case of the distance constraint potential P2 includes the stable structure A, but does not include the stable structure B that is a metastable state. Therefore, in the calculation of the binding free energy using the distance constraint potential P2, the calculation accuracy is excellent without being affected by the stable structure B.
  • FIG. 5 shows the calculation result of the binding free energy in the case of the distance constraint potential P2.
  • the calculation was performed in the same manner as in the calculation of the binding free energy between theophylline and RNA described above, except that the RNA anchor point was changed to the coordinates of the A7C4 ′ atom.
  • the horizontal axis represents the simulation time (ns), and each plot represents the binding free energy value between the time from 0.5 ns to the plot. That is, the 1 ns plot represents the binding free energy value for the time from 0.5 ns to 1 ns, and the 10 ns plot represents the binding free energy value for the time from 0.5 ns to 10 ns. From FIG.
  • the bond free energy of this system is -8.9 kcal / mol in the experimental results.
  • the result of FIG. 5 is ⁇ 8.94 ⁇ 0.04 kcal / mol (10 ns plot). That is, in the case of calculation of the binding free energy using the distance constraint potential P2 in the case of calculation of the binding free energy using the distance constraint potential P1, the bond free energy is more stable (excellent in calculation accuracy). It can be calculated.
  • the method includes a plurality of steps of adding a distance constraint potential between the binding calculation target molecule and the target molecule, and the anchor points of the binding calculation target molecules in the plurality of steps are the same anchor point, and in the plurality of steps Since the anchor point of the target molecule is different, the calculation accuracy of the binding free energy can be improved.
  • the calculation of the binding free energy is not particularly limited as long as it is a method using a distance constraint potential, and can be appropriately selected according to the purpose, but is preferably performed by an alchemical route calculation method.
  • the alchemical path calculation method is also called alchemical free energy calculation, alchemical transformation, etc., and uses a thermodynamic cycle along a virtual (alchemical) path. This is a calculation method of binding free energy.
  • the alchemical route calculation method is described in, for example, Adv Protein Chem Struct Biol. 2011; 85: 27-80. It is introduced in. Examples of the alchemical route calculation method include a calculation method obtained by FIG. 6 and the following equation. In FIG. 6, the crescent-shaped object is the target molecule (T), and the circular object is the binding calculation target molecule (L).
  • C represents electrostatic interaction
  • LJ van der Waals interaction
  • Solv solvent
  • Cplx represents target molecule (T)
  • R represents the spring restraint potential.
  • the first, second, fourth, fifth, and sixth terms on the right side in the above formula can be evaluated by, for example, the Bennett Acceptance Ratio (BAR) method.
  • the binding free energy between the binding calculation target molecule and the target molecule is usually the binding free energy between the binding calculation target molecule and the target molecule in a solvent.
  • the solvent is usually water.
  • the calculation of binding free energy is performed using a computer.
  • the computer used for calculating the binding free energy may be one or plural.
  • the calculation of the binding free energy may be distributed and executed in a plurality of computers.
  • the calculation method of the binding free energy includes a plurality of steps of adding a distance constraint potential between the binding calculation target molecule and the target molecule.
  • the anchor points of the binding calculation target molecules in the plurality of steps are the same anchor point.
  • the anchor points of the target molecules in the plurality of steps are different anchor points. That is, in each of the plurality of steps for adding the distance constraint potential, a different anchor point is used as the anchor point of the target molecule.
  • the binding calculation target molecule means a drug candidate molecule or a fragment for designing a drug candidate molecule.
  • the fragments are used, for example, in fragment-based drug design (FBDD).
  • Target molecule >> There is no restriction
  • the distance constraint potential is not particularly limited as long as it is a potential that restrains the distance between the binding calculation target molecule and the target molecule, and can be appropriately selected according to the purpose. Potential. There is no restriction
  • the distance constraint potential is added between the binding calculation target molecule and the target molecule using the anchor point of the binding calculation target molecule and the anchor point of the target molecule.
  • the plurality of distance constraint potentials added between one anchor point of the binding calculation target molecule and each of the plurality of anchor points of the target molecule are independently determined according to the distance between the two anchor points. It may be set. For example, the distance constraint potential is determined so that the fluctuation magnitude of the binding calculation target molecule falls within a specific range.
  • the distance constraint between the binding calculation target molecule and the target molecule is performed in order to correctly consider the degree of freedom of translational movement of the molecule that contributes most to the binding activity. Therefore, it is reasonable to use the center of gravity of the binding calculation target molecule as the anchor point of the binding calculation target molecule.
  • the center of gravity of the binding calculation target molecule can be obtained by, for example, the following equation.
  • m represents mass
  • x represents the coordinates of atoms constituting the bond calculation target molecule.
  • the center of gravity of the bond calculation target molecule is obtained by removing the hydrogen atoms constituting the bond calculation target molecule from the viewpoint of shortening the calculation time.
  • the anchor point of the target molecule is determined using an atom having a small fluctuation in the target molecule.
  • the atoms are atoms within the range of 5 to 15 cm from the anchor point of the bond calculation target molecule, the frequency distribution of the distance between the anchor points is close to a normal distribution, and a better calculation accuracy can be obtained. It is preferable from the point.
  • the atoms are atoms with small fluctuations.
  • the atoms with small fluctuations are selected from atoms with small RMSFs by, for example, obtaining RMSF (root mean square fluctuation) for the atoms in the target molecule, and comparing the RMSFs of the obtained atoms.
  • RMSF root mean square fluctuation
  • the RMSF in the atoms with small fluctuations is preferably 1.0 mm or less.
  • Examples of the atoms with small fluctuation include atoms of the main chain of the target molecule.
  • the main chain means the longest chain in the target molecule.
  • the fluctuation of the main chain atom is smaller than that of the side chain atom.
  • the anchor point of the target molecule may be the center of gravity of a plurality of atoms with small fluctuations in the target molecule.
  • the plurality of atoms are preferably atoms within a range of 5 to 15 cm from the anchor point of the bond calculation target molecule.
  • the fluctuation is larger than the main chain atom, but the atoms in the target molecule Among them, a plurality of side chain atoms with relatively small fluctuations may be used, and the center of gravity may be used as the anchor point of the target molecule.
  • Examples of the number of atoms in the plurality of atoms include two.
  • Examples of the method for calculating the center of gravity of the plurality of atoms include the same method as the method for calculating the center of gravity of the binding calculation target molecule.
  • the anchor point uses, for example, a normal computer system (for example, various network servers, workstations, personal computers, etc.) having a CPU (Central Processing Unit), a RAM (Random Access Memory), a hard disk, various peripheral devices, and the like. Can be determined.
  • a normal computer system for example, various network servers, workstations, personal computers, etc.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • a plurality of binding free energies between the binding calculation target molecule and the target molecule are calculated using each of the plurality of distance constraint potentials added in the plurality of steps. .
  • the smallest binding free energy among the plurality of calculated binding free energies is extracted and used as a calculation result.
  • the extracting operation can be performed by a computer, for example.
  • a plurality of anchor points of the target molecule are set.
  • the setting method there is no restriction
  • an angle ⁇ formed by a line segment between the anchor point LP and the anchor point TP 1 and a line segment between the anchor point LP and the anchor point TP n with the anchor point LP as a vertex (n ⁇ 1) Divide equally.
  • an anchor point of the target molecule is added for each angle ⁇ / (n ⁇ 1) given by (n ⁇ 1) equal division.
  • the anchor point of the binding calculation target molecule L is determined.
  • the anchor point is, for example, the center of gravity of the binding calculation target molecule L.
  • the anchor point of the target molecule T is determined.
  • the anchor point is plural (n).
  • the number of anchor points may be appropriately selected according to the target molecule to be calculated, the binding target molecule to be calculated, the calculation time, the calculation purpose, and the like.
  • the method for determining the plurality of anchor points is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include the above-described method described with reference to FIG.
  • bond free energy calculation is performed using each distance constraint potential given between each of the n anchor points of the target molecule T and the anchor point of the bond calculation target molecule L. Therefore, n times of free energy calculations are performed.
  • n anchor points are numbered 1, 2,... (N ⁇ 1), n, and the binding free energy is calculated in the order of the numbers.
  • the minimum binding free energy is extracted by comparing the calculation results of n times of binding free energy calculation. Thus, an example of the calculation of the binding free energy is completed.
  • the calculation method of the binding free energy can be executed using, for example, a molecular orbital method, a molecular dynamics method, or the like.
  • Examples of the molecular orbital calculation by the molecular orbital method include non-empirical molecular orbital calculation (ab initio molecular orbital calculation) and semi-empirical molecular orbital calculation.
  • Examples of the ab initio molecular orbital calculation method include the Hartley-Fock method and the electron correlation method.
  • Examples of the semi-empirical molecular orbital calculation methodology include CNDO, INDO, AM1, and PM3.
  • Examples of the ab initio molecular orbital calculation program include Gaussian 03, GAMESS, ABINIT-MP, and Protein DF.
  • Examples of the semi-empirical molecular orbital calculation program include MOPAC.
  • Examples of programs used in the molecular dynamics method include gromacs (Gromax, Groningen Machine for Chemical Simulations), amber (Assisted Model Building with Energy Refining), mm, etc.
  • the calculation method of the binding free energy can be performed using a binding free energy calculation device described later.
  • the disclosed program is a program for calculating the binding free energy between the binding calculation target molecule and the target molecule.
  • a plurality of steps of adding a distance constraint potential between the binding calculation target molecule and the target molecule are executed.
  • the anchor points of the binding calculation target molecules in the plurality of steps are the same anchor points, and the anchor points of the target molecules in the plurality of steps are different anchor points.
  • the program executes the binding free energy calculation method.
  • the program can be created using various known programming languages according to the configuration of the computer system to be used and the type / version of the operating system.
  • the program may be recorded on a storage medium such as an internal hard disk or an external hard disk, a CD-ROM (Compact Disc Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), or an MO disk (You may record on storage media, such as Magneto-Optical disk and USB memory [USB (Universal Serial Bus) flash drive].
  • a storage medium such as a CD-ROM, DVD-ROM, MO disk, or USB memory
  • the program is directly stored on a hard disk or through a storage medium reader included in the computer system as needed. Can be installed and used.
  • the program is recorded in an external storage area (another computer or the like) that is accessible from the computer system through the information communication network, and if necessary, the program is directly stored in the external storage area through the information communication network, or It can also be installed and used on a hard disk.
  • an external storage area another computer or the like
  • the disclosed computer-readable recording medium records the disclosed program.
  • the computer-readable recording medium is not particularly limited and can be appropriately selected according to the purpose. For example, an internal hard disk, an external hard disk, a CD-ROM, a DVD-ROM, an MO disk, a USB memory, etc. Is mentioned.
  • the disclosed binding free energy calculation device is a binding free energy calculation device for a binding calculation target molecule and a target molecule.
  • the binding free energy calculation device has at least an adding unit that performs a plurality of steps of adding a distance constraint potential between the binding calculation target molecule and the target molecule, and further includes other units as necessary.
  • the anchor points of the binding calculation target molecules in the plurality of steps are the same anchor points, and the anchor points of the target molecules in the plurality of steps are different anchor points.
  • the binding free energy calculation device executes the binding free energy calculation method.
  • FIG. 9 shows a hardware configuration example of the disclosed binding free energy calculation device.
  • the binding free energy calculation device 10 includes, for example, a CPU 11, a memory 12, a storage unit 13, a display unit 14, an input unit 15, an output unit 16, an I / O interface unit 17, and the like connected via a system bus 18. Is done.
  • a CPU (Central Processing Unit) 11 performs operations (four arithmetic operations, comparison operations, etc.), hardware and software operation control, and the like.
  • the memory 12 is a memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the RAM stores an OS (Operating System) and application programs read from the ROM and the storage unit 13, and functions as a main memory and work area of the CPU 11.
  • the storage unit 13 is a device that stores various programs and data, and is, for example, a hard disk.
  • the storage unit 13 stores a program executed by the CPU 11, data necessary for program execution, an OS, and the like.
  • the program is stored in the storage unit 13, loaded into the RAM (main memory) of the memory 12, and executed by the CPU 11.
  • the display unit 14 is a display device, for example, a display device such as a CRT monitor or a liquid crystal panel.
  • the input unit 15 is an input device for various data, such as a keyboard and a pointing device (for example, a mouse).
  • the output unit 16 is an output device for various data, and is, for example, a printer.
  • the I / O interface unit 17 is an interface for connecting various external devices. For example, input / output of data such as a CD-ROM, a DVD-ROM, an MO disk, and a USB memory is enabled.
  • Binding Free Energy Calculation Device 11 CPU DESCRIPTION OF SYMBOLS 12 Memory 13 Memory

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

コンピュータを用いた、結合計算対象分子と標的分子との結合自由エネルギーの算出方法であって、 前記結合計算対象分子と前記標的分子との間に距離拘束ポテンシャルを付加する工程を複数含み、 前記複数の工程における前記結合計算対象分子のアンカー点が同じアンカー点であり、かつ前記複数の工程における前記標的分子のアンカー点が異なるアンカー点である、結合自由エネルギーの算出方法である。

Description

結合自由エネルギーの算出方法、及び算出装置、並びにプログラム
 本件は、標的分子と結合計算対象分子との結合自由エネルギーの算出方法、及び算出装置、並びに前記算出方法を実行するプログラムに関する。
 近年、薬候補分子を実験的に探索するのに要する膨大な費用と労力を削減するため、各種のコンピュータによるシミュレーションが行われている。薬候補分子の探索とは、標的疾患(ターゲットとする疾患)に関与する標的分子に対して強く相互作用する化合物(リガンド)を薬候補として探索することである。そこで、コンピュータによる標的分子立体構造に基づく化合物のスクリーニングが活発に行われている。
 特に利用されている方法として、構造ベース薬剤設計方法(Structure-Based Drug Design,SBDD)が挙げられる(例えば、非特許文献1参照)。この方法は、標的分子や受容体の立体構造情報に基づいた分子設計法である。
 コンピュータを用いて、標的分子と結合する薬候補分子を設計する場合、効率的に分子設計へのフィードバックを行うためには、標的分子に対する、薬候補分子又はそのフラグメント(本明細書において、薬候補分子とフラグメントとを総称して結合計算対象分子と称する。)の結合活性(結合自由エネルギー)を定量予測することが重要である。定量的結合活性予測においては、実験値と直接比較するために標準状態との関係を維持しながら計算する必要がある。
 そのため、従来では、標的分子と結合計算対象分子との間の距離を拘束するためのポテンシャルを導入し、分子のとりうる構造空間を制限することが行われている。
 しかし、従来では、標的分子と結合計算対象分子との結合自由エネルギーの計算精度が低下してしまうことがあった。
The Process of Structure-Based Drug Design", A.C. Anderson, Chemistry & Biology, 10, 787 (2003)
 本件は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本件は、標的分子と結合計算対象分子との結合自由エネルギーの計算精度を向上できる結合自由エネルギーの算出方法、及び算出装置、並びに前記算出方法を実行するプログラムを提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 開示の結合自由エネルギーの算出方法は、コンピュータを用いた、結合計算対象分子と標的分子との結合自由エネルギーの算出方法であって、
 前記結合計算対象分子と前記標的分子との間に距離拘束ポテンシャルを付加する工程を複数含み、
 前記複数の工程における前記結合計算対象分子のアンカー点が同じアンカー点であり、かつ前記複数の工程における前記標的分子のアンカー点が異なるアンカー点である。
 開示のプログラムは、コンピュータに、結合計算対象分子と標的分子との結合自由エネルギーを算出させるプログラムであって、
 前記結合計算対象分子と前記標的分子との間に距離拘束ポテンシャルを付加する工程を複数実行させ、
 前記複数の工程における前記結合計算対象分子のアンカー点が同じアンカー点であり、かつ前記複数の工程における前記標的分子のアンカー点が異なるアンカー点である。
 開示の結合自由エネルギーの算出装置は、結合計算対象分子と標的分子との結合自由エネルギーの算出装置であって、
 前記結合計算対象分子と前記標的分子との間に距離拘束ポテンシャルを付加する工程を複数行う付加部を有し、
 前記複数の工程における前記結合計算対象分子のアンカー点が同じアンカー点であり、かつ前記複数の工程における前記標的分子のアンカー点が異なるアンカー点である。
 開示の結合自由エネルギーの算出方法によれば、結合計算対象分子と標的分子との結合自由エネルギーの計算精度を向上できる。
 開示のプログラムによれば、結合計算対象分子と標的分子との結合自由エネルギーの計算精度を向上できる。
 開示の結合自由エネルギーの算出装置によれば、結合計算対象分子と標的分子との結合自由エネルギーの計算精度を向上できる。
図1は、従来の結合自由エネルギーの計算結果の一例である。 図2Aは、距離拘束ポテンシャルを設定した際の安定構造の一例である。 図2Bは、距離拘束ポテンシャルを設定した際の安定構造の他の一例である。 図3は、結合自由エネルギー地形の一例である。 図4Aは、標的分子Tと結合計算対象分子Lとの結合構造の模式図である。 図4Bは、結合自由エネルギー面の模式図である。 図4Cは、結合自由エネルギー面の模式図である。 図5は、距離拘束ポテンシャルP2の場合の結合自由エネルギーの計算結果である。 図6は、アルケミカル経路計算法の一例の概念図である。 図7は、標的分子の複数のアンカー点を設定する方法の一例を説明するための模式図である。 図8は、開示の結合自由エネルギーの算出方法の一例のフローチャートである。 図9は、開示の結合自由エネルギーの算出装置のハードウエア構成例である。
(結合自由エネルギーの算出方法)
 開示の結合自由エネルギーの算出方法は、コンピュータを用いた、結合計算対象分子と標的分子との結合自由エネルギーの算出方法である。
 開示の技術の発明者は、距離拘束ポテンシャルの付加を利用した、結合計算対象分子と標的分子との結合自由エネルギーの算出の際に、計算の精度が低下する原因について検討した。
 まず、距離拘束ポテンシャルの付加を利用したアルケミカル経路計算法により、標的分子と結合計算対象分子との結合自由エネルギーを計算した。
 標的分子としてRNAを用いた。結合計算対象分子としてテオフィリン分子を用いた。これらの複合体構造は、プロテインデータバンク(PDB)に蓄積されている1O15を用いた。
 RNAの力場はAMBER99/parmbsc0を用いた。また、テオフィリン分子は、6-31G基底を用いて真空中で構造最適化し、点電荷にRESP、力場にgeneral amber force field (GAFF)を用いた。
 テオフィリン分子の重心を、テオフィリン分子のアンカー点とした。
 RNAのアンカー点は、U23 C1’の原子の座標に決定した。
 計算は、Gromacsを用いた分子動力学法により行った。
 結果を、図1に示す。図1において、横軸はシミュレーション時間(ns)を表し、各プロットは、0.5nsからそのプロットまでの時間の間の結合自由エネルギー値を表す。即ち、1nsのプロットは、0.5ns~1nsまでの時間の結合自由エネルギー値を表し、10nsのプロットは、0.5ns~10nsまでの時間の結合自由エネルギー値を表す。図1から、計算時間が経過しても結合自由エネルギー値が安定しないことが確認できる。
 また、この系の結合自由エネルギーは、実験結果では、-8.9kcal/molである。一方、図1の結果からは、-7.56±0.47kcal/mol(10nsのプロット)となっている。
 即ち、上記計算では、計算精度が低くなっている。
 本発明者は、その原因を、以下のように推測した。
 結合自由エネルギーの算出において距離拘束ポテンシャルの付加を利用する場合に、標的分子と結合計算対象分子との結合構造に複数の安定構造(結合ポーズ)が存在すると、結合自由エネルギーの計算精度が低下すると推測した。
 即ち、図2A及び図2Bに示すように、1つの距離拘束ポテンシャルを設定した際に、標的分子Tと結合計算対象分子Lとが取りうる安定構造が2つ以上存在する場合に、結合自由エネルギーの計算精度が低下する。このように本発明者は推測した。ここで、Pは、標的分子Tのアンカー点である。
 そこで、本発明者はその推測を裏付けるための検討を行った。
 メタダイナミクスを用いて、テオフィリン分子とRNAとの複合体について、構造空間の探索を行った。結果を図3に示す。図3は、結合自由エネルギー地形である。
 結合自由エネルギー地形から、大きさの似た2つの安定構造(A、B;ここで、安定構造Bは準安定状態である。)が存在していることが分かる。ここで、2つの安定構造(A、B)の存在比に応じた計算値が算出されればよいが、実際の計算では、一方の安定構造に局在化する場合があるため、2つの安定構造の存在比に応じた計算値が算出されない。そのため、計算精度が低下してしまうことを知見した。
 上記知見と、上記知見を踏まえた開示の技術の概略とを、模式図を用いて説明する。
 図4Aは、標的分子Tと結合計算対象分子Lとの結合構造の模式図である。図4Aにおいては、標的分子Tの結合サイト内に結合計算対象分子Lが存在している。
 ここで、標的分子Tのアンカー点をPとした場合の標的分子Tと結合計算対象分子Lとの間の距離拘束ポテンシャルをP1とする。標的分子のアンカー点をP(Pは、Pとは異なる)とした場合の標的分子Tと結合計算対象分子Lとの間の距離拘束ポテンシャルをP2とする。そして、各々の距離拘束ポテンシャルP1、P2により拘束する距離をd、dとして、結合自由エネルギー面の模式図を作成した(図4B、図4C)。なお、距離d、dは、通常、固定値ではなく、一定の数値範囲となる。
 図4Bに示すように、距離拘束ポテンシャルP1の場合のサンプリング空間S1は、安定構造Aに加えて、準安定状態である安定構造Bを含む。そのため、距離拘束ポテンシャルP1を用いた結合自由エネルギーの計算においては、安定構造Bの影響を受け、計算精度が低下する(図1)。
 一方、図4Cに示すように、距離拘束ポテンシャルP2の場合のサンプリング空間S2は、安定構造Aを含むが、準安定状態である安定構造Bを含まない。そのため、距離拘束ポテンシャルP2を用いた結合自由エネルギーの計算においては、安定構造Bの影響を受けず、計算精度に優れる。
 ここで、図5に、距離拘束ポテンシャルP2の場合の結合自由エネルギー計算結果を示す。計算は、前述したテオフィリンとRNAとの結合自由エネルギーの計算において、RNAのアンカー点を、A7C4’の原子の座標に変更した以外は、同様にして行った。
 結果を、図5に示す。図5において、横軸はシミュレーション時間(ns)を表し、各プロットは、0.5nsからそのプロットまでの時間の間の結合自由エネルギー値を表す。即ち、1nsのプロットは、0.5ns~1nsまでの時間の結合自由エネルギー値を表し、10nsのプロットは、0.5ns~10nsまでの時間の結合自由エネルギー値を表す。図5から、計算時間に関わらず結合自由エネルギー値が安定していることが確認できる。
 この系の結合自由エネルギーは、実験結果では、-8.9kcal/molである。一方、図5の結果からは、-8.94±0.04kcal/mol(10nsのプロット)となっている。
 即ち、距離拘束ポテンシャルP1を用いた結合自由エネルギーの計算の場合よりも、距離拘束ポテンシャルP2を用いた結合自由エネルギーの計算の場合の方が、より安定な(計算精度に優れる)結合自由エネルギーを算出できる。
 したがって、結合計算対象分子と標的分子との間に距離拘束ポテンシャルを付加する工程を複数含み、前記複数の工程における前記結合計算対象分子のアンカー点が同じアンカー点であり、かつ前記複数の工程における前記標的分子のアンカー点が異なるアンカー点であることにより、結合自由エネルギーの計算精度を向上できる。
 前記結合自由エネルギーの算出は、距離拘束ポテンシャルを用いる方法であれば、特に制限はなく、目的に応じて適宜選択することができるが、アルケミカル経路計算法により行われることが好ましい。前記アルケミカル経路計算法とは、アルケミカル自由エネルギー計算(alchemical free energy calculation)、アルケミカル変換(alchemical transformation)などとも呼ばれ、仮想的な(アルケミカル)経路に沿った熱力学サイクルを用いた、結合自由エネルギーの算出方法である。
 前記アルケミカル経路計算法は、例えば、Adv Protein Chem Struct Biol. 2011 ; 85: 27-80.に紹介されている。
 前記アルケミカル経路計算法としては、例えば、図6及び以下の式により求められる計算法が挙げられる。
Figure JPOXMLDOC01-appb-M000001
 図6において、三日月状の物体が、標的分子(T)であり、円形の物体が、結合計算対象分子(L)である。上記式、及び図1において、Cは、静電相互作用を表し、LJは、ファンデルワールス相互作用を表し、Solvは、溶媒を表し、Cplxは、標的分子(T)と結合計算対象分子(L)との複合体を表し、Rは、バネ拘束ポテンシャルを表す。
 上記式における右辺の第1、2、4、5、6項は、例えば、Bennett Acceptance Ratio(BAR)法により評価することができる。
 なお、結合計算対象分子と標的分子との結合自由エネルギーは、通常、溶媒中の前記結合計算対象分子と前記標的分子との結合自由エネルギーである。前記溶媒は、通常、水である。
 結合自由エネルギーの算出は、コンピュータを用いて行われる。前記結合自由エネルギーの算出に使用される前記コンピュータは、1つであってもよいし、複数であってもよい。例えば、複数のコンピュータに前記結合自由エネルギーの算出を分散させて実行させてもよい。
<距離拘束ポテンシャル付加工程>
 前記結合自由エネルギーの算出方法は、前記結合計算対象分子と前記標的分子との間に距離拘束ポテンシャルを付加する工程を複数含む。
 前記複数の工程における前記結合計算対象分子のアンカー点は、同じアンカー点である。
 前記複数の工程における前記標的分子のアンカー点は、異なるアンカー点である。即ち、距離拘束ポテンシャルを付加する複数の工程の各々において、前記標的分子のアンカー点としては異なるアンカー点が用いられる。
<<結合計算対象分子>>
 前記結合計算対象分子とは、薬候補分子、又は薬候補分子を設計する際のフラグメントを意味する。
 前記フラグメントは、例えば、フラグメントベースドラッグデザイン(FBDD)に使用される。
<<標的分子>>
 前記標的分子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、タンパク質、RNA(リボ核酸、ribonucleic acid)、DNA(デオキシリボ核酸、deoxyribonucleic acid)などが挙げられる。
<<距離拘束ポテンシャル>>
 前記距離拘束ポテンシャルとしては、前記結合計算対象分子と前記標的分子との間の距離を拘束するポテンシャルであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、バネによる拘束ポテンシャルなどが挙げられる。拘束力としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記距離拘束ポテンシャルは、前記結合計算対象分子のアンカー点と前記標的分子のアンカー点とを用いて、前記結合計算対象分子と前記標的分子との間に付加される。
 前記結合計算対象分子の1つのアンカー点と、前記標的分子の複数のアンカー点の各々との間に付加される複数の距離拘束ポテンシャルは、2つのアンカー点間の距離に応じて、独立して設定されてもよい。例えば、距離拘束ポテンシャルは、前記結合計算対象分子の揺らぎの大きさを特定の範囲になるように決定される。
 前記結合計算対象分子と前記標的分子との距離拘束は、結合活性に最も寄与の大きな分子の並進運動の自由度を正しく考慮するために行われる。
 そのため、前記結合計算対象分子の重心を前記結合計算対象分子のアンカー点とすることが合理的である。前記結合計算対象分子の重心は、例えば、以下の式で求めることができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、前記式中、mは、質量を表し、xは、結合計算対象分子を構成する原子の座標を表す。
 水素原子は軽いため、求められる重心の位置への影響が小さい。そのため、前記結合計算対象分子の重心は、前記結合計算対象分子を構成する水素原子を除いて求められることが、計算時間を短縮できる点で好ましい。
 前記標的分子のアンカー点は、前記標的分子中の揺らぎの小さい原子を用いて、決定されることが好ましい。
 前記原子は、前記結合計算対象分子のアンカー点から5Å~15Åの範囲内にある原子であることが、アンカー点間の距離の頻度分布が正規分布に近くなり、より優れた計算精度が得られる点から好ましい。
 前記原子は、揺らぎの小さい原子である。
 前記揺らぎの小さい原子は、例えば、前記標的分子中の原子について、RMSF(root mean square fluctuation;根平均二乗揺らぎ)を求め、求めた各原子のRMSFを対比して、RMSFの小さい原子から選択される。
 例えば、前記標的分子中の、水素原子を除く全原子について、RMSF(root mean square fluctuation;根平均二乗揺らぎ)を求め、RMSFを求めた全原子におけるRMSFの算術平均値よりも小さいRMSFを有する原子を、揺らぎの小さい原子として選択する。
 前記揺らぎの小さい原子における前記RMSFとしては、1.0Å以下が好ましい。
 前記揺らぎの小さい原子としては、例えば、前記標的分子の主鎖の原子などが挙げられる。前記主鎖とは、前記標的分子中で最も長い鎖を意味する。前記主鎖の原子は、側鎖の原子に比べて揺らぎが小さい。
 前記標的分子のアンカー点は、前記標的分子中の揺らぎの小さい複数の原子の重心であってもよい。なお、前記複数の原子は、前記結合計算対象分子のアンカー点から5Å~15Åの範囲内にある原子であることが好ましい。例えば、前記結合計算対象分子のアンカー点から5Å~15Åの範囲内に、前記標的分子の主鎖の原子が存在しない場合、前記主鎖の原子よりも揺らぎが大きいが、前記標的分子中の原子の中では比較的揺らぎが小さい側鎖の原子を複数用いて、その重心を、前記標的分子のアンカー点としてもよい。
 前記複数の原子における原子の数としては、例えば、2つなどが挙げられる。
 前記複数の原子の重心の計算方法としては、例えば、前記結合計算対象分子の重心の計算方法と同様の方法が挙げられる。
 前記アンカー点は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ハードディスク、各種周辺機器等を備えた通常のコンピュータシステム(例えば、各種ネットワークサーバ、ワークステーション、パーソナルコンピュータ等)を用いることによって決定できる。
 前記結合自由エネルギーの算出方法においては、前記複数の工程で付加された複数の距離拘束ポテンシャルの各々を用いて、前記結合計算対象分子と前記標的分子との結合自由エネルギーを複数算出することが好ましい。
 前記結合自由エネルギーの算出方法においては、算出された複数の前記結合自由エネルギーのうちの最も小さい結合自由エネルギーを抽出し、算出結果とすることが好ましい。抽出する操作は、例えば、コンピュータにより行うことができる。
 前記結合自由エネルギーの算出方法において、前記標的分子のアンカー点は、複数設定される。その設定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、以下のようにして設定することができる。
 図7に示すように、結合計算対象分子Lのアンカー点LPを設定する。続いて、標的分子Tの結合サイトの端部に一のアンカー点TPを設定する。続いて、結合サイトTの他の端部に他のアンカー点TPを設定する。そして、アンカー点LPを頂点とし、アンカー点LPとアンカー点TPとの間の線分と、アンカー点LPとアンカー点TPとの間の線分とがなす角θを(n-1)等分する。そして、(n-1)等分により与えられた角θ/(n-1)毎に、標的分子のアンカー点を追加していく。図7においては、n=5の場合を示しており、3つのアンカー点(TP、TP、TP)が追加される。
 そして、標的分子Tの5つのアンカー点の各々と、結合計算対象分子Lのアンカー点LPとの間に付加された複数の距離拘束ポテンシャルの各々を用いて、標的分子Tと結合計算対象分子Lとの結合自由エネルギーを算出する。
 ここで、フローチャート(図8)を用いて前記結合自由エネルギーの算出方法の一例を説明する。
 まず、結合計算対象分子Lのアンカー点を決定する。前記アンカー点は、例えば、結合計算対象分子Lの重心とする。
 次に、標的分子Tのアンカー点を決定する。前記アンカー点は、複数(n)である。前記アンカー点の数は、計算対象の標的分子、計算対象の結合計算対象分子、計算時間、計算目的等に応じて、適宜選択すればよい。複数のアンカー点の決定方法は、特に制限はなく、目的に応じて適宜選択することができ、例えば、図7を用いて説明した前述の方法などが挙げられる。
 次に、標的分子Tのn個のアンカー点の各々と、結合計算対象分子Lのアンカー点との間に付与された各距離拘束ポテンシャルを用いて、結合自由エネルギー計算を行う。そのため、n回の結合自由エネルギー計算が行われる。この際、例えば、n個のアンカー点について、1、2、・・・(n-1)、nと番号をつけ、その番号順に結合自由エネルギー計算を行う。
 次に、n回の結合自由エネルギー計算の計算結果を対比して、最小の結合自由エネルギーを抽出する。
 以上により、前記結合自由エネルギー計算の一例が終了する。
 前記結合自由エネルギーの算出方法は、例えば、分子軌道法、分子動力学法などを用いて実行することができる。
 前記分子軌道法による分子軌道計算としては、例えば、非経験的分子軌道計算(ab initio分子軌道計算)、半経験的分子軌道計算などが挙げられる。
 前記非経験的分子軌道計算の方法論としては、例えば、ハートリー-フォック法、電子相関法などが挙げられる。
 前記半経験的分子軌道計算の方法論としては、例えば、CNDO、INDO、AM1、PM3などが挙げられる。
 前記非経験的分子軌道計算のプログラムとしては、例えば、Gaussian03、GAMESS、ABINIT-MP、Protein DFなどが挙げられる。
 前記半経験的分子軌道計算のプログラムとしては、例えば、MOPACなどが挙げられる。
 前記分子動力学法に用いるプログラムとしては、例えば、gromacs(グローマックス、Groningen Machine for Chemical Simulations)、amber(Assisted Model Building with Energy Refinement)、charmm、tinker、lammpsなどが挙げられる。
 前記結合自由エネルギーの算出方法は、後述する結合自由エネルギーの算出装置を用いて行うことができる。
(プログラム)
 開示のプログラムは、結合計算対象分子と標的分子との結合自由エネルギーを算出させるプログラムである。
 前記プログラムにおいては、前記結合計算対象分子と前記標的分子との間に距離拘束ポテンシャルを付加する工程を複数実行させる。
 前記プログラムにおいて、前記複数の工程における前記結合計算対象分子のアンカー点が同じアンカー点であり、かつ前記複数の工程における前記標的分子のアンカー点が異なるアンカー点である。
 前記プログラムは、前記結合自由エネルギーの計算方法を実行する。
 前記プログラムは、使用するコンピュータシステムの構成及びオペレーティングシステムの種類・バージョンなどに応じて、公知の各種のプログラム言語を用いて作成することができる。
 前記プログラムは、内蔵ハードディスク、外付けハードディスクなどの記憶媒体に記録しておいてもよいし、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、MOディスク(Magneto-Optical disk)、USBメモリ〔USB(Universal Serial Bus) flash drive〕などの記憶媒体に記録しておいてもよい。前記プログラムをCD-ROM、DVD-ROM、MOディスク、USBメモリなどの記憶媒体に記録する場合には、必要に応じて随時、コンピュータシステムが有する記憶媒体読取装置を通じて、これを直接、又はハードディスクにインストールして使用することができる。また、コンピュータシステムから情報通信ネットワークを通じてアクセス可能な外部記憶領域(他のコンピュータ等)に前記プログラムを記録しておき、必要に応じて随時、前記外部記憶領域から情報通信ネットワークを通じてこれを直接、又はハードディスクにインストールして使用することもできる。
(コンピュータが読み取り可能な記録媒体)
 開示のコンピュータが読み取り可能な記録媒体は、開示の前記プログラムを記録してなる。
 前記コンピュータが読み取り可能な記録媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、内蔵ハードディスク、外付けハードディスク、CD-ROM、DVD-ROM、MOディスク、USBメモリなどが挙げられる。
(結合自由エネルギーの算出装置)
 開示の結合自由エネルギーの算出装置は、結合計算対象分子と標的分子との結合自由エネルギーの算出装置である。
 前記結合自由エネルギーの算出装置は、前記結合計算対象分子と前記標的分子との間に距離拘束ポテンシャルを付加する工程を複数行う付加部を少なくとも有し、更に必要に応じて、その他の部を有する。
 前記結合自由エネルギーの算出装置において、前記複数の工程における前記結合計算対象分子のアンカー点が同じアンカー点であり、かつ前記複数の工程における前記標的分子のアンカー点が異なるアンカー点である。
 前記結合自由エネルギーの算出装置は、前記結合自由エネルギーの算出方法を実行する。
 図9に、開示の結合自由エネルギーの算出装置のハードウエア構成例を示す。
 結合自由エネルギーの算出装置10は、例えば、CPU11、メモリ12、記憶部13、表示部14、入力部15、出力部16、I/Oインターフェース部17等がシステムバス18を介して接続されて構成される。
 CPU(Central Processing Unit)11は、演算(四則演算、比較演算等)、ハードウエア及びソフトウエアの動作制御などを行う。
 メモリ12は、RAM(Random Access Memory)、ROM(Read Only Memory)などのメモリである。前記RAMは、前記ROM及び記憶部13から読み出されたOS(Operating System)及びアプリケーションプログラムなどを記憶し、CPU11の主メモリ及びワークエリアとして機能する。
 記憶部13は、各種プログラム及びデータを記憶する装置であり、例えば、ハードディスクである。記憶部13には、CPU11が実行するプログラム、プログラム実行に必要なデータ、OSなどが格納される。
 前記プログラムは、記憶部13に格納され、メモリ12のRAM(主メモリ)にロードされ、CPU11により実行される。
 表示部14は、表示装置であり、例えば、CRTモニタ、液晶パネル等のディスプレイ装置である。
 入力部15は、各種データの入力装置であり、例えば、キーボード、ポインティングデバイス(例えば、マウス等)などである。
 出力部16は、各種データの出力装置であり、例えば、プリンタである。
 I/Oインターフェース部17は、各種の外部装置を接続するためのインターフェースである。例えば、CD-ROM、DVD-ROM、MOディスク、USBメモリなどのデータの入出力を可能にする。
 10  結合自由エネルギーの算出装置
 11  CPU
 12  メモリ
 13  記憶部
 14  表示部
 15  入力部
 16  出力部
 17  I/Oインターフェース部
 18  システムバス
 A   安定構造
 B   安定構造
 L   結合計算対象分子
 LP  アンカー点
 P  アンカー点
 R   バネ拘束ポテンシャル
 S1  サンプリング空間
 S2  サンプリング空間
 T   標的分子
 TP アンカー点
 TP アンカー点
 

 

Claims (18)

  1.  コンピュータを用いた、結合計算対象分子と標的分子との結合自由エネルギーの算出方法であって、
     前記結合計算対象分子と前記標的分子との間に距離拘束ポテンシャルを付加する工程を複数含み、
     前記複数の工程における前記結合計算対象分子のアンカー点が同じアンカー点であり、かつ前記複数の工程における前記標的分子のアンカー点が異なるアンカー点である、ことを特徴とする結合自由エネルギーの算出方法。
  2.  前記結合計算対象分子のアンカー点が、前記結合計算対象分子の重心である請求項1に記載の結合自由エネルギーの算出方法。
  3.  前記標的分子のアンカー点の各々が、前記標的分子中の揺らぎの小さい原子を用いて決定される請求項1から2のいずれかに記載の結合自由エネルギーの算出方法。
  4.  前記複数の工程で付加された複数の距離拘束ポテンシャルの各々を用いて、前記結合計算対象分子と前記標的分子との結合自由エネルギーを複数算出する、請求項1から3のいずれかに記載の結合自由エネルギーの算出方法。
  5.  算出された複数の前記結合自由エネルギーのうちの最も小さい結合自由エネルギーを抽出する、請求項4に記載の結合自由エネルギーの算出方法。
  6.  アルケミカル経路計算法により行われる請求項1から5のいずれかに記載の結合自由エネルギーの算出方法。
  7.  コンピュータに、結合計算対象分子と標的分子との結合自由エネルギーを算出させるプログラムであって、
     前記結合計算対象分子と前記標的分子との間に距離拘束ポテンシャルを付加する工程を複数実行させ、
     前記複数の工程における前記結合計算対象分子のアンカー点が同じアンカー点であり、かつ前記複数の工程における前記標的分子のアンカー点が異なるアンカー点である、ことを特徴とするプログラム。
  8.  前記結合計算対象分子のアンカー点が、前記結合計算対象分子の重心である請求項7に記載のプログラム。
  9.  前記標的分子のアンカー点の各々が、前記標的分子中の揺らぎの小さい原子を用いて決定される請求項7から8のいずれかに記載のプログラム。
  10.  前記複数の工程で付加された複数の距離拘束ポテンシャルの各々を用いて、前記結合計算対象分子と前記標的分子との結合自由エネルギーを複数算出する、請求項7から9のいずれかに記載のプログラム。
  11.  算出された複数の前記結合自由エネルギーのうちの最も小さい結合自由エネルギーを抽出する、請求項10に記載のプログラム。
  12.  前記結合自由エネルギーの算出が、アルケミカル経路計算法により行われる請求項7から11のいずれかに記載のプログラム。
  13.  結合計算対象分子と標的分子との結合自由エネルギーの算出装置であって、
     前記結合計算対象分子と前記標的分子との間に距離拘束ポテンシャルを付加する工程を複数行う付加部を有し、
     前記複数の工程における前記結合計算対象分子のアンカー点が同じアンカー点であり、かつ前記複数の工程における前記標的分子のアンカー点が異なるアンカー点である、ことを特徴とする結合自由エネルギーの算出装置。
  14.  前記結合計算対象分子のアンカー点が、前記結合計算対象分子の重心である請求項13に記載の結合自由エネルギーの算出装置。
  15.  前記標的分子のアンカー点の各々が、前記標的分子中の揺らぎの小さい原子を用いて決定される請求項13から14のいずれかに記載の結合自由エネルギーの算出装置。
  16.  前記複数の工程で付加された複数の距離拘束ポテンシャルの各々を用いて、前記結合計算対象分子と前記標的分子との結合自由エネルギーを複数算出する、請求項13から15のいずれかに記載の結合自由エネルギーの算出装置。
  17.  算出された複数の前記結合自由エネルギーのうちの最も小さい結合自由エネルギーを抽出する、請求項16に記載の結合自由エネルギーの算出装置。
  18.  前記結合自由エネルギーの算出が、アルケミカル経路計算法により行われる請求項13から17のいずれかに記載の結合自由エネルギーの算出装置。
     
PCT/JP2015/071031 2015-07-23 2015-07-23 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム WO2017013802A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15898960.8A EP3327604B1 (en) 2015-07-23 2015-07-23 Method for calculating binding free energy, calculation device, and program
JP2017529426A JP6489218B2 (ja) 2015-07-23 2015-07-23 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム
PCT/JP2015/071031 WO2017013802A1 (ja) 2015-07-23 2015-07-23 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム
US15/860,134 US11501849B2 (en) 2015-07-23 2018-01-02 Method for calculating binding free energy, calculation device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071031 WO2017013802A1 (ja) 2015-07-23 2015-07-23 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/860,134 Continuation US11501849B2 (en) 2015-07-23 2018-01-02 Method for calculating binding free energy, calculation device, and program

Publications (1)

Publication Number Publication Date
WO2017013802A1 true WO2017013802A1 (ja) 2017-01-26

Family

ID=57834293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071031 WO2017013802A1 (ja) 2015-07-23 2015-07-23 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム

Country Status (4)

Country Link
US (1) US11501849B2 (ja)
EP (1) EP3327604B1 (ja)
JP (1) JP6489218B2 (ja)
WO (1) WO2017013802A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030059A (ja) * 2018-08-20 2020-02-27 富士通株式会社 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム
KR20200049293A (ko) * 2018-10-31 2020-05-08 주식회사 엘지화학 유기태양전지의 효율 예측 방법 및 유기태양전지의 제조방법
JP2020531946A (ja) * 2017-08-22 2020-11-05 シュレーディンガー インコーポレイテッドSchrodinger,Inc. アルケミカル拘束ポテンシャルを用いて自由エネルギー差を計算するための方法およびシステム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115579050B (zh) * 2022-12-08 2023-03-14 香港中文大学(深圳) 生物分子功能性动力学中关键原子集的搜索方法、系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005242493A (ja) * 2004-02-24 2005-09-08 In-Silico Science Inc タンパク質立体構造と誘導適合を利用したリガンド探索方法
JP2006028038A (ja) * 2004-07-13 2006-02-02 Ishikawajima Harima Heavy Ind Co Ltd 高分子化合物の結合評価方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178384B1 (en) * 1997-09-29 2001-01-23 The Trustees Of Columbia University In The City Of New York Method and apparatus for selecting a molecule based on conformational free energy
JP5704386B2 (ja) 2010-10-12 2015-04-22 日本電気株式会社 タンパク質分子のアミノ酸置換部位選択装置、置換アミノ酸選択装置、アミノ酸置換部位選択方法、置換アミノ酸選択方法、プログラムおよび記録媒体
JP6186785B2 (ja) 2013-03-22 2017-08-30 富士通株式会社 結合自由エネルギーの算出方法、及び結合自由エネルギーの算出装置、プログラム、並びに化合物のスクリーニング方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005242493A (ja) * 2004-02-24 2005-09-08 In-Silico Science Inc タンパク質立体構造と誘導適合を利用したリガンド探索方法
JP2006028038A (ja) * 2004-07-13 2006-02-02 Ishikawajima Harima Heavy Ind Co Ltd 高分子化合物の結合評価方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327604A4 *
YOSHIAKI TANIDA ET AL.: "Binding Free Energy Calculations for Theophylline/Caffeine to RNA Aptamer", J. COMPUT. CHEM. JPN., vol. 13, 30 September 2014 (2014-09-30), pages 193 - 195, XP055439585, ISSN: 1347-1767 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020531946A (ja) * 2017-08-22 2020-11-05 シュレーディンガー インコーポレイテッドSchrodinger,Inc. アルケミカル拘束ポテンシャルを用いて自由エネルギー差を計算するための方法およびシステム
JP7332579B2 (ja) 2017-08-22 2023-08-23 シュレーディンガー インコーポレイテッド アルケミカル拘束ポテンシャルを用いて自由エネルギー差を計算するための方法およびシステム
JP2020030059A (ja) * 2018-08-20 2020-02-27 富士通株式会社 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム
JP7379810B2 (ja) 2018-08-20 2023-11-15 富士通株式会社 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム
KR20200049293A (ko) * 2018-10-31 2020-05-08 주식회사 엘지화학 유기태양전지의 효율 예측 방법 및 유기태양전지의 제조방법
KR102546870B1 (ko) * 2018-10-31 2023-06-22 주식회사 엘지화학 유기태양전지의 효율 예측 방법 및 유기태양전지의 제조방법

Also Published As

Publication number Publication date
US11501849B2 (en) 2022-11-15
US20180121598A1 (en) 2018-05-03
JP6489218B2 (ja) 2019-03-27
EP3327604A1 (en) 2018-05-30
EP3327604B1 (en) 2019-10-16
JPWO2017013802A1 (ja) 2018-04-26
EP3327604A4 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
Wang et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field
Paliwal et al. A benchmark test set for alchemical free energy transformations and its use to quantify error in common free energy methods
US11501849B2 (en) Method for calculating binding free energy, calculation device, and program
Pecina et al. SQM/COSMO scoring function at the DFTB3-D3H4 level: unique identification of native protein–ligand poses
Maruca et al. Computer-based techniques for lead identification and optimization I: Basics
EP2782033B1 (en) Calculation method of binding free energy, calculation device of binding free energy, program, screening method of compound
Yamashita et al. The feasibility of an efficient drug design method with high-performance computers
JP7379810B2 (ja) 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム
JP6610182B2 (ja) 結合自由エネルギー計算の前処理方法、結合自由エネルギーの算出方法、及び装置、並びにプログラム
JP7011144B2 (ja) 結合自由エネルギーの算出方法、及び算出装置、並びにプログラム
US11621054B2 (en) Method and apparatus for preprocessing of binding free energy calculation, and binding free energy calculation method
Eyrilmez et al. Impressive Enrichment of Semiempirical Quantum Mechanics‐Based Scoring Function: HSP90 Protein with 4541 Inhibitors and Decoys
US20190042690A1 (en) Method and device for calculating binding free energy, and program
Bryce Physics-based scoring of protein–ligand interactions: explicit polarizability, quantum mechanics and free energies
JP6488728B2 (ja) アンカー点の決定方法、結合自由エネルギーの算出方法、及び算出装置、並びにプログラム
Mitchell et al. Large-scale integrated super-computing platform for next generation virtual drug discovery
JP6944115B2 (ja) 標的分子の結合サイトの探索方法、及び探索装置、並びにプログラム
JP6623697B2 (ja) 相互作用エネルギーの算出方法、及び算出装置、並びにプログラム
Sasidharan et al. Molecular Dynamics Simulation to Study Protein Conformation and Ligand Interaction
WO2016072027A1 (ja) 安定結合構造の算出方法、及び算出装置、並びにプログラム
JP2018205973A (ja) プローブ分子の配置方法、及び配置装置、標的分子の結合サイトの探索方法、及び探索装置、並びにプログラム
Ollikainen Flexible backbone methods for predicting and designing peptide specificity
Bieniek et al. TIES 2.0: A Dual-Topology Open Source Relative Binding Free Energy Builder with Web Portal
Adiyaman et al. Using local protein model quality estimates to guide a molecular dynamics-based refinement strategy
JP6409880B2 (ja) 相互作用エネルギーの算出方法、及び算出装置、並びにプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529426

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015898960

Country of ref document: EP