WO2017012185A1 - 两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法 - Google Patents

两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法 Download PDF

Info

Publication number
WO2017012185A1
WO2017012185A1 PCT/CN2015/089228 CN2015089228W WO2017012185A1 WO 2017012185 A1 WO2017012185 A1 WO 2017012185A1 CN 2015089228 W CN2015089228 W CN 2015089228W WO 2017012185 A1 WO2017012185 A1 WO 2017012185A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
aluminum
reduction
alloy
stage
Prior art date
Application number
PCT/CN2015/089228
Other languages
English (en)
French (fr)
Inventor
冯乃祥
赵坤
王耀武
彭建平
狄跃忠
Original Assignee
东北大学
沈阳北冶冶金科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学, 沈阳北冶冶金科技有限公司 filed Critical 东北大学
Priority to EP15898741.2A priority Critical patent/EP3327154B1/en
Priority to US15/743,919 priority patent/US20180202024A1/en
Priority to CA2992502A priority patent/CA2992502C/en
Publication of WO2017012185A1 publication Critical patent/WO2017012185A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1277Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using other metals, e.g. Al, Si, Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of metallurgy, and particularly relates to a method for preparing titanium or titanium aluminum alloy by two-stage aluminum thermal reduction and by-product titanium-free cryolite.
  • Titanium is a light and rare metal material widely used in aviation, aerospace technology and chemical industry. At present, titanium metal is produced by a method of reducing titanium tetrachloride (TiCl 4 ) by using magnesium metal under high temperature conditions, and the metal titanium produced by this method is sponge-like. Titanium may also be at a high temperature, reduction with sodium metal titanium tetrachloride (TiCl 4) a method for preparation; due to the reduction of titanium tetrachloride with magnesium metal and high sodium methods (TiCl 4) the cost of preparation of titanium And the preparation of TiCl 4 requires Cl 2 as a raw material, and the reduction by-products are also chlorides, which are highly corrosive to equipment, resulting in complicated and complicated operating conditions.
  • TiCl 4 sodium metal titanium tetrachloride
  • the reduction process is complicated.
  • the reducing agent needs to be mixed and melted, and then the mixed and melted composite reducing agent is added or dropped into the reduced reaction material; or during the reaction. , the reaction material needs to be stirred, and then the product is separated;
  • the reducing agent is an Al-Zn reducing agent
  • Zn does not participate in the reduction reaction, so when the Zn in the reduced product is separated, the purification process is complicated, and the production cost is greatly increased;
  • the by-products Na 3 AlF 6 and AlF 3 separated therefrom are black or grayish black, which still contain a relatively high content of titanium, thereby causing loss of titanium.
  • the present invention provides a method for preparing titanium or titanium aluminum alloy by two-stage aluminum thermal reduction and by-product titanium-free cryolite;
  • the titanium-free cryolite mentioned here is Refers to cryolite containing very low titanium content and can be used in electrolytic aluminum industry;
  • the two-stage aluminum thermal reduction method mentioned here is composed of the first stage aluminum thermal reduction method and the second stage aluminum thermal reduction method;
  • the product to be prepared is titanium or titanium aluminum alloy, the raw materials used are sodium fluoride and sodium fluorotitanate, or the sodium fluorotitanate is used as the raw material, and the reducing agent used is the second.
  • a powder made of an aluminum-titanium alloy produced by the aluminothermic reduction reaction of the section when the titanium or titanium aluminum alloy is produced by the first stage of thermal reduction of aluminum, the material involved in the reduction reaction and the reducing agent are mixed and pressed in a vacuum or Under the argon protection condition, the mixture is heated to 900-1300 ° C for aluminum thermal reduction. After that, the reduced product is subjected to vacuum distillation separation at a temperature of 900 to 1300 ° C to obtain titanium-containing cryolite and titanium or titanium aluminum alloy; in the second stage of aluminum thermal reduction, the raw material used is the titanium containing titanium produced by the first stage of aluminum reduction. Cryolite with aluminum powder as reducing agent.
  • the titanium-containing cryolite and the reducing agent are mixed and compacted, and then reduced to form titanium-free cryolite and aluminum-titanium alloy under argon gas protection and 900-1300 ° C; in the second stage aluminum thermal reduction, the amount of reducing agent is added It is to be followed that the melting point of the aluminum-titanium alloy formed after the second-stage reduction reaction is lower than the reduction reaction temperature.
  • the aluminum-titanium alloy melt formed in the second stage of the aluminothermic reduction reaction is incompatible with the titanium-free cryolite melt, so that the two can be well separated in a molten state; the second stage of aluminum-reduced aluminum is formed by thermal reduction
  • the titanium in the titanium alloy is mainly in the form of a TiAl 3 metal compound.
  • the Al-Ti alloy melt formed by the reaction is slowly cooled, and most of the TiAl 3 metal compound settles at the bottom of the alloy melt.
  • a low-titanium-aluminum-titanium alloy having a lower titanium content and a high-titanium-titanium-titanium alloy having a higher titanium content are formed; the second stage of the reduction reaction is completed, and the reduced product is cooled, and the solid titanium-free cryolite and aluminum are formed. Titanium alloy separation. Then, the aluminum-titanium alloy separated after the second stage of the aluminothermic reduction reaction is remelted to form a powder, which is used as a first-stage aluminum heat reduction reducing agent.
  • the aluminum-titanium alloy formed by the second stage of aluminum thermal reduction may also be separated or separated by one of the following two methods: 1 low titanium titanium alloy with lower titanium content in the upper part of the alloy and lower titanium The high-titanium aluminum-titanium alloy with relatively high content is divided by mechanical means; 2 the aluminum-titanium alloy obtained by the second stage of aluminum thermal reduction is remelted in a tiltable induction furnace, and then left for a while, then first poured A high-titanium aluminum-titanium alloy and a low-titanium-aluminum-titanium alloy are separated by a low-titanium-aluminum-titanium alloy in the upper part and then a high-titanium-aluminum-titanium alloy in the bottom.
  • the divided or separated low-titanium titanium aluminum alloy is powdered, used as a reducing agent, and returned to the first-stage aluminothermic reduction step, and a high-titanium-containing high-titanium aluminum-titanium alloy is sold as a commercial product.
  • the raw material and the reducing agent are uniformly mixed and then pressed into a dough, and then placed in a vacuum reduction furnace, heated to 900-1300 ° C under vacuum or argon atmosphere, and the first stage of aluminum thermal reduction is performed, followed by 900 ⁇
  • the reduced product is subjected to vacuum distillation separation at a temperature of 1300 ° C; the distilled product is condensed on a crystallizer at a low temperature end in a vacuum reduction furnace, and its main components are Na 3 AlF 6 , Na 5 Al 3 F 14 , AlF 3 and titanium.
  • a mixture of low-valent fluoride the remaining product not reduced in the reduction furnace is metal Ti or titanium aluminum alloy;
  • the product distilled after the first stage of thermal reduction of aluminum is black-gray, which is caused by the low-fluoride content of titanium fluoride which may be unreacted or by the side reaction, so it can be distilled off.
  • the product is called titanium-containing cryolite.
  • the particle size is less than -1.0 mm, and the aluminum powder is used as a reducing agent, and the fine titanium-containing cryolite and the aluminum powder are uniformly mixed and then pressed into agglomerates, and the aluminum powder is blended.
  • the amount of the aluminum-titanium alloy formed by the second stage of aluminum reduction is less than or equal to the second stage reduction reaction temperature; the agglomerate is placed in a reduction furnace and heated to 900-1300 ° C under an argon atmosphere, and the temperature is maintained at 0.5. ⁇ 2h for the second stage of aluminothermic reduction;
  • the upper part of the product is white titanium-free cryolite which is easily broken, and the bottom is aluminum-titanium alloy; the upper part of the obtained aluminum-titanium alloy is low-titanium with low titanium content.
  • Aluminum-titanium alloy called low-titanium-aluminum-titanium alloy; the lower part is an aluminum-titanium alloy with relatively high titanium content, which is called high-titanium aluminum-titanium alloy;
  • the aluminum-titanium alloy produced by the second stage of aluminum thermal reduction is remelted to form powder, which is returned to the first stage of aluminum thermal reduction as a reducing agent, as shown in process flow chart 1; mechanical segmentation or induction can also be used.
  • the metal aluminum powder is used as the reducing agent; and the amount of the reducing agent in the step 1 is prepared according to the need.
  • the product design and formulation ratio are based on (1), (2) or (3), (4).
  • the main component of the titanium-containing cryolite in the step 2 is a mixture of low-valent fluorides of Na 3 AlF 6 , Na 5 Al 3 F 14 , AlF 3 and titanium, wherein the fluoride of titanium is mainly Na 3 TiF. 6 , TiF 3 and possibly a small amount of metal Ti exists; AlF 3 and possibly TiF 3 in this mixture and a small amount of titanium powder formed, due to its low content, may be in the XRD analysis results of the product Not obvious.
  • the argon gas conditions in the steps 2 and 3 mean that the reduction furnace is evacuated to 10 Pa or less, and then argon gas is introduced to a normal pressure.
  • the vacuum distillation means that the reduction furnace is evacuated to 10 Pa or less, and distilled at a temperature of 900 to 1300 ° C for 1 hour or more.
  • the method of the invention has simple operation, the reaction material has low corrosion degree to the equipment, does not require complicated equipment, and the obtained cryolite, titanium and titanium aluminum alloy have high purity; the reaction process and the content of Ti and Al in the alloy are easy to control, and the production is easy.
  • the cost is low, the reduction rate of titanium and the utilization rate of aluminum reach 100%, and the by-product cryolith of the method has high purity and can be used in the aluminum electrolysis industry.
  • Al-titanium alloy formed by the second stage of aluminum thermal reduction is divided into two parts: a low titanium aluminum titanium alloy and a high titanium aluminum titanium alloy, high titanium.
  • Aluminium-titanium alloy is sold as a commercial product, a low-titanium aluminum-titanium alloy is used as a reducing agent for the first stage of the aluminothermic reduction process, and a schematic diagram of a method for producing a titanium-free cryolite by-product in the second stage of the aluminothermic reduction process;
  • Example 3 is a phase diagram of an XRD phase analysis of a Ti 3 Al alloy product obtained in Example 1 of the present invention
  • FIG. 4 is a phase diagram of phase analysis of a titanium-containing cryolite XRD according to Embodiment 1 of the present invention.
  • Figure 5 is a diagram showing the phase analysis of the XRD of the distilled product obtained in Example 2 of the present invention.
  • Example 6 is a phase diagram of phase analysis of an XRD of a TiAl 3 alloy product obtained in Example 3 of the present invention.
  • Example 7 is a phase diagram of phase analysis of an XRD of a TiAl alloy product obtained in Example 5 of the present invention.
  • Example 8 is a phase diagram of an XRD phase analysis of a metal Ti product obtained in Example 7 of the present invention.
  • Figure 9 is a diagram showing the phase analysis of the titanium-free cryolite (Na 3 AlF 6 ) XRD obtained in Example 9 of the present invention.
  • Example 10 is a SEM topographical analysis diagram of a layered interface of an aluminum-titanium alloy product obtained in Example 9 of the present invention.
  • Figure 11 is a graph showing the results of EDS detection of the aluminum-titanium alloy product obtained in Example 9 of the present invention; the upper and lower drawings in the figure correspond to the positions A and B of Figure 10, respectively.
  • the XRD phase analysis apparatus used in the embodiment of the present invention is an X'Pert Pro type X-ray diffractometer.
  • the SEM topography analysis apparatus used in the embodiment of the present invention is a S-4800 cold field emission scanning electron microscope.
  • the EDS detecting device used in the embodiment of the present invention is an S-4800 type scanning electron microscope accessory X-ray energy spectrometer.
  • the metal aluminum powder used in the examples of the present invention is a commercially available product, and the purity is ⁇ 99%.
  • the sodium fluoride used in the examples of the present invention is a commercially available powder product, and the purity is ⁇ 98%.
  • the sodium fluorotitanate used in the examples of the present invention is a commercially available powder product, and the purity is ⁇ 98%.
  • the reduction furnace used in the embodiment of the present invention is a vacuum reduction furnace with a crystallizer.
  • the reducing agent 100 g of the aluminum-titanium alloy powder contains 4.21 g of Ti, and the Ti 3 Al is 5 g, and the Al powder participating in the reduction reaction is 95 g.
  • Na 2 TiF 6 is required to be 439.11 g, and the NaF to be added is 59.11 g.
  • the actual composition of the present embodiment is 439.11 g Na 2 TiF 6 , with NaF 59.11 g, and 100 g titanium alloy 4.21% (wt%) aluminum titanium alloy powder;
  • the above ingredients are uniformly mixed, pressed into a dough, placed in a vacuum reduction furnace, and the reduction furnace is evacuated to below 10 Pa, then argon gas is introduced to normal pressure, and heated to 1100 ° C under an argon atmosphere to make it Complete a period of aluminothermic reduction reaction;
  • the vacuum is evacuated to 10 Pa or less, and the reduction reaction product is subjected to vacuum distillation, and distilled at a temperature of 1100 ° C for 2 hours, and the product is distilled into a titanium-containing cryolite, an alloy at a low temperature end of the vacuum reduction furnace.
  • the product remained in the reactor in a loose sponge-like form; the XRD phase analysis results of the alloy product are shown in Figure 3, and the XRD phase analysis results of the titanium-containing cryolite are shown in Figure 4.
  • the reducing agent 100 g of the aluminum-titanium alloy powder contains 4.21 g of Ti, and the Ti 3 Al is 5 g, and the Al powder participating in the reduction reaction is 95 g. Na 2 TiF 6 is required to be 439.11 g.
  • the actual formulation of the present embodiment is 439.11 g of Na 2 TiF 6 , and 100 g of titanium-titanium alloy powder containing 4.21% (wt%) of titanium;
  • the raw material and the reducing agent are uniformly mixed, pressed into a mass, placed in a vacuum reduction furnace, and the reduction furnace is evacuated to below 10 Pa, and heated to 1100 ° C to complete a thermal reduction reaction of aluminum;
  • the vacuum is evacuated to 10 Pa or less, and the reduction reaction product is subjected to vacuum distillation, and distilled at a temperature of 1100 ° C for 2 hours, and the product is distilled into a titanium-containing cryolite and fluorine in a crystallizer at a low temperature end in a vacuum reduction furnace.
  • a mixture of aluminum The alloy product remained in the reactor in a loose sponge-like form, and the XRD analysis results of the alloy were the same as in Example 1; the XRD phase analysis results of the distilled product are shown in Fig. 5.
  • the method is the same as that in Example 1, except that 100 g of titanium-titanium alloy powder containing 1.86% (wt%) of titanium is used as a reducing agent to prepare a TiAl 3 alloy:
  • the reducing agent 100 g of aluminum-titanium alloy powder contains 1.86 g of Ti, which is 5 g of TiAl 3 , and the Al powder which participates in the reduction reaction is 95 g. 2 TiF 6 is 168.89 g, and the required NaF mass is 22.74 g.
  • the actual formulation of the present embodiment is 168.89 g of Na 2 TiF 6 , with NaF 22.74 g, and 100 g of titanium-containing titanium alloy powder containing 1.86% (wt%);
  • the method is the same as that of Example 2, except that 100 g of titanium-titanium alloy powder containing 1.86% (wt%) of titanium is used as a reducing agent to prepare a TiAl 3 alloy:
  • the method is the same as that in Example 1, except that 100 g of aluminum-titanium alloy powder containing 3.2% (wt%) of titanium is used as a reducing agent to prepare a TiAl alloy:
  • the chemical reaction formula (13) and (14) can be calculated, the reducing agent 100 g aluminum alloy powder containing Ti 3.2 g, 5 g converted into TiAl, Al powder involved in the reduction reaction of 95 g Na 2 required for the reaction TiF 6 was 313.65 g and the required NaF mass was 42.22 g.
  • the actual formulation of this embodiment is 313.65 grams of Na 2 TiF 6 , with NaF 42.22 grams, and 100 grams of titanium-containing titanium alloy containing 3.2% (wt%);
  • the method is the same as that in Example 2, except that 100 g of aluminum-titanium alloy powder containing 3.2% (wt%) of titanium is used as a reducing agent to prepare a TiAl alloy:
  • the method is the same as that in the first embodiment, except that 100 g of titanium-containing titanium alloy powder containing 3% (wt%) is used as a reducing agent to prepare pure titanium:
  • the reducing agent 100 g of the aluminum-titanium alloy powder contains Ti 3 g
  • the Al powder participating in the reduction reaction is 97 g
  • the Na 2 TiF 6 required for the reaction is 560.44 g
  • the NaF is required to be added.
  • the mass is 75.44 grams;
  • the actual formulation of the present embodiment is 560.44 g of Na 2 TiF 6 , with NaF 75.44 g, and 100 g of titanium-containing 3% (wt%) aluminum-titanium alloy powder;
  • the method is the same as that in Example 2, except that 100 g of 3% (wt%) titanium-containing titanium-titanium alloy powder is used as a reducing agent to prepare pure titanium:
  • the actual formulation of the present embodiment is 560.44 g of Na 2 TiF 6 , and 100 g of aluminum titanium alloy powder containing 3% (wt%) of titanium can be used;
  • the method is the same as that in the first embodiment, except that 100 g of titanium-containing titanium alloy having a titanium content of 42.55% (wt%) is prepared by using 100 g of titanium-containing titanium alloy powder containing 2.13% (wt%) as a reducing agent:
  • the reducing agent 100 g of aluminum-titanium alloy powder contains Ti 2.13 g, which is converted into TiAl 2.4 to 5 g, and the Al powder participating in the reduction reaction is 95 g.
  • 2 TiF 6 was 196.03 g, and the required NaF mass was 26.39 g.
  • the actual formulation of the present embodiment is 196.03 g of Na 2 TiF 6 , with NaF 26.39 g, and 100 g of titanium-containing titanium alloy powder of 2.13% (wt%);
  • the first stage of the aluminothermic distillation of the titanium-containing cryolite is used as a raw material, and the aluminum powder is used as a reducing agent to perform vacuum reduction to obtain a titanium-free cryolite and an aluminum-titanium alloy;
  • cryolite produced in the embodiment 10 of the present invention completely conforms to the national standard GB/T 4291-1999 "Cryolite", and can be directly applied to the production of aluminum electrolysis industry.
  • the upper layer of the aluminum-titanium alloy product is a low-titanium titanium alloy portion, and the lower layer is a high-titanium titanium aluminum alloy.
  • the SEM image and energy spectrum analysis results are shown in Fig. 10 and Fig. 11, respectively.
  • the titanium-containing cryolite obtained by the first stage of aluminum reduction in Examples 1 to 9 can be further processed by the method shown in Example 10, and subjected to a second vacuum aluminothermic reduction using aluminum powder, and the obtained white titanium-free cryolite is obtained.
  • the raw materials are used in the aluminum electrolysis industry, and the aluminum-titanium alloys are all returned to the next first stage of the aluminothermic reduction process as a reducing agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法,按以下步骤进行:(1)以氟化钠和氟钛酸钠为原料,或者以氟钛酸钠为原料,以铝钛合金粉为还原剂;(2)混合压制成球团,进行一段铝热还原和真空蒸馏;(3)将含钛冰晶石取出后磨细,与还原剂混合压团,进行二段铝热还原;(4)将低钛的铝钛合金和高钛的铝钛合金分离,制粉返回到两铝热还原中作为还原剂;或者重熔后制成粉再进行两段铝热还原。

Description

两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法 技术领域
本发明属于冶金技术领域,特别涉及一种两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法。
背景技术
钛是一种轻稀有金属材料,广泛应用于航空、航天技术领域和化工领域。目前,金属钛是在高温条件下,用金属镁还原四氯化钛(TiCl4)的方法生产的,用这种方法生产出来的金属钛呈海绵状。金属钛也可以在高温条件下,用金属钠还原四氯化钛(TiCl4)的方法来制取;由于用金属镁和钠还原四氯化钛(TiCl4)制取金属钛的方法成本高,且TiCl4的制备需要以Cl2为原料,还原副产物也为氯化物,它们对设备的腐蚀性大,导致其操作条件复杂苛刻。因此人们也在不断探索其他的金属钛的冶炼方法,如TiCl4熔盐电解法和以TiO2为阴极的电脱氧熔盐电解法等,但这些方法始终处于实验研究阶段,均未获得工业上的成功。此外,还有以氟钛酸钠或氟钛酸钾或三氟化钛为原料,以Al-Zn,Al-Mg,Al-Zn-Mg合金和纯Al,纯Mg,纯Na为还原剂制取金属钛的方法(见US Pub,NO:US 2010/0173170A1,CN102534263A,CN102560153A,CN102534260A)。据称,这些方法可制备纯度为70.7%以上,最高可达99.5%的金属钛。
上述还原反应均在900~1000℃之间进行,但这种方法也始终未能实现工业应用,其原因和存在的问题如下:
1、还原过程较为复杂,在这些专利方法中,需要先将还原剂混合和熔化,然后再将这些混合和融化后的复合还原剂加入或滴入被还原的反应物料中;或在反应过程中,需要对反应物料进行搅拌,然后在分离产物;
2、上述方法中,当还原剂为Al-Zn还原剂时,Zn不参与还原反应,因此分离还原产物中的Zn时,提纯工艺复杂,而且使生产成本大大增加;
3、上述专利的技术方法中,其所分离出来的副产物Na3AlF6和AlF3为黑色或灰黑色,其中仍含有较高含量的钛的化合物,因而会造成钛的损失。
随着航空和航天技术的发展以及化工领域对高温耐腐蚀材料的需求,Ti-Al或以Ti-Al为基的掺杂有其他少量金属元素的高性能合金的开发和应用获得了世界各国广泛的关注。然而这些合金的金属原料,都是采用经TiCl4镁热还原制备出来的海绵钛和金属纯铝再进行熔炼冶金的方法生产的,其生产工艺较为复杂。
发明内容
针对现有金属钛在制备技术上存在的上述问题,本发明提供一种两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法;这里所说的无钛冰晶石是指含钛量极低的,能用于电解铝工业的冰晶石;这里所说的两段铝热还原法是由第一段铝热还原法和第二段铝热还原法组成;在第一段铝热还原中,其所要制取的产品为钛或钛铝合金,所用原料为氟化钠和氟钛酸钠两种原料,或者单以氟钛酸钠为原料,所用还原剂为第二段的铝热还原反应产生的铝钛合金所制成的粉;在用第一段铝热还原生产钛或钛铝合金时,将参与还原反应的物料和还原剂混合压团后,在真空或氩气保护条件下,加热至900~1300℃进行铝热还原。之后还原产物在900~1300℃温度条件下进行真空蒸馏分离,得到含钛冰晶石和钛或钛铝合金;在第二段铝热还原时,其所用原料为第一段铝热还原产生的含钛冰晶石,以铝粉为还原剂。将含钛冰晶石和还原剂混合并压团后在氩气保护和900~1300℃条件下,还原生成无钛冰晶石和铝钛合金;在第二段铝热还原中,其还原剂的配入量要遵循使第二段还原反应后所生成的铝钛合金的熔点低于还原反应温度。在第二段铝热还原反应中生成的铝钛合金熔体与无钛冰晶石熔体互不相溶,因此二者在熔融状态下能够很好地分离;第二段铝热还原生成的铝钛合金中的钛主要以TiAl3金属化合物的形式存在,在反应炉内,反应生成的Al-Ti合金熔体在缓慢冷却过程中,大部分TiAl3金属化合物会沉降于合金熔体的底部,因此形成了上部为钛含量较低的低钛铝钛合金,下部为钛含量较高的高钛铝钛合金;第二段还原反应结束,还原产物冷却后,将固体的无钛冰晶石与铝钛合金分离。然后将第二段铝热还原反应结束后所分离出来的铝钛合金重熔后制成粉,作为第一段铝热还原的还原剂使用。也可采用如下两种方法之中的一种方法将第二段铝热还原生成的铝钛合金分离或分开:①将合金上部的钛含量相对较低的低钛的铝钛合金与下部的钛含量相对较高的高钛的铝钛合金用机械办法分割;②将第二段铝热还原得到的铝钛合金放入可倾转的感应炉中重熔,然后静置一段时间后,先倾倒出上部的低钛的铝钛合金,然后再扒出底部的高钛的铝钛合金的方法,实现高钛的铝钛合金和低钛的铝钛合金分开。而后再将分割或分开后的低钛的钛铝合金制成粉,作为还原剂返回到第一段铝热还原步骤中使用,而将含钛较高的高钛铝钛合金作为商品出售。
本发明的方法按以下步骤进行:
1、以氟钛酸钠为原料,或者以氟化钠和氟钛酸钠为原料,当制取和生产金属钛和钛铝合金时,使用第二段铝热还原生成的铝钛合金粉为还原剂;且全部物料的比例根据需要制备的产品设计,配制比例所依据的反应式为:
3Na2TiF6+2NaF+(3x+4)Al=3TiAlx+Na3AlF6+Na5Al3F14,10≥x≥0     (1)
Ti+xAl=TiAlx,x=0~10                    (2);
或者为:
12Na2TiF6+(12x+16)Al=12TiAlx+3Na3AlF6+3Na5Al3F14+4AlF3,10≥x≥0   (3)
和Ti+xAl=TiAlx,x=0~10                  (4);
2、将原料和还原剂混合均匀后压制成团,然后放入真空还原炉中,在真空条件下或氩气气氛下加热至900~1300℃,进行第一段铝热还原,之后在900~1300℃温度条件下,对还原产物进行真空蒸馏分离;蒸馏出的产物凝结在真空还原炉中低温端的结晶器上,其主要成分为Na3AlF6、Na5Al3F14、AlF3和钛的低价氟化物的混合物;还原炉内未被蒸馏出来的剩余产物为金属Ti或钛铝合金;
第一段铝热还原后所蒸馏出来的产物为黑灰色,这是由于其中含有可能未反应的氟钛酸钠或副反应生成的钛的低价氟化物所致,所以可将此蒸馏出来的产物称为含钛冰晶石。
3、将含钛冰晶石取出后磨细至粒度小于-1.0mm,以铝粉为还原剂,将磨细的含钛冰晶石与铝粉混合均匀后压制成团块料,铝粉的配入量遵循使第二段铝热还原生成的铝钛合金的熔点小于等于第二段还原反应温度;将团块料放入还原炉中,在氩气气氛条件下加热至900~1300℃,保温0.5~2h进行第二段铝热还原;
待还原结束且炉内温度降至常温后,得到的产物其上部为白色极易破碎的无钛冰晶石,底部为铝钛合金;所得铝钛合金的上部为含钛量很低的低钛的铝钛合金,称之为低钛的铝钛合金;下部为含钛量相对较高的铝钛合金,称之为高钛的铝钛合金;
4、将第二段铝热还原产生的铝钛合金重熔后制成粉,返回到第一段铝热还原中作为还原剂使用,如工艺流程图1所示;也可采用机械分割或感应炉重熔倾倒的方法,将低钛的铝钛合金和高钛的铝钛合金分割或分开,将分割或分开出来低钛的铝钛合金制成粉作为第一段铝热还原的还原剂,将高钛的铝钛合金作为商品出售,如工艺流程图2所示。
上述方法中,当第一次进行第一段铝热还原时,若没有可用的铝钛合金作还原剂时,采用的是金属铝粉作为还原剂;步骤1中还原剂的用量根据需要制备的产品设计,配制比例所依据的反应式分别为(1)、(2)或(3)、(4)。
上述方法中,步骤2中的含钛冰晶石主要成分为Na3AlF6、Na5Al3F14、AlF3和钛的低价氟化物的混合物,其中的钛的氟化物主要以Na3TiF6,TiF3和可能的少量的金属Ti的形式存在;在此混合物中的AlF3和可能存在的TiF3以及少量生成的钛粉,由于其含量较低,在产品的XRD分析结果中可能并不显见。
上述方法中,步骤2和3中的氩气条件是指:将还原炉抽真空至10Pa以下,然后通入氩气至常压。
上述方法中,所述的真空蒸馏是指:将还原炉抽真空至10Pa以下,在温度900~1300℃条件下蒸馏1h以上。
本发明的方法操作简单,反应物料对设备腐蚀程度低,不需要复杂的设备,获得的冰晶石、钛及钛铝合金纯度高;该方法反应过程与合金中Ti和Al的含量易于控制,生产成本低,钛的还原率和铝的利用率达到100%,其该方法的副产物冰晶石纯度高,可用于铝电解工业。
附图说明
图1为本发明的两段铝热还原制取钛或钛铝合金,且第二段铝热还原生成的铝钛合金重熔制成合金粉后作为还原剂用于第一段的铝热还原过程,并在第二段铝热还原过程副产无钛冰晶石的方法流程示意图;
图2为本发明的两段铝热还原制取钛或钛铝合金,且第二段铝热还原生成的铝钛合金被分成低钛铝钛合金和高钛铝钛合金两部分,高钛的铝钛合金作为商品出售,低钛的铝钛合金作为还原剂用于第一段的铝热还原过程,并在第二段铝热还原过程副产无钛冰晶石的方法流程示意图;
图3为本发明实施例1中获得的Ti3Al合金产品XRD物相分析图;
图4为本发明实施例1中的含钛冰晶石XRD物相分析图;
图5为本发明实施例2中获得的蒸馏产物XRD物相分析图;
图6为本发明实施例3中获得的TiAl3合金产品XRD物相分析图;
图7为本发明实施例5中获得的TiAl合金产品XRD物相分析图;
图8为本发明实施例7中获得的金属Ti产品XRD物相分析图;
图9为本发明实施例9中获得的无钛冰晶石(Na3AlF6)XRD物相分析图;
图10为本发明实施例9中获得的铝钛合金产物分层界面的SEM形貌分析图;
图11为本发明实施例9中获得的铝钛合金产物的EDS检测结果图;图中的上图和下图分别对应图10的A和B两个位置。
具体实施方式
本发明实施例中采用的XRD物相分析设备为X’Pert Pro型X射线衍射仪。
本发明实施例中采用的SEM形貌分析设备为S-4800型冷场发射扫描电子显微镜。
本发明实施例中采用的EDS检测设备为S-4800型扫描电镜附件X射线能谱仪。
本发明实施例中采用的金属铝粉为市购产品,纯度≥99%。
本发明实施例中采用的氟化钠为市购粉末产品,纯度≥98%。
本发明实施例中采用的氟钛酸钠为市购粉末产品,纯度≥98%。
本发明实施例中采用的还原炉为带有结晶器的真空还原炉。
实施例1
1、以氟化钠和氟钛酸钠为原料,以100克含钛4.21%(wt%)的铝钛合金粉为还原剂,制取Ti3Al合金(式(1)中x=1/3)时,全部物料的配制比例所依据的反应式为:
3Na2TiF6+2NaF+5Al=Ti3Al+Na3AlF6+Na5Al3F14             (5)
和3Ti+Al=Ti3Al                  (6),
根据化学反应式(5)和(6)可以算出,还原剂100克铝钛合金粉中含Ti 4.21克,折合成Ti3Al为5克,参与还原反应的Al粉则为95克,反应所需Na2TiF6为439.11克,所需添加的NaF为59.11克。
因此本实施例的实际配料为439.11克Na2TiF6,配以NaF 59.11克,及100克含钛4.21%(wt%)的铝钛合金粉;
2、将上述配料混合均匀后压制成团,放入真空还原炉中,将还原炉抽真空至10Pa以下,再通入氩气至常压,在氩气气氛条件下加热至1100℃,使其完成一段铝热还原反应;
3、待还原反应结束后,抽真空至10Pa以下,将还原反应产物进行真空蒸馏,在温度1100℃条件下蒸馏2h,在真空还原炉内低温端的结晶器上蒸馏产物为含钛冰晶石,合金产物以疏松的海绵状形态留在反应器内;合金产物XRD物相分析结果示于图3,含钛冰晶石的XRD物相分析结果示于图4。
实施例2
1、以氟钛酸钠为原料,以100克含钛4.21%(wt%)的铝钛合金粉为还原剂,当制备的产品为Ti3Al(式(3)中x=1/3)时,全部物料的配制比例所依据的反应式为:
12Na2TiF6+20Al=4Ti3Al+3Na3AlF6+3Na5Al3F14+4AlF3        (7)
和3Ti+Al=Ti3Al                      (8);
根据化学反应式(7)和(8)可以算出,还原剂100克铝钛合金粉中含Ti 4.21克,折合成Ti3Al为5克,参与还原反应的Al粉则为95克,反应所需Na2TiF6为439.11克。
因此本实施例的实际配料为439.11克Na2TiF6,配以100克含钛4.21%(wt%)的铝钛合金粉;
2、将原料和还原剂混合均匀后压制成团,放入真空还原炉中,将还原炉抽真空至10Pa以下,加热至1100℃,使其完成一段铝热还原反应;
3、待还原反应结束后,抽真空至10Pa以下,将还原反应产物进行真空蒸馏,在温度1100℃条件下蒸馏2h,在真空还原炉内低温端的结晶器上蒸馏产物为含钛冰晶石与氟化铝的混合物, 合金产物以疏松的海绵状形态留在反应器内,其合金的XRD分析结果同实施例1;蒸馏产物的XRD物相分析结果示于图5。
实施例3
方法同实施例1,不同点在于以100克含钛1.86%(wt%)的铝钛合金粉为还原剂制取TiAl3合金:
1、根据制备的产品为TiAl3(式(1)中x=3),全部物料的配制比例所依据的反应式为:
3Na2TiF6+2NaF+13Al=3TiAl3+Na3AlF6+Na5Al3F14           (9)
和Ti+3Al=TiAl3                             (10);
根据化学反应式(9)和(10)可以算出,还原剂100克铝钛合金粉中含Ti 1.86克,折合成TiAl3为5克,参与还原反应的Al粉为95克,反应所需Na2TiF6为168.89克,所需添加NaF质量为22.74克。
因此本实施例的实际配料为168.89克Na2TiF6,配以NaF 22.74克,及100克含钛1.86%(wt%)的铝钛合金粉;
2、在氩气气氛条件下加热至1100℃,保温2h进行一段铝热还原;
3、在温度1100℃条件下蒸馏2h,降温后还原炉内剩余金属为TiAl3合金,其XRD物相分析结果示于图6。
实施例4
方法同实施例2,不同点在于以100克含钛1.86%(wt%)的铝钛合金粉为还原剂制取TiAl3合金:
1、根据制备的产品为TiAl3(式(3)中x=3),全部物料的配制比例所依据的反应式为:
12Na2TiF6+52Al=12TiAl3+3Na3AlF6+3Na5Al3F14+4AlF3        (11)
和Ti+3Al=TiAl3                          (12);
根据反应方程式(11)和(12)计算可以得出,此实施例的实际配料为168.89克Na2TiF6,配以100克含钛1.86%(wt%)的铝钛合金粉。
2、在氩气气氛条件下加热至1100℃,保温2h进行一段铝热还原;
3、在温度1100℃条件下蒸馏2h,降温后还原炉内剩余金属为TiAl3合金,其合金产物XRD分析结果同实施例3。
实施例5
方法同实施例1,不同点在于以100克含钛3.2%(wt%)的铝钛合金粉为还原剂制取TiAl合金:
1、根据制备的产品为TiAl(式(1)中x=1),全部物料的配制比例所依据的反应式为:
3Na2TiF6+2NaF+7Al=3TiAl+Na3AlF6+Na5Al3F14           (13)
和Ti+Al=TiAl                             (14);
根据化学反应式(13)和(14)可以算出,还原剂100克铝钛合金粉中含Ti 3.2克,折合成TiAl为5克,参与还原反应的Al粉为95克,反应所需Na2TiF6为313.65克,所需添加NaF质量为42.22克。
因此本实施例的实际配料为313.65克Na2TiF6,配以NaF 42.22克,及100克含钛3.2%(wt%)的铝钛合金粉;
2、在氩气气氛条件下加热至1100℃,保温2h进行一段铝热还原;
3、在温度1100℃条件下蒸馏2h,降温后还原炉内剩余金属为TiAl合金,其XRD物相分析结果示于图7。
实施例6
方法同实施例2,不同点在于以100克含钛3.2%(wt%)的铝钛合金粉为还原剂制取TiAl合金:
1、根据制备的产品为TiAl(式(3)中x=1),全部物料的配制比例所依据的反应式为::
12Na2TiF6+28Al=12TiAl+3Na3AlF6+3Na5Al3F14+4AlF3          (15)
和Ti+Al=TiAl                       (16);
根据反应方程式(15)和(16)计算可以得出,本实施例的实际配料为313.65克Na2TiF6,配以100克含钛3.2%(wt%)的铝钛合金粉。
2、在氩气气氛条件下加热至1100℃,保温2h进行一段铝热还原;
3、在温度1100℃条件下蒸馏2h,降温后还原炉内剩余金属为TiAl合金,其合金产物XRD分析结果同实施例5。
实施例7
方法同实施例1,不同点在于以100克含钛3%(wt%)的铝钛合金粉为还原剂制取纯钛:
1、根据制备的产品为Ti(式(1)中x=0),全部物料的配制比例所依据的反应式为:
3Na2TiF6+2NaF+4Al=3Ti+Na3AlF6+Na5Al3F14              (17);
根据化学反应式(17)可以算出,还原剂100克铝钛合金粉中含Ti 3克,参与还原反应的Al粉则为97克,反应所需Na2TiF6为560.44克,所需添加NaF质量为75.44克;
因此本实施例的实际配料为560.44克Na2TiF6,配以NaF 75.44克,及100克含钛3%(wt%)的铝钛合金粉;
2、在氩气气氛条件下加热至1100℃,保温2h进行一段铝热还原;
3、在温度1100℃条件下蒸馏2h,降温后还原炉内剩余金属为金属Ti,其XRD物相分析结果示于图8。
实施例8
方法同实施例2,不同点在于以100克含钛3%(wt%)的铝钛合金粉为还原剂制取纯钛:
1、根据制备的产品为Ti(式(3)中x=0),全部物料的配制比例所依据的反应式为:
12Na2TiF6+16Al=12Ti+3Na3AlF6+3Na5Al3F14+4AlF3            (18);
根据化学反应式(18)可以算出,本实施例的实际配料为560.44克Na2TiF6,配以含钛3%(wt%)的铝钛合金粉100克即可;
2、在氩气气氛条件下加热至1100℃,保温2h进行一段铝热还原;
3、在温度1100℃条件下蒸馏2h,降温后还原炉内剩余金属为金属Ti,其XRD分析结果同实施例7。
实施例9
方法同实施例1,不同点在于以100克含钛2.13%(wt%)的铝钛合金粉为还原剂制取含钛为42.55%(wt%)的钛铝合金:
1、因为含钛42.55%(wt%)的钛铝合金与式(1)中x=2.4时的产物TiAl2.4合金等同,因此,本实施例全部物料的配制比例所依据的反应式应为:
3Na2TiF6+2NaF+11.2Al=3TiAl2.4+Na3AlF6+Na5Al3F14             (19)
和Ti+2.4Al=TiAl2.4                       (20);
根据化学反应式(19)和(20)可以算出,还原剂100克铝钛合金粉中含Ti 2.13克,折合成TiAl2.4为5克,参与还原反应的Al粉为95克,反应所需Na2TiF6为196.03克,所需添加NaF质量为26.39克。
因此本实施例的实际配料为196.03克Na2TiF6,配以NaF 26.39克,及100克含钛2.13%(wt%)的铝钛合金粉;
2、在氩气气氛条件下加热至1100℃,保温2h进行一段铝热还原;
3、在温度1100℃条件下蒸馏2h,降温后还原炉内剩余金属为金属TiAl2.4,其XRF分析结果如表1所示。
表1
化学成分 Al Ti Ca Si Fe
质量百分比(%) 57.4963 42.0368 0.0537 0.0152 0.0044
实施例10
以实施例7中,第一段铝热还原蒸馏出来的含钛冰晶石为原料,以铝粉为还原剂,进行真空还原制取无钛冰晶石和铝钛合金;
1、将427.78克钛冰晶石取出后磨细至粒度-1.0mm,其中含钛12.84克,以100克铝粉为还原剂,将磨细的含钛冰晶石铝粉混合均匀后压制成团。将团块料放入真空还原炉中,并抽真空至10Pa以下后,通入氩气至常压,在氩气气氛条件下加热至1200℃,保温2h进行第二段铝热还原;
2、将还原炉内的物料降至常温后,将产物从炉内取出并进行分离,得到白色的无钛冰晶石和铝钛合金,其理论生成量分别为414.94克和112.84克;所得铝钛合金可用于下一次第一段真空铝热还原制备金属钛的过程作为还原剂,以此循环。白色的无钛冰晶石的XRD物相分析结果示于图9,其XRF成分分析结果列于表2;
表2
Figure PCTCN2015089228-appb-000001
根据表2可知,本发明实施例10中生产的冰晶石完全符合国家标准GB/T 4291―1999《冰晶石》,可直接应用于铝电解工业生产中。铝钛合金产物上层为低钛的钛铝合金部分,下层为高钛的钛铝合金,其SEM图像及能谱分析结果分别示于图10和图11。
实施例1~9中第一段铝热还原所得含钛冰晶石均可以实施例10所示方法进行进一步处理,采用铝粉对其进行第二段真空铝热还原,所得白色无钛冰晶石作为原料应用于铝电解工业,而铝钛合金全部返回至下一次第一段铝热还原过程中作为还原剂。

Claims (4)

  1. 一种两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法,其特征在于按以下步骤进行:
    (1)以氟化钠和氟钛酸钠为原料,以第二段铝热还原生成的铝钛合金粉为还原剂;全部物料的配制比例所依据的反应式为:
    12Na2TiF6+(12x+16)Al=12TiAlx+3Na3AlF6+3Na5Al3F14+4AlF3     (1)
    和Ti+xAl=TiAlx                                           (2),
    其中x=0~10;
    (2)将原料和还原剂混合均匀后压制成团,然后放入真空还原炉中,在真空条件下或氩气气氛下加热至900~1300℃,进行第一段铝热还原和真空蒸馏;蒸馏出的产物凝结在真空还原炉低温端的结晶器上,其主要成分为Na3AlF6、Na5Al3F14、AlF3和钛的低价氟化物的混合物;还原炉内剩余产物为TiAlx
    (3)将含钛冰晶石取出后磨细至粒度-1.0mm,以铝粉为还原剂,将磨细的含钛冰晶石与铝粉混合均匀后压制成团块料,铝粉的配入量遵循使第二段铝热还原生成的Al-Ti合金的熔点小于等于第二段铝热还原温度;将团块料放入还原炉中,在氩气气氛条件下加热至900~1300℃,保温0.5~2h进行第二段铝热还原;
    待还原结束且炉体降至常温后,得到的产物其上部为白色的无钛冰晶石,底部为铝钛合金;底部的铝钛合金中,其上部为含钛量很低的低钛的铝钛合金,称之为低钛的铝钛合金;下部为含钛量相对较高的铝钛合金,称之为高钛的铝钛合金;
    (4)采用机械分割或感应炉重熔倾倒的方法,将低钛的铝钛合金和高钛的铝钛合金分割或分开,将分割或分开出来低钛的铝钛合金制成粉作为第一段铝热还原的还原剂;或将第二段铝热还原产生的铝钛合金重熔后制成粉,返回到第一段铝热还原中作为还原剂使用。
  2. 一种两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法,其特征在于按以下步骤进行:
    (1)以氟钛酸钠为原料,以第二段铝热还原生成的铝钛合金粉为还原剂;全部物料的配制比例所依据的反应式为:
    3Na2TiF6+2NaF+(3x+4)Al=3TiAlx+Na3AlF6+Na5Al3F14     (3)
    和Ti+xAl=TiAlx                                    (4),
    其中x=0~10;
    (2)将原料和还原剂混合均匀后压制成团,然后放入真空还原炉中,在真空条件下或氩气气氛下加热至900~1300℃,进行第一段铝热还原和真空蒸馏;蒸馏出的产物凝结在真空还 原炉低温端的结晶器上,其主要成分为Na3AlF6、Na5Al3F14、AlF3和钛的低价氟化物的混合物;还原炉内剩余产物为TiAlx
    (3)将含钛冰晶石取出后磨细至粒度-1.0mm,以铝粉为还原剂,将磨细的含钛冰晶石与铝粉混合均匀后压制成团块料,铝粉的配入量遵循使第二段铝热还原生成的Al-Ti合金的熔点小于等于第二段铝热还原温度;将团块料放入还原炉中,在氩气气氛条件下加热至900~1300℃,保温0.5~2h进行第二段铝热还原;
    待还原结束且炉体降至常温后,得到的产物其上部为白色的无钛冰晶石,底部为铝钛合金;底部的铝钛合金中,其上部为含钛量很低的低钛的铝钛合金,称之为低钛的铝钛合金;下部为含钛量相对较高的铝钛合金,称之为高钛的铝钛合金;
    (4)采用机械分割或感应炉重熔倾倒的方法,将低钛的铝钛合金和高钛的铝钛合金分割或分开,将分割或分开出来低钛的铝钛合金制成粉作为第一段铝热还原的还原剂;或将第二段铝热还原产生的铝钛合金重熔后制成粉,返回到第一段铝热还原中作为还原剂使用。
  3. 根据权利要求1或2所述的一种两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法,其特征在于当第一次进行第一段铝热还原时,采用的是金属铝粉作为还原剂;还原剂的用量配制比例依据步骤(1)中的反应式。
  4. 根据权利要求1或2所述的一种两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法,其特征在于所述的真空蒸馏是指:将还原炉抽真空至10Pa以下,在温度900~1300℃条件下蒸馏1h以上。
PCT/CN2015/089228 2015-07-17 2015-09-09 两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法 WO2017012185A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15898741.2A EP3327154B1 (en) 2015-07-17 2015-09-09 Method for preparing titanium or titanium aluminum alloy and byproduct- titanium-free cryolite through two-stage aluminothermic reduction
US15/743,919 US20180202024A1 (en) 2015-07-17 2015-09-09 Method for producing titanium or titanium aluminum alloys through two-stage aluminothermic reduction and obtaining titanium-free cryolite as byproducts
CA2992502A CA2992502C (en) 2015-07-17 2015-09-09 Method for producing titanium or titanium aluminum alloys through two-stage aluminothermic reduction and obtaining titanium-free cryolite as byproducts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510420032.1A CN104911376B (zh) 2015-07-17 2015-07-17 两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法
CN201510420032.1 2015-07-17

Publications (1)

Publication Number Publication Date
WO2017012185A1 true WO2017012185A1 (zh) 2017-01-26

Family

ID=54080815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089228 WO2017012185A1 (zh) 2015-07-17 2015-09-09 两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法

Country Status (5)

Country Link
US (1) US20180202024A1 (zh)
EP (1) EP3327154B1 (zh)
CN (1) CN104911376B (zh)
CA (1) CA2992502C (zh)
WO (1) WO2017012185A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115415528A (zh) * 2022-08-16 2022-12-02 中国恩菲工程技术有限公司 铝硅钛合金粉末制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441695B (zh) * 2015-11-25 2017-03-29 东北大学 一种以高钛的铝钛合金为还原剂制备钛或钛铝合金的方法
CN108220601A (zh) * 2018-02-11 2018-06-29 沈阳北冶冶金科技有限公司 一种钛合金的制取方法
CN108439422B (zh) * 2018-03-13 2021-10-15 东北大学 一种铝热还原制备硼化钛合金的方法
CN109023431B (zh) * 2018-09-30 2020-05-12 成都先进金属材料产业技术研究院有限公司 制备钛铝合金的方法
CN109371262B (zh) * 2018-12-14 2021-03-30 中南大学 一种利用铝液回收钛合金废料中钛元素的方法
CN111004927A (zh) * 2019-12-31 2020-04-14 河钢股份有限公司承德分公司 一种还原蒸馏炉及包含其的装置和方法
CN111321302B (zh) * 2020-03-05 2021-12-21 沈阳北冶冶金科技有限公司 从高锂钾阳极炭渣或高锂钾电解质中回收锂和钾的方法
CN111498849B (zh) * 2020-06-08 2021-11-02 长江师范学院 一种铝热还原制备Ti2AlC陶瓷粉料的方法
EP4330440A1 (en) * 2021-06-30 2024-03-06 Massachusetts Institute of Technology (MIT) Sulfide reactive vacuum distillation, absorption, stripping, and extraction for metal and alloy production
CN113652644B (zh) * 2021-08-17 2022-04-01 北方工业大学 一种能够提高钛合金抗高温氧化性能的TiAl涂层及其制备方法
CN113737036B (zh) * 2021-08-23 2023-05-05 广西大学 一种铝热还原制备Al-Ti-Ce中间合金的方法
CN113718104A (zh) * 2021-08-31 2021-11-30 新星轻合金材料(洛阳)有限公司 一种低氧高钛铁合金制备工艺
CN115321589B (zh) * 2022-09-16 2023-09-12 东北大学 氟钛酸盐铝热还原制备钛或钛合金过程中副产物的综合利用方法
CN115502392B (zh) * 2022-10-11 2024-02-06 东北大学 降低氟钛酸盐铝热还原制备的钛或钛合金粉氧含量的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243732A (ja) * 1990-02-20 1991-10-30 Nippon Mining Co Ltd チタンの脱酸方法
US5482691A (en) * 1991-02-21 1996-01-09 The University Of Melbourne Process for the production of intermediates useful in the processing of ilmenite and related minerals
CN101967531A (zh) * 2010-10-21 2011-02-09 东北大学 一种分步金属热还原制备高钛铁的方法
CN102181670A (zh) * 2011-04-25 2011-09-14 东北大学 一种镁氯循环利用制备海绵钛的方法
CN102534263A (zh) * 2012-01-18 2012-07-04 深圳市新星轻合金材料股份有限公司 一种氟钛酸钠铝热还原制备海绵钛的方法
CN102560153A (zh) * 2012-01-18 2012-07-11 深圳市新星轻合金材料股份有限公司 一种氟钛酸钾铝热还原制备海绵钛的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668286A (en) * 1982-05-14 1987-05-26 Occidental Research Corporation Process for making zero valent titanium from an alkali metal fluotitanate
US6375923B1 (en) * 1999-06-24 2002-04-23 Altair Nanomaterials Inc. Processing titaniferous ore to titanium dioxide pigment
CN102586628A (zh) * 2012-02-22 2012-07-18 深圳市新星轻合金材料股份有限公司 以氟钛酸钠为中间原料生产海绵钛并同步产出钠冰晶石的循环制备方法
CN102936672B (zh) * 2012-11-07 2015-07-22 深圳市新星轻合金材料股份有限公司 一种用于轧机的轧辊材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243732A (ja) * 1990-02-20 1991-10-30 Nippon Mining Co Ltd チタンの脱酸方法
US5482691A (en) * 1991-02-21 1996-01-09 The University Of Melbourne Process for the production of intermediates useful in the processing of ilmenite and related minerals
CN101967531A (zh) * 2010-10-21 2011-02-09 东北大学 一种分步金属热还原制备高钛铁的方法
CN102181670A (zh) * 2011-04-25 2011-09-14 东北大学 一种镁氯循环利用制备海绵钛的方法
CN102534263A (zh) * 2012-01-18 2012-07-04 深圳市新星轻合金材料股份有限公司 一种氟钛酸钠铝热还原制备海绵钛的方法
CN102560153A (zh) * 2012-01-18 2012-07-11 深圳市新星轻合金材料股份有限公司 一种氟钛酸钾铝热还原制备海绵钛的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115415528A (zh) * 2022-08-16 2022-12-02 中国恩菲工程技术有限公司 铝硅钛合金粉末制备方法
CN115415528B (zh) * 2022-08-16 2024-04-02 中国恩菲工程技术有限公司 铝硅钛合金粉末制备方法

Also Published As

Publication number Publication date
US20180202024A1 (en) 2018-07-19
EP3327154A4 (en) 2018-07-18
EP3327154A1 (en) 2018-05-30
CA2992502C (en) 2019-10-15
CN104911376B (zh) 2017-01-04
EP3327154B1 (en) 2019-07-17
CA2992502A1 (en) 2017-01-26
CN104911376A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2017012185A1 (zh) 两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法
US9249520B2 (en) Thermal and electrochemical process for metal production
CA2784196C (en) Method for producing low aluminium titanium-aluminium alloys
WO2019153730A1 (zh) 一种钛合金的制取方法
CN109536751B (zh) 一种铝热还原生产镁锂合金副产镁铝尖晶石的方法
WO2017088299A1 (zh) 一种以高钛的铝钛合金为还原剂制备钛或钛铝合金的方法
TW201446364A (zh) 新穎方法及產品
US8562712B2 (en) Method and apparatus for the production of metal compounds
CN111286653B (zh) 一种真空铝热还原生产镁锂合金的方法
JP6810243B2 (ja) テルミット自己伝播勾配還元及びスラグ洗浄精練に基づくチタン合金の製造方法
WO2020063247A1 (zh) 制备钛铝合金的方法
Seki et al. Reduction of titanium dioxide to metallic titanium by nitridization and thermal decomposition
CN108439422B (zh) 一种铝热还原制备硼化钛合金的方法
CN109797318B (zh) 一种制备Al3Ti增强铝基材料的方法
Wang et al. Effect of oxide and fluoride addition on electrolytic preparation of Mg–La alloy in chloride molten salt
Withers et al. The electrolytic production of Ti from a TiO2 feed (the DARPA sponsored program)
JP2004131784A (ja) 金属チタンの製錬方法
Karelin et al. FLUORINATION OF RUTILE, ELECTROCHEMICAL REDUCTION OF TITANIUM FLUORIDE TO TITANIUM, AND ITS SEPARATION FROM THE ELECTROLYTE SALTS MELT.
CN115321589B (zh) 氟钛酸盐铝热还原制备钛或钛合金过程中副产物的综合利用方法
RU2754862C1 (ru) Способ получения силуминов с использованием аморфного микрокремнезема
AU2004253193B2 (en) A method and apparatus for the production of metal compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898741

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743919

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2992502

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015898741

Country of ref document: EP