WO2017010465A1 - 血管判定システム - Google Patents

血管判定システム Download PDF

Info

Publication number
WO2017010465A1
WO2017010465A1 PCT/JP2016/070473 JP2016070473W WO2017010465A1 WO 2017010465 A1 WO2017010465 A1 WO 2017010465A1 JP 2016070473 W JP2016070473 W JP 2016070473W WO 2017010465 A1 WO2017010465 A1 WO 2017010465A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
living tissue
blood vessel
scattered light
determination system
Prior art date
Application number
PCT/JP2016/070473
Other languages
English (en)
French (fr)
Inventor
平田 唯史
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017528679A priority Critical patent/JPWO2017010465A1/ja
Publication of WO2017010465A1 publication Critical patent/WO2017010465A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser

Abstract

生体組織の表面を隠すことなく生体組織内の血流等の動的成分を測定する。生体組織(A)に対して照射するレーザ光Pを伝送し射出端(8a)から射出する第1の伝送路(8)と、生体組織(A)における動的成分の情報を含む生体組織(A)からの散乱光(R)を入射端(9a)において受光して伝送する第2の伝送路(9)と、射出端(8a)から射出されたレーザ光(P)を屈折させて生体組織(A)に照射するとともに、生体組織(A)からの散乱光(R)を集光して入射端に受光させる、全体として正のパワーを有する光学素子(10)とを備える医療用プローブ(2)と、入射端(9a)で受光した散乱光(R)を検出する光検出部と、動的成分の情報に基づいて血管の有無を判定するプロセッサ(6)とを備える血管判定システムを提供する。

Description

血管判定システム
 本発明は、血管判定システムに関する。
 従来、射出光伝播ファイバを通して生体にレーザ光を照射し、生体からの散乱光を散乱光伝播ファイバを通してフォトダイオードで検出し、ドップラシフトによる散乱光の干渉成分の周波数解析によって血流を測定するレーザ血流計が知られている(例えば、特許文献1参照。)。
特開2008-278983号公報
 しかしながら、特許文献1のレーザ血流計は、センサヘッドを生体の表面に密着させる方式のものであり、血流の測定中には、生体がセンサヘッドに隠れてしまい、血流の大きな血管が発見されても、操作者が血管の位置を視認することができないという不都合がある。
 本発明は、上述した事情に鑑みてなされたものであって、生体組織の表面を隠すことなく生体組織内の血流等の動的成分を測定し、血管の有無を判定することができる血管判定システムを提供することを目的としている。
 上記目的を達成するために本発明は以下の手段を提供する。
 本発明の一態様は、生体組織に対して照射するレーザ光を伝送し射出端から射出する第1の伝送路と、前記生体組織における動的成分の情報を含む該生体組織からの散乱光を入射端において受光して伝送する第2の伝送路と、前記射出端から射出されたレーザ光を屈折させて前記生体組織に照射するとともに、該生体組織からの散乱光を集光して前記入射端に受光させる、全体として正のパワーを有する光学素子とを備える医療用プローブと、前記入射端で受光した前記散乱光を検出する光検出部と、前記動的成分の情報に基づいて血管の有無を判定するプロセッサとを備える血管判定システムである。
 本態様によれば、第1の伝送路の射出端から射出されたレーザ光が正のパワーを有する光学素子により屈折されることにより、射出端から射出された状態よりも小さな拡散角度の光束となって生体組織に照射される。生体組織に入射されたレーザ光は生体組織表面および内部において散乱され、散乱光となって正のパワーを有する光学素子により集光され、第2の伝送路の入射端により受光される。受光された散乱光は、生体組織における動的成分の情報を含んでいるので、ドップラシフトによる散乱光の干渉成分の周波数解析によって生体内における変動を測定することが可能となる。
 この場合において、正のパワーを有する光学素子によりレーザ光の拡散角度を低減しているので、光学素子を生体組織から離間させても、光密度の高いレーザ光を生体組織に照射することができ、入射端により受光される散乱光の強度を向上してSN比を向上し、生体組織における動的成分を精度よく測定することができる。したがって、医療用プローブ自体によって生体組織の表面を覆わずに済むので、操作者が生体組織の表面を視認しながら、その位置における血流等の動的成分を測定することができる。
 上記態様においては、前記射出端と前記入射端とが隣接して配置されていることが好ましい。
 第1の伝送路および第2の伝送路は十分に小径に構成し得るので、射出端と入射端とを隣接させることにより、両者を十分に近接させることができる。例えば、第1の伝送路および第2の伝送路が光ファイバである場合には、クラッドを含む光ファイバの直径まで、射出端と入射端とを近接させることができる。
 これにより、入射端と射出端とを近接させればさせるほど、光学素子より生体組織側において、射出端から射出されたレーザ光の光束と、入射端に入射される散乱光の光束との主光線の角度を浅くすることができる。これにより、光束径が低減された光束どうしが重なり合う領域、すなわち、血流等の動的成分を測定可能な医療用プローブと生体組織との距離範囲を大きく確保することができ、使い勝手を向上することができる。
 また、前記第1の伝送路および前記第2の伝送路が、マルチコア光ファイバの別個のコアであってもよい。
 マルチコア光ファイバは、クラッドを共通化してコアどうしが近接しているので、別個の光ファイバを用いる場合と比較して、射出端と入射端とをより近接させることができ、光学素子よりも生体組織側において、レーザ光の光束と散乱光の光束とが重なり合う領域をより大きく確保することができる。
 また、上記態様においては、前記射出端から射出されたレーザ光の光束と、前記入射端により受光される前記散乱光の光束とが前記光学素子に向かって互いに離れる方向に、前記レーザ光および前記散乱光の少なくとも一方を偏向する光偏向部を備えていてもよい。
 光学素子のパワーが大きい場合、射出端に光学素子を近接して配置でき、射出端から射出されたレーザ光の広がりが比較的小さい状態に屈折されるので、生体組織に照射されるレーザ光の光束径を抑え、光密度を高めてSN比を改善できる反面、光学素子の瞳位置も光学素子に近接するため、光学素子から離れた位置に生体組織が配置されたときのレーザ光の光束と散乱光の光束との重なりは小さくなる。
 一方、光学素子のパワーが小さい場合、射出端から光学素子を離す必要があり、光学素子の瞳位置も光学素子から離れた位置に配置されるため、生体組織の位置におけるレーザ光の光束と散乱光の光束との重なりを大きく確保できる反面、射出端から射出されたレーザ光が大きく広がった位置で屈折するので、生体組織に照射されるレーザ光の光束径が大きくなり、SN比が低下する。
 本態様によれば、射出端および入射端と光学素子との間のレーザ光の光束と散乱光の光束とが、光学素子に向かって離れる方向に、レーザ光および散乱光の少なくとも一方が光偏向部により偏向され、各光束が光学素子を通過する位置が軸外方向に移動するので、光学素子のパワーを大きくして、生体組織に照射されるレーザ光の光束径を抑えつつ、光学素子の瞳位置を生体組織側にずらして、光学素子から離れた位置に生体組織が配置されたときのレーザ光の光束と散乱光の光束との重なりを大きく確保することができる。これにより、検出感度を向上することができる。
 また、上記態様においては、前記光偏向部が、前記射出端および前記入射端の少なくとも一方と前記光学素子との間に配置された負のパワーを有するフィールドレンズであってもよい。
 このようにすることで、フィールドレンズによって簡易に光束を偏向し、生体組織に照射されるレーザ光の光束径を抑えつつ、光学素子から離れた位置に生体組織が配置されたときのレーザ光の光束と散乱光の光束との重なりを大きく確保し、測定感度を向上することができる。
 また、上記態様においては、前記光偏向部が、前記射出端および前記入射端の少なくとも一方と前記光学素子との間に配置されたプリズムであってもよい。
 このようにすることで、プリズムによって簡易に光束を偏向し、生体組織に照射されるレーザ光の光束径を抑えつつ、光学素子から離れた位置に生体組織が配置されたときのレーザ光の光束と散乱光の光束との重なりを大きく確保し、測定感度を向上することができる。
 また、上記態様においては、前記射出端および前記入射端の少なくとも一方が、先端に向かって他方から離れる方向に傾斜するように、斜めに研磨されていてもよい。
 このようにすることで、射出端から射出されるレーザ光の光束および入射端に入射される散乱光の光束が、光学素子に向かって互いに離れる方向に向かうように、射出端から射出時にレーザ光を偏向し、あるいは、入射端への入射時に散乱光を偏向させることができる。これにより、光学素子から離れた位置に配置された生体組織に対しても測定感度を向上することができる。
 また、上記態様においては、前記射出端および前記入射端の少なくとも一方が、他方とは反対側に向かうように前記第1の伝送路または前記第2の伝送路が湾曲させられていてもよい。
 このようにすることで、射出端からのレーザ光の射出方向自体あるいは入射端への散乱光の入射方向自体によって、射出端から射出されるレーザ光の光束および入射端に入射される散乱光の光束を、光学素子に向かって互いに離れる方向に指向させることができる。
 本発明によれば、生体組織の表面を隠すことなく生体組織内の血流等の動的成分を測定し、血管の有無を判定することができるという効果を奏する。
本発明の一実施形態に係る医療用プローブを備える測定システムを示す模式的な全体構成図である。 図1の医療用プローブの先端部および、第1のレーザ光と散乱光との光束の位置関係を示す図である。 図1の医療用プローブに備えられる照明用光ファイバと検出用光ファイバの配置を示す正面図である。 図3の変形例に備えられるマルチコア光ファイバを示す正面図である。 図1の医療用プローブにおける光束の重複範囲と光ファイバの中心間距離との関係を説明する図である。 図1の医療用プローブの変形例であって、負のパワーを有するフィールドレンズを備えた医療用プローブの先端部および、第1のレーザ光と散乱光との光束の位置関係を示す図である。 図6の医療用プローブにおける光束の重複範囲と光ファイバの中心間距離との関係を説明する図である。 図1の医療用プローブの変形例であって、プリズムを備えた光ファイバの先端部を示す縦断面図である。 図8のプリズムの方向を異ならせた光ファイバの先端部を示す縦断面図である。 図1の医療用プローブの変形例であって、光ファイバの射出端および入射端を斜めに研磨した光ファイバの先端部を示す縦断面図である。 図1の医療用プローブの変形例であって、光ファイバを湾曲させて射出端および入射端を斜めに配置した光ファイバの先端部を示す縦断面図である。
 本発明の一実施形態に係る医療用プローブ2について、図面を参照して以下に説明する。
 本実施形態に係る医療用プローブ2は、図1に示される測定システム(血管判定システム)1に備えられている。
 この測定システム1は、本実施形態に係る医療用プローブ2と、該医療用プローブ2に供給する第1のレーザ光Pを発生する測定用光源3および第2のレーザ光Qを発生する表示用光源4と、医療用プローブ2により受光された散乱光Rを検出する光検出器(光検出部)5と、該光検出器5により検出された散乱光Rの強度情報を処理して血管Bの有無を判定するプロセッサ6とを備えている。
 第1のレーザ光Pは、生体組織A内部への進達度の高い近赤外または赤外の波長を有するレーザ光である。
 第2のレーザ光Qは、可視の波長帯域を有するレーザ光である。生体組織Aは赤色であるため、視認性を向上するため、第2のレーザ光Qとしては緑色あるいは青色の波長帯域を有するレーザ光であることが好ましい。
 光検出器5は、例えば、フォトダイオードであり、散乱光Rの光量に応じた強度の信号を出力するようになっている。
 プロセッサ6は、光検出器5から出力された信号を高速フーリエ変換処理して周波数特性を求め、該周波数特性を解析することによって、太い血管Bの有無を判定し、太い血管Bが存在すると判定された場合には、表示用光源4を作動させて第2のレーザ光Qを医療用プローブ2に供給するようになっている。図中、符号7は、第1のレーザ光Pを伝播する照明用光ファイバ8に、表示用光源4からの第2のレーザ光Qを入射させる光カプラである。
 本実施形態に係る医療用プローブ2は、図2に示されるように、測定用光源3に接続され第1のレーザ光Pを伝播する照明用光ファイバ(第1の伝送路)8と、光検出器5に接続され生体組織Aからの散乱光Rを伝播する検出用光ファイバ(第2の伝送路)9と、照明用光ファイバ8の射出端8aおよび検出用光ファイバ9の入射端9aに対して間隔をあけて配置された正のパワーを有する集光レンズ(光学素子)10とを備えている。
 照明用光ファイバ8は、その長手軸に直交する射出端8aを備えている。測定用光源3または表示用光源4から伝送されてきた第1のレーザ光Pまたは第2のレーザ光Qは、射出端8aから所定の開口数の拡散角度をなして射出されるようになっている。
 また、検出用光ファイバ9は、その長手軸に直交する入射端9aを備えている。生体組織Aからの散乱光Rのうち、集光レンズ10によって集光された散乱光Rが、所定の開口数の収斂角度をなして入射端9aに入射され、検出用光ファイバ9によって光検出器5まで伝播されるようになっている。
 照明用光ファイバ8と検出用光ファイバ9とは、図2および図3に示されるように、少なくとも射出端8aおよび入射端9aの近傍の領域においてその側面を密着させることにより、射出端8aと入射端9aとを同一平面内に隣接させて配置している。これにより、射出端8aから射出されるレーザ光P,Qと入射端9aに入射する散乱光Rとは、射出端8aおよび入射端9aが配置された平面と集光レンズ10との間において、光ファイバ8,9の直径d程度の間隔をあけて近接した略平行な中心軸に沿う光束となる。
 本実施形態においては、集光レンズ10は、照明用光ファイバ8の射出端8aおよび検出用光ファイバ9の入射端9aが配置された平面から集光レンズ10の焦点距離だけ離れた位置に配置されている。これにより、照明用光ファイバ8の射出端8aから射出されたレーザ光P,Qは集光レンズ10によって屈折されることにより略平行光束となって生体組織Aに照射されるようになっている。
 一方、生体組織Aからの散乱光Rは、所定の中心軸に沿って略平行光束をなして集光レンズ10に入射するもののみが、検出用光ファイバ9の入射端9aに入射されるようになっている。
 このように構成された本実施形態に係る医療用プローブ2の作用について以下に説明する。
 本実施形態に係る医療用プローブ2を用いて生体組織Aの内部に存在する血管Bの測定を行うには、図1に示されるように、医療用プローブ2を患者の体内に挿入し、先端部を測定したい生体組織Aの表面に対して、間隔をあけて対向させて配置する。
 このとき、別途体内に挿入した内視鏡(図示略)によって、医療用プローブ2が対向している領域近傍の生体組織Aの表面を撮影し、モニタ(図示略)に表示しておく。
 この状態で、測定用光源3を作動させて第1のレーザ光Pを発生させる。測定用光源3において発生した第1のレーザ光Pは、該測定用光源3に接続する照明用光ファイバ8内を医療用プローブ2の先端部近傍まで伝播される。照明用光ファイバ8により伝播されてきた第1のレーザ光Pは照明用光ファイバ8の射出端8aから射出され、正のパワーを有する集光レンズ10によって屈折されて略平行光となった状態で生体組織Aに照射される。
 生体組織Aに照射された第1のレーザ光Pは、生体組織Aの表面および内部において散乱し、集光レンズ10によって集光された散乱光Rが検出用光ファイバ9の入射端9aに入射され、検出用光ファイバ9によって伝播されて光検出器5により検出される。光検出器5からは、検出された散乱光Rの強度に応じた信号が出力される。出力された信号はプロセッサ6において高速フーリエ変換されることにより、周波数特性が求められる。
 生体組織A内に大きな血管Bが存在する場合には、散乱光Rには血管B内における血流の動的成分の情報が含まれているので、ドップラシフトにより、散乱光Rに含まれる平均周波数が高くなるように周波数特性が変化する。プロセッサ6においては、この平均周波数が所定の閾値より高い場合に、大きな血管Bが存在すると判定して、表示用光源4から第2のレーザ光Qを射出させる。
 表示用光源4から射出された第2のレーザ光Qは、光カプラ7によって照明用光ファイバ8に入射され、射出端8aから生体組織Aに向けて照射される。第2のレーザ光Qは操作者により視認可能な可視のレーザ光であるため、操作者はモニタ表示されている生体組織Aの表面における色の変化によって内部の血管Bの存在を認識することができる。
 この場合において、本実施形態に係る医療用プローブ2によれば、照明用光ファイバ8の射出端8aから所定の開口数で拡散する第1のレーザ光Pを正のパワーを有する集光レンズ10によって略平行光に屈折するので、医療用プローブ2から生体組織Aまでの間隔が大きく開いても、第1のレーザ光Pの光密度を低下させることなく、生体組織Aに照射することができ、大きな強度の散乱光Rを発生させることができる。
 第1のレーザ光Pが生体組織Aに照射されることにより、生体組織Aにおいて散乱する散乱光R、特に生体組織Aの内部まで進達して散乱する散乱光Rは、第1のレーザ光Pの照射領域近傍において最も強度が高くなる。検出用光ファイバ9の入射端9aは、照明用光ファイバ8の射出端8aに可能な限り近接させて配置されているので、生体組織Aからの散乱光Rのうち、第1のレーザ光Pの光束とほぼ同等の経路を辿って戻る散乱光Rが入射端9aに入射する。
 すなわち、本実施形態に係る医療用プローブ2によれば、入射端9aと射出端8aとを近接させることで、集光レンズ10より生体組織A側において、射出端8aから射出された第1のレーザ光Pの光束の主光線と、入射端9aに入射される散乱光Rの光束の主光線との角度を浅くすることができる。これにより、第1のレーザ光Pの生体組織Aにおける照射領域と、入射端9aに入射させることができる強度の高い散乱光Rの発生領域とを光軸方向の各位置において、広い範囲にわたって重複させることができる。
 その結果、生体組織Aと医療用プローブ2との間隔を変えても、比較的大きな強度の散乱光Rを検出し続けることができ、SN比を向上して高精度の測定を行うことができるという利点がある。生体組織Aに対する医療用プローブ2の距離を厳密に設定せずに済むので、使い勝手を向上することができる。
 なお、本実施形態においては、2本の光ファイバ8,9を側面を密着させて隣接させることで、照明用光ファイバ8の射出端8aと検出用光ファイバ9の入射端9aとを最大限に近接させることとしたが、これに代えて、図4に示されるように、共通のクラッド内に複数のコア11,12を有するマルチコア光ファイバ13の隣接するコア11,12によって第1の伝送路および第2の伝送路を構成してもよい。これにより、独立の光ファイバ8,9を隣接させる場合と比較して射出端8aと入射端9aとをさらに近接させることができ、第1のレーザ光Pの光束の主光線と散乱光Rの光束の主光線との角度をさらに浅くすることができる。
 また、本実施形態においては、正のパワーを有する光学素子として単一の集光レンズ10を採用した例を示したが、これに代えて、複数のレンズを備えて、全体として正のパワーを有することとなるレンズ群を採用してもよい。
 また、図5に示されるように、第1の伝送路の射出端8aと第2の伝送路の入射端9aとの中心間距離Yは、以下の条件式を満たすことが好ましい。
 Y<(NAi+NAd)×Fp2/(Xn-Fp)     (1)
 ここで、
 Fpは集光レンズ10の焦点距離、
 NAiは照明用光ファイバ8の開口数(NA)、
 NAdは検出用光ファイバ9の開口数(NA)、
 Xnは血管検出に必要なプローブ先端から物体までの最大距離
である。
 条件式(1)は以下の条件式から求められる。
 まず、集光レンズ10の位置で第1のレーザ光Pの光束と散乱光Rの光束とが重なる条件は、
 0.5(Dif+Ddf)<Y<(NAi+NAd)・Fp    (2)
である。
 ここで、
 Difは照明用光ファイバ8の直径、
 Ddfは検出用光ファイバ9の直径
である。
 また、両光束が重ならなくなる位置Xと光ファイバ8,9の中心間距離Yとの関係は、
 Y=(Di+Dd)・Fp/(2X)=(NAi+NAd)・Fp2/X    (3)
である。
 ここで、
 Xは集光レンズ10の生体組織A側の瞳位置から両光束が重ならなくなる位置までの距離、
 Diは第1のレーザ光Pの光束径、
 Ddは散乱光Rの光束径
である。
 両光束が重なる領域の長さをXwとすると、
 Xw=X+Fp       (4)
である。
 ここで、Xwは集光レンズ10から両光束が重ならなくなる位置までの距離である。
 条件式(3)、(4)から、
 Y=(NAi+NAd)×Fp2/(Xw-Fp)
となり、長さXwを最大距離Xnに置き換えることで条件式(1)が導かれる。
 また、本実施形態においては、射出端8aから射出された第1のレーザ光Pを集光レンズ10によって略平行光に屈折させることとしたが、これに代えて、射出端8aから射出された第1のレーザ光Pの拡散角度より小さい拡散角度で拡散する光、あるいは、平行光に近い収斂光に屈折させることにしてもよい。
 また、照明用光ファイバ8と検出用光ファイバ9とは同じ光ファイバによって構成してもよいが、散乱光Rをより広い範囲から検出するために、検出用光ファイバ9としては照明用光ファイバ8より大きな開口数を有する光ファイバを採用してもよい。
 また、本実施形態に係る医療用プローブ2では、射出端8aから射出された第1のレーザ光Pを直接、集光レンズ10によって屈折させ、集光レンズ10によって集光された散乱光Rを直接、入射端9aに入射させることとしたが、これに代えて、図6に示されるように、射出端8aおよび入射端9aと集光レンズ10との間に、負のパワーを有するフィールドレンズ(光偏向部)14を配置してもよい。
 このようにすることで、射出端8aから射出される第1のレーザ光Pの光束の主光線と集光レンズ10により屈折されてフィールドレンズ14に入射される散乱光Rの光束の主光線とが、フィールドレンズ14から集光レンズ10に向かって広がるように角度をなして配置される。その結果、集光レンズ10の瞳位置は集光レンズ10の焦点位置よりも生体組織A側に移動する。
 すなわち、集光レンズ10から、より離れた位置で両光束が交差するように配置されるので、集光レンズ10の正のパワーを大きくして光束径を小さくして生体組織Aに照射される第1のレーザ光Pの光束径を抑えることにより光密度を高めてSN比を改善する場合にも、集光レンズ10の瞳位置が集光レンズ10に近接して第1のレーザ光Pの光束と散乱光Rの光束との重なる範囲が狭くなることを防止することができる。これにより、散乱光Rの検出感度を向上しかつ使い勝手を向上することができるという利点がある。
 射出端8aおよび入射端9aと集光レンズ10との間に負のパワーを有するフィールドレンズ14を配置した場合には、図7に示されるように、条件式(2)は以下の通りとなる。
 0.5(Dif+Ddf)<Y<(NAi+NAd-α)・Fp    (2)′
である。
 ここで、
 αは照明用光ファイバ8から射出される第1のレーザ光Pの主光線と、検出用光ファイバ9に入射する散乱光Rの主光線との角度であり、
 α=|Y/Ff|
である。
 ここで、Ffは、フィールドレンズ14の焦点距離である。
 両光束が重なる領域の長さXwは、
 Xw=X1+X2+Fp
である。
 ここで、
 X1は集光レンズ10の生体組織A側の焦点から瞳位置までの距離であり、
 X1=|α・Fp2/Y|=|Fp2/Ff|
 X2は集光レンズ10の生体組織A側の瞳位置から両光束が重ならなくなる位置までの距離である。図中、βは集光レンズ10を透過した第1のレーザ光Pの主光線と、検出用光ファイバ9に入射する散乱光Rの主光線との角度である。
 したがって、負のパワーを有するフィールドレンズ14によって光束が重なる領域の長さをX1だけ広げることができる。
 フィールドレンズ14は、第1のレーザ光Pおよび散乱光Rの両方を通過させる位置に配置したが、これに限定されるものではなく、第1のレーザ光Pまたは散乱光Rの少なくとも一方を通過させる位置に配置してもよい。
 また、負のパワーを有するフィールドレンズ14に代えて、図8および図9に示されるようなプリズム15を採用してもよい。プリズム15の斜面15aを光ファイバ8,9からの射出方向に対して傾斜して配置することにより、該斜面15aを透過する際の光の屈折により第1のレーザ光Pおよび散乱光Rを、両光束の主光線が集光レンズ10に向かって広がるように偏向することができ、負のパワーを有するフィールドレンズ14と同等の効果を達成することができる。
 また、フィールドレンズ14やプリズム15を配置することに代えて、図10に示されるように、光ファイバ8,9の射出端8aおよび入射端9aを光ファイバ8,9の長手軸に対して斜めに研磨することにしてもよい。これにより、図8のプリズム15の斜面15aと同様に、光ファイバ8,9の射出端8aおよび入射端9aを形成することができる。
 また、図11に示されるように、光ファイバ8,9の先端を湾曲させて、射出端8aおよび入射端9aを光ファイバ8,9の長手軸に対して斜めに相反する方向に向けることにしてもよい。
 これらの方法によっても、フィールドレンズ14やプリズム15を配置した場合と同等の効果を達成することができる。
 プリズム15の配置、射出端8aまたは入射端9aの研磨あるいは光ファイバ8,9の先端の湾曲は、第1のレーザ光Pおよび散乱光Rの少なくとも一方を通過させる位置に行ってもよい。
 1 測定システム(血管判定システム)
 2 医療用プローブ
 5 光検出器(光検出部)
 6 プロセッサ
 8 照明用光ファイバ(第1の伝送路)
 8a 射出端
 9 検出用光ファイバ(第2の伝送路)
 9a 入射端
 10 集光レンズ(光学素子)
 11,12 コア
 13 マルチコア光ファイバ
 14 フィールドレンズ(光偏向部)
 15 プリズム(光偏向部)
 A 生体組織
 P 第1のレーザ光(レーザ光)
 R 散乱光

Claims (8)

  1.  生体組織に対して照射するレーザ光を伝送し射出端から射出する第1の伝送路と、
     前記生体組織における動的成分の情報を含む該生体組織からの散乱光を入射端において受光して伝送する第2の伝送路と、
     前記射出端から射出されたレーザ光を屈折させて前記生体組織に照射するとともに、該生体組織からの散乱光を集光して前記入射端に受光させる、全体として正のパワーを有する光学素子とを備える医療用プローブと、
     前記入射端で受光した前記散乱光を検出する光検出部と、
     前記動的成分の情報に基づいて血管の有無を判定するプロセッサとを備える血管判定システム。
  2.  前記射出端と前記入射端とが隣接して配置されている請求項1に記載の血管判定システム。
  3.  前記第1の伝送路および前記第2の伝送路が、マルチコア光ファイバの別個のコアである請求項1または請求項2に記載の血管判定システム。
  4.  前記射出端から射出されたレーザ光の光束と、前記入射端により受光される前記散乱光の光束とが前記光学素子に向かって互いに離れる方向に、前記レーザ光および前記散乱光の少なくとも一方を偏向する光偏向部を備える請求項1から請求項3のいずれか一項に記載の血管判定システム。
  5.  前記光偏向部が、前記射出端および前記入射端の少なくとも一方と前記光学素子との間に配置された負のパワーを有するフィールドレンズである請求項4に記載の血管判定システム。
  6.  前記光偏向部が、前記射出端および前記入射端の少なくとも一方と前記光学素子との間に配置されたプリズムである請求項4に記載の血管判定システム。
  7.  前記射出端および前記入射端の少なくとも一方が、先端に向かって他方から離れる方向に傾斜するように、斜めに研磨されている請求項1または請求項2に記載の血管判定システム。
  8.  前記射出端および前記入射端の少なくとも一方が、他方とは反対側に向かうように前記第1の伝送路または前記第2の伝送路が湾曲させられている請求項1または請求項2に記載の血管判定システム。
PCT/JP2016/070473 2015-07-14 2016-07-11 血管判定システム WO2017010465A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017528679A JPWO2017010465A1 (ja) 2015-07-14 2016-07-11 血管判定システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015140682 2015-07-14
JP2015-140682 2015-07-14

Publications (1)

Publication Number Publication Date
WO2017010465A1 true WO2017010465A1 (ja) 2017-01-19

Family

ID=57757405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070473 WO2017010465A1 (ja) 2015-07-14 2016-07-11 血管判定システム

Country Status (2)

Country Link
JP (1) JPWO2017010465A1 (ja)
WO (1) WO2017010465A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784150A (en) * 1986-11-04 1988-11-15 Research Corporation Surgical retractor and blood flow monitor
JPH07286920A (ja) * 1994-04-19 1995-10-31 Mitsubishi Cable Ind Ltd 圧力センサ
JPH10118039A (ja) * 1996-10-21 1998-05-12 Omega Wave Kk レーザー血流計の光ファイバープローブ
JP2002156255A (ja) * 2000-11-21 2002-05-31 Univ Kansai レーザ流速計及びこれに用いられるプローブの製造方法
JP2011527196A (ja) * 2008-07-07 2011-10-27 オリンパスメディカルシステムズ株式会社 血液量センサに用いる異物検出方法および異物検出装置
JP2011527583A (ja) * 2008-07-11 2011-11-04 オリンパスメディカルシステムズ株式会社 血液量センサに用いる較正方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784150A (en) * 1986-11-04 1988-11-15 Research Corporation Surgical retractor and blood flow monitor
JPH07286920A (ja) * 1994-04-19 1995-10-31 Mitsubishi Cable Ind Ltd 圧力センサ
JPH10118039A (ja) * 1996-10-21 1998-05-12 Omega Wave Kk レーザー血流計の光ファイバープローブ
JP2002156255A (ja) * 2000-11-21 2002-05-31 Univ Kansai レーザ流速計及びこれに用いられるプローブの製造方法
JP2011527196A (ja) * 2008-07-07 2011-10-27 オリンパスメディカルシステムズ株式会社 血液量センサに用いる異物検出方法および異物検出装置
JP2011527583A (ja) * 2008-07-11 2011-11-04 オリンパスメディカルシステムズ株式会社 血液量センサに用いる較正方法

Also Published As

Publication number Publication date
JPWO2017010465A1 (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
US9351646B2 (en) Photoacoustic measurement apparatus and probe unit for use therewith, and endoscope
US9351645B2 (en) Photoacoustic measurement apparatus and probe unit for use therewith
US9329124B2 (en) Scattered light measurement apparatus
JPH0551298B2 (ja)
US10149619B2 (en) Measurement probe and biological optical measurement system
JPH09318529A (ja) 光散乱体の光学測定装置
JP5400397B2 (ja) バンドルファイバ及び内視鏡システム
US20110216305A1 (en) Electric distance meter
JP2023041860A (ja) 滲出液の特性評価のための赤外線オトスコープ
JP5565837B2 (ja) 生体光計測用プローブ装置
JP5704827B2 (ja) 蛍光観察装置
WO2017010465A1 (ja) 血管判定システム
US8942523B2 (en) Probe
JP6492107B2 (ja) 測定プローブおよび生体光学測定システム
WO2015025932A1 (ja) 光プローブおよび光学的測定方法
JP5772831B2 (ja) プローブ
JP2017018483A (ja) 医療用プローブ
TWI706768B (zh) 光學系統
WO2016199307A1 (ja) 光学特性検出光学系、測定プローブおよび光学特性検出装置
WO2016002363A1 (ja) 測定装置
JP2013088137A (ja) 散乱係数測定装置およびこれを備える濃度測定装置並びにその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824445

Country of ref document: EP

Kind code of ref document: A1