WO2017010445A1 - 導電材料及び接続構造体 - Google Patents

導電材料及び接続構造体 Download PDF

Info

Publication number
WO2017010445A1
WO2017010445A1 PCT/JP2016/070386 JP2016070386W WO2017010445A1 WO 2017010445 A1 WO2017010445 A1 WO 2017010445A1 JP 2016070386 W JP2016070386 W JP 2016070386W WO 2017010445 A1 WO2017010445 A1 WO 2017010445A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
conductive
electrode
particles
conductive particles
Prior art date
Application number
PCT/JP2016/070386
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
石澤 英亮
敬三 西岡
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020177016241A priority Critical patent/KR20180029945A/ko
Priority to JP2016546857A priority patent/JP6166849B2/ja
Priority to CN201680003614.2A priority patent/CN107077915A/zh
Publication of WO2017010445A1 publication Critical patent/WO2017010445A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83886Involving a self-assembly process, e.g. self-agglomeration of a material dispersed in a fluid

Definitions

  • the present invention relates to a conductive material including conductive particles having solder.
  • the present invention also relates to a connection structure using the conductive material.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder.
  • the anisotropic conductive material may be connected between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), or connected between a semiconductor chip and a flexible printed circuit board (COF ( (Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
  • FOG Glass
  • COF Chip on Film
  • an anisotropic conductive material containing conductive particles is disposed on the glass epoxy substrate. To do.
  • a flexible printed circuit board is laminated, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
  • the following Patent Document 1 describes an anisotropic conductive material including conductive particles and a resin component that cannot be cured at the melting point of the conductive particles.
  • the conductive particles include tin (Sn), indium (In), bismuth (Bi), silver (Ag), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd ), Gallium (Ga), silver (Ag), thallium (Tl), and the like, and alloys of these metals.
  • Patent Document 1 a resin heating step for heating the anisotropic conductive resin to a temperature higher than the melting point of the conductive particles and at which the curing of the resin component is not completed, and a resin component curing step for curing the resin component The electrical connection between the electrodes is described.
  • Patent Document 1 describes that mounting is performed with the temperature profile shown in FIG. In Patent Document 1, the conductive particles melt in a resin component that is not completely cured at a temperature at which the anisotropic conductive resin is heated.
  • Patent Document 2 discloses an adhesive tape that includes a resin layer containing a thermosetting resin, solder powder, and a curing agent, and the solder powder and the curing agent are present in the resin layer. Yes.
  • This adhesive tape is in the form of a film, not a paste.
  • Patent Document 2 discloses a bonding method using the above adhesive tape. Specifically, a first substrate, an adhesive tape, a second substrate, an adhesive tape, and a third substrate are laminated in this order from the bottom to obtain a laminate. At this time, the first electrode provided on the surface of the first substrate is opposed to the second electrode provided on the surface of the second substrate. Moreover, the 2nd electrode provided in the surface of the 2nd board
  • a semiconductor chip having a plurality of connection terminals is disposed so as to face a wiring board having a plurality of electrode terminals, and the electrode terminals of the wiring board and the above-mentioned semiconductor chip
  • a flip chip mounting method for electrically connecting a connection terminal includes (1) a step of supplying a resin containing solder powder and a convection additive onto the surface of the wiring board having the electrode terminals, and (2) the semiconductor chip on the resin surface. (3) a step of heating the wiring substrate to a temperature at which the solder powder melts, and (4) a step of curing the resin after the heating step.
  • a connection body for electrically connecting the electrode terminal and the connection terminal is formed, and in the resin curing step (4), the semiconductor chip is connected to the wiring board. Secure to.
  • solder powder or conductive particles may not be efficiently disposed on the electrodes (lines).
  • the moving speed of the solder powder or conductive particles onto the electrode may be slow.
  • Patent Document 2 there is no specific description of the conductive particles used for the anisotropic conductive material.
  • the copper layer is formed on the surface of the resin particle, and the electroconductive particle in which the solder layer is formed on the surface of this copper layer is used.
  • the central part of the conductive particles is composed of resin particles.
  • the anisotropic conductive material described in Patent Documents 2 and 3 is used, the conductive particles are difficult to be efficiently arranged on the electrodes (lines), and positional displacement between the upper and lower electrodes to be connected may occur. There are things to do.
  • the dispersibility of the conductive particles may be low. For this reason, when the anisotropic conductive material is used after being stored, the conductive particles may be more difficult to be disposed on the electrode (line).
  • the conductive particles include a plurality of conductive particles, a thermosetting compound, and a thermosetting agent, and the conductive particles have solder on an outer surface portion of a conductive portion, and the conductive The conductive particles are provided with a conductive material having an O—Si bond on the outer surface of the solder of the conductive portion.
  • the conductive particles have a Sn—O—Si bond on the outer surface of the solder of the conductive portion.
  • the conductive material is a surface-treated product with a silane coupling agent.
  • the conductive particles have an amino group on the outer surface of the solder of the conductive portion.
  • the conductive particles have a carboxyl group-containing group on the outer surface of the solder of the conductive portion via a Sn—O—Si bond.
  • the conductive particles are solder particles.
  • the conductive particles have an average particle diameter of 1 ⁇ m or more and 60 ⁇ m or less.
  • the content of the conductive particles is 10% by weight to 80% by weight in 100% by weight of the conductive material.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member and the A connection part connecting the second connection target member
  • the material of the connection part is the conductive material described above
  • the first electrode and the second electrode are in the conductive particles
  • a connection structure is provided that is electrically connected by solder.
  • the conductive material according to the present invention includes a plurality of conductive particles, a thermosetting compound, and a thermosetting agent, and the conductive particles have solder on the outer surface portion of the conductive portion, and the conductive Since the particles have an O—Si bond on the outer surface of the solder in the conductive part, the dispersibility of the conductive particles in the conductive material is high, and the solder in the conductive particles is efficiently arranged on the electrode. And the reliability of conduction between the electrodes can be improved.
  • FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention.
  • 2A to 2C are cross-sectional views for explaining each step of an example of a method for manufacturing a connection structure using a conductive material according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a modification of the connection structure.
  • FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material.
  • FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used for the conductive material.
  • FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used for the conductive material.
  • the conductive material according to the present invention includes a plurality of conductive particles, a thermosetting compound, and a thermosetting agent.
  • the conductive particles have a conductive part.
  • the conductive particles have solder on the outer surface portion of the conductive portion. Solder is contained in the conductive part and is a part or all of the conductive part.
  • the conductive particles have an O—Si bond on the outer surface of the solder of the conductive portion.
  • the corrosion of the solder is considerably suppressed.
  • the solder in the conductive particles easily collects between the upper and lower electrodes, and the solder in the conductive particles is removed from the electrode ( Line).
  • a part of the solder in the conductive particles is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be considerably reduced.
  • the electroconductive particle which is not located between the opposing electrodes can be efficiently moved between the opposing electrodes. Therefore, the conduction reliability between the electrodes can be improved.
  • the dispersibility of the conductive particles in the conductive material is high, and the storage stability of the conductive material is excellent.
  • the corrosion of the solder in the conductive particles hardly progresses. For this reason, it is possible to efficiently arrange the solder in the conductive particles on the electrodes regardless of whether the conductive material is stored before or after storage, and the conduction reliability between the electrodes can be improved.
  • the present invention it is possible to prevent displacement between the electrodes.
  • the electrode of the first connection target member and the electrode of the second connection target member Even when the first connection target member and the second connection target member are overlapped in a state where the alignment of the first connection target member and the second connection target member are overlaid, the shift is corrected and the first connection target member electrode and the second connection target are corrected.
  • the electrode of the member can be connected (self-alignment effect).
  • the conductive particles preferably have a Sn—O—Si bond on the outer surface of the solder of the conductive portion.
  • the conductive particles are preferably obtained by surface treatment using a silane coupling agent, and the conductive particles are surface-treated by a silane coupling agent. Preferably it has been treated. That is, the conductive particles are preferably a surface-treated product with a silane coupling agent.
  • the conductive particles may be solder particles.
  • the solder particles are formed of solder.
  • the solder particles have solder on the outer surface portion of the conductive portion.
  • the solder particles are particles in which both the central portion and the outer surface portion of the conductive portion are formed of solder, and both the central portion and the outer surface portion of the conductive portion are solder.
  • the said electroconductive particle may have a base material particle and the electroconductive part arrange
  • the conductive particles including the solder particles are used, the case where the conductive particles including the base particles not formed by the solder and the solder portion arranged on the surface of the base particles are used.
  • the conductive particles are less likely to collect on the electrodes, and the conductive particles that have moved onto the electrodes tend to move out of the electrodes because of the low solderability between the conductive particles. There is a tendency that the effect of suppressing misalignment also becomes low. Therefore, the conductive particles are preferably solder particles formed by solder.
  • the viscosity ( ⁇ 25) at 25 ° C. of the conductive material is preferably 10 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, and further preferably 100 Pa ⁇ s or more. Yes, preferably 800 Pa ⁇ s or less, more preferably 600 Pa ⁇ s or less, and even more preferably 500 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25) can be adjusted as appropriate to the type and amount of the compounding ingredients. Further, the use of a filler can make the viscosity relatively high.
  • the viscosity ( ⁇ 25) can be measured using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) and the like at 25 ° C. and 5 rpm.
  • E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) and the like at 25 ° C. and 5 rpm.
  • the conductive material can be used as a conductive paste and a conductive film.
  • the conductive paste is preferably an anisotropic conductive paste, and the conductive film is preferably an anisotropic conductive film. From the viewpoint of more efficiently disposing the solder in the conductive particles on the electrode, the conductive material is preferably an anisotropic conductive paste.
  • the conductive material is preferably used for electrical connection of electrodes.
  • the conductive material is preferably a circuit connection material.
  • the conductive particles electrically connect the electrodes of the connection target member.
  • the conductive particles have solder on the outer surface portion of the conductive portion.
  • the conductive particles have an O—Si bond on the outer surface of the solder of the conductive portion.
  • a solder component atom constituting the solder
  • the conductive particles have, for example, (solder component) -O-Si bond ((atom constituting the solder) -O-Si bond) on the outer surface of the solder of the conductive portion.
  • the conductive particles are disposed on the outside of the solder of the conductive portion.
  • the surface preferably has a Sn—O—Si bond.
  • a silane coupling agent can be reacted with the hydroxyl group on the solder surface.
  • An O—Si bond can be formed by reacting a hydroxyl group on the surface of the solder with a silane coupling agent.
  • the conductive material is subjected to surface treatment using a silane coupling agent to obtain conductive particles having Sn—O—Si bonds on the outer surface of the solder of the conductive portion, and then thermally cured with the conductive particles. It is preferable that it is obtained by mixing a functional compound and a thermosetting agent.
  • the conductive particles are disposed on the outside of the solder of the conductive portion. It is preferable to have an amino group on the surface.
  • the conductive particles are disposed on the outside of the solder of the conductive portion.
  • the surface has a carboxyl group-containing group via an O—Si bond
  • the outer surface of the solder of the conductive portion has a carboxyl group-containing group via a Sn—O—Si bond. More preferred.
  • the solder aggregating performance is considerably increased.
  • the conductive particles are formed on the surface using a silane coupling agent.
  • a silane coupling agent After the treatment, it is preferably obtained by introducing a carboxyl group-containing group.
  • a carboxyl group-containing group can be introduced into the residue of the silane coupling agent.
  • the conductive particles preferably have a group derived from a silane coupling agent and a carboxyl-containing group, and the solder and the carboxyl group-containing group are bonded via a group derived from the silane coupling agent. Is preferred.
  • the silane coupling agent preferably has an organic functional group and an alkoxy group in one molecule, and the organic functional group is preferably capable of reacting with a compound having a carboxyl group-containing group.
  • the alkoxy group include a methoxy group and an ethoxy group.
  • the silane coupling agent include a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, and a silane coupling agent having an isocyanate group.
  • the silane coupling agent is preferably a silane coupling agent having an amino group.
  • the said silane coupling agent only 1 type may be used and 2 or more types may be used together.
  • this amino group may not be an amino group derived from the silane coupling agent which has an amino group.
  • silane coupling agent having an epoxy group examples include KBM-303, KBM-402, KBM-403, KBE-402 and KBE-403 manufactured by Shin-Etsu Silicone.
  • examples of the silane coupling agent having an amino group examples include KBM-602, KBM-603, KBM-903, and the like.
  • examples of the silane coupling agent having an isocyanate group include KBE-9007.
  • Examples of the compound for introducing the carboxyl group-containing group include levulinic acid, glutaric acid, glycolic acid, succinic acid, malic acid, oxalic acid, malonic acid, adipic acid, 5-ketohexanoic acid, 3-hydroxypropionic acid, 4 -Aminobutyric acid, 3-mercaptopropionic acid, 3-mercaptoisobutyric acid, 3-methylthiopropionic acid, 3-phenylpropionic acid, 3-phenylisobutyric acid, 4-phenylbutyric acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid Hexadecanoic acid, 9-hexadecenoic acid, heptadecanoic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, (9,12,15) -linolenic acid, nonadecanoic acid, arachi
  • the conductive particles and the silane coupling agent are placed in a low-polarity solvent such as toluene to cause a dealcoholization reaction. Methods and the like.
  • FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material.
  • the conductive particles 21 shown in FIG. 4 are solder particles.
  • the conductive particles 21 are entirely formed of solder.
  • the conductive particles 21 do not have base particles in the core, and are not core-shell particles.
  • both the center part and the outer surface part of an electroconductive part are formed with the solder.
  • FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used as a conductive material.
  • the electroconductive particle 31 shown in FIG. 5 is equipped with the base material particle 32 and the electroconductive part 33 arrange
  • the conductive portion 33 covers the surface of the base particle 32.
  • the conductive particles 31 are coated particles in which the surface of the base particle 32 is covered with the conductive portion 33.
  • the conductive portion 33 has a second conductive portion 33A and a solder portion 33B (first conductive portion).
  • the conductive particle 31 includes a second conductive portion 33A between the base particle 32 and the solder portion 33B. Therefore, the conductive particles 31 are composed of the base particle 32, the second conductive portion 33A disposed on the surface of the base particle 32, and the solder portion 33B disposed on the outer surface of the second conductive portion 33A.
  • FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used as a conductive material.
  • the conductive portion 33 in the conductive particle 31 has a two-layer structure.
  • the conductive particle 41 shown in FIG. 6 has a solder part 42 as a single-layer conductive part.
  • the conductive particles 41 include base particles 32 and solder portions 42 disposed on the surfaces of the base particles 32.
  • the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the substrate particles are preferably substrate particles excluding metal, and are preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the substrate particles may be copper particles.
  • the base particle may have a core and a shell disposed on the surface of the core, or may be a core-shell particle.
  • the core may be an organic core, and the shell may be an inorganic shell.
  • the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate , Polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide , Polyacetal, polyimide, polyamideimide, polyether ether Tons, polyether sulfone, divinyl benzene polymer, and divinylbenzene copolymer,
  • polyolefin resins such as polyethylene, polypropylene,
  • the divinylbenzene copolymer examples include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.
  • the polymerizable monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer and And a crosslinkable monomer.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylate compounds such as meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, etc.
  • Oxygen atom-containing (meth) acrylate compounds Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; Acids such as vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate Vinyl ester compounds; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene Etc.
  • Nitrile-containing monomers such as (meth) acrylonitrile
  • Vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether
  • Acids such as vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stea
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) sia Silane-
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • examples of inorganic substances for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black.
  • the inorganic substance is preferably not a metal.
  • the particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core.
  • the core is preferably an organic core.
  • the shell is preferably an inorganic shell.
  • the base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
  • Examples of the material for forming the organic core include the resin for forming the resin particles described above.
  • Examples of the material for forming the inorganic shell include inorganic substances for forming the above-described base material particles.
  • the material for forming the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell by a sol-gel method and then sintering the shell.
  • the metal alkoxide is preferably a silane alkoxide.
  • the inorganic shell is preferably formed of a silane alkoxide.
  • the particle diameter of the core is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 30 ⁇ m or less, particularly preferably 15 ⁇ m or less, and most preferably 10 ⁇ m or less. It is.
  • the particle diameter of the core is not less than the above lower limit and not more than the above upper limit, conductive particles more suitable for electrical connection between electrodes can be obtained, and the base particles can be suitably used for the use of conductive particles. Become.
  • the particle diameter of the core is not less than the lower limit and not more than the upper limit
  • the contact area between the conductive particles and the electrodes is sufficiently large, and Aggregated conductive particles are hardly formed when the conductive layer is formed.
  • the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.
  • the particle diameter of the core means a diameter when the core is a true sphere, and means a maximum diameter when the core is a shape other than a true sphere.
  • the particle diameter of a core means the average particle diameter which measured the core with arbitrary particle diameter measuring apparatuses. For example, a particle size distribution measuring machine using principles such as laser light scattering, electrical resistance value change, and image analysis after imaging can be used.
  • the thickness of the shell is preferably 100 nm or more, more preferably 200 nm or more, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the thickness of the shell is an average thickness per base particle. The thickness of the shell can be controlled by controlling the sol-gel method.
  • the substrate particles are metal particles
  • examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the metal particles are preferably copper particles.
  • the substrate particles are preferably not metal particles.
  • the particle diameter of the substrate particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 1.5 ⁇ m or more, particularly preferably 2 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, more More preferably, it is 30 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 10 ⁇ m or less, particularly preferably 5 ⁇ m or less, and most preferably 3 ⁇ m or less.
  • the particle diameter of the base material particles is equal to or larger than the lower limit, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes can be further improved and the connection is made through the conductive particles.
  • connection resistance between the formed electrodes can be further reduced.
  • the particle diameter of the substrate particles is not more than the above upper limit, the conductive particles are sufficiently compressed, the connection resistance between the electrodes can be further reduced, and the distance between the electrodes is further reduced. Can do.
  • the particle diameter of the substrate particles indicates a diameter when the substrate particles are spherical, and indicates a maximum diameter when the substrate particles are not spherical.
  • the particle diameter of the substrate particles is particularly preferably 2 ⁇ m or more and 5 ⁇ m or less.
  • the distance between the electrodes can be further reduced, and even if the thickness of the conductive layer is increased, small conductive particles can be obtained. Can do.
  • the method for forming the conductive part on the surface of the base particle and the method for forming the solder part on the surface of the base particle or the surface of the second conductive part are not particularly limited.
  • Examples of the method for forming the conductive portion and the solder portion include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, And a method of coating the surface of the substrate particles with a paste containing metal powder or metal powder and a binder.
  • a method using electroless plating, electroplating, or physical collision is preferable.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the method based on the physical collision, for example, a sheeter composer (manufactured by Tokuju Kogakusha Co., Ltd.) or the like is used.
  • the melting point of the base material particles is preferably higher than the melting points of the conductive part and the solder part.
  • the melting point of the substrate particles is preferably higher than 160 ° C, more preferably higher than 300 ° C, still more preferably higher than 400 ° C, and particularly preferably higher than 450 ° C.
  • the melting point of the substrate particles may be less than 400 ° C.
  • the melting point of the substrate particles may be 160 ° C. or less.
  • the softening point of the substrate particles is preferably 260 ° C. or higher.
  • the softening point of the substrate particles may be less than 260 ° C.
  • the conductive particles may have a single layer solder portion.
  • the conductive particles may have a plurality of layers of conductive parts (solder part, second conductive part). That is, in the conductive particles, two or more conductive portions may be stacked. When the conductive part has two or more layers, the conductive particles preferably have solder on the outer surface portion of the conductive part.
  • the solder is preferably a metal (low melting point metal) having a melting point of 450 ° C. or lower.
  • the solder part is preferably a metal layer (low melting point metal layer) having a melting point of 450 ° C. or lower.
  • the low melting point metal layer is a layer containing a low melting point metal.
  • the solder in the conductive particles is preferably metal particles having a melting point of 450 ° C. or lower (low melting point metal particles).
  • the low melting point metal particles are particles containing a low melting point metal.
  • the low melting point metal is a metal having a melting point of 450 ° C. or lower.
  • the melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower.
  • the solder in the conductive particles preferably contains tin.
  • the content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably. It is 70% by weight or more, particularly preferably 90% by weight or more.
  • the tin content is determined using a high-frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). It can be measured.
  • ICP-AES high-frequency inductively coupled plasma emission spectrometer
  • EDX-800HS fluorescent X-ray analyzer
  • the solder is melted and joined to the electrodes, and the solder conducts between the electrodes. For example, since the solder and the electrode are not in point contact but in surface contact, the connection resistance is lowered.
  • the use of conductive particles having solder on the outer surface of the conductive portion increases the bonding strength between the solder and the electrode, and as a result, the solder and the electrode are more unlikely to peel off, and the conduction reliability is effective. To be high.
  • the low melting point metal constituting the solder part and the solder particles is not particularly limited.
  • the low melting point metal is preferably tin or an alloy containing tin.
  • the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy.
  • the low melting point metal is preferably tin, a tin-silver alloy, a tin-silver-copper alloy, a tin-bismuth alloy, or a tin-indium alloy because of its excellent wettability with respect to the electrode. More preferred are a tin-bismuth alloy and a tin-indium alloy.
  • the material constituting the solder is preferably a filler material having a liquidus of 450 ° C. or lower based on JIS Z3001: Welding terms.
  • the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. Of these, a tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic) which is low-melting and lead-free is preferable. That is, the solder preferably does not contain lead, and is preferably a solder containing tin and indium or a solder containing tin and bismuth.
  • the solder in the conductive particles is nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese. Further, it may contain a metal such as chromium, molybdenum and palladium. Moreover, from the viewpoint of further increasing the bonding strength between the solder and the electrode, the solder in the conductive particles preferably contains nickel, copper, antimony, aluminum, or zinc.
  • the content of these metals for increasing the bonding strength is preferably 0% in 100% by weight of the solder in the conductive particles. 0.0001% by weight or more, preferably 1% by weight or less.
  • the melting point of the second conductive part is preferably higher than the melting point of the solder part.
  • the melting point of the second conductive part is preferably more than 160 ° C, more preferably more than 300 ° C, still more preferably more than 400 ° C, still more preferably more than 450 ° C, particularly preferably more than 500 ° C, most preferably Preferably it exceeds 600 degreeC. Since the solder part has a low melting point, it melts during conductive connection. It is preferable that the second conductive portion does not melt during conductive connection.
  • the conductive particles are preferably used by melting solder, preferably used by melting the solder part, and used without melting the solder part and melting the second conductive part. It is preferred that Since the melting point of the second conductive part is higher than the melting point of the solder part, it is possible to melt only the solder part without melting the second conductive part during conductive connection.
  • the absolute value of the difference between the melting point of the solder part and the melting point of the second conductive part exceeds 0 ° C, preferably 5 ° C or more, more preferably 10 ° C or more, still more preferably 30 ° C or more, particularly preferably Is 50 ° C. or higher, most preferably 100 ° C. or higher.
  • the second conductive part preferably contains a metal.
  • the metal which comprises the said 2nd electroconductive part is not specifically limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
  • the second conductive part is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer or a gold layer, and even more preferably a copper layer.
  • the conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer or a gold layer, and still more preferably have a copper layer.
  • the thickness of the solder part is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and still more preferably 0.3 ⁇ m or less.
  • the thickness of the solder part is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained, and the conductive particles are not too hard, and the conductive particles are sufficiently deformed at the time of connection between the electrodes. .
  • the average particle diameter of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 3 ⁇ m or more, particularly preferably 5 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, and much more. It is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, particularly preferably 15 ⁇ m or less, and most preferably 10 ⁇ m or less.
  • the average particle diameter of the conductive particles is particularly preferably 3 ⁇ m or more and 30 ⁇ m or less.
  • the “average particle size” of the conductive particles indicates a number average particle size.
  • the average particle diameter of the conductive particles is obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating an average value, or performing laser diffraction particle size distribution measurement.
  • the coefficient of variation of the particle diameter of the conductive particles is preferably 5% or more, more preferably 10% or more, preferably 40% or less, more preferably 30% or less.
  • the variation coefficient of the particle diameter is not less than the above lower limit and not more than the above upper limit, the solder can be more efficiently disposed on the electrode.
  • the coefficient of variation of the particle diameter of the conductive particles may be less than 5%.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of conductive particles Dn: Average value of particle diameter of conductive particles
  • the shape of the conductive particles is not particularly limited.
  • the conductive particles may have a spherical shape or a shape other than a spherical shape such as a flat shape.
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 1% by weight or more, more preferably 2% by weight or more, still more preferably 10% by weight or more, particularly preferably 20% by weight or more, most preferably. It is 30% by weight or more, preferably 80% by weight or less, more preferably 60% by weight or less, and still more preferably 50% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be arranged more efficiently on the electrodes, and it is easy to arrange many conductive particles between the electrodes. Therefore, the conduction reliability is further enhanced. From the viewpoint of further improving the conduction reliability, the content of the conductive particles is preferably large.
  • thermosetting compound thermosetting component
  • the thermosetting compound is a compound that can be cured by heating.
  • the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • an epoxy compound is preferable from the viewpoint of further improving the curability and viscosity of the conductive material and further improving the connection reliability.
  • the said thermosetting compound only 1 type may be used and 2 or more types may be used together.
  • the above-mentioned epoxy compound includes an aromatic epoxy compound. Crystalline epoxy compounds such as resorcinol-type epoxy compounds, naphthalene-type epoxy compounds, biphenyl-type epoxy compounds, and benzophenone-type epoxy compounds are preferred.
  • An epoxy compound that is solid at normal temperature (23 ° C.) and has a melting temperature equal to or lower than the melting point of the solder is preferable. The melting temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and preferably 40 ° C. or higher.
  • the content of the thermosetting compound in 100% by weight of the conductive material is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 99% by weight or less. More preferably, it is 98 weight% or less, More preferably, it is 90 weight% or less, Most preferably, it is 80 weight% or less. From the viewpoint of further improving the impact resistance, it is preferable that the content of the thermosetting compound is large.
  • thermosetting agent thermosetting component
  • the thermosetting agent thermosets the thermosetting compound.
  • examples of the thermosetting agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents, and other thiol curing agents, acid anhydrides, thermal cation initiators (thermal cation curing agents), and thermal radical generators. It is done. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.
  • An imidazole curing agent, a thiol curing agent, or an amine curing agent is preferable because the conductive material can be cured more rapidly at a low temperature. Moreover, since a storage stability becomes high when a thermosetting compound and the said thermosetting agent are mixed, a latent hardening agent is preferable.
  • the latent curing agent is preferably a latent imidazole curing agent, a latent thiol curing agent, or a latent amine curing agent.
  • the said thermosetting agent may be coat
  • the imidazole curing agent is not particularly limited, and 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.
  • the thiol curing agent is not particularly limited, and examples thereof include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate. .
  • the amine curing agent is not particularly limited, and hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5].
  • examples include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, and diaminodiphenylsulfone.
  • thermal cation initiator examples include iodonium cation curing agents, oxonium cation curing agents, and sulfonium cation curing agents.
  • examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate.
  • examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate.
  • the sulfonium-based cationic curing agent examples include tri-p-tolylsulfonium hexafluorophosphate.
  • the thermal radical generator is not particularly limited, and examples thereof include azo compounds and organic peroxides.
  • examples of the azo compound include azobisisobutyronitrile (AIBN).
  • examples of the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.
  • the reaction initiation temperature of the thermosetting agent is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, still more preferably 150 ° C. Hereinafter, it is particularly preferably 140 ° C. or lower.
  • the reaction start temperature of the thermosetting agent is not less than the above lower limit and not more than the above upper limit, the solder is more efficiently arranged on the electrode.
  • the reaction initiation temperature of the thermosetting agent is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
  • the reaction initiation temperature of the thermosetting agent is preferably higher than the melting point of the solder, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably.
  • the reaction start temperature of the thermosetting agent means the temperature at which the exothermic peak of DSC starts to rise.
  • the content of the thermosetting agent is not particularly limited.
  • the content of the thermosetting agent with respect to 100 parts by weight of the thermosetting compound is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight or less, more preferably 75 parts by weight or less.
  • the content of the thermosetting agent is not less than the above lower limit, it is easy to sufficiently cure the conductive material.
  • the content of the thermosetting agent is not more than the above upper limit, it is difficult for an excess thermosetting agent that did not participate in curing after curing to remain, and the heat resistance of the cured product is further enhanced.
  • the conductive material preferably contains a flux.
  • flux By using flux, the solder can be more effectively placed on the electrode. Moreover, the connection resistance between electrodes becomes still lower by the expression of the flux effect.
  • the flux is not particularly limited.
  • a flux generally used for soldering or the like can be used. Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Etc.
  • the said flux only 1 type may be used and 2 or more types may be used together.
  • Examples of the molten salt include ammonium chloride.
  • Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid.
  • Examples of the pine resin include activated pine resin and non-activated pine resin.
  • the flux is preferably an organic acid having two or more carboxyl groups, pine resin.
  • the flux may be an organic acid having two or more carboxyl groups, or pine resin.
  • the above rosins are rosins whose main component is abietic acid.
  • the flux is preferably rosins, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.
  • the active temperature (melting point) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, even more preferably 160. ° C or lower, more preferably 150 ° C or lower, still more preferably 140 ° C or lower.
  • the active temperature (melting point) of the flux is preferably 80 ° C. or higher and 190 ° C. or lower.
  • the activation temperature (melting point) of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
  • the flux having an active temperature (melting point) of 80 ° C. or higher and 190 ° C. or lower includes succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point) 104 ° C.), dicarboxylic acids such as suberic acid (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), malic acid (melting point 130 ° C.) and the like.
  • the boiling point of the flux is preferably 200 ° C. or lower.
  • the melting point of the flux is preferably higher than the melting point of the solder, more preferably 5 ° C or higher, and even more preferably 10 ° C or higher. .
  • the melting point of the flux is preferably higher than the reaction start temperature of the thermosetting agent, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably.
  • the flux may be dispersed in the conductive material or may be adhered on the surface of the conductive particles.
  • the flux is preferably a flux that releases cations by heating.
  • a flux that releases cations upon heating the solder can be placed more efficiently on the electrode.
  • thermal cation initiator thermal cation curing agent
  • the content of the flux is preferably 0.5% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less.
  • the conductive material may not contain flux.
  • the flux content is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode, and the oxide film formed on the surface of the solder and the electrode is more effective. Can be removed.
  • a filler may be added to the conductive material.
  • the filler may be an organic filler or an inorganic filler. By adding the filler, the distance at which the solder aggregates can be suppressed, and the conductive particles can be uniformly aggregated over all the electrodes of the substrate.
  • the filler content is preferably 0% by weight (not contained) or more, preferably 5% by weight or less, more preferably 2% by weight or less, and still more preferably 1% by weight or less. is there.
  • the content of the filler is not less than the above lower limit and not more than the above upper limit, the solder is more efficiently arranged on the electrode.
  • the conductive material may be, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, and a lubricant as necessary.
  • various additives such as an antistatic agent and a flame retardant may be included.
  • a connection structure according to the present invention includes a first connection target member having at least one first electrode on the surface, a second connection target member having at least one second electrode on the surface, and the first The connection object member and the connection part which has connected the said 2nd connection object member are provided.
  • the material of the connection portion is the conductive material described above, and the connection portion is formed of the conductive material described above.
  • the first electrode and the second electrode are electrically connected by solder in the conductive particles.
  • the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
  • the manufacturing method of the connection structure according to the present invention includes the step of disposing the conductive material on the surface of the first connection target member having at least one first electrode on the surface, using the conductive material described above.
  • the second connection object member having at least one second electrode on the surface opposite to the first connection object member side of the conductive material, the first electrode and the second electrode
  • the first connection target member and the second connection target member are connected by heating the conductive material to a temperature equal to or higher than the melting point of the solder in the conductive particles, and the step of arranging the electrodes to face each other.
  • the conductive material is heated above the curing temperature of the thermosetting compound.
  • connection structure according to the present invention since the specific conductive material is used, the solder in the conductive particles gathers between the first electrode and the second electrode. It is easy and the solder can be efficiently arranged on the electrode (line). In addition, a part of the solder is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability.
  • the conductive material is not a conductive film, A conductive paste is preferred.
  • the thickness of the solder part between the electrodes is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the solder wetted area on the surface of the electrode is preferably 50% or more, more preferably 70% or more, and preferably 100% or less.
  • the second connection target member in the step of arranging the second connection target member and the step of forming the connection portion, no pressure is applied, and the second connection is applied to the conductive material.
  • the weight of the target member is preferably added, and in the step of arranging the second connection target member and the step of forming the connection portion, the conductive material exceeds the weight force of the second connection target member. It is preferable that no pressure is applied.
  • the uniformity of the amount of solder can be further enhanced in the plurality of solder portions.
  • the thickness of the solder portion can be increased more effectively, so that a large amount of solder is easily collected between the electrodes, and the solder can be arranged more efficiently on the electrodes (lines).
  • solder is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be further reduced. Therefore, the conduction reliability between the electrodes can be further enhanced. In addition, the electrical connection between the laterally adjacent electrodes that should not be connected can be further prevented, and the insulation reliability can be further improved.
  • a conductive paste is used instead of a conductive film, it becomes easy to adjust the thicknesses of the connection part and the solder part depending on the amount of the conductive paste applied.
  • the conductive film in order to change or adjust the thickness of the connection portion, it is necessary to prepare a conductive film having a different thickness or to prepare a conductive film having a predetermined thickness. There is.
  • the conductive film in the conductive film, it tends to be difficult to sufficiently lower the melt viscosity of the conductive film at the melting temperature of the solder, and there is a problem that the aggregation of the solder is easily inhibited.
  • FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention.
  • connection structure 1 shown in FIG. 1 is a connection that connects a first connection target member 2, a second connection target member 3, and the first connection target member 2 and the second connection target member 3.
  • Part 4 is formed of the conductive material described above.
  • the conductive material includes a plurality of conductive particles, a thermosetting compound, and a thermosetting agent.
  • the thermosetting compound and the thermosetting agent are thermosetting components.
  • the connecting portion 4 includes a solder portion 4A in which a plurality of conductive particles gather and are joined to each other, and a cured product portion 4B in which a thermosetting component is thermally cured.
  • the first connection object member 2 has a plurality of first electrodes 2a on the surface (upper surface).
  • the second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface).
  • the first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A.
  • no solder exists in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a.
  • connection structure 1 after a plurality of conductive particles gather between the first electrode 2a and the second electrode 3a and the plurality of conductive particles melt, the conductive particles The melted material solidifies after the surface of the electrode wets and spreads to form the solder portion 4A. For this reason, the connection area of 4 A of solder parts and the 1st electrode 2a, and 4 A of solder parts, and the 2nd electrode 3a becomes large. That is, by using the conductive particles, the solder portion 4A, the first electrode 2a, and the solder are compared with the case where the conductive outer surface is made of a metal such as nickel, gold or copper. The contact area between the portion 4A and the second electrode 3a increases. For this reason, the conduction
  • the conductive material may contain a flux. When the flux is used, the flux is generally deactivated gradually by heating.
  • connection structure 1 shown in FIG. 1 all of the solder portions 4A are located in the facing region between the first and second electrodes 2a and 3a.
  • the connection structure 1X of the modification shown in FIG. 3 is different from the connection structure 1 shown in FIG. 1 only in the connection portion 4X.
  • the connection part 4X has the solder part 4XA and the hardened
  • most of the solder portions 4XA are located in regions where the first and second electrodes 2a and 3a are opposed to each other, and a part of the solder portion 4XA is first and second. You may protrude to the side from the area
  • the solder part 4XA protruding laterally from the region where the first and second electrodes 2a and 3a are opposed is a part of the solder part 4XA and is not a solder separated from the solder part 4XA.
  • the amount of solder away from the solder portion can be reduced, but the solder away from the solder portion may exist in the cured product portion.
  • connection structure 1X If the use amount of the conductive particles is reduced, it becomes easy to obtain the connection structure 1. If the usage-amount of electroconductive particle is increased, it will become easy to obtain the connection structure 1X.
  • the first electrode 2a and the second electrode 2a are arranged in the stacking direction of the first electrode 2a, the connection portions 4 and 4X, and the second electrode 3a.
  • the solder portion in the connection portions 4 and 4X is at least 50% of the area of 100% of the portion facing the first electrode 2a and the second electrode 3a.
  • 4A and 4XA are preferably arranged.
  • the portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is seen.
  • the solder portion in the connection portion is preferably disposed.
  • the first electrode and the second electrode are opposed to each other in a direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode.
  • the portion where the first electrode and the second electrode face each other is 70% or more (more preferably 80% or more, more preferably 90%) of the solder portion in the connection portion. In particular, it is preferable that 95% or more, most preferably 99% or more) is disposed.
  • connection structure 1 using the conductive material Next, an example of a method for manufacturing the connection structure 1 using the conductive material according to the embodiment of the present invention will be described.
  • the first connection target member 2 having the first electrode 2a on the surface (upper surface) is prepared.
  • a conductive material 11 including a thermosetting component 11B and a plurality of conductive particles 11A is disposed on the surface of the first connection target member 2 (first Process).
  • the conductive material 11 is disposed on the surface of the first connection target member 2 on which the first electrode 2a is provided.
  • the conductive particles 11A are arranged both on the first electrode 2a (line) and on a region (space) where the first electrode 2a is not formed.
  • the arrangement method of the conductive material 11 is not particularly limited, and examples thereof include application by a dispenser, screen printing, and discharge by an inkjet device.
  • the 2nd connection object member 3 which has the 2nd electrode 3a on the surface (lower surface) is prepared.
  • the 2nd connection object member 3 is arrange
  • the second connection target member 3 is disposed from the second electrode 3a side. At this time, the first electrode 2a and the second electrode 3a are opposed to each other.
  • the conductive material 11 is heated above the melting point of the conductive particles 11A (third step).
  • the conductive material 11 is heated above the curing temperature of the thermosetting component 11B (binder).
  • the conductive particles 11A that existed in the region where no electrode is formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect).
  • the conductive material 11A since the conductive material is used instead of the conductive film, the conductive material 11A has a specific composition, so that the conductive particles 11A are formed between the first electrode 2a and the second electrode 3a. Gather effectively in between.
  • the conductive particles 11A are melted and joined to each other.
  • the thermosetting component 11B is thermoset.
  • connection portion 4 that connects the first connection target member 2 and the second connection target member 3 is formed of the conductive material 11.
  • the connection part 4 is formed of the conductive material 11
  • the solder part 4A is formed by joining the plurality of conductive particles 11A
  • the cured part 4B is formed by thermosetting the thermosetting component 11B. If the conductive particles 11A are sufficiently moved, the first electrode 2a and the second electrode 2a are moved after the movement of the conductive particles 11A that are not positioned between the first electrode 2a and the second electrode 3a starts. The temperature does not have to be kept constant until the movement of the conductive particles 11A between the electrodes 3a is completed.
  • pressurization may be performed as long as the interval between the first electrode and the second electrode can be secured.
  • a spacer corresponding to the desired gap between the electrodes may be added so that at least one, preferably three or more spacers are arranged between the electrodes.
  • the spacer include inorganic particles and organic particles.
  • the spacer is preferably an insulating particle.
  • the electrode of the first connection target member Even when the first connection target member and the second connection target member are overlapped in a state where the alignment of the electrodes of the second connection target member is shifted, the shift is corrected and the first connection target member is corrected. And the electrode of the second connection target member can be connected (self-alignment effect). This is because the molten solder self-aggregated between the electrode of the first connection target member and the electrode of the second connection target member is the electrode of the first connection target member and the electrode of the second connection target member.
  • connection structure with alignment As the area where the solder and the other components of the conductive material are in contact with each other is minimized, the energy becomes more stable. Therefore, the force that makes the connection structure with alignment, which is the connection structure with the smallest area, works. Because. At this time, it is desirable that the conductive material is not cured, and that the viscosity of components other than the conductive particles of the conductive material is sufficiently low at that temperature and time.
  • connection structure 1 shown in FIG. 1 is obtained.
  • the second step and the third step may be performed continuously.
  • the laminated body of the 1st connection object member 2, the electrically-conductive material 11, and the 2nd connection object member 3 which are obtained is moved to a heating part, and the said 3rd connection object is carried out.
  • You may perform a process.
  • the laminate In order to perform the heating, the laminate may be disposed on a heating member, or the laminate may be disposed in a heated space.
  • the heating temperature in the third step is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, and still more preferably 200 ° C. or lower.
  • a 1st connection object member or a 2nd connection object member can be peeled from a connection part for the purpose of correction of a position, or re-production.
  • the heating temperature for performing this peeling is preferably not lower than the melting point of the conductive particles, more preferably not lower than the melting point (° C.) of the conductive particles + 10 ° C.
  • the heating temperature for performing this peeling may be the melting point (° C.) of the conductive particles + 100 ° C. or less.
  • the heating method in the third step a method of heating the entire connection structure using a reflow furnace or an oven above the melting point of the conductive particles and the curing temperature of the thermosetting component, The method of heating only the connection part of a structure locally is mentioned.
  • instruments used in the method of locally heating include a hot plate, a heat gun that applies hot air, a soldering iron, and an infrared heater.
  • the metal directly under the connection is made of a metal with high thermal conductivity, and other places where heating is not preferred are made of a material with low thermal conductivity such as a fluororesin.
  • the upper surface of the hot plate is preferably formed.
  • the first and second connection target members are not particularly limited. Specifically as said 1st, 2nd connection object member, electronic components, such as a semiconductor chip, a semiconductor package, LED chip, LED package, a capacitor
  • the first and second connection target members are preferably electronic components.
  • At least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board.
  • the second connection target member is preferably a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. Resin films, flexible printed boards, flexible flat cables, and rigid flexible boards have the property of being highly flexible and relatively lightweight. When a conductive film is used for connection of such a connection object member, there exists a tendency for electroconductive particle to collect on an electrode easily.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • Thermosetting compound 1 2,4-bis (glycidyloxy) benzophenone (crystalline thermosetting compound, melting point: 94 ° C., molecular weight 362)
  • MEK methyl ethyl ketone
  • n-butanol 3: 1 (weight ratio)
  • DSC -Differential scanning calorimetry
  • Thermosetting compound 2 4,4'-bis (glycidyloxy) benzophenone (crystalline thermosetting compound, melting point: 132 ° C, molecular weight 362)
  • MEK methyl ethyl ketone
  • n-butanol 3: 1 (weight ratio)
  • Obtained epoxy compound melting point by DSC is 132 ° C., epoxy equivalent is 176 g / eq. According to the mass spectrum, the molecular weight was 362, and the melt viscosity at 150 ° C. was 12 mPa ⁇ s.
  • Thermosetting compound 3 Epoxy group-containing acrylic polymer, “MARPROOF G-0150M” manufactured by NOF Corporation
  • Thermosetting agent 1 Pentaerythritol tetrakis (3-mercaptobutyrate), “Karenz MT PE1” manufactured by Showa Denko KK
  • Latent epoxy thermosetting agent 1 T & K TOKA's “Fujicure 7000”
  • Flux 1 glutaric acid, manufactured by Wako Pure Chemical Industries, Ltd., melting point (active temperature) 152 ° C.
  • solder particles 1 In a three-necked flask, SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., average particle size (median diameter) 12 ⁇ m) 200 g, silane coupling agent (“KBM-903” manufactured by Shin-Etsu Silicone Co., Ltd.), 3-aminopropyl 10 g of trimethoxysilane), 120 g of toluene, and 1 g of water were added and reacted at 80 ° C. for 3 hours under a nitrogen atmosphere using a Dean-Stark apparatus to obtain a silanol group derived from the methoxy group of 3-aminopropyltrimethoxylane. And Sn—OH on the surface of the solder particles were dehydrated and condensed.
  • SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., average particle size (median diameter) 12 ⁇ m) 200 g
  • silane coupling agent KBM
  • solder particles were collected with a 10 ⁇ m CMF filter and thoroughly washed with acetone.
  • solder particles were transferred to a three-necked flask, and 200 g of acetone and 40 g of glutaric anhydride were added and reacted at 60 ° C. for 3 hours under a nitrogen atmosphere using a Dean-Stark apparatus, thereby producing 3-aminopropyltrimethoxylane.
  • the amino group was reacted with one carboxyl group derived from glutaric anhydride.
  • the solder particles were collected with a 10 ⁇ m CMF filter and sufficiently washed with acetone.
  • top cut removal of coarse particles
  • the average particle diameter is 12 ⁇ m
  • the CV value is 20%
  • Solder particles 2 The same procedure except that 3-aminopropyltrimethoxylane was changed to a silane coupling agent (“KBM-603” manufactured by Shin-Etsu Silicone Co., Ltd., N-2- (aminoethyl) -3-aminopropyltrimethoxysilane). Solder particles 2 were obtained. The average particle size was 12 ⁇ m, and the CV value was 20%.
  • KBM-603 silane coupling agent manufactured by Shin-Etsu Silicone Co., Ltd., N-2- (aminoethyl) -3-aminopropyltrimethoxysilane.
  • Solder particles A SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter (median diameter) 12 ⁇ m)
  • CV value of solder particles The CV value was measured with a laser diffraction particle size distribution analyzer (“LA-920” manufactured by Horiba, Ltd.).
  • Example 1 (Examples 1 to 6 and Comparative Example 1) The components shown in Table 1 below were blended in the blending amounts shown in Table 1 below to obtain anisotropic conductive paste.
  • the first, second, and third connection structures were produced as follows using the anisotropic conductive paste immediately after the production.
  • the anisotropic conductive paste immediately after fabrication is applied to the upper surface of the glass epoxy substrate by screen printing using a metal mask so that the thickness becomes 100 ⁇ m on the electrode of the glass epoxy substrate, After forming the conductive conductive paste layer, it was allowed to stand at 23 ° C. and 50% RH for 10 hours in an air atmosphere, and then a flexible printed circuit board was laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other.
  • the other conditions were the same as those in Condition A.
  • the viscosity was measured by collecting the paste after being left standing (anisotropic conductive paste layer).
  • connection structure A glass epoxy substrate (FR-4 substrate) (first connection target member) having a copper electrode pattern (copper electrode thickness 12 ⁇ m) having an L / S of 50 ⁇ m / 50 ⁇ m and an electrode length of 3 mm on the upper surface was prepared. Moreover, the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of a copper electrode 12 micrometers) of L / S 50 micrometers / 50 micrometers and electrode length 3mm on the lower surface was prepared.
  • the overlapping area of the glass epoxy substrate and the flexible printed circuit board was 1.5 cm ⁇ 3 mm, and the number of connected electrodes was 75 pairs.
  • the anisotropic conductive paste immediately after production is applied by screen printing using a metal mask so that the thickness is 100 ⁇ m on the electrode of the glass epoxy substrate, and anisotropic conductive A paste layer was formed.
  • the flexible printed circuit board was laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other. At this time, no pressure was applied. The weight of the flexible printed board is added to the anisotropic conductive paste layer. Thereafter, while heating the anisotropic conductive paste layer to 190 ° C., the solder is melted and the anisotropic conductive paste layer is cured at 190 ° C. for 10 seconds to obtain a first connection structure. It was.
  • a flexible printed circuit board (second connection target member) having a L / S of 75 ⁇ m / 75 ⁇ m and an electrode length of 3 mm on the lower surface of a copper electrode pattern (copper electrode thickness 12 ⁇ m) was prepared.
  • 2nd connection structure was obtained like manufacture of the 1st connection structure except having used the above-mentioned glass epoxy board and flexible printed circuit board from which L / S differs.
  • Glass epoxy substrate having a copper electrode pattern (copper electrode thickness 12 ⁇ m) with L / S of 100 ⁇ m / 100 ⁇ m and electrode length of 3 mm on the upper surface (FR-4 substrate) (first connection target member) was prepared.
  • the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of copper electrode 12 micrometers) of L / S of 100 micrometers / 100 micrometers and electrode length 3mm on the lower surface was prepared.
  • 3rd connection structure was obtained like manufacture of the 1st connection structure except having used the above-mentioned glass epoxy board and flexible printed circuit board from which L / S differs.
  • Viscosity The viscosity ( ⁇ 25) at 25 ° C. of the anisotropic conductive paste was measured using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 5 rpm.
  • solder placement accuracy on electrode 1 In the obtained first, second, and third connection structures, a portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is provided. When viewed, the ratio X of the area where the solder portion in the connection portion is arranged in the area of 100% of the portion where the first electrode and the second electrode face each other was evaluated.
  • the solder placement accuracy 1 on the electrode was determined according to the following criteria.
  • Ratio X is 70% or more ⁇ : Ratio X is 60% or more and less than 70% ⁇ : Ratio X is 50% or more and less than 60% X: Ratio X is less than 50%
  • solder placement accuracy on electrode 2 In the obtained first, second, and third connection structures, the first electrode and the second electrode are opposed to each other in a direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode.
  • the ratio Y of the solder part in the connecting part arranged in the part where the first electrode and the second electrode face each other in 100% of the solder part in the connecting part was evaluated. .
  • the solder placement accuracy 2 on the electrode was determined according to the following criteria.
  • Ratio Y is 99% or more ⁇ : Ratio Y is 90% or more and less than 99% ⁇ : Ratio Y is 70% or more and less than 90% X: Ratio Y is less than 70%
  • Average value of connection resistance is 10 7 ⁇ or more ⁇ : Average value of connection resistance is 10 6 ⁇ or more, less than 10 7 ⁇ ⁇ : Average value of connection resistance is 10 5 ⁇ or more, less than 10 6 ⁇ ⁇ : Connection The average resistance is less than 10 5 ⁇
  • first electrode and the second electrode are stacked in the stacking direction of the first electrode, the connection portion, and the second electrode. Whether the center line of the first electrode and the center line of the second electrode were aligned when the portion facing the two electrodes was viewed, and the distance of the positional deviation were evaluated.
  • the positional deviation between the upper and lower electrodes was determined according to the following criteria.
  • Misalignment is less than 15 ⁇ m ⁇ : Misalignment is 15 ⁇ m or more and less than 25 ⁇ m ⁇ : Misalignment is 25 ⁇ m or more and less than 40 ⁇ m ⁇ : Misalignment is 40 ⁇ m or more

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
PCT/JP2016/070386 2015-07-14 2016-07-11 導電材料及び接続構造体 WO2017010445A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177016241A KR20180029945A (ko) 2015-07-14 2016-07-11 도전 재료 및 접속 구조체
JP2016546857A JP6166849B2 (ja) 2015-07-14 2016-07-11 導電材料及び接続構造体
CN201680003614.2A CN107077915A (zh) 2015-07-14 2016-07-11 导电材料以及连接构造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-140337 2015-07-14
JP2015140337 2015-07-14

Publications (1)

Publication Number Publication Date
WO2017010445A1 true WO2017010445A1 (ja) 2017-01-19

Family

ID=57757416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070386 WO2017010445A1 (ja) 2015-07-14 2016-07-11 導電材料及び接続構造体

Country Status (5)

Country Link
JP (1) JP6166849B2 (zh)
KR (1) KR20180029945A (zh)
CN (1) CN107077915A (zh)
TW (1) TW201709220A (zh)
WO (1) WO2017010445A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11018028B2 (en) 2018-11-07 2021-05-25 Epistar Corporation Method of applying conductive adhesive and manufacturing device using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173702A (ja) * 2000-09-29 2002-06-21 Jsr Corp 導電性金属粒子および導電性複合金属粒子並びにそれらを用いた応用製品
JP2008222786A (ja) * 2007-03-09 2008-09-25 Asahi Kasei Electronics Co Ltd 回路接続用異方導電性接着フィルム
JP2009170414A (ja) * 2007-12-18 2009-07-30 Hitachi Chem Co Ltd 絶縁被覆導電粒子、異方導電接着フィルム及びそれらの製造方法
WO2013125517A1 (ja) * 2012-02-21 2013-08-29 積水化学工業株式会社 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP2014132567A (ja) * 2012-12-05 2014-07-17 Sekisui Chem Co Ltd 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
JP2015005435A (ja) * 2013-06-21 2015-01-08 株式会社タムラ製作所 異方性導電性ペーストおよびそれを用いたプリント配線基板
WO2016080515A1 (ja) * 2014-11-20 2016-05-26 積水化学工業株式会社 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079425B2 (ja) * 2012-05-16 2017-02-15 日立化成株式会社 導電粒子、異方性導電接着剤フィルム及び接続構造体
KR102095291B1 (ko) * 2012-11-28 2020-03-31 세키스이가가쿠 고교가부시키가이샤 절연성 입자 부착 도전성 입자, 도전 재료 및 접속 구조체

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173702A (ja) * 2000-09-29 2002-06-21 Jsr Corp 導電性金属粒子および導電性複合金属粒子並びにそれらを用いた応用製品
JP2008222786A (ja) * 2007-03-09 2008-09-25 Asahi Kasei Electronics Co Ltd 回路接続用異方導電性接着フィルム
JP2009170414A (ja) * 2007-12-18 2009-07-30 Hitachi Chem Co Ltd 絶縁被覆導電粒子、異方導電接着フィルム及びそれらの製造方法
WO2013125517A1 (ja) * 2012-02-21 2013-08-29 積水化学工業株式会社 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP2014132567A (ja) * 2012-12-05 2014-07-17 Sekisui Chem Co Ltd 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
JP2015005435A (ja) * 2013-06-21 2015-01-08 株式会社タムラ製作所 異方性導電性ペーストおよびそれを用いたプリント配線基板
WO2016080515A1 (ja) * 2014-11-20 2016-05-26 積水化学工業株式会社 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体

Also Published As

Publication number Publication date
TW201709220A (zh) 2017-03-01
JP6166849B2 (ja) 2017-07-19
KR20180029945A (ko) 2018-03-21
JPWO2017010445A1 (ja) 2017-07-13
CN107077915A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6630284B2 (ja) 導電材料及び接続構造体
WO2016043265A1 (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
WO2018047690A1 (ja) 導電材料、接続構造体及び接続構造体の製造方法
WO2017179532A1 (ja) 導電材料及び接続構造体
JP6798887B2 (ja) 導電材料及び接続構造体
JP6600234B2 (ja) 導電材料及び接続構造体
JP6734141B2 (ja) 導電材料及び接続構造体
JP2017195180A (ja) 導電材料及び接続構造体
JP6581434B2 (ja) 導電材料及び接続構造体
JP6523105B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
WO2017033932A1 (ja) 導電材料及び接続構造体
JP2018006084A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP6166849B2 (ja) 導電材料及び接続構造体
WO2017130892A1 (ja) 導電材料及び接続構造体
WO2016190244A1 (ja) 導電材料及び接続構造体
JP6329014B2 (ja) 接続構造体及び接続構造体の製造方法
WO2016133113A1 (ja) 導電ペースト及び接続構造体
WO2018221587A1 (ja) 導電材料及び接続構造体
WO2018174065A1 (ja) 導電材料及び接続構造体
JP2018060786A (ja) 導電材料及び接続構造体
JP2019212467A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP6533427B2 (ja) 導電材料及び接続構造体
WO2017033931A1 (ja) 導電材料及び接続構造体
WO2017033933A1 (ja) 導電材料及び接続構造体
JP2018046004A (ja) 導電材料及び接続構造体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016546857

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177016241

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824425

Country of ref document: EP

Kind code of ref document: A1