WO2017010157A1 - 医療用観察装置及び医療用観察方法 - Google Patents

医療用観察装置及び医療用観察方法 Download PDF

Info

Publication number
WO2017010157A1
WO2017010157A1 PCT/JP2016/064126 JP2016064126W WO2017010157A1 WO 2017010157 A1 WO2017010157 A1 WO 2017010157A1 JP 2016064126 W JP2016064126 W JP 2016064126W WO 2017010157 A1 WO2017010157 A1 WO 2017010157A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
signal
optical system
evaluation value
medical observation
Prior art date
Application number
PCT/JP2016/064126
Other languages
English (en)
French (fr)
Inventor
栄 岡崎
俊郎 片山
弘高 平野
敬裕 山元
Original Assignee
ソニー株式会社
ソニー・オリンパスメディカルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社, ソニー・オリンパスメディカルソリューションズ株式会社 filed Critical ソニー株式会社
Priority to JP2017528310A priority Critical patent/JP6983067B2/ja
Priority to CN201680040221.9A priority patent/CN107847107B/zh
Priority to EP16824137.0A priority patent/EP3300650B1/en
Priority to US15/576,969 priority patent/US10568492B2/en
Publication of WO2017010157A1 publication Critical patent/WO2017010157A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000095Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope for image enhancement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/40Optical focusing aids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image

Definitions

  • the present disclosure relates to a medical observation apparatus and a medical observation method.
  • the medical observation apparatus is not limited to an apparatus that enables optical observation of the affected area, and an image of the affected area captured by an imaging unit (camera) or the like is displayed on a display unit such as a monitor. Some devices display an electronic image.
  • Patent Document 1 discloses an example of an endoscope apparatus having an autofocus function.
  • Narrow band imaging Narrow Band Imaging
  • fluorescence observation AFI: Auto Fluorescence Imaging
  • infrared light observation for observation of the affected area with medical observation devices such as endoscopes and surgical microscopes
  • special light observation uses light in a band different from normal light (white light) such as IRI (Infra Red Imaging).
  • focus position the position of the focusing optical system (hereinafter, sometimes referred to as “focus position”) is shifted according to the band to be observed, resulting in a clear It may be difficult to obtain a subject image. It has been found that such a phenomenon tends to be more obvious when using an optical system (such as a lens) having a large chromatic aberration.
  • the present disclosure proposes a medical observation apparatus and a medical observation method capable of controlling the focal position of the optical system in a more suitable manner according to the band to be observed.
  • an imaging signal corresponding to each of a plurality of different spectral components based on a light reception result of observation target light from a subject in a living body by an imaging element is observed in the observation target light band.
  • a control unit that controls the focal position of the optical system by controlling the position of at least one optical member of the optical system that focuses the observation target light on the imaging element based on the evaluation value.
  • the processor is configured to output the observation target light to an imaging signal corresponding to each of a plurality of different spectral components based on a reception result of the observation target light from the subject in the living body by the imaging element. Applying a weight between the plurality of spectral components according to a band to be observed in the band, and calculating an evaluation value indicating a degree of focusing based on the imaging signal to which the weight is applied; Controlling the focal position of the optical system by controlling the position of at least one optical member of the optical system that forms an image of the observation target light from the subject on the image sensor based on the evaluation value; A medical observation method is provided.
  • a medical observation apparatus and a medical observation method capable of controlling the focal position of the optical system in a more preferable aspect according to the band to be observed. Is done.
  • FIG. 1 is an explanatory diagram for explaining an example of a schematic configuration of a system to which the medical observation apparatus according to the present embodiment is applied.
  • FIG. 1 shows an example of an endoscopic surgery system used in abdominal endoscopic surgery performed in place of a conventional laparotomy in a medical field.
  • FIG. 1 shows an example of an endoscopic surgery system used in abdominal endoscopic surgery performed in place of a conventional laparotomy in a medical field.
  • several opening devices called trocars 25a and 25b are attached to the abdominal wall.
  • a laparoscope (hereinafter also referred to as an endoscope) 11, an energy treatment tool 22, a forceps 23, and the like are inserted into the body through holes provided in 25a and 25b.
  • a treatment such as excision of the affected part U with the energy treatment tool 22 or the like is performed while viewing an image of the affected part (tumor or the like) U imaged by the endoscope 11 in real time.
  • the endoscope 11, the energy treatment tool 22, and the forceps 23 are held by an operator, an assistant, a scopist, a robot, or the like.
  • a cart 31 equipped with devices for endoscopic operation, a patient bed 33 on which a patient lies, a foot switch 35, and the like are arranged.
  • the cart 31 includes medical devices such as a camera control unit (CCU) 13, a light source device 17, a treatment instrument device 21, a pneumoperitoneum device 24, a display device 15, a recorder 26, and a printer 27. Placed.
  • CCU camera control unit
  • the image signal of the affected part U imaged through the observation optical system of the endoscope 11 is transmitted to the CCU 13 via the camera cable.
  • the CCU 13 may be connected to the endoscope 11 via a wireless communication path in addition to being connected to the endoscope 11 via a camera cable.
  • the CCU 13 performs signal processing on the image signal output from the endoscope 11 and outputs the image signal after the signal processing to the display device 15. With such a configuration, an endoscopic image of the affected area U is displayed on the display device 15.
  • the CCU 13 may cause the recorder 26 to record an endoscopic image of the affected area U as image data (for example, moving image data) by outputting the image signal after the signal processing to the recorder 26. Further, the CCU 13 may cause the printer 27 to print an endoscopic image of the affected area U by outputting the image signal after the signal processing to the printer 27.
  • image data for example, moving image data
  • the light source device 17 is connected to the endoscope 11 via a light guide cable, and can switch and irradiate the affected part U with light of various wavelengths.
  • the light irradiated from the light source device 17 may be used as auxiliary light, for example.
  • the treatment instrument device 21 corresponds to, for example, a high-frequency output device that outputs a high-frequency current to the energy treatment instrument 22 that cuts the affected part U using electric heat.
  • the pneumoperitoneum device 24 includes an air supply / intake unit, and supplies air to, for example, the abdominal region in the patient.
  • the foot switch 35 controls the CCU 13, the treatment instrument device 21 and the like by using a foot operation of an operator or an assistant as a trigger signal.
  • the imaging unit included in the endoscope 11 or the like may have a so-called autofocus (AF) function that automatically focuses on the subject.
  • AF autofocus
  • AF methods are roughly classified into two types: active methods and passive methods.
  • the active method measures the distance to the subject by, for example, irradiating the subject with near-infrared light and receiving the reflected light, and optically focuses the subject on the basis of the measured distance.
  • This is a method for performing a focusing operation by moving an optical member constituting the system.
  • the passive method does not emit distance measuring light or the like, but moves the optical member constituting the optical system so that the subject is focused based on information obtained from the photographed subject image. This is a method for performing a focusing operation.
  • a method called a contrast method, a phase difference method, a depth map method, or a triangulation method is generally known.
  • Each of these methods performs a focusing operation based on information obtained from a photographed subject image, and can be applied particularly as a passive AF method.
  • FIG. 2 is an explanatory diagram for explaining the concept of the AF operation in the contrast method.
  • the horizontal axis indicates a position along the optical axis direction of an optical member (that is, a focus lens) for controlling the focal position in the optical system of the imaging unit (hereinafter referred to as “focus lens position”). Schematically).
  • the vertical axis indicates the AF evaluation value that is referred to by the imaging unit to control the focal position.
  • the contrast of the subject image corresponds to the AF evaluation value. That is, in FIG. 2, reference numeral g11 schematically shows an example of a change in the contrast of the subject image according to the focus lens position. Reference numeral p11 indicates a focus lens position where the contrast is maximized, that is, a focus position.
  • the imaging unit evaluates the AF evaluation value (contrast) calculated from the subject image while moving the position of the focus lens, and determines the focus lens position (that is, the focus position) at which the AF evaluation value is maximum. Explore. Then, the imaging unit performs focusing on the subject by moving the focus lens to the searched focus position.
  • AF evaluation value contrast
  • focus lens position that is, the focus position
  • the AF evaluation value is calculated from the subject image, and the in-focus position is specified based on the AF evaluation value.
  • the basic idea is the same as the contrast method. Based on the above, in the following description, in the description regarding the control of the focal position, a case where a contrast method is applied as an AF method will be described as an example.
  • NBI narrow band light observation
  • narrow-band light observation for example, the subject is irradiated with narrow-band light contained in the blue and green bands as auxiliary light, and among the reflected light from the subject, green component light (green light) and blue light Based on the component light (blue light), an image of the subject is generated.
  • green component light green light
  • blue light blue light
  • red light and green light are easily absorbed by hemoglobin in blood. Therefore, in narrow-band light observation, by using such characteristics, for example, blood vessels can be imaged more clearly without staining with a dye or the like.
  • fluorescence observation AFI: Auto Fluorescence Imaging
  • IRI Infra Red Imaging
  • FIG. 3 is an explanatory diagram for explaining the principle that a shift of the in-focus position occurs due to chromatic aberration.
  • the example shown in FIG. 3 schematically shows an example in which an optical system (lens) having a large chromatic aberration is used in order to make the description easier to understand.
  • the refractive index is not constant but varies depending on the wavelength (frequency) of the light. Specifically, as shown in FIG. 3, the shorter the wavelength of the light beam (the higher the frequency of the light beam), the higher the refractive index. Therefore, as shown in FIG. 3, for example, white light or infrared light having a longer wavelength than the ultraviolet light is focused at a position farther from the optical system than ultraviolet light having a relatively short wavelength. Will be tied.
  • the AF evaluation value calculated based on the detection result of the normal light is the same as in the case of observing normal light (white light). Even if the focus lens position is controlled based on this, a clearer subject image is not always obtained. As described above, such a phenomenon tends to be more apparent in an optical system having a larger chromatic aberration.
  • the medical observation apparatus controls the focal position of the optical system in a more preferable manner according to the band to be observed even when an optical system with relatively large chromatic aberration is used. Provide a mechanism that can do this.
  • the medical observation apparatus according to the present embodiment will be described in more detail.
  • FIG. 4 is a block diagram illustrating an example of a functional configuration of the medical observation apparatus according to the present embodiment, and particularly, a function that focuses on a process of capturing an image of an observation target (subject) and displaying the image. An example of the configuration is shown.
  • the medical observation apparatus 100 includes an imaging unit 110 (for example, a camera head) and a control unit 130.
  • the medical observation apparatus 100 may include a light source unit 170.
  • the medical observation apparatus 100 illustrated in FIG. 4 can be configured as the endoscopic surgery system 1 illustrated in FIG. 1, for example. That is, the imaging unit 110, the control unit 130, and the light source unit 170 illustrated in FIG. 4 correspond to, for example, the endoscope 11, the CCU 13, and the light source device 17 in the endoscopic surgery system 1 illustrated in FIG. is doing.
  • the medical observation apparatus 100 may include a display unit such as a display corresponding to the display device 15 in the endoscopic surgery system 1 shown in FIG.
  • the imaging unit 110 corresponds to a configuration for capturing an image such as a moving image or a still image such as a so-called camera.
  • the imaging unit 110 includes an imaging optical system (for example, a series of lens groups) 111 and an imaging element 114.
  • the imaging unit 110 includes a zoom lens driving unit 115, a focus lens driving unit 116, a driving system control unit 117, and an imaging element driving unit 118.
  • the imaging optical system 111 forms an optical image of the subject on the imaging surface of the image sensor 114.
  • the imaging optical system 111 includes a zoom lens 112 and a focus lens 113, for example. In the example illustrated in FIG. 4, only the zoom lens 112 and the focus lens 113 are typically illustrated, but the imaging optical system 111 may include various optical members such as other lenses and filters.
  • the type and number of optical members constituting the imaging optical system 111, the optical characteristics of each optical member, and the like are appropriately determined so that an optical image of a subject is formed on the imaging surface of the imaging element 114 by the imaging optical system 111. It has been adjusted.
  • the zoom lens 112 is a lens for adjusting the magnification of the imaging optical system 111.
  • the zoom lens 112 is configured to be movable on the optical axis, and the magnification of the imaging optical system 111 is adjusted by controlling the position of the zoom lens 112 on the optical axis.
  • the zoom lens 112 is an example of an optical member for adjusting the magnification of the imaging optical system 111. That is, it is only necessary to adjust the magnification of the imaging optical system 111 by adjusting the position of the at least one optical member included in the imaging optical system 111 on the optical axis.
  • the number and kind of optical members to be configured are not particularly limited.
  • the focus lens 113 is a lens for adjusting the focal length of the imaging optical system 111.
  • the focus lens 113 is configured to be movable on the optical axis, and the focal length of the imaging optical system 111 (in other words, the focus lens 113 is controlled by controlling the position of the focus lens 113 on the optical axis (that is, the focus lens position). , Focus position) is adjusted.
  • the focus lens 113 is an example of an optical member for adjusting the focal length of the imaging optical system 111. That is, the focal length of the imaging optical system 111 only needs to be adjusted by adjusting the position of the at least one optical member included in the imaging optical system 111 on the optical axis, and moves to adjust the focal length.
  • the number and types of optical members that can be configured are not particularly limited.
  • the image sensor 114 for example, a CMOS image sensor, a CCD image sensor, or the like can be applied.
  • the imaging element 114 converts the optical image formed on the imaging surface into an electrical signal (hereinafter, sometimes referred to as “imaging signal”) by photoelectric conversion.
  • the imaging device 114 includes, for example, a light receiving element (pixel) that receives light (spectral components) of R, G, and B, and transmits light from a subject to R, G, and B, respectively. Each spectral component of B is converted into an imaging signal by photoelectric conversion.
  • the light from the subject received by the image sensor 114 may be referred to as “observation target light”.
  • R signal the imaging signals for the R, G, and B spectral components
  • G signal the imaging signals for the R, G, and B spectral components
  • B signal the imaging signals for the R, G, and B spectral components
  • the imaging element 114 is not necessarily limited to R, G, and B as long as the observation target light from the subject can be converted into an imaging signal by photoelectric conversion for each of a plurality of spectral components.
  • Y yellow
  • M magenta
  • C cyan
  • the operation for example, shutter speed and gain
  • the image sensor 114 is controlled by, for example, an image sensor driving unit 118 described later.
  • the image sensor 114 outputs an image signal (for example, RGB signal) for each spectral component generated by photoelectric conversion to the control unit 130.
  • an imaging signal corresponding to the brightness of each spectral component received by the imaging element 114 that is, an imaging signal for each spectral component corresponding to the luminance of the subject image
  • an imaging signal for each spectral component corresponding to the luminance of the subject image is output to the control unit 130.
  • the zoom lens driving unit 115 includes, for example, a motor and a driver circuit that supplies a driving current to the motor, and moves the zoom lens 112 along the optical axis.
  • the operation of the zoom lens drive unit 115 is controlled by a drive system control unit 117 described later.
  • the focus lens driving unit 116 is configured by, for example, a motor and a driver circuit that supplies a driving current to the motor, and moves the focus lens 113 along the optical axis.
  • the operation of the focus lens drive unit 116 is controlled by a drive system control unit 117 described later.
  • the drive system control unit 117 is configured by various processors such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor), or a microcomputer in which a processor and a memory element such as a memory are mounted. The operations of the unit 115 and the focus lens driving unit 116 are controlled.
  • the drive system control unit 117 includes an FPGA (Field-Programmable Gate Array), a driver IC (Integrated Circuit), and / or a dedicated LSI (Large-Scale Integration Integrated) (that is, ASIC (Application Specific Integration), etc.). It may be configured by a circuit.
  • the function of the drive system control unit 117 can be realized by a processor constituting the drive system control unit 117 performing arithmetic processing according to a predetermined program.
  • the drive system control unit 117 is based on information indicating the movement direction and amount of movement of the zoom lens 112 transmitted from the optical system control unit 134 of the control unit 130 described later. Control the drive. As a result, the zoom lens 112 moves by the amount of movement in the movement direction, and the magnification of the imaging optical system 111 is adjusted. If the optical member other than the zoom lens 112 is configured to be movable for adjusting the magnification of the imaging optical system 111, the zoom lens driving unit is controlled based on the control from the driving system control unit 117. The position of the other optical member may be controlled by 115.
  • the drive system control unit 117 controls the drive of the focus lens drive unit 116 based on information transmitted from the optical system control unit 134 and indicating the movement direction and the movement amount of the focus lens 113. As a result, the focus lens 113 is moved by the amount of movement in the movement direction, and the focal length of the imaging optical system 111 is adjusted.
  • the focus lens drive unit is controlled based on the control from the drive system control unit 117. The position of the other optical member may be controlled by 116.
  • the drive system control unit 117 is provided in the imaging unit 110, but the drive system control unit 117 is provided outside the imaging unit 110 (for example, the control unit 130). Also good.
  • the image sensor driving unit 118 corresponds to a driver for driving the image sensor 114.
  • the image sensor driving unit 118 supplies a drive signal to the image sensor 114 at a predetermined timing, thereby causing the image sensor 114 to perform operations such as a photographing operation and a reset operation at a predetermined timing, and corresponding to the subject image.
  • the imaging signal to be acquired is acquired. Thereby, the shutter speed of the image sensor 114 is controlled. Further, the image sensor driving unit 118 may control the gain applied to the imaged image signal in the image sensor 114.
  • an image sensor driving control unit that controls the operation of the image sensor driving unit 118 may be provided in the image capturing unit 110 or the control unit 130.
  • the image sensor drive control unit includes various processors such as a CPU and a DSP, a microcomputer, and the like, and instructs the image sensor drive unit 118 to supply the above-described drive signal to the image sensor 114, thereby imaging the image sensor.
  • the drive of the image sensor 114 is controlled via the element drive unit 118.
  • the image sensor drive control unit instructs the image sensor drive unit 118 to operate the image sensor 114 via the image sensor drive unit 118 by instructing the image sensor drive unit 118 the gain that the image sensor 114 applies to the image signal. You may control.
  • the function of the image sensor drive control unit can be realized by a processor configuring the image sensor drive control unit executing arithmetic processing according to a predetermined program.
  • the control unit 130 includes an imaging signal processing unit 131, a detection frame gate 132, an AF detection unit 133, and an optical system control unit 134.
  • the control unit 130 can be configured by various processors such as a CPU and a DSP, or a microcomputer.
  • the imaging signal processing unit 131 performs various signals such as linear matrix processing, white balance processing, and ⁇ correction processing on the imaging signal (for example, RGB signal) for each spectral component generated by photoelectric conversion in the imaging element 114. Execute the process. In addition, the imaging signal processing unit 131 performs image processing according to the purpose, such as various correction processing such as color tone correction and luminance correction, generation of a video signal, or encoding processing, on the imaging signal subjected to various signal processing. Apply. Through the control as described above, the imaging signal processing unit 131 performs so-called development processing such as adjustment of the brightness of the subject image, adjustment of white balance, and color reproduction on the acquired imaging signal, and video Generate a signal.
  • various correction processing such as color tone correction and luminance correction, generation of a video signal, or encoding processing
  • the luminance components of RGB signals (for example, image signals output from the image sensor 114) that are the targets of white balance adjustment are R, G, and B, and are applied to the RGB signals to adjust the white balance.
  • the correction coefficients are m 30 , m 40 , and m 50 .
  • the imaging signal processing unit 131 sets R 1 , G 1 , and B 1 as follows (Equation 1) to ( It calculates based on the calculation formula shown as Formula 3).
  • the correction coefficients m 30 , m 40 , and m 50 are set in advance according to, for example, the selected mode for white balance adjustment (in other words, color temperature).
  • the imaging signal processing unit 131 corrects the luminance components R, G, and B of the RGB signals based on parameters set in advance for color reproduction (hereinafter, may be referred to as “color reproduction matrix”). By performing the process, a color reproduction process is executed.
  • the imaging signal processing unit 131 sets R 2 , G 2 , and B 2 as follows. Is calculated based on the calculation formula shown as (Formula 4).
  • the correction coefficients m 00 to m 02 , m 10 to m 12 , and m 20 to 22 in the color reproduction matrix M 1 are set in advance according to the contents of the color reproduction process.
  • the imaging signal processing unit 131 may convert the imaging signal for each spectral component to be subjected to the color reproduction process into an imaging signal based on another color space by color reproduction processing.
  • the imaging signal processing unit 131 may convert the RGB signal into a component in the YCbCr space based on the luminance component Y and the color difference components Cb and Cr.
  • the imaging signal processing unit 131, the luminance component Y and chrominance components Cb in YCbCr space, and Cr the following Is calculated based on the calculation formula shown as (Formula 5).
  • the imaging signal processing unit 131 performs a plurality of processes among the white balance adjustment and color reproduction processes described above for the imaging signals (for example, RGB signals) for each spectral component output from the imaging element 114. May be applied.
  • the imaging signal processing unit 131 applies processing related to white balance adjustment to the RGB signal output from the imaging element 114, and the luminance component (R 1) of the RGB signal after white balance adjustment. , G 1 , B 1 ), color reproduction processing may be performed based on the color reproduction matrix M 1 .
  • the imaging signal processing unit 131 the luminance component of the RGB signal outputted from the image pickup device 114 performs based color reproduction processes in the color reproduction matrix M 1, the RGB signals after the color reproduction process (R 2 , G 2 , B 2 ) may be converted into a component in the YCbCr space based on the color reproduction matrix M 2 .
  • the medical observation apparatus 100 includes various types such as narrow-band light observation, fluorescence observation, infrared light observation, and the like in addition to observation of a subject image based on normal light (white light).
  • the special light observation may be selectively switched to be executable.
  • the imaging signal processing unit 131 performs development processing (that is, various signal processing and various types) in accordance with a mode (hereinafter, referred to as “observation mode”) corresponding to the selected observation method.
  • observation mode a mode corresponding to the selected observation method.
  • Image processing may be performed on the imaging signal.
  • the imaging signal processing unit 131 is selected by an operator (user) via various input units (not shown) provided in the medical observation apparatus 100 such as buttons, a touch panel, or a switch.
  • An observation mode selection signal indicating the observation mode may be input from the input unit.
  • the imaging signal processing unit 131 identifies the observation mode selected by the operator based on the input observation mode selection signal, and performs development processing according to the observation mode identification result on the imaging signal. By applying, a video signal may be generated.
  • the imaging signal processing unit 131 applies a filter (for example, a bandpass filter) according to the selected observation mode to the acquired imaging signal (for example, RGB signal), A band component to be observed in the observation mode may be extracted from the imaging signal.
  • a filter for example, a bandpass filter
  • the imaging signal processing unit 131 may switch the content of the white balance adjustment and the color reproduction process described above according to the selected observation mode. In this case, for example, the imaging signal processing unit 131 may switch the applied correction coefficients m 30 , m 40 , and m 50 and the color reproduction matrix M 1 or M 2 according to the selected observation mode. Good.
  • the imaging signal processing unit 131 outputs the generated video signal to a display unit such as a display. Thereby, the video of the subject based on the video signal is displayed on the display unit, and the surgeon (user) can observe the video of the affected part as the subject.
  • the imaging signal processing unit 131 outputs an imaging imaging signal (for example, RGB signal) for each spectral component output from the imaging device 114 to the AF detection unit 133 via the detection frame gate 132.
  • an imaging imaging signal for example, RGB signal
  • the detection frame gate 132 receives an imaging signal (for example, RGB signal) for each spectral component from the imaging signal processing unit 131, and may be referred to as a predetermined region (hereinafter referred to as “AF detection frame”) in the imaging element 114. ) Is output to the AF detection unit 133 located in the subsequent stage, for each spectral component corresponding to the light receiving element (pixel).
  • an imaging signal for example, RGB signal
  • AF detection frame predetermined region
  • FIG. 5 is a block diagram illustrating an example of a functional configuration of the AF detection unit 133.
  • the AF detection unit 133 includes an AF evaluation signal calculation unit 135 and an AF evaluation value calculation unit 136.
  • the AF evaluation signal calculation unit 135 acquires, for example, an observation mode selection signal indicating an observation mode selected by the operator (user) from the input unit, and based on the acquired observation mode selection signal, determines a band to be observed. recognize.
  • the AF evaluation signal calculation unit 135 acquires an imaging signal for each spectral component from the detection frame gate 132, and weights the acquired imaging signal between the spectral components according to a band to be observed.
  • the luminance components of the RGB signals are R, G, and B, and the coefficients based on the weights between RGB corresponding to the bands to be observed are r, g, and b.
  • the AF evaluation signal calculation unit 135 is based on a calculation formula shown below as (Formula 6), which is an imaging signal L for calculating an AF evaluation value (hereinafter, may be referred to as “AF evaluation signal”). calculate.
  • AF evaluation signal coefficients are, for example, the observation mode. It may be calculated for each and stored in advance in a storage area that can be read by the AF evaluation signal calculation unit 135. Thereby, the AF evaluation signal calculation unit 135 reads the AF evaluation signal coefficient corresponding to the selected observation mode from the storage area, and the read AF evaluation signal coefficient for the acquired imaging signal for each spectral component. By applying these, an AF evaluation signal may be generated.
  • the infrared light when infrared light observation using infrared light as the observation object is selected from the observation target light from the subject, the infrared light is emphasized so that the infrared light is more emphasized.
  • the AF evaluation signal coefficients r, g, and b corresponding to the observation are preferably set.
  • narrowband light observation using green light and blue light as observation targets is selected from the observation target light from the subject, the narrowband light is emphasized so that the G signal and B signal are more emphasized.
  • the AF evaluation signal coefficients r, g, and b corresponding to the observation are preferably set. Note that the AF evaluation signal coefficient corresponding to the observation mode may be calculated in advance based on a prior experiment or the like so that the band component to be observed in the observation mode is more emphasized.
  • the AF evaluation signal calculation unit 135 may determine the AF evaluation signal coefficient according to the surgical technique in which the subject is imaged. In this case, for example, for each technique, the AF evaluation signal coefficient is calculated so that the band component to be observed in the technique is more emphasized, and stored in advance in a predetermined storage area. It is good to leave it.
  • the AF evaluation signal calculation unit 135 acquires, for example, a selection signal indicating the surgical technique selected by the operator (user) from the input unit, and identifies the selected surgical technique based on the acquired selection signal. To do. Then, the AF evaluation signal calculation unit 135 may read the AF evaluation signal coefficient corresponding to the identified technique from a predetermined storage area.
  • the management unit of the evaluation signal coefficient for AF may be appropriately changed according to the operation method of the medical observation apparatus 100.
  • the AF evaluation signal calculation unit 135 may determine the AF evaluation signal coefficient according to the medical department in which the subject is imaged using the medical observation apparatus 100.
  • the AF evaluation signal calculation unit 135 may calculate the AF evaluation signal coefficient according to the content of the development processing applied to the imaging signal by the imaging signal processing unit 131. Details of this operation will be separately described later as a modified example.
  • the AF evaluation signal calculation unit 135 outputs the calculated AF evaluation signal to the AF evaluation value calculation unit 136.
  • the AF evaluation value calculation unit 136 acquires an AF evaluation signal from the AF evaluation signal calculation unit 135, and calculates an AF evaluation value based on the acquired AF evaluation signal.
  • the AF evaluation value calculation unit 136 calculates the contrast based on the acquired AF evaluation signal. More specifically, the AF evaluation value calculation unit 136 calculates the AF evaluation value (contrast) based on the second derivative (Laplacian) using the luminance signal as the sum of all the pixels (light receiving elements) in the AF detection frame. Is calculated.
  • the difference in luminance signal between adjacent pixels is larger than when the subject is not in focus, and the contrast is increased.
  • AF evaluation value calculation method described above is merely an example, and the AF evaluation value calculation method varies depending on the AF method, as described above.
  • the AF evaluation value calculation unit 136 outputs the calculated AF evaluation value to the optical system control unit 134 (see FIG. 4).
  • the optical system control unit 134 controls the position of each optical member (for example, the zoom lens 112 and the focus lens 113) included in the imaging optical system 111 of the imaging unit 110, so that the focusing operation and zooming of the imaging unit 110 are performed. Control the behavior.
  • the optical system control unit 134 can receive an instruction signal (zoom instruction signal) for performing a zoom operation by an operator (user).
  • the zoom instruction signal is input via various input units (not shown) provided in the medical observation apparatus 100 such as a switch.
  • the zoom instruction signal also includes an instruction for magnification, and the optical system control unit 134 determines the movement direction and amount of movement of the zoom lens 112 that can realize the instructed magnification based on the zoom instruction signal.
  • the information indicating the movement direction and the movement amount is output to the drive system control unit 117. Receiving the information, the drive system control unit 117 moves the zoom lens 112 through the zoom lens driving unit 115 in the determined movement direction by the determined movement amount.
  • the magnification of the imaging optical system 111 is adjusted according to an operator's instruction. If the optical member other than the zoom lens 112 is configured to be movable in order to adjust the magnification of the imaging optical system 111, the optical system control unit 134 moves on the optical axis of the other optical member. The moving direction and amount of movement may be determined together.
  • the optical system control unit 134 calculates the movement direction and movement amount of the focus lens 113 for the imaging unit 110 to control the focal length of the imaging optical system 111 (for example, to perform a focusing operation). May be.
  • the optical system control unit 134 has a manual focus (MF) function for controlling a focal length based on an instruction from an operator (user), and an autofocus (automatic focusing for automatically focusing a subject). (AF) function may be selectively switched.
  • the optical system control unit 134 can receive an instruction signal (manual / autofocus switching signal) for selectively switching between the MF function and the AF function by the operator (user).
  • the manual / autofocus switching signal is input via various input units (not shown) provided in the medical observation apparatus 100 such as a switch.
  • the optical system control unit 134 switches the moving direction and moving amount determination method of the focus lens 113 based on the manual / autofocus switching signal.
  • the optical system control unit 134 can receive an instruction signal (focus instruction signal) for controlling the focal length of the imaging optical system 111 by the operator (user).
  • the focus instruction signal is input via various input units (not shown) provided in the medical observation apparatus 100 such as a switch.
  • the focus instruction signal includes, for example, an instruction about the focal length, and the optical system control unit 134 moves and moves the focus lens 113 that can realize the instructed focal distance based on the focus instruction signal.
  • the amount is determined, and information indicating the movement direction and the movement amount is output to the drive system controller 117. Receiving this information, the drive system controller 117 moves the focus lens 113 by the determined amount of movement toward the determined movement direction via the focus lens driver 116.
  • the focal length of the imaging optical system 111 is adjusted according to an operator's instruction.
  • the optical system control unit 134 is on the optical axis of the other optical members. The amount of movement at may also be determined.
  • the optical system control unit 134 determines the moving direction and the moving amount of the focus lens 113 based on the AF evaluation value (for example, contrast) output from the AF detection unit 133. . Specifically, the optical system control unit 134 controls the position of the focus lens 113 via the drive system control unit 117, and the AF evaluation value output from the AF detection unit 133 before and after the movement of the focus lens 113. Compare. Then, based on the comparison result of the AF evaluation values, the optical system control unit 134 moves or moves the focus lens 113 so that the focus lens 113 moves on the optical axis in a direction in which the AF evaluation value becomes larger. Determine the amount.
  • the AF evaluation value for example, contrast
  • the focus lens 113 When the focus lens 113 is first moved (that is, when there is no pre-movement AF evaluation value to be compared), the focus lens 113 is moved by a predetermined distance in a predetermined direction set in advance.
  • the moving direction and the moving amount of the focus lens 113 may be determined so as to be moved.
  • the optical system control unit 134 outputs information indicating the movement direction and the movement amount of the focus lens 113 determined based on the comparison result of the AF evaluation values to the drive system control unit 117. Receiving this information, the drive system controller 117 moves the focus lens 113 by the determined amount of movement toward the determined movement direction via the focus lens driver 116.
  • the AF operation is executed by repeatedly executing (processing). That is, the AF detection unit 133 recalculates the AF evaluation value based on the imaging signal obtained by the imaging element 114 after the focus lens 113 is moved, and the optical system control unit 134 performs the focus based on the calculated AF evaluation value.
  • the moving direction and moving amount of the lens 113 are determined.
  • the drive system control unit 117 moves the focus lens 113.
  • the optical system control unit 134 is on the optical axis of the other optical members. The point that the amount of movement may be determined together is the same as when the MF function is selected.
  • processing related to the AF operation described above is merely an example, and if the AF operation can be realized based on the AF evaluation value, the type of parameter used as the AF evaluation value and the AF operation are related.
  • the content of the process is not particularly limited.
  • the light source unit 170 includes, for example, a plurality of light sources having different emission light bands, and is configured to be able to selectively switch the light sources. For example, the light source unit 170 receives an observation mode selection signal indicating an observation mode selected through various input units (not shown) provided in the medical observation apparatus 100 such as buttons, a touch panel, or a switch. Input from the department. Based on the input observation mode selection signal, the light source unit 170 irradiates the light source corresponding to the selected observation mode with auxiliary light. With such a configuration, auxiliary light corresponding to the selected observation mode is emitted from the corresponding light source toward the subject.
  • the light source unit 170 may be configured to be detachable from a light source according to the observation mode. In this case, for example, when the observation mode selection signal indicating that the observation mode corresponding to the mounted light source is selected, the light source unit 170 may irradiate the light source with auxiliary light. .
  • FIG. 6 is a flowchart showing an example of a flow of a series of processes of the medical observation apparatus according to the present embodiment, and particularly shows an example of a flow of a process related to the AF operation by the control unit 130.
  • the AF evaluation signal calculation unit 135 of the control unit 130 acquires an observation mode selection signal indicating the observation mode selected by the operator (user) from the input unit, and calculates an AF evaluation signal coefficient corresponding to the observation mode selection signal. Read from a predetermined storage area. As another example, the AF evaluation signal calculation unit 135 may calculate an AF evaluation signal coefficient according to the content of the development processing applied to the imaging signal by the imaging signal processing unit 131. As described above, the AF evaluation signal calculation unit 135 determines an AF evaluation signal coefficient to be applied.
  • Step S103 the AF evaluation signal calculation unit 135 acquires an imaging signal for each spectral component from the imaging signal processing unit 131 via the detection frame gate 132, and applies the AF evaluation signal coefficient determined for the acquired imaging signal. Thus, weighting is performed between the spectral components, and an AF evaluation signal is generated. Then, the AF evaluation signal calculation unit 135 outputs the calculated AF evaluation signal to the AF evaluation value calculation unit 136.
  • the AF evaluation value calculation unit 136 acquires an AF evaluation signal from the AF evaluation signal calculation unit 135, and calculates an AF evaluation value based on the acquired AF evaluation signal. For example, when the AF method is a contrast method, the AF evaluation value calculation unit 136 calculates the contrast as an AF evaluation value based on the acquired AF evaluation signal. The AF evaluation value calculation unit 136 outputs the calculated AF evaluation value to the optical system control unit 134.
  • the optical system control unit 134 determines the movement direction and the movement amount of the focus lens 113 based on the AF evaluation value output from the AF detection unit 133. For example, the optical system control unit 134 compares the AF evaluation value output from the AF detection unit 133 before and after the movement of the focus lens 113 while controlling the position of the focus lens 113 via the drive system control unit 117. Based on the comparison result of the AF evaluation values, the optical system control unit 134 sets the movement direction and movement amount of the focus lens 113 so that the focus lens 113 moves on the optical axis in the direction in which the AF evaluation value becomes larger. decide.
  • the optical system control unit 134 outputs information indicating the movement direction and the movement amount of the focus lens 113 determined based on the comparison result of the AF evaluation values to the drive system control unit 117. Receiving this information, the drive system controller 117 moves the focus lens 113 by the determined amount of movement toward the determined movement direction via the focus lens driver 116.
  • Step S109 The control unit 130 continues the series of processes described above until the focus lens 113 moves to a position where the AF evaluation value becomes maximum (that is, moves to the in-focus position) (NO in S109).
  • Step S111 the control unit 130 stops the movement of the focus lens 113 and ends the AF operation.
  • the medical observation apparatus 100 uses the AF evaluation signal coefficient corresponding to the band to be observed among the observation target light from the subject and the imaging signal from the imaging element 114.
  • An AF evaluation value is calculated based on the AF evaluation value, and a focusing operation (AF operation) is performed based on the calculated AF evaluation value.
  • AF operation focusing operation
  • the medical observation apparatus 100 according to the present embodiment seems to focus on the subject in accordance with the band to be observed even when an optical system with relatively large chromatic aberration is used.
  • the focal position of the imaging optical system 111 can be controlled.
  • the medical observation apparatus determines an AF evaluation signal coefficient according to an observation mode selected by an operator (user), and generates an AF evaluation signal based on the AF evaluation signal coefficient.
  • the medical observation apparatus uses AF for the content of the development process applied to the imaging signal (for example, the development parameter applied for white balance adjustment or color reproduction process).
  • the evaluation signal coefficient is dynamically calculated.
  • the medical observation apparatus 100 As a specific example, the medical observation apparatus 100, as described above as (Equation 4), based on the color reproduction matrix M 1, a developing process on the image signal output from the image sensor 114 (color reproduction processing) It is assumed that a video signal is generated by applying. In this case, the medical observation apparatus 100 according to the modified example, based on the color reproduction matrix M 1 used in the developing process, calculates the AF evaluation signal coefficient. For example, calculation expression shown as the equation (7) below is an example of a calculation formula of the AF evaluation signal coefficient based on the color reproduction matrix M 1 used in the developing process.
  • A (k r , k g , k b ) is a conversion expression for converting the development parameters applied for the development processing into AF evaluation signal coefficients, For example, it is determined according to the weight between spectral components corresponding to the band to be observed.
  • the medical observation apparatus 100 may specify the conversion formula A to be applied according to the observation mode selected by the operator (user) via various input units. For example, when narrowband light observation using green light and blue light as the observation target is selected from the observation target light from the subject, the medical observation apparatus 100 compares the coefficient k with, for example, the coefficient k r. the g and k b Gayori larger as set conversion formula a may be selected.
  • the coefficients k r , k g , and k b in the conversion formula A corresponding to the observation mode are, for example, a prior experiment so that the band components to be observed in the observation mode are more emphasized. It is good to calculate beforehand based on.
  • the medical observation apparatus 100 has described an example in which the AF evaluation signal coefficient applied as the development process is calculated. However, depending on the content of the applied development process, the AF evaluation signal coefficient is calculated. Needless to say, the development parameters applied to the calculation may be appropriately changed. For example, when the color reproduction matrix M 2 for converting RGB signals into components in the YCbCr space is applied as the development processing, the medical observation apparatus 100 applies the conversion formula A corresponding to the selected observation mode. , by applying the color reproduction matrix M 2, it may calculate an AF evaluation signal coefficient.
  • the medical observation apparatus 100 may calculate the AF evaluation signal coefficient by sequentially multiplying the selected conversion equation A by the applied development parameter.
  • a medical observation apparatus 100 in case of applying the color reproduction matrix M 1 and M 2 as a development parameter, based on the formula shown as Equation (8) below, the AF evaluation signal coefficient It may be calculated.
  • the management unit of the conversion formula A may be appropriately changed according to the operation method of the medical observation apparatus 100.
  • the medical observation apparatus 100 may determine the conversion formula A according to the surgical technique in which the subject is imaged.
  • the medical observation apparatus 100 may determine the conversion formula A in accordance with the department where the subject is imaged.
  • the medical observation apparatus 100 is configured so that the subject is focused on the subject in a more preferable manner according to the content of the development process applied to the imaging signal. It becomes possible to control the focal position of the system 111.
  • the medical observation apparatus 100 may be configured such that the imaging optical system 111 (or the imaging unit 110 itself) is detachable. In such a case, it is assumed that the imaging optical system 111 with different optical characteristics is attached to the medical observation apparatus 100, and the in-focus position is determined according to the optical characteristics of the attached imaging optical system 111. Different cases can be envisaged. In particular, in a situation where a plurality of bands (for example, bands located near each other) in the observation target light from the subject are to be observed, the imaging optical system 111 is focused on each subject image corresponding to each band.
  • a plurality of bands for example, bands located near each other
  • a suitable in-focus position may differ depending on the optical characteristics of the imaging optical system 111.
  • the medical observation apparatus 100 may calculate an AF evaluation signal coefficient according to the optical characteristics (particularly, chromatic aberration) of the mounted imaging optical system 111.
  • the method is not particularly limited as long as the medical observation apparatus 100 can identify the imaging optical system 111 attached to itself.
  • identification information for identifying the imaging optical system 111 is stored in a predetermined storage area of the imaging optical system 111 in advance, and the medical observation apparatus 100 is connected to the connected imaging optical system 111.
  • the imaging optical system 111 may be identified by reading the identification information from the storage area.
  • the conversion formula A may be set for each band to be observed (in other words, for each observation mode), as in the example described above.
  • the conversion formula A is calculated in advance for each combination of the band to be observed (in other words, the selected observation mode) and the imaging optical system 111 to be connected, and stored in a predetermined recording area. May be.
  • an AF evaluation signal coefficient may be calculated in advance for each combination of a band to be observed and the imaging optical system 111 to be connected and stored in a predetermined storage area.
  • the medical observation apparatus 100 sets the corresponding AF evaluation signal coefficient according to the observation mode selected by the operator (user) and the identification result of the connected imaging optical system 111. What is necessary is just to read from a predetermined area
  • the medical observation apparatus 100 can be used in a more suitable manner according to the optical characteristics of the mounted imaging optical system 111 even when the imaging optical system 111 is configured to be detachable. It is possible to control the focal position of the imaging optical system 111 so as to be in focus.
  • FIG. 7 is an explanatory diagram for describing an application example of the medical observation apparatus according to the present embodiment.
  • FIG. 7 schematically shows a state of treatment using a surgical video microscope apparatus.
  • a doctor who is a practitioner (user) 520 uses a surgical instrument 521 such as a scalpel, a scissors, or a forceps to perform a treatment target (patient) on the treatment table 530.
  • a state in which an operation is performed on 540 is illustrated.
  • the treatment is a general term for various medical treatments performed on a patient who is a treatment target 540 by a doctor who is a user 520, such as surgery and examination.
  • the state of the operation is illustrated as an example of the operation.
  • the operation using the surgical video microscope apparatus 510 is not limited to the operation, and may be various other operations. .
  • a surgical video microscope apparatus 510 is provided beside the treatment table 530.
  • the surgical video microscope apparatus 510 includes a base portion 511 as a base, an arm portion 512 extending from the base portion 511, and an imaging unit 515 connected to the tip of the arm portion 512 as a tip unit.
  • the arm portion 512 includes a plurality of joint portions 513a, 513b, and 513c, a plurality of links 514a and 514b connected by the joint portions 513a and 513b, and an imaging unit 515 provided at the tip of the arm portion 512.
  • the arm unit 512 includes three joint units 513a to 513c and two links 514a and 514b.
  • the positions of the arm unit 512 and the imaging unit 515 and Considering the degree of freedom of posture, the number and shape of the joint portions 513a to 513c and the links 514a and 514b, the direction of the drive shaft of the joint portions 513a to 513c, etc. may be appropriately set so as to realize a desired degree of freedom. Good.
  • the joint portions 513a to 513c have a function of connecting the links 514a and 514b to each other so as to be rotatable, and the drive of the arm portion 512 is controlled by driving the rotation of the joint portions 513a to 513c.
  • An imaging unit 515 is connected to the tip of the arm unit 512 as a tip unit.
  • the imaging unit 515 is a unit that acquires an image to be captured, and is, for example, a camera that can capture a moving image or a still image.
  • the posture of the arm unit 512 and the imaging unit 515 is operated by the surgical video microscope apparatus 510 so that the imaging unit 515 provided at the distal end of the arm unit 512 images the state of the surgical site of the surgical target 540. And the position is controlled.
  • the configuration of the imaging unit 515 connected as the tip unit to the tip of the arm unit 512 is not particularly limited.
  • the imaging unit 515 may be configured as an endoscope or a microscope.
  • the imaging unit 515 may be configured to be detachable from the arm unit 512.
  • the imaging unit 515 corresponding to the usage application may be appropriately connected to the tip of the arm unit 512 as a tip unit.
  • the tip unit connected to the tip of the arm unit 512 is not necessarily limited to the imaging unit 515. .
  • a display device 550 such as a monitor or a display is installed at a position facing the user 520.
  • the image of the surgical site acquired by the imaging unit 515 is displayed after being subjected to various types of image processing by an image processing device (not shown) built in or externally attached to the surgical video microscope apparatus 510, for example. It is displayed as an electronic image on the display screen of the device 550.
  • an image processing device not shown
  • the user 520 can perform various treatments (for example, surgery) while viewing the electronic image of the treatment site displayed on the display screen of the display device 550.
  • the imaging unit 515 includes the imaging unit 110 described above with reference to FIG. 4, for example.
  • an image processing apparatus that performs various types of image processing on the image of the surgical site acquired by the imaging unit 515 corresponds to an example of the control unit 130 described above with reference to FIG.
  • the display device 550 can correspond to an example of an output destination of the video signal from the control unit 130.
  • FIG. 8 is a functional block diagram illustrating a configuration example of the hardware configuration of the information processing apparatus 900 configured as a medical observation apparatus according to an embodiment of the present disclosure.
  • the information processing apparatus 900 mainly includes a CPU 901, a ROM 903, and a RAM 905.
  • the information processing apparatus 900 further includes a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, and a storage device 919. Further, the information processing apparatus 900 may include a drive 921, a connection port 923, and a communication apparatus 925.
  • the CPU 901 functions as an arithmetic processing unit and a control unit, and controls all or a part of the operation in the information processing apparatus 900 according to various programs recorded in the ROM 903, the RAM 905, the storage apparatus 919, or the removable recording medium 927.
  • the ROM 903 stores programs used by the CPU 901, calculation parameters, and the like.
  • the RAM 905 primarily stores programs used by the CPU 901, parameters that change as appropriate during execution of the programs, and the like. These are connected to each other by a host bus 907 constituted by an internal bus such as a CPU bus.
  • each structure of the control part 130 mentioned above with reference to FIG. 4 may be implement
  • the host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.
  • an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925 are connected to the external bus 911 via an interface 913.
  • the input device 915 is an operation means operated by the user, such as a mouse, a keyboard, a touch panel, a button, a switch, a lever, and a pedal. Further, the input device 915 may be, for example, remote control means (so-called remote control) using infrared rays or other radio waves, or an external connection device such as a mobile phone or a PDA corresponding to the operation of the information processing device 900. 929 may be used. Furthermore, the input device 915 includes an input control circuit that generates an input signal based on information input by a user using the above-described operation means and outputs the input signal to the CPU 901, for example. A user of the information processing apparatus 900 can input various data and instruct a processing operation to the information processing apparatus 900 by operating the input device 915.
  • the output device 917 is a device that can notify the user of the acquired information visually or audibly. Examples of such devices include CRT display devices, liquid crystal display devices, plasma display devices, EL display devices, display devices such as lamps, audio output devices such as speakers and headphones, printer devices, and the like.
  • the output device 917 outputs results obtained by various processes performed by the information processing apparatus 900. Specifically, the display device displays results obtained by various processes performed by the information processing device 900 as text or images.
  • the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs the analog signal.
  • an output device 917 configured as a display device can be assumed as the output destination of the video signal from the imaging signal processing unit 131 described above with reference to FIG.
  • the storage device 919 is a data storage device configured as an example of a storage unit of the information processing device 900.
  • the storage device 919 includes, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device.
  • the storage device 919 stores programs executed by the CPU 901 and various data.
  • the drive 921 is a reader / writer for a recording medium, and is built in or externally attached to the information processing apparatus 900.
  • the drive 921 reads information recorded on a removable recording medium 927 such as a mounted magnetic disk, optical disk, magneto-optical disk, or semiconductor memory, and outputs the information to the RAM 905.
  • the drive 921 can also write a record to a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory that is mounted.
  • the removable recording medium 927 is, for example, a DVD medium, an HD-DVD medium, a Blu-ray (registered trademark) medium, or the like.
  • the removable recording medium 927 may be a compact flash (registered trademark) (CF: CompactFlash), a flash memory, an SD memory card (Secure Digital memory card), or the like. Further, the removable recording medium 927 may be, for example, an IC card (Integrated Circuit card) on which a non-contact IC chip is mounted, an electronic device, or the like.
  • CF CompactFlash
  • SD memory card Secure Digital memory card
  • the connection port 923 is a port for directly connecting to the information processing apparatus 900.
  • Examples of the connection port 923 include a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, and the like.
  • As another example of the connection port 923 there are an RS-232C port, an optical audio terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) port, and the like.
  • the communication device 925 is a communication interface configured with, for example, a communication device for connecting to a communication network (network) 931.
  • the communication device 925 is, for example, a communication card for wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various communication, or the like.
  • the communication device 925 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet or other communication devices.
  • the communication network 931 connected to the communication device 925 is configured by a wired or wireless network, and may be, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication, or the like. .
  • each component described above may be configured using a general-purpose member, or may be configured by hardware specialized for the function of each component. Therefore, it is possible to change the hardware configuration to be used as appropriate according to the technical level at the time of carrying out this embodiment.
  • FIG. 8 for example, various configurations corresponding to the medical observation apparatus described above are naturally provided.
  • a computer program for realizing each function of the information processing apparatus 900 constituting the medical stereoscopic observation system according to the present embodiment as described above can be produced and mounted on a personal computer or the like.
  • a computer-readable recording medium storing such a computer program can be provided.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed via a network, for example, without using a recording medium.
  • the medical observation apparatus 100 includes the AF evaluation signal coefficient corresponding to the band to be observed among the observation target light from the subject, and the imaging signal from the imaging element 114.
  • the AF evaluation value is calculated based on the above, and a focusing operation (AF operation) is performed based on the calculated AF evaluation value.
  • the medical observation apparatus 100 according to the present embodiment seems to focus on the subject in accordance with the band to be observed even when an optical system with relatively large chromatic aberration is used.
  • the focal position of the imaging optical system 111 can be controlled. That is, according to the medical observation apparatus 100 according to the present embodiment, the operator (user) observes a clearer subject image corresponding to the band to be observed even in so-called special light observation. Is possible.
  • the medical observation apparatus 100 generates an AF evaluation signal based on the AF evaluation signal coefficient corresponding to the characteristics of the development processing applied to the imaging signal from the imaging element 114, for example.
  • the AF evaluation value can be calculated based on the AF evaluation signal.
  • the medical observation apparatus 100 is configured to take an imaging optical so as to focus on the subject in each of the plurality of bands even in a situation where development is performed with attention to each of the plurality of different bands.
  • the focal length of the system 111 can be controlled.
  • the medical observation apparatus 100 irradiates a subject with a plurality of different bands of auxiliary light from a light source, and the plurality of imaging signals based on the reception result of reflected light from the subject. Attention is paid to the case where different development processing is performed for each band.
  • the medical observation apparatus 100 generates an AF evaluation signal for each development process based on the AF evaluation signal coefficient for each development process focusing on each of the plurality of bands, and the AF evaluation is performed. An AF evaluation value is calculated based on the signal.
  • the medical observation apparatus 100 may control the focal position of the imaging optical system 111 based on the AF evaluation value corresponding to the development process. By such control, the medical observation apparatus 100 can focus images on different positions in the living body such as the affected surface and the back of the affected area (that is, an image in which the affected area is presented more clearly). ) Can be output.
  • the medical observation apparatus 100 when observing a phosphor that emits fluorescence of a plurality of bands, performs the following on each of the plurality of bands with respect to an imaging signal based on the fluorescence reception result. Pay attention to the case where different development processing is performed for each band. Also in this case, for example, the medical observation apparatus 100 calculates the AF evaluation value based on the AF evaluation signal coefficient for each development process focusing on each of the plurality of bands, and corresponds to the development process for each development process. The focal position of the imaging optical system 111 may be controlled based on the AF evaluation value.
  • the medical observation apparatus 100 can focus images on different parts in the living body (in other words, parts that emit different fluorescence) such as blood vessels and tumor parts (that is, parts that emit different fluorescence). , An image in which each part is presented more clearly) can be output.
  • the following configurations also belong to the technical scope of the present disclosure.
  • (1) Depending on the imaging signal corresponding to each of a plurality of different spectral components based on the light reception result of the observation target light from the in-vivo subject by the imaging device, according to the band to be observed among the observation target light Applying a weight between the plurality of spectral components, and calculating an evaluation value indicating a degree of focusing based on the imaging signal to which the weight is applied;
  • a control unit that controls the focal position of the optical system by controlling the position of at least one optical member of the optical system that focuses the observation target light from the subject on the imaging element based on the evaluation value;
  • a medical observation apparatus comprising: (2) The calculation unit calculates the evaluation value based on the weight according to a correction parameter for generating image data based on a component of a band to be observed based on the plurality of spectral components, ) Medical observation apparatus.
  • the medical observation apparatus calculates the evaluation value based on the weight set in advance for each band to be observed.
  • the calculation unit acquires the weight corresponding to the selected mode among the weights set in advance for each of a plurality of modes whose observation targets are at least some of the bands of the observation target light.
  • the medical observation device according to (3), wherein the evaluation value is calculated based on the acquired weight.
  • the plurality of modes include a mode corresponding to at least one of narrowband light observation, fluorescence observation, and infrared light observation.
  • the imaging signals corresponding to the plurality of spectral components are RGB signals
  • the luminance components of the R signal, G signal, and B signal are R, G, and B, respectively, and the coefficients corresponding to the R signal, the G signal, and the B signal based on the weights are r, g, and
  • the medical observation apparatus according to any one of (1) to (8), wherein when b, the evaluation signal L for calculating the evaluation value is calculated based on a calculation formula shown below.
  • the medical observation apparatus according to any one of (1) to (10), further including an imaging unit including the imaging element.
  • the imaging unit is an endoscope that is inserted into a body cavity of a patient.
  • the medical observation apparatus according to (11) above.
  • the imaging unit is a microscope unit including the optical system that acquires an optical image of the subject, A support part for supporting the microscope part, Further comprising The medical observation apparatus according to (11) above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Gynecology & Obstetrics (AREA)
  • Endoscopes (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Abstract

【課題】観察の対象となる帯域に応じて、より好適な態様で光学系の焦点位置を制御する。 【解決手段】撮像素子による生体内の被写体からの観察対象光の受光結果に基づく、互いに異なる複数の分光成分それぞれに対応する撮像信号に対して、前記観察対象光の帯域のうち観察の対象とする帯域に応じた前記複数の分光成分間の重みを適用し、前記重みが適用された当該撮像信号に基づき、合焦の度合いを示す評価値を算出する算出部と、前記被写体からの観察対象光を前記撮像素子に結像する光学系のうち少なくとも1つの光学部材の位置を、前記評価値に基づき制御することで当該光学系の焦点位置を制御する制御部と、を備える、医療用観察装置。

Description

医療用観察装置及び医療用観察方法
 本開示は、医療用観察装置及び医療用観察方法に関する。
 近年では、手術手法、手術器具の発達により、内視鏡や手術用顕微鏡等のような医療用の観察装置により患部を観察しながら、各種処置を施す手術(所謂、マイクロサージャリー)が頻繁に行われるようになってきている。また、このような医療用の観察装置の中には、患部を光学的に観察可能とする装置に限らず、撮像部(カメラ)等により撮像された患部の画像を、モニタなどの表示部に電子画像として表示させる装置もある。
 また、上記のような撮像部においては、被写体に対して自動的に焦点合わせを行うオートフォーカス(AF)機能が備えられたものがある。例えば、特許文献1には、オートフォーカス機能を備えた内視鏡装置の一例が開示されている。
特開2012-110481号公報
 内視鏡や手術用顕微鏡等のような医療用の観察装置による患部の観察には、狭帯域光観察(NBI:Narrow Band Imaging)、蛍光観察(AFI:Auto Fluorescence Imaging)、赤外光観察(IRI:Infra Red Imaging)等のように通常光(白色光)とは異なる帯域の光を観察の対象とした、所謂特殊光観察が知られている。
 一方で、このような特殊光観察において、観察の対象となる帯域に応じて、合焦する光学系の位置(以降では、「合焦位置」と称する場合がある)にずれが生じ、鮮明な被写体像を得ることが困難となる場合がある。このような現象は、特に色収差の大きい光学系(レンズ等)を使用する場合において、より顕在化しやすい傾向にあることがわかっている。
 そこで、本開示では、観察の対象となる帯域に応じて、より好適な態様で光学系の焦点位置を制御することが可能な、医療用観察装置及び医療用観察方法を提案する。
 本開示によれば、撮像素子による生体内の被写体からの観察対象光の受光結果に基づく、互いに異なる複数の分光成分それぞれに対応する撮像信号に対して、前記観察対象光の帯域のうち観察の対象とする帯域に応じた前記複数の分光成分間の重みを適用し、前記重みが適用された当該撮像信号に基づき、合焦の度合いを示す評価値を算出する算出部と、前記被写体からの観察対象光を前記撮像素子に結像する光学系のうち少なくとも1つの光学部材の位置を、前記評価値に基づき制御することで当該光学系の焦点位置を制御する制御部と、を備える、医療用観察装置が提供される。
 また、本開示によれば、プロセッサが、撮像素子による生体内の被写体からの観察対象光の受光結果に基づく、互いに異なる複数の分光成分それぞれに対応する撮像信号に対して、前記観察対象光の帯域のうち観察の対象とする帯域に応じた前記複数の分光成分間の重みを適用し、前記重みが適用された当該撮像信号に基づき、合焦の度合いを示す評価値を算出することと、前記被写体からの観察対象光を前記撮像素子に結像する光学系のうち少なくとも1つの光学部材の位置を、前記評価値に基づき制御することで当該光学系の焦点位置を制御することと、を含む、医療用観察方法が提供される。
 以上説明したように本開示によれば、観察の対象となる帯域に応じて、より好適な態様で光学系の焦点位置を制御することが可能な、医療用観察装置及び医療用観察方法が提供される。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る医療用観察装置を適用したシステムの概略的な構成の一例について説明するための説明図である。 コントラスト方式におけるAF動作の概念について説明するための説明図である。 色収差により合焦位置のずれが生じる原理について説明するための説明図である。 同実施形態に係る医療用観察装置の機能構成の一例について示したブロック図である。 AF検波部の機能構成の一例を示したブロック図である。 同実施形態に係る医療用観察装置の一連の処理の流れの一例を示したフローチャートである。 同実施形態に係る医療用観察装置の一適用例について説明するための説明図である。 同実施形態に係る医療用観察装置として構成される情報処理装置のハードウェア構成の一構成例を示す機能ブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.システム構成
 2.焦点位置の制御に関する検討
 3.機能構成
 4.処理
 5.変形例
 6.適用例
 7.ハードウェア構成
 8.まとめ
 <1.システム構成>
 まず、図1を参照して、本実施形態に係る医療用観察装置を適用したシステムの構成の一例について説明する。図1は、本実施形態に係る医療用観察装置を適用したシステムの概略的な構成の一例について説明するための説明図である。
 例えば、図1は、医療現場において従来の開腹手術に代わって行われる、腹部の内視鏡外科手術において用いられる内視鏡手術システムの一例を示している。図1に示すように、腹部の内視鏡外科手術では、従来のように腹壁を切って開腹する代わりに、トロッカ25a、25bと称される開孔器具が腹壁に数か所取り付けられ、トロッカ25a、25bに設けられている孔から腹腔鏡(以下、内視鏡とも称する)11、エネルギ処置具22や鉗子23等が体内に挿入される。そして、内視鏡11によってビデオ撮像された患部(腫瘍等)Uの画像をリアルタイムに見ながら、エネルギ処置具22等によって患部Uを切除するなどの処置が行われる。なお、内視鏡11、エネルギ処置具22や鉗子23は、術者、助手、スコピスト、またはロボット等により保持される。
 このような内視鏡下手術を行う手術室内には、内視鏡下手術のための装置類を搭載するカート31、患者が横たわる患者ベッド33、フットスイッチ35等が配置される。また、カート31には、医療機器として、例えば、カメラコントロールユニット(CCU)13、光源装置17、処置具用装置21、気腹装置24、表示装置15、レコーダ26及びプリンタ27等の装置類が載置される。
 内視鏡11の観察光学系を通じて撮像された患部Uの画像信号は、カメラケーブルを介してCCU13に伝送される。なお、CCU13は、カメラケーブルを介して内視鏡11に接続される他、無線の通信経路を介して内視鏡11に接続されてもよい。CCU13は、内視鏡11から出力される画像信号に対して信号処理を施し、信号処理後の当該画像信号を表示装置15に出力する。このような構成により、患部Uの内視鏡画像が表示装置15に表示される。
 なお、CCU13は、信号処理後の画像信号をレコーダ26に出力することで、当該レコーダ26に、患部Uの内視鏡画像を画像データ(例えば、動画像のデータ)として記録させてもよい。また、CCU13は、信号処理後の画像信号をプリンタ27に出力することで、当該プリンタ27に、患部Uの内視鏡画像を印刷させてもよい。
 光源装置17は、ライトガイドケーブルを介して内視鏡11に接続され、患部Uに対してさまざまな波長の光を切り替えて照射することが可能である。なお、光源装置17から照射される光は、例えば、補助光として用いられる場合もある。
 処置具用装置21は、例えば、電気熱を用いて患部Uを切断するエネルギ処置具22に対して高周波電流を出力する高周波出力装置に相当する。
 また、気腹装置24は、送気、吸気手段を備え、患者体内の例えば腹部領域に空気を送気するものである。
 フットスイッチ35は、術者や助手等のフット操作をトリガ信号として、CCU13や処置具用装置21等を制御するようになっている。
 以上、図1を参照して、本開示の一実施形態に係る医療用観察装置を適用したシステム構成として、所謂、内視鏡手術システム1の概略的なシステム構成の一例について説明した。
 <2.焦点位置の制御に関する検討>
 次に、本開示の一実施形態に係る医療用観察装置の特徴をよりわかりやすくするために、内視鏡11等に含まれる撮像部による焦点位置の制御に関する動作の概要を説明し、次いで、本実施形態に係る医療用観察装置の課題について整理する。
 内視鏡11等に含まれる撮像部は、被写体に対して自動的に焦点を合わせる所謂オートフォーカス(AF)機能が備えられている場合がある。
 一般的に、AFの方式は、アクティブ方式とパッシブ方式の2種類に大きく分類される。アクティブ方式は、例えば近赤外光等を被写体に対して照射してその反射光を受光することにより被写体との距離を測定し、測定された距離に基づいて当該被写体に焦点が合うように光学系を構成する光学部材を移動させることにより、合焦動作を行う方式である。一方、パッシブ方式は、測距用の光等を自ら発することなく、撮影された被写体像から得られる情報に基づいて被写体に焦点が合うように光学系を構成する光学部材を移動させることにより、合焦動作を行う方式である。
 また、AFの方式としては、例えば、コントラスト方式、位相差方式、デプスマップ(DepthMap)方式、三角測距方式と呼称されている方式が一般的に知られている。これらの方式は、いずれも、撮影された被写体像から得られる情報に基づいて合焦動作を行うものであり、特に、パッシブ方式のAFの方式として適用され得る。
 例えば、図2は、コントラスト方式におけるAF動作の概念について説明するための説明図である。図2において、横軸は、撮像部の光学系のうち焦点位置を制御するための光学部材(即ち、フォーカスレンズ)の光軸方向に沿った位置(以降では、「フォーカスレンズ位置」と称する場合がある)を模式的に示している。また、縦軸は、撮像部が、焦点位置を制御するために参照するAF評価値示している。なお、コントラスト方式においては、被写体像のコントラストが、当該AF評価値に相当する。即ち、図2において、参照符号g11は、フォーカスレンズ位置に応じた、被写体像のコントラストの変化の一例を模式的に示している。また、参照符号p11は、コントラストが最大となるフォーカスレンズ位置、即ち、合焦位置を示している。
 撮像部は、例えば、フォーカスレンズの位置を移動させながら、被写体像から算出されるAF評価値(コントラスト)を評価し、当該AF評価値が最大となるフォーカスレンズ位置(即ち、合焦位置)を探索する。そして、撮像部は、探索された合焦位置にフォーカスレンズを移動させることで、被写体への合焦を行う。
 なお、他の方式については、AF評価値として使用するパラメータや、当該AF評価値の評価方法が異なるものの、被写体像からAF評価値を算出し、当該AF評価値に基づき合焦位置を特定するという基本的な考え方については、コントラスト方式と同様である。上記を踏まえ、以降の説明においては、焦点位置の制御に関する説明においては、AFの方式としてコントラスト方式を適用した場合を例に説明するものとする。
 一方で、内視鏡システムや手術用顕微鏡等のような医療用観察装置による患部の観察には、通常光(白色光)とは異なる帯域の成分を観察対象とした、所謂特殊光観察が知られている。例えば、特殊光観察の一例として、狭帯域光観察(NBI:Narrow Band Imaging)が挙げられる。
 狭帯域光観察では、例えば、被写体に対して青色及び緑色の帯域にそれぞれ含まれる狭帯域の光を補助光として照射し、被写体からの反射光のうち、緑色成分の光(緑色光)と青色成分の光(青色光)とに基づき、当該被写体の画像を生成する。特に、青色光及び緑色光は、血液中のヘモグロビンに吸収されやすい。そのため、狭帯域光観察では、このような特性を利用することで、例えば、色素等による染色を伴わずに、血管などをより鮮明に撮像することが可能となる。
 また、特殊光観察の他の一例として、生体または非生体資料からの蛍光・燐光現象を観察することによって対象を観察する蛍光観察(AFI:Auto Fluorescence Imaging)や、赤外光を観察の対象とする赤外光観察(IRI:Infra Red Imaging)等が挙げられる。なお、これらの観察方法については、一般的に知られているため、詳細な説明は省略する。
 このような特殊光観察においては、観察の対象となる帯域に応じて合焦位置にずれが生じ、鮮明な被写体像を得ることが困難となる場合がある。このような現象は、特に色収差の大きい光学系(レンズ等)を使用する場合において、より顕在化しやすい傾向にあることがわかっている。
 例えば、図3は、色収差により合焦位置のずれが生じる原理について説明するための説明図である。特に、図3に示す例では、説明をよりわかりやすくするために、色収差の大きい光学系(レンズ)を使用した場合の一例について概略的に示している。
 図3に示すように、光線を透過し屈折させる物質(即ち、レンズ等の光学系)において、屈折率は一定ではなく、光線の波長(周波数)によって異なる。具体的には、図3に示すように、光線の波長が短いほど(光線の周波数が高いほど)屈折率が高くなる。そのため、図3に示すように、例えば、波長の比較的短い紫外光に比べて、当該紫外光よりも波長の長い白色光や赤外光の方が、光学系に対してより遠い位置で焦点を結ぶこととなる。
 このような特性から、例えば、赤外光を観察の対象とする場合において、通常光(白色光)を観察する場合と同様に、当該通常光の検出結果を基に算出されたAF評価値に基づきフォーカスレンズ位置を制御したとしても、より鮮明な被写体像が得られるとは限らない。このような現象は、色収差の大きい光学系ほど、より顕在化しやすい傾向にあることは、前述した通りである。
 そこで、本実施形態に係る医療用観察装置は、色収差の比較的大きい光学系を使用した場合においても、観察の対象となる帯域に応じて、より好適な態様で当該光学系の焦点位置を制御することが可能な仕組みを提供する。なお、以降では、本実施形態に係る医療用観察装置についてさらに詳しく説明する。
 <3.機能構成>
 まず、図4を参照して、本実施形態に係る医療用観察装置の機能構成の一例について説明する。図4は、本実施形態に係る医療用観察装置の機能構成の一例について示したブロック図であり、特に、観察対象(被検体)の画像を撮像し、当該画像を表示する処理に着目した機能構成の一例を示している。
 図4に示すように、本実施形態に係る医療用観察装置100は、撮像部110(例えば、カメラヘッド)と、制御部130とを含む。また、医療用観察装置100は、光源部170を含んでもよい。図4に示した医療用観察装置100は、例えば、図1に示した内視鏡手術システム1として構成され得る。即ち、図4に示した、撮像部110、制御部130、及び光源部170は、例えば、図1に示した内視鏡手術システム1における、内視鏡11、CCU13、光源装置17にそれぞれ対応している。また、図4では、図示していないが、医療用観察装置100は、図1に示した内視鏡手術システム1における表示装置15に相当する、ディスプレイ等の表示部を含んでもよい。
 撮像部110は、所謂カメラ等のような動画像や静止画像等の画像を撮像する構成に相当する。具体的には、例えば、撮像部110は、撮像光学系(例えば、一連のレンズ群)111と、撮像素子114とを含む。また、撮像部110は、ズームレンズ駆動部115と、フォーカスレンズ駆動部116と、駆動系制御部117と、撮像素子駆動部118とを含む。
 撮像光学系111は、被写体の光学像を撮像素子114の撮像面に結像させる。撮像光学系111は、例えば、ズームレンズ112と、フォーカスレンズ113とを含む。なお、図4に示す例では、代表的にズームレンズ112及びフォーカスレンズ113のみを図示しているが、撮像光学系111は、他のレンズやフィルター等、各種の光学部材を含んでもよい。撮像光学系111を構成する光学部材の種類や数、各光学部材の光学特性等は、当該撮像光学系111によって撮像素子114の撮像面上に被写体の光学像が結像されるように、適宜調整されている。
 ズームレンズ112は、撮像光学系111の倍率を調整するためのレンズである。ズームレンズ112は光軸上を移動可能に構成されており、ズームレンズ112の光軸上での位置が制御されることにより、撮像光学系111の倍率が調整される。なお、ズームレンズ112は、撮像光学系111の倍率を調整するための光学部材の一例である。即ち、撮像光学系111に含まれる少なくとも1つの光学部材の光軸上での位置が調整されることにより当該撮像光学系111の倍率が調整されればよく、倍率の調整のために移動可能に構成される光学部材の数及び種類は特に限定されない。
 フォーカスレンズ113は、撮像光学系111の焦点距離を調整するためのレンズである。フォーカスレンズ113は光軸上を移動可能に構成されており、フォーカスレンズ113の光軸上での位置(即ち、フォーカスレンズ位置)が制御されることにより、撮像光学系111の焦点距離(換言すると、焦点位置)が調整される。なお、フォーカスレンズ113は、撮像光学系111の焦点距離を調整するための光学部材の一例である。即ち、撮像光学系111に含まれる少なくとも1つの光学部材の光軸上での位置が調整されることにより当該撮像光学系111の焦点距離が調整されればよく、焦点距離の調整のために移動可能に構成される光学部材の数及び種類は特に限定されない。
 撮像素子114としては、例えば、CMOSイメージセンサやCCDイメージセンサ等が適用され得る。撮像素子114は、撮像面に結像した光学像を光電変換によって電気信号(以降では、「撮像信号」と称する場合がある)に変換する。具体的には、本実施形態に係る撮像素子114は、例えば、R、G、Bそれぞれの光(分光成分)を受光する受光素子(画素)を備え、被写体からの光を、R、G、Bの分光成分ごとに光電変換によって撮像信号に変換する。なお、以降の説明では、撮像素子114により受光される被写体からの光を、「観察対象光」と称する場合がある。例えば、通常光(白色光)を観察、狭帯域光観察、及び赤外光観察においては、被写体からの反射光が観察対象光の一例に相当する。また、蛍光観察においては、被写体(生体または非生体資料)から放出される蛍光が、観察対象光の一例に相当する。また、以降の説明では、R、G、Bの分光成分ごとの撮像信号を、それぞれ「R信号」、「G信号」、「B信号」と称し、これらを総じて「RGB信号」と称する場合がある。また、本実施形態に係る撮像素子114は、被写体からの観察対象光を複数の分光成分ごとに光電変換によって撮像信号に変換できれば、当該分光成分は必ずしもR、G、Bには限定されず、例えば、Y(イエロー)、M(マゼンダ)、C(シアン)等であってもよい。また、撮像素子114の動作(例えば、シャッタースピードやゲイン)は、例えば、後述する撮像素子駆動部118により制御される。
 そして、撮像素子114は、光電変換によって生成した分光成分ごとの撮像信号(例えば、RGB信号)を制御部130に出力する。これにより、撮像素子114により受光された分光成分それぞれの明るさに応じた撮像信号(即ち、被写体像の輝度に応じた分光成分ごとの撮像信号)が制御部130に出力される。
 ズームレンズ駆動部115は、例えばモータ、及び当該モータに対して駆動電流を供給するドライバ回路等によって構成され、ズームレンズ112を光軸に沿って移動させる。ズームレンズ駆動部115の動作は、後述する駆動系制御部117によって制御される。
 フォーカスレンズ駆動部116は、例えばモータ、及び当該モータに対して駆動電流を供給するドライバ回路等によって構成され、フォーカスレンズ113を光軸に沿って移動させる。フォーカスレンズ駆動部116の動作は、後述する駆動系制御部117によって制御される。
 駆動系制御部117は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)等の各種のプロセッサ、又はプロセッサとメモリ等の記憶素子とがともに搭載されてなるマイコン等によって構成され、ズームレンズ駆動部115及びフォーカスレンズ駆動部116の動作を制御する。駆動系制御部117は、FPGA(Field-Programmable Gate Array)、ドライバIC(Integrated Circuit)、及び/又は専用のLSI(Large-Scale Integration)(すなわちASIC(Application Specific Integrated Circuit))等の各種の集積回路によって構成されてもよい。駆動系制御部117の機能は、当該駆動系制御部117を構成するプロセッサが所定のプログラムに従って演算処理を実行することにより実現され得る。
 具体的な一例として、駆動系制御部117は、後述する制御部130の光学系制御部134から送信される、ズームレンズ112の移動方向や移動量を示す情報に基づき、ズームレンズ駆動部115の駆動を制御する。これにより、当該移動方向に当該移動量の分だけズームレンズ112が移動し、撮像光学系111の倍率が調整される。なお、撮像光学系111の倍率の調整のために、ズームレンズ112以外の他の光学部材も移動可能に構成されている場合には、駆動系制御部117からの制御に基づき、ズームレンズ駆動部115によって、当該他の光学部材の位置が制御されてもよい。
 また、他の一例として、駆動系制御部117は、光学系制御部134から送信される、フォーカスレンズ113の移動方向や移動量を示す情報に基づき、フォーカスレンズ駆動部116の駆動を制御する。これにより、当該移動方向に当該移動量の分だけフォーカスレンズ113が移動し、撮像光学系111の焦点距離が調整される。なお、撮像光学系111の焦点距離の調整のためにフォーカスレンズ113以外の他の光学部材も移動可能に構成されている場合には、駆動系制御部117からの制御に基づき、フォーカスレンズ駆動部116によって、当該他の光学部材の位置が制御されてもよい。
 なお、図4に示す例では、駆動系制御部117が撮像部110に設けられているが、当該駆動系制御部117は、撮像部110の外部(例えば、制御部130)に設けられていてもよい。
 撮像素子駆動部118は、撮像素子114を駆動するためのドライバに対応する。撮像素子駆動部118は、所定のタイミングで撮像素子114に対して駆動信号を供給することにより、撮像素子114に、撮影動作、リセット動作等の動作を所定のタイミングで実行させ、被写体像に対応する撮像信号を取得させる。これにより、撮像素子114のシャッタースピードが制御される。また、撮像素子駆動部118は、撮像素子114において、撮像された撮像信号に対して適用されるゲインを制御してもよい。
 なお、図示は省略するが、撮像素子駆動部118の動作を制御する撮像素子駆動制御部が、撮像部110または制御部130に設けられ得る。撮像素子駆動制御部は、CPUやDSP等の各種のプロセッサ、又はマイコン等によって構成され、上述した駆動信号を撮像素子114に供給するタイミングを撮像素子駆動部118に対して指示することにより、撮像素子駆動部118を介して、撮像素子114の駆動を制御する。また、撮像素子駆動制御部は、撮像素子114が撮像信号に対して適用するゲインを撮像素子駆動部118に対して指示することにより、撮像素子駆動部118を介して、撮像素子114の動作を制御してもよい。なお、当該撮像素子駆動制御部の機能は、当該撮像素子駆動制御部を構成するプロセッサが所定のプログラムに従って演算処理を実行することにより実現され得る。
 制御部130は、撮像信号処理部131と、検波枠ゲート132と、AF検波部133と、光学系制御部134とを含む。制御部130は、CPUやDSP等の各種のプロセッサ、又はマイコン等によって構成され得る。
 撮像信号処理部131は、撮像素子114において光電変換によって生成された分光成分ごとの撮像信号(例えば、RGB信号)に対して、例えば、リニアマトリクス処理、ホワイトバランス処理、γ補正処理等の各種信号処理を実行する。また、撮像信号処理部131は、各種信号処理が施された当該撮像信号に対して、色調補正、輝度補正等の各種補正処理、ビデオ信号の生成、あるいはエンコード処理等、目的に応じた画像処理を施す。以上のような制御により、撮像信号処理部131は、取得された撮像信号に対して、被写体像の明るさの調整、ホワイトバランスの調整、及び、色再現等の所謂現像処理を実行し、映像信号を生成する。
 具体的な一例として、ホワイトバランスを調整するための処理の一例について以下に説明する。例えば、ホワイトバランスの調整の対象となるRGB信号(例えば、撮像素子114から出力される撮像信号)それぞれの輝度成分をR、G、Bとし、ホワイトバランスを調整するためにRGB信号それぞれに適用する補正係数をm30、m40、及びm50とする。ここで、ホワイトバランス調整後のRGB信号それぞれの輝度成分をR、G、Bとすると、撮像信号処理部131は、R、G、Bを以下に(式1)~(式3)として示す計算式に基づき算出する。なお、補正係数m30、m40、及びm50は、例えば、選択されたホワイトバランスの調整のためのモード(換言すると、色温度)に応じてあらかじめ設定されている。
Figure JPOXMLDOC01-appb-M000002
 また、他の一例として、色再現のための処理の一例について以下に説明する。撮像信号処理部131は、RGB信号それぞれの輝度成分R、G、Bに対して、色再現のためにあらかじめ設定されたパラメータ(以降では、「色再現マトリックス」と称する場合がある)に基づく補正処理を施すことで、色再現処理を実行する。ここで、色再現処理後のRGB信号それぞれの輝度成分をR、G、Bとし、色再現マトリックスをMすると、撮像信号処理部131は、R、G、Bを以下に(式4)として示す計算式に基づき算出する。なお、色再現マトリックスMにおける各補正係数m00~m02、m10~m12、及びm2022は、色再現処理の内容に応じてあらかじめ設定されている。
Figure JPOXMLDOC01-appb-M000003
 また、撮像信号処理部131は、色再現処理により、当該色再現処理の対象となる分光成分ごとの撮像信号を、他の色空間に基づく撮像信号に変換してもよい。具体的な一例として、撮像信号処理部131は、RGB信号を、輝度成分Yと色差成分Cb、Crとに基づく、YCbCr空間の成分に変換してもよい。この場合には、RGB信号をYCbCr空間の成分に変換するための色再現マトリックスをMとしたとき、撮像信号処理部131は、YCbCr空間における輝度成分Yと色差成分Cb、Crとを、以下に(式5)として示す計算式に基づき算出する。
Figure JPOXMLDOC01-appb-M000004
 また、撮像信号処理部131は、撮像素子114から出力される分光成分ごとの撮像信号(例えば、RGB信号)に対して、上記に説明したホワイトバランスの調整や色再現処理のうち、複数の処理を適用してもよい。具体的な一例として、撮像信号処理部131は、撮像素子114から出力されるRGB信号に対して、ホワイトバランスの調整に係る処理を適用し、ホワイトバランス調整後のRGB信号の輝度成分(R,G,B)に対して、色再現マトリックスMに基づき色再現処理を施してもよい。また、他の一例として、撮像信号処理部131は、撮像素子114から出力されるRGB信号に対して、色再現マトリックスMに基づき色再現処理を施し、色再現処理後のRGB信号の輝度成分(R,G,B)を、色再現マトリックスMに基づきYCbCr空間の成分に変換してもよい。
 なお、本実施形態に係る医療用観察装置100は、例えば、通常光(白色光)に基づき被写体像の観察に加えて、狭帯域光観察、蛍光観察、及び赤外光観察等のような各種特殊光観察を選択的に切り替えて実行可能に構成されていてもよい。この場合には、例えば、撮像信号処理部131は、選択された観察方式に対応するモード(以降では、「観察モード」と称する場合がある)に応じた現像処理(即ち、各種信号処理や各種画像処理)を、撮像信号に対して施してもよい。
 具体的には、撮像信号処理部131には、例えば、術者(ユーザ)により、ボタン、タッチパネル、またはスイッチ等の、医療用観察装置100に設けられる図示しない各種の入力部を介して選択された観察モードを示す観察モード選択信号が、当該入力部から入力されてもよい。この場合には、撮像信号処理部131は、入力された観察モード選択信号に基づき、術者により選択された観察モードを識別し、観察モードの識別結果に応じた現像処理を撮像信号に対して施すことで映像信号を生成してもよい。
 より具体的な一例として、撮像信号処理部131は、取得した撮像信号(例えば、RGB信号)に対して、選択された観察モードに応じたフィルター(例えば、バンドパスフィルタ)を適用することで、当該観察モードにおいて観察の対象となる帯域の成分を、当該撮像信号から抽出してもよい。
 また、撮像信号処理部131は、上記に説明したホワイトバランスの調整や色再現処理の内容を、選択された観察モードに応じて切り替えてもよい。この場合は、例えば、撮像信号処理部131は、適用する補正係数をm30、m40、及びm50や、色再現マトリックスMまたはMを、選択された観察モードに応じて切り替えてもよい。
 そして、撮像信号処理部131は、生成した映像信号は、例えば、ディスプレイ等のような表示部に出力する。これにより、当該表示部に、当該映像信号に基づく被写体の映像が表示され、術者(ユーザ)は、被写体である患部の映像を観察することが可能となる。
 また、撮像信号処理部131は、撮像素子114から出力される分光成分ごとの撮像撮像信号(例えば、RGB信号)を、検波枠ゲート132を介して、AF検波部133に出力する。
 検波枠ゲート132は、撮像信号処理部131から分光成分ごとの撮像信号(例えば、RGB信号)を受けて、撮像素子114中の所定の領域(以降では、「AF検波枠」と称する場合がある)の受光素子(画素)に対応する当該分光成分ごとの撮像信号を、後段に位置するAF検波部133に出力する。
 AF検波部133は、検波枠ゲート132から分光成分ごとの撮像信号を取得する。AF検波部133は、取得した当該撮像信号に基づき、AF機能を実現するためのAF評価値を算出し、算出したAF評価値を後述する光学系制御部134に出力する。なお、本実施形態に係るAF検波部133は、例えば、色収差の比較的大きい撮像光学系111を使用した場合においても、観察の対象となる帯域に応じて、より好適な態様で当該撮像光学系111の焦点位置を制御することが可能となるように、当該観察対象の帯域に応じてAF評価値を算出する。そこで、以下に、図5を参照して、AF検波部133について詳細に説明する。図5は、AF検波部133の機能構成の一例を示したブロック図である。
 図5に示すように、AF検波部133は、AF評価信号算出部135と、AF評価値算出部136とを含む。
 AF評価信号算出部135は、例えば、術者(ユーザ)により選択された観察モードを示す観察モード選択信号を入力部から取得し、取得した観察モード選択信号に基づき、観察の対象となる帯域を認識する。
 AF評価信号算出部135は、検波枠ゲート132から分光成分ごとの撮像信号を取得し、取得した当該撮像信号に対して、観察の対象となる帯域に応じて分光成分間で重み付けを行う。例えば、RGB信号を対象として、RGB信号それぞれの輝度成分をR、G、Bとし、観察の対象となる帯域に応じたRGB間の重みに基づく係数をr、g、bとする。このとき、AF評価信号算出部135は、AF評価値を算出するための撮像信号L(以降では、「AF評価信号」と称する場合がある)を以下に(式6)として示す計算式に基づき算出する。
Figure JPOXMLDOC01-appb-M000005
 なお、(式6)に示したr、g、bのような分光成分間で重み付けを行うための係数(以降では、「AF用評価信号係数」と称する場合がある)は、例えば、観察モードごとに算出しておき、AF評価信号算出部135が読み出し可能な記憶領域にあらかじめ記憶させておくとよい。これにより、AF評価信号算出部135は、選択された観察モードに応じたAF用評価信号係数を当該記憶領域から読み出し、読み出したAF用評価信号係数を、取得した分光成分ごとの撮像信号に対して適用することで、AF評価信号を生成すればよい。
 より具体的な一例として、被写体からの観察対象光のうち赤外光を観察対象とした赤外光観察が選択された場合には、赤外光がより強調されるように、当該赤外光観察に対応するAF用評価信号係数r、g、bが設定されているとよい。同様に、被写体からの観察対象光のうち緑色光及び青色光を観察対象とした狭帯域光観察が選択された場合には、G信号及びB信号がより強調されるように、当該狭帯域光観察に対応するAF用評価信号係数r、g、bが設定されているとよい。なお、観察モードに応じたAF用評価信号係数は、例えば、当該観察モードにおいて観察の対象となる帯域の成分がより強調されるように、事前の実験等に基づきあらかじめ算出すればよい。
 また、他の一例として、AF評価信号算出部135は、被写体の撮像が行われる手術の術式に応じてAF用評価信号係数を決定してもよい。この場合には、例えば、当該術式ごとに、当該術式において観察の対象となる帯域の成分がより強調されるようにAF用評価信号係数を算出しておき、所定の記憶領域にあらかじめ記憶させておくとよい。また、AF評価信号算出部135は、例えば、術者(ユーザ)により選択された手術の術式を示す選択信号を入力部から取得し、取得した選択信号に基づき、選択された術式を識別する。そして、AF評価信号算出部135は、識別した術式に応じたAF用評価信号係数を、所定の記憶領域から読み出せばよい。もちろん、上記に示した例はあくまで一例であり、AF用評価信号係数の管理単位は、医療用観察装置100の運用方法に応じて適宜変更してもよい。具体的な一例として、AF評価信号算出部135は、医療用観察装置100を利用して被写体の撮像が行われる診療科に応じてAF用評価信号係数を決定してもよい。
 また、AF評価信号算出部135は、撮像信号処理部131が撮像信号に対して適用した現像処理の内容に応じて、AF用評価信号係数を算出してもよい。なお、本動作の詳細については、変形例として別途後述する。
 そして、AF評価信号算出部135は、算出したAF評価信号をAF評価値算出部136に出力する。
 AF評価値算出部136は、AF評価信号算出部135からAF評価信号を取得し、取得したAF評価信号に基づきAF評価値を算出する。具体的な一例として、AFの方式がコントラスト方式の場合には、AF評価値算出部136は、取得したAF評価信号に基づきコントラストを算出する。より具体的には、AF評価値算出部136は、AF検波枠内のすべての画素(受光素子)についての和として、輝度信号を用いた2次微分(ラプラシアン)よって、AF評価値(コントラスト)を算出する。なお、一般的には、合焦している場合には、合焦していない場合に比べて隣接する画素間の輝度信号の差分が大きくなり、コントラストが大きくなる。
 なお、上記に示すAF評価値の算出方法はあくまで一例であり、AFの方式に応じて当該AF評価値の算出方法が異なることは前述した通りである。
 そして、AF評価値算出部136は、算出したAF評価値を、光学系制御部134(図4参照)に出力する。
 ここで、改めて図4を参照する。光学系制御部134は、撮像部110の撮像光学系111を構成する各光学部材(例えば、ズームレンズ112やフォーカスレンズ113)の位置を制御することで、当該撮像部110の合焦動作やズーム動作を制御する。
 例えば、光学系制御部134は、術者(ユーザ)によって、ズーム動作を行う旨の指示信号(ズーム指示信号)が入力され得る。当該ズーム指示信号は、例えばスイッチ等、医療用観察装置100に設けられる図示しない各種の入力部を介して入力される。ズーム指示信号には、倍率についての指示も含まれており、光学系制御部134は、ズーム指示信号に基づいて、指示された倍率を実現し得るズームレンズ112の移動方向や移動量を決定し、当該移動方向や当該移動量を示す情報を駆動系制御部117に出力する。当該情報を受けて、駆動系制御部117は、ズームレンズ駆動部115を介して、決定された移動方向に向けて、決定された移動量の分だけズームレンズ112を移動させる。これにより、術者の指示に従って撮像光学系111の倍率が調整される。なお、撮像光学系111の倍率の調整のためにズームレンズ112以外の他の光学部材も移動可能に構成される場合には、光学系制御部134は、当該他の光学部材の光軸上での移動方向や移動量を併せて決定してもよい。
 また、他の一例として、光学系制御部134は、撮像部110が撮像光学系111の焦点距離を制御する(例えば、合焦動作を行う)ためのフォーカスレンズ113の移動方向や移動量を算出してもよい。
 具体的な一例として、光学系制御部134は、術者(ユーザ)からの指示に基づき焦点距離を制御するマニュアルフォーカス(MF)機能と、被写体に対して自動的に焦点合わせを行うオートフォーカス(AF)機能とを選択的に切り替え可能に構成されていてもよい。この場合には、光学系制御部134は、術者(ユーザ)によって、MF機能とAF機能とを選択的に切り替えるための指示信号(マニュアル/オートフォーカス切替え信号)が入力され得る。当該マニュアル/オートフォーカス切替え信号は、例えばスイッチ等、医療用観察装置100に設けられる図示しない各種の入力部を介して入力される。光学系制御部134は、マニュアル/オートフォーカス切替え信号に基づいて、フォーカスレンズ113の移動方向や移動量の決定方法を切り替える。
 例えば、MF機能が選択された場合には、光学系制御部134は、術者(ユーザ)によって、撮像光学系111の焦点距離を制御するための指示信号(フォーカス指示信号)が入力され得る。当該フォーカス指示信号は、例えばスイッチ等、医療用観察装置100に設けられる図示しない各種の入力部を介して入力される。フォーカス指示信号には、例えば、焦点距離についての指示も含まれており、光学系制御部134は、フォーカス指示信号に基づいて、指示された焦点距離を実現し得るフォーカスレンズ113の移動方向や移動量を決定し、当該移動方向や当該移動量を示す情報を駆動系制御部117に出力する。当該情報を受けて、駆動系制御部117は、フォーカスレンズ駆動部116を介して、決定された移動方向に向けて、決定された移動量の分だけフォーカスレンズ113を移動させる。これにより、術者の指示に従って撮像光学系111の焦点距離が調整される。なお、撮像光学系111の焦点距離の調整のためにフォーカスレンズ113以外の他の光学部材も移動可能に構成される場合には、光学系制御部134は、当該他の光学部材の光軸上での移動量を併せて決定してもよい。
 また、AF機能が選択された場合には、光学系制御部134は、AF検波部133から出力されるAF評価値(例えば、コントラスト)に基づき、フォーカスレンズ113の移動方向や移動量を決定する。具体的には、光学系制御部134は、駆動系制御部117を介してフォーカスレンズ113の位置を制御しながら、AF検波部133から出力されるAF評価値を、フォーカスレンズ113の移動前後で比較する。そして、光学系制御部134は、AF評価値の比較結果に基づき、当該AF評価値がより大きくなる方向にフォーカスレンズ113が光軸上を移動するように、当該フォーカスレンズ113の移動方向や移動量を決定する。なお、最初にフォーカスレンズ113を移動させる際には(即ち、比較対象となる移動前のAF評価値が存在しない場合には)、あらかじめ設定される所定の方向に所定の距離だけフォーカスレンズ113を移動させるように、当該フォーカスレンズ113の移動方向や移動量が決定されればよい。
 そして、光学系制御部134は、AF評価値の比較結果に基づき決定した、フォーカスレンズ113の移動方向や移動量を示す情報を駆動系制御部117に出力する。当該情報を受けて、駆動系制御部117は、フォーカスレンズ駆動部116を介して、決定された移動方向に向けて、決定された移動量の分だけフォーカスレンズ113を移動させる。
 以下、上記に説明した一連の処理(即ち、AF評価値の比較結果に基づく移動方向や移動量の決定に係る処理、及び、当該移動方向及び当該移動量に応じたフォーカスレンズ113の移動に係る処理)が繰り返し実行されることにより、AF動作が実行される。即ち、フォーカスレンズ113の移動後に撮像素子114によって得られた撮像信号に基づいて、AF検波部133がAF評価値を再度算出し、算出された当該AF評価値に基づき光学系制御部134がフォーカスレンズ113の移動方向や移動量を決定する。そして、決定された移動方向や移動量に基づき、駆動系制御部117が、フォーカスレンズ113を移動させる。これらの処理が繰り返し実行されることで、最終的に、AF評価値(例えば、被写体像のコントラスト)が最大になる位置にフォーカスレンズ113が移動され、被写体に対して合焦し、一連のAF動作に係る処理が終了する。
 なお、撮像光学系111の焦点距離の調整のためにフォーカスレンズ113以外の他の光学部材も移動可能に構成される場合には、光学系制御部134は、当該他の光学部材の光軸上での移動量を併せて決定してもよい点は、MF機能が選択された場合と同様である。
 なお、上記に説明したAF動作に係る処理はあくまで一例であり、AF評価値に基づきAF動作を実現することが可能であれば、AF評価値として使用されるパラメータの種別や、AF動作に係る処理の内容は特に限定されない。
 光源部170は、例えば、出射光の帯域が互いに異なる複数の光源を備え、当該光源を選択的に切り替え可能に構成されている。例えば、光源部170には、ボタン、タッチパネル、またはスイッチ等の、医療用観察装置100に設けられる図示しない各種の入力部を介して選択された観察モードを示す、観察モード選択信号が、当該入力部から入力される。光源部170は、入力された観察モード選択信号に基づき、選択された観察モードに対応する光源に補助光を照射させる。このような構成により、選択された観察モードに応じた補助光が、対応する光源から被写体に向けて照射される。
 また、他の一例として、光源部170は、観察モードに応じた光源を着脱可能に構成されていてもよい。この場合には、例えば、光源部170は、装着された光源に対応する観察モードが選択されたことを示す観察モード選択信号が入力された場合に、当該光源に補助光を照射させればよい。
 以上、図4及び図5を参照して、本実施形態に係る医療用観察装置の機能構成の一例について説明した。
 <4.処理>
 次に、図6を参照して、本実施形態に係る医療用観察装置の一連の処理の流れの一例について、特に、AF動作に係る処理に着目して説明する。図6は、本実施形態に係る医療用観察装置の一連の処理の流れの一例を示したフローチャートであり、特に、制御部130によるAF動作に係る処理の流れの一例について示している。
 (ステップS101)
 制御部130のAF評価信号算出部135は、術者(ユーザ)により選択された観察モードを示す観察モード選択信号を入力部から取得し、当該観察モード選択信号に応じたAF用評価信号係数を、所定の記憶領域から読み出す。また、他の一例として、AF評価信号算出部135は、撮像信号処理部131が撮像信号に対して適用した現像処理の内容に応じて、AF用評価信号係数を算出してもよい。以上のようにして、AF評価信号算出部135は、適用するAF用評価信号係数を決定する。
 (ステップS103)
 次いで、AF評価信号算出部135は、検波枠ゲート132を介して撮像信号処理部131から分光成分ごとの撮像信号を取得し、取得した当該撮像信号に対して決定したAF用評価信号係数を適用することで、分光成分間で重み付けを行い、AF評価信号を生成する。そして、AF評価信号算出部135は、算出したAF評価信号をAF評価値算出部136に出力する。
 (ステップS105)
 AF評価値算出部136は、AF評価信号算出部135からAF評価信号を取得し、取得したAF評価信号に基づきAF評価値を算出する。例えば、AFの方式がコントラスト方式の場合には、AF評価値算出部136は、取得したAF評価信号に基づきコントラストをAF評価値として算出する。AF評価値算出部136は、算出したAF評価値を、光学系制御部134に出力する。
 (ステップS107)
 光学系制御部134は、AF検波部133から出力されるAF評価値に基づき、フォーカスレンズ113の移動方向や移動量を決定する。例えば、光学系制御部134は、駆動系制御部117を介してフォーカスレンズ113の位置を制御しながら、AF検波部133から出力されるAF評価値を、フォーカスレンズ113の移動前後で比較する。光学系制御部134は、AF評価値の比較結果に基づき、当該AF評価値がより大きくなる方向にフォーカスレンズ113が光軸上を移動するように、当該フォーカスレンズ113の移動方向や移動量を決定する。
 そして、光学系制御部134は、AF評価値の比較結果に基づき決定した、フォーカスレンズ113の移動方向や移動量を示す情報を駆動系制御部117に出力する。当該情報を受けて、駆動系制御部117は、フォーカスレンズ駆動部116を介して、決定された移動方向に向けて、決定された移動量の分だけフォーカスレンズ113を移動させる。
 (ステップS109)
 制御部130は、上記に説明した一連の処理を、AF評価値が最大になる位置にフォーカスレンズ113が移動する(即ち、合焦位置に移動する)まで継続する(S109、NO)。
 (ステップS111)
 そして、制御部130は、フォーカスレンズ113が合焦位置に移動すると(S109、YES)、当該フォーカスレンズ113の移動を停止し、AF動作を終了する。
 以上、図6を参照して、本実施形態に係る医療用観察装置100の一連の処理の流れの一例について、特に、AF動作に係る処理に着目して説明した。以上のように、本実施形態に係る医療用観察装置100は、被写体からの観察対象光のうち観察の対象となる帯域に応じたAF用評価信号係数と、撮像素子114からの撮像信号とに基づきAF評価値を算出し、算出した当該AF評価値に基づき合焦動作(AF動作)を行う。このような構成により、本実施形態に係る医療用観察装置100は、色収差の比較的大きい光学系を使用した場合においても、観察の対象となる帯域に応じて、被写体に対して合焦するように、撮像光学系111の焦点位置を制御することが可能となる。
 <5.変形例>
 次に、本実施形態に係る医療用観察装置の変形例について説明する。
 (現像内容に応じたAF用評価信号係数の決定)
 前述した実施形態に係る医療用観察装置は、術者(ユーザ)により選択された観察モードに応じて、AF用評価信号係数を決定し、当該AF用評価信号係数に基づきAF用評価信号を生成していた。これに対して変形例に係る医療用観察装置は、撮像信号に対して適用した現像処理の内容(例えば、ホワイトバランスの調整や色再現処理のために適用した現像パラメータ)に応じて、AF用評価信号係数を動的に算出する。
 具体的な一例として、医療用観察装置100が、(式4)として前述したように、色再現マトリックスMに基づき、撮像素子114から出力される撮像信号に対して現像処理(色再現処理)を施すことで、映像信号を生成するものとする。この場合には、変形例に係る医療用観察装置100は、現像処理に用いた当該色再現マトリックスMに基づき、AF用評価信号係数を算出する。例えば、以下に(式7)として示す計算式は、現像処理に用いた色再現マトリックスMに基づくAF用評価信号係数の算出式の一例である。
Figure JPOXMLDOC01-appb-M000006
 上記に示した(式7)において、A=(k,k,k)は、現像処理のために適用された現像パラメータをAF用評価信号係数に変換するための変換式であり、例えば、観察の対象となる帯域に応じた分光成分間の重みに応じて決定される。具体的な一例として、医療用観察装置100は、各種の入力部を介して術者(ユーザ)により選択された観察モードに応じて、適用する変換式Aを特定してもよい。例えば、被写体からの観察対象光のうち緑色光及び青色光を観察対象とした狭帯域光観察が選択された場合には、医療用観察装置100は、例えば、係数kに比べて、係数k及びkがより大きくなるように設定された変換式Aを選択すればよい。なお、観察モードに応じた変換式A中の各係数k、k、kは、例えば、当該観察モードにおいて観察の対象となる帯域の成分がより強調されるように、事前の実験等に基づきあらかじめ算出されているとよい。
 また、上述した例では、医療用観察装置100が、現像処理として適用したAF用評価信号係数を算出する例について説明したが、適用された現像処理の内容に応じて、AF用評価信号係数の算出に適用する現像パラメータを適宜変更してもよいことは言うまでもない。例えば、現像処理としてRGB信号からYCbCr空間の成分に変換するための色再現マトリックスMを適用した場合には、医療用観察装置100は、選択された観察モードに応じた変換式Aに対して、当該色再現マトリックスMを適用することで、AF用評価信号係数を算出してもよい。
 また、現像処理として複数の現像パラメータを適用した場合には、医療用観察装置100は、適用した現像パラメータを選択した変換式Aに順次乗じることで、AF用評価信号係数を算出してもよい。具体的な一例として、医療用観察装置100は、現像パラメータとして色再現マトリックスM及びMを適用した場合には、以下に(式8)として示す計算式に基づき、AF用評価信号係数を算出してもよい。
Figure JPOXMLDOC01-appb-M000007
 なお、上記に示す例はあくまで一例であり、変換式Aの管理単位は、医療用観察装置100の運用方法に応じて適宜変更してもよい。具体的な一例として、医療用観察装置100は、被写体の撮像が行われる手術の術式に応じて変換式Aを決定してもよい。また、他の一例として、医療用観察装置100は、被写体の撮像が行われる診療科に応じて変換式Aを決定してもよい。
 以上のような構成により、変形例に係る医療用観察装置100は、撮像信号に対して適用した現像処理の内容に応じて、より好適な態様で被写体に対して合焦するように、撮像光学系111の焦点位置を制御することが可能となる。
 (撮像光学系に応じたAF用評価信号係数の決定)
 また、医療用観察装置100は、撮像光学系111(または、撮像部110自体)が着脱可能に構成されていてもよい。このような場合には、医療用観察装置100に対して、光学特性が異なる撮像光学系111が装着される場合が想定され、装着される撮像光学系111の光学特性に応じて合焦位置が異なる場合も想定され得る。特に、被写体からの観察対象光のうち複数の帯域(例えば、互いに近傍に位置する帯域)を観察対象とする状況下で、各帯域に対応する被写体像それぞれに合焦するように撮像光学系111の焦点位置を制御する場合には、好適な合焦位置が撮像光学系111の光学特性に応じて異なる場合がある。このような状況を鑑みて、医療用観察装置100は、装着された撮像光学系111の光学特性(特に、色収差)に応じて、AF用評価信号係数を算出してもよい。
 具体的な一例として、前述したAF用評価信号係数を算出するための変換式A=(k,k,k)を、撮像光学系111ごとに、事前の実験等に基づき当該撮像光学系111の光学特性に応じて算出し、所定の記憶領域にあらかじめ記憶させておくとよい。医療用観察装置100は、例えば、装着された撮像光学系111を識別し、識別結果に基づき、当該撮像光学系111に対応する変換式Aを所定の記憶領域から読み出す。そして、医療用観察装置100は、読み出した変換式Aに基づき、AF用評価信号係数を算出してもよい。
 なお、医療用観察装置100が、自身に装着された撮像光学系111を識別できれば、その方法は特に限定されない。具体的な一例として、撮像光学系111の所定の記憶領域に当該撮像光学系111を識別するための識別情報をあらかじめ記憶させておき、医療用観察装置100は、接続された撮像光学系111の当該記憶領域から当該識別情報を読み出すことで、当該撮像光学系111を識別してもよい。
 また、変換式Aについては、観察対象となる帯域ごと(換言すると、観察モードごと)に設定されていてもよいことは、前述した例と同様である。この場合には、例えば、観察対象となる帯域(換言すると、選択される観察モード)と、接続される撮像光学系111との組み合わせごとに変換式Aがあらかじめ算出され、所定の記録領域に記憶されていてもよい。
 また、他の一例として、観察対象となる帯域と、接続される撮像光学系111との組み合わせごとにAF用評価信号係数があらかじめ算出され、所定の記憶領域に記憶されていてもよい。この場合には、医療用観察装置100は、例えば、術者(ユーザ)により選択された観察モードと、接続された撮像光学系111の識別結果とに応じて、対応するAF用評価信号係数を所定の領域から読み出せばよい。
 以上のような構成により、医療用観察装置100は、撮像光学系111が着脱可能に構成されている場合においても、装着される撮像光学系111の光学特性に応じて、より好適な態様で被写体に対して合焦するように、当該撮像光学系111の焦点位置を制御することが可能となる。
 <6.適用例>
 次に、図7を参照して、本実施形態に係る医療用観察装置の他の適用例として、アームを備えた手術用ビデオ顕微鏡装置が用いられる場合の一例について説明する。図7は、本実施形態に係る医療用観察装置の一適用例について説明するための説明図である。
 図7は、手術用ビデオ顕微鏡装置を用いた施術の様子を模式的に表している。具体的には、図7を参照すると、施術者(ユーザ)520である医師が、例えばメス、鑷子、鉗子等の手術用の器具521を使用して、施術台530上の施術対象(患者)540に対して手術を行っている様子が図示されている。なお、以下の説明においては、施術とは、手術や検査等、ユーザ520である医師が施術対象540である患者に対して行う各種の医療的な処置の総称であるものとする。また、図7に示す例では、施術の一例として手術の様子を図示しているが、手術用ビデオ顕微鏡装置510が用いられる施術は手術に限定されず、他の各種の施術であってもよい。
 施術台530の脇には本実施形態に係る手術用ビデオ顕微鏡装置510が設けられる。手術用ビデオ顕微鏡装置510は、基台であるベース部511と、ベース部511から延伸するアーム部512と、アーム部512の先端に先端ユニットとして接続される撮像ユニット515とを備える。アーム部512は、複数の関節部513a、513b、513cと、関節部513a、513bによって連結される複数のリンク514a、514bと、アーム部512の先端に設けられる撮像ユニット515を有する。図7に示す例では、簡単のため、アーム部512は3つの関節部513a~513c及び2つのリンク514a、514bを有しているが、実際には、アーム部512及び撮像ユニット515の位置及び姿勢の自由度を考慮して、所望の自由度を実現するように関節部513a~513c及びリンク514a、514bの数や形状、関節部513a~513cの駆動軸の方向等が適宜設定されてもよい。
 関節部513a~513cは、リンク514a、514bを互いに回動可能に連結する機能を有し、関節部513a~513cの回転が駆動されることにより、アーム部512の駆動が制御される。
 アーム部512の先端には、先端ユニットとして撮像ユニット515が接続されている。撮像ユニット515は、撮像対象の画像を取得するユニットであり、例えば動画や静止画を撮像できるカメラ等である。図7に示すように、アーム部512の先端に設けられた撮像ユニット515が施術対象540の施術部位の様子を撮像するように、手術用ビデオ顕微鏡装置510によってアーム部512及び撮像ユニット515の姿勢や位置が制御される。なお、アーム部512の先端に先端ユニットとして接続される撮像ユニット515の構成は特に限定されず、例えば、撮像ユニット515は、内視鏡や顕微鏡として構成されていてもよい。また、撮像ユニット515は、当該アーム部512に対して着脱可能に構成されていてもよい。このような構成により、例えば、利用用途に応じた撮像ユニット515が、アーム部512の先端に先端ユニットとして適宜接続されてもよい。なお、本説明では、先端ユニットとして撮像ユニット515が適用されている場合に着目して説明するが、アーム部512の先端に接続される先端ユニットは、必ずしも撮像ユニット515に限定されないことは言うまでもない。
 また、ユーザ520と対向する位置には、モニタやディスプレイ等の表示装置550が設置される。撮像ユニット515により取得された施術部位の画像は、例えば、手術用ビデオ顕微鏡装置510に内蔵または外付けされた画像処理装置(図示は省略する)により、各種画像処理が施されたうえで、表示装置550の表示画面に電子画像として表示される。このような構成により、ユーザ520は、表示装置550の表示画面に表示される施術部位の電子画像を見ながら各種の処置(例えば、手術等)を行うことが可能となる。
 なお、図7に示す例では、撮像ユニット515が、例えば、図4を参照して前述した撮像部110を含む。また、撮像ユニット515により取得された施術部位の画像に対して、各種画像処理を施す画像処理装置が、図4を参照して前述した制御部130の一例に相当する。また、表示装置550が、当該制御部130からの映像信号の出力先の一例に相当し得る。
 以上、図7を参照して、本実施形態に係る医療用観察装置の他の適用例として、アームを備えた手術用ビデオ顕微鏡装置が用いられる場合の一例について説明した。
 <7.ハードウェア構成>
 次に、図8を参照しながら、本実施形態に係る医療用観察装置として構成される情報処理装置900のハードウェア構成の一例について、詳細に説明する。図8は、本開示の一実施形態に係る医療用観察装置として構成される情報処理装置900のハードウェア構成の一構成例を示す機能ブロック図である。
 図8に示すように、情報処理装置900は、主に、CPU901と、ROM903と、RAM905と、を備える。また、情報処理装置900は、更に、ホストバス907と、ブリッジ909と、外部バス911と、インターフェース913と、入力装置915と、出力装置917と、ストレージ装置919とを備える。また、情報処理装置900は、ドライブ921と、接続ポート923と、通信装置925とを備えてもよい。
 CPU901は、演算処理装置及び制御装置として機能し、ROM903、RAM905、ストレージ装置919又はリムーバブル記録媒体927に記録された各種プログラムに従って、情報処理装置900内の動作全般又はその一部を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM905は、CPU901が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一次記憶する。これらはCPUバス等の内部バスにより構成されるホストバス907により相互に接続されている。なお、図4を参照して前述した、制御部130の各構成は、例えば、CPU901により実現され得る。
 ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続されている。また、外部バス911には、インターフェース913を介して、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート923及び通信装置925が接続される。
 入力装置915は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ、レバー及びペダル等、ユーザが操作する操作手段である。また、入力装置915は、例えば、赤外線やその他の電波を利用したリモートコントロール手段(いわゆる、リモコン)であってもよいし、情報処理装置900の操作に対応した携帯電話やPDA等の外部接続機器929であってもよい。さらに、入力装置915は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。情報処理装置900のユーザは、この入力装置915を操作することにより、情報処理装置900に対して各種のデータを入力したり処理動作を指示したりすることができる。
 出力装置917は、取得した情報をユーザに対して視覚的又は聴覚的に通知することが可能な装置で構成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置及びランプ等の表示装置や、スピーカ及びヘッドホン等の音声出力装置や、プリンタ装置等がある。出力装置917は、例えば、情報処理装置900が行った各種処理により得られた結果を出力する。具体的には、表示装置は、情報処理装置900が行った各種処理により得られた結果を、テキスト又はイメージで表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。例えば、図4を参照して前述した撮像信号処理部131からの映像信号の出力先としては、表示装置として構成された出力装置917が想定され得る。
 ストレージ装置919は、情報処理装置900の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等により構成される。このストレージ装置919は、CPU901が実行するプログラムや各種データ等を格納する。
 ドライブ921は、記録媒体用リーダライタであり、情報処理装置900に内蔵、あるいは外付けされる。ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク又は半導体メモリ等のリムーバブル記録媒体927に記録されている情報を読み出して、RAM905に出力する。また、ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク又は半導体メモリ等のリムーバブル記録媒体927に記録を書き込むことも可能である。リムーバブル記録媒体927は、例えば、DVDメディア、HD-DVDメディア又はBlu-ray(登録商標)メディア等である。また、リムーバブル記録媒体927は、コンパクトフラッシュ(登録商標)(CF:CompactFlash)、フラッシュメモリ又はSDメモリカード(Secure Digital memory card)等であってもよい。また、リムーバブル記録媒体927は、例えば、非接触型ICチップを搭載したICカード(Integrated Circuit card)又は電子機器等であってもよい。
 接続ポート923は、情報処理装置900に直接接続するためのポートである。接続ポート923の一例として、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポート等がある。接続ポート923の別の例として、RS-232Cポート、光オーディオ端子、HDMI(登録商標)(High-Definition Multimedia Interface)ポート等がある。この接続ポート923に外部接続機器929を接続することで、情報処理装置900は、外部接続機器929から直接各種のデータを取得したり、外部接続機器929に各種のデータを提供したりする。
 通信装置925は、例えば、通信網(ネットワーク)931に接続するための通信デバイス等で構成された通信インターフェースである。通信装置925は、例えば、有線若しくは無線LAN(Local Area Network)、Bluetooth(登録商標)又はWUSB(Wireless USB)用の通信カード等である。また、通信装置925は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ又は各種通信用のモデム等であってもよい。この通信装置925は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、通信装置925に接続される通信網931は、有線又は無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信又は衛星通信等であってもよい。
 以上、本開示の実施形態に係る医療用立体観察システムを構成する情報処理装置900の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。なお、図8では図示しないが、例えば、前述した医療用観察装置に対応する各種の構成を当然備える。
 なお、上述のような本実施形態に係る医療用立体観察システムを構成する情報処理装置900の各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。
 <8.まとめ>
 以上、説明したように、本実施形態に係る医療用観察装置100は、被写体からの観察対象光のうち観察の対象となる帯域に応じたAF用評価信号係数と、撮像素子114からの撮像信号とに基づきAF評価値を算出し、算出した当該AF評価値に基づき合焦動作(AF動作)を行う。このような構成により、本実施形態に係る医療用観察装置100は、色収差の比較的大きい光学系を使用した場合においても、観察の対象となる帯域に応じて、被写体に対して合焦するように、撮像光学系111の焦点位置を制御することが可能となる。即ち、本実施形態に係る医療用観察装置100に依れば、術者(ユーザ)は、所謂特殊光観察においても、観察の対象となる帯域に応じた、より鮮明な被写体像を観察することが可能となる。
 特に、本実施形態に係る医療用観察装置100は、例えば、撮像素子114からの撮像信号に対して適用される現像処理の特性に応じたAF用評価信号係数に基づきAF用評価信号を生成し、当該AF用評価信号に基づきAF評価値を算出することが可能である。このような構成により、医療用観察装置100は、互いに異なる複数の帯域それぞれに注目した現像を行うような状況下でも、当該複数の帯域それぞれについて、被写体に対して合焦するように、撮像光学系111の焦点距離を制御することが可能となる。
 より具体的な一例として、医療用観察装置100が、被写体に対して光源から複数の異なる帯域の補助光を照射し、当該被写体からの反射光の受光結果に基づく撮像信号に対して、当該複数の帯域それぞれについて、帯域ごとに異なる現像処理を施す場合に着目する。この場合には、例えば、医療用観察装置100は、複数の帯域それぞれに着目した現像処理ごとのAF用評価信号係数に基づき、当該現像処理ごとにAF用評価信号を生成し、当該AF用評価信号に基づきAF評価値を算出する。そして、医療用観察装置100は、現像処理ごとに、当該現像処理に対応したAF評価値に基づき、撮像光学系111の焦点位置を制御してもよい。このような制御により、医療用観察装置100は、例えば、患部表面や患部奥等のように、生体内の異なる位置それぞれに対して合焦した画像(即ち、患部がより鮮明に提示された画像)を出力することが可能となる。
 また、他の一例として、複数の帯域の蛍光を放出する蛍光体を観察する場合において、医療用観察装置100が、当該蛍光の受光結果に基づく撮像信号に対して、当該複数の帯域それぞれについて、帯域ごとに異なる現像処理を施す場合に着目する。この場合においても、例えば、医療用観察装置100は、複数の帯域それぞれに着目した現像処理ごとのAF用評価信号係数に基づきAF評価値を算出し、現像処理ごとに、当該現像処理に対応したAF評価値に基づき、撮像光学系111の焦点位置を制御してもよい。このような制御により、医療用観察装置100は、例えば、血管や腫瘍部位のように、生体内の異なる部位(換言すると、互いに異なる蛍光を放出する部分)それぞれに対して合焦した画像(即ち、各部位がより鮮明に提示された画像)を出力することが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 撮像素子による生体内の被写体からの観察対象光の受光結果に基づく、互いに異なる複数の分光成分それぞれに対応する撮像信号に対して、前記観察対象光の帯域のうち観察の対象とする帯域に応じた前記複数の分光成分間の重みを適用し、前記重みが適用された当該撮像信号に基づき、合焦の度合いを示す評価値を算出する算出部と、
 前記被写体からの観察対象光を前記撮像素子に結像する光学系のうち少なくとも1つの光学部材の位置を、前記評価値に基づき制御することで当該光学系の焦点位置を制御する制御部と、
 を備える、医療用観察装置。
(2)
 前記算出部は、前記複数の分光成分に基づき前記観察の対象とする帯域の成分に基づく画像データを生成するための補正パラメータに応じた前記重みに基づき、前記評価値を算出する、前記(1)に記載の医療用観察装置。
(3)
 前記算出部は、前記観察の対象とする帯域ごとにあらかじめ設定された前記重みに基づき、前記評価値を算出する、前記(1)に記載の医療用観察装置。
(4)
 前記算出部は、前記観察対象光の帯域のうち少なくとも一部の帯域を観察対象とする複数のモードそれぞれについてあらかじめ設定された前記重みのうち、選択された前記モードに対応する前記重みを取得し、取得した当該重みに基づき、前記評価値を算出する、前記(3)に記載の医療用観察装置。
(5)
 前記複数のモードには、狭帯域光観察、蛍光観察、及び赤外光観察のうち少なくともいずれかに対応するモードが含まれる、前記(4)に記載の医療用観察装置。
(6)
 前記算出部は、前記被写体の撮像が行われる手術の術式に応じて設定される前記重みに基づき、前記評価値を算出する、前記(1)に記載の医療用観察装置。
(7)
 前記算出部は、前記被写体の撮像が行われる診療科に応じて設定される前記重みに基づき、前記評価値を算出する、前記(1)に記載の医療用観察装置。
(8)
 前記算出部は、前記光学系の光学特性に応じて設定される前記重みに基づき、前記評価値を算出する、前記(1)~(7)のいずれか一項に記載の医療用観察装置。
(9)
 前記複数の分光成分に対応する前記撮像信号は、RGB信号であり、
 R信号、G信号、及びB信号の輝度成分をそれぞれR、G、及びBとし、前記重みに基づく、前記R信号、前記G信号、及び前記B信号それぞれに対応する係数をr、g、及びbとしたとき、前記評価値を算出するための評価信号Lは、以下に示す計算式に基づき算出される、前記(1)~(8)のいずれか一項に記載の医療用観察装置。
Figure JPOXMLDOC01-appb-M000008
(10)
 前記制御部は、前記評価値を基に算出される被写体像のコントラストに基づき、前記光学系の焦点位置を制御する、前記(1)~(9)のいずれか一項に記載の医療用観察装置。
(11)
 前記撮像素子を含む撮像部を備える、前記(1)~(10)のいずれか一項に記載の医療用観察装置。
(12)
 前記撮像部は、患者の体腔内に挿入される内視鏡である、
 前記(11)に記載の医療用観察装置。
(13)
 前記撮像部は、前記被写体の光学像を取得する前記光学系を含む顕微鏡部であって、
 前記顕微鏡部を支持する支持部、
 をさらに備える、
 前記(11)に記載の医療用観察装置。
(14)
 プロセッサが、
 撮像素子による生体内の被写体からの観察対象光の受光結果に基づく、互いに異なる複数の分光成分それぞれに対応する撮像信号に対して、前記観察対象光の帯域のうち観察の対象とする帯域に応じた前記複数の分光成分間の重みを適用し、前記重みが適用された当該撮像信号に基づき、合焦の度合いを示す評価値を算出することと、
 前記被写体からの観察対象光を前記撮像素子に結像する光学系のうち少なくとも1つの光学部材の位置を、前記評価値に基づき制御することで当該光学系の焦点位置を制御することと、
 を含む、医療用観察方法。
 1   内視鏡手術システム
 11  内視鏡
 13  CCU
 15  表示装置
 17  光源装置
 21  処置具用装置
 22  エネルギ処置具
 23  鉗子
 24  気腹装置
 25a、25b トロッカ
 26  レコーダ
 27  プリンタ
 31  カート
 33  患者ベッド
 35  フットスイッチ
 100 医療用観察装置
 110 撮像部
 111 撮像光学系
 112 ズームレンズ
 113 フォーカスレンズ
 114 撮像素子
 115 ズームレンズ駆動部
 116 フォーカスレンズ駆動部
 117 駆動系制御部
 118 撮像素子駆動部
 130 制御部
 131 撮像信号処理部
 132 検波枠ゲート
 133 検波部
 134 光学系制御部
 135 評価信号算出部
 136 評価値算出部
 170 光源部

Claims (14)

  1.  撮像素子による生体内の被写体からの観察対象光の受光結果に基づく、互いに異なる複数の分光成分それぞれに対応する撮像信号に対して、前記観察対象光の帯域のうち観察の対象とする帯域に応じた前記複数の分光成分間の重みを適用し、前記重みが適用された当該撮像信号に基づき、合焦の度合いを示す評価値を算出する算出部と、
     前記被写体からの観察対象光を前記撮像素子に結像する光学系のうち少なくとも1つの光学部材の位置を、前記評価値に基づき制御することで当該光学系の焦点位置を制御する制御部と、
     を備える、医療用観察装置。
  2.  前記算出部は、前記複数の分光成分に基づき前記観察の対象とする帯域の成分に基づく画像データを生成するための補正パラメータに応じた前記重みに基づき、前記評価値を算出する、請求項1に記載の医療用観察装置。
  3.  前記算出部は、前記観察の対象とする帯域ごとにあらかじめ設定された前記重みに基づき、前記評価値を算出する、請求項1に記載の医療用観察装置。
  4.  前記算出部は、前記観察対象光の帯域のうち少なくとも一部の帯域を観察対象とする複数のモードそれぞれについてあらかじめ設定された前記重みのうち、選択された前記モードに対応する前記重みを取得し、取得した当該重みに基づき、前記評価値を算出する、請求項3に記載の医療用観察装置。
  5.  前記複数のモードには、狭帯域光観察、蛍光観察、及び赤外光観察のうち少なくともいずれかに対応するモードが含まれる、請求項4に記載の医療用観察装置。
  6.  前記算出部は、前記被写体の撮像が行われる手術の術式に応じて設定される前記重みに基づき、前記評価値を算出する、請求項1に記載の医療用観察装置。
  7.  前記算出部は、前記被写体の撮像が行われる診療科に応じて設定される前記重みに基づき、前記評価値を算出する、請求項1に記載の医療用観察装置。
  8.  前記算出部は、前記光学系の光学特性に応じて設定される前記重みに基づき、前記評価値を算出する、請求項1に記載の医療用観察装置。
  9.  前記複数の分光成分に対応する前記撮像信号は、RGB信号であり、
     R信号、G信号、及びB信号の輝度成分をそれぞれR、G、及びBとし、前記重みに基づく、前記R信号、前記G信号、及び前記B信号それぞれに対応する係数をr、g、及びbとしたとき、前記評価値を算出するための評価信号Lは、以下に示す計算式に基づき算出される、請求項1に記載の医療用観察装置。
    Figure JPOXMLDOC01-appb-M000001
  10.  前記制御部は、前記評価値を基に算出される被写体像のコントラストに基づき、前記光学系の焦点位置を制御する、請求項1に記載の医療用観察装置。
  11.  前記撮像素子を含む撮像部を備える、請求項1に記載の医療用観察装置。
  12.  前記撮像部は、患者の体腔内に挿入される内視鏡である、
     請求項11に記載の医療用観察装置。
  13.  前記撮像部は、前記被写体の光学像を取得する前記光学系を含む顕微鏡部であって、
     前記顕微鏡部を支持する支持部、
     をさらに備える、
     請求項11に記載の医療用観察装置。
  14.  プロセッサが、
     撮像素子による生体内の被写体からの観察対象光の受光結果に基づく、互いに異なる複数の分光成分それぞれに対応する撮像信号に対して、前記観察対象光の帯域のうち観察の対象とする帯域に応じた前記複数の分光成分間の重みを適用し、前記重みが適用された当該撮像信号に基づき、合焦の度合いを示す評価値を算出することと、
     前記被写体からの観察対象光を前記撮像素子に結像する光学系のうち少なくとも1つの光学部材の位置を、前記評価値に基づき制御することで当該光学系の焦点位置を制御することと、
     を含む、医療用観察方法。
PCT/JP2016/064126 2015-07-15 2016-05-12 医療用観察装置及び医療用観察方法 WO2017010157A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017528310A JP6983067B2 (ja) 2015-07-15 2016-05-12 医療用観察装置及び医療用観察方法
CN201680040221.9A CN107847107B (zh) 2015-07-15 2016-05-12 医疗用观察装置与医疗用观察方法
EP16824137.0A EP3300650B1 (en) 2015-07-15 2016-05-12 Medical observation device and medical observation method
US15/576,969 US10568492B2 (en) 2015-07-15 2016-05-12 Medical observation device and medical observation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-141225 2015-07-15
JP2015141225 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017010157A1 true WO2017010157A1 (ja) 2017-01-19

Family

ID=57757199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064126 WO2017010157A1 (ja) 2015-07-15 2016-05-12 医療用観察装置及び医療用観察方法

Country Status (5)

Country Link
US (1) US10568492B2 (ja)
EP (1) EP3300650B1 (ja)
JP (1) JP6983067B2 (ja)
CN (1) CN107847107B (ja)
WO (1) WO2017010157A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008766A (ja) * 2017-06-27 2019-01-17 ソニー株式会社 情報処理装置および方法、並びに、情報処理システム
JP2019128353A (ja) * 2018-01-19 2019-08-01 ライカ インストゥルメンツ (シンガポール) プライヴェット リミテッドLeica Instruments (Singapore) Pte. Ltd. 蛍光強度を正規化するための方法
WO2020196868A1 (en) 2019-03-27 2020-10-01 Sony Corporation Endoscope system, non-transitory computer readable medium, and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6581952B2 (ja) * 2016-09-30 2019-09-25 富士フイルム株式会社 内視鏡システム及びその作動方法
JP7286948B2 (ja) * 2018-11-07 2023-06-06 ソニーグループ株式会社 医療用観察システム、信号処理装置及び医療用観察方法
WO2020121906A1 (ja) * 2018-12-13 2020-06-18 ソニー株式会社 医療支援システム、医療支援装置及び医療支援方法
US11154188B2 (en) * 2019-06-20 2021-10-26 Cilag Gmbh International Laser mapping imaging and videostroboscopy of vocal cords

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004272039A (ja) * 2003-03-11 2004-09-30 Pentax Corp 自動焦点調節装置
JP2012110481A (ja) * 2010-11-24 2012-06-14 Olympus Corp 内視鏡装置、フォーカス制御方法及びプログラム
WO2015012096A1 (ja) * 2013-07-22 2015-01-29 オリンパスメディカルシステムズ株式会社 医療用観察装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253041A (ja) * 1996-03-26 1997-09-30 Olympus Optical Co Ltd 内視鏡装置
JP4772235B2 (ja) * 2001-09-13 2011-09-14 オリンパス株式会社 内視鏡装置
JP3619801B2 (ja) * 2001-11-22 2005-02-16 オリンパス株式会社 内視鏡用撮像装置
JP2004272037A (ja) * 2003-03-11 2004-09-30 Pentax Corp 自動焦点調節装置及び自動焦点調節方法
JP2005250401A (ja) * 2004-03-08 2005-09-15 Kodak Digital Product Center Japan Ltd 焦点距離検出方法及び合焦装置
JPWO2010116902A1 (ja) * 2009-04-09 2012-10-18 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP5597942B2 (ja) * 2009-06-10 2014-10-01 株式会社ニコン 電子カメラ
JP5346856B2 (ja) * 2010-03-18 2013-11-20 オリンパス株式会社 内視鏡システム、内視鏡システムの作動方法及び撮像装置
JP5466182B2 (ja) * 2011-01-11 2014-04-09 富士フイルム株式会社 内視鏡システムおよび内視鏡システムの作動方法
JP5940306B2 (ja) * 2012-01-13 2016-06-29 オリンパス株式会社 内視鏡装置及び内視鏡装置の作動方法
JP6120491B2 (ja) * 2012-05-01 2017-04-26 オリンパス株式会社 内視鏡装置及び内視鏡装置のフォーカス制御方法
JP5953373B2 (ja) * 2012-05-31 2016-07-20 オリンパス株式会社 内視鏡装置
US9451876B2 (en) 2013-10-21 2016-09-27 Olympus Corporation Endoscope system and focus control method for endoscope system
CN109640781A (zh) * 2016-09-06 2019-04-16 奥林巴斯株式会社 内窥镜系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004272039A (ja) * 2003-03-11 2004-09-30 Pentax Corp 自動焦点調節装置
JP2012110481A (ja) * 2010-11-24 2012-06-14 Olympus Corp 内視鏡装置、フォーカス制御方法及びプログラム
WO2015012096A1 (ja) * 2013-07-22 2015-01-29 オリンパスメディカルシステムズ株式会社 医療用観察装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008766A (ja) * 2017-06-27 2019-01-17 ソニー株式会社 情報処理装置および方法、並びに、情報処理システム
JP7039938B2 (ja) 2017-06-27 2022-03-23 ソニーグループ株式会社 情報処理装置および方法、並びに、情報処理システム
JP2019128353A (ja) * 2018-01-19 2019-08-01 ライカ インストゥルメンツ (シンガポール) プライヴェット リミテッドLeica Instruments (Singapore) Pte. Ltd. 蛍光強度を正規化するための方法
WO2020196868A1 (en) 2019-03-27 2020-10-01 Sony Corporation Endoscope system, non-transitory computer readable medium, and method

Also Published As

Publication number Publication date
EP3300650B1 (en) 2023-08-23
JPWO2017010157A1 (ja) 2018-05-24
EP3300650A1 (en) 2018-04-04
US20180146844A1 (en) 2018-05-31
CN107847107A (zh) 2018-03-27
EP3300650A4 (en) 2019-02-06
JP6983067B2 (ja) 2021-12-17
US10568492B2 (en) 2020-02-25
CN107847107B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
US11788966B2 (en) Imaging system
JP6983067B2 (ja) 医療用観察装置及び医療用観察方法
US11642004B2 (en) Image processing device, image processing method and recording medium
JP7095693B2 (ja) 医療用観察システム
WO2022044897A1 (ja) 医療撮像システム、医療撮像装置、および動作方法
JP6114889B1 (ja) 医療用観察装置及び医療用観察装置の作動方法
US20210019921A1 (en) Image processing device, image processing method, and program
WO2018173605A1 (ja) 手術用制御装置、制御方法、手術システム、およびプログラム
US20230047294A1 (en) Medical image generation apparatus, medical image generation method, and medical image generation program
WO2020009127A1 (ja) 医療用観察システム、医療用観察装置、及び医療用観察装置の駆動方法
JP7452177B2 (ja) 医療用観察システム、制御装置、制御方法、および撮像装置
WO2023145480A1 (ja) 医療撮像システム、制御方法、及びプログラム
JP7456385B2 (ja) 画像処理装置、および画像処理方法、並びにプログラム
JP7480779B2 (ja) 医療用画像処理装置、医療用画像処理装置の駆動方法、医療用撮像システム、及び医療用信号取得システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576969

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017528310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824137

Country of ref document: EP