WO2017010057A1 - マルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラム - Google Patents

マルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラム Download PDF

Info

Publication number
WO2017010057A1
WO2017010057A1 PCT/JP2016/003176 JP2016003176W WO2017010057A1 WO 2017010057 A1 WO2017010057 A1 WO 2017010057A1 JP 2016003176 W JP2016003176 W JP 2016003176W WO 2017010057 A1 WO2017010057 A1 WO 2017010057A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
communication
authenticated
slave
temporary
Prior art date
Application number
PCT/JP2016/003176
Other languages
English (en)
French (fr)
Inventor
貴之 佐々木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017010057A1 publication Critical patent/WO2017010057A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update

Definitions

  • the present invention generally relates to a multi-hop communication system, a communication terminal, a multi-hop communication method, and a program.
  • an automatic remote meter reading system is provided with a plurality of communication terminals set in a master unit or a slave unit, and proactive type multi-hop communication is combined with PLC (Power Line Communication). Multi-hop communication has been proposed.
  • the slave unit When the slave unit enters the multi-hop network, authentication processing defined by the PLC protocol is performed between the master unit and the slave unit. And the subunit
  • An object of the present invention is to provide a multi-hop communication system, a communication terminal, and a multi-hop communication capable of exchanging signals between a master unit and a slave unit as soon as possible in a multi-hop network that performs authentication processing and routing processing. It is to provide a method and a program.
  • a multi-hop communication system includes a routing process in which a slave unit authenticated by a master unit among a plurality of slave units constructs a main communication route used in multi-hop communication with the master unit. And a multi-hop communication system that performs multi-hop communication with the master unit using the main communication route after the routing process, the master unit and the plurality of slave units to the master unit Communicating with an unauthenticated unauthenticated first slave unit directly or using a temporary communication route via an authenticated second slave unit authenticated by the master unit among the plurality of slave units Then, the master unit performs authentication processing for authenticating the unauthenticated first slave unit, and the master unit and the authenticated first slave unit authenticated by the master unit use the temporary communication route. Can send and receive signals to each other To.
  • the communication terminal performs a routing process in which a slave unit authenticated by a master unit among a plurality of slave units constructs a main communication route used in multihop communication with the master unit, After the routing process, a communication terminal used as the master unit of a multi-hop communication system that performs multi-hop communication with the master unit using the main communication route, and authentication is performed among the plurality of slave units Unauthenticated by communicating with an unauthenticated first slave unit directly or by using a temporary communication route via an authenticated second slave unit among the plurality of slave units.
  • the temporary communication route is established between the authentication control unit that performs authentication processing for authenticating the first slave unit and the authenticated first slave unit when communicating with the authenticated first slave unit And a temporary communication control unit.
  • the communication terminal performs a routing process in which a slave unit authenticated by a master unit among a plurality of slave units constructs a main communication route used in multihop communication with the master unit, After the routing process, a communication terminal used as the slave unit of a multi-hop communication system that performs multi-hop communication with the master unit using the main communication route, and is not authenticated by the master unit
  • authentication processing by the master unit is executed by communicating with the master unit directly or using a temporary communication route via an authenticated slave unit authenticated by the master unit among the plurality of slave units.
  • a temporary communication control unit that establishes the temporary communication route with the parent device when communicating with the parent device after the authentication processing.
  • a multi-hop communication method includes a routing process in which a slave unit authenticated by a master unit among a plurality of slave units constructs a main communication route used in multi-hop communication with the master unit. And a multi-hop communication method for performing multi-hop communication with the master unit using the main communication route after the routing process, wherein the master unit is connected to the master unit among the master unit and the plurality of slave units.
  • the program according to an aspect of the present invention performs a routing process in which a slave unit authenticated by a master unit among a plurality of slave units constructs a main communication route used in multihop communication with the master unit, A program used for the master unit of a multi-hop communication system that performs multi-hop communication with the master unit using the main communication route after the routing process, the computer being a computer out of the plurality of slave units
  • the temporary communication route is set between the authenticated first slave unit. Functions as a temporary communication control unit to be built And wherein the Rukoto.
  • the program according to an aspect of the present invention performs a routing process in which a slave unit authenticated by a master unit among a plurality of slave units constructs a main communication route used in multihop communication with the master unit, A program used for the slave unit of the multi-hop communication system that performs multi-hop communication with the master unit using the main communication route after the routing process, and the computer is authenticated by the master unit If not, the authentication process by the master unit is performed directly or by communicating with the master unit using a temporary communication route via the authenticated slave unit authenticated by the master unit among the plurality of slave units.
  • the authentication control unit functions as a temporary communication control unit that establishes the temporary communication route with the parent device.
  • the following embodiments generally relate to a multi-hop communication system, a communication terminal, a multi-hop communication method, and a program. More specifically, in the following embodiments, a multi-hop communication system, a communication terminal, and a multi-hop communication in which a routing process is performed after an authentication process between a parent node and a child node, and a multi-hop communication is performed after the routing process.
  • the present invention relates to a method and a program.
  • the multi-hop communication system 10 of the present embodiment includes a single parent device 1 and a plurality of child devices 2 connected to a power line W ⁇ b> 1 that supplies power to a customer facility 3 from a supplier.
  • the customer facility 3 is a detached house, an office, a store, a dwelling unit of a housing complex, a tenant of a building, and the form is not limited.
  • the customer facilities 31, 32,. . . , 3N code is used.
  • Each of the master unit 1 and the slave unit 2 is a communication terminal that performs power line carrier communication in accordance with G3-PLC, which is a communication protocol for power line carrier communication.
  • Each of the master unit 1 and the slave unit 2 constitutes a network (communication network) that performs power line carrier communication with each other via the power line W1.
  • mobile_unit 2 is provided for every customer facility 3, and has the function to transmit the predetermined data regarding each of the customer facility 3 to the one main
  • the base unit 1 acquires predetermined data relating to each of the customer facilities 3 from the plurality of slave units 2, and uses the acquired predetermined data to a higher-level management device using an optical fiber line, a wide-area communication network such as the Internet, and the like. Has a function to transmit.
  • a remote meter-reading system can be constructed by acquiring meter-reading data such as power consumption, gas usage, and water usage at each customer facility 3 from the slave unit 2.
  • a remote monitoring system in which the parent device 1 monitors the state of each device in the customer facility 3 by transmitting and receiving predetermined information set in advance to the child device 2, the customer facility 3 It is also possible to configure a remote control system or the like that controls the state of each device.
  • the parent device 1 and the child device 2 normally transmit and receive signals to each other by proactive multi-hop communication. That is, in this communication network, communication is performed directly or indirectly between the parent device 1 and each child device 2.
  • the slave unit 2 that cannot communicate directly with the master unit 1 can communicate with the master unit 1 by sequentially relaying communication packets by other slave units 2 located at a communicable distance.
  • the master unit 1 includes a communication unit 1a, a storage unit 1b, an authentication control unit 1c, a temporary communication control unit 1d, a routing control unit 1e, and a main communication control unit 1f.
  • the communication unit 1a functions as a communication interface for performing communication with other communication terminals (slave devices 2).
  • the storage unit 1b includes any one of a non-volatile memory such as a ROM (Read Only Memory), an EEPROM (Electrically Erasable and Programmable Read-Only Memory), and a rewritable non-volatile memory such as a flash memory. And the memory
  • the authentication control unit 1c has a function of controlling authentication processing defined by the G3-PLC communication protocol by communicating with the slave unit 2 via the communication unit 1a.
  • the authentication process is a process in which the parent device 1 determines whether or not the child device 2 to be authenticated enters the communication network (communication cell) of the own device (whether or not entry is possible). That is, the unauthenticated child device 2 is a child device 2 that is not permitted to enter the communication network of the parent device 1.
  • the authenticated child device 2 is the child device 2 that is permitted to enter the communication network of the parent device 1 by the authentication process.
  • the authentication control unit 1c communicates with the slave unit 2 during the authentication process, and the communication route established with the slave unit 2 to be authenticated in the authentication process is set as a temporary communication route.
  • the temporary communication control unit 1d can communicate with the slave unit 2 using the temporary communication route by controlling communication (transmission and reception of signals) using the temporary communication route.
  • the routing control unit 1e has a function of controlling a routing process defined by a communication protocol for proactive multi-hop communication by communicating with the slave unit 2 via the communication unit 1a.
  • the routing process is a process for constructing a communication route used for multi-hop communication between the parent device 1 and the child device 2 for the child device 2 authenticated by the parent device 1.
  • a communication route constructed by routing processing and used for multi-hop communication is referred to as a main communication route.
  • the main communication control unit 1 f can perform multi-hop communication using the main communication route with the handset 2 by controlling multi-hop communication using the main communication route.
  • mobile_unit 2 is provided with the communication part 2a, the memory
  • the communication unit 2a functions as a communication interface that performs communication with other communication terminals (base unit 1, other handset 2).
  • the storage unit 2b includes either a nonvolatile memory such as a ROM or a rewritable nonvolatile memory such as an EEPROM.
  • the storage unit 2b stores main communication route information and temporary communication route information. Further, the storage unit 2b stores each program such as a control program for operating the slave unit 2, information necessary for executing each program, and the like.
  • the authentication control unit 2c has a function of controlling authentication processing defined by the G3-PLC communication protocol by communicating with the parent device 1 and other child devices 2 via the communication unit 2a.
  • the authentication control unit 2c communicates with the parent device 1 and the other child devices 2 during the authentication process.
  • the communication route established with the parent device 1 in the authentication process is used as a temporary communication route. .
  • the temporary communication control unit 2d can communicate with the parent device 1 and other child devices 2 using the temporary communication route by controlling communication (transmission and reception of signals) using the temporary communication route.
  • the routing control unit 2e controls the routing process defined by the communication protocol of the proactive multi-hop communication by communicating between the base unit 1 and the other handset 2 via the communication unit 2a. It has a function.
  • the main communication control unit 2f can perform multi-hop communication using the main communication route with the parent device 1 by controlling multi-hop communication using the main communication route.
  • unauthenticated slave units 21 and 2N are newly activated.
  • the authentication control unit 2c broadcasts a beacon request 201 and starts an authentication process with the master unit 1.
  • identification information unique to the child device 2 serving as a transmission source is added. This unique identification information is unique identification information assigned in advance for each communication terminal. For example, EUI (Extended Unique-Identifier) -64 is used.
  • the slave unit 21 can directly communicate with the master unit 1, but the slave unit 2N cannot communicate directly with the master unit 1. Therefore, in the base unit 1, the authentication control unit 1c can receive the beacon request 201 transmitted from the handset 21, but the authentication control unit 1c cannot receive the beacon request 201 transmitted from the handset 2N.
  • the authentication control unit 1c broadcasts a beacon response 101 as a response to the beacon request 201 received from the child device 21. In the beacon response 101, identification information unique to the parent device 1 of the transmission source is added.
  • the authentication control unit 2c of the child device 21 Upon receiving the beacon response 101, the authentication control unit 2c of the child device 21 can know the identification information of the parent device 1 that can communicate. Therefore, the authentication control unit 2 c of the child device 21 transmits an authentication signal such as the participation request 202 to the parent device 1.
  • the authentication signal transmitted by the slave unit 2 is added with identification information of the source slave unit 2 and identification information of the destination master unit 1.
  • the authentication control unit 1 c of the parent device 1 When receiving the authentication signal such as the participation request 202 from the child device 21, the authentication control unit 1 c of the parent device 1 transmits the secret key information used for the PLC and the authentication signal such as the authentication completion 102 to the child device 21. Upon receiving the authentication completion 102, the authentication control unit 2c of the child device 21 is authenticated by the parent device 1 and can know that the parent device 1 is permitted to enter the communication network (301 in FIG. 2). ). To the authentication signal transmitted by the parent device 1, identification information of the transmission source parent device 1, identification information of the transmission destination child device 2, and the like are added.
  • the authentication control unit 2c of the slave unit 2N periodically broadcasts the beacon request 201.
  • the authentication control unit 2c of the authenticated child device 21 can receive the beacon request 201 transmitted by the child device 2N. Therefore, the authentication control unit 2c of the slave unit 21 broadcasts a beacon response 101 as a response to the beacon request 201 received from the slave unit 2N.
  • the beacon response 101 identification information unique to the child device 21 that is the transmission source is added.
  • the authentication control unit 2c of the child device 2N Upon receiving the beacon response 101, the authentication control unit 2c of the child device 2N can know the identification information of the child device 21 that can communicate. That is, the authentication control unit 2c of the child device 2N does not know the communication route to the parent device 1, but can know that communication with the authenticated child device 21 is possible. Therefore, the authentication control unit 2c of the child device 2N transmits an authentication signal such as the participation request 202 to the child device 21.
  • the authentication control unit 2c of the child device 21 performs a relay process for transmitting an authentication signal such as the participation request 202 received from the child device 2N to the parent device 1. That is, the slave unit 21 can function as a relay terminal between the master unit 1 and the slave unit 2N in the authentication process.
  • the authentication control unit 1c of the parent device 1 When the authentication control unit 1c of the parent device 1 receives an authentication signal such as the participation request 202 from the child device 2N via the child device 21, the authentication signal such as the secret key information used for the PLC and the authentication signal such as the authentication completion 102 is transmitted to the child device 2N. The data is transmitted to the child device 2N via the device 21. Upon receiving the authentication completion 102, the authentication control unit 2c of the child device 2N can know that the parent device 1 is authenticated and the parent device 1 is permitted to enter the communication network (302 in FIG. 2). ).
  • a series of processes using the above-described beacon response 101, authentication completion 102, beacon request 201, participation request 202, etc. between the master unit 1 and the slave unit 21 are referred to as an authentication process A1 in FIGS.
  • a series of processes using the above-described beacon response 101, authentication completion 102, beacon request 201, participation request 202, etc. between the master unit 1 and the slave unit 2N are referred to as an authentication process A2 in FIGS.
  • the routing control unit 2e of the slave units 21 and 2N authenticated by the master unit 1 starts the routing process.
  • the routing control unit 1e of the base unit 1 performs a routing process by broadcasting a Hello packet 100 periodically after activation. Further, the routing control unit 2e of the other slave unit 2 authenticated by the master unit 1 also periodically broadcasts the hello packet 100 and performs routing processing.
  • the hello packet 100 is a packet for notifying the existence of the own device, and has a function as a routing packet used when establishing a main communication route between communication terminals.
  • the hello packet 100 transmitted by the base unit 1 is added with terminal information of the base unit 1 as a transmission source and terminal information of an adjacent terminal (slave unit 2) with which the base unit 1 as a transmission source can directly communicate. ing.
  • the terminal information of the communication terminals (master device 1 and slave device 2) is, for example, communication terminal address information, information on communication quality, and the like.
  • mobile_unit 21 and 2N also broadcasts the hello packet 100 regularly, and starts a routing process.
  • the hello packet 100 transmitted by the slave unit 2 (21, 2N) includes terminal information (for example, address information and information on communication quality) of adjacent terminals (slave unit 2, master unit 1) with which the own unit can directly communicate. Etc.) are added.
  • main communication route information indicating the main communication route to the base unit 1, and the communication quality of the main communication route Is further added.
  • the routing control unit 2e of the child device 21 can construct a one-hop main communication route with the parent device 1 by receiving the hello packet 100 broadcast by the parent device 1.
  • the routing control unit 2e of the child device 2N receives the hello packet 100 broadcasted by the child device 21 after the child device 21 constructs the main communication route, so that it can communicate with the parent device 1 via the child device 21.
  • a two-hop main communication route can be constructed.
  • the main communication control unit 2f of the slave units 21 and 2N After the routing control unit 2e of the slave units 21 and 2N establishes the main communication route with the base unit 1, the main communication control unit 2f of the slave units 21 and 2N performs multi-hop communication using the main communication route. This can be done with the machine 1.
  • a series of processes using the above-described hello packet 100 is referred to as a routing process B1 in FIGS. Further, the slave units 21 and 2N can construct a main communication route with the best communication quality based on the main communication route information and route quality information added to the received hello packet 100.
  • the main communication route between the parent device 1 and the child device 2 is established until the main communication route between the parent device 1 and the child device 2 is established. Communication with Aircraft 2 was not possible.
  • the time interval at which the parent device 1 transmits hello packets and the time interval at which the child device 2 transmits hello packets are, for example, about several tens of minutes. As a result, it takes at least about 2 to 3 hours to complete the routing process B1, and the communication disabled period after authentication is long.
  • mobile_unit 2 of this embodiment can communicate with the main
  • the temporary communication control unit 2d In the slave unit 21 (first slave unit in the authentication process A1), the temporary communication control unit 2d directly receives the beacon response 101 and the authentication signal from the master unit 1 in the authentication process A1. It can be seen that communication is possible. Therefore, the temporary communication control unit 2d of the child device 21 creates information of the temporary communication route “child device 21 ⁇ parent device 1” and stores it in the storage unit 2b (401 in FIG. 3). Thereafter, the temporary communication control unit 2d of the child device 21 can communicate with the parent device 1 using the temporary communication route.
  • the slave unit 2N (first slave unit in the authentication process A2) receives the beacon response 101 and the authentication signal from the slave unit 21 (second slave unit in the authentication process A2) in the authentication process A2. It can be seen that the unit 2d can communicate with the parent device 1 via the child device 21. Therefore, the temporary communication control unit 2d of the child device 2N creates information on the temporary communication route “child device 2N ⁇ child device 21 ⁇ parent device 1” and stores the information in the storage unit 2b (402 in FIG. 3). Thereafter, the temporary communication control unit 2d of the child device 2N can communicate with the parent device 1 using the temporary communication route.
  • the authentication control unit 2c of the authenticated slave unit 21 performs a relay process for communication between the master unit 1 and the slave unit 2N in the authentication process A2. Therefore, the temporary communication control unit 2d of the child device 21 can recognize that the own device is a relay terminal in the temporary communication route of the child device 2N.
  • the temporary communication control unit 2d of the child device 21 can recognize that it is a relay terminal of the child device 2N, for example, by setting a flag associated with the child device 2N.
  • the holding time of this flag is set to a certain time by the time counting operation of the timer provided in the authentication control unit 2c. For example, the flag holding time is set to a time length sufficient for completing the routing process B1.
  • the temporary communication control unit 2d of the authenticated child device 21 When the temporary communication control unit 2d of the authenticated child device 21 receives the signal addressed to the child device 2N transmitted from the parent device 1, the temporary communication control unit 2d performs a relay process for transmitting the signal addressed to the child device 2N. Further, when the temporary communication control unit 2d of the child device 21 receives a signal addressed to the parent device 1 transmitted from the child device 2N, the temporary communication control unit 2d performs a relay process for transmitting the signal addressed to the parent device 1.
  • the parent device 1 and the child device 21 can communicate in one hop (direct communication).
  • the parent device 1 and the child device 21 perform communication in a plurality of hops (that is, communication that relays another child device 2).
  • the temporary communication control unit 2d of the child device 2N since the child device 2N does not know the communication route between the parent device 1 and the child device 21, the temporary communication control unit 2d of the child device 2N, similarly to the above, uses the temporary communication route “child device 2N ⁇ child device 21 ⁇ The information of “Master 1” is created. Further, if the other slave unit 2 existing in the temporary communication route between the master unit 1 and the slave unit 21 does not establish a main communication route with the master unit 1, the master unit is similar to the slave unit 21.
  • the temporary communication control unit 1d of the parent device 1 generates information on a temporary communication route with the child device 2 based on information included in each signal received from the child device 2 in the authentication process.
  • the temporary communication control unit 1d of the parent device 1 receives the beacon request 201 and the authentication signal from the child device 21 in the authentication process A1, so that the temporary communication control unit 1d can perform direct communication with the child device 21. It turns out that it is possible. Therefore, the temporary communication control unit 1d of the parent device 1 creates information on the temporary communication route “parent device 1 ⁇ slave device 21” and stores it in the storage unit 1b (403 in FIG. 3). Thereafter, the temporary communication control unit 1d of the parent device 1 can communicate with the child device 21 using the temporary communication route.
  • the provisional communication control unit 1d of the base unit 1 receives the authentication signal transmitted from the handset 2N via the handset 21 in the authentication process A2, so that the temporary communication control unit 1d It can be seen that communication with the slave unit 2N is possible. Therefore, the temporary communication control unit 1d of the parent device 1 creates information of the temporary communication route “parent device 1 ⁇ slave device 21 ⁇ slave device 2N” and stores it in the storage unit 1b (404 in FIG. 3). Thereafter, the temporary communication control unit 1d of the parent device 1 can communicate with the child device 2N using the temporary communication route.
  • the temporary communication route is subsequently transferred between the parent device 1 and the child devices 21 and 2N until the main communication route is established by the routing process. Is performed (temporary communication processing C1 in FIG. 3). Therefore, in a multi-hop network constructed by performing authentication processing and routing processing, signals can be exchanged between the parent device 1 and the child device 2 as soon as possible.
  • the temporary communication control unit 1d of the parent device 1 transmits a communication signal 501 such as a request for acquiring meter reading data to the child device 21, the identification information of the child device 21 that is the transmission destination and the parent device that is the transmission source 1 identification information is added to the communication signal 501.
  • the temporary communication control unit 2d of the child device 21 determines that the signal is addressed to the own device based on the identification information of the transmission destination added to the communication signal 501, and performs reception processing of the communication signal 501.
  • the temporary communication control unit 1d of the parent device 1 transmits a communication signal 502 such as an acquisition request for meter reading data to the child device 2N
  • a communication signal 502 such as an acquisition request for meter reading data
  • the identification information of the child device 2N that is the transmission destination and the parent device that is the transmission source 1 is added to the communication signal 502.
  • the temporary communication control unit 2d of the child device 21 determines that the own device is a signal addressed to the child device 2N serving as a relay terminal, and the communication signal Relay processing for transmitting 502 is performed.
  • the temporary communication control unit 2d of the child device 2N determines that the signal is addressed to the own device based on the identification information of the transmission destination added to the communication signal 502, and performs reception processing of the communication signal 502.
  • the temporary communication control unit 2d of the child device 21 transmits the communication signal 503 including the meter reading data to the parent device 1, the identification information of the parent device 1 that is the transmission destination and the child device 21 that is the transmission source. Identification information is added to the communication signal 503.
  • the temporary communication control unit 1d of the parent device 1 determines that the signal is addressed to the own device based on the identification information of the transmission destination added to the communication signal 503, and performs reception processing of the communication signal 503.
  • the temporary communication control unit 2d of the child device 2N transmits a communication signal 504 including meter reading data to the parent device 1, the identification information of the parent device 1 that is the transmission destination and the child device 2N that is the transmission source Identification information is added to the communication signal 504. Based on the transmission source identification information added to the communication signal 504, the temporary communication control unit 2d of the child device 21 determines that the own device is a signal from the child device 2N serving as a relay terminal, and the communication signal Relay processing for transmitting 504 is performed. The temporary communication control unit 1d of the parent device 1 determines that the signal is addressed to the own device based on the identification information of the transmission destination added to the communication signal 504, and performs reception processing of the communication signal 504.
  • the provisional communication control unit 2d transmits the provisional topology notification 601 in the authenticated slave units 21 and 2N.
  • the temporary communication control unit 2d periodically transmits the temporary topology notification 601 until the main communication route is established.
  • the main communication control unit 2 f periodically transmits a main topology notification having the same function as the temporary topology notification 601.
  • the temporary topology notification 601 transmitted by the slave unit 21 is directly received by the master unit 1. Then, the temporary communication control unit 1 d of the parent device 1 can grasp the temporary communication route from the child device 21 that is the transmission source of the temporary topology notification 601 to the parent device 1.
  • the slave unit 21 When the slave unit 2N transmits the temporary topology notification 601, the slave unit 21 that is a relay terminal of the slave unit 2N relays the temporary topology notification 601. Specifically, the slave unit 21 serving as a relay terminal performs a relay process for transmitting the temporary topology notification 601 received from the slave unit 2N with its own identification information added thereto.
  • the other slave unit 2 (relay terminal) existing between the master unit 1 and the slave unit 21 also receives the received temporary topology notification. Relay processing is performed in which the identification information of the own device is added to 601 and transmitted. That is, the temporary topology notification 601 sequentially stores relay terminal identification information.
  • the temporary communication control unit 1d of the base unit 1 When the temporary communication control unit 1d of the base unit 1 receives the temporary topology notification 601, the temporary communication control unit 1d grasps all the relay terminals constituting the temporary communication route from the slave unit 2N that is the transmission source of the temporary topology notification 601 to the base unit 1. can do.
  • the temporary communication notification unit 601 of the parent device 1 is constructed with each of the child devices 2 by periodically transmitting the temporary topology notification 601 from each of the child devices 2 to the parent device 1. It is possible to know the temporary communication route (optimal temporary communication route).
  • the temporary communication control unit 1d of the parent device 1 stores information on the current temporary communication route based on the temporary topology notification 601 in the storage unit 1b, so that the temporary communication corresponding to the child device 2 that is the transmission source of the temporary topology notification 601 is stored. Update the route.
  • the main communication control unit 2f periodically transmits a main topology notification. That is, the main communication control unit 2f also sends a main topology notification in order to notify the master unit 1 of the current main communication route information of the slave unit 2 even in normal routing processing after the main communication route is established. Send regularly.
  • topology notification Note that if the main topology notification and the temporary topology notification are not distinguished, they are simply referred to as topology notification.
  • FIG. 5 shows an example of the format of topology notification (temporary topology notification, main topology notification).
  • the topology notification includes fields of “message type”, “initial flag”, “terminal type”, “sequence number”, and “sub message”.
  • Message type is a field in which a code indicating topology notification is stored.
  • the “initial flag” is a field indicating whether it is a temporary topology notification transmitted by the temporary communication control unit 2d or a main topology notification transmitted by the main communication control unit 2f.
  • terminal type the type code (master unit or slave unit) of the communication terminal as the transmission source is set.
  • sequence number is set to the sequence number assigned to the current topology notification.
  • sub message is a field in which a sub message to be transmitted is stored.
  • the “sub message” is composed of fields of “sub message type”, “number”, “source address”, “first hop address”, “second hop address”, and “master device address”.
  • “Sub-message type” is a field in which a code indicating the type of information included in the topology notification is stored.
  • “Number” is a field in which the number of address information of the communication terminals (slave unit 2 and base unit 1) stored in one field of “sub message” is stored. Instead of the “number” field, a field in which the data length of the sub message is stored may be used.
  • the “transmission source address” is a field in which identification information of the slave unit 2 that is the transmission source of the topology notification is stored.
  • the “first hop address” and “second hop address” are fields in which the slave unit 2 that relayed the topology notification stores identification information of the own unit, and for each slave unit 2 (relay terminal) that relays the topology notification. A field is provided.
  • the “base unit address” is a field in which identification information of the base unit 1 that receives the topology notification is stored.
  • the “sub message” is not limited to the information including the communication route as described above.
  • the “sub message” relates to an adjacent terminal detected by the slave unit 2 that performs topology notification (not only the slave unit 2 that transmits the topology notification but may include the slave unit 2 that relays the topology notification). It may include information.
  • the temporary communication control unit 1d of the parent device 1 may transmit information on the temporary communication route notified by the temporary topology notification to the child device 2 that is a transmission source of the temporary topology notification.
  • the temporary communication control unit 2d of the child device 2 stores the current temporary communication route information based on the temporary topology notification in the storage unit 2b. Therefore, the temporary communication control unit 2d of the child device 2 can also grasp all the relay terminals constituting the temporary communication route from the own device to the parent device 1.
  • the temporary communication control unit 2d of the authenticated child device 2 performs the following operation when the own device is a relay terminal in the temporary communication route of another child device 2.
  • the temporary communication control unit 1d of the parent device 1 broadcasts a broadcast signal including firmware update information to the subordinate child devices 2.
  • the temporary communication control unit 2d of the child device 2 that is a relay terminal of the other child device 2 further broadcasts the received broadcast signal. Therefore, the temporary communication control unit 2d of the child device 2 that is a relay terminal can relay the broadcast signal generated by the parent device 1 to the other child devices 2 existing in the subsequent stage of the own device. Therefore, the subunit
  • the temporary device recognizes that the own device is a relay terminal in the temporary communication route of the other child device 2, and thereafter the other child device 2 It is preferable to relay communication between the machine 2 and the parent machine 1.
  • the base unit 1 when the base unit 1 is restarted after being stopped due to a power failure due to a power failure or the like, information on the main communication route before the power failure may be held in the nonvolatile storage unit 1b.
  • the authentication control unit 1c, the temporary communication control unit 1d, and the routing control unit 1e of the base unit 1 do not operate, and the main communication control unit 1f uses the main communication route held in the storage unit 1b, Communication with the slave unit 2 is performed.
  • the base unit 1 when the base unit 1 is restarted after being stopped due to a power failure due to a power failure or the like, only information on a temporary communication route before the power failure may be held in the nonvolatile storage unit 1b. In this case, the authentication control unit 1c of the parent device 1 does not operate, and the temporary communication control unit 1d communicates with the child device 2 using the temporary communication route held in the storage unit 1b.
  • the slave unit 2 when the slave unit 2 is restarted after being stopped due to a power failure due to a power failure or the like, information on the main communication route before the power failure may be held in the nonvolatile storage unit 2b.
  • the authentication control unit 2c, the temporary communication control unit 2d, and the routing control unit 2e of the slave unit 2 do not operate, and the main communication control unit 2f uses the main communication route held in the storage unit 2b, Communicates with base unit 1.
  • the slave unit 2 when the slave unit 2 is restarted after being stopped due to a power failure due to a power failure or the like, only information on the temporary communication route before the power failure may be held in the nonvolatile storage unit 2b. In this case, the authentication control unit 2c of the child device 2 does not operate, and the temporary communication control unit 2d communicates with the parent device 1 using the temporary communication route held in the storage unit 2b.
  • the slave unit 2 authenticated by the master unit 1 among the plurality of slave units 2 is in multi-hop communication with the master unit 1. Performs routing processing to construct the main communication route used in.
  • the slave unit 2 authenticated by the master unit 1 performs multi-hop communication with the master unit 1 using the main communication route after the routing process.
  • the unauthenticated first slave unit 2 (2N) that is not authenticated by the master unit 1 among the master unit 1 and the plurality of slave units 2 is authenticated to the master unit 1 directly or among the plurality of slave units 2
  • the master unit 1 performs an authentication process for authenticating the unauthenticated first slave unit 2 (2N)
  • the master device 1 and the authenticated first slave device 2 (2N) authenticated by the master device 1 can exchange signals with each other using the temporary communication route.
  • the parent device 1 and the child device 2 communicate using the temporary communication route even if the main communication route by the routing process is not established. It can be performed. Therefore, in a multi-hop network that performs authentication processing and routing processing, signals can be exchanged between the parent device 1 and the child device 2 as soon as possible.
  • the main communication route is established after the authentication process in the master unit 1 and the authenticated first slave unit 2 (2N).
  • the parent device 1 and the child device 2 subsequently use the temporary communication route until the main communication route by the routing process is established. Communication can be performed.
  • the authenticated first slave unit 2 (2N) sends a temporary topology notification including information on the temporary communication route to the master unit. It is preferable to transmit to 1.
  • the parent device 1 can easily grasp the temporary communication route from the child device 2 that is the transmission source of the temporary topology notification to the parent device 1.
  • the authenticated second slave unit 2 (21) when the authenticated second slave unit 2 (21) receives the temporary topology notification, the identification information of the own unit is included in the temporary topology notification. It is preferable to further add and transmit.
  • the master unit 1 can grasp all the relay terminals that constitute the temporary communication route from the slave unit 2 that has transmitted the temporary topology notification to the master unit 1.
  • the unauthenticated first handset 2 (2N) transmits to the base unit 1 for authentication processing.
  • the authenticated second slave unit 2 (21) that has received the authentication signal preferably broadcasts the broadcast signal when receiving the broadcast signal broadcast from the master unit 1 after relaying the authentication signal.
  • the slave unit 2 participating in the communication network of the master unit 1 can receive the broadcast signal issued by the master unit 1 directly or via a relay terminal. Furthermore, unnecessary transfer of broadcast signals can be suppressed.
  • the authenticated second slave unit 2 (21) is broadcast from the master unit 1 after relaying the temporary topology notification.
  • the broadcast signal it is preferable to broadcast the broadcast signal.
  • the slave unit 2 participating in the communication network of the master unit 1 can receive the broadcast signal issued by the master unit 1 directly or via a relay terminal. Furthermore, unnecessary transfer of broadcast signals can be suppressed.
  • the parent device 1 and the child device 2 are non-volatile that stores information on the main communication route and the temporary communication route.
  • the storage units 1b and 2b are preferably provided.
  • the master unit 1 and the slave unit 2 can restart communication after restarting more quickly after being stopped due to a power failure due to a power failure or the like.
  • the master unit 1 and the authenticated first slave unit 2 (2N) notify the existence of the own unit. It is preferable to periodically transmit hello packets to be performed and perform routing processing based on the received hello packets.
  • the routing process can be performed in the same manner as before.
  • the communication terminal of the ninth aspect is a communication terminal used as the base unit 1 of the multi-hop communication system 10.
  • the handset 2 authenticated by the base unit 1 among the plurality of handset 2 performs a routing process for constructing a main communication route used for multihop communication with the base unit 1.
  • the slave unit 2 authenticated by the master unit 1 performs multi-hop communication with the master unit 1 using the main communication route after the routing process.
  • the master unit 1 includes an authentication control unit 1c and a temporary communication control unit 1d.
  • the authentication control unit 1c communicates with the unauthenticated first child device 2 (2N) that has not been authenticated among the plurality of child devices 2 directly or with the authenticated second authenticated among the plurality of child devices 2.
  • An authentication process for authenticating the unauthenticated first handset 2 (2N) is performed by communicating using the temporary communication route via the handset 2 (21).
  • the temporary communication control unit 1d establishes a temporary communication route with the authenticated first slave unit 2 (2N) when communicating with the authenticated first slave unit 2 (2N).
  • the parent device 1 when the temporary communication route between the parent device 1 and the child device 2 is established, the parent device 1 can perform communication using the temporary communication route even if the main communication route by the routing process is not established. it can. Therefore, in the multi-hop network that performs the authentication process and the routing process, the parent device 1 can exchange signals with the child device 2 as soon as possible.
  • the communication terminal according to the tenth aspect according to the embodiment is a communication terminal used as the handset 2 of the multi-hop communication system 10.
  • the handset 2 authenticated by the base unit 1 among the plurality of handset 2 performs a routing process for constructing a main communication route used for multihop communication with the base unit 1.
  • the slave unit 2 authenticated by the master unit 1 performs multi-hop communication with the master unit 1 using the main communication route after the routing process.
  • mobile_unit 2 is provided with the authentication control part 2c and the temporary communication control part 2d.
  • the authentication control unit 2c uses the temporary communication route directly or through the authenticated child device 2 authenticated by the parent device 1 among the plurality of child devices 2.
  • authentication processing by the base unit 1 is executed.
  • the temporary communication control unit 2d establishes a temporary communication route with the parent device 1 when communicating with the parent device 1 after the authentication process.
  • the child device 2 when the temporary communication route between the parent device 1 and the child device 2 is established, the child device 2 can perform communication using the temporary communication route even if the main communication route by the routing process is not established. it can. Therefore, in the multi-hop network that performs the authentication process and the routing process, the slave unit 2 can exchange signals with the master unit 1 as soon as possible.
  • the slave communication unit 2 authenticated by the master unit 1 among the plurality of slave units 2 uses the main communication route used in the multi-hop communication with the master unit 1. Perform the routing process to build.
  • the slave unit 2 authenticated by the master unit 1 performs multi-hop communication with the master unit 1 using the main communication route after the routing process.
  • the unauthenticated first slave unit 2 (2N) that is not authenticated by the master unit 1 among the master unit 1 and the plurality of slave units 2 is authenticated directly or the master unit 1 among the plurality of slave units 2
  • the base unit 1 performs authentication processing for authenticating the unauthenticated first handset 2 (2N) by communicating using the temporary communication route via the authenticated second handset 2 (21).
  • the master device 1 and the authenticated first slave device 2 (2N) authenticated by the master device 1 can exchange signals with each other using a temporary communication route.
  • the parent device 1 and the child device 2 communicate using the temporary communication route even if the main communication route by the routing process is not established. It can be performed. Therefore, in a multi-hop network that performs authentication processing and routing processing, signals can be exchanged between the parent device 1 and the child device 2 as soon as possible.
  • the base unit 1 is equipped with a computer, and each function of the base unit 1 described above is realized by the computer executing a program.
  • a computer mainly includes a device having a processor for executing a program, an interface device for transmitting / receiving data to / from other apparatuses, and a storage device for storing data.
  • the device provided with the processor may be a CPU (Central Processing Unit) or MPU (Micro Processing Unit) which is a separate body from the semiconductor memory, or a microcomputer integrally including a semiconductor memory.
  • a storage device a storage device having a short access time such as a semiconductor memory and a large-capacity storage device such as a hard disk device are used in combination.
  • a program providing form a computer-readable ROM (Read Only Memory), a form stored in advance in a recording medium such as an optical disc, a form supplied to a recording medium via a wide area communication network including the Internet, etc. There is.
  • ROM Read Only Memory
  • the program of the twelfth aspect according to the embodiment is used for the base unit 1 of the multi-hop communication system 10.
  • the handset 2 authenticated by the base unit 1 among the plurality of handset 2 performs a routing process for constructing a main communication route used for multihop communication with the base unit 1.
  • the slave unit 2 authenticated by the master unit 1 performs multi-hop communication with the master unit 1 using the main communication route after the routing process.
  • This program causes the computer to function as the authentication control unit 1c and the temporary communication control unit 1d.
  • the authentication control unit 1c communicates with the unauthenticated first child device 2 (2N) that has not been authenticated among the plurality of child devices 2 directly or with the authenticated second authenticated among the plurality of child devices 2.
  • An authentication process for authenticating the unauthenticated first handset 2 (2N) is performed by communicating using the temporary communication route via the handset 2 (21).
  • the temporary communication control unit 1d establishes a temporary communication route with the authenticated first slave unit 2 (2N) when communicating with the authenticated first slave unit 2 (2N).
  • the parent device 1 when the temporary communication route between the parent device 1 and the child device 2 is established, the parent device 1 can perform communication using the temporary communication route even if the main communication route by the routing process is not established. it can. Therefore, in the multi-hop network that performs the authentication process and the routing process, the parent device 1 can exchange signals with the child device 2 as soon as possible.
  • a computer mainly includes a device having a processor for executing a program, an interface device for transmitting / receiving data to / from other apparatuses, and a storage device for storing data.
  • the device provided with the processor may be a CPU (Central Processing Unit) or MPU (Micro Processing Unit) which is a separate body from the semiconductor memory, or a microcomputer integrally including a semiconductor memory.
  • a storage device a storage device having a short access time such as a semiconductor memory and a large-capacity storage device such as a hard disk device are used in combination.
  • a program providing form a computer-readable ROM (Read Only Memory), a form stored in advance in a recording medium such as an optical disc, a form supplied to a recording medium via a wide area communication network including the Internet, etc. There is.
  • ROM Read Only Memory
  • the program of the thirteenth aspect according to the embodiment is used for the slave unit 2 of the multi-hop communication system 10.
  • the handset 2 authenticated by the base unit 1 among the plurality of handset 2 performs a routing process for constructing a main communication route used for multihop communication with the base unit 1.
  • the slave unit 2 authenticated by the master unit 1 performs multi-hop communication with the master unit 1 using the main communication route after the routing process.
  • This program causes the computer to function as the authentication control unit 2c and the temporary communication control unit 2d.
  • the authentication control unit 2c uses the temporary communication route directly or through the authenticated child device 2 authenticated by the parent device 1 among the plurality of child devices 2.
  • authentication processing by the base unit 1 is executed.
  • the temporary communication control unit 2d establishes a temporary communication route with the parent device 1 when communicating with the parent device 1 after the authentication process.
  • the child device 2 when the temporary communication route between the parent device 1 and the child device 2 is established, the child device 2 can perform communication using the temporary communication route even if the main communication route by the routing process is not established. it can. Therefore, in the multi-hop network that performs the authentication process and the routing process, the slave unit 2 can exchange signals with the master unit 1 as soon as possible.
  • the parent device 1 and the child device 2 when the temporary communication route between the parent device 1 and the child device 2 is constructed, the parent device 1 and the child device 2 thereafter perform authentication processing until the main communication route by the routing processing is constructed
  • the gist is to perform communication using a temporary communication route that is sometimes constructed. That is, a specific communication method using the temporary communication route performed between the parent device and the child device 2 is not limited to the above-described content.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Selective Calling Equipment (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明の課題は、認証処理とルーティング処理とを行うマルチホップのネットワークにおいて、できるだけ早く親機と子機との間で信号の授受を行うことができるマルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラムを提供することである。本発明に係るマルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラムにおいて、親機(1)と未認証の子機(2N)とは、直接、または認証済の子機(21)を介した仮通信ルートを用いて通信することで、親機(1)が未認証の子機(2N)を認証する認証処理を行い、認証処理の後の通信において仮通信ルートを構築する。

Description

マルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラム
 本発明は、一般に、マルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラムに関する。
 従来、通信端末間で通信する際、情報を伝送しようとする通信端末間で通信を直接行うことができない場合に、他の通信端末を通信の中継に用いることによって通信を可能にするマルチホップ通信が知られている(例えば、特許文献1参照)。マルチホップ通信の通信ルートを制御するルーティングプロトコルには、定期的に他の通信端末とルーティングパケットを交換して、最新の通信ルートを維持するプロアクティブ(Proactive)型プロトコルがある。
 近年、例えば自動遠隔検針システムのように、親機または子機に設定される複数の通信端末を備えて、プロアクティブ型のマルチホップ通信を、PLC(Power Line Communication:電力線搬送通信)と組み合わせたマルチホップ通信が提案されている。
 子機がマルチホップのネットワークに参入する場合、親機-子機間において、PLCのプロトコルで規定されている認証処理が行われる。そして、親機に認証された子機が、このネットワークに参入できる。その後、親機に認証された子機は、ルーティングパケットの交換によって親機との間の通信ルートを構築するルーティング処理を行う。親機および子機は、ルーティング処理によって構築された通信ルートを用いてマルチホップ通信を行う。
 しかしながら、認証処理によって子機がネットワークに参入した後、ルーティング処理によって通信ルートが構築されるまでは、親機-子機間の通信ができない状態となる。すなわち、親機-子機間の通信が開始されるまでに時間がかかっていた。
国際公開第2007/020941号
 本発明の目的は、認証処理とルーティング処理とを行うマルチホップのネットワークにおいて、できるだけ早く親機と子機との間で信号の授受を行うことができるマルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラムを提供することにある。
 本発明の一態様に係るマルチホップ通信システムは、複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信システムであって、前記親機と前記複数の子機のうち前記親機に認証されていない未認証の第1子機とは、直接、または前記複数の子機のうち前記親機に認証された認証済の第2子機を介した仮通信ルートを用いて通信することで、前記親機が未認証の前記第1子機を認証する認証処理を行い、前記親機と前記親機に認証された認証済の前記第1子機とは、前記仮通信ルートを用いて互いに信号を授受することができることを特徴とする。
 本発明の一態様に係る通信端末は、複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信システムの前記親機として用いられる通信端末であって、前記複数の子機のうち認証していない未認証の第1子機との間で、直接、または前記複数の子機のうち認証した認証済の第2子機を介した仮通信ルートを用いて通信することで、未認証の前記第1子機を認証する認証処理を行う認証制御部と、認証済の前記第1子機と通信する場合に、認証済の前記第1子機との間に前記仮通信ルートを構築する仮通信制御部とを備えることを特徴とする。
 本発明の一態様に係る通信端末は、複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信システムの前記子機として用いられる通信端末であって、前記親機に認証されていない場合、直接、または前記複数の子機のうち前記親機に認証された認証済の子機を介した仮通信ルートを用いて前記親機と通信することで、前記親機による認証処理を実行させる認証制御部と、前記認証処理後に前記親機と通信する場合、前記親機との間に前記仮通信ルートを構築する仮通信制御部とを備えることを特徴とする。
 本発明の一態様に係るマルチホップ通信方法は、複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信方法であって、前記親機と前記複数の子機のうち前記親機に認証されていない未認証の第1子機とは、直接、または前記複数の子機のうち前記親機に認証された認証済の第2子機を介した仮通信ルートを用いて通信することで、前記親機が未認証の前記第1子機を認証する認証処理を行い、前記親機と前記親機に認証された認証済の前記第1子機とは、前記仮通信ルートを用いて互いに信号を授受することができることを特徴とする。
 本発明の一態様に係るプログラムは、複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信システムの前記親機に用いられるプログラムであって、コンピュータを、前記複数の子機のうち認証していない未認証の第1子機との間で、直接、または前記複数の子機のうち認証した認証済の第2子機を介した仮通信ルートを用いて通信することで、未認証の前記第1子機を認証する認証処理を行う認証制御部と、認証済の前記第1子機と通信する場合に、認証済の前記第1子機との間に前記仮通信ルートを構築する仮通信制御部として機能させることを特徴とする。
 本発明の一態様に係るプログラムは、複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信システムの前記子機に用いられるプログラムであって、コンピュータを、前記親機に認証されていない場合、直接、または前記複数の子機のうち前記親機に認証された認証済の子機を介した仮通信ルートを用いて前記親機と通信することで、前記親機による認証処理を実行させる認証制御部と、前記認証処理後に前記親機と通信する場合、前記親機との間に前記仮通信ルートを構築する仮通信制御部として機能させることを特徴とする。
実施形態のマルチホップ通信システムを示すブロック図である。 実施形態のマルチホップ通信システムの比較例の通信動作を示す通信シーケンスである。 実施形態のマルチホップ通信システムの通信動作を示す通信シーケンスである。 実施形態のマルチホップ通信システムの別の通信動作を示す通信シーケンスである。 実施形態のマルチホップ通信システムのトポロジー通知のフォーマットを示す図である。
 以下、実施形態を図面に基づいて説明する。
 以下の実施形態は、一般に、マルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラムに関する。より詳細には、以下の実施形態は、親ノード-子ノード間で、認証処理の後にルーティング処理が行われ、ルーティング処理の後にマルチホップ通信が行われるマルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラムに関する。
 (実施形態)
 本実施形態のマルチホップ通信システム10は、図1に示すように、1台の親機1、複数の子機2のそれぞれが、供給事業者から需要家施設3に電力を供給する電力線W1に接続している。需要家施設3は、戸建て住宅、事務所、店舗、集合住宅の住戸、ビルのテナントなどであり、その形態は限定されない。なお、図1では、需要家施設3を個別に識別するために、需要家施設31,32,...,3Nの符号を用いている。
 そして、親機1および子機2のそれぞれは、電力線搬送通信の通信プロトコルであるG3-PLCにしたがって電力線搬送通信を行う通信端末である。親機1および子機2のそれぞれは、電力線W1を介して互いに電力線搬送通信を行うネットワーク(通信ネットワーク)を構成する。なお、子機2を個別に識別する場合は、子機21,22,...,2N,...の符号を用いる。
 子機2は、需要家施設3毎に設けられており、需要家施設3のそれぞれに関する所定データを、1台の親機1へ送信する機能を有する。親機1は、需要家施設3のそれぞれに関する所定データを複数の子機2から取得し、取得した所定データを、上位の管理装置へ、光ファイバ回線や、インターネット等の広域通信網などを用いて送信する機能を有する。例えば、親機1が、需要家施設3のそれぞれにおける電力使用量、ガス使用量、水道使用量等の検針データを、子機2から取得することによって、遠隔検針システムを構成できる。また、親機1が、予め設定された所定の情報を子機2との間で送信、受信することによって、需要家施設3のそれぞれの機器の状態を監視する遠隔監視システム、需要家施設3のそれぞれの機器の状態を制御する遠隔制御システム等を構成することも可能である。
 この通信ネットワークでは、通常、親機1および子機2は、プロアクティブ型のマルチホップ通信により信号を互いに送信、受信している。すなわち、本通信ネットワークでは、親機1と各子機2との間で直接または間接に通信が行われる。親機1と直接通信できない子機2は、通信可能な距離にある他の子機2が通信パケットを順次中継することで、親機1との間で通信を行うことができる。
 親機1は、通信部1aと、記憶部1bと、認証制御部1cと、仮通信制御部1dと、ルーティング制御部1eと、主通信制御部1fとを備える。
 通信部1aは、他の通信端末(子機2)との間で通信を行う通信インターフェイスとして機能する。
 記憶部1bは、ROM(Read Only Memory)などの不揮発性のメモリ、EEPROM(Electrically Erasable and Programmable Read-Only Memory)、フラッシュメモリなどの書換え可能な不揮発性のメモリのいずれかからなる。そして、記憶部1bは、後述の主通信ルート情報、仮通信ルート情報を記憶している。さらに記憶部1bは、親機1を動作させるための制御プログラム等の各プログラムや、各プログラムの実行に必要な情報等も格納している。
 認証制御部1cは、通信部1aを介して子機2との間で通信することによって、G3-PLCの通信プロトコルで規定されている認証処理を制御する機能を備える。認証処理とは、親機1が、自機の通信ネットワーク(通信セル)に、認証対象の子機2を参入させるか否か(参入の可否)を判定する処理である。すなわち、未認証の子機2は、親機1の通信ネットワークへの参入を許可されていない子機2である。認証済の子機2は、認証処理によって親機1の通信ネットワークへの参入を許可された子機2である。
 そして認証制御部1cは、認証処理中に子機2との間で通信するが、この認証処理において認証対象の子機2との間で構築された通信ルートを仮通信ルートとする。
 仮通信制御部1dは、仮通信ルートを用いた通信(信号の送信および受信)を制御することで、仮通信ルートを用いて子機2と通信することができる。
 ルーティング制御部1eは、通信部1aを介して子機2との間で通信することによって、プロアクティブ型のマルチホップ通信の通信プロトコルで規定されているルーティング処理を制御する機能を備える。ルーティング処理とは、親機1に認証された子機2が対象であり、親機1と子機2との間のマルチホップ通信に用いられる通信ルートを構築する処理である。以降、ルーティング処理によって構築されて、マルチホップ通信に用いられる通信ルートを主通信ルートと呼ぶ。
 主通信制御部1fは、主通信ルートを用いたマルチホップ通信を制御することで、主通信ルートを用いたマルチホップ通信を子機2との間で行うことができる。
 子機2は、通信部2aと、記憶部2bと、認証制御部2cと、仮通信制御部2dと、ルーティング制御部2eと、主通信制御部2fとを備える。
 通信部2aは、他の通信端末(親機1、他の子機2)との間で通信を行う通信インターフェイスとして機能する。
 記憶部2bは、ROMなどの不揮発性のメモリ、EEPROMなどの書換え可能な不揮発性のメモリのいずれかからなる。そして、記憶部2bは、主通信ルート情報、仮通信ルート情報を記憶している。さらに記憶部2bは、子機2を動作させるための制御プログラム等の各プログラムや、各プログラムの実行に必要な情報等も格納している。
 認証制御部2cは、通信部2aを介して親機1および他の子機2との間で通信することによって、G3-PLCの通信プロトコルで規定されている認証処理を制御する機能を備える。そして認証制御部2cは、認証処理中に親機1および他の子機2との間で通信するが、この認証処理において親機1との間で構築された通信ルートを仮通信ルートとする。
 仮通信制御部2dは、仮通信ルートを用いた通信(信号の送信および受信)を制御することで、仮通信ルートを用いて親機1や他の子機2と通信することができる。
 ルーティング制御部2eは、通信部2aを介して親機1および他の子機2との間で通信することによって、プロアクティブ型のマルチホップ通信の通信プロトコルで規定されているルーティング処理を制御する機能を備える。
 主通信制御部2fは、主通信ルートを用いたマルチホップ通信を制御することで、主通信ルートを用いたマルチホップ通信を親機1との間で行うことができる。
 まず、本実施形態の比較例として、仮通信制御部2dを備えていない場合に行われる従来の通信シーケンスについて、図2を用いて説明する。
 未認証の子機21,2Nが新たに起動した場合を想定する。未認証の子機21,2Nでは、認証制御部2cがビーコン要求201をブロードキャストして、親機1との認証処理を開始する。ビーコン要求201には、送信元となる子機2に固有の識別情報が付加されている。この固有の識別情報は、通信端末毎に予め割り付けられている固有の識別情報であり、例えばEUI(Extended Unique Identifier)-64が用いられる。
 ここで、子機21は、親機1との間で直接通信することができるが、子機2Nは、親機1との間で直接通信することができない。したがって、親機1では、子機21が送信したビーコン要求201を認証制御部1cが受信可能であるが、子機2Nが送信したビーコン要求201を認証制御部1cが受信することはできない。認証制御部1cは、子機21から受信したビーコン要求201に対する応答として、ビーコン応答101をブロードキャストする。ビーコン応答101には、送信元の親機1に固有の識別情報が付加されている。
 子機21の認証制御部2cは、ビーコン応答101を受信すると、通信可能な親機1の識別情報を知ることができる。そこで、子機21の認証制御部2cは、参加要求202などの認証用信号を親機1へ送信する。子機2が送信する認証用信号には、送信元の子機2の識別情報、送信先の親機1の識別情報などが付加されている。
 親機1の認証制御部1cは、参加要求202などの認証用信号を子機21から受信すると、PLCに用いる秘密鍵の情報、認証完了102などの認証用信号を子機21へ送信する。子機21の認証制御部2cは、認証完了102を受信すると、親機1に認証されて、親機1の通信ネットワークへの参入を許可されたことを知ることができる(図2中の301)。親機1が送信する認証用信号には、送信元の親機1の識別情報、送信先の子機2の識別情報などが付加されている。
 一方、子機2Nの認証制御部2cは、ビーコン要求201を定期的にブロードキャストしている。認証済の子機21の認証制御部2cは、子機2Nが送信したビーコン要求201を受信することができる。そこで、子機21の認証制御部2cは、子機2Nから受信したビーコン要求201に対する応答として、ビーコン応答101をブロードキャストする。ビーコン応答101には、送信元の子機21に固有の識別情報が付加されている。
 子機2Nの認証制御部2cは、ビーコン応答101を受信すると、通信可能な子機21の識別情報を知ることができる。すなわち、子機2Nの認証制御部2cは、親機1に至る通信ルートは知らないが、認証済の子機21との通信は可能であることを知ることができる。そこで、子機2Nの認証制御部2cは、参加要求202などの認証用信号を子機21へ送信する。子機21の認証制御部2cは、子機2Nから受信した参加要求202などの認証用信号を親機1へ送信する中継処理を行う。すなわち、子機21は、認証処理において、親機1と子機2Nとの間の中継端末として機能することができる。
 親機1の認証制御部1cは、参加要求202などの認証用信号を子機2Nから子機21を介して受信すると、PLCに用いる秘密鍵の情報、認証完了102などの認証用信号を子機21を介して子機2Nへ送信する。子機2Nの認証制御部2cは、認証完了102を受信すると、親機1に認証されて、親機1の通信ネットワークへの参入を許可されたことを知ることができる(図2中の302)。
 なお、親機1-子機21間における上述のビーコン応答101、認証完了102、ビーコン要求201、参加要求202などを用いた一連の処理を、図2~図4では認証処理A1としている。また、親機1-子機2N間における上述のビーコン応答101、認証完了102、ビーコン要求201、参加要求202などを用いた一連の処理を、図2~図4では認証処理A2としている。
 そして、親機1に認証された子機21,2Nのルーティング制御部2eは、ルーティング処理を開始する。
 親機1のルーティング制御部1eは、起動後から定期的にハローパケット(Hello Packet)100をブロードキャストして、ルーティング処理を行っている。また、親機1に認証された他の子機2のルーティング制御部2eも、定期的にハローパケット100をブロードキャストして、ルーティング処理を行っている。
 ハローパケット100は、自機の生存を報知するパケットであり、通信端末間の主通信ルートを構築する際に用いられるルーティングパケットとしての機能を有する。親機1が送信するハローパケット100には、送信元となる親機1の端末情報と、送信元となる親機1が直接通信可能な隣接端末(子機2)の端末情報とが付加されている。なお、通信端末(親機1、子機2)の端末情報とは、例えば、通信端末のアドレス情報、通信品質に関する情報などである。
 そして、子機21,2Nのルーティング制御部2eも、定期的にハローパケット100をブロードキャストして、ルーティング処理を開始する。一般に、子機2(21,2N)が送信するハローパケット100には、自機が直接通信可能な隣接端末(子機2、親機1)の端末情報(例えば、アドレス情報、通信品質に関する情報など)が付加されている。さらに、親機1との間で主通信ルートを構築した子機2が送信するハローパケット100には、親機1までの主通信ルートを表す主通信ルート情報、およびこの主通信ルートの通信品質を表すルート品質情報がさらに付加されている。
 子機21のルーティング制御部2eは、親機1がブロードキャストしたハローパケット100を受信することで、親機1との間で1ホップの主通信ルートを構築することができる。
 子機2Nのルーティング制御部2eは、子機21が主通信ルートを構築した後に、子機21がブロードキャストしたハローパケット100を受信することで、子機21を介した親機1との間の2ホップの主通信ルートを構築することができる。
 子機21,2Nのルーティング制御部2eが親機1との間で主通信ルートを構築した後、子機21,2Nの主通信制御部2fは、主通信ルートを用いたマルチホップ通信を親機1との間で行うことができる。
 なお、上述のハローパケット100を用いた一連の処理を、図2~図4ではルーティング処理B1としている。また、子機21,2Nは、受信したハローパケット100に付加された主通信ルート情報、ルート品質情報に基づいて、通信品質が最も良い主通信ルートを構築できる。
 しかしながら、図2に示す通信シーケンスでは、親機1による子機2の認証処理が完了しても、親機1-子機2間の主通信ルートが構築されるまでは、親機1と子機2との間で通信できなかった。ルーティング処理B1において、親機1がハローパケットを送信する時間間隔、子機2がハローパケットを送信する時間間隔は、例えばそれぞれ数十分程度である。この結果、ルーティング処理B1が完了するまでには少なくとも2~3時間程度かかり、認証後の通信不能期間が長くなっていた。
 そこで、本実施形態では、図3に示す通信シーケンスを行うことで、認証処理の後から主通信ルートが構築されるまでの期間においても、親機1と子機2との間で通信して信号の送信および受信を行うことを可能としている。
 本実施形態においても、未認証の子機21,2Nが新たに起動した場合を想定しており、図2の通信シーケンスと同様に認証処理A1,A2が行われる。
 そして、本実施形態の子機2の仮通信制御部2dは、認証処理において親機1および他の子機2から受信したそれぞれの信号に含まれる情報に基づいて、親機1と通信可能な仮通信ルートの情報を生成する。
 子機21(認証処理A1における第1子機)では、認証処理A1において、ビーコン応答101、認証用信号を親機1から受信したことで、仮通信制御部2dは、親機1との直接通信が可能であることがわかる。そこで、子機21の仮通信制御部2dは、仮通信ルート「子機21→親機1」の情報を作成し、記憶部2bに格納する(図3中の401)。以降、子機21の仮通信制御部2dは、この仮通信ルートを用いた親機1との通信が可能となる。
 子機2N(認証処理A2における第1子機)では、認証処理A2において、ビーコン応答101、認証用信号を子機21(認証処理A2における第2子機)から受信したことで、仮通信制御部2dは、子機21を介した親機1との通信が可能であることがわかる。そこで、子機2Nの仮通信制御部2dは、仮通信ルート「子機2N→子機21→親機1」の情報を作成し、記憶部2bに格納する(図3中の402)。以降、子機2Nの仮通信制御部2dは、この仮通信ルートを用いた親機1との通信が可能となる。
 さらに、認証済の子機21の認証制御部2cは、認証処理A2において親機1-子機2N間の通信の中継処理を行っている。したがって、子機21の仮通信制御部2dは、自機が子機2Nの仮通信ルートにおける中継端末であると認識できる。子機21の仮通信制御部2dは、例えば子機2Nに対応付けたフラグをたてることによって、子機2Nの中継端末である旨を認識することができる。このフラグの保持時間は、認証制御部2cが備えるタイマーの計時動作によって一定時間に設定されており、例えばルーティング処理B1が完了するのに十分な時間長さに設定される。
 そして、認証済の子機21の仮通信制御部2dは、親機1から送信された子機2N宛の信号を受信した場合、その子機2N宛の信号を送信する中継処理を行う。また、子機21の仮通信制御部2dは、子機2Nから送信された親機1宛の信号を受信した場合、その親機1宛の信号を送信する中継処理を行う。
 なお、本実施形態では、親機1と子機21とは、1ホップでの通信(直接通信)が可能である。しかし、親機1と子機21とが複数ホップでの通信(すなわち、他の子機2を中継しての通信)を行う場合も考えられる。この場合、子機2Nは親機1-子機21間の通信ルートを知らないので、子機2Nの仮通信制御部2dは、上記同様に、仮通信ルート「子機2N→子機21→親機1」の情報を作成する。さらに、親機1-子機21間の仮通信ルートに存在する他の子機2は、親機1との間で主通信ルートを構築していなければ、子機21と同様に、親機1-子機2N間の通信の中継端末として動作する。また、親機1-子機21間の仮通信ルートに存在する他の子機2は、既に親機1との間でルーティング処理を実行して主通信ルートを構築していれば、主通信ルートを用いて親機1との間で通信を行う中継端末として動作する。
 一方、親機1の仮通信制御部1dは、認証処理において、子機2から受信したそれぞれの信号に含まれる情報に基づいて、子機2との仮通信ルートの情報を生成する。
 例えば、親機1の仮通信制御部1dは、認証処理A1において、ビーコン要求201、認証用信号を子機21から受信したことで、仮通信制御部1dは、子機21との直接通信が可能であることがわかる。そこで、親機1の仮通信制御部1dは、仮通信ルート「親機1→子機21」の情報を作成し、記憶部1bに格納する(図3中の403)。以降、親機1の仮通信制御部1dは、仮通信ルートを用いた子機21との通信が可能となる。
 さらに、親機1の仮通信制御部1dは、認証処理A2において、子機2Nが送信した認証用信号を子機21を介して受信したことで、仮通信制御部1dは、子機21を介した子機2Nとの通信が可能であることがわかる。そこで、親機1の仮通信制御部1dは、仮通信ルート「親機1→子機21→子機2N」の情報を作成し、記憶部1bに格納する(図3中の404)。以降、親機1の仮通信制御部1dは、仮通信ルートを用いた子機2Nとの通信が可能となる。
 そして、親機1、子機21,2Nにおいて仮通信ルートの登録が完了すると、以降、ルーティング処理による主通信ルートが構築されるまで、親機1-子機21,2N間では、仮通信ルートを用いた通信が行われる(図3中の仮通信処理C1)。したがって、認証処理とルーティング処理とを行うことで構築されるマルチホップネットワークにおいて、できるだけ早く親機1と子機2との間で信号の授受を行うことができる。
 例えば、親機1の仮通信制御部1dは、検針データの取得要求などの通信信号501を子機21宛に送信する場合、送信先である子機21の識別情報および送信元である親機1の識別情報を、通信信号501に付加する。子機21の仮通信制御部2dは、通信信号501に付加された送信先の識別情報に基づいて自機宛の信号であると判断して、通信信号501の受信処理を行う。
 また、親機1の仮通信制御部1dは、検針データの取得要求などの通信信号502を子機2N宛に送信する場合、送信先である子機2Nの識別情報および送信元である親機1の識別情報を、通信信号502に付加する。子機21の仮通信制御部2dは、通信信号502に付加された送信先の識別情報に基づいて、自機が中継端末となっている子機2N宛の信号であると判断し、通信信号502を送信する中継処理を行う。子機2Nの仮通信制御部2dは、通信信号502に付加された送信先の識別情報に基づいて自機宛の信号であると判断して、通信信号502の受信処理を行う。
 また、子機21の仮通信制御部2dは、検針データなどを含む通信信号503を親機1宛に送信する場合、送信先である親機1の識別情報および送信元である子機21の識別情報を、通信信号503に付加する。親機1の仮通信制御部1dは、通信信号503に付加された送信先の識別情報に基づいて自機宛の信号であると判断して、通信信号503の受信処理を行う。
 また、子機2Nの仮通信制御部2dは、検針データなどを含む通信信号504を親機1宛に送信する場合、送信先である親機1の識別情報および送信元である子機2Nの識別情報を、通信信号504に付加する。子機21の仮通信制御部2dは、通信信号504に付加された送信元の識別情報に基づいて、自機が中継端末となっている子機2Nからの信号であると判断し、通信信号504を送信する中継処理を行う。親機1の仮通信制御部1dは、通信信号504に付加された送信先の識別情報に基づいて自機宛の信号であると判断して、通信信号504の受信処理を行う。
 さらに、認証済の子機21,2Nでは図4に示すように、仮通信制御部2dが、仮トポロジー通知601を送信することが好ましい。仮通信制御部2dは、主通信ルートが構築されるまで、仮トポロジー通知601を定期的に送信する。また、後述のように、主通信ルートを構築した子機2では、主通信制御部2fが、仮トポロジー通知601と同様の機能を備える主トポロジー通知を定期的に送信する。
 子機21が送信した仮トポロジー通知601は、親機1が直接受信する。そして、親機1の仮通信制御部1dは、仮トポロジー通知601の送信元の子機21から親機1に至る仮通信ルートを把握することができる。
 子機2Nが仮トポロジー通知601を送信すると、子機2Nの中継端末である子機21が仮トポロジー通知601を中継する。具体的に、中継端末となる子機21は、子機2Nから受け取った仮トポロジー通知601に自機の識別情報を付加して送信する中継処理を行う。また、親機1と子機21とが複数ホップで通信している場合、この親機1と子機21との間に存在する他の子機2(中継端末)も、受け取った仮トポロジー通知601に自機の識別情報を付加して送信する中継処理を行う。つまり、仮トポロジー通知601には、中継端末の識別情報が順次格納される。そして、親機1の仮通信制御部1dは、仮トポロジー通知601を受信すると、仮トポロジー通知601の送信元の子機2Nから親機1に至る仮通信ルートを構成する全ての中継端末を把握することができる。
 例えば、親機1との間で主通信ルートを構築している子機2が仮通信ルートに含まれている場合、この子機2と親機1との間の通信ルートが変更される場合がある。しかしながら、子機2のそれぞれから親機1へ仮トポロジー通知601が定期的に送信されることによって、親機1の仮通信制御部1dは、子機2のそれぞれとの間で構築される現状の仮通信ルート(最適な仮通信ルート)を知ることができる。親機1の仮通信制御部1dは、仮トポロジー通知601に基づく現状の仮通信ルートの情報を記憶部1bに格納することで、仮トポロジー通知601の送信元の子機2に対応する仮通信ルートを更新する。
 さらに、主通信ルートを構築した子機2では、主通信制御部2fが、主トポロジー通知を定期的に送信することが好ましい。すなわち、主通信制御部2fは、主通信ルートが構築された後の通常のルーティング処理においても、子機2の現在の主通信ルートの情報を親機1に通知するために、主トポロジー通知を定期的に送信する。
 なお、主トポロジー通知、仮トポロジー通知を区別しない場合、単にトポロジー通知と称す。
 図5は、トポロジー通知(仮トポロジー通知、主トポロジー通知)のフォーマットの一例を示す。トポロジー通知は、「メッセージタイプ」、「初期フラグ」、「端末種別」、「シーケンス番号」、「サブメッセージ」の各フィールドを備えて構成される。
 「メッセージタイプ」は、トポロジー通知であることを示すコードが格納されるフィールドである。「初期フラグ」は、仮通信制御部2dが送信した仮トポロジー通知であるか、あるいは主通信制御部2fが送信した主トポロジー通知であるかを示すフィールドである。「端末種別」は、送信元の通信端末の種別コード(親機または子機)が設定される。「シーケンス番号」は、今回のトポロジー通知に割り当てられたシーケンス番号が設定される。「サブメッセージ」は、送信されるサブメッセージが格納されるフィールドである。
 さらに、「サブメッセージ」は、「サブメッセージタイプ」、「個数」、「送信元アドレス」、「1ホップ目アドレス」、「2ホップ目アドレス」、「親機アドレス」の各フィールドで構成される。
 「サブメッセージタイプ」は、トポロジー通知に含める情報の種類を示すコードが格納されるフィールドである。「個数」は、「サブメッセージ」の1つのフィールドに格納される通信端末(子機2、親機1)のアドレス情報の個数が格納されるフィールドである。なお、「個数」フィールドの代わりに、サブメッセージのデータ長が格納されるフィールドであってもよい。「送信元アドレス」は、トポロジー通知の送信元となる子機2の識別情報が格納されるフィールドである。「1ホップ目アドレス」、「2ホップ目アドレス」は、トポロジー通知を中継した子機2が自機の識別情報を格納するフィールドであり、トポロジー通知を中継する子機2(中継端末)毎にフィールドが用意されている。「親機アドレス」は、トポロジー通知を受信する親機1の識別情報が格納されるフィールドである。
 なお、「サブメッセージ」は、上述のように通信ルートに関する情報を含むものに限らない。例えば「サブメッセージ」は、トポロジー通知を行う子機2(トポロジー通知を送信する子機2だけでなく、トポロジー通知を中継する子機2が含まれてもよい)が検知している隣接端末に関する情報を含むもの等であってもよい。
 また、親機1の仮通信制御部1dは、仮トポロジー通知で通知された仮通信ルートの情報を、この仮トポロジー通知の送信元である子機2へ送信してもよい。この場合、子機2の仮通信制御部2dは、仮トポロジー通知に基づく現状の仮通信ルートの情報を記憶部2bに格納する。したがって、子機2の仮通信制御部2dも、自機から親機1に至る仮通信ルートを構成する全ての中継端末を把握することができる。
 また、認証済の子機2の仮通信制御部2dは、自機が他の子機2の仮通信ルートにおける中継端末である場合、以下の動作を行う。
 まず、親機1の仮通信制御部1dが、配下の子機2に対して、ファームウェアの更新情報などを含むブロードキャスト信号をブロードキャストしたとする。この場合、他の子機2の中継端末である子機2の仮通信制御部2dは、受信したブロードキャスト信号をさらにブロードキャストする。したがって、中継端末である子機2の仮通信制御部2dは、自機の後段に存在する他の子機2に対して、親機1が発したブロードキャスト信号を中継することができる。したがって、親機1の通信ネットワークに参入している子機2は、親機1が発したブロードキャスト信号を直接、または中継端末を介して受信することができる。また、中継端末でない子機2の仮通信制御部2dは、親機1が発したブロードキャスト信号を受信しても、このブロードキャスト信号の中継処理を行わない。
 また、子機2の仮通信制御部2dは、仮トポロジー通知を中継した場合も、自機が他の子機2の仮通信ルートにおける中継端末であると認識して、以降、この他の子機2と親機1との間の通信を中継することが好ましい。
 また、親機1は、停電などによる電源断によって停止した後に再起動した場合、不揮発性の記憶部1bには、電源断前の主通信ルートの情報が保持されていることがある。この場合、親機1の認証制御部1c、仮通信制御部1d、ルーティング制御部1eは動作せずに、主通信制御部1fが、記憶部1bに保持されている主通信ルートを用いて、子機2と通信を行う。
 また、親機1は、停電などによる電源断によって停止した後に再起動した場合、不揮発性の記憶部1bには、電源断前の仮通信ルートの情報のみが保持されていることがある。この場合、親機1の認証制御部1cは動作せずに、仮通信制御部1dが、記憶部1bに保持されている仮通信ルートを用いて、子機2と通信を行う。
 また、子機2は、停電などによる電源断によって停止した後に再起動した場合、不揮発性の記憶部2bには、電源断前の主通信ルートの情報が保持されていることがある。この場合、子機2の認証制御部2c、仮通信制御部2d、ルーティング制御部2eは動作せずに、主通信制御部2fが、記憶部2bに保持されている主通信ルートを用いて、親機1と通信を行う。
 また、子機2は、停電などによる電源断によって停止した後に再起動した場合、不揮発性の記憶部2bには、電源断前の仮通信ルートの情報のみが保持されていることがある。この場合、子機2の認証制御部2cは動作せずに、仮通信制御部2dが、記憶部2bに保持されている仮通信ルートを用いて、親機1と通信を行う。
 したがって、親機1および子機2は、停電などによる電源断によって停止した後、再起動時に不要な動作を行わないので、再起動後の通信をより早く再開することができる。
 以上のように、実施形態に係る第1の態様のマルチホップ通信システム10では、複数の子機2のうち親機1に認証された子機2が、親機1との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行う。親機1に認証された子機2は、ルーティング処理の後、親機1との間で主通信ルートを用いてマルチホップ通信を行う。そして、親機1と複数の子機2のうち親機1に認証されていない未認証の第1子機2(2N)とは、直接、または複数の子機2のうち親機1に認証された認証済の第2子機2(21)を介した仮通信ルートを用いて通信することで、親機1が未認証の第1子機2(2N)を認証する認証処理を行い、親機1と親機1に認証された認証済の第1子機2(2N)とは、仮通信ルートを用いて互いに信号を授受することができる。
 この場合、親機1-子機2間の仮通信ルートが構築されると、ルーティング処理による主通信ルートが構築されていなくても、親機1,子機2は仮通信ルートを用いた通信を行うことができる。したがって、認証処理とルーティング処理とを行うマルチホップネットワークにおいて、できるだけ早く親機1と子機2との間で信号の授受を行うことができる。
 実施形態に係る第2の態様のマルチホップ通信システムでは、第1の態様において、親機1および認証済の第1子機2(2N)は、認証処理の後から主通信ルートが構築されるまでの期間に通信する場合、仮通信ルートを用いて互いに信号を授受することが好ましい。
 この場合、親機1-子機2間の仮通信ルートが構築されると、以降、ルーティング処理による主通信ルートが構築されるまで、親機1、子機2は、仮通信ルートを用いた通信を行うことができる。
 実施形態に係る第3の態様のマルチホップ通信システムでは、第1または第2の態様において、認証済の第1子機2(2N)は、仮通信ルートに関する情報を含む仮トポロジー通知を親機1へ送信することが好ましい。
 この場合、親機1は、仮トポロジー通知の送信元の子機2から親機1に至る仮通信ルートを容易に把握することができる。
 実施形態に係る第4の態様のマルチホップ通信システムでは、第3の態様において、認証済の第2子機2(21)は、仮トポロジー通知を受信すると、仮トポロジー通知に自機の識別情報をさらに付加して送信することが好ましい。
 この場合、親機1は、仮トポロジー通知の送信元の子機2から親機1に至る仮通信ルートを構成する全ての中継端末を把握することができる。
 実施形態に係る第5の態様のマルチホップ通信システムでは、第1乃至第4の態様のいずれかにおいて、未認証の第1子機2(2N)が認証処理のために親機1へ送信した認証用信号を受信した認証済の第2子機2(21)は、認証用信号を中継した後に親機1からブロードキャストされたブロードキャスト信号を受信すると、ブロードキャスト信号をブロードキャストすることが好ましい。
 この場合、親機1の通信ネットワークに参入している子機2は、親機1が発したブロードキャスト信号を直接、または中継端末を介して受信することができる。さらに、ブロードキャスト信号の不要な転送を抑制することができる。
 実施形態に係る第6の態様のマルチホップ通信システムでは、第3または第4の態様において、認証済の第2子機2(21)は、仮トポロジー通知を中継した後に親機1からブロードキャストされたブロードキャスト信号を受信すると、ブロードキャスト信号をブロードキャストすることが好ましい。
 この場合、親機1の通信ネットワークに参入している子機2は、親機1が発したブロードキャスト信号を直接、または中継端末を介して受信することができる。さらに、ブロードキャスト信号の不要な転送を抑制することができる。
 実施形態に係る第7の態様のマルチホップ通信システムでは、第1乃至第6のいずれかの態様において、親機1および子機2は、主通信ルートおよび仮通信ルートの情報を記憶する不揮発性の記憶部1b,2bを備えることが好ましい。
 この場合、親機1および子機2は、停電などによる電源断によって停止した後、再起動後の通信をより早く再開することができる。
 実施形態に係る第8の態様のマルチホップ通信システムでは、第1乃至第7のいずれかの態様において、親機1および認証済の第1子機2(2N)は、自機の生存を報知するハローパケットを定期的に送信し、受信したハローパケットに基づいてルーティング処理を行うことが好ましい。
 この場合、ルーティング処理を従来と同様に行うことができる。
 実施形態に係る第9の態様の通信端末は、マルチホップ通信システム10の親機1として用いられる通信端末である。マルチホップ通信システム10では、複数の子機2のうち親機1に認証された子機2が、親機1との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行う。親機1に認証された子機2は、ルーティング処理の後、親機1との間で主通信ルートを用いてマルチホップ通信を行う。
 親機1は、認証制御部1cと、仮通信制御部1dとを備える。認証制御部1cは、複数の子機2のうち認証していない未認証の第1子機2(2N)との間で、直接、または複数の子機2のうち認証した認証済の第2子機2(21)を介した仮通信ルートを用いて通信することで、未認証の第1子機2(2N)を認証する認証処理を行う。仮通信制御部1dは、認証済の第1子機2(2N)と通信する場合に、認証済の第1子機2(2N)との間に仮通信ルートを構築する。
 この場合、親機1-子機2間の仮通信ルートが構築されると、ルーティング処理による主通信ルートが構築されていなくても、親機1は仮通信ルートを用いた通信を行うことができる。したがって、認証処理とルーティング処理とを行うマルチホップネットワークにおいて、親機1は、できるだけ早く子機2との間で信号の授受を行うことができる。
 実施形態に係る第10の態様の通信端末は、マルチホップ通信システム10の子機2として用いられる通信端末である。マルチホップ通信システム10では、複数の子機2のうち親機1に認証された子機2が、親機1との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行う。親機1に認証された子機2は、ルーティング処理の後、親機1との間で主通信ルートを用いてマルチホップ通信を行う。
 子機2は、認証制御部2cと、仮通信制御部2dとを備える。認証制御部2cは、親機1に認証されていない場合、直接、または複数の子機2のうち親機1に認証された認証済の子機2を介した仮通信ルートを用いて親機1と通信することで、親機1による認証処理を実行させる。仮通信制御部2dは、認証処理後に親機1と通信する場合、親機1との間に仮通信ルートを構築する。
 この場合、親機1-子機2間の仮通信ルートが構築されると、ルーティング処理による主通信ルートが構築されていなくても、子機2は仮通信ルートを用いた通信を行うことができる。したがって、認証処理とルーティング処理とを行うマルチホップネットワークにおいて、子機2は、できるだけ早く親機1との間で信号の授受を行うことができる。
 実施形態に係る第11の態様のマルチホップ通信方法は、複数の子機2のうち親機1に認証された子機2が、親機1との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行う。親機1に認証された子機2は、ルーティング処理の後、親機1との間で主通信ルートを用いてマルチホップ通信を行う。そして、親機1と複数の子機2のうち親機1に認証されていない未認証の第1子機2(2N)とが、直接、または複数の子機2のうち親機1に認証された認証済の第2子機2(21)を介した仮通信ルートを用いて通信することで、親機1が未認証の第1子機2(2N)を認証する認証処理を行う。親機1と親機1に認証された認証済の前記第1子機2(2N)とは、仮通信ルートを用いて互いに信号を授受することができる。
 この場合、親機1-子機2間の仮通信ルートが構築されると、ルーティング処理による主通信ルートが構築されていなくても、親機1,子機2は仮通信ルートを用いた通信を行うことができる。したがって、認証処理とルーティング処理とを行うマルチホップネットワークにおいて、できるだけ早く親機1と子機2との間で信号の授受を行うことができる。
 また、親機1は、コンピュータを搭載しており、このコンピュータがプログラムを実行することによって、上述の親機1の各機能が実現されている。コンピュータは、プログラムを実行するプロセッサを備えたデバイスと、他の装置との間でデータを授受するためのインターフェイス用のデバイスと、データを記憶するための記憶用のデバイスとを主な構成要素として備える。プロセッサを備えたデバイスは、半導体メモリと別体であるCPU(Central Processing Unit)またはMPU(Micro Processing Unit)のほか、半導体メモリを一体に備えるマイコンのいずれであってもよい。記憶用のデバイスは、半導体メモリのようにアクセス時間が短い記憶装置と、ハードディスク装置のような大容量の記憶装置とが併用される。
 プログラムの提供形態としては、コンピュータに読み取り可能なROM(Read Only Memory)、光ディスク等の記録媒体に予め格納されている形態、インターネット等を含む広域通信網を介して記録媒体に供給される形態等がある。
 実施形態に係る第12の態様のプログラムは、マルチホップ通信システム10の親機1に用いられる。マルチホップ通信システム10では、複数の子機2のうち親機1に認証された子機2が、親機1との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行う。親機1に認証された子機2は、ルーティング処理の後、親機1との間で主通信ルートを用いてマルチホップ通信を行う。
 このプログラムは、コンピュータを、認証制御部1cと、仮通信制御部1dとして機能させる。認証制御部1cは、複数の子機2のうち認証していない未認証の第1子機2(2N)との間で、直接、または複数の子機2のうち認証した認証済の第2子機2(21)を介した仮通信ルートを用いて通信することで、未認証の第1子機2(2N)を認証する認証処理を行う。仮通信制御部1dは、認証済の第1子機2(2N)と通信する場合に、認証済の第1子機2(2N)との間に仮通信ルートを構築する。
 この場合、親機1-子機2間の仮通信ルートが構築されると、ルーティング処理による主通信ルートが構築されていなくても、親機1は仮通信ルートを用いた通信を行うことができる。したがって、認証処理とルーティング処理とを行うマルチホップネットワークにおいて、親機1は、できるだけ早く子機2との間で信号の授受を行うことができる。
 また、子機2は、コンピュータを搭載しており、このコンピュータがプログラムを実行することによって、上述の子機2の各機能が実現されている。コンピュータは、プログラムを実行するプロセッサを備えたデバイスと、他の装置との間でデータを授受するためのインターフェイス用のデバイスと、データを記憶するための記憶用のデバイスとを主な構成要素として備える。プロセッサを備えたデバイスは、半導体メモリと別体であるCPU(Central Processing Unit)またはMPU(Micro Processing Unit)のほか、半導体メモリを一体に備えるマイコンのいずれであってもよい。記憶用のデバイスは、半導体メモリのようにアクセス時間が短い記憶装置と、ハードディスク装置のような大容量の記憶装置とが併用される。
 プログラムの提供形態としては、コンピュータに読み取り可能なROM(Read Only Memory)、光ディスク等の記録媒体に予め格納されている形態、インターネット等を含む広域通信網を介して記録媒体に供給される形態等がある。
 実施形態に係る第13の態様のプログラムは、マルチホップ通信システム10の子機2に用いられる。マルチホップ通信システム10では、複数の子機2のうち親機1に認証された子機2が、親機1との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行う。親機1に認証された子機2は、ルーティング処理の後、親機1との間で主通信ルートを用いてマルチホップ通信を行う。
 このプログラムは、コンピュータを、認証制御部2cと、仮通信制御部2dとして機能させる。認証制御部2cは、親機1に認証されていない場合、直接、または複数の子機2のうち親機1に認証された認証済の子機2を介した仮通信ルートを用いて親機1と通信することで、親機1による認証処理を実行させる。仮通信制御部2dは、認証処理後に親機1と通信する場合、親機1との間に仮通信ルートを構築する。
 この場合、親機1-子機2間の仮通信ルートが構築されると、ルーティング処理による主通信ルートが構築されていなくても、子機2は仮通信ルートを用いた通信を行うことができる。したがって、認証処理とルーティング処理とを行うマルチホップネットワークにおいて、子機2は、できるだけ早く親機1との間で信号の授受を行うことができる。
 なお、上述の実施の形態は一例である。このため、実施の形態は、上述の構成に限定されることはなく、この構成以外であっても、技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
 例えば、本実施形態では、親機1-子機2間の仮通信ルートが構築されると、以降、ルーティング処理による主通信ルートが構築されるまで、親機1、子機2は、認証処理時に構築された仮通信ルートを用いた通信を行うことが要旨である。つまり、親機-子機2間で行われる仮通信ルートを用いた具体的な通信方法は、上述の内容に限定されない。
 1 親機
 1a 通信部
 1b 記憶部
 1c 認証制御部
 1d 仮通信制御部
 1e ルーティング制御部
 1f 主通信制御部
 2(21,...,2N) 子機
 2a 通信部
 2b 記憶部
 2c 認証制御部
 2d 仮通信制御部
 2e ルーティング制御部
 2f 主通信制御部
 10 マルチホップ通信システム
 W1 電力線

Claims (13)

  1.  複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信システムであって、
     前記親機と前記複数の子機のうち前記親機に認証されていない未認証の第1子機とは、直接、または前記複数の子機のうち前記親機に認証された認証済の第2子機を介した仮通信ルートを用いて通信することで、前記親機が未認証の前記第1子機を認証する認証処理を行い、
     前記親機と前記親機に認証された認証済の前記第1子機とは、前記仮通信ルートを用いて互いに信号を授受することができる
     ことを特徴とするマルチホップ通信システム。
  2.  前記親機および認証済の前記第1子機は、前記認証処理の後から前記主通信ルートが構築されるまでの期間に通信する場合、前記仮通信ルートを用いて互いに信号を授受することを特徴とする請求項1記載のマルチホップ通信システム。
  3.  認証済の前記第1子機は、前記仮通信ルートに関する情報を含む仮トポロジー通知を前記親機へ送信することを特徴とする請求項1または2記載のマルチホップ通信システム。
  4.  認証済の前記第2子機は、前記仮トポロジー通知を受信すると、前記仮トポロジー通知に自機の識別情報をさらに付加して送信することを特徴とする請求項3記載のマルチホップ通信システム。
  5.  未認証の前記第1子機が前記認証処理のために前記親機へ送信した認証用信号を受信した認証済の前記第2子機は、前記認証用信号を中継した後に前記親機からブロードキャストされたブロードキャスト信号を受信すると、前記ブロードキャスト信号をブロードキャストすることを特徴とする請求項1乃至4のいずれか一項に記載のマルチホップ通信システム。
  6.  認証済の前記第2子機は、前記仮トポロジー通知を中継した後に前記親機からブロードキャストされたブロードキャスト信号を受信すると、前記ブロードキャスト信号をブロードキャストすることを特徴とする請求項3または4記載のマルチホップ通信システム。
  7.  前記親機および前記子機は、前記主通信ルートおよび前記仮通信ルートの情報を記憶する不揮発性の記憶部を備えることを特徴とする請求項1乃至6のいずれか一項に記載のマルチホップ通信システム。
  8.  前記親機および認証済の前記第1子機は、自機の生存を報知するハローパケットを定期的に送信し、受信したハローパケットに基づいて前記ルーティング処理を行うことを特徴とする請求項1乃至7のいずれか一項に記載のマルチホップ通信システム。
  9.  複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信システムの前記親機として用いられる通信端末であって、
     前記複数の子機のうち認証していない未認証の第1子機との間で、直接、または前記複数の子機のうち認証した認証済の第2子機を介した仮通信ルートを用いて通信することで、未認証の前記第1子機を認証する認証処理を行う認証制御部と、
     認証済の前記第1子機と通信する場合に、認証済の前記第1子機との間に前記仮通信ルートを構築する仮通信制御部と
     を備えることを特徴とする通信端末。
  10.  複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信システムの前記子機として用いられる通信端末であって、
     前記親機に認証されていない場合、直接、または前記複数の子機のうち前記親機に認証された認証済の子機を介した仮通信ルートを用いて前記親機と通信することで、前記親機による認証処理を実行させる認証制御部と、
     前記認証処理後に前記親機と通信する場合、前記親機との間に前記仮通信ルートを構築する仮通信制御部と
     を備えることを特徴とする通信端末。
  11.  複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信方法であって、
     前記親機と前記複数の子機のうち前記親機に認証されていない未認証の第1子機とは、直接、または前記複数の子機のうち前記親機に認証された認証済の第2子機を介した仮通信ルートを用いて通信することで、前記親機が未認証の前記第1子機を認証する認証処理を行い、
     前記親機と前記親機に認証された認証済の前記第1子機とは、前記仮通信ルートを用いて互いに信号を授受することができる
     ことを特徴とするマルチホップ通信方法。
  12.  複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信システムの前記親機に用いられるプログラムであって、
     コンピュータを、
     前記複数の子機のうち認証していない未認証の第1子機との間で、直接、または前記複数の子機のうち認証した認証済の第2子機を介した仮通信ルートを用いて通信することで、未認証の前記第1子機を認証する認証処理を行う認証制御部と、
     認証済の前記第1子機と通信する場合に、認証済の前記第1子機との間に前記仮通信ルートを構築する仮通信制御部として機能させる
     ことを特徴とするプログラム。
  13.  複数の子機のうち親機に認証された子機が、前記親機との間のマルチホップ通信で用いる主通信ルートを構築するルーティング処理を行い、前記ルーティング処理の後、前記親機との間で前記主通信ルートを用いてマルチホップ通信を行うマルチホップ通信システムの前記子機に用いられるプログラムであって、
     コンピュータを、
     前記親機に認証されていない場合、直接、または前記複数の子機のうち前記親機に認証された認証済の子機を介した仮通信ルートを用いて前記親機と通信することで、前記親機による認証処理を実行させる認証制御部と、
     前記認証処理後に前記親機と通信する場合、前記親機との間に前記仮通信ルートを構築する仮通信制御部として機能させる
     ことを特徴とするプログラム。
PCT/JP2016/003176 2015-07-10 2016-07-04 マルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラム WO2017010057A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015139042A JP6443808B2 (ja) 2015-07-10 2015-07-10 マルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラム
JP2015-139042 2015-07-10

Publications (1)

Publication Number Publication Date
WO2017010057A1 true WO2017010057A1 (ja) 2017-01-19

Family

ID=57757274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003176 WO2017010057A1 (ja) 2015-07-10 2016-07-04 マルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラム

Country Status (2)

Country Link
JP (1) JP6443808B2 (ja)
WO (1) WO2017010057A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3451574A1 (en) 2017-08-28 2019-03-06 Renesas Electronics Corporation Data receiving device, data transmission system, and key generating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042710A1 (ja) * 2022-08-26 2024-02-29 三菱電機株式会社 集約装置、通信システム、通信方法およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301268A (ja) * 2007-05-31 2008-12-11 Panasonic Electric Works Co Ltd 通信ルートの探索方法およびそれを用いる通信端末
JP2012253510A (ja) * 2011-06-01 2012-12-20 Fujitsu Ltd ゲートウエイ装置、ノード装置、通信システム及びチャネル変更方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4407658B2 (ja) * 2006-03-22 2010-02-03 日本電気株式会社 マルチホップネットワークシステムおよびその経路制御方法ならびにそれを構成する中継端末およびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301268A (ja) * 2007-05-31 2008-12-11 Panasonic Electric Works Co Ltd 通信ルートの探索方法およびそれを用いる通信端末
JP2012253510A (ja) * 2011-06-01 2012-12-20 Fujitsu Ltd ゲートウエイ装置、ノード装置、通信システム及びチャネル変更方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3451574A1 (en) 2017-08-28 2019-03-06 Renesas Electronics Corporation Data receiving device, data transmission system, and key generating device
KR20190024729A (ko) 2017-08-28 2019-03-08 르네사스 일렉트로닉스 가부시키가이샤 데이터 수신 장치, 데이터 전송 시스템, 및 키 생성 장치
US10931447B2 (en) 2017-08-28 2021-02-23 Renesas Electronics Corporation Data receiving device, data transmission system, and key generating device

Also Published As

Publication number Publication date
JP2017022572A (ja) 2017-01-26
JP6443808B2 (ja) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6698702B2 (ja) 無線ネットワークの低電力センサーノード動作
CN106488445B (zh) 无线中继仪器、控制装置、无线通信系统以及加入方法
JP5991635B2 (ja) 電力線搬送通信端末および検針端末
WO2017010057A1 (ja) マルチホップ通信システム、通信端末、マルチホップ通信方法、およびプログラム
JP2015056816A (ja) 通信システム
WO2017138501A1 (ja) 通信端末、マルチホップ通信システム、およびプログラム
JP5853227B2 (ja) マルチホップ通信方法、マルチホップ通信システム、および通信端末
WO2017145731A1 (ja) 通信端末、マルチホップ通信システム、およびプログラム
JP6201256B2 (ja) 通信端末、および通信システム
JP5337980B2 (ja) 周波数分割多重型無線ネットワークシステム
WO2018025602A1 (ja) 通信装置、通信システム、通信制御方法、及びプログラム
JP5870286B2 (ja) マルチホップ通信方法、マルチホップ通信システム、および通信端末
JP5323020B2 (ja) 通信システム、通信方法およびハンディターミナル
JP2007324674A (ja) 通信ルート構築方法及び通信端末
JP6601774B2 (ja) 通信システム及び通信装置
JP2011109412A (ja) ノード装置、アドホックネットワークシステムおよびネットワーク参加方法
JP2005348083A (ja) データ通信システム
JP2014207574A (ja) マルチホップ通信システム、および通信端末
JP2017130752A (ja) 子機及び通信システム
JP6750444B2 (ja) 無線通信ネットワークシステム
JP6252813B2 (ja) 通信装置及び通信システム
JP5805481B2 (ja) ネットワークシステム及び対応接続関係の特定方法
JP6234848B2 (ja) 無線通信システム、無線通信装置及び無線機
JP5969778B2 (ja) ネットワークシステム、ノード装置及び対応接続関係の特定方法
US11284476B1 (en) Systems and methods for commissioning nodes of a wireless network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824043

Country of ref document: EP

Kind code of ref document: A1