WO2017008751A1 - 一种定位信息传输的方法及通信设备 - Google Patents

一种定位信息传输的方法及通信设备 Download PDF

Info

Publication number
WO2017008751A1
WO2017008751A1 PCT/CN2016/090019 CN2016090019W WO2017008751A1 WO 2017008751 A1 WO2017008751 A1 WO 2017008751A1 CN 2016090019 W CN2016090019 W CN 2016090019W WO 2017008751 A1 WO2017008751 A1 WO 2017008751A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning information
initial
tightening
value
integer
Prior art date
Application number
PCT/CN2016/090019
Other languages
English (en)
French (fr)
Inventor
吴国稳
张颖哲
谢汉雄
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to US15/745,210 priority Critical patent/US10904701B2/en
Priority to CN201680000619.XA priority patent/CN105940711B/zh
Publication of WO2017008751A1 publication Critical patent/WO2017008751A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a communication device for positioning information transmission.
  • DMR Digital Mobile Radio
  • NEMA National Marine Electronics Association
  • the global positioning information in the DMR standard needs to be transmitted in two time slot frames, including one UDP-based Data Transfer Protocol (UDT) data header and one UDT data block. .
  • UDT UDP-based Data Transfer Protocol
  • the air interface communication resource becomes a bottleneck of the capacity of the wireless communication system.
  • the transmitting end encapsulates the positioning information and other valid information in two DMR frames and respectively sends them to The receiving end is therefore inefficient in transmission.
  • the invention provides a method for transmitting positioning information and a communication device, which can reduce the storage space of the wireless communication data occupied by the compressed position information sent by the transmitting end, thereby improving the transmission efficiency of the wireless communication system.
  • an embodiment of the present invention provides a method for transmitting location information, including:
  • the sending end converts the initial positioning information into initial integer positioning information, and the initial integer positioning information is an integer value of the initial positioning information; the transmitting end compresses the initial integer positioning information into the compact positioning information according to the applied precision unit and the original minimum precision unit, and tightens the positioning information.
  • the corresponding binary digit is smaller than the binary digit corresponding to the initial integer positioning information; the transmitting end intercepts the low N bit from the binary value corresponding to the compact positioning information as the reduced positioning information, N is equal to log 2 R, and R is the transmitting end and the receiving end.
  • an embodiment of the present invention provides a method for transmitting location information, including:
  • the receiving end receives the reduced positioning information sent by the sending end; the receiving end converts the first initial positioning information of the first initial positioning information into the first initial integer positioning information, where the first initial integer positioning information is an integer value of the first initial positioning information;
  • the precision unit and the original minimum precision unit compress the first initial integer positioning information into the first tightening positioning information, where the binary digit corresponding to the first tightening positioning information is smaller than the binary digit corresponding to the first initial integer positioning information; and the receiving end according to the reduced parameter N and the first tightening positioning information restore the reduced positioning information to the second tightening positioning information of the transmitting end, where N is equal to log 2 R, where R is the ratio of the maximum distance of the wireless communication between the transmitting end and the receiving end to the unit of the applied precision;
  • the second tightening positioning information is restored to the second initial integer positioning information according to the application precision unit and the original minimum precision unit; the receiving end restores the second initial integer positioning information to the second initial positioning information.
  • an embodiment of the present invention provides a communications device, including:
  • a processing unit configured to convert initial positioning information into initial integer positioning information, where initial integer positioning information is an integer value of initial positioning information; compress initial initial positioning information into compact positioning information according to an application precision unit and an original minimum precision unit, and compact positioning
  • initial integer positioning information is an integer value of initial positioning information
  • the binary digit corresponding to the information is smaller than the binary digit corresponding to the initial integer positioning information
  • the low N bit is intercepted from the binary value corresponding to the compact positioning information as the reduced positioning information, N is equal to log 2 R, and R is the transmitting end and the receiving end.
  • the ratio of the maximum distance of the wireless communication to the application precision unit; the transmitting unit is configured to send the reduced positioning information to the receiving end.
  • an embodiment of the present invention provides a communications device, including:
  • the receiving unit is configured to receive the reduced positioning information sent by the sending end
  • the processing unit is configured to convert the first initial positioning information of the first initial positioning information into the first initial integer positioning information, where the first initial integer positioning information is an integer of the first initial positioning information.
  • the first initial integer positioning information is compressed into the first tightening positioning information according to the application precision unit and the original minimum precision unit, and the binary digit corresponding to the first tightening positioning information is smaller than the binary digit corresponding to the first initial integer positioning information;
  • the ratio is further reduced according to the application precision unit and the original minimum precision unit to the second initial integer positioning information; and then the second initial integer positioning information is restored to the second initial positioning information.
  • the transmitting end does not directly transmit the initial positioning information, but converts the initial positioning information into initial integer positioning information; and then compresses the initial integer positioning information into the compact positioning information according to the application precision unit and the original minimum precision unit; After that, the low N bit is intercepted from the binary value corresponding to the punctured positioning information as the reduced positioning information, and the reduced positioning information is the difference position from the positioning information of the receiving end itself, and the high bit of the binary number corresponding to the punctured positioning information of the receiving end and the transmitting end
  • the binary high bit corresponding to the squeezing positioning information is the same, so the transmitting end only needs to send the reduced positioning information to the receiving end, so that the receiving end restores the initial positioning information of the transmitting end.
  • the receiving end can obtain the effective location information of the transmitting end, the storage space of the wireless communication data occupied by the compressed location information sent by the transmitting end can be reduced, and other effective transmission of more terminals in the same wireless communication data capacity can be realized. Information to improve the transmission efficiency of wireless communication systems.
  • FIG. 1 is a flow chart of a transmitting end side of a positioning information transmission method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a receiving end side of a positioning information transmission method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a modularization of a communication device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a modularization of a communication device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present invention.
  • the terms “comprises” and “comprises” and “the” and “the” are intended to cover a non-exclusive inclusion, for example, a process, method, system, product, or device that comprises a series of steps or modules is not necessarily limited to Those steps or modules, but may include other steps or modules not explicitly listed or inherent to such processes, methods, products or devices, the division of the modules presented herein is merely a logical division. There may be additional divisions in the implementation of the actual application, for example, multiple modules may be combined or integrated into another system, or some features may be ignored, or not executed, and the displayed or discussed mutual coupling.
  • direct coupling or communication connection can be through some interfaces, indirect coupling or communication connection between modules It may be electrical or other similar form and is not limited herein.
  • the module or the sub-module described as the separate component may or may not be physically separated, may not be a physical module, or may not be divided into a plurality of circuit modules, and may select a part thereof according to actual needs or All modules are used to achieve the objectives of the embodiments of the present invention.
  • the embodiment of the invention provides a method for transmitting positioning information and a communication device, which can reduce the storage space of the wireless communication data occupied by the compressed position information sent by the transmitting end, thereby improving the transmission efficiency of the wireless communication system. The details are described below.
  • an embodiment of the present invention provides a method for transmitting positioning information, including:
  • the sending end converts initial positioning information into initial integer positioning information.
  • NMEA format In the field of application of location information transmission by wireless communication, global positioning information is a necessary information in many applications, and it is transmitted in different formats in different applications.
  • the positioning information transmission method, apparatus and system in the embodiments of the present invention are applicable to global positioning information in various formats.
  • NMEA format In the embodiment of the present invention and all subsequent embodiments, an example is described in the current common format of global positioning information transmission: NMEA format.
  • the global positioning information in the NMEA format is a binary storage manner, and the global positioning information in the NMEA format is an absolute geographical location, which is referred to as initial positioning information, as shown in Table 1.
  • Each first positioning information includes 8 kinds of data parameters, and needs to occupy 57 bit storage space.
  • the sending end converts the initial positioning information in the NMEA format into initial integer positioning information, where the initial integer positioning information is an integer value of the initial positioning information. Specifically, the longitude value in the initial integer positioning information is converted into an initial integer longitude value, and the latitude value in the initial integer positioning information is converted into an initial integer latitude value.
  • the embodiments of the present invention and the subsequent embodiments may be specifically applied to the intercom communication, and may also be applied to other wireless communication applications. If the embodiment of the present invention is applied to the intercom communication, the transmitting end may be a walkie-talkie or a The base station, the receiving end may be a walkie-talkie or a base station.
  • the embodiments of the present invention are not limited.
  • the sending end compresses the initial integer positioning information into the tightening positioning information according to the application precision unit and the original minimum precision unit.
  • NMEA format uses 57 binary numbers to represent latitude and longitude information at any position on the earth, and can provide position resolution accuracy of about 0.1852 meters. Resolution accuracy The original minimum precision unit.
  • the initial latitude and longitude 1D resolution can be adjusted to about 2.9634 meters, corresponding to the minimum two-dimensional resolution. 4.1909 meters.
  • the sender can further compress the positioning information by sacrificing some resolution according to different application precision requirements.
  • the transmitting end converts the initial integer positioning information into the tightening positioning information corresponding to the application precision according to the ratio relationship between the application precision and the original minimum precision unit. Since the application precision unit is larger than the original minimum precision unit, after the conversion, the binary bit number corresponding to the tightening positioning information is smaller than the binary digit corresponding to the initial integer positioning information.
  • the initial integer longitude value of the initial integer positioning information is converted into a compact longitude value
  • the initial integer latitude value of the initial integer positioning information is converted into a compacted latitude value
  • the sending end intercepts the low N bits from the binary value corresponding to the tightening positioning information as the reduced positioning information.
  • the transmitting end only needs to send the low-level value of its own positioning information to the receiving end, and the receiving end can restore the complete positioning information of the transmitting end through calculation.
  • the R 0 is a radius corresponding to the applied precision unit, and is converted into a radius R calculated by the original minimum precision unit, and R is a ratio of R 0 to the applied precision unit, that is, an example of the positioning accuracy of the device of about 5 meters at present.
  • the low N bit is intercepted from the binary value corresponding to the tightening positioning information as the reduced positioning information, and the reduced positioning information is the difference information from the positioning information of the receiving end itself.
  • the wireless communication distance between the receiving end and the transmitting end here is well known, and is a direct communication distance between two terminals or devices without using a relay station.
  • the sending end sends the reduced positioning information to the receiving end.
  • the transmitting end intercepts the low N bit from the binary value corresponding to the tightening positioning information as the reduced positioning information, and sends the reduced positioning information to the receiving end, and the receiving end can restore the sending by using the reduced positioning information and the high value of the positioning information of the positioning information.
  • Initial positioning information of the end is the low N bit from the binary value corresponding to the tightening positioning information as the reduced positioning information, and sends the reduced positioning information to the receiving end, and the receiving end can restore the sending by using the reduced positioning information and the high value of the positioning information of the positioning information.
  • the transmitting end does not directly transmit the initial positioning information, but converts the initial positioning information into initial integer positioning information; and then compresses the initial integer positioning information into the compact positioning information according to the application precision unit and the original minimum precision unit; After that, the low N bit is intercepted from the binary value corresponding to the punctured positioning information as the reduced positioning information, and the reduced positioning information is the difference position from the positioning information of the receiving end itself, and the high bit of the binary number corresponding to the punctured positioning information of the receiving end and the transmitting end
  • the binary high bit corresponding to the squeezing positioning information is the same, so the transmitting end only needs to send the reduced positioning information to the receiving end, so that the receiving end restores the initial positioning information of the transmitting end.
  • the receiving end can obtain the effective location information of the transmitting end, the storage space of the wireless communication data occupied by the compressed location information sent by the transmitting end can be reduced, and other effective transmission of more terminals in the same wireless communication data capacity can be realized. Information to improve the transmission efficiency of wireless communication systems.
  • the sending end converts the initial positioning information into the initial integer positioning information, which may be:
  • the longitude value in the initial positioning information is converted into the initial integer longitude value by calculating the following formula:
  • L jo is the initial integer longitude value in the initial integer positioning information
  • Ew is the indicated value of the initial positioning information
  • E DEG is the longitude of the initial positioning information
  • E MINmm is the divided integer part of the initial positioning information
  • E MINF is the divided fractional part of the initial positioning information.
  • the specific principle is that the value of the longitude value, the longitude value and the divided integer part of the longitude value of the initial positioning information are converted into the corresponding values of the divided fractional part, and then the converted integer value and the divided fractional part are compared. Add the initial integer longitude value.
  • L wo is the initial integer latitude value in the initial integer positioning information
  • Ns is the north-south latitude indication value of the initial positioning information
  • N DEG is the latitude of the initial positioning information
  • N MINmm is the integer part of the latitude of the initial positioning information
  • N MINF is the fractional part of the latitude of the initial positioning information.
  • the specific principle is that the north-south latitude value, the latitude value, and the integer part of the latitude in the longitude value of the initial positioning information are converted into the numerical value corresponding to the fractional part of the latitude, and then the transformed integer value and the fractional part of the latitude are converted. Add together to get the initial integer latitude value.
  • the initial positioning information in the NMEA format is taken as an example, and the initial positioning information is converted into the initial integer positioning information by using a specific calculation formula, thereby improving the achievability of the solution.
  • the specific information that the transmitting end compresses the initial integer positioning information into the compact positioning information according to the application precision unit and the original minimum precision unit may be implemented as follows:
  • the transmitting end obtains m according to the application precision and the original minimum precision unit, as follows:
  • the transmitting end calculates the longitude value and the latitude value of the initial integer positioning information by calculating the following formula. Compressed into the longitude and latitude values of the compacted positioning information:
  • L j is the tightening longitude value in the tightening positioning information
  • L w is the tightening latitude value in the tightening positioning information
  • the initial integer positioning information is compressed into the squeezing positioning information by using a specific calculation formula, thereby improving the achievability of the solution.
  • the above is a description of the positioning information transmission method in the embodiment of the present invention from the transmitting end side.
  • the positioning information transmission method in the embodiment of the present invention will be described in detail below from the receiving end side.
  • an embodiment of the present invention provides a method for transmitting positioning information, including:
  • the receiving end receives the reduced positioning information sent by the sending end.
  • the sending end After the sender compresses the initial positioning information into the reduced positioning information and sends the information to the sending end, the receiving end receives the reduced positioning information sent by the sending end.
  • the embodiment of the present invention can be applied to the intercom communication, and can also be applied to other wireless communication applications. If the embodiment of the present invention is applied to the intercom communication, the transmitting end can be a walkie-talkie or a base station, and the receiving end can It is a walkie-talkie or a base station.
  • the embodiments of the present invention are not limited.
  • the receiving end converts the first initial positioning information of the first initial positioning information into the first initial integer positioning information.
  • the receiving end and the transmitting end both add the global positioning system (GPS) position information, and after receiving the reduced positioning information of the transmitting end, the receiving positioning information is not the transmitting end.
  • the initial positioning information that is, the absolute value of the location information, is only the low value of the positioning information of the transmitting end, so the receiving end needs to combine its own positioning information with the reduced positioning information to perform calculation to restore the positioning information of the transmitting end.
  • the receiving end acquires its own initial positioning information, and the initial positioning information is referred to as first initial positioning information.
  • the receiving end converts the first initial positioning information in the NMEA format into the first initial integer positioning information, where the first initial integer positioning information is an integer value of the first initial positioning information. Specifically, the longitude value in the first initial integer positioning information is converted into a first initial integer longitude value, and the latitude value in the first initial integer positioning information is converted into a first initial integer latitude value.
  • the receiving end compresses the first initial integer positioning information into the first tightening positioning information according to the application precision unit and the original minimum precision unit.
  • the format of different initial global positioning information has different minimum precision units.
  • the NMEA format uses 57 binary numbers to represent the latitude and longitude information of any position on the earth, and can provide a position of about 0.1852 meters. Resolution accuracy, which is called the original minimum unit precision.
  • the initial latitude and longitude 1D resolution can be adjusted to about 2.9634 meters, corresponding to the minimum two-dimensional resolution. 4.1909 meters.
  • the receiving end can further compress the positioning information by sacrificing some resolution according to different application precision requirements. Specifically, the receiving end converts the first initial integer positioning information into the first tightening positioning information corresponding to the application precision according to a ratio relationship between the application precision and the original minimum precision unit. Because the application precision unit is greater than the original minimum precision unit, after the conversion, the binary bit number corresponding to the first compression positioning information is smaller than the binary digit corresponding to the first initial integer positioning information.
  • the initial integer longitude value of the first initial integer positioning information is converted into a first tightening longitude value
  • the initial integer latitude value of the first initial integer positioning information is converted into a first tightening latitude value
  • the receiving end restores the reduced positioning information to the second tightening positioning information of the sending end according to the reduced parameter N and the first tightening positioning information.
  • the receiving end only needs Calculating the high position value of the first tightening positioning information of itself can restore the complete positioning information of the transmitting end.
  • N log 2 R. N is the binary lower digit of the positioning information.
  • the receiving end After receiving the reduced parameter N by the receiving end, the receiving end intercepts the high-order value of the first tightening positioning information from the binary value corresponding to the tightening positioning information according to the parameter N, and the high-order value is the high-order value of the transmitting end, so the receiving end sets the high-order value The value is spliced with the reduced positioning information of the transmitting end to obtain the second tightening positioning information of the transmitting end.
  • the wireless communication distance between the receiving end and the transmitting end here is well known, and is a direct communication distance between two terminals without a relay station.
  • the receiving end restores the second tightening positioning information to the second initial integer positioning information according to the application precision unit and the original minimum precision unit.
  • the receiving end After receiving the second tightening positioning information of the transmitting end, the receiving end restores the second tightening positioning information to the second initial integer positioning information according to the application precision unit and the original minimum precision unit.
  • the specific method for restoring is the reversible method of compressing the first initial integer positioning information into the first tightening positioning information according to the application precision unit and the original minimum precision unit in step 203, which is not described herein.
  • the receiving end restores the second initial integer positioning information to the second initial positioning information.
  • the receiving end restores the second tightening positioning information to the second initial integer positioning information according to the application precision unit and the original minimum precision unit
  • the second initial integer positioning information is restored to the second initial positioning information.
  • the specific restoration method is the first beginning of the receiving end in step 202.
  • the reversible method for converting the initial positioning information into the first initial integer positioning information is not described herein.
  • the second initial positioning information is the absolute geographical location information of the sending end, and the receiving end can obtain the specific location of the sending end according to the geographical location information.
  • the receiving end after receiving the reduced positioning information sent by the sending end, converts the first initial positioning information into a first initial integer positioning information, and then sets the first initial integer according to the applied precision unit and the original minimum precision unit.
  • the positioning information is compressed into the first tightening positioning information, and then the reduced positioning information is reduced to the second tightening positioning information of the transmitting end according to the reduced parameter N and the first tightening positioning information, and then the second tightening positioning is performed according to the application precision unit and the original minimum precision unit.
  • the information is restored to the second initial integer positioning information, and then the second initial integer positioning information is restored to the second initial positioning information.
  • the reduced positioning information sent by the sending end can be restored to the initial positioning information, so that the storage space of the wireless communication data occupied by the compressed location information sent by the sending end can be reduced under the premise that the receiving end can obtain the effective location information of the transmitting end. It realizes transmitting other effective information of more terminals in the same wireless communication data capacity, thereby improving the transmission efficiency of the wireless communication system.
  • the receiving end converts the first initial positioning information into the first initial integer positioning information, which may be:
  • the longitude value in the first initial positioning information is converted into the first initial integer longitude value by calculating the following formula:
  • L jRo is a first initial integer longitude value in the first initial integer positioning information
  • Ew is an indication value of the first initial positioning information
  • E DEG is a longitude of the first initial positioning information
  • E MINmm is the first The divided integer part of the initial positioning information
  • E MINF is the divided fractional part of the first initial positioning information.
  • the specific principle is that the longitude and longitude values of the longitude value of the first initial positioning information are The divided integer parts are converted into the corresponding values of the fractional fractions, and the converted integer values and the divided fractional parts are added to obtain the first initial integer longitude value.
  • L wRo is the initial integer latitude value in the first initial integer positioning information
  • Ns is the north-south latitude indicating value of the first initial positioning information
  • N DEG is the latitude of the first initial positioning information
  • N MINmm is the first initial positioning
  • N MINF is the fractional part of the latitude of the first initial positioning information.
  • the specific principle is that the north-south latitude value, the latitude value, and the integer part of the latitude in the longitude value of the first initial positioning information are converted into the corresponding values of the fractional part of the latitude, and then the transformed integer values and the latitudes are converted. The fractional parts are added to obtain the first initial integer latitude value.
  • the initial positioning information in the NMEA format is taken as an example, and the initial positioning information of the receiving end is converted into the initial integer positioning information by using a specific calculation formula, thereby improving the achievability of the solution.
  • the receiving end compressing the initial integer positioning information into the compact positioning information according to the application precision unit and the original minimum precision unit may be implemented as follows:
  • the receiving end obtains m according to the application precision and the original minimum precision unit, as follows:
  • the receiving end compresses the longitude value and the latitude value of the first initial integer positioning information into the longitude value and the latitude value of the first tightening positioning information, respectively, by calculating the following formula:
  • L jR is the tightening longitude value in the tightening positioning information
  • L wR is the tightening latitude value in the tightening positioning information
  • the first initial integer positioning information of the receiving end is compressed into the first tightening positioning information by using a specific calculation formula, thereby improving the achievability of the solution.
  • the specific implementation manner that the receiving end restores the reduced positioning information to the second tightening positioning information of the sending end according to the reduced parameter N and the first tightening positioning information may be:
  • the lower bit may carry or retreat, and first calculate three adjacent high-order values of the first tightening positioning information, which are respectively the high-order value of the first tightening positioning information and the high-order value of the first tightening positioning information. 1.
  • the high value of the first tightening positioning information is increased by one.
  • the three high-order values are respectively spliced with the reduced positioning information of the transmitting end to obtain three squeezing positioning information, and then the squeezing positioning information obtained by the three splicing is respectively subtracted from the first deflation positioning information of the receiving end, wherein the difference is The value less than 2 N is the second tightening positioning information of the transmitting end.
  • the receiving end intercepts the high bit as the longitude value of the first high bit value of the first tightening positioning information from the binary value corresponding to the longitude value of the first tightening positioning information.
  • the number of bits in the upper bit is the total number of bits of the binary value corresponding to the longitude value of the first pinch position information minus N bits.
  • the receiving end may determine that the longitude value of the third tightening positioning information is the longitude value of the second tightening positioning information.
  • the receiving end intercepts the high bit from the binary value corresponding to the longitude value of the first tightening positioning information, and the number of bits of the high bit is the total number of bits of the binary value corresponding to the longitude value of the first tightening positioning information minus N bits, and then This high is decremented by 1.
  • the receiving end determines that the longitude value of the fourth tightening positioning information is the longitude value of the second tightening positioning information.
  • the receiving end intercepts the high bit from the binary value corresponding to the longitude value of the first tightening positioning information, where the number of bits of the high bit is the total number of bits of the binary value corresponding to the longitude value of the first tightening positioning information minus N bits, and then This high is increased by 1.
  • the receiving end determines that the longitude value of the fifth tightening positioning information is the longitude value of the second tightening positioning information.
  • the receiving end intercepts the high bit as the dimension value of the first high-order value of the first tightening positioning information from the binary value corresponding to the latitude value of the first tightening positioning information.
  • the receiving end determines that the latitude value of the third tightening positioning information is the latitude value of the second tightening positioning information.
  • the receiving end determines that the latitude value of the fourth tightening positioning information is the latitude value of the second tightening positioning information.
  • the receiving end determines that the latitude value of the fifth tightening positioning information is the latitude value of the second tightening positioning information.
  • the receiving end converts the second tightening positioning information into the second initial integer positioning information according to the application precision and the original minimum unit precision according to the following formula:
  • L jo is the initial integer longitude value of the second initial integer positioning information
  • L wo is the initial integer latitude value of the second initial integer positioning information
  • L j is the tightening longitude value of the second tightening positioning information
  • L w is the second Tightening the latitude value of the positioning information.
  • the receiving end restores the second initial integer positioning information to the second initial positioning information, specifically:
  • the receiving end determines whether Ljo is less than 108*10 6 . If it is smaller, the east longitude E'w of the second initial positioning information is equal to 0. If not less, the east initial E'w of the second initial positioning information is equal to 1;
  • the receiving end obtains the longitude E' DEG of the second initial positioning information, the divided integer part E' MINmm of the second initial positioning information, and the divided fractional part E' MINF of the second initial positioning information by calculating the following formula;
  • E' DEG L' jo %(108*10 6 )/(6*10 5 );
  • E' MINmm L' jo %(108*10 6 )/(10 4 );
  • the receiving end determines whether L wo is less than 54*10 6 . If it is smaller, the north latitude N′s of the second initial positioning information is equal to 0. If not smaller, the north latitude N′s of the second initial positioning information is equal to 1;
  • the receiving end obtains the latitude N′ DEG of the second initial positioning information, the integer part N′ MINmm of the latitude of the second initial positioning information, and the fractional part N′ MINF of the latitude of the second initial positioning information by calculating the following formula;
  • N' DEG L' wo %(54*10 6 )/(6*10 5 );
  • N' MINmm L' wo %(54*10 6 )/(10 4 );
  • N' MINF L' wo %10 4 .
  • Another embodiment of the embodiments of the present invention includes:
  • the sender uses the original positioning information in the NMEA format.
  • the specific location is shown in Table 2:
  • the initial integer longitude value Ljo and the initial integer latitude value L wo of the corresponding initial integer positioning information are:
  • the original minimum unit precision of the positioning information in the NMEA format is about 0.1852 meters. According to the current positioning accuracy of about 5 meters, the two-dimensional application precision unit should take a value less than 5 meters, and calculate the one-dimensional application precision unit according to the following formula:
  • Application accuracy unit 2 m * Original minimum precision unit, taking m as 4, one-dimensional application accuracy unit is about 2.9634 meters, and two-dimensional application precision unit is about 4.1909 meters.
  • the initial integer positioning information is compressed into the compact positioning information according to the following formula, and the corresponding tightening longitude value L jR and the tightening latitude value L wR are:
  • the maximum distance of wireless communication between the transmitting end and the receiving end is R 0 km, which is the maximum distance corresponding to the application precision unit.
  • N position R km Streamlined total number of bits 10 3.03 20 11 6.07 twenty two 12 12.14 twenty four 13 24.28 26 14 48.55 28
  • the maximum distance of wireless communication between the sender and the receiver is about 12 kilometers, and the value of N corresponds to 12.
  • the transmitting end sends the reduced positioning information through wireless communication, and only sends the following low 12-bit valid information.
  • Compact positioning receiver receives information transmitted by the transmitting side and L jN L wN.
  • the initial location information obtained by the receiving end is shown in Table 4:
  • the longitude value L jRo and the latitude value L wRo in the initial integer positioning information corresponding to the initial positioning information of the receiving end are:
  • the original minimum unit accuracy of the NMEA format positioning information is about 0.1852 meters.
  • the two-dimensional application precision unit should take a value less than 5 meters, and calculate the one-dimensional application precision unit according to the following formula:
  • Application accuracy unit 2 m * Original minimum precision unit, taking m as 4, one-dimensional application accuracy unit is about 2.9634 meters, and two-dimensional application precision unit is about 4.1909 meters.
  • the initial integer positioning information of the receiving end is compressed into the compact positioning information according to the following formula, and the corresponding tightening longitude value L jR and the tightening latitude value L wR are:
  • the receiving end extracts the high-order value L jRH0 of the longitude value of its own compact positioning information according to the following formula, and then subtracts the high value of the high-order longitude value by 1 according to the following formula to obtain L jRH-1 , and adds the high value of the high-order longitude value to 1 to obtain L. jRH-1 , the high value latitude value is lowered by 1 to obtain L wRH-1 , and the high value latitude value is increased by 1 to obtain L wRH+1 .
  • the receiving end splicing and recovering the longitude values of the reduced positioning information (ie, the low-order value) of the respective transmitting ends of L jRH0 , L jRH-1 and L jRH-1 to restore the longitude values of the three tightening positioning information.
  • the reduced positioning information ie, the low-order value
  • L j1 L jRH0
  • L jN 0xA84000
  • L j2 L jRH-1
  • L jN 0xA83000
  • L j3 L jRH+1
  • L jN 0xA85000
  • the receiving end respectively calculates the difference between the L j1 , L j2 and L j3 and the tightening positioning information L jR of the receiving end:
  • the receiving end determines whether the absolute values of the three differences are less than 2 12 , that is, whether it is less than 2048, wherein less than 2 12 is the longitude value of the tightening positioning information of the transmitting end, so L j1 is the longitude value of the tightening positioning information of the transmitting end. .
  • the receiving end extracts the high-order value L jRH0 of the latitude value of its own compact positioning information according to the following formula, and then decrements the high-value latitude value by 1 to obtain L wRH-1 according to the following formula, and increases the high-order latitude value high by 1 to obtain L. wRH+1 .
  • the reduced positioning information ie, the low-order value
  • L w1 L wRH0
  • L wN 0x407000
  • L w2 L wRH-1
  • L wN 0x406000
  • L w3 L wRH + 1
  • L wN 0x408000
  • the receiving end calculates the difference between the L w1 , L w2 and L w3 and the tightening positioning information L wR of the receiving end respectively:
  • the receiving end determines whether the absolute values of the three differences are less than 2 12 , that is, whether it is less than 2048, wherein less than 2 12 is the latitude value of the tightening positioning information of the transmitting end, so L j1 is the latitude value of the tightening positioning information of the transmitting end. .
  • the receiving end obtains the positioning information of the transmitting end as follows:
  • the receiving end restores the corresponding initial integer positioning information according to the calculated tightening positioning information according to the following formula, and the longitude value Ljo and the latitude value L wo are:
  • L jo 176444000 is greater than 108*10 6 , so Ew is equal to 1;
  • L wo 67574000 is greater than 54*10 6 , so Ns is equal to 1;
  • a communication device 3 includes:
  • the processing unit 301 is configured to convert the initial positioning information into initial integer positioning information, where the initial integer positioning information is an integer value of the initial positioning information, and compress the initial integer positioning information into the compact positioning information according to the application precision unit and the original minimum precision unit, and tighten
  • the binary digit corresponding to the positioning information is smaller than the binary digit corresponding to the initial integer positioning information; and the low N bit is intercepted from the binary value corresponding to the compact positioning information as the reduced positioning information, N is equal to log 2 R, and R is the transmitting end and the receiving end.
  • the sending unit 302 is configured to send the reduced positioning information to the receiving end.
  • the sending unit 302 in the communication device 3 does not directly transmit the initial positioning information, but the processing unit 301 converts the initial positioning information into initial integer positioning information; and according to the application precision unit and the original minimum precision unit, Initial integer positioning information pressure
  • the information is reduced to the positioning information; after that, the low N bit is intercepted from the binary value corresponding to the tightening positioning information as the reduced positioning information, and the reduced positioning information is the difference between the positioning information of the device and the receiving device, and the tightening positioning information of the receiving device corresponds to
  • the high bit of the binary number is the same as the binary high bit corresponding to the compact positioning information of the transmitting end, so the transmitting unit 302 only needs to send the reduced positioning information to the receiving device to cause the receiving device to restore the initial positioning information of the communication device 3.
  • the receiving device can obtain the effective location information of the transmitting end, the storage space of the wireless communication data occupied by the compressed location information sent by the communication device 3 is reduced, and the other terminals that transmit more terminals in the same wireless communication data capacity are realized. Effective information to improve the transmission efficiency of wireless communication systems.
  • processing unit 301 is specifically configured to convert initial positioning information into initial integer positioning information by calculating a formula:
  • L jo is the initial integer longitude value in the initial integer positioning information
  • Ew is the indicated value of the initial positioning information
  • E DEG is the longitude of the initial positioning information
  • E MINmm is the divided integer part of the initial positioning information
  • E MINF Is the fractional fraction of the initial positioning information
  • L wo is the initial integer latitude value in the initial integer positioning information
  • Ns is the north-south latitude indicator value of the initial positioning information
  • N DEG is the latitude of the initial positioning information
  • N MINmm is the integer part of the latitude of the initial positioning information
  • N MINF The fractional part of the latitude of the initial positioning information.
  • processing unit 301 is specifically configured to compress the initial integer positioning information into the compact positioning information by calculating the following formula according to the application precision unit and the original minimum precision unit:
  • the low N bit is intercepted from the binary value corresponding to the punctured positioning information as the reduced positioning information, and N is equal to log 2 R, where R is the ratio of the maximum distance of the wireless communication between the transmitting end and the receiving end to the applied precision unit;
  • L j is the tightening longitude value in the tightening positioning information
  • L w is the tightening latitude value in the tightening positioning information
  • a communication device 4 includes:
  • the receiving unit 401 is configured to receive the reduced positioning information sent by the sending end;
  • the processing unit 402 is configured to convert the first initial positioning information of the first initial positioning information into the first initial integer positioning information, where the first initial integer positioning information is an integer value of the first initial positioning information; according to the application precision unit and the original minimum precision unit
  • the initial integer positioning information is compressed into the first tightening positioning information, and the binary digit corresponding to the first tightening positioning information is smaller than the binary digit corresponding to the first initial integer positioning information; afterwards, the reduced parameter N and the first tightening positioning information are reduced according to the reduced parameter
  • the positioning information is restored to the second tightening positioning information of the transmitting end, where N is equal to log 2 R, where R is the ratio of the maximum distance of the wireless communication between the transmitting end and the receiving end to the application precision unit; and then according to the application precision unit and the original minimum precision unit
  • the second tightening positioning information is restored to the second initial integer positioning information; and the second initial integer positioning information is restored to the second initial positioning information.
  • the processing unit 402 converts the first initial positioning information into the first initial integer positioning information according to the first initial positioning information, and then according to the application precision unit and the original.
  • the minimum precision unit compresses the first initial integer positioning information into the first tightening positioning information, and then restores the reduced positioning information to the second tightening positioning information of the transmitting end according to the reduced parameter N and the first tightening positioning information, and then according to the application precision unit and the original.
  • the minimum precision unit restores the second tightening positioning information to the second initial integer positioning information, and then restores the second initial integer positioning information to the second initial positioning information.
  • the reduced positioning information sent by the sending device can be restored to the initial positioning information, so that the transmitting end can be reduced on the premise that the receiving end can obtain the effective location information of the transmitting end.
  • the storage space of the wireless communication data occupied by the transmitted compressed location information enables other effective information of more terminals to be transmitted in the same wireless communication data capacity, thereby improving the transmission efficiency of the wireless communication system.
  • processing unit 402 is specifically configured to convert the first initial positioning information of the first initial positioning information into the first initial integer positioning information by calculating the following formula:
  • L jo is the initial integer longitude value in the first initial integer positioning information
  • Ew is the indicated value of the first initial positioning information
  • E DEG is the longitude of the first initial positioning information
  • E MINmm is the first initial positioning information.
  • the divided integer part, E MINF is the divided fractional part of the first initial positioning information
  • L wo is the initial integer latitude value in the first initial integer positioning information
  • Ns is the north-south latitude indicating value of the first initial positioning information
  • N DEG is the latitude of the first initial positioning information
  • N MINmm is the first initial positioning information.
  • the integer part of the latitude, N MINF is the fractional part of the latitude of the first initial positioning information.
  • processing unit 402 is specifically configured to compress the first initial integer positioning information into the first tightening positioning information by calculating the following formula according to the application precision and the original minimum unit precision:
  • L jR is the tightening longitude value in the first tightening positioning information
  • L wR is the tightening latitude value in the first tightening positioning information
  • the processing unit 402 is specifically configured to determine a high-order value of the second tightening positioning information according to the reduced parameter N and the first tightening positioning information, where the number of digits of the high-order value is equal to the binary of the first tightening positioning information.
  • the difference between the number of bits and the reduced parameter N; will be high
  • the bit value and the reduced positioning information generate second tightening positioning information of the transmitting end.
  • the processing unit 402 is specifically configured to determine three high-order values of the first tightening positioning information according to the reduced parameter N and the first tightening positioning information, where the three high-order values include the high-order value of the first tightening positioning information.
  • the high-level value of the first squeezing positioning information and the second squeezing positioning information of the simplification positioning information generating transmitting end include:
  • the tightening positioning information whose absolute value of the difference between the three tightening positioning information and the first tightening positioning information is less than 2 N is selected as the second tightening positioning information.
  • the processing unit 402 determines, according to the simplification parameter N and the first squeezing positioning information, three high-order values of the first deflation positioning information, specifically:
  • L jRH + 1 L jR & (0xFFFFFF ⁇ N) + (1 ⁇ N), L jRH + 1 for the third The longitude value of the high value;
  • processing unit 402 is specifically configured to convert the second punctured positioning information into the second initial integer positioning information according to the application precision and the original minimum unit precision according to the following formula:
  • L jo is the initial integer longitude value of the second initial integer positioning information
  • L wo is the initial integer latitude value of the second initial integer positioning information
  • L j is the tightening longitude value of the second tightening positioning information
  • L w is the second tightening positioning The tightening latitude value of the information.
  • processing unit 402 is specifically configured to restore the second initial integer positioning information to the second initial positioning information according to the following manner:
  • the longitude E' DEG of the second initial positioning information, the divided integer part E' MINmm of the second initial positioning information, and the divided fractional part E' MINF of the second initial positioning information are obtained by calculating the following formula;
  • E' DEG L jo %(108*10 6 )/(6*10 5 );
  • E' MINmm L jo %(108*10 6 )/(10 4 );
  • the latitude N′ DEG of the second initial positioning information, the integer part N′ MINmm of the latitude of the second initial positioning information, and the fractional part N′ MINF of the latitude of the second initial positioning information are obtained by calculating the following formula;
  • N' DEG L wo %(54*10 6 )/(6*10 5 );
  • N' MINmm L wo %(54*10 6 )/(10 4 );
  • N' MINF L' wo %10 4 .
  • the communication device is introduced from the perspective of function modularization.
  • the communication device in the embodiment of the present invention is introduced from the perspective of hardware processing.
  • FIG. 5 is another schematic structural diagram of a communication device 5 according to an embodiment of the present invention.
  • the communication device 5 may comprise at least one network interface or other communication interface, at least one receiver 501, at least one transmitter 502, at least one processor 503 and a memory 504 to enable connection communication between these devices through at least one network interface
  • the communication connection between the system gateway and at least one other network element can be implemented (either wired or wireless).
  • the memory 504 can include read only memory and random access memory, and provides instructions and data to the processor 503.
  • a portion of the memory 504 can also include, possibly including, a high speed random access memory (RAM), and possibly a non- Un-volatile memory.
  • RAM high speed random access memory
  • Memory 504 stores the following elements, executable modules or data structures, or subsets thereof, or their extended sets:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 503 performs the following operations by calling an operation instruction stored in the memory 504, which can be stored in the operating system:
  • the initial integer positioning information is an integer value of the initial positioning information; compressing the initial integer positioning information into the compact positioning information according to the application precision unit and the original minimum precision unit, and tightening the binary bit corresponding to the positioning information
  • the number is less than the binary digit corresponding to the initial integer positioning information; and the lower N bits are intercepted from the binary value corresponding to the compact positioning information as the reduced positioning information, N is equal to log 2 R, and R is the wireless communication between the transmitting end and the receiving end.
  • the ratio of the maximum distance to the applied accuracy unit; then, the reduced positioning information is transmitted by the transmitter 502 to the receiving device.
  • the processor 503 can perform the following steps:
  • the initial positioning information is converted into initial integer positioning information by calculating the following formula:
  • L jo is the initial integer longitude value in the initial integer positioning information
  • Ew is the indicated value of the initial positioning information
  • E DEG is the longitude of the initial positioning information
  • E MINmm is the divided integer part of the initial positioning information
  • E MINF Is the fractional fraction of the initial positioning information
  • L wo is the initial integer latitude value in the initial integer positioning information
  • Ns is the north-south latitude indicator value of the initial positioning information
  • N DEG is the latitude of the initial positioning information
  • N MINmm is the integer part of the latitude of the initial positioning information
  • N MINF The fractional part of the latitude of the initial positioning information.
  • the processor 503 can perform the following steps:
  • the initial integer positioning information is compressed into the compact positioning information by calculating the following formula:
  • the low N bit is intercepted from the binary value corresponding to the compact positioning information as the reduced positioning information, and N is equal to log 2 R, where R is the ratio of the maximum distance of the wireless communication between the transmitting end and the receiving end to the applied precision unit;
  • L j is the tightening longitude value in the tightening positioning information
  • L w is the tightening latitude value in the tightening positioning information
  • FIG. 6 is another schematic structural diagram of a communication device 6 according to an embodiment of the present invention.
  • Communication device 6 may include at least one network interface or other communication interface, at least one receiver 601, at least one transmitter 602, at least one processor 603, and memory 604 to enable connection communication between these devices through at least one network interface (can be wired or wireless) A communication connection between the system gateway and at least one other network element.
  • network interface can be wired or wireless
  • the memory 604 can include read-only memory and random access memory, and provides instructions and data to the processor 603.
  • a portion of the memory 604 can also include, possibly including, a high-speed random access memory (RAM), and possibly a non- Un-volatile memory.
  • RAM high-speed random access memory
  • the memory 604 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 603 performs the following operations by calling an operation instruction stored in the memory 604 (the operation instruction can be stored in the operating system):
  • the precision unit and the original minimum precision unit compress the first initial integer positioning information into the first tightening positioning information, and the binary digit corresponding to the first tightening positioning information is smaller than the binary digit corresponding to the first initial integer positioning information; and then, according to the reduced parameter N and the first tightening positioning information restore the reduced positioning information to the second tightening positioning information of the transmitting end, where N is equal to log 2 R, where R is the ratio of the maximum distance of the wireless communication between the transmitting end and the receiving end to the unit of the applied precision;
  • the second precision positioning information is restored to the second initial integer positioning information by using the precision unit and the original minimum precision unit; and the second initial integer positioning information is restored to the second initial positioning information.
  • the processor 603 may further perform the following steps:
  • the first initial positioning information stored in the memory 604 is converted into the first initial integer positioning information by calculating the following formula:
  • L jo is the initial integer longitude value in the first initial integer positioning information
  • Ew is the indicated value of the first initial positioning information
  • E DEG is the longitude of the first initial positioning information
  • E MINmm is the first initial positioning information.
  • the divided integer part, E MINF is the divided fractional part of the first initial positioning information
  • L wo is the initial integer latitude value in the first initial integer positioning information
  • Ns is the north-south latitude indicating value of the first initial positioning information
  • N DEG is the latitude of the first initial positioning information
  • N MINmm is the first initial positioning information.
  • the integer part of the latitude, N MINF is the fractional part of the latitude of the first initial positioning information.
  • the processor 603 may further perform the following steps:
  • the first initial integer positioning information is compressed into the first tightening positioning information by calculating the following formula:
  • L jR is the tightening longitude value in the first tightening positioning information
  • L wR is the tightening latitude value in the first tightening positioning information
  • the processor 603 may further perform the following steps:
  • the processor 603 may further perform the following steps:
  • Generating the high-order value of the first punctured positioning information and the condensed positioning information to generate the second of the transmitting end Tightening positioning information includes:
  • the tightening positioning information whose absolute value of the difference between the three tightening positioning information and the first tightening positioning information is less than 2 N is selected as the second tightening positioning information.
  • the processor 603 may further perform the following steps:
  • L jRH0 L jR & ( 0xFFFFFF ⁇ N), L jRH0 longitude value of the first high value;
  • L wRH0 L wR &(0xFFFFFF ⁇ N), and L wRH0 is a latitude value of the first high-order value;
  • L jRH-1 L jR & (0xFFFFFF ⁇ N) - (1 ⁇ N), L jRH-1 is the second highest value Longitude value
  • L wRH-1 L wR &(0xFFFFFF ⁇ N)-(1 ⁇ N), and L wRH-1 is the second highest value Latitude value
  • L jRH + 1 L jR & (0xFFFFFF ⁇ N) + (1 ⁇ N), L jRH + 1 is the third highest value Longitude value
  • L wRH+1 L wR &(0xFFFFFF ⁇ N)+(1 ⁇ N), and L wRH+1 is the third highest value Latitude value.
  • the processor 603 may further perform the following steps:
  • the second contraction positioning information is converted into the second initial integer positioning information according to the following formula:
  • L jo is the initial integer longitude value of the second initial integer positioning information
  • L wo is the initial integer latitude value of the second initial integer positioning information
  • L j is the tightening longitude value of the second tightening positioning information
  • L w is the second tightening positioning The tightening latitude value of the information.
  • the processor 603 may further perform the following steps:
  • the second initial integer positioning information is restored to the second initial positioning information as follows:
  • the longitude E' DEG of the second initial positioning information, the divided integer part E' MINmm of the second initial positioning information, and the divided fractional part E' MINF of the second initial positioning information are obtained by calculating the following formula;
  • E' DEG L jo %(108*10 6 )/(6*10 5 );
  • E' MINmm L jo %(108*10 6 )/(10 4 );
  • the latitude N′ DEG of the second initial positioning information, the integer part N′ MINmm of the latitude of the second initial positioning information, and the fractional part N′ MINF of the latitude of the second initial positioning information are obtained by calculating the following formula;
  • N' DEG L wo %(54*10 6 )/(6*10 5 );
  • N' MINmm L wo %(54*10 6 )/(10 4 );
  • N' MINF L' wo %10 4 .
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiment described above For example, the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some Features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明提供了一种定位信息传输的方法及通信设备,能够提升无线通信系统的传输效率。本发明实施例中,发送端将初始定位信息转化成初始整数定位信息;再根据应用精度单位和原始最小精度单位将初始整数定位信息压缩成紧缩定位信息;之后,从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,此精简定位信息是与接收端自身的定位信息的区别位,所以发送端只需将该精简定位信息发送至接收端即可使得接收端还原发送端的初始定位信息。从而可以在保证接收端可以获得发送端的有效位置信息的前提下,减少发送端发送的压缩位置信息所占用无线通信数据的存储空间,从而提升无线通信系统的传输效率。

Description

一种定位信息传输的方法及通信设备
本申请要求于2015年7月14日提交中国专利局、申请号为201510413603.9、发明名称为“一种定位信息传输的方法及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及的是一种定位信息传输的方法及通信设备。
背景技术
目前数字集群通信(Digital Mobile Radio,DMR)标准中,全球定位信息是采用标准国家海洋电子协会(NEMA,National Marine Electronics Association)格式进行定义,并通过UDT传输机制进行数据传输。
现有技术中,DMR标准中的全球定位信息需要用2个时隙帧进行传输,包括1个采用基于UDP的数据传输协议(UDT,UDP-based Data Transfer Protocol)数据头和1个UDT数据块。
由于无线无线频谱的稀缺性和昂贵的通信设备使得空口通信资源成为无线通信系统容量的瓶颈,现有技术中,发送端会将其定位信息与其他有效信息分别封装在两个DMR帧分别发送至接收端,因此传输效率低。
发明内容
本发明提供了一种定位信息传输的方法及通信设备,能够减少发送端发送的压缩位置信息所占用无线通信数据的存储空间,从而提升无线通信系统的传输效率。
第一方面,本发明实施例提供了一种定位信息传输的方法,包括:
发送端将初始定位信息转化成初始整数定位信息,初始整数定位信息为初始定位信息的整数值;发送端根据应用精度单位和原始最小精度单位将初始整数定位信息压缩成紧缩定位信息,紧缩定位信息对应的二进制位数小于初始整数定位信息对应的二进制位数;发送端从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,N等于log2R,R为发送端与接收端之间的无线通信的最大距离与所述应用精度单位的比值;发送端将精简定位信息发送至接收端。
第二方面,本发明实施例提供了一种定位信息传输的方法,包括:
接收端接收发送端发送的精简定位信息;接收端将自身的第一初始定位信息转化成第一初始整数定位信息,第一初始整数定位信息为第一初始定位信息的整数值;接收端根据应用精度单位和原始最小精度单位将第一初始整数定位信息压缩成第一紧缩定位信息,第一紧缩定位信息对应的二进制位数小于第一初始整数定位信息对应的二进制位数;接收端根据精简参数N和第一紧缩定位信息将精简定位信息还原成发送端的第二紧缩定位信息,N等于log2R,R为发送端和接收端的无线通信的最大距离与所述应用精度单位的比值;接收端根据应用精度单位和原始最小精度单位将第二紧缩定位信息还原成第二初始整数定位信息;接收端将第二初始整数定位信息还原成第二初始定位信息。
第三方面,本发明实施例提供了一种通信设备,包括:
处理单元,用于将初始定位信息转化成初始整数定位信息,初始整数定位信息为初始定位信息的整数值;根据应用精度单位和原始最小精度单位将初始整数定位信息压缩成紧缩定位信息,紧缩定位信息对应的二进制位数小于初始整数定位信息对应的二进制位数;再从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,N等于log2R,R为发送端与接收端之间的无线通信的最大距离与所述应用精度单位的 比值;发送单元,用于将精简定位信息发送至接收端。
第四方面,本发明实施例提供了一种通信设备,包括:
接收单元,用于接收发送端发送的精简定位信息;处理单元,用于将自身的第一初始定位信息转化成第一初始整数定位信息,第一初始整数定位信息为第一初始定位信息的整数值;根据应用精度单位和原始最小精度单位将第一初始整数定位信息压缩成第一紧缩定位信息,第一紧缩定位信息对应的二进制位数小于第一初始整数定位信息对应的二进制位数;之后,根据精简参数N和第一紧缩定位信息将精简定位信息还原成发送端的第二紧缩定位信息,N等于log2R,R为发送端和接收端的无线通信的最大距离与所述应用精度单位的比值;再根据应用精度单位和原始最小精度单位将第二紧缩定位信息还原成第二初始整数定位信息;再将第二初始整数定位信息还原成第二初始定位信息。
从以上技术方案可以看出,本发明实施例的方案具有如下有益效果:
本发明实施例中,发送端并不是直接发送初始定位信息,而是将初始定位信息转化成初始整数定位信息;再根据应用精度单位和原始最小精度单位将初始整数定位信息压缩成紧缩定位信息;之后,从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,此精简定位信息是与接收端自身的定位信息的区别位,接收端的紧缩定位信息对应的二进制数的高位与发送端的紧缩定位信息对应的二进制的高位相同,所以发送端只需将该精简定位信息发送至接收端即可使得接收端还原发送端的初始定位信息。从而可以在保证接收端可以获得发送端的有效位置信息的前提下,减少发送端发送的压缩位置信息所占用无线通信数据的存储空间,实现在相同的无线通信数据容量中传输更多终端的其他有效信息,从而提升无线通信系统的传输效率。
附图说明
图1为本发明实施例中一种定位信息传输方法的发送端侧流程图;
图2为本发明实施例中一种定位信息传输方法的接收端侧流程图;
图3为本发明实施例中一种通信设备的模块化示意图;
图4为本发明实施例中一种通信设备的模块化示意图;
图5为本发明实施例一种通信设备的硬件结构示意图;
图6为本发明实施例一种通信设备的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块,本文中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接 可以是电性或其他类似的形式,本文中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分不到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本发明实施例方案的目的。
本发明实施例提供了一种定位信息传输的方法及通信设备,能够减少发送端发送的压缩位置信息所占用无线通信数据的存储空间,从而提升无线通信系统的传输效率。以下进行详细说明。
请参照图1,本发明实施例提供了一种定位信息传输方法,包括:
101、发送端将初始定位信息转化成初始整数定位信息;
在通过无线通信进行位置信息传输的应用领域,全球定位信息是众多应用中的必备信息,它在不同的应用中会用不同的格式来传输。本发明实施例中的定位信息传输方法、装置和系统适用于各种不同格式的全球定位信息。本发明实施例及后续所有的实施例中以目前全球定位信息传输的常用格式:NMEA格式来对举例进行说明。
当发送端的全球定位信息采用NMEA格式传输时,NMEA格式的全球定位信息是采用二进制的存储方式,NMEA格式的全球定位信息为绝对地理位置,将其称之为初始定位信息,如表1所示,每个第一定位信息包括8种数据参数,需要占用57bit存储空间。
表1
Figure PCTCN2016090019-appb-000001
为了提高传输效率,发送端将该NMEA格式的初始定位信息转化成初始整数定位信息,该初始整数定位信息为初始定位信息的整数值。具体为:将初始整数定位信息中的经度值转化为初始整数经度值,将初始整数定位信息中的纬度值转化为初始整数纬度值。
需要说明的是,本发明实施例及后续的实施例具体可以应用于对讲机通信,也可以应用于其他无线通信应用领域,若本发明实施例应用于对讲机通信,则发送端可以是对讲机也可以是基站,接收端可以是对讲机,也可以是基站。具体本发明实施例不做限定。
102、发送端根据应用精度单位和原始最小精度单位将初始整数定位信息压缩成紧缩定位信息;
不同的初始全球定位信息的格式有不同的最小精度单位,以NMEA格式为例,NMEA格式是采用57个二进制数表示地球上任一位置的经纬度信息,可以提供约0.1852米的位置分辨精度,将此分辨精度称之为 原始最小精度单位。
而不同的无线通信应用中会有不同的应用精度要求,例如:根据目前5米左右的设备定位精度,可以将初始的经纬度的一维分辨率调整为约2.9634米,对应最低二维分辨率约4.1909米。
发送端可以根据不同应用精度要求,通过牺牲一些分辨率,能够进一步压缩定位信息。具体为发送端根据应用精度与原始最小精度单位之间的比值关系,将初始整数定位信息换算成该应用精度对应的紧缩定位信息。因为应用精度单位大于原始最小精度单位,所以换算之后,该紧缩定位信息对应的二进制位数小于初始整数定位信息对应的二进制位数。
具体的,是将初始整数定位信息的初始整数经度值换算成紧缩经度值,将初始整数定位信息的初始整数纬度值换算成紧缩纬度值。
103、发送端从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息;
因为发送端与接收端之间的无线通信距离是有限的,最大距离为无线通信的最大覆盖半径R0,所以,发送端与接收端的定位信息的高位值是相同的,有区别的低位值可以根据R0进行计算得出。因此,发送端只需要将自身定位信息的低位值发送给接收端,接收端就可以通过计算可以还原发送端的完整定位信息。
发送端将初始整数定位信息换算成该应用精度对应的紧缩定位信息后,根据发送端与接收端之间的无线通信的距离R0,通过如下公式计算出约定位置信息精简参数N:N=log2R,N即为定位信息对应的二进制低位位数,为发送端与接收端的定位信息的有区别的低位位数。该R0是与应用精度单位对应的半径,将其换算成以原始最小精度单位计算的半径R,R为R0与应用精度单位的比值,即:以目前5米左右的设备定位精度举例,其应用精度为初始的经纬度一维分辨率2.9634米,则 R=R0/2.9634。
发送端通过计算得到精简参数N后,从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,此精简定位信息是与接收端自身的定位信息的区别信息。
需要说明的是,此处的接收端与发送端之间的无线通信距离是公知的,是在不使用中继站的情况下,两个终端或设备之间的直接通信距离。
104、发送端将精简定位信息发送至接收端。
发送端从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息后,将该精简定位信息发送至接收端,接收端即可通过该精简定位信息结合自身的定位信息的高位值还原发送端的初始定位信息。
本发明实施例中,发送端并不是直接发送初始定位信息,而是将初始定位信息转化成初始整数定位信息;再根据应用精度单位和原始最小精度单位将初始整数定位信息压缩成紧缩定位信息;之后,从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,此精简定位信息是与接收端自身的定位信息的区别位,接收端的紧缩定位信息对应的二进制数的高位与发送端的紧缩定位信息对应的二进制的高位相同,所以发送端只需将该精简定位信息发送至接收端即可使得接收端还原发送端的初始定位信息。从而可以在保证接收端可以获得发送端的有效位置信息的前提下,减少发送端发送的压缩位置信息所占用无线通信数据的存储空间,实现在相同的无线通信数据容量中传输更多终端的其他有效信息,从而提升无线通信系统的传输效率。
进一步,在一种具体的实施例中,如果初始定位信息以NMEA格式定义,则发送端将初始定位信息转化成初始整数定位信息具体可以为:
通过计算如下公式将初始定位信息中的经度值转化成初始整数经度值:
Ljo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
其中,Ljo为初始整数定位信息中的初始整数经度值,Ew为初始定位信息的东西经指示值,EDEG所为初始定位信息的经度,EMINmm为初始定位信息的经分的整数部分,EMINF为初始定位信息的经分的小数部分。
具体原理为将初始定位信息的经度值中的东西经值、经度值、经分整数部分都转化为经分的小数部分对应的数值,再将转化后的各整数值和经分的小数部分相加得到初始整数经度值。
通过计算如下公式将初始定位信息中的纬度值转化成初始整数纬度值:
Lwo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
其中,Lwo为初始整数定位信息中的初始整数纬度值,Ns为初始定位信息的南北纬指示值,NDEG所为初始定位信息的纬度,NMINmm为初始定位信息的纬分的整数部分,NMINF为初始定位信息的纬分的小数部分。
具体原理为将初始定位信息的经度值中的南北纬值、纬度值、纬分的整数部分都转化为纬分的小数部分对应的数值,再将转化后的各整数值和纬分的小数部分相加得到初始整数纬度值。
本发明实施例中,以NMEA格式的初始定位信息为例,通过具体计算公式将初始定位信息转化成初始整数定位信息,提高了方案的可实现性。
进一步,在一种具体的实施例中,发送端根据应用精度单位和原始最小精度单位将初始整数定位信息压缩成紧缩定位信息的具体可以通过如下方式实现:
发送端根据应用精度与原始最小精度单位,求得m,具体如下:
应用精度单位=2m*原始最小精度单位;
发送端通过计算如下公式将初始整数定位信息的经度值和纬度值 分别压缩成紧缩定位信息的经度值和纬度值:
Lj=Ljo/2m
Lw=Lwo/2m
其中,Lj为紧缩定位信息中的紧缩经度值,Lw为紧缩定位信息中的紧缩纬度值。
本发明实施例中,通过具体计算公式将初始整数定位信息压缩成紧缩定位信息,提高了方案的可实现性。
以上是从发送端侧对本发明实施例中的定位信息传输方法进行说明,下面从接收端侧对本发明实施例中的定位信息传输方法进行详细说明。
请参照图2,本发明实施例提供了一种定位信息传输方法,包括:
201、接收端接收发送端发送的精简定位信息;
发送端将初始定位信息压缩成精简定位信息发送给发送端后,接收端接收到发送端发送的精简定位信息,。
需要说明的是,本发明实施例中可以应用于对讲机通信,也可以应用于其他无线通信应用领域,若本发明实施例应用于对讲机通信,则发送端可以是对讲机也可以是基站,接收端可以是对讲机,也可以是基站。具体本发明实施例不做限定。
202、接收端将自身的第一初始定位信息转化成第一初始整数定位信息;
在本发明实施例中,接收端与发送端一样,都增加了全球卫星定位系统(GPS,Global Positioning System)位置信息,在接收端接收到发送端的精简定位信息后,因为精简定位信息不是发送端的初始定位信息,即不是位置信息的绝对值,而只是发送端的定位信息的低位值,所以接收端需要结合自身的定位信息与此精简定位信息,进行计算以还原发送端的定位信息。
因此接收端获取自身的初始定位信息,将该初始定位信息称之为第一初始定位信息。
接收端将该NMEA格式的第一初始定位信息转化成第一初始整数定位信息,该第一初始整数定位信息为第一初始定位信息的整数值。具体为:将第一初始整数定位信息中的经度值转化为第一初始整数经度值,将第一初始整数定位信息中的纬度值转化为第一初始整数纬度值。
203、接收端根据应用精度单位和原始最小精度单位将第一初始整数定位信息压缩成第一紧缩定位信息;
在实际应用中,不同的初始全球定位信息的格式有不同的最小精度单位,以NMEA格式为例,NMEA格式是采用57个二进制数表示地球上任一位置的经纬度信息,可以提供约0.1852米的位置分辨精度,将此分辨精度称之为原始最小单位精度。
而不同的无线通信应用中会有不同的应用精度要求,例如:根据目前5米左右的设备定位精度,可以将初始的经纬度的一维分辨率调整为约2.9634米,对应最低二维分辨率约4.1909米。
接收端可以根据不同应用精度要求,通过牺牲一些分辨率,能够进一步压缩定位信息。具体为接收端根据应用精度与原始最小精度单位之间的比值关系,将第一初始整数定位信息换算成该应用精度对应的第一紧缩定位信息。因为应用精度单位大于原始最小精度单位,所以换算之后,该第一紧缩定位信息对应的二进制位数小于第一初始整数定位信息对应的二进制位数。
具体的,是将第一初始整数定位信息的初始整数经度值换算成第一紧缩经度值,将第一初始整数定位信息的初始整数纬度值换算成第一紧缩纬度值。
204、接收端根据精简参数N和第一紧缩定位信息将精简定位信息还原成发送端的第二紧缩定位信息;
因为发送端与接收端之间的无线通信距离是有限的,最大距离为无线通信的最大覆盖半径R0,所以,发送端与接收端的定位信息的高位值是相同的,因此,接收端就只要计算出自身的第一紧缩定位信息的高位值即可还原发送端的完整定位信息。
具体计算原理为:
接收端将初始整数定位信息换算成该应用精度对应的紧缩定位信息后,根据发送端与接收端之间的无线通信的距离R0与应用精度单位的比值R,通过如下公式计算出约定位置信息精简参数N:N=log2R。N即为定位信息对应的二进制低位位数。
接收端通过计算得到精简参数N后,根据该参数N,从紧缩定位信息对应的二进制数值中截取第一紧缩定位信息的高位值,该高位值即为发送端的高位值,因此接收端将该高位值与发送端的精简定位信息拼接,即可得到发送端的第二紧缩定位信息。
需要说明的是,此处的接收端与发送端之间的无线通信距离是公知的,是没有中继站的两个终端之间的直接通信距离。
205、接收端根据应用精度单位和原始最小精度单位将第二紧缩定位信息还原成第二初始整数定位信息;
接收端通过计算获得发送端的第二紧缩定位信息后,根据应用精度单位和原始最小精度单位将第二紧缩定位信息还原成第二初始整数定位信息。具体的还原方法的是步骤203中接收端根据应用精度单位和原始最小精度单位将第一初始整数定位信息压缩成第一紧缩定位信息的可逆方法,具体此处不做赘述。
206、接收端将第二初始整数定位信息还原成第二初始定位信息。
接收端根据应用精度单位和原始最小精度单位将第二紧缩定位信息还原成第二初始整数定位信息后,将第二初始整数定位信息还原成第二初始定位信息。具体的还原方法是步骤202中接收端将自身的第一初 始定位信息转化成第一初始整数定位信息的可逆方法,具体此处不做赘述。
该第二初始定位信息即为发送端的绝对地理位置信息,接收端可以根据该地理位置信息获得发送端的具体位置。
本发明实施例中,接收端接收发送端发送的精简定位信息后,根据自身的第一初始定位信息转化成第一初始整数定位信,再根据应用精度单位和原始最小精度单位将第一初始整数定位信息压缩成第一紧缩定位信息,再根据精简参数N和第一紧缩定位信息将精简定位信息还原成发送端的第二紧缩定位信息,再根据应用精度单位和原始最小精度单位将第二紧缩定位信息还原成第二初始整数定位信息,再将第二初始整数定位信息还原成第二初始定位信息。从而可以将发送端发送的精简定位信息还原成初始定位信息,从而可以在保证接收端可以获得发送端的有效位置信息的前提下,减少发送端发送的压缩位置信息所占用无线通信数据的存储空间,实现在相同的无线通信数据容量中传输更多终端的其他有效信息,从而提升无线通信系统的传输效率。
进一步,在一种具体的实施例中,如果接收端的第一初始定位信息以NMEA格式定义,则接收端将第一初始定位信息转化成第一初始整数定位信息具体可以为:
通过计算如下公式将第一初始定位信息中的经度值转化成第一初始整数经度值:
LjRo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
其中,LjRo为第一初始整数定位信息中的第一初始整数经度值,Ew为第一初始定位信息的东西经指示值,EDEG所为第一初始定位信息的经度,EMINmm为第一初始定位信息的经分的整数部分,EMINF为第一初始定位信息的经分的小数部分。
具体原理为将第一初始定位信息的经度值中的东西经值、经度值、 经分整数部分都转化为经分的小数部分对应的数值,再将转化后的各整数值和经分的小数部分相加得到第一初始整数经度值。
通过计算如下公式将第一初始定位信息中的纬度值转化成第一初始整数纬度值:
LwRo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
其中,LwRo为第一初始整数定位信息中的初始整数纬度值,Ns为第一初始定位信息的南北纬指示值,NDEG所为第一初始定位信息的纬度,NMINmm为第一初始定位信息的纬分的整数部分,NMINF为第一初始定位信息的纬分的小数部分。
具体原理为将第一初始定位信息的经度值中的南北纬值、纬度值、纬分的整数部分都转化为纬分的小数部分对应的数值,再将转化后的各整数值和纬分的小数部分相加得到第一初始整数纬度值。
本发明实施例中,以NMEA格式的初始定位信息为例,通过具体计算公式将接收端的初始定位信息转化成初始整数定位信息,提高了方案的可实现性。
进一步,基于上一个实施例,在一种具体的实施例中,接收端根据应用精度单位和原始最小精度单位将初始整数定位信息压缩成紧缩定位信息的具体可以通过如下方式实现:
接收端根据应用精度与原始最小精度单位,求得m,具体如下:
应用精度单位=2m*原始最小精度单位;
接收端通过计算如下公式将第一初始整数定位信息的经度值和纬度值分别压缩成第一紧缩定位信息的经度值和纬度值:
LjR=LjRo/2m
LwR=LwRo/2m
其中,LjR为紧缩定位信息中的紧缩经度值,LwR为紧缩定位信息中的紧缩纬度值。
本发明实施例中,通过具体计算公式将接收端的第一初始整数定位信息压缩成第一紧缩定位信息,提高了方案的可实现性。
进一步,基于上一个实施例,在一种具体的实施例中,接收端根据精简参数N和第一紧缩定位信息将精简定位信息还原成发送端的第二紧缩定位信息的具体实现方式可以为:
在还原紧缩定位信息时,低位可能会进位或退位,先计算第一紧缩定位信息的三个相邻的高位值,分别为第一紧缩定位信息的高位值、第一紧缩定位信息的高位值减1、第一紧缩定位信息的高位值加1。然后,再将这三个高位值分别与发送端的精简定位信息拼接得到三个紧缩定位信息,再分别将这三个拼接得到的紧缩定位信息与接收端的第一紧缩定位信息相减,其中,差值小于2N的即为发送端的第二紧缩定位信息。
具体的,在还原第二紧缩定位信息时,是分别还原第二紧缩定位信息的紧缩经度值和纬度值。下面分别进行说明:
一、还原第二紧缩定位信息的经度值:
1、接收端从第一紧缩定位信息的经度值对应的二进制数值中截取高位作为第一紧缩定位信息的第一高位值的经度值。该高位的位数为第一紧缩定位信息的经度值对应的二进制数值的总位数减去N位。具体可以按照如下公式计算:LjRH0=LjR&(0xFFFFFF<<N)。
再将第一高位值的经度值和精简定位信息的经度值拼接得到第三紧缩定位信息的经度值,拼接的具体方式是将两者的二进制数值相或,计算公式为:Lj1=LjRH0|LjN
若第三紧缩定位信息的经度值与第一紧缩定位信息的经度值之差的绝对值小于2N,则接收端可以确定第三紧缩定位信息的经度值为第二紧缩定位信息的经度值。
2、接收端从第一紧缩定位信息的经度值对应的二进制数值中截取高位,该高位的位数为第一紧缩定位信息的经度值对应的二进制数值的 总位数减去N位,再将该高位减1。具体可以按照如下公式计算:LjRH-1=LjR&(0xFFFFFF<<N)-(1<<N)。
再将第二高位值的经度值和精简定位信息的经度值拼接得到第四紧缩定位信息的经度值的经度值,拼接的具体方式是将两者的二进制数值相或,计算公式为:Lj2=LjRH-1|LjN
若第四紧缩定位信息的经度值与第一紧缩定位信息的经度值之差的绝对值小于2N,则接收端确定第四紧缩定位信息的经度值为第二紧缩定位信息的经度值。
3、接收端从第一紧缩定位信息的经度值对应的二进制数值中截取高位,该高位的位数为第一紧缩定位信息的经度值对应的二进制数值的总位数减去N位,再将该高位加1。具体可以按照如下公式计算:LjRH+1=LjR&(0xFFFFFF<<N)+(1<<N)。
再将第三高位值的经度值和第三精简定位信息的经度值拼接得到第五紧缩定位信息的经度值,拼接的具体方式是将两者的二进制数值相或,计算公式为:Lj3=LjRH+1|LjN
若第五紧缩定位信息的经度值与第一紧缩定位信息的经度值之差的绝对值小于2N,则接收端确定第五紧缩定位信息的经度值为第二紧缩定位信息的经度值。
二、还原第二紧缩定位信息的纬度值:
1、接收端从第一紧缩定位信息的纬度值对应的二进制数值中截取高位作为第一紧缩定位信息的第一高位值的维度值。该高位的位数为第一紧缩定位信息的纬度值对应的二进制数值的总位数减去N位。具体可以按照如下公式计算:LwRH0=LwR&(0xFFFFFF<<N)。
再将第一高位值的维度值和精简定位信息的纬度值拼接得到第三紧缩定位信息的纬度值,拼接的具体方式是将两者的二进制数值相或,计算公式为:Lw1=LwRH|LwN
若第三紧缩定位信息的纬度值与第一紧缩定位信息的纬度值之差的绝对值小于2N,则接收端确定第三紧缩定位信息的纬度值为第二紧缩定位信息的纬度值。
2、接收端从第一紧缩定位信息的纬度值对应的二进制数值中截取高位,该高位的位数为第一紧缩定位信息的纬度值对应的二进制数值的总位数减去N位,再将该高位减1。具体可以按照如下公式计算:LwRH-1=LwR&(0xFFFFFF<<N)-(1<<N)。
再将第二高位值的维度值和精简定位信息的纬度值拼接得到第四紧缩定位信息的纬度值,拼接的具体方式是将两者的二进制数值相或,计算公式为:Lw2=LwRH-1|LwN
若第四紧缩定位信息的纬度值与第一紧缩定位信息的纬度值之差的绝对值小于2N,则接收端确定第四紧缩定位信息的纬度值为第二紧缩定位信息的纬度值。
3、接收端从第一紧缩定位信息的纬度值对应的二进制数值中截取高位,该高位的位数为第一紧缩定位信息的纬度值对应的二进制数值的总位数减去N位,再将该高位加1。具体可以按照如下公式计算:LwRH+1=LwR&(0xFFFFFF<<N)+(1<<N)。
再将第三高位值的维度值和第三精简定位信息的纬度值拼接得到第五紧缩定位信息的纬度值,拼接的具体方式是将两者的二进制数值相或,计算公式为:Lw3=LwRH+1|LwN
若第五紧缩定位信息的纬度值与第一紧缩定位信息的纬度值之差的绝对值小于2N,则接收端确定第五紧缩定位信息的纬度值为第二紧缩定位信息的纬度值。
进一步,基于上一个实施例,在一种具体的实施例中,接收端根据应用精度和原始最小单位精度,按照如下公式将第二紧缩定位信息转化成第二初始整数定位信息:
Ljo=Lj*2m
Lwo=Lw*2m
该处的m与上述实施例中求得m一致,为接收端根据应用精度与原始最小精度单位,求得m,具体如下:
应用精度单位=2m*原始最小精度单位;
其中,Ljo为第二初始整数定位信息的初始整数经度值,Lwo为第二初始整数定位信息的初始整数纬度值,Lj为第二紧缩定位信息的紧缩经度值,Lw为第二紧缩定位信息的紧缩纬度值。
进一步,基于上一个实施例,在一种具体的实施例中,接收端将第二初始整数定位信息还原成第二初始定位信息具体为:
接收端判断Ljo是否小于108*106,若小于,则第二初始定位信息的东经E'w等于0,若不小于,则第二初始定位信息的东经E'w等于1;
接收端通过计算如下公式得到第二初始定位信息的经度E'DEG、第二初始定位信息的经分的整数部分E'MINmm,第二初始定位信息的经分的小数部分E'MINF
E'DEG=L'jo%(108*106)/(6*105);
E'MINmm=L'jo%(108*106)/(104);
E'MINF=L'jo%104
接收端判断Lwo是否小于54*106,若小于,则第二初始定位信息的北纬N's等于0,若不小于,则第二初始定位信息的北纬N's等于1;
接收端通过计算如下公式得到第二初始定位信息的纬度N'DEG、第二初始定位信息的纬分的整数部分N'MINmm,第二初始定位信息的纬分的小数部分N'MINF
N'DEG=L'wo%(54*106)/(6*105);
N'MINmm=L'wo%(54*106)/(104);
N'MINF=L'wo%104
为便于理解,下面以一具体的应用场景对本发明实施例中的进行详细描述,本发明实施例中另一实施例包括:
发送端采用NMEA格式的原始定位信息,具体位置如表2所示:
表2
信息单元名 长度(比特) 说明
NS 1 1 北纬
EW 1 1 东经
NDEG 7 22 纬度
NMINmm 6 37 纬分的整数部分
NMINF 14 4000 纬分的小数部分
EDEG 8 114 经度
EMINmm 6 4 经分的整数部分
EMINF 14 4000 经分的小数部分
对应的初始整数定位信息的初始整数经度值Ljo和初始整数纬度值Lwo为:
Ljo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
=1*108*106+114*6*105+4*104+4000
=176444000
Lwo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
=1*54*106+22*6*105+37*104+4000
=67574000
NMEA格式的定位信息的原始最小单位精度为约0.1852米,根据目前5米左右的设备定位精度,二维应用精度单位应取应小于5米的值,按如下公式计算一维应用精度单位:
应用精度单位=2m*原始最小精度单位,将m取为4,可以获得一维 应用精度单位约2.9634米,二维应用精度单位约4.1909米。
因此,按照如下公式将初始整数定位信息压缩成紧缩定位信息,对应的紧缩经度值LjR和紧缩纬度值LwR为:
Lj=Ljo/24=176444000/24=11027750=0xA84526
Lw=Lwo/24=67574000/24=4223375=0x40718F
发送端与接收端之间的无线通信的最大距离是R0公里,该值是应用精度单位下对应的最大距离,通过精度换算得到最小精度单位下的最大距离为R=R0/一维应用精度单位、根据计算N=log2R,可以得到对应的N的取值为表3所示:
表3
N位 R公里 精简格式总位数
10 3.03 20
11 6.07 22
12 12.14 24
13 24.28 26
14 48.55 28
发送端与接收端之间的无线通信的最大距离是约12公里,则N对应的取值为12。
对应的精简定位信息的经度值LjN和纬度值LwN为:
LjN=Lj%2N=0xA84526%212=0x526
LwN=Lw%2N=0x40718F%212=0x18F
发送端通过无线通信发送精简定位信息,只发送以下低12位有效信息。
LjN=0x526
LwN=0x18F
接收端接收到发送端发送的精简定位信息LjN和LwN
接收端获取到自身的初始位置信息为表4所示:
表4
Figure PCTCN2016090019-appb-000002
接收端的初始定位信息对应的初始整数定位信息中的经度值LjRo和纬度值LwRo为:
LjRo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
=1*108*106+114*6*105+4*104+2000
=176442000
LwRo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
=1*54*106+22*6*105+37*104+2000
=67572000
NMEA格式的定位信息的原始最小单位精度为约0.1852米,根据5米左右的设备定位精度,二维应用精度单位应取应小于5米的值,按如下公式计算一维应用精度单位:
应用精度单位=2m*原始最小精度单位,将m取为4,可以获得一维 应用精度单位约2.9634米,二维应用精度单位约4.1909米。
因此,按照如下公式将接收端的初始整数定位信息压缩成紧缩定位信息,对应的紧缩经度值LjR和紧缩纬度值LwR为:
LjR=LjRo/24=176442000/24=11027625=0xA844A9
LwR=LwRo/24=67572000/24=4223250=0x407112
接收端按照如下公式提取自身的紧缩定位信息的经度值的高位值LjRH0,再按照如下公式将高位值的经度值高位减1得到LjRH-1,将高位值的经度值高位加1得到LjRH-1,将高位值的纬度值高位减1得到LwRH-1,将高位值的纬度值高位加1得到LwRH+1
LjRH0=0xA844A9&(0xFFFFFF<<12)=0xA84000;
LjRH-1=0xA844A9&(0xFFFFFF<<12)-(1<<N)=0xA83000;
LjRH+1=0xA844A9&(0xFFFFFF<<12)+(1<<N)=0xA85000;
接收端将LjRH0、LjRH-1和LjRH-1分别发送端的精简定位信息(即低位值)的经度值进行拼接还原出三个紧缩定位信息的经度值。
Lj1=LjRH0|LjN=0xA84000|0x000526=0xA84526=11027750;
Lj2=LjRH-1|LjN=0xA83000|0x000526=0xA83526=11023654;
Lj3=LjRH+1|LjN=0xA85000|0x000526=0xA85526=11031846;
接收端分别计算Lj1、Lj2和Lj3与接收端的紧缩定位信息LjR之差:
Lj1-LjR=0xA84526-0xA844A9=11027750-11027625=125;
Lj2-LjR=0xA83526-0xA844A9=11023654-11027625=-3971
Lj3-LjR=0xA85526-0xA844A9=11031846-11027625=4221
接收端判断这三个差值的绝对值是否小于212,即是否小于2048,其中小于212的即为发送端的紧缩定位信息的经度值,因此Lj1即为发送端的紧缩定位信息的经度值。
接收端按照如下公式提取自身的紧缩定位信息的纬度值的高位值 LjRH0,再按照如下公式将高位值的纬度值高位减1得到LwRH-1,将高位值的纬度值高位加1得到LwRH+1
LwRH0=0x407112&(0xFFFFFF<<12)=0x407000
LwRH-1=0x407112&(0xFFFFFF<<12)-(1<<N)=0x406000;
LwRH+1=0x407112&(0xFFFFFF<<12)+(1<<N)=0x408000;
接收端将LwRH0、LwRH-1和LwRH+1分别发送端的精简定位信息(即低位值)的纬度值进行拼接还原出三个紧缩定位信息的纬度值。
Lw1=LwRH0|LwN=0x407000|0x00018F=0x40718F=4223375;
Lw2=LwRH-1|LwN=0x406000|0x00018F=0x40618F=4219279;
Lw3=LwRH+1|LwN=0x408000|0x00018F=0x40818F=4227471;
接收端分别计算Lw1、Lw2和Lw3与接收端的紧缩定位信息LwR之差:
Lw1-LwR=0x40718F-0x407112=4223375-4223250=125;
Lw2-LwR=0x40618F-0x407112=4219279-4223250=-3971
Lw3-LwR=0x40818F-0x407112=4227471-4223250=4221
接收端判断这三个差值的绝对值是否小于212,即是否小于2048,其中小于212的即为发送端的紧缩定位信息的纬度值,因此Lj1即为发送端的紧缩定位信息的纬度值。
因此,接收端得到发送端的紧缩定位信息为:
Lj=Lj1=0xA84526=11027750;
Lw=Lw1=0x40718F=4223375;
接收端根据计算出来的紧缩定位信息,按照如下公式还原成对应的初始整数定位信息,经度值Ljo和纬度值Lwo为:
Ljo=Lj*24=11027750*24=176444000;
Lwo=Lw*24=4223375*24=67574000;
接收端再根据计算出来的初始整数定位信息,还原成发送端的 NMEA格式的初始定位信息:
Ljo为176444000大于108*106,故Ew等于1;
EDEG=Ljo%(108*106)/(6*105)=176444000%(108*106)/(6*105)=114;
EMINmm=Ljo%(108*106)/(104)=176444000%(108*106)/(104)=4;
EMINF=Ljo%104=176444000%104=4000;
Lwo为67574000大于54*106,故Ns等于1;
NDEG=Lwo%(54*106)/(6*105)=67574000%(54*106)/(6*105)=22;
NMINmm=Lwo%(54*106)/(104)=67574000%(54*106)/(104)=37;
NMINF=Lwo%104=67574000%104=4000。
以上是本发明实施例中对定位信息传输方法的介绍,下面从模块化功能实体角度对本发明实施例中的通信设备进行描述。
结合图3,本发明实施例提供的一种通信设备3,包括:
处理单元301,用于将初始定位信息转化成初始整数定位信息,初始整数定位信息为初始定位信息的整数值;根据应用精度单位和原始最小精度单位将初始整数定位信息压缩成紧缩定位信息,紧缩定位信息对应的二进制位数小于初始整数定位信息对应的二进制位数;再从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,N等于log2R,R为发送端与接收端之间的无线通信的最大距离与所述应用精度单位的比值;
发送单元302,用于将精简定位信息发送至接收端。
本发明实施例通信设备3的各单元之间的交互过程可以参阅前述图1所示实施例中的交互过程,具体此处不再赘述。
本发明实施例中,通信设备3中的发送单元302并不是直接发送初始定位信息,而是由处理单元301将初始定位信息转化成初始整数定位信息;再根据应用精度单位和原始最小精度单位将初始整数定位信息压 缩成紧缩定位信息;之后,从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,此精简定位信息是与接收端的设备自身的定位信息的区别位,接收设备的紧缩定位信息对应的二进制数的高位与发送端的紧缩定位信息对应的二进制的高位相同,所以发送单元302只需将该精简定位信息发送至接收设备即可使得接收设备还原通信设备3的初始定位信息。从而可以在保证接收设备可以获得发送端的有效位置信息的前提下,减少通信设备3发送的压缩位置信息所占用无线通信数据的存储空间,实现在相同的无线通信数据容量中传输更多终端的其他有效信息,从而提升无线通信系统的传输效率。
进一步,作为另一个实施例,处理单元301,具体用于通过计算如下公式将初始定位信息转化成初始整数定位信息:
Ljo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
Lwo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
Ljo为初始整数定位信息中的初始整数经度值,Ew为初始定位信息的东西经指示值,EDEG所为初始定位信息的经度,EMINmm为初始定位信息的经分的整数部分,EMINF为初始定位信息的经分的小数部分;
Lwo为初始整数定位信息中的初始整数纬度值,Ns为初始定位信息的南北纬指示值,NDEG所为初始定位信息的纬度,NMINmm为初始定位信息的纬分的整数部分,NMINF为初始定位信息的纬分的小数部分。
进一步,作为另一个实施例,处理单元301,具体用于根据应用精度单位和原始最小精度单位,通过计算如下公式将初始整数定位信息压缩成紧缩定位信息:
Lj=Ljo/2m
Lw=Lwo/2m
再从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,N等于log2R,R为发送端与接收端之间的无线通信的最大距离 与所述应用精度单位的比值;
Lj为紧缩定位信息中的紧缩经度值,Lw为紧缩定位信息中的紧缩纬度值,m通过以下公式计算获得:应用精度单位=2m*原始最小精度单位。
结合图4,本发明实施例提供的一种通信设备4,包括:
接收单元401,用于接收发送端发送的精简定位信息;
处理单元402,用于将自身的第一初始定位信息转化成第一初始整数定位信息,第一初始整数定位信息为第一初始定位信息的整数值;根据应用精度单位和原始最小精度单位将第一初始整数定位信息压缩成第一紧缩定位信息,第一紧缩定位信息对应的二进制位数小于第一初始整数定位信息对应的二进制位数;之后,根据精简参数N和第一紧缩定位信息将精简定位信息还原成发送端的第二紧缩定位信息,N等于log2R,R为发送端和接收端的无线通信的最大距离与所述应用精度单位的比值;再根据应用精度单位和原始最小精度单位将第二紧缩定位信息还原成第二初始整数定位信息;再将第二初始整数定位信息还原成第二初始定位信息。
本发明实施例通信设备4的各单元之间的交互过程可以参阅前述图2所示实施例中的交互过程,具体此处不再赘述。
本发明实施例中,通信设备4的接收单元401接收发送设备发送的精简定位信息后,处理单元402根据自身的第一初始定位信息转化成第一初始整数定位信,再根据应用精度单位和原始最小精度单位将第一初始整数定位信息压缩成第一紧缩定位信息,再根据精简参数N和第一紧缩定位信息将精简定位信息还原成发送端的第二紧缩定位信息,再根据应用精度单位和原始最小精度单位将第二紧缩定位信息还原成第二初始整数定位信息,再将第二初始整数定位信息还原成第二初始定位信息。从而可以将发送设备发送的精简定位信息还原成初始定位信息,从而可以在保证接收端可以获得发送端的有效位置信息的前提下,减少发送端 发送的压缩位置信息所占用无线通信数据的存储空间,实现在相同的无线通信数据容量中传输更多终端的其他有效信息,从而提升无线通信系统的传输效率。
进一步,作为另一个实施例,处理单元402,具体用于通过计算如下公式将自身的第一初始定位信息转化成第一初始整数定位信息:
LjRo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
LwRo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
Ljo为第一初始整数定位信息中的初始整数经度值,Ew为第一初始定位信息的东西经指示值,EDEG所为第一初始定位信息的经度,EMINmm为第一初始定位信息的经分的整数部分,EMINF为第一初始定位信息的经分的小数部分;
Lwo为第一初始整数定位信息中的初始整数纬度值,Ns为第一初始定位信息的南北纬指示值,NDEG所为第一初始定位信息的纬度,NMINmm为第一初始定位信息的纬分的整数部分,NMINF为第一初始定位信息的纬分的小数部分。
进一步,作为另一个实施例,处理单元402,具体用于根据应用精度和原始最小单位精度,通过计算如下公式将第一初始整数定位信息压缩成第一紧缩定位信息:
LjR=LjRo/2m
LwR=LwRo/2m
LjR为第一紧缩定位信息中的紧缩经度值,LwR为第一紧缩定位信息中的紧缩纬度值,m通过以下公式计算获得:应用精度单位=2m*原始最小精度单位。
进一步,作为另一个实施例,处理单元402,具体用于根据精简参数N和第一紧缩定位信息确定第二紧缩定位信息的高位值,其中高位值的位数等于第一紧缩定位信息的二进制的位数与精简参数N之差;将高 位值与精简定位信息生成发送端的第二紧缩定位信息。
进一步,作为另一个实施例,处理单元402,具体用于根据精简参数N和第一紧缩定位信息确定第一紧缩定位信息的三个高位值,三个高位值包括第一紧缩定位信息的高位值、第一紧缩定位信息相邻的两个高位值;
将第一紧缩定位信息的高位值与精简定位信息生成发送端的第二紧缩定位信息包括:
将三个高位值分别与精简定位信息生成三个紧缩定位信息;
选择三个紧缩定位信息中与第一紧缩定位信息之差的绝对值小于2N的紧缩定位信息作为第二紧缩定位信息。
进一步,作为另一个实施例,处理单元402根据精简参数N和第一紧缩定位信息确定第一紧缩定位信息的三个高位值具体为:
处理单元402按照如下公式计算第一紧缩定位信息的第一高位值的经度值:LjRH0=LjR&(0xFFFFFF<<N),LjRH0为第一高位值的经度值;
处理单元402按照如下公式计算第一紧缩定位信息的第一高位值的纬度值:LwRH0=LwR&(0xFFFFFF<<N),LwRH0为第一高位值的纬度值;
处理单元402按照如下公式计算得到第一紧缩定位信息的第二高位值的经度值:LjRH-1=LjR&(0xFFFFFF<<N)-(1<<N),LjRH-1为第二高位值的经度值;
处理单元402按照如下公式计算得到第一紧缩定位信息的第二高位值的纬度值:LwRH-1=LwR&(0xFFFFFF<<N)-(1<<N),LwRH-1为第二高位值的纬度值;
处理单元402按照如下公式得到第一紧缩定位信息的第三高位值的经度值:LjRH+1=LjR&(0xFFFFFF<<N)+(1<<N),LjRH+1为第三高位值的经度值;
处理单元402按照如下公式得到第一紧缩定位信息的第三高位值的 纬度值:LwRH+1=LwR&(0xFFFFFF<<N)+(1<<N),LwRH+1为第三高位值的纬度值。
进一步,作为另一个实施例,处理单元402,具体用于根据应用精度和原始最小单位精度,按照如下公式将第二紧缩定位信息转化成第二初始整数定位信息:
Ljo=Lj*2m
Lwo=Lw*2m
Ljo为第二初始整数定位信息的初始整数经度值,Lwo为第二初始整数定位信息的初始整数纬度值,Lj为第二紧缩定位信息的紧缩经度值,Lw为第二紧缩定位信息的紧缩纬度值。
进一步,作为另一个实施例,处理单元402,具体用于按照如下方式将第二初始整数定位信息还原成第二初始定位信息:
判断Ljo是否小于108*106,若小于,则第二初始定位信息的东经E'w等于0,若不小于,则第二初始定位信息的东经E'w等于1;
通过计算如下公式得到第二初始定位信息的经度E'DEG、第二初始定位信息的经分的整数部分E'MINmm,第二初始定位信息的经分的小数部分E'MINF
E'DEG=Ljo%(108*106)/(6*105);
E'MINmm=Ljo%(108*106)/(104);
E'MINF=Ljo%104
判断Lwo是否小于54*106,若小于,则第二初始定位信息的北纬N's等于0,若不小于,则第二初始定位信息的北纬N's等于1;
通过计算如下公式得到第二初始定位信息的纬度N'DEG、第二初始定位信息的纬分的整数部分N'MINmm,第二初始定位信息的纬分的小数部分N'MINF
N'DEG=Lwo%(54*106)/(6*105);
N'MINmm=Lwo%(54*106)/(104);
N'MINF=L'wo%104
上面是从功能模块化角度对通信设备进行了介绍,下面从硬件处理的角度对本发明实施例中的通信设备进行介绍。
图5是本发明实施例通信设备5的另一结构示意图。通信设备5可包括至少一个网络接口或者其它通信接口、至少一个接收器501、至少一个发射器502、至少一个处理器503和存储器504,以实现这些装置之间的连接通信,通过至少一个网络接口(可以是有线或者无线)实现该系统网关与至少一个其它网元之间的通信连接。
存储器504可以包括只读存储器和随机存取存储器,并向处理器503提供指令和数据,存储器504的一部分还可以包括可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory)。
存储器504存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
在本发明实施例中,处理器503通过调用存储器504存储的操作指令(该操作指令可存储在操作系统中),执行如下操作:
将初始定位信息转化成初始整数定位信息,初始整数定位信息为初始定位信息的整数值;根据应用精度单位和原始最小精度单位将初始整数定位信息压缩成紧缩定位信息,紧缩定位信息对应的二进制位数小于初始整数定位信息对应的二进制位数;再从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,N等于log2R,R为发送端与接 收端之间的无线通信的最大距离与所述应用精度单位的比值;然后,通过发射器502将精简定位信息发送至接收设备。
在一些实施方式中,上述处理器503还可以执行以下步骤:
通过计算如下公式将初始定位信息转化成初始整数定位信息:
Ljo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
Lwo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
Ljo为初始整数定位信息中的初始整数经度值,Ew为初始定位信息的东西经指示值,EDEG所为初始定位信息的经度,EMINmm为初始定位信息的经分的整数部分,EMINF为初始定位信息的经分的小数部分;
Lwo为初始整数定位信息中的初始整数纬度值,Ns为初始定位信息的南北纬指示值,NDEG所为初始定位信息的纬度,NMINmm为初始定位信息的纬分的整数部分,NMINF为初始定位信息的纬分的小数部分。
在一些实施方式中,上述处理器503还可以执行以下步骤:
根据应用精度单位和原始最小精度单位,通过计算如下公式将初始整数定位信息压缩成紧缩定位信息:
Lj=Ljo/2m
Lw=Lwo/2m
再从紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,N等于log2R,R为发送端与接收端之间的无线通信的最大距离与所述应用精度单位的比值;
Lj为紧缩定位信息中的紧缩经度值,Lw为紧缩定位信息中的紧缩纬度值,m通过以下公式计算获得:应用精度单位=2m*原始最小精度单位。
图6是本发明实施例通信设备6的另一结构示意图。通信设备6可包括至少一个网络接口或者其它通信接口、至少一个接收器601、至少一个发射器602、至少一个处理器603和存储器604,以实现这些装置之间的连接通信,通过至少一个网络接口(可以是有线或者无线)实现 该系统网关与至少一个其它网元之间的通信连接。
存储器604可以包括只读存储器和随机存取存储器,并向处理器603提供指令和数据,存储器604的一部分还可以包括可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory)。
存储器604存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
在本发明实施例中,处理器603通过调用存储器604存储的操作指令(该操作指令可存储在操作系统中),执行如下操作:
通过接收器601接收发送端发送的精简定位信息;将存储器604存储的第一初始定位信息转化成第一初始整数定位信息,第一初始整数定位信息为第一初始定位信息的整数值;根据应用精度单位和原始最小精度单位将第一初始整数定位信息压缩成第一紧缩定位信息,第一紧缩定位信息对应的二进制位数小于第一初始整数定位信息对应的二进制位数;之后,根据精简参数N和第一紧缩定位信息将精简定位信息还原成发送端的第二紧缩定位信息,N等于log2R,R为发送端和接收端的无线通信的最大距离与所述应用精度单位的比值;再根据应用精度单位和原始最小精度单位将第二紧缩定位信息还原成第二初始整数定位信息;再将第二初始整数定位信息还原成第二初始定位信息。
在一些实施方式中,上述处理器603还可以执行以下步骤:
通过计算如下公式将存储器604存储的第一初始定位信息转化成第一初始整数定位信息:
LjRo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
LwRo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
Ljo为第一初始整数定位信息中的初始整数经度值,Ew为第一初始定位信息的东西经指示值,EDEG所为第一初始定位信息的经度,EMINmm为第一初始定位信息的经分的整数部分,EMINF为第一初始定位信息的经分的小数部分;
Lwo为第一初始整数定位信息中的初始整数纬度值,Ns为第一初始定位信息的南北纬指示值,NDEG所为第一初始定位信息的纬度,NMINmm为第一初始定位信息的纬分的整数部分,NMINF为第一初始定位信息的纬分的小数部分。
在一些实施方式中,上述处理器603还可以执行以下步骤:
根据应用精度和原始最小单位精度,通过计算如下公式将第一初始整数定位信息压缩成第一紧缩定位信息:
LjR=LjRo/2m
LwR=LwRo/2m
LjR为第一紧缩定位信息中的紧缩经度值,LwR为第一紧缩定位信息中的紧缩纬度值,m通过以下公式计算获得:应用精度单位=2m*原始最小精度单位。
在一些实施方式中,上述处理器603还可以执行以下步骤:
根据精简参数N和第一紧缩定位信息确定第二紧缩定位信息的高位值,其中高位值的位数等于第一紧缩定位信息的二进制的位数与精简参数N之差;将高位值与精简定位信息生成发送端的第二紧缩定位信息。
在一些实施方式中,上述处理器603还可以执行以下步骤:
根据精简参数N和第一紧缩定位信息确定第一紧缩定位信息的三个高位值,三个高位值包括第一紧缩定位信息的高位值、第一紧缩定位信息相邻的两个高位值;
将第一紧缩定位信息的高位值与精简定位信息生成发送端的第二 紧缩定位信息包括:
将三个高位值分别与精简定位信息生成三个紧缩定位信息;
选择三个紧缩定位信息中与第一紧缩定位信息之差的绝对值小于2N的紧缩定位信息作为第二紧缩定位信息。
在一些实施方式中,上述处理器603还可以执行以下步骤:
根据精简参数N和第一紧缩定位信息确定第一紧缩定位信息的三个高位值具体为:
按照如下公式计算第一紧缩定位信息的第一高位值的经度值:LjRH0=LjR&(0xFFFFFF<<N),LjRH0为第一高位值的经度值;
按照如下公式计算第一紧缩定位信息的第一高位值的纬度值:LwRH0=LwR&(0xFFFFFF<<N),LwRH0为第一高位值的纬度值;
按照如下公式计算得到第一紧缩定位信息的第二高位值的经度值:LjRH-1=LjR&(0xFFFFFF<<N)-(1<<N),LjRH-1为第二高位值的经度值;
按照如下公式计算得到第一紧缩定位信息的第二高位值的纬度值:LwRH-1=LwR&(0xFFFFFF<<N)-(1<<N),LwRH-1为第二高位值的纬度值;
按照如下公式得到第一紧缩定位信息的第三高位值的经度值:LjRH+1=LjR&(0xFFFFFF<<N)+(1<<N),LjRH+1为第三高位值的经度值;
按照如下公式得到第一紧缩定位信息的第三高位值的纬度值:LwRH+1=LwR&(0xFFFFFF<<N)+(1<<N),LwRH+1为第三高位值的纬度值。
在一些实施方式中,上述处理器603还可以执行以下步骤:
根据应用精度和原始最小单位精度,按照如下公式将第二紧缩定位信息转化成第二初始整数定位信息:
Ljo=Lj*2m
Lwo=Lw*2m
Ljo为第二初始整数定位信息的初始整数经度值,Lwo为第二初始整数定位信息的初始整数纬度值,Lj为第二紧缩定位信息的紧缩经度值, Lw为第二紧缩定位信息的紧缩纬度值。
在一些实施方式中,上述处理器603还可以执行以下步骤:
按照如下方式将第二初始整数定位信息还原成第二初始定位信息:
判断Ljo是否小于108*106,若小于,则第二初始定位信息的东经E'w等于0,若不小于,则第二初始定位信息的东经E'w等于1;
通过计算如下公式得到第二初始定位信息的经度E'DEG、第二初始定位信息的经分的整数部分E'MINmm,第二初始定位信息的经分的小数部分E'MINF
E'DEG=Ljo%(108*106)/(6*105);
E'MINmm=Ljo%(108*106)/(104);
E'MINF=Ljo%104
判断Lwo是否小于54*106,若小于,则第二初始定位信息的北纬N's等于0,若不小于,则第二初始定位信息的北纬N's等于1;
通过计算如下公式得到第二初始定位信息的纬度N'DEG、第二初始定位信息的纬分的整数部分N'MINmm,第二初始定位信息的纬分的小数部分N'MINF
N'DEG=Lwo%(54*106)/(6*105);
N'MINmm=Lwo%(54*106)/(104);
N'MINF=L'wo%104
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例 仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的定位信息传输的方法及通信设备进行了详 细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (22)

  1. 一种定位信息传输的方法,其特征在于,包括:
    发送端将初始定位信息转化成初始整数定位信息,所述初始整数定位信息为所述初始定位信息的整数值;
    所述发送端根据应用精度单位和原始最小精度单位将所述初始整数定位信息压缩成紧缩定位信息,所述紧缩定位信息对应的二进制位数小于所述初始整数定位信息对应的二进制位数;
    所述发送端从所述紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,所述N等于log2R,所述R为发送端与接收端之间的无线通信的最大距离与所述应用精度单位的比值;
    所述发送端将所述精简定位信息发送至接收端。
  2. 根据权利要求1所述的方法,其特征在于,所述发送端通过计算如下公式将所述初始定位信息转化成所述初始整数定位信息:
    Ljo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
    Lwo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
    所述Ljo为所述初始整数定位信息中的初始整数经度值,所述Ew为所述初始定位信息的东西经指示值,所述EDEG所为所述初始定位信息的经度,所述EMINmm为所述初始定位信息的经分的整数部分,EMINF为所述初始定位信息的经分的小数部分;
    所述Lwo为所述初始整数定位信息中的初始整数纬度值,所述Ns为所述初始定位信息的南北纬指示值,所述NDEG所为所述初始定位信息的纬度,所述NMINmm为所述初始定位信息的纬分的整数部分,NMINF为所述初始定位信息的纬分的小数部分。
  3. 根据权利要求1所述的方法,其特征在于,所述发送端根据应用精度单位和原始最小精度单位,通过计算如下公式将所述初始整数定位信息压缩成所述紧缩定位信息:
    Lj=Ljo/2m
    Lw=Lwo/2m
    所述Lj为所述紧缩定位信息中的紧缩经度值,所述Lw为所述紧缩定位信息中的紧缩纬度值,所述Ljo为所述初始整数定位信息中的初始整数经度值,所述Lwo为所述初始整数定位信息中的初始整数纬度值,所述m通过以下公式计算获得:应用精度单位=2m*原始最小精度单位。
  4. 一种定位信息传输的方法,其特征在于,包括:
    接收端接收发送端发送的精简定位信息;
    所述接收端将自身的第一初始定位信息转化成第一初始整数定位信息,所述第一初始整数定位信息为所述第一初始定位信息的整数值;
    所述接收端根据应用精度单位和原始最小精度单位将所述第一初始整数定位信息压缩成第一紧缩定位信息,所述第一紧缩定位信息对应的二进制位数小于所述第一初始整数定位信息对应的二进制位数;
    所述接收端根据精简参数N和所述第一紧缩定位信息将所述精简定位信息还原成所述发送端的第二紧缩定位信息,所述N等于log2R,所述R为所述发送端和所述接收端的无线通信的最大距离与所述应用精度单位的比值;
    所述接收端根据所述应用精度单位和所述原始最小精度单位将所述第二紧缩定位信息还原成第二初始整数定位信息;
    所述接收端将所述第二初始整数定位信息还原成第二初始定位信息。
  5. 根据权利要求4所述的方法,其特征在于,所述接收端通过计算如下公式将自身的第一初始定位信息转化成第一初始整数定位信息:
    LjRo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
    LwRo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
    所述LjRo为所述第一初始整数定位信息中的初始整数经度值,所述 Ew为所述第一初始定位信息的东西经指示值,所述EDEG所为所述第一初始定位信息的经度,所述EMINmm为所述第一初始定位信息的经分的整数部分,EMINF为所述第一初始定位信息的经分的小数部分;
    所述LwRo为所述第一初始整数定位信息中的初始整数纬度值,所述Ns为所述第一初始定位信息的南北纬指示值,所述NDEG所为所述第一初始定位信息的纬度,所述NMINmm为所述第一初始定位信息的纬分的整数部分,NMINF为所述第一初始定位信息的纬分的小数部分。
  6. 根据权利要求5所述的方法,其特征在于,所述接收端根据所述应用精度和所述原始最小单位精度,通过计算如下公式将所述第一初始整数定位信息压缩成所述第一紧缩定位信息:
    LjR=LjRo/2m
    LwR=LwRo/2m
    所述LjR为所述第一紧缩定位信息中的紧缩经度值,所述LwR为所述第一紧缩定位信息中的紧缩纬度值,所述m通过以下公式计算获得:应用精度单位=2m*原始最小精度单位。
  7. 根据权利要求6所述的方法,其特征在于,所述接收端根据精简参数N和所述第一紧缩定位信息将所述精简定位信息还原成所述发送端的第二紧缩定位信息包括:
    所述接收端根据所述精简参数N和所述第一紧缩定位信息确定所述第二紧缩定位信息的高位值,其中所述高位值的位数等于所述第一紧缩定位信息的二进制的位数与所述精简参数N之差;
    所述接收端将所述高位值与所述精简定位信息生成所述发送端的第二紧缩定位信息。
  8. 根据权利要求7所述的方法,其特征在于,所述接收端根据所述精简参数N和所述第一紧缩定位信息确定所述第二紧缩定位信息的高位值包括:
    所述接收端根据所述精简参数N和所述第一紧缩定位信息确定第一紧缩定位信息的三个高位值,所述三个高位值包括第一紧缩定位信息的高位值和第一紧缩定位信息相邻的两个高位值;
    所述接收端将所述第一紧缩定位信息的高位值与所述精简定位信息生成所述发送端的第二紧缩定位信息包括:
    所述接收端将所述三个高位值分别与所述精简定位信息生成三个紧缩定位信息;
    所述接收端选择所述三个紧缩定位信息中与所述第一紧缩定位信息之差的绝对值小于2N的紧缩定位信息作为所述第二紧缩定位信息。
  9. 根据权利要求8所述的方法,其特征在于,所述接收端根据所述精简参数N和所述第一紧缩定位信息确定第一紧缩定位信息的三个高位值包括:
    所述接收端按照如下公式计算所述第一紧缩定位信息的第一高位值的经度值:LjRH0=LjR&(0xFFFFFF<<N),所述LjRH0为所述第一高位值的经度值;
    所述接收端按照如下公式计算所述第一紧缩定位信息的第一高位值的纬度值:LwRH0=LwR&(0xFFFFFF<<N),所述LwRH0为所述第一高位值的纬度值;
    所述接收端按照如下公式计算得到所述第一紧缩定位信息的第二高位值的经度值:LjRH-1=LjR&(0xFFFFFF<<N)-(1<<N),所述LjRH-1为所述第二高位值的经度值;
    所述接收端按照如下公式计算得到所述第一紧缩定位信息的第二高位值的纬度值:LwRH-1=LwR&(0xFFFFFF<<N)-(1<<N),所述LwRH-1为所述第二高位值的纬度值;
    所述接收端按照如下公式得到所述第一紧缩定位信息的第三高位值的经度值:LjRH+1=LjR&(0xFFFFFF<<N)+(1<<N),所述LjRH+1为所 述第三高位值的经度值;
    所述接收端按照如下公式得到所述第一紧缩定位信息的第三高位值的纬度值:LwRH+1=LwR&(0xFFFFFF<<N)+(1<<N),所述LwRH+1为所述第三高位值的纬度值。
  10. 根据权利要求5至9中任一项所述的方法,其特征在于,所述接收端根据应用精度和所述原始最小单位精度,按照如下公式将所述第二紧缩定位信息转化成第二初始整数定位信息:
    Ljo=Lj*2m
    Lwo=Lw*2m
    所述Ljo为所述第二初始整数定位信息的初始整数经度值,所述Lwo为所述第二初始整数定位信息的初始整数纬度值,所述Lj为所述第二紧缩定位信息的紧缩经度值,所述Lw为所述第二紧缩定位信息的紧缩纬度值。
  11. 根据权利要求8所述的方法,其特征在于,所述接收端将所述第二初始整数定位信息还原成第二初始定位信息包括:
    所述接收端判断所述Ljo是否小于108*106,若小于,则所述第二初始定位信息的东经E'w等于0,若不小于,则所述第二初始定位信息的东经E'w等于1;
    所述接收端通过计算如下公式得到所述第二初始定位信息的经度E'DEG、所述第二初始定位信息的经分的整数部分E'MINmm,所述第二初始定位信息的经分的小数部分E'MINF
    E'DEG=Ljo%(108*106)/(6*105);
    E'MINmm=Ljo%(108*106)/(104);
    E'MINF=Ljo%104
    所述接收端判断所述Lwo是否小于54*106,若小于,则所述第二初始定位信息的北纬N's等于0,若不小于,则所述第二初始定位信息的 北纬N's等于1;
    所述接收端通过计算如下公式得到所述第二初始定位信息的纬度N'DEG、所述第二初始定位信息的纬分的整数部分N'MINmm,所述第二初始定位信息的纬分的小数部分N'MINF
    N'DEG=Lwo%(54*106)/(6*105);
    N'MINmm=Lwo%(54*106)/(104);
    N'MINF=L'wo%104
  12. 一种通信设备,其特征在于,包括:
    处理单元,用于将初始定位信息转化成初始整数定位信息,所述初始整数定位信息为所述初始定位信息的整数值;根据应用精度单位和原始最小精度单位将所述初始整数定位信息压缩成紧缩定位信息,所述紧缩定位信息对应的二进制位数小于所述初始整数定位信息对应的二进制位数;再从所述紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,所述N等于log2R,所述R为发送端与接收端之间的无线通信的最大距离与所述应用精度单位的比值;
    发送单元,用于将所述精简定位信息发送至接收端。
  13. 根据权利要求12所述的通信设备,其特征在于:
    所述处理单元,具体用于通过计算如下公式将所述初始定位信息转化成所述初始整数定位信息:
    Ljo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
    Lwo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
    所述Ljo为所述初始整数定位信息中的初始整数经度值,所述Ew为所述初始定位信息的东西经指示值,所述EDEG所为所述初始定位信息的经度,所述EMINmm为所述初始定位信息的经分的整数部分,EMINF为所述初始定位信息的经分的小数部分;
    所述Lwo为所述初始整数定位信息中的初始整数纬度值,所述Ns 为所述初始定位信息的南北纬指示值,所述NDEG所为所述初始定位信息的纬度,所述NMINmm为所述初始定位信息的纬分的整数部分,NMINF为所述初始定位信息的纬分的小数部分。
  14. 根据权利要求12所述的通信设备,其特征在于:
    所述处理单元,具体用于根据应用精度单位和原始最小精度单位,通过计算如下公式将所述初始整数定位信息压缩成所述紧缩定位信息:
    Lj=Ljo/2m
    Lw=Lwo/2m
    再从所述紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,所述N等于log2R,所述R为发送端与接收端之间的无线通信的最大距离与所述应用精度单位的比值;
    所述Lj为所述紧缩定位信息中的紧缩经度值,所述Lw为所述紧缩定位信息中的紧缩纬度值,所述Ljo为所述初始整数定位信息中的初始整数经度值,所述Lwo为所述初始整数定位信息中的初始整数纬度值,所述m通过以下公式计算获得:应用精度单位=2m*原始最小精度单位。
  15. 一种通信设备,其特征在于,包括:
    接收单元,用于接收发送端发送的精简定位信息;
    处理单元,用于将自身的第一初始定位信息转化成第一初始整数定位信息,所述第一初始整数定位信息为所述第一初始定位信息的整数值;根据应用精度单位和原始最小精度单位将所述第一初始整数定位信息压缩成第一紧缩定位信息,所述第一紧缩定位信息对应的二进制位数小于所述第一初始整数定位信息对应的二进制位数;之后,根据精简参数N和所述第一紧缩定位信息将所述精简定位信息还原成所述发送端的第二紧缩定位信息,所述N等于log2R,所述R为所述发送端和所述接收端的无线通信的最大距离与所述应用精度单位的比值;再根据所述应用精度单位和所述原始最小精度单位将所述第二紧缩定位信息还原成第 二初始整数定位信息;再将所述第二初始整数定位信息还原成第二初始定位信息。
  16. 根据权利要求15所述的通信设备,其特征在于:
    所述处理单元,具体用于通过计算如下公式将自身的第一初始定位信息转化成第一初始整数定位信息:
    LjRo=Ew*108*106+EDEG*6*105+EMINmm*104+EMINF
    LwRo=Ns*54*106+NDEG*6*105+NMINmm*104+NMINF
    所述Ljo为所述第一初始整数定位信息中的初始整数经度值,所述Ew为所述第一初始定位信息的东西经指示值,所述EDEG所为所述第一初始定位信息的经度,所述EMINmm为所述第一初始定位信息的经分的整数部分,EMINF为所述第一初始定位信息的经分的小数部分;
    所述Lwo为所述第一初始整数定位信息中的初始整数纬度值,所述Ns为所述第一初始定位信息的南北纬指示值,所述NDEG所为所述第一初始定位信息的纬度,所述NMINmm为所述第一初始定位信息的纬分的整数部分,NMINF为所述第一初始定位信息的纬分的小数部分。
  17. 根据权利要求16所述的通信设备,其特征在于:
    所述处理单元,具体用于根据所述应用精度和所述原始最小单位精度,通过计算如下公式将所述第一初始整数定位信息压缩成所述第一紧缩定位信息:
    LjR=LjRo/2m
    LwR=LwRo/2m
    所述LjR为所述第一紧缩定位信息中的紧缩经度值,所述LwR为所述第一紧缩定位信息中的紧缩纬度值,所述m通过以下公式计算获得:应用精度单位=2m*原始最小精度单位。
  18. 根据权利要求17所述的通信设备,其特征在于:
    所述处理单元,具体用于根据所述精简参数N和所述第一紧缩定位 信息确定所述第二紧缩定位信息的高位值,其中所述高位值的位数等于所述第一紧缩定位信息的二进制的位数与所述精简参数N之差;将所述高位值与所述精简定位信息生成所述发送端的第二紧缩定位信息。
  19. 根据权利要求18所述的通信设备,其特征在于:
    所述处理单元,具体用于根据所述精简参数N和所述第一紧缩定位信息确定第一紧缩定位信息的三个高位值,所述三个高位值包括第一紧缩定位信息的高位值、第一紧缩定位信息相邻的两个高位值;
    将所述第一紧缩定位信息的高位值与所述精简定位信息生成所述发送端的第二紧缩定位信息包括:
    将所述三个高位值分别与所述精简定位信息生成三个紧缩定位信息;
    选择所述三个紧缩定位信息中与所述第一紧缩定位信息之差的绝对值小于2N的紧缩定位信息作为所述第二紧缩定位信息。
  20. 根据权利要求16至19中任一项所述的通信设备,其特征在于:
    所述处理单元,具体用于根据应用精度和所述原始最小单位精度,按照如下公式将所述第二紧缩定位信息转化成第二初始整数定位信息:
    Ljo=Lj*2m
    Lwo=Lw*2m
    所述Ljo为所述第二初始整数定位信息的初始整数经度值,所述Lwo为所述第二初始整数定位信息的初始整数纬度值,所述Lj为所述第二紧缩定位信息的紧缩经度值,所述Lw为所述第二紧缩定位信息的紧缩纬度值。
  21. 一种通信设备,其特征在于,包括:
    相互连接的处理器、存储器、接收器和发射器;
    所述存储器用于存储应用程序,所述处理器通过执行所述应用程序以用于:
    将初始定位信息转化成初始整数定位信息,所述初始整数定位信息为所述初始定位信息的整数值;根据应用精度单位和原始最小精度单位将所述初始整数定位信息压缩成紧缩定位信息,所述紧缩定位信息对应的二进制位数小于所述初始整数定位信息对应的二进制位数;从所述紧缩定位信息对应的二进制数值中截取低N位作为精简定位信息,所述N等于log2R,所述R为发送端与接收端之间的无线通信的最大距离与所述应用精度单位的比值;通过发射器将所述精简定位信息发送至接收端。
  22. 一种通信设备,其特征在于,包括:
    相互连接的处理器、存储器、接收器和发射器;
    所述存储器用于存储应用程序,所述处理器通过执行所述应用程序以用于:
    通过接收器接收发送端发送的精简定位信息;将自身的第一初始定位信息转化成第一初始整数定位信息,所述第一初始整数定位信息为所述第一初始定位信息的整数值;根据应用精度单位和原始最小精度单位将所述第一初始整数定位信息压缩成第一紧缩定位信息,所述第一紧缩定位信息对应的二进制位数小于所述第一初始整数定位信息对应的二进制位数;根据精简参数N和所述第一紧缩定位信息将所述精简定位信息还原成所述发送端的第二紧缩定位信息,所述N等于log2R,所述R为所述发送端和所述接收端的无线通信的最大距离与所述应用精度单位的比值;根据所述应用精度单位和所述原始最小精度单位将所述第二紧缩定位信息还原成第二初始整数定位信息;将所述第二初始整数定位信息还原成第二初始定位信息。
PCT/CN2016/090019 2015-07-14 2016-07-14 一种定位信息传输的方法及通信设备 WO2017008751A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/745,210 US10904701B2 (en) 2015-07-14 2016-07-14 Positioning information transmission method and communication device
CN201680000619.XA CN105940711B (zh) 2015-07-14 2016-07-14 一种定位信息传输的方法及通信设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510413603.9A CN105101296A (zh) 2015-07-14 2015-07-14 一种定位信息传输的方法及通信设备
CN201510413603.9 2015-07-14

Publications (1)

Publication Number Publication Date
WO2017008751A1 true WO2017008751A1 (zh) 2017-01-19

Family

ID=54580593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090019 WO2017008751A1 (zh) 2015-07-14 2016-07-14 一种定位信息传输的方法及通信设备

Country Status (3)

Country Link
US (1) US10904701B2 (zh)
CN (1) CN105101296A (zh)
WO (1) WO2017008751A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101296A (zh) * 2015-07-14 2015-11-25 海能达通信股份有限公司 一种定位信息传输的方法及通信设备
CN113365210B (zh) * 2021-03-30 2022-11-11 公安部第一研究所 一种卫星定位数据压缩方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100085253A1 (en) * 2008-10-03 2010-04-08 Trimble Navigation Limited Continuous Tracking Counter for Enabling Cycle-slip Free Messages in a Network of Global Navigation System Satellite Receivers
CN103874017A (zh) * 2014-01-20 2014-06-18 杭州承联通信技术有限公司 一种卫星定位数据传输方法
CN103930792A (zh) * 2011-08-01 2014-07-16 摩托罗拉解决方案公司 压缩用于空中传输的无线电装置设备位置数据的方法和系统
CN104581635A (zh) * 2015-01-13 2015-04-29 哈尔滨海能达科技有限公司 一种定位信息传输的方法、装置及系统
CN105101296A (zh) * 2015-07-14 2015-11-25 海能达通信股份有限公司 一种定位信息传输的方法及通信设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8073565B2 (en) * 2000-06-07 2011-12-06 Apple Inc. System and method for alerting a first mobile data processing system nearby a second mobile data processing system
US7676232B2 (en) * 2002-05-16 2010-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Altitude determination and distribution in cellular communication systems
JP4384118B2 (ja) * 2003-06-27 2009-12-16 徹 西岡 座標相互変換モジュール
JP5488690B2 (ja) * 2010-03-12 2014-05-14 富士通株式会社 通信品質の測定方法、無線基地局及び移動端末、並びに無線通信システム
GB2513196A (en) * 2013-04-19 2014-10-22 What3Words Ltd A method and apparatus for identifying and communicating locations
US10021737B2 (en) * 2013-09-17 2018-07-10 Qualcomm Incorporated Techniques for determining common characteristics of groups of wireless access points
US20150293232A1 (en) * 2014-04-15 2015-10-15 Neoterra Systems Inc. System and Method for Compressing GPS Data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100085253A1 (en) * 2008-10-03 2010-04-08 Trimble Navigation Limited Continuous Tracking Counter for Enabling Cycle-slip Free Messages in a Network of Global Navigation System Satellite Receivers
CN103930792A (zh) * 2011-08-01 2014-07-16 摩托罗拉解决方案公司 压缩用于空中传输的无线电装置设备位置数据的方法和系统
CN103874017A (zh) * 2014-01-20 2014-06-18 杭州承联通信技术有限公司 一种卫星定位数据传输方法
CN104581635A (zh) * 2015-01-13 2015-04-29 哈尔滨海能达科技有限公司 一种定位信息传输的方法、装置及系统
CN105101296A (zh) * 2015-07-14 2015-11-25 海能达通信股份有限公司 一种定位信息传输的方法及通信设备

Also Published As

Publication number Publication date
US10904701B2 (en) 2021-01-26
US20190116573A1 (en) 2019-04-18
CN105101296A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
US9304186B2 (en) System and method for channel feedback for location time of flight
WO2020063323A1 (zh) 一种定位方法以及装置
WO2016112836A1 (zh) 一种定位信息传输的方法、装置及系统
WO2016112548A1 (zh) 一种位置信息获取方法和设备
CN104052539A (zh) 智能手机利用北斗终端使用卫星通讯的方法和装置
AU2013409674A1 (en) Data transmission method, data forwarding device, and system
WO2017008751A1 (zh) 一种定位信息传输的方法及通信设备
US20170331537A1 (en) Calibration data
CN113015113B (zh) 基于北斗卫星的海洋物联网通用网关数据转发方法
WO2019149210A1 (zh) 一种数据压缩方法、解压缩方法、发送端及接收端
US20120143966A1 (en) Apparatus and method of generating an sms message
CN105940711B (zh) 一种定位信息传输的方法及通信设备
TW201741892A (zh) 文檔分割系統及方法
CN115023964A (zh) Wlan感知测量建立终止方法及装置、电子设备及存储介质
JP2017526221A (ja) データ送信のための方法および装置
US20230189070A1 (en) Data transmission method and apparatus
CN112073117A (zh) 一种5g通讯模组及5g通讯系统
CN104158918A (zh) IPv4和IPv6互通方法和系统
WO2017008766A1 (zh) 实现信息压缩的通信方法、装置和通信设备
WO2022217506A1 (zh) 信道信息反馈的方法、发送端设备和接收端设备
CN116527782A (zh) 一种云控平台的控制方法、装置及存储介质
WO2022033448A1 (zh) 一种数据传输的方法及装置
WO2022257042A1 (zh) 码本上报的方法、终端设备和网络设备
WO2023070459A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023130331A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16823898

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/06/2018)