WO2017008419A1 - 一氧化碳变换催化剂载体、基于载体的催化剂及制备方法 - Google Patents

一氧化碳变换催化剂载体、基于载体的催化剂及制备方法 Download PDF

Info

Publication number
WO2017008419A1
WO2017008419A1 PCT/CN2015/094408 CN2015094408W WO2017008419A1 WO 2017008419 A1 WO2017008419 A1 WO 2017008419A1 CN 2015094408 W CN2015094408 W CN 2015094408W WO 2017008419 A1 WO2017008419 A1 WO 2017008419A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
conversion
weight
parts
purification performance
Prior art date
Application number
PCT/CN2015/094408
Other languages
English (en)
French (fr)
Inventor
江莉龙
曹彦宁
Original Assignee
福州大学化肥催化剂国家工程研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学化肥催化剂国家工程研究中心 filed Critical 福州大学化肥催化剂国家工程研究中心
Priority to DE112015002396.8T priority Critical patent/DE112015002396T5/de
Priority to US15/303,651 priority patent/US10525450B2/en
Publication of WO2017008419A1 publication Critical patent/WO2017008419A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J35/19
    • B01J35/30
    • B01J35/50
    • B01J35/615
    • B01J35/633
    • B01J35/651
    • B01J35/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a carbon monoxide shift catalyst carrier, a carrier-based catalyst and a preparation method thereof, in particular to a catalyst carrier with conversion and adsorption purification performance, a catalyst based on the carrier and a preparation method thereof, and belongs to the technical field of catalyst preparation.
  • the carbon monoxide shift refers to a process in which a CO-containing feed gas reacts with water vapor to form CO 2 and H 2 in the presence of a catalyst.
  • the volume concentration of CO in the raw material gas prepared by pressurized gasification of coal water slurry, pressurized gasification of pulverized coal and high-sulfur petroleum coking gas is as high as 40-65%
  • the volume ratio of water vapor to dry raw material gas is steam.
  • the gas ratio is as high as 1.0-1.8
  • the pressure is up to 3.0-8.0 MPa
  • the H 2 S concentration is as high as 5-15 g/Nm 3
  • Ciobi patent document CN102240556A discloses a CO sulfur-tolerant shift catalyst suitable for high-pressure process, the composition of which comprises a carrier and a catalyst active component, and the raw material component of the carrier and its mass percentage of the carrier are 5-40 wt%.
  • the CO sulfur-tolerant shift catalyst is prepared by the following method: (1) mixing the modified bauxite powder, pseudo-boehmite or aluminum nitrate of the above ratio with the precursor of CeO 2 , and then with magnesium oxide or hydroxide Magnesium is kneaded to form a mixture; (2) a peptizing agent, a binder, a pore former, a co-extruding agent is added to the mixture obtained in the step (1), and kneading is carried out; (3) the mixture obtained in the step (2) is subjected to a mixture; Drying, extruding, calcining to obtain a carrier of the catalyst; (4) impregnating the catalyst carrier obtained in the step (3) with the catalyst active components CoO and MoO 3 after being mixed, drying and calcining to obtain a finished catalyst product.
  • the catalytic activity of the above-mentioned CO sulfur-tolerant shift catalyst is too high. Under the reaction conditions of 260 ° C, a steam-to-gas ratio of 1.0, and a gas space velocity of 1000 h -1 , the CO conversion rate can reach 91.58%, and the CO conversion hydrogen production reaction is added. It is thermodynamically a strong exothermic reaction. Therefore, when the above CO-resistant sulfur-tolerant shift catalyst is used for the hydrogen production reaction of a feed gas having a high concentration of CO and a high gas-to-gas ratio, the reaction temperature is as high as 600 ° C or higher, so that the catalyst is sintered. Inactivation, and even the phenomenon of "flying temperature" in the catalyst bed, poses a serious threat to people, equipment and catalysts.
  • the technical problem to be solved by the present invention is that the catalytic activity of the CO sulfur-tolerant shift catalyst in the prior art is too high, and it cannot be applied to the conversion hydrogen production reaction of the high-concentration CO and the high-gas-to-gas ratio feed gas, thereby proposing a kind that can be applied to high A catalyst carrier having a conversion and adsorption purification performance of a concentration CO, a high steam-to-gas ratio, and a high-pressure raw material gas, a catalyst based on the carrier, and a preparation method thereof.
  • the technical solution of the present invention is:
  • a catalyst carrier having conversion and adsorption purification performance having conversion and adsorption purification performance, the raw material components of which include:
  • Alumina or pseudoboehmite 40-60 parts by weight
  • Magnesium oxide or magnesium hydroxide 20-40 parts by weight
  • the modified bauxite is prepared by the following method:
  • the natural bauxite is first subjected to acid treatment, and then washed with distilled water until the washing liquid is neutral, and the modified bauxite is obtained by filtration and drying.
  • the acid treatment uses an acid of one or a mixture of nitric acid, phosphoric acid, oxalic acid, boric acid.
  • the acid treatment uses an acid concentration of 1-3 mol/L, the acid treatment temperature is 30-70 ° C, and the acid treatment time is 2-8 h.
  • the temperature at which the drying treatment is carried out is 120 to 150 ° C, and the drying treatment time is 4 to 6 hours.
  • the cobalt source is cobalt oxalate
  • the nickel source is nickel oxalate
  • the molybdenum source is molybdenum trioxide and/or molybdenum Mine
  • the tungsten source is tungsten trioxide.
  • the modified bauxite has a particle diameter of 100-150 mesh, a specific surface area of 120-180 m 2 /g, and a pore volume of 0.15-0.40 ml/g.
  • the structure of the catalyst carrier includes macropores having a pore diameter of 100 to 300 nm, and the macropores occupy 10 to 30% by volume of the catalyst carrier.
  • an active component is supported on the catalyst carrier.
  • the active component comprises 2-5 parts by weight of CoO and/or NiO, 6-10 parts by weight of MoO 3 and/or WO 3 .
  • a method of preparing the catalyst comprising the steps of:
  • the cobalt source is cobalt oxalate
  • the nickel source is nickel oxalate
  • the molybdenum source is molybdenum trioxide and/or molybdenum concentrate
  • the tungsten source is tungsten trioxide.
  • step (3) the drying treatment temperature is 110-140 ° C, and the drying treatment time is 4-8 h;
  • the temperature at which the calcination treatment is carried out is 580 to 680 ° C, and the time of the calcination treatment is 4 to 8 h.
  • the catalyst carrier having the conversion and adsorption purification performance according to the present invention uses a modified bauxite, alumina or pseudoboehmite, magnesium oxide or magnesium hydroxide as a raw material component and a reasonable ratio, This is because the inventors of the present application have discovered through a large amount of creative labor that the modified bauxite added in the above raw material component has the functions of fluxing and pore-forming, and the bauxite modified by the method of the present invention contains Most of the iron oxide is removed, so that a large amount of highly active aluminosilicate compounds exist in the modified bauxite, and the aluminosilicate compound acts as a low melting point flux, which can significantly improve the roasting process when preparing the catalyst.
  • the migration rate of magnesium ions and aluminum ions promotes the formation of MgAl 2 O 4 phase at low temperature, and eliminates the formation of MgO and Al 2 O 3 which are prone to hydration, and the internal ions of MgAl 2 O 4 phase are formed.
  • the catalyst carriers are mainly connected to each other by strong ionic bonds, so that the catalyst carrier of the invention has strong hydration resistance and mechanical strength, is not easy to be pulverized, and can withstand the impact of high concentration of water vapor. Effectively avoiding the problem of powdering or agglomeration when the catalyst is used for high water vapor ratio and high concentration of CO raw material gas;
  • the bauxite modified by the method of the present invention has a specific surface area of up to 233 m 2 /g and a pore volume of up to 0.46 ml/g, which is used as a macroporous hard template for preparing a catalyst, and is calcined in a catalyst.
  • the macropores are formed in the carrier structure, so that the catalyst carrier of the present invention has strong adsorption and purification ability for macromolecular impurity particles such as oil stains and dust; in summary, the catalyst carrier of the present invention has strong anti-hydration ability. Avoiding the high steam-to-gas ratio and the condensed water under high pressure causes the catalyst to hydrate and react to cause deactivation or pulverization of the catalyst.
  • the catalyst carrier has a macroporous structure, which significantly improves the adsorption and purification of macromolecular particles such as oil, dust and the like by the catalyst.
  • the catalyst having conversion and adsorption purification performance according to the present invention wherein the active component comprises 2-5 parts by weight of CoO and/or NiO, 6-10 parts by weight of MoO 3 and/or WO 3 ,
  • the catalyst of the invention has moderate catalytic activity of CO shift reaction, and when used for the conversion hydrogen production reaction of high concentration CO, high steam-to-gas ratio and high-pressure raw material gas, the partial CO in the raw material gas is transformed firstly to realize The controlled release of the reaction heat, while effectively reducing the CO concentration of the subsequent shift reaction, further controlling the release of the subsequent heat of reaction, so that the catalyst of the present invention can control the CO in the feed gas in a step-by-step manner.
  • the step is carried out, and the catalyst bed temperature is controlled within a reasonable range, thereby effectively avoiding the prior art CO sulfur-tolerant shift catalyst which is prone to catalyst when used in the high-concentration CO, high-gas-to-gas ratio feed gas conversion reaction.
  • High temperature sintering deactivates and even causes "flying temperature" phenomenon of the catalyst bed; therefore, the catalyst of the invention has moderate catalytic activity and suitable CO conversion rate, and can effectively avoid Hyperactivity induced "runaway" phenomenon of the catalyst bed, can be applied to high concentration of CO.'S, high steam and high-pressure gas ratio of hydrogen feed gas conversion reaction.
  • the catalyst of the invention has excellent anti-hydration performance when used for high water vapor ratio and high concentration of CO raw material gas, has high strength, is not easy to be pulverized, can withstand the impact of high concentration of water vapor, and has a large structure.
  • the pores can adsorb and remove large particle impurities such as tar and dust in the raw material gas.
  • the catalyst having conversion and adsorption purification performance according to the present invention wherein the cobalt source is cobalt oxalate, the nickel source is nickel oxalate, and the molybdenum source is molybdenum trioxide and/or molybdenum concentrate.
  • the tungsten source is tungsten trioxide, which fully utilizes the characteristics of cobalt oxalate, nickel oxalate, molybdenum trioxide and/or molybdenum concentrate and tungsten trioxide which are hardly soluble in water, so that the active component CoO and/or NiO in the catalyst can be prepared.
  • MoO 3 and/or WO 3 are moderately dispersed on the support material MgAl 2 O 4 to control the catalytic conversion performance of the catalyst to a certain range.
  • the above cobalt oxalate, nickel oxalate, molybdenum trioxide and/or molybdenum concentrate and the third The raw material components such as tungsten oxide are also advantageous for the formation of macropores during the calcination treatment in the preparation of the catalyst.
  • Figure 1 is an XRD pattern of different carriers after testing for hydration resistance.
  • the present embodiment provides a catalyst support having conversion and adsorption purification performance, the catalyst support comprising a macroporous pore having a pore diameter of 100 nm, the total volume of the large pores accounting for 10% of the volume of the catalyst support.
  • the raw material components of the catalyst carrier having shift and adsorption purification performance include:
  • the modified bauxite is prepared by the following method:
  • the natural bauxite was treated with acid at a concentration of 1 mol/L at 30 °C for 8 h, and then washed with distilled water until the washing liquid was neutral. After filtration and drying at 120 ° C for 6 h, the modified bauxite was obtained.
  • the modified bauxite has a particle diameter of 150 mesh, a specific surface area of 150 m 2 /g, and a pore volume of 0.25 ml/g.
  • a catalyst based on the catalyst carrier having conversion and adsorption purification performance wherein the catalyst carrier is loaded with an active component comprising 3.5 parts by weight of NiO and 8.5 parts by weight of MoO 3
  • the catalyst is prepared by the following method:
  • the present embodiment provides a catalyst support having conversion and adsorption purification performance, the catalyst support comprising a macroporous pore having a pore diameter of 300 nm, the total volume of the large pores accounting for 30% of the volume of the catalyst support.
  • the raw material components of the catalyst carrier having shift and adsorption purification performance include:
  • Alumina 40 parts by weight
  • the modified bauxite is prepared by the following method:
  • the natural bauxite was treated with acid at a concentration of 3 mol/L at 70 °C for 2 h, and then washed with distilled water until the washing liquid was neutral. After filtration and drying at 150 ° C for 4 h, the modified bauxite was obtained.
  • the modified bauxite has a particle diameter of 100 mesh, a specific surface area of 120 m 2 /g, and a pore volume of 0.4 ml/g.
  • a catalyst based on the catalyst carrier having conversion and adsorption purification performance wherein the catalyst carrier is loaded with an active component comprising 2 parts by weight of CoO and 7 parts by weight of MoO 3 And 3 parts by weight of WO 3 , the catalyst was prepared as follows:
  • the present embodiment provides a catalyst support having conversion and adsorption purification performance, the catalyst support comprising a macroporous pore having a pore diameter of 200 nm, the total volume of the large pores accounting for 20% of the volume of the catalyst support.
  • the raw material components of the catalyst carrier having shift and adsorption purification performance include:
  • Pseudo-boehmite 50 parts by weight
  • the modified bauxite is prepared by the following method:
  • the natural bauxite was treated with acid at a concentration of 2 mol/L at 40 °C for 6 h, and then washed with distilled water until the washing liquid was neutral. After filtration and drying at 130 ° C for 5 h, the modified bauxite was obtained.
  • the modified bauxite has a particle diameter of 120 mesh, a specific surface area of 180 m 2 /g, and a pore volume of 0.15 ml/g.
  • a catalyst based on the catalyst carrier having conversion and adsorption purification performance is provided, on which the active component is supported, the active component comprising 3 parts by weight of CoO and 2 parts by weight of NiO, 6 parts by weight of MoO 3 , the catalyst was prepared as follows:
  • the present embodiment provides a catalyst support having conversion and adsorption purification performance, the catalyst support comprising a macroporous pore having a pore diameter of 250 nm, the total volume of the large pores accounting for 25% of the volume of the catalyst support.
  • the raw material components of the catalyst carrier having shift and adsorption purification performance include:
  • the modified bauxite is prepared by the following method:
  • the natural bauxite was treated with boric acid at a concentration of 3 mol/L at 60 °C for 6 h, and then washed with distilled water until the washing liquid was neutral. After filtration and drying at 130 ° C for 5 h, the modified bauxite was obtained.
  • the modified bauxite has a particle diameter of 140 mesh, a specific surface area of 161 m 2 /g, and a pore volume of 0.22 ml/g.
  • a catalyst based on the catalyst carrier having conversion and adsorption purification performance wherein the catalyst carrier is loaded with an active component comprising 5 parts by weight of CoO and 7 parts by weight of MoO 3 And 3 parts by weight of WO 3 , the catalyst was prepared as follows:
  • the present comparative example provides a catalyst support whose raw material components include:
  • Natural bauxite 10 parts by weight
  • Alumina 40 parts by weight
  • a catalyst based on the above carrier on which the active component is supported, and the active component comprises 2 parts by weight of CoO, 7 parts by weight of MoO 3 and 3 parts by weight of WO 3 , and the catalyst is as follows Method preparation:
  • the present comparative example provides a catalyst support whose raw material components include:
  • Alumina 40 parts by weight
  • the hydrothermal modified bauxite is prepared by the following method:
  • the natural bauxite is hydrothermally treated in a high pressure reactor at 130 ° C for 48 h, filtered, dried at 150 ° C for 4 h, calcined at 550 ° C for 4 h, and cooled to obtain a hydrothermal modified bauxite.
  • a catalyst based on the above carrier on which the active component is supported, and the active component comprises 2 parts by weight of CoO, 7 parts by weight of MoO 3 and 3 parts by weight of WO 3 , and the catalyst is as follows Method preparation:
  • hydrothermally modified bauxite, alumina and magnesia are respectively weighed according to the above weight fraction, and fully mixed with a cobalt source cobalt oxalate, a molybdenum source molybdenum trioxide, and a tungsten source tungsten trioxide to obtain a mixture. ;
  • the present invention provides experimental examples for testing the catalytic performance of the support and the catalyst.
  • the wetting angle ⁇ of mercury was 130°, the surface tension ⁇ was 0.485 N/m, the initial test pressure was 3.73 ⁇ 10 ⁇ 3 MPa, and the highest test pressure was 207 MPa.
  • the support prepared by the method of the present invention includes macropores having a pore diameter of 100-300 nm, and the macropores occupy 10-30% by volume of the catalyst carrier, which is advantageous.
  • the carrier prepared by adding the acid-treated natural bauxite in the comparative example (sample E) and the aluminum treated by the hydrothermal method has a volume fraction of macropores larger than 100 nm in the structure of only 9.3% and 12.5%, respectively, so that the adsorption and purification ability of macromolecular particles such as oil, dust and the like is poor.
  • the carrier prepared by the method of the present invention has high strength, up to 176-223 N/cm, and can be adapted to high-concentration CO, high steam-to-gas ratio and high-pressure raw material gas conversion system.
  • Carrier samples A-E were separately ground to 80-160 mesh powder. Take 10g carrier sample powder and 50mL steam The distilled water was charged into a 100 mL hydrothermal reaction vessel with polytetrafluoroethylene, sealed, and treated under hydrothermal conditions at 200 ° C for 4 h; then the sample after hydrothermal treatment was dried at 110 ° C for 6 h, and detected by X-ray powder diffractometry. Crystal phase changes.
  • Fig. 1 The XRD patterns of the above different carriers after the hydration resistance test are shown in Fig. 1. It can be seen that the carrier (sample AD) of the present invention maintains a good MgAl 2 O 4 structure after hydrothermal treatment, Other new phases are formed to give a strong resistance to hydration. After the hydrothermal treatment of the comparatively obtained carrier (Sample E), in addition to the MgAl 2 O 4 spinel phase, AlOOH and ((Mg 4 Al 2 )(OH) 12 CO 3 (H 2 O) 3 ) were also present. The diffraction peak of 0.5 hydrated product has weak anti-hydration performance.
  • the catalyst loading amount is 30 ml, the pressure is 5 MPa, the space velocity is 3000 h -1 , and the volume ratio of water vapor to dry raw material gas, that is, the steam-to-gas ratio is 1.2;
  • the activity was tested according to the above evaluation conditions, the reaction temperature range was 250-350 ° C, the heating rate was 3 ° C / min, the temperature interval was 50 ° C, and the retention time of each test temperature point was 4 h.
  • the GC-2014 gas chromatograph was used to automatically sample the six-way valve to detect the CO content before and after the reaction.
  • the catalyst conversion activity is expressed by the conversion ratio of CO, and the calculation formula is as follows:
  • Vi is the volume fraction of CO in the feed gas
  • Vo is the volume fraction of CO in the shift gas
  • the catalyst (samples A1-D1) of the present invention has a moderate CO shift reaction catalytic activity, and is used in a hydrogen conversion reaction of high concentration CO, high steam to gas ratio, and high pressure feed gas. It is possible to control and step-by-step the CO in the raw material gas in a step-by-step manner, thereby controlling the catalyst bed temperature within a reasonable range; compared with the catalyst in the comparative example (sample E1 and sample F1) The catalytic activity is too high, the catalyst is easily deactivated by high temperature sintering, and even the "flying temperature" phenomenon of the catalyst bed is not applicable to the high hydrogen concentration, high steam to gas ratio and high pressure feed gas conversion hydrogen production reaction.

Abstract

本发明提供一种具有变换和吸附净化性能的催化剂载体,其原料组分中含有酸处理后的改性铝土矿。在所述载体上负载CoO和/或NiO,MoO 3和/或WO 3活性组分得到CO变换催化剂。还提供了所述催化剂的制备方法及其在CO耐硫变换反应中的应用。

Description

一氧化碳变换催化剂载体、基于载体的催化剂及制备方法 技术领域
本发明涉及一种一氧化碳变换催化剂载体、基于载体的催化剂及制备方法,具体涉及一种具有变换和吸附净化性能的催化剂载体、基于该载体的催化剂及其制备方法,属于催化剂制备技术领域。
背景技术
一氧化碳变换是指在催化剂存在的条件下,含CO原料气与水蒸汽反应生成CO2和H2的过程。目前,采用水煤浆加压气化、粉煤加压气化和高硫石油焦化气后制备的原料气中CO的体积浓度高达40-65%,水蒸汽与干原料气的体积比即汽气比高达1.0-1.8,压力高达3.0-8.0MPa,H2S浓度高达5-15g/Nm3,同时还含有油污和粉尘等大分子毒物和颗粒物。现有技术中,要实现上述原料气的变换制氢,均需采用耐硫变换工艺,即气化后制备的原料气不经脱硫直接进行变换,该工艺的关键是使用CO耐硫变换催化剂。
中国专利文献CN102240556A公开了一种适用于高压工艺的CO耐硫变换催化剂,其成分包括载体和催化剂活性组分,该载体的原料组分及其占载体的质量百分数为5-40wt%的改性铝土矿粉、20-60wt%的拟薄水铝石或硝酸铝和10-40wt%氧化镁或氢氧化镁,该催化剂活性组分及其占催化剂的质量百分数为0.5-5wt%的CoO、1.0-15wt%MoO3和0.3-2wt%的CeO2。该CO耐硫变换催化剂采用如下方法制备得到:(1)将上述比例的改性铝土矿粉、拟薄水铝石或硝酸铝与CeO2的前驱体混合后,再与氧化镁或氢氧化镁进行混捏,形成混合物;(2)在步骤(1)得到的混合物中加入胶溶剂、粘结剂、造孔剂、助挤剂,进行混捏;(3)将步骤(2)得到的混合物进行干燥、挤条、焙烧,得到催化剂的载体;(4)将步骤(3)得到的催化剂载体,浸渍经配比后的催化剂活性组分CoO和MoO3,经干燥、焙烧,制得催化剂成品。然而,上述 CO耐硫变换催化剂的催化活性太高,在260℃、汽气比1.0、气体空速1000h-1的反应条件下,CO转化率就可达到91.58%,加上CO变换制氢反应本身在热力学上属于强放热反应,因此,将上述CO耐硫变换催化剂用于高浓度CO和高汽气比的原料气进行变换制氢反应时,反应温度高达600℃以上,使得催化剂被烧结而失活,甚至导致催化剂床层发生“飞温”现象,对人身、设备和催化剂构成严重的威胁。
发明内容
本发明所要解决的技术问题在于现有技术中CO耐硫变换催化剂的催化活性过高,不能适用于高浓度CO和高汽气比原料气的变换制氢反应,从而提出一种能适用于高浓度CO、高汽气比和高压原料气的具有变换和吸附净化性能的催化剂载体、基于该载体的催化剂及其制备方法。
为解决上述技术问题,本发明的技术方案为:
一种具有变换和吸附净化性能的催化剂载体,其原料组分包括:
改性铝土矿,5-15重量份;
氧化铝或拟薄水铝石,40-60重量份;
氧化镁或氢氧化镁,20-40重量份;
所述改性铝土矿采用如下方法制备:
先对天然铝土矿进行酸处理,再用蒸馏水洗涤至洗涤液呈中性,经过滤、干燥即得所述改性铝土矿。
所述酸处理采用酸为硝酸、磷酸、草酸、硼酸中的一种或者几种的混合物。
所述酸处理采用酸的浓度为1-3mol/L,所述酸处理的温度为30-70℃,所述酸处理的时间为2-8h。
进行所述干燥处理的温度为120-150℃,所述干燥处理的时间为4-6h。
所述钴源为草酸钴,所述镍源为草酸镍;所述钼源为三氧化钼和/或钼精 矿,所述钨源为三氧化钨。
所述的改性铝土矿的粒径为100-150目,比表面积为120-180m2/g,孔容为0.15-0.40ml/g。
所述催化剂载体的结构中包括孔径为100-300nm的大孔,所述大孔占催化剂载体的体积分数为10-30%。
基于所述的具有变换和吸附净化性能的催化剂载体的催化剂,在所述催化剂载体上负载有活性组分。
所述活性组分包括2-5重量份的CoO和/或NiO,6-10重量份的MoO3和/或WO3
一种制备所述的催化剂的方法,其包括如下步骤:
(1)按照上述重量份依次称取所述改性铝土矿、氧化铝或拟薄水铝石、氧化镁或氢氧化镁,并与钴源或镍源、钼源或钨源进行充分混捏,得到混合物;
(2)对所述混合物进行挤条,得到挤条产品;
(3)对所述挤条产品进行干燥、焙烧,即得所述具有变换和吸附净化性能的催化剂。
所述钴源为草酸钴,所述镍源为草酸镍;所述钼源为三氧化钼和/或钼精矿,所述钨源为三氧化钨。
步骤(3)中,进行所述干燥处理的温度为110-140℃,所述干燥处理的时间为4-8h;
进行所述焙烧处理的温度为580-680℃,所述焙烧处理的时间为4-8h。
所述的具有变换和吸附净化性能的催化剂在一氧化碳耐硫变换反应中的应用。
本发明的上述技术方案相比现有技术具有以下优点:
(1)本发明所述的具有变换和吸附净化性能的催化剂载体,采用改性铝土矿、氧化铝或拟薄水铝石、氧化镁或氢氧化镁作为原料组分并进行合理配比,这是由于本申请发明人经过大量创造性劳动发现,在上述原料组分中添加的改性铝土矿具有助熔和造孔的作用,经本发明方法改性后的铝土矿,其中含有的大部分氧化铁被除去,使得改性铝土矿中存在大量高活性的硅铝酸盐化合物,而硅铝酸盐化合物作为一种低熔点的助熔剂,在制备催化剂时,能够显著提高焙烧过程中镁离子和铝离子的迁移速率,促进低温下MgAl2O4相的生成,同时消除了易发生水合反应的MgO和Al2O3的生成,并且由于生成的MgAl2O4相内部各离子之间主要以强的离子键相互连接,从而使得本发明所述催化剂载体具有较强的抗水合能力和机械强度,不易粉化,可耐受高浓度水蒸气的冲击,有效避免催化剂用于高水汽比、高浓度CO原料气时,易发生粉化或结块的问题;
同时,经本发明所述方法改性处理后的铝土矿,比表面积高达233m2/g,孔容高达0.46ml/g,将其作为大孔硬模板用于制备催化剂,经焙烧处理在催化剂载体结构中形成大孔,从而使得本发明所述催化剂载体对油污、粉尘等大分子杂质颗粒具有较强的吸附净化能力;综上,本发明所述的催化剂载体具有很强的抗水合能力,避免高汽气比和高压下冷凝水引起催化剂发生水合反应而导致催化剂失活或粉化;同时,所述催化剂载体具有大孔结构,显著提高了催化剂对油污、粉尘等大分子颗粒物的吸附净化能力,从而能够适用于高浓度CO、高汽气比和高压原料气的变换制氢反应。
(2)本发明所述的具有变换和吸附净化性能的催化剂,其中的活性组分包括2-5重量份的CoO和/或NiO,6-10重量份的MoO3和/或WO3,以使本发明所述催化剂具有适中的CO变换反应催化活性,在用于高浓度CO、高汽气比、高压原料气的变换制氢反应时,实现先将原料气中的部分CO进行变换,实现了反应热的控制释放,同时有效降低后续进行变换反应的CO浓度,进一步控制了后续反应热的释放,从而本发明所述催化剂能够实现将原料气中的CO以梯级变换的方式可控、分步进行,进而将催化剂床层温度控制在合理范围内,有效避免现有技术中CO耐硫变换催化剂在用于高浓度CO、高汽气比原料气的 变换制氢反应时,容易发生催化剂的高温烧结而失活,甚至导致催化剂床层的“飞温”现象;因此,本发明所述催化剂具有适中的催化活性和合适的CO转化率,能有效避免因催化活性过高而引起催化剂床层的“飞温”现象,从而能够适用于高浓度CO、高汽气比和高压原料气的变换制氢反应。
此外,本发明所述催化剂在用于高水汽比、高浓度CO原料气时,具有优异的抗水合性能,强度高、不易粉化,可耐受高浓度水蒸气的冲击,同时结构中的大孔可吸附脱除原料气中的焦油和粉尘等大颗粒杂质。
(3)本发明所述的具有变换和吸附净化性能的催化剂,其中所述钴源为草酸钴,所述镍源为草酸镍,所述钼源为三氧化钼和/或钼精矿,所述钨源为三氧化钨,充分利用草酸钴、草酸镍、三氧化钼和/或钼精矿以及三氧化钨均难溶于水的特性,使得制备得到催化剂中活性组分CoO和/或NiO、MoO3和/或WO3在载体材料MgAl2O4上分散适中,将催化剂的催化变换性能控制在一定范围,此外,上述草酸钴、草酸镍、三氧化钼和/或钼精矿以及三氧化钨等原料组分,还有利于催化剂制备过程中进行焙烧处理时大孔的形成。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是不同载体经抗水合性能测试后的XRD图谱。
具体实施方式
以下实施例以1重量份代表1g。
实施例1
本实施例提供一种具有变换和吸附净化性能的催化剂载体,所述催化剂载体的结构中包括孔径为100nm的大孔,所述大孔的总体积占催化剂载体体积的10%。
所述具有变换和吸附净化性能的催化剂载体的原料组分包括:
改性铝土矿,8重量份;
氧化铝,53重量份;
氧化镁,32重量份;
所述改性铝土矿采用如下方法制备:
先采用浓度为1mol/L的硝酸在30℃条件下对天然铝土矿进行酸处理8h,再用蒸馏水洗涤至洗涤液呈中性,经过滤、120℃干燥6h即得所述改性铝土矿,所述改性铝土矿的粒径为150目,比表面积为150m2/g,孔容为0.25ml/g。
进一步,提供一种基于所述具有变换和吸附净化性能的催化剂载体的催化剂,在所述催化剂载体上负载有活性组分,所述活性组分包括3.5重量份的NiO,8.5重量份的MoO3,所述催化剂采用如下方法制备:
(1)按照上述重量份分别称取所述改性铝土矿、氧化铝和氧化镁,并与镍源草酸镍、钼源三氧化钼进行充分混捏,得到混合物;
(2)对所述混合物进行挤条,得到挤条产品;
(3)对所述挤条产品经140℃干燥4h、680℃焙烧4h,即得所述具有变换和吸附净化性能的催化剂。
实施例2
本实施例提供一种具有变换和吸附净化性能的催化剂载体,所述催化剂载体的结构中包括孔径为300nm的大孔,所述大孔的总体积占催化剂载体体积的30%。
所述具有变换和吸附净化性能的催化剂载体的原料组分包括:
改性铝土矿,10重量份;
氧化铝,40重量份;
氧化镁,28重量份;
所述改性铝土矿采用如下方法制备:
先采用浓度为3mol/L的磷酸在70℃条件下对天然铝土矿进行酸处理2h,再用蒸馏水洗涤至洗涤液呈中性,经过滤、150℃干燥4h即得所述改性铝土矿, 所述改性铝土矿的粒径为100目,比表面积为120m2/g,孔容为0.4ml/g。
进一步,提供一种基于所述具有变换和吸附净化性能的催化剂载体的催化剂,在所述催化剂载体上负载有活性组分,所述活性组分包括2重量份的CoO、7重量份的MoO3和3重量份的WO3,所述催化剂采用如下方法制备:
(1)按照上述重量份分别称取所述改性铝土矿、氧化铝和氧化镁,并与钴源草酸钴、钼源三氧化钼、钨源三氧化钨进行充分混捏,得到混合物;
(2)对所述混合物进行挤条,得到挤条产品;
(3)对所述挤条产品经120℃干燥6h、600℃焙烧5h,即得所述具有变换和吸附净化性能的催化剂。
实施例3
本实施例提供一种具有变换和吸附净化性能的催化剂载体,所述催化剂载体的结构中包括孔径为200nm的大孔,所述大孔的总体积占催化剂载体体积的20%。
所述具有变换和吸附净化性能的催化剂载体的原料组分包括:
改性铝土矿,15重量份;
拟薄水铝石,50重量份;
氢氧化镁,25重量份;
所述改性铝土矿采用如下方法制备:
先采用浓度为2mol/L的草酸在40℃条件下对天然铝土矿进行酸处理6h,再用蒸馏水洗涤至洗涤液呈中性,经过滤、130℃干燥5h即得所述改性铝土矿,所述改性铝土矿的粒径为120目,比表面积为180m2/g,孔容为0.15ml/g。
进一步,提供一种基于所述具有变换和吸附净化性能的催化剂载体的催化剂,在所述催化剂载体上负载有活性组分,所述活性组分包括3重量份的CoO和2重量份的NiO,6重量份的MoO3,所述催化剂采用如下方法制备:
(1)按照上述重量份分别称取所述改性铝土矿、拟薄水铝石和氢氧化镁, 并与钴源草酸钴、镍源草酸镍、钼源三氧化钼进行充分混捏,得到混合物;
(2)对所述混合物进行挤条,得到挤条产品;
(3)对所述挤条产品经110℃干燥8h、650℃焙烧4h,即得所述具有变换和吸附净化性能的催化剂。
实施例4
本实施例提供一种具有变换和吸附净化性能的催化剂载体,所述催化剂载体的结构中包括孔径为250nm的大孔,所述大孔的总体积占催化剂载体体积的25%。
所述具有变换和吸附净化性能的催化剂载体的原料组分包括:
改性铝土矿,5重量份;
拟薄水铝石,60重量份;
氧化镁,20重量份;
所述改性铝土矿采用如下方法制备:
先采用浓度为3mol/L的硼酸在60℃条件下对天然铝土矿进行酸处理6h,再用蒸馏水洗涤至洗涤液呈中性,经过滤、130℃干燥5h即得所述改性铝土矿,所述改性铝土矿的粒径为140目,比表面积为161m2/g,孔容为0.22ml/g。
进一步,提供一种基于所述具有变换和吸附净化性能的催化剂载体的催化剂,在所述催化剂载体上负载有活性组分,所述活性组分包括5重量份的CoO、7重量份的MoO3和3重量份的WO3,所述催化剂采用如下方法制备:
(1)按照上述重量份分别称取所述改性铝土矿、拟薄水铝石和氧化镁,并与钴源草酸钴、钼源钼精矿及钨源三氧化钼进行充分混捏,得到混合物;
(2)对所述混合物进行挤条,得到挤条产品;
(3)对所述挤条产品经120℃干燥6h、580℃焙烧6h,即得所述具有变换和吸附净化性能的催化剂。
对比例1
本对比例提供一种催化剂载体,其原料组分包括:
天然铝土矿,10重量份;
氧化铝,40重量份;
氧化镁,28重量份;
进一步,提供一种基于上述载体的催化剂,在该催化剂载体上负载有活性组分,活性组分包括2重量份的CoO、7重量份的MoO3和3重量份的WO3,该催化剂采用如下方法制备:
(1)按照上述重量份分别称取天然铝土矿、氧化铝和氧化镁,并与钴源草酸钴、钼源三氧化钼、钨源三氧化钨进行充分混捏,得到混合物;
(2)对上述混合物进行挤条,得到挤条产品;
(3)对上述挤条产品经120℃干燥6h、600℃焙烧5h,即得所述的催化剂。
对比例2
本对比例提供一种催化剂载体,其原料组分包括:
水热法改性铝土矿,10重量份;
氧化铝,40重量份;
氧化镁,28重量份;
所述水热法改性铝土矿采用如下方法制备:
将天然铝土矿在高压反应釜中,于130℃条件下水热处理48h,经过滤、150℃干燥4h、550℃焙烧4h,冷却,即得水热法改性铝土矿。
进一步,提供一种基于上述载体的催化剂,在该催化剂载体上负载有活性组分,活性组分包括2重量份的CoO、7重量份的MoO3和3重量份的WO3,该催化剂采用如下方法制备:
(1)按照上述重量份分别称取该水热法改性铝土矿、氧化铝和氧化镁,并与钴源草酸钴、钼源三氧化钼、钨源三氧化钨进行充分混捏,得到混合物;
(2)对上述混合物进行挤条,得到挤条产品;
(3)对上述挤条产品经120℃干燥6h、600℃焙烧5h,即得所述的催化剂。
实验例
为了证明本发明所述具有变换和吸附净化性能的载体和催化剂的技术效果,本发明设置了实验例对载体和催化剂的催化性能进行测试。
对实施例1-4和对比例1-2中的载体依次进行编号为A-F并进行以下测试。
载体孔结构测试实验
本实验例中载体孔结构的测定在美国Micrometrics公司AutoPoreIV9500全自动压汞仪上进行,记录加压过程中注汞体积随施加压力的变换关系,依据Washburn方程进行孔结构分析:
Figure PCTCN2015094408-appb-000001
式中P为测孔压力;r为半径;θ为湿润角;γ为汞的表面张力。取汞的润湿角θ为130°、表面张力γ为0.485N/m、初始测试压力为3.73×10-3MPa、最高测试压力为207MPa。
载体孔结构测试结果如表1所示。
表1-载体的孔结构测试结果
样品 孔径为100-300nm的大孔的体积分数/%
A 18.2
B 21.6
C 28.3
D 9.6
E 9.3
F 12.5
从表1数据可以看出,本发明方法制备得到的载体(样品A-D)中包括孔径为100-300nm的大孔,所述大孔占催化剂载体的体积分数为10-30%,有利于 提高催化剂对油污、粉尘等大分子颗粒物的吸附净化能力;与之相比,对比例中通过添加经过酸处理的天然铝土矿制备得到的载体(样品E)和采用水热方法处理得到的铝土矿制备得到的载体(样品F),其结构中孔径大于100nm的大孔的体积分数仅分别为9.3%、12.5%,从而对油污、粉尘等大分子颗粒物的吸附净化能力较差。
载体强度测试实验
实验步骤具体如下:
按照四分法分别抽取40颗载体样品A-F,在ZQJ-Ⅱ智能颗粒强度试验机(国家化工催化剂检测中心监制)上测试上述载体样品的线接触压碎强度,以平均值的大小表示催化剂强度的高低。
载体强度测试结果如表2所示。
表2-载体强度测试结果
样品 强度/(N/cm)
A 196
B 185
C 176
D 223
E 88
F 106
从表2数据可以看出,本发明方法制备得到的载体(样品A-D)具有较高的强度,高达176-223N/cm,能够适用于高浓度CO、高汽气比和高压原料气的变换制氢反应;与之相比,对比例中通过添加经过酸处理的天然铝土矿制备得到的载体(样品E)和采用水热方法处理得到的铝土矿制备得到的载体(样品F),强度较低,分别仅为88N/cm、106N/cm,抗水合性能较差,易失活或粉化,不能适用于高浓度CO、高汽气比和高压原料气的变换制氢反应。
载体抗水合性能测试实验
将载体样品A-E分别研磨成80-160目粉。取10g载体样品粉和50mL蒸 馏水装入100mL带聚四氟乙烯的水热反应釜中,密封,200℃水热条件下处理4h;之后将水热处理后样品110℃烘干6h,并利用X-射线粉末衍射仪检测其晶相变化情况。
上述不同载体经抗水合性能测试后的XRD图谱如图1所示,可以看出,本发明所述载体(样品A-D),经水热处理后,仍保持了较好的MgAl2O4结构,无其他新物相生成,从而呈现较强的抗水合性能。而对比例所得载体(样品E)在水热处理后,除MgAl2O4尖晶石相外,还出现了AlOOH和((Mg4Al2)(OH)12CO3(H2O)3)0.5水合产物的衍射峰,抗水合性能较弱。
进一步,对实施例1-4和对比例1-2中的载体依次进行编号为A1-F1并进行以下测试。
催化剂CO变换反应活性评价实验
实验步骤具体如下:
(1)催化剂硫化:
分为三段硫化,先250℃硫化360min,之后升温至350℃,硫化240min,最后一段硫化在420℃硫化180min;
(2)催化剂的活性测试:
评价条件:
变换原料气组成:46%CO,6%CO2,其余为H2
催化剂装填量30ml,压力为5MPa,空速3000h-1,水蒸汽和干原料气的体积比即汽气比为1.2;
硫化结束后,按上述评价条件测试其活性,反应温度范围为250-350℃,升温速率为3℃/min,温度间隔50℃,每个测试温度点保持时间为4h。采用GC-2014气相色谱分析仪,六通阀自动取样,检测反应前后的CO含量。
以CO的转化率表示催化剂变换活性,计算公式如下:
CO转化率(%)=100%×(1-Vo/Vi)/(1+Vo)
式中Vi为原料气中CO的体积分数,Vo为变换气体中CO的体积分数。
当变换反应温度分别为250℃、300℃、350℃时,计算催化剂的CO转化率,结果如表3所示。
表3-不同变换反应温度下催化剂的CO转化率
样品 250℃ 300℃ 350℃
A1 33.5% 49.5% 56.9%
B1 36.4% 53.3% 60.3%
C1 41.3% 60.4% 65.3%
D1 35.1% 58.6% 62.4%
E1 68.7% 81.3% 85.2%
F1 72.0% 83.4% 87.7%
从表3数据可以看出,本发明所述催化剂(样品A1-D1)具有适中的CO变换反应催化活性,在用于高浓度CO、高汽气比、高压原料气的变换制氢反应时,能够实现将原料气中的CO以梯级变换的方式可控、分步进行,进而实现将催化剂床层温度控制在合理范围内;与之相比,对比例中的催化剂(样品E1和样品F1),催化活性过高,容易发生催化剂的高温烧结而失活,甚至引起催化剂床层的“飞温”现象,不能适用于高浓度CO、高汽气比和高压原料气的变换制氢反应。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种具有变换和吸附净化性能的催化剂载体,其特征在于,原料组分包括:
    改性铝土矿,5-15重量份;
    氧化铝或拟薄水铝石,40-60重量份;
    氧化镁或氢氧化镁,20-40重量份;
    所述改性铝土矿采用如下方法制备:
    先对天然铝土矿进行酸处理,再用蒸馏水洗涤至洗涤液呈中性,经过滤、干燥即得所述改性铝土矿。
  2. 根据权利要求1所述的具有变换和吸附净化性能的催化剂载体,其特征在于,所述酸处理采用酸为硝酸、磷酸、草酸、硼酸中的一种或者几种的混合物;
    所述酸处理采用酸的浓度为1-3mol/L,所述酸处理的温度为30-70℃,所述酸处理的时间为2-8h。
  3. 根据权利要求1或2所述的具有变换和吸附净化性能的催化剂载体,其特征在于,进行所述干燥处理的温度为120-150℃,所述干燥处理的时间为4-6h。
  4. 根据权利要求1-3任一项所述的具有变换和吸附净化性能的催化剂载体,其特征在于,所述改性铝土矿的粒径为100-150目,比表面积为120-180m2/g,孔容为0.15-0.40ml/g。
  5. 根据权利要求1-4任一项所述的具有变换和吸附净化性能的催化剂载体,其特征在于,所述催化剂载体的结构中包括孔径为100-300nm的大孔,所述大孔占催化剂载体的体积分数为10-30%。
  6. 基于权利要求1-5任一项所述的具有变换和吸附净化性能的催化剂载体的催化剂,其特征在于,在所述催化剂载体上负载有活性组分;
    所述活性组分包括2-5重量份的CoO和/或NiO,6-10重量份的MoO3和/或WO3
  7. 一种制备权利要求6所述的催化剂的方法,其包括如下步骤:
    (1)按照上述重量份称取所述改性铝土矿、氧化铝或拟薄水铝石和氧化镁或氢氧化镁,并与钴源和/或镍源、钼源和/或钨源进行充分混捏,得到混合物;
    (2)对所述混合物进行挤条,得到挤条产品;
    (3)对所述挤条产品进行干燥、焙烧,即得所述具有变换和吸附净化性能的催化剂。
  8. 根据权利要求7所述催化剂的制备方法,其特征在于,所述钴源为草酸钴,所述镍源为草酸镍;所述钼源为三氧化钼和/或钼精矿,所述钨源为三氧化钨。
  9. 根据权利要求8所述的具有变换和吸附净化性能的催化剂的制备方法,其特征在于,步骤(3)中,进行所述干燥处理的温度为110-140℃,所述干燥处理的时间为4-8h;
    进行所述焙烧处理的温度为580-680℃,所述焙烧处理的时间为4-8h。
  10. 权利要求6所述的具有变换和吸附净化性能的催化剂在一氧化碳耐硫变换反应中的应用。
PCT/CN2015/094408 2015-07-13 2015-11-12 一氧化碳变换催化剂载体、基于载体的催化剂及制备方法 WO2017008419A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015002396.8T DE112015002396T5 (de) 2015-07-13 2015-11-12 Träger des CO-Shift-Katalysators, auf dem Träger basierender Katalysator und das Herstellungsverfahren
US15/303,651 US10525450B2 (en) 2015-07-13 2015-11-12 CO shift catalyst carrier, catalyst based on the catalyst carrier and preparation process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510407984.X 2015-07-13
CN201510407984.XA CN105032497B (zh) 2015-07-13 2015-07-13 一氧化碳变换催化剂载体、基于载体的催化剂及制备方法

Publications (1)

Publication Number Publication Date
WO2017008419A1 true WO2017008419A1 (zh) 2017-01-19

Family

ID=54439809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094408 WO2017008419A1 (zh) 2015-07-13 2015-11-12 一氧化碳变换催化剂载体、基于载体的催化剂及制备方法

Country Status (4)

Country Link
US (1) US10525450B2 (zh)
CN (1) CN105032497B (zh)
DE (1) DE112015002396T5 (zh)
WO (1) WO2017008419A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032497B (zh) 2015-07-13 2017-06-13 福州大学化肥催化剂国家工程研究中心 一氧化碳变换催化剂载体、基于载体的催化剂及制备方法
CN106045758A (zh) * 2016-05-26 2016-10-26 淄博出入境检验检疫局综合技术服务中心 一种重金属污染土壤修复剂及其制备方法
CN106732787B (zh) * 2016-11-18 2019-07-26 福州大学化肥催化剂国家工程研究中心 一种铝土矿的活化方法、铝土矿催化剂及其制备方法
CN109382116B (zh) * 2017-08-02 2021-08-10 中国石油化工股份有限公司 耐硫变换催化剂及其制备方法
CN108704633A (zh) * 2018-05-07 2018-10-26 郑州东旺矿业有限公司 一种铝土矿的活化方法、铝土矿催化剂及其制备方法
CN111841555B (zh) * 2020-07-29 2023-03-03 四川蜀泰化工科技有限公司 甲醇直接裂解制co和h2的催化剂、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651972B2 (en) * 2005-12-23 2010-01-26 Korean Aerospace Research Institute Method of manufacturing high-crush-strength iridium catalyst for hydrazine decomposition reaction in spacecraft thrusters using bauxite
CN102198401A (zh) * 2011-04-08 2011-09-28 东南大学 一种钴钼-凹凸棒土co耐硫变换催化剂及其制备方法
CN102240556A (zh) * 2011-04-29 2011-11-16 福州大学 一种适用于高压工艺的co耐硫变换催化剂及其制备方法
CN105032497A (zh) * 2015-07-13 2015-11-11 福州大学化肥催化剂国家工程研究中心 一氧化碳变换催化剂载体、基于载体的催化剂及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153580A (en) * 1977-12-09 1979-05-08 United Catalysts Inc. CO conversion catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651972B2 (en) * 2005-12-23 2010-01-26 Korean Aerospace Research Institute Method of manufacturing high-crush-strength iridium catalyst for hydrazine decomposition reaction in spacecraft thrusters using bauxite
CN102198401A (zh) * 2011-04-08 2011-09-28 东南大学 一种钴钼-凹凸棒土co耐硫变换催化剂及其制备方法
CN102240556A (zh) * 2011-04-29 2011-11-16 福州大学 一种适用于高压工艺的co耐硫变换催化剂及其制备方法
CN105032497A (zh) * 2015-07-13 2015-11-11 福州大学化肥催化剂国家工程研究中心 一氧化碳变换催化剂载体、基于载体的催化剂及制备方法

Also Published As

Publication number Publication date
US10525450B2 (en) 2020-01-07
CN105032497A (zh) 2015-11-11
DE112015002396T5 (de) 2017-03-02
CN105032497B (zh) 2017-06-13
US20180117569A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
WO2017008419A1 (zh) 一氧化碳变换催化剂载体、基于载体的催化剂及制备方法
Zhao et al. CO 2 methanation and co-methanation of CO and CO 2 over Mn-promoted Ni/Al 2 O 3 catalysts
JP5022570B2 (ja) ドープされた球形状の担持触媒及び金属を含む石油留分の水素処理及び水素化転化方法
Geng et al. Room-temperature hydrogen sulfide removal with zinc oxide nanoparticle/molecular sieve prepared by melt infiltration
Le et al. CO and CO 2 methanation over Ni/SiC and Ni/SiO 2 catalysts
Meshkani et al. Preparation of nanocrystalline metal (Cr, Al, Mn, Ce, Ni, Co and Cu) modified ferrite catalysts for the high temperature water gas shift reaction
JP5778150B2 (ja) ソーベント
US4990318A (en) Selective removal of hydrogen sulfide over a nickel-promoted absorbing composition
Bian et al. Ni-based catalyst derived from Ni/Al hydrotalcite-like compounds by the urea hydrolysis method for CO methanation
Wang et al. Structural tuning and NH3-SCO performance optimization of CuO-Fe2O3 catalysts by impact of thermal treatment
EP3083013B1 (en) Method for preparing a sorbent
Fan et al. Mg-Al oxide supported Ni catalysts with enhanced stability for efficient synthetic natural gas from syngas
Li et al. Design of active and stable bimodal nickel catalysts for methane reforming with CO2
CN103480375A (zh) 一种一氧化碳甲烷化催化剂及其制备方法
Wang et al. Simultaneous catalytic removal of NOx and soot particulate over Co–Al mixed oxide catalysts derived from hydrotalcites
EP0401789B1 (en) Selective removal of hydrogen sulfide over a zinc oxide and diatomite absorbing composition
Dai et al. Ni-Based catalysts supported on natural clay of attapulgite applied in the dry reforming of methane reaction
Rossi et al. An evaluation of calcined hydrocalumite as carbon dioxide adsorbent using thermogravimetric analysis
CA2929190C (en) A process for the catalytic conversion of micro carbon residue content of heavy hydrocarbon feedstocks and a low surface area catalyst composition for use therein
Hu et al. High-surface-area activated red mud supported Co 3 O 4 catalysts for efficient catalytic oxidation of CO
Dang et al. High-purity hydrogen production from phenol on Ni-CaO-Ca12Al14O33 multifunctional catalyst derived from recovered layered double hydroxide
Li et al. Ni-based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds and its activity in the methanation of carbon monoxide
Torrez-Herrera et al. A comparative study of the catalytic performance of nickel supported on a hibonite-type La-hexaaluminate synthesized from aluminum saline slags in the dry reforming of methane
Han et al. Sm-doped manganese-based Zr–Fe polymeric pillared interlayered montmorillonite for low temperature selective catalytic reduction of NO x by NH 3 in metallurgical sintering flue gas
Chen et al. Three-dimensionally ordered macro–mesoporous CoMo bulk catalysts with superior performance in hydrodesulfurization of thiophene

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15303651

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002396

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898146

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15898146

Country of ref document: EP

Kind code of ref document: A1