WO2017007077A1 - 감시 방법 - Google Patents
감시 방법 Download PDFInfo
- Publication number
- WO2017007077A1 WO2017007077A1 PCT/KR2015/012029 KR2015012029W WO2017007077A1 WO 2017007077 A1 WO2017007077 A1 WO 2017007077A1 KR 2015012029 W KR2015012029 W KR 2015012029W WO 2017007077 A1 WO2017007077 A1 WO 2017007077A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- event
- image sensor
- image
- event occurrence
- checking means
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000012544 monitoring process Methods 0.000 title claims abstract description 29
- 238000001514 detection method Methods 0.000 claims abstract description 14
- 230000005236 sound signal Effects 0.000 claims description 13
- 238000012806 monitoring device Methods 0.000 description 29
- 238000012790 confirmation Methods 0.000 description 27
- 230000006698 induction Effects 0.000 description 21
- 230000008569 process Effects 0.000 description 17
- 238000012795 verification Methods 0.000 description 11
- 230000001939 inductive effect Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/188—Capturing isolated or intermittent images triggered by the occurrence of a predetermined event, e.g. an object reaching a predetermined position
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/16—Actuation by interference with mechanical vibrations in air or other fluid
- G08B13/1654—Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems
- G08B13/1672—Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems using sonic detecting means, e.g. a microphone operating in the audio frequency range
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19639—Details of the system layout
- G08B13/19647—Systems specially adapted for intrusion detection in or around a vehicle
- G08B13/1965—Systems specially adapted for intrusion detection in or around a vehicle the vehicle being an aircraft
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19695—Arrangements wherein non-video detectors start video recording or forwarding but do not generate an alarm themselves
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/695—Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/90—Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/183—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
- H04N7/185—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
- B64U10/14—Flying platforms with four distinct rotor axes, e.g. quadcopters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
- B64U2101/31—UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19617—Surveillance camera constructional details
- G08B13/19626—Surveillance camera constructional details optical details, e.g. lenses, mirrors or multiple lenses
- G08B13/19628—Surveillance camera constructional details optical details, e.g. lenses, mirrors or multiple lenses of wide angled cameras and camera groups, e.g. omni-directional cameras, fish eye, single units having multiple cameras achieving a wide angle view
Definitions
- Embodiments of the present invention relate to a monitoring method for obtaining a more detailed event image by moving the checking means based on the information obtained from the event occurrence image.
- the present invention has been created to solve the above-described problems, and it is possible to obtain more detailed event images by analyzing the event image acquired by the surveillance camera and moving the checking means based on the analysis result.
- a monitoring method includes: an event generating region detecting step of detecting an event generating region in an image acquired by a first image sensor; And a confirming means moving step of moving the confirming means equipped with the second image sensor in a direction corresponding to the detected event generating region when the event generating region satisfies a preset condition.
- the preset condition may be the number of pixels constituting the event generation region is equal to or less than a first predetermined threshold number.
- the preset condition may be a condition similar to a shape in which the shape of the object in the event occurrence area is previously stored.
- the monitoring method according to an embodiment of the present invention may further include a direction detecting step of detecting an event occurrence direction using a direction sensor.
- the detecting of the event occurrence area may include controlling a photographing direction of the first image sensor so that the first image sensor photographs the event occurrence direction; And detecting the event occurrence region in the image acquired by the first image sensor.
- the direction sensor may include at least one acoustic sensor installed in different directions, and the detecting of the direction may include obtaining an energy average of sound signals obtained by the at least one acoustic sensor, wherein the energy average is equal to or greater than a predetermined threshold energy.
- a direction in which an acoustic sensor that acquires the event sound signal is installed may be detected as the event occurrence direction.
- the monitoring method further includes an event generating direction detecting step of detecting a direction corresponding to the event generating area based on the image, wherein the checking means moving step comprises detecting the event generating direction.
- the confirmation means equipped with the second image sensor can be moved in the direction corresponding to the event occurrence region detected by the detection.
- the first image sensor may be provided at a fixed support, and the checking means may be an unmanned aerial vehicle.
- the monitoring method according to an embodiment of the present invention may further include expanding a region corresponding to an event occurrence region from an image acquired by the first image sensor to an image obtained by the second image sensor and providing the same to a user. Can be.
- the moving of the checking means may include: calculating a maximum moving distance that is the maximum moving distance of the checking means in a direction corresponding to the event occurrence area by using the remaining energy information of the checking means; Estimating the number of pixels constituting the event generation area in the image acquired by the second image sensor when the checking means is moved to the maximum moving distance; And acquiring an image from at least one 1-1 image sensor and a 2-1 image sensor adjacent to the first image sensor when the number of pixels is less than or equal to a preset second threshold number.
- a monitoring method including: obtaining direction information by detecting a symbol from an image acquired by the second image sensor and obtaining information regarding an alignment state between the checking means and the landing pad; An altitude information acquiring step of detecting the light intensity of the light emitting means provided in the landing site from the image to obtain information regarding the altitude of the vehicle; And an identification means control step of controlling the identification means based on the information on the alignment state and the information on the altitude.
- the landing area is provided in a support portion to which the first image sensor is fixed, and the light emitting means includes a plurality of light emitting elements arranged in row and column directions, and the symbol is indicated by a lighting pattern of the plurality of light emitting elements. Can be.
- the altitude information acquiring step may include detecting a light intensity of the light emitting means; And acquiring information about the altitude of the checking means by using a predetermined relationship between the luminance and the distance and the detected luminance.
- a monitoring method includes: a direction detecting step of detecting an event occurrence direction using a direction sensor; A confirming means moving step of moving a confirming means in the direction of occurrence of the event detected in said direction detecting step; And controlling a photographing direction of the first image sensor so that the first image sensor photographs a direction opposite to the event occurrence direction.
- a surveillance apparatus including an event generation region detector configured to detect an event generation region from an image acquired by a first image sensor; And a confirming means moving unit for moving the confirming means equipped with the second image sensor in a direction corresponding to the detected event generating region when the event generating region satisfies a preset condition.
- the monitoring apparatus may further include a direction detecting unit for detecting an event occurrence direction using a direction sensor.
- the event generation area detector may control a shooting direction of the first image sensor so that the first image sensor captures the event generation direction, and detect the event occurrence area in an image acquired by the first image sensor.
- the monitoring apparatus further includes an information providing unit which enlarges a region corresponding to an event occurrence region from an image acquired by the first image sensor to an image obtained by the second image sensor and provides the information to a user. can do.
- a method and an apparatus capable of acquiring a more detailed event image may be implemented by analyzing the event image acquired by the surveillance camera and moving the checking means based on the analysis result.
- FIG. 1 shows a monitoring system according to an embodiment of the present invention.
- FIG. 2 illustrates a process of detecting an event occurrence direction using a direction sensor by a direction detector according to an embodiment of the present invention.
- 3A and 3B illustrate a process of acquiring an image according to an event occurrence direction detected by the direction detection unit by the event occurrence area detection unit of FIG. 1.
- 4A and 4B illustrate a process of detecting, by the event generating region detector of FIG. 1, an event generating region in an image acquired by the first image sensor.
- FIG. 5 is a diagram illustrating a process of acquiring an event image by the checking means of FIG. 1 under the control of the checking means moving unit.
- FIG. 6 illustrates a process in which a surveillance apparatus according to an embodiment of the present invention cooperates with neighboring surveillance apparatuses.
- FIG. 7 illustrates an example of a screen on which the information providing unit of FIG. 1 provides an image acquired by a first image sensor and a second image sensor to a user.
- FIG 8 and 9 are views for explaining a process of inducing landing by the landing induction unit obtains information on the alignment state of the confirmation means and the confirmation means cradle from the image obtained by the second image sensor, and determines the direction of movement accordingly; Drawing.
- FIG. 10 is a view for explaining a process of calculating the altitude of the checking unit by detecting the brightness of light irradiated by the checking unit inducing unit from the image obtained by the landing inducing unit by the second image sensor.
- 11A and 11B illustrate a method of detecting, by the direction detecting unit, a direction of occurrence of an event from an image acquired by the first image sensor, according to another embodiment of the present invention.
- 12A and 12B illustrate a process of acquiring an image in a direction opposite to the event occurrence direction detected by the direction detection unit by the event occurrence area detection unit according to another embodiment of the present invention.
- FIG. 13 is a flowchart illustrating a monitoring method according to an embodiment of the present invention.
- first and second may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.
- Embodiments of the present invention can be represented by functional block configurations and various processing steps. Such functional blocks may be implemented in various numbers of hardware or / and software configurations that perform particular functions. For example, embodiments of the invention may be implemented directly, such as memory, processing, logic, look-up table, etc., capable of executing various functions by the control of one or more microprocessors or other control devices. Circuit configurations can be employed. Similar to the components of an embodiment of the present invention may be implemented in software programming or software elements, embodiments of the present invention include various algorithms implemented in combinations of data structures, processes, routines or other programming constructs. It may be implemented in a programming or scripting language such as C, C ++, Java, assembler, or the like.
- inventions may be implemented with an algorithm running on one or more processors.
- embodiments of the present invention may employ the prior art for electronic configuration, signal processing, and / or data processing.
- Terms such as mechanism, element, means, configuration can be used broadly and are not limited to mechanical and physical configurations. The term may include the meaning of a series of routines of software in conjunction with a processor or the like.
- a surveillance system may include a surveillance apparatus 1, a first image sensor 2, a verification means 3, and a verification means holder 5.
- the first image sensor 2 photographs a surrounding environment or a scene (space), and displays various objects (for example, static objects such as buildings, trees, obstacles, people, etc.) existing in the scene. Dynamic objects such as animals).
- the first image sensor 2 may be a sensor having a limited angle of view, such as a conventional camera, or an unlimited angle of view, such as a fisheye camera.
- Confirming means (3) may be a flying means having a wing or a rotor.
- it may be a fixed wing type vehicle such as a conventional vehicle, or may be a rotorcraft type vehicle such as a helicopter.
- the checking means 3 may be a driving means having a driving means such as a wheel.
- the vehicle may be a driving means having various types of driving units, such as an automobile, an armored vehicle having a caterpillar, a motorcycle, and the like.
- the checking means 3 may include a second image sensor 7 for acquiring an image. This is to provide a user with more detailed information by capturing a region corresponding to an event occurrence region in the image acquired by the first image sensor 2 with the second image sensor 7.
- the environment or scene (space) is photographed, and various objects (for example, static objects such as buildings, trees, and obstacles, or dynamic objects such as people and animals) exist in the scene. You can shoot.
- the second image sensor 7 may be a sensor having a limited angle of view like a conventional camera or an unlimited angle of view such as a fisheye camera.
- Verification means holder 5 may have a variety of forms depending on the type of the verification means (3).
- the checking means 3 may have a wide surface shape for landing, and in this case, the checking means inducing part 6 ) May be further provided.
- Confirmation means induction part 6 may include a plurality of light emitting elements arranged in the row and column direction.
- the confirmation unit guide unit 6 may display a symbol for inducing landing by using a plurality of light emitting elements.
- the light emitting device may be a light emitting device such as an LED lamp, an IR lamp or a halogen lamp.
- the checking means holder 5 may further include one or more direction sensors 4 for detecting the direction in which the event occurs.
- the check means holder 5 may further include an energy supply means (not shown) for supplying energy of the check means.
- the identification means 3 may be connected to the monitoring apparatus 1 through a wireless network, where the wireless network may be a network of various frequency bands of various types such as CDMA, WIFI, WIBRO, or LTE.
- first image sensor 2 and the confirmation means holder 5 may also be connected to the surveillance apparatus 1 by wire or wireless network.
- the monitoring device 1 may include a direction detecting unit 10, an event generating area detecting unit 20, a confirming unit moving unit 30, an information providing unit 40, and a landing inducing unit 50.
- the direction detector 10 may detect the event occurrence direction using the direction sensor 4.
- the event generating region detector 20 may detect the event generating region from the image acquired by the first image sensor 2.
- the checking means moving unit 30 may move the checking means 3 equipped with the second image sensor 7 in a direction corresponding to the event generating region.
- the information provider 40 may enlarge the area corresponding to the event occurrence area in the image acquired by the first image sensor 2 to an image obtained by the second image sensor 7 and provide the same to the user.
- the landing induction part 50 may guide the confirmation means 3 to land on the confirmation means cradle 5.
- FIG. 2 illustrates a process in which the direction detecting unit 10 detects an event occurrence direction using a direction sensor according to an embodiment of the present invention.
- FIG. 2 an example in which twelve direction sensors 111-122 are provided in total is illustrated.
- the plurality of direction sensors 111 to 122 may be disposed at appropriate positions to detect the direction of event occurrence.
- 2 shows an example in which three direction sensors are arranged at four corners of the checking means holder 5, respectively. That is, the direction sensors 111-113 are arranged on the upper side, the direction sensors 114-116 on the right side, the direction sensors 117-119 on the lower side, and the direction sensors 120-122 on the left side.
- the direction sensors 111-113 are arranged on the upper side
- the direction sensors 114-116 on the right side the direction sensors 117-119 on the lower side
- the direction sensors 120-122 on the left side.
- the direction sensors 111 to 122 may be acoustic sensors, and various sensors for detecting an event may be used.
- the direction sensors 111-122 are acoustic sensors, but this is not intended to be limited to specific embodiments by way of example.
- the direction detector 10 may obtain an energy average of the sound signals acquired by the direction sensors 111-122, and detect a sound signal having an energy average equal to or greater than a predetermined threshold energy as an event sound signal. In addition, the direction detector 10 may detect a direction in which the acoustic sensor that acquires the event sound signal is installed as the event generation direction. At this time, the threshold energy may be set by the user.
- the direction detecting unit 10 may detect the event generation direction 12 based on the sensing information.
- the direction sensor 112 and the direction sensor 115 may also detect an event sound signal with a sound signal whose energy average is greater than or equal to a preset threshold energy. Even in this case, the direction detector 10 may detect the event generation direction 12 in consideration of the energy of the acoustic signal detected by each of the direction sensors 112, 113, 114, and 115.
- the event generation area detector 20 may set the shooting direction of the first image sensor 2 such that the first image sensor 2 captures the event generation direction detected by the direction detector 10. Can be controlled.
- the event generating region detector 20 may detect the event generating region from the image acquired by the first image sensor 2.
- 3A and 3B illustrate a process in which the event generation area detector 20 of FIG. 1 acquires an image according to the event generation direction detected by the direction detection unit 10.
- the angle of view 13 of the first image sensor 2 is shown as limited. In this case, the photographing range 14 of the first image sensor 2 may not be suitable for photographing the event 11.
- the event generating region detector 20 rotates the first image sensor 2 in the event generating direction 12 detected by the direction detecting unit 10 as shown in FIG. 3B to capture an image of the event 11. ).
- the event generating region detector 20 may detect the event generating region from the image acquired by the first image sensor 2 having the appropriate photographing range 15.
- 4A and 4B illustrate a process in which the event generating region detector 20 of FIG. 1 detects an event generating region from an image acquired by the first image sensor 2.
- the event generation area detector 20 may detect, as a motion area, an area in which the pixel property of the image 21 acquired by the first image sensor 2 changes by a predetermined threshold or more.
- the attribute of the pixel may be luminance, color temperature, R, G, B, etc., and may be set by the user according to the type of event to be detected.
- the threshold may also be set by the user.
- the movement area is a portion where the event 11 occurs, and the event generation area detection unit 20 may detect the corresponding area as the event generation area 22 as shown in FIG. 4B.
- the detected event occurrence area 22 can be used to determine whether the confirmation means 3 to be described later moves.
- the checking means moving unit 30 corresponds to the detected event generating region 22 of FIG. 4B when the detected event generating region 22 of FIG. 4B satisfies a preset condition.
- the checking means 3 equipped with the second image sensor 7 can be moved in the direction.
- the preset condition may be a condition in which the number of pixels constituting the event generation region (22 of FIG. 4B) is equal to or less than the first predetermined threshold number.
- the preset condition for the confirming means moving unit 30 to move the confirming means 3 may be a condition in which the number of pixels constituting the event generating region (22 of FIG. 4B) is equal to or less than the first threshold number.
- the checking means moving unit 30 counts the number of pixels constituting the event generating area (22 in FIG. 4B) detected by the event generating area detecting unit 20, and determines whether the number of pixels is equal to or less than a predetermined threshold number. You can judge.
- the threshold number may be set by a user according to a purpose, and may vary depending on the type of event to be monitored.
- the event generating area 22 may be configured when the size of the event itself is small (the size of the subject that caused the event is small) or when the distance between the place where the event occurs and the location of the first image sensor 2 is far.
- the number of pixels may be less than or equal to a predetermined threshold number. In both cases described above, due to the limitation of the resolution of the first image sensor 2, a detailed image of the event cannot be obtained.
- the checking means moving unit 30 may move the checking means 3 to which the second image sensor 7 is attached in the direction in which the event occurs, in order to acquire an image of the correct event, and the checking means 3 Can shoot where the event occurred in close proximity. At this time, the event generation direction detected by the direction sensor 4 of FIG. 2 can be used.
- the preset condition for the confirming means moving unit 30 to move the confirming means 3 may be a condition in which the shape of the object in the event occurrence region 22 of FIG. 4B is not similar to the prestored shape. have.
- the previously stored shape can be updated by learning.
- the checking means moving unit 30 may determine whether the shape of the object in the event generating area (22 of FIG. 4B) detected by the event generating area detecting unit 20 is similar to the previously stored shape.
- the checking means moving unit 30 checks the checking means 3 to which the second image sensor 7 is attached in order to obtain an image of the correct event. It can be moved in the direction of occurrence. At this time, the event generation direction detected by the direction sensor 4 of FIG. 2 can be used.
- the pre-stored shape includes a shape relating to a plurality of vehicles and does not include the shape of a person, and the shape of the person is included in the event generation area (22 in FIG. 4B) detected by the event generation area detection unit 20.
- the checking means moving unit 30 may move the checking means 3 in the direction in which the event occurred in order to obtain an accurate event image.
- a technique such as pattern matching may be used to determine the similar shape, but the present invention is not limited thereto.
- FIG. 5 illustrates a process of acquiring an event image by the confirming means 3 of FIG. 1 under the control of the confirming means moving unit 30.
- the number of pixels constituting the event generation region is less than or equal to a predetermined threshold number.
- the confirmation means moving unit 30 may move the confirmation means 3 in the event generation direction 12.
- the identification means 3 may include a second image sensor 7 for acquiring an event image.
- the checking means moving unit 30 captures the event 11 so that the event generating area is always included in the shooting range 31 of the second image sensor 7 while moving the checking means 3 in the event generating direction 12. To be transmitted to the monitoring device 1 of FIG. 1 in real time. At this time, the checking means moving unit 30 may move the checking means 3 until the number of pixels constituting the event generating region detected in the image captured by the second image sensor 7 is equal to or greater than a preset threshold number. have.
- the threshold number may be set by a user according to a purpose and may vary depending on the type of event to be monitored.
- the checking means moving unit 30 may calculate the maximum moving distance, which is the maximum moving distance in the direction in which the checking means 3 corresponds to the event occurrence region, using the energy remaining information of the checking means 3.
- the remaining energy information of the checking means 3 may include battery charging information for driving the checking means 3 and remaining fuel information.
- the checking means moving unit 30 may calculate the maximum moving distance based on the average energy consumption per distance of the checking means 3. For example, when the checking means 3 is a vehicle such as a drone driven by battery power, the checking means moving unit 30 may calculate the maximum moving distance based on the battery remaining information of the drone and the average energy consumption per distance of the drone. have.
- the checking means moving unit 30 may predict the number of pixels constituting the event generation area in the image acquired by the second image sensor 7.
- the checking means moving unit 30 counts the number of pixels constituting the event generation region (22 in FIG. 4B) in the image acquired by the first image sensor 2 as described above, and counts the number of pixels.
- the number of pixels constituting the event generation area in the image acquired by the second image sensor 7 may be estimated in consideration of the number and the maximum moving distance of the checking means 3. In this case, the relationship between the number of pixels predicted and the distance may be obtained by experiment. For example, the number of pixels to be predicted may be proportional to a value obtained by multiplying the number of pixels constituting the event occurrence area by the square of the maximum moving distance.
- the checking means moving unit 30 may acquire an image from another monitoring device adjacent to the monitoring device 1 equipped with the first image sensor 2 when the predicted number of pixels is less than or equal to the preset second threshold number.
- the another monitoring device may be provided with a 1-1 image sensor and a 2-1 image sensor. Accordingly, when the number of the predicted pixels is less than or equal to the preset second threshold number, the checking means moving unit 30 may obtain an image from the 1-1st image sensor and the 2-1th image sensor. That is, the monitoring device 1 according to an embodiment of the present invention may acquire an event image by cooperating with one or more adjacent monitoring devices (not shown). Collaboration between monitoring devices enables more accurate event image acquisition.
- FIG. 6 illustrates a process in which the monitoring apparatus 1 cooperates with adjacent monitoring apparatuses according to an embodiment of the present invention.
- the checking means moving unit 30 of the monitoring device 1 may calculate the maximum moving distance 32.
- the checking means moving unit 30 of the monitoring device 1 moves the checking means 3 to the calculated maximum moving distance 32, the event generating area in the image acquired by the second image sensor 7 is obtained. It is possible to predict the number of pixels constituting. In other words, when the checking means moving unit 30 of the monitoring device 1 moves the checking means 3 to the maximum point 33 in the direction in which the event occurs, the second image sensor 7 provided in the checking means 3 is provided. ) Can predict the number of pixels for obtaining the event occurrence area in the acquired image.
- the monitoring device 1 is connected to one or more of the adjacent monitoring devices 1-1 and 1-2.
- An image may be acquired from the first image sensor and the second image sensor.
- the monitoring device 1-1 when the monitoring device 1-1 receives an image acquisition command from the monitoring device 1, the monitoring device 1-1 is the maximum travel distance 32-1 and the corresponding point 33 according to the above-described method.
- the number of pixels constituting the event occurrence region in the image acquired at -1) can be predicted.
- the monitoring device 1-1 transmits an image acquisition command to the adjacent monitoring device 1-2.
- the monitoring apparatus 1-2 may predict the number of pixels for obtaining an event occurrence region from the image acquired at the maximum moving distance 32-2 and the point 33-2 according to the above-described method.
- the checking means of the monitoring device 1 moves.
- the unit 30 may obtain an event image from the second image sensor of the monitoring device 1-2.
- the monitoring apparatus 1 may obtain an optimal image with respect to the generated event 11.
- the information providing unit 40 enlarges the area corresponding to the event occurrence area in the image acquired by the first image sensor 2 by using the image acquired by the second image sensor 7. Can be provided to the user.
- FIG. 7 is an example of a screen on which the information providing unit 40 of FIG. 1 provides an image acquired by the first image sensor 2 and the second image sensor 7 to a user.
- the information providing unit 40 enlarges a portion 43 of the image including an image 41 obtained by the first image sensor 2 and an area where an event 11 occurs in the image 41. 2
- the image 42 acquired by the image sensor 7 may be provided to the user.
- Various methods, such as the method, may be used.
- the landing induction part 50 is determined by the identification means guide part 6 provided in the identification means holder 5 in the image acquired by the second image sensor 7 provided in the identification means 3. By detecting the displayed symbol, it is possible to obtain information regarding the alignment state of the checking means 3 and the checking means cradle 5.
- the landing induction part 50 compares the position of the symbol displayed by the confirmation means induction part 6 with the position of the preset symbol in the image acquired by the second image sensor 7 to move the confirmation means 3. Can be judged.
- FIG. 9A shows an example in which the checking means 3 is located on the left side of the checking means holder 5.
- the symbol displayed by the confirmation means inducing unit 6 is located on the right side of the image. That is, the position of the symbol in the image is located on the right side of the position 52 of the symbol for correct landing. Therefore, the landing guide 50 is located on the left side of the confirmation means cradle 5, the confirmation means 3 can obtain the information that to move the confirmation means 3 in the right direction 53 for landing.
- FIG. 9B is an example in the case where the checking means 3 is located under the right side of the checking means holder 5.
- the symbol displayed by the confirmation means inducing unit 6 is located at the upper left of the image. That is, the position of the symbol in the image is located on the upper left side than the position of the symbol 52 for correct landing. Therefore, the landing induction part 50 acquires the information that the verification means 3 is located at the lower right of the verification means cradle 5, and for the landing to move the verification means 3 in the left-up direction 54. can do.
- the landing induction part 50 is the position of the preset symbol as described above.
- the landing induction part 50 detects the brightness of the identification means induction part 6 provided in the identification means holder 5 from the image acquired by the second image sensor 7 to confirm the identification means 3. Information about the altitude of the can be obtained.
- the landing induction part 50 is determined by the identification means induction part 6 provided in the identification means holder 5 in the image acquired by the second image sensor 7 provided in the identification means 3.
- the altitudes h1 and h2 of the checking means 3 can be calculated by detecting the intensity of the irradiated light.
- the landing induction part 50 may detect the luminous intensity of the identification means induction part 6 from the image and obtain information on the altitude of the identification means 3 using the relationship between the preset luminous intensity and the distance and the detected luminous intensity. .
- Luminance refers to the amount of light passing through the unit area perpendicular to the direction of light at a unit distance away from the light source in unit time. Therefore, the farther away from the light source, the less light passes through the unit area, so the luminous intensity decreases.
- the luminous intensity is L
- the distance is h
- the proportional constant is k
- the landing induction part 50 measures the brightness according to the brightness of the verification means induction part 6 at several test altitudes, determines and stores the proportional constant k in advance, and then accurately stores the altitude from the image acquired by the second image sensor 7. Can be calculated.
- Equation 2 the difference in brightness according to the altitude difference from Equation 1 may be expressed as Equation 2.
- the first altitude based on the check means holder (5) ( ) And second altitude ( )about, end If it is 2 times, the light intensity difference according to the altitude difference can be calculated as shown in Equation 3.
- the landing induction part 50 may induce the landing of the checking means 3 by using the above-described information about the alignment state and the information about the altitude.
- the landing induction part 50 controls the horizontal direction of the checking means 3 by using information about the alignment state of the checking means 3 and the checking means cradle 5, and uses the information about the altitude to confirm the means.
- the altitude of (3) can be controlled to gradually decrease.
- the landing induction part 50 may control the checking means 3 using the above-described information even when the checking means 3 take off from the checking means cradle 5 by the checking means moving part 30. .
- the event generation area detection unit 20 of FIG. 1 may detect an event generation area from an image acquired by the first image sensor 2 having an angle of view of 360 degrees.
- the direction detector 10 may detect an event occurrence direction by referring to a position of the event occurrence region in the image acquired by the first image sensor 2.
- the checking means moving unit 30 may move the identifying means 3 equipped with the second image sensor 7 in a direction corresponding to the event generating region.
- the information provider 40 may enlarge the area corresponding to the event occurrence area in the image acquired by the first image sensor 2 to an image obtained by the second image sensor 7 and provide the same to the user.
- a separate direction sensor 4 is used for detecting the event generation direction.
- the first image sensor 2 having no angle of view may be used to acquire information about an event generation direction using an image.
- the direction detecting unit 10 detects the direction of event generation based on the image acquired by the first image sensor 2, and the checking means moving unit 30 moves in the direction of event occurrence acquired by the direction detecting unit 10 from the image.
- the confirmation means 3 equipped with the second image sensor 7 can be moved.
- 11A and 11B illustrate a method in which the direction detecting unit 10 of the monitoring apparatus 1 detects an event occurrence direction from an image acquired by the first image sensor 2 according to another exemplary embodiment.
- the first image sensor 2 has an angle of view 16 of 360 degrees, so that the photographing range 17 also becomes a range of 360 degrees.
- the first image sensor 2 may acquire an image of the event captured without additional rotation. That is, the first image sensor 2 may acquire an image 18 having an angle of view of 360 degrees as illustrated in FIG. 12B.
- the event generation area detector 20 may detect the event generation area from the image 18 acquired by the first image sensor 2 by the same method as the above-described embodiment.
- the direction detector 10 may detect an event occurrence direction by referring to the position 19 of the event occurrence region in the image 18 acquired by the first image sensor 2.
- the image 18 is illustrated as a panoramic image in FIG. 11B, the type of the image 18 is not limited thereto, and an image photographed using a fisheye lens may be used.
- the checking means moving unit 30, the information providing unit 40, and the landing induction unit 50 are the same as the above-described embodiments, detailed description thereof will be omitted.
- the event generating region detector 20 may control the photographing direction of the first image sensor 2 such that the first image sensor 2 captures a direction opposite to the event generating direction.
- the first image sensor 2 and the second image sensor 7 both shoot the same direction by the direction detecting unit 10 and the event generating region detecting unit 20. Surveillance gaps occur for the remaining directions that fail.
- the blank of surveillance can be minimized by controlling the photographing directions of the first image sensor 2 and the second image sensor 7 to be opposite to each other.
- 12A and 12B illustrate a process in which the event generating area detector 20 acquires an image in a direction opposite to the event generating direction detected by the direction detecting unit 10, according to another exemplary embodiment.
- the angle of view 13 of the first image sensor 2 is shown as limited. In the above-described embodiment, due to the limited angle of view 13 of the first image sensor 2, the event generation area detector 20 rotates the first image sensor 2 in the direction of event generation 12 so that the first image sensor ( 2) has a shooting range 15 suitable for shooting the event (11).
- the event generation area detector 20 may rotate the first image sensor 2 in the direction opposite to the event generation direction 12.
- the confirmation means moving unit 30 moves the confirmation means 3 on which the second image sensor 7 is mounted in the event generation direction 12, and at this time, the event occurrence area detection unit 20 is connected to the second image sensor ( The event occurrence region may be detected from the image obtained by 7).
- the event generation area detector 20 may acquire an event image from the image acquired by the second image sensor 7, and monitor the remaining portion with the first image sensor 2, thereby minimizing the blank of monitoring.
- the event generating region detector 20 may control the first image sensor 2 and the second image sensor 7 to photograph the opposite directions, thereby securing the extended photographing ranges 15 and 31.
- the monitoring method shown in FIG. 13 may be performed by the monitoring device 1 of FIG. 1 described above.
- detailed descriptions of contents overlapping with those described in FIGS. 1 to 13 will be omitted.
- the direction detector 10 may detect an event generation direction using the direction sensor 4. (S10) The direction detector 10 may calculate an energy average of signals obtained by the direction sensors 4 installed in different directions. And an event sound signal having an energy average greater than or equal to a predetermined threshold energy. In addition, the direction detector 10 may detect a direction in which the direction sensor 4, which acquires the event signal, is installed as the event generation direction. At this time, the threshold energy may be set by the user.
- the event generating region detector 20 may detect an event generating region from an image acquired by the first image sensor 2 (S20).
- the event generating region detecting unit 20 generates an event detected by the direction detecting unit 10.
- the first image sensor 2 may be rotated in a direction to have a shooting range suitable for shooting an event.
- the event generation region detector 20 may detect a movement region in which the pixel property is changed in the image acquired by the first image sensor 2.
- the attribute of the pixel may be luminance, color temperature, R, G, B, etc., and may be set by the user according to the type of event to be detected.
- the movement area is a portion where an event occurs, and the event generation area detector 20 may detect the corresponding area as an event generation area.
- the detected event occurrence region can be used to determine whether the confirmation means 3 to be described later moves.
- the identification means moving unit 30 may determine whether the event generation region satisfies a preset condition (S30).
- the preset condition is a condition in which the number of pixels constituting the event generation region is less than or equal to a predetermined first threshold number.
- the shape of the object in the event occurrence region may be a condition that is not similar to the previously stored shape. If the event occurrence area does not satisfy the preset condition, the confirmation means moving unit 30 may not move the confirmation means 3. In this case, the information providing unit 40 may provide only the image acquired by the first image sensor 2 (S40).
- the checking means moving unit 30 moves the checking means 3 to the maximum based on the remaining energy information of the checking means 3 equipped with the second image sensor 7.
- the number of pixels constituting the event generation region may be predicted from the image acquired at the distance, and it may be determined whether the predicted number of pixels is less than or equal to the second threshold number.
- the event image may be difficult to identify due to the small number of pixels constituting the event image, or the object in the event image may be a suspicious object because it is not similar to a previously stored shape.
- the checking means moving unit 30 needs to move the checking means 3 in the direction of event generation to obtain an image of the event captured. Acquiring an accurate event image by the limited energy of the checking means 3.
- the confirmation means moving unit 30 may acquire an event image in cooperation with one or more adjacent monitoring apparatuses 1 based on the energy remaining information of the confirmation means 3.
- the checking means moving unit 30 calculates the maximum moving distance that is the maximum moving distance in the direction in which the checking means 3 corresponds to the event occurrence region by using the remaining energy information of the checking means 3.
- the checking means moving unit 30 predicts the number of pixels constituting the event generation area in the image acquired by the second image sensor 7 when the checking means 3 is moved to the maximum moving distance.
- the checking unit moving unit 30 obtains an event image from the first-first image sensor and the second-first image sensor of at least one adjacent monitoring device 1-1.
- the acquired image may be provided to the user by the information providing unit 40.
- the verification means moving unit 30 may move the verification means 3 equipped with the second image sensor 7 in the direction corresponding to the event occurrence region.
- the information providing unit 40 enlarges the area corresponding to the event occurrence area in the image acquired by the first image sensor 2 to the image obtained by the second image sensor 7 to the user. Can be provided. (S80)
- the landing induction unit 50 may induce the landing unit to land on the identification unit cradle 5 when the acquisition of the event image is completed.
- Embodiments of the present invention can implement a method and apparatus capable of more accurate event determination by obtaining and analyzing a more detailed image by using the verification means.
- the monitoring apparatus and method according to an embodiment of the present invention can be embodied as computer readable codes on a computer readable recording medium.
- Computer-readable recording media include all kinds of recording devices that store data that can be read by a computer system. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, optical data storage devices, and the like.
- the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
- functional programs, codes, and code segments for implementing the present invention can be easily inferred by programmers in the art to which the present invention belongs.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Alarm Systems (AREA)
- Closed-Circuit Television Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Networks & Wireless Communication (AREA)
Abstract
본 발명의 실시예는 감시 방법을 개시한다. 본 발명의 일 실시예에 따른 감시방법은 제1 영상 센서가 획득한 영상에서 이벤트 발생 영역을 검출하는 이벤트 발생 영역 검출 단계; 및 상기 이벤트 발생 영역이 기 설정된 조건을 만족하는 경우, 상기 검출된 이벤트 발생 영역에 해당하는 방향으로 제2 영상 센서를 탑재한 확인수단을 이동시키는 확인수단 이동 단계;를 포함한다.
Description
본 발명의 실시예들은 이벤트 발생 영상에서 획득한 정보를 기초로 확인수단을 이동시켜 보다 상세한 이벤트 영상을 획득하는 감시 방법에 관한 것이다.
오늘날 다수의 감시카메라가 도처에 설치되어 있고, 감시카메라가 획득한 영상에서 이벤트 발생을 감지하여 녹화, 저장 하는 기술들이 개발되고 있다.
그러나 이러한 감시카메라는 벽면이나 기둥 등의 구조물에 고정되어 있기 때문에 감시카메라로부터 일정 거리 이상 떨어진 곳에서 발생한 이벤트의 경우 자세한 영상을 획득하기 어려운 문제점이 있었다.
본 발명은 상술한 문제점을 해결하기 위해 창출된 것으로써 감시카메라가 획득한 이벤트 영상을 분석하고, 분석 결과를 기초로 확인수단을 이동시킴으로써 보다 상세한 이벤트 영상의 획득이 가능하다.
또한 복수의 감시장치 간의 협업을 통해 보다 상세한 이벤트 영상의 획득이 가능하다.
본 발명의 일 실시예에 따른 감시방법은 제1 영상 센서가 획득한 영상에서 이벤트 발생 영역을 검출하는 이벤트 발생 영역 검출 단계; 및 상기 이벤트 발생 영역이 기 설정된 조건을 만족하는 경우, 상기 검출된 이벤트 발생 영역에 해당하는 방향으로 제2 영상 센서를 탑재한 확인수단을 이동시키는 확인수단 이동 단계;를 포함할 수 있다.
이 때 상기 기 설정된 조건은 상기 이벤트 발생 영역을 구성하는 픽셀의 수가 기 설정된 제1 임계수 이하일 수 있다. 또한 상기 기 설정된 조건은 상기 이벤트 발생 영역 내의 객체의 형상이 기 저장된 형상과 유사한 조건일 수도 있다.
본 발명의 일 실시예에 따른 감시방법은 방향 센서를 이용하여 이벤트 발생 방향을 검출하는 방향 검출 단계;를 더 포함할 수 있다.
상기 이벤트 발생 영역 검출 단계는 상기 제1 영상 센서가 상기 이벤트 발생 방향을 촬영하도록 제1 영상센서의 촬영 방향을 제어하는 단계; 및 상기 제1 영상 센서가 획득한 영상에서 상기 이벤트 발생 영역을 검출하는 단계를 포함할 수 있다.
상기 방향 센서는, 서로 다른 방향으로 설치된 적어도 하나 이상의 음향센서를 포함하고, 상기 방향 검출 단계는 하나 이상의 음향센서가 획득한 음향신호의 에너지 평균을 구하고, 상기 에너지 평균이 기 설정된 임계 에너지 이상인 이벤트 음향신호를 검출하여, 상기 이벤트 음향신호를 획득한 음향센서가 설치된 방향을 상기 이벤트 발생 방향으로 검출할 수 있다.
본 발명의 다른 실시예에 따른 감시방법은 상기 영상에 기초하여 상기 이벤트 발생 영역에 해당하는 방향을 검출하는 이벤트 발생 방향 검출 단계;를 더 포함하고, 상기 확인수단 이동 단계는 상기 이벤트 발생 방향 검출 단계에 의해 검출된 이벤트 발생 영역에 해당하는 방향으로 제2 영상 센서를 탑재한 확인수단을 이동시킬 수 있다.
상기 제1 영상 센서는 고정된 지지부에 구비되고, 상기 확인수단은 무인비행체일 수 있다.
본 발명의 일 실시예에 따른 감시방법은 상기 제1 영상 센서가 획득한 영상에서 이벤트 발생 영역에 해당하는 영역을 상기 제2 영상 센서가 획득한 영상으로 확대하여 사용자에게 제공하는 단계를 더 포함할 수 있다.
상기 확인수단 이동 단계는 상기 확인수단의 에너지 잔량 정보를 이용하여 상기 확인수단이 상기 이벤트 발생 영역에 해당하는 방향으로 최대 이동 가능한 거리인 최대 이동거리를 산출하는 단계; 상기 최대 이동거리까지 상기 확인수단을 이동시켰을 때, 상기 제2 영상 센서가 획득한 영상에서의 상기 이벤트 발생 영역을 구성하는 픽셀의 수를 예측하는 단계; 및 상기 픽셀의 수가 기 설정된 제2 임계수 이하인 경우, 상기 제1 영상 센서와 인접한 하나 이상의 제 1-1 영상센서 및 제2-1 영상센서로부터 영상을 획득하는 단계;를 포함할 수 있다.
본 발명의 일 실시예에 따른 감시방법은 상기 제2 영상 센서가 획득한 영상에서 심볼을 검출하여 상기 확인수단과 상기 착륙장의 정렬 상태에 관한 정보를 획득하는 방향정보 획득단계; 상기 영상에서 상기 착륙장에 구비된 발광수단의 광도를 검출하여 상기 비행체의 고도에 관한 정보를 획득하는 고도정보 획득단계; 및 상기 정렬 상태에 관한 정보 및 상기 고도에 관한 정보를 토대로 상기 확인 수단을 제어하는 확인수단 제어 단계;를 더 포함할 수 있다.
상기 착륙장은 상기 제1 영상 센서가 고정되어 있는 지지부에 구비되고, 상기 발광수단은 행 및 열 방향으로 배치된 복수개의 발광소자를 포함하고, 상기 심볼은 상기 복수개의 발광소자의 점등 패턴에 의하여 표시될 수 있다.
상기 고도정보 획득단계는 상기 발광수단의 광도를 검출하는 단계; 및 기 설정된 광도와 거리의 관계 및 상기 검출된 광도를 이용하여 상기 확인 수단의 고도에 관한 정보를 획득하는 단계;를 포함할 수 있다.
본 발명의 다른 실시예에 따른 감시방법은 방향 센서를 이용하여 이벤트 발생 방향을 검출하는 방향 검출 단계; 상기 방향 검출 단계에서 검출한 상기 이벤트 발생 방향으로 확인수단을 이동시키는 확인수단 이동 단계; 및 제1 영상 센서가 상기 이벤트 발생 방향과 반대 방향을 촬영하도록 상기 제1 영상 센서의 촬영 방향을 제어하는 단계;를 포함할 수 있다.
본 발명의 다른 실시예에 따른 감시장치는 제1 영상 센서가 획득한 영상에서 이벤트 발생 영역을 검출하는 이벤트 발생 영역 검출부; 및 상기 이벤트 발생 영역이 기 설정된 조건을 만족하는 경우, 상기 검출된 이벤트 발생 영역에 해당하는 방향으로 제2 영상 센서를 탑재한 확인수단을 이동시키는 확인수단 이동부;를 포함할 수 있다.
본 발명의 다른 실시예에 따른 감시장치는 방향 센서를 이용하여 이벤트 발생 방향을 검출하는 방향 검출부;를 더 포함할 수 있다.
이벤트 발생 영역 검출부는 상기 제1 영상 센서가 상기 이벤트 발생 방향을 촬영하도록 제1 영상센서의 촬영 방향을 제어하고, 상기 제1 영상 센서가 획득한 영상에서 상기 이벤트 발생 영역을 검출할 수 있다.
본 발명의 다른 실시예에 따른 감시장치는 상기 제1 영상 센서가 획득한 영상에서 이벤트 발생 영역에 해당하는 영역을 상기 제2 영상 센서가 획득한 영상으로 확대하여 사용자에게 제공하는 정보제공부를 더 포함할 수 있다.
본 발명의 실시예들에 따르면 감시카메라가 획득한 이벤트 영상을 분석하고, 분석 결과를 기초로 확인수단을 이동시킴으로써 보다 상세한 이벤트 영상의 획득이 가능한 방법 및 장치를 구현할 수 있다.
또한 복수의 감시장치 간의 협업을 통해 보다 상세한 이벤트 영상의 획득이 가능한 방법 및 장치를 구현할 수 있다.
도 1은 본 발명의 일 실시예에 따른 감시시스템을 도시한다.
도 2는 본 발명의 일 실시예에 따른 방향 검출부가 방향 센서를 이용하여 이벤트 발생 방향을 검출하는 과정을 도시한다.
도 3a 및 도3b는 도 1의 이벤트 발생 영역 검출부가 방향 검출부에 의해 검출된 이벤트 발생 방향에 따라 영상을 획득하는 과정을 도시한다.
도 4a 및 도 4b는 도 1의 이벤트 발생 영역 검출부가 제1 영상 센서에 의해 획득된 영상에서 이벤트 발생 영역을 검출하는 과정을 도시한다.
도 5는 도 1의 확인수단이 확인수단 이동부의 제어에 따라 이벤트 영상을 획득하는 과정을 도시한다.
도 6은 본 발명의 일 실시예에 따른 감시장치가 인접하는 감시장치들과 협업하는 과정을 도시한다.
도 7은 도 1의 정보 제공부가 제1 영상 센서 및 제2 영상 센서에 의하여 획득한 영상을 사용자에게 제공하는 화면의 예시이다.
도 8 및 도 9는 착륙 유도부가 제2 영상 센서가 획득한 영상으로부터 확인수단과 확인수단 거치대의 정렬 상태에 관한 정보를 획득하고, 그에 따라 이동 방향을 판단하여 착륙을 유도하는 과정을 설명하기 위한 도면이다.
도 10은 착륙 유도부가 제2 영상 센서가 획득한 영상으로부터 확인수단 유도부에 의하여 조사되는 빛의 광도를 검출하여 확인수단의 고도를 산출하는 과정을 설명하기 위한 도면이다.
도 11a 및 도 11b는 본 발명의 다른 실시예에 따른 감시장치의 방향 검출부가 제1 영상 센서가 획득한 영상으로부터 이벤트 발생 방향을 검출하는 방법을 도시한다.
도 12a 및 도12b는 본 발명의 다른 실시예에 따른 이벤트 발생 영역 검출부가 방향 검출부가 검출한 이벤트 발생 방향과 반대 방향의 영상을 획득하는 과정을 도시한다.
도 13은 본 발명의 일 실시예에 따른 감시방법을 설명하기 위한 흐름도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하의 실시예에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
이하의 실시예에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 이하의 실시예에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 실시예들은 기능적인 블록 구성들 및 다양한 처리 단계들로 나타내어질 수 있다. 이러한 기능 블록들은 특정 기능들을 실행하는 다양한 개수의 하드웨어 또는/및 소프트웨어 구성들로 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하나 이상의 마이크로프로세서들의 제어 또는 다른 제어 장치들에 의해서 다양한 기능들을 실행할 수 있는, 메모리, 프로세싱, 로직(logic), 룩업 테이블(look-up table) 등과 같은 직접 회로 구성들을 채용할 수 있다. 본 발명의 실시예의 구성 요소들이 소프트웨어 프로그래밍 또는 소프트웨어 요소들로 실행될 수 잇는 것과 유사하게, 본 발명의 실시예는 데이터 구조, 프로세스들, 루틴들 또는 다른 프로그래밍 구성들의 조합으로 구현되는 다양한 알고리즘을 포함하여, C, C++, 자바(Java), 어셈블러(assembler) 등과 같은 프로그래밍 또는 스크립팅 언어로 구현될 수 있다. 기능적인 측면들은 하나 이상의 프로세서들에서 실행되는 알고리즘으로 구현될 수 있다. 또한, 본 발명의 실시예들은 전자적인 환경 설정, 신호 처리, 및/또는 데이터 처리 등을 위하여 종래 기술을 채용할 수 있다. 매커니즘, 요소, 수단, 구성과 같은 용어는 넓게 사용될 수 있으며, 기계적이고 물리적인 구성들로서 한정되는 것은 아니다. 상기 용어는 프로세서 등과 연계하여 소프트웨어의 일련의 처리들(routines)의 의미를 포함할 수 있다.
도 1을 참조하면 본 발명의 일 실시예에 따른 감시 시스템은 감시장치(1), 제1 영상 센서(2), 확인수단(3), 확인수단 거치대(5)를 포함할 수 있다.
본 발명의 일 실시예에 따른 제1 영상 센서(2)는 주변 환경 또는 장면(공간)을 촬영하고, 장면 내에 존재하는 다양한 객체(예를 들어, 건물, 나무, 장애물 등의 정적 물체나 사람, 동물 등의 동적 물체)를 촬영할 수 있다. 또한 제1 영상 센서(2)는 통상의 카메라와 같이 제한된 화각을 갖거나 또는 어안 카메라와 같이 제한이 없는 화각을 갖는 센서일 수 있다.
본 발명의 일 실시예에 따른 확인수단(3)은 날개 또는 로터를 구비한 비행수단일 수 있다. 예를 들어 통상의 비행체와 같은 고정익 형태의 비행체일 수 있으며, 헬리콥터와 같은 회전익 형태의 비행체일 수 있다. 또한 본 발명의 일 실시예에 따른 확인수단(3)은 바퀴 등의 구동수단을 구비한 주행수단일 수도 있다. 예를 들어 자동차, 무한궤도를 구비한 장갑차, 오토바이 등의 다양한 형태의 구동부를 갖는 주행수단일 수 있다.
한편 확인수단(3)은 영상 획득을 위한 제2 영상 센서(7)를 구비할 수 있다. 이는 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역에 해당하는 영역을 제2 영상 센서(7)로 촬영하여 사용자에게 보다 상세한 정보를 제공하기 위함이다. 또한 제1 영상 센서(2)와 마찬가지로 주변 환경 또는 장면(공간)을 촬영하고, 장면 내에 존재하는 다양한 객체(예를 들어, 건물, 나무, 장애물 등의 정적 물체나 사람, 동물 등의 동적 물체)를 촬영할 수 있다. 또한 제2 영상 센서(7)는 통상의 카메라와 같이 제한된 화각을 갖거나 또는 어안 카메라와 같이 제한이 없는 화각을 갖는 센서일 수 있다.
본 발명의 일 실시예에 따른 확인수단 거치대(5)는 확인수단(3)의 종류에 따라 다양한 형태를 가질 수 있다. 가령 확인수단(3)이 드론(Dron, 복수개의 프로펠러를 갖는 회전익 형태의 비행체)과 같은 비행체인 경우에는 착륙을 위한 넓은 면의 형태일 수 있으며, 이 때 착륙을 유도하기 위한 확인수단 유도부(6) 등을 더 구비할 수 있다. 확인수단 유도부(6)는 행 및 열 방향으로 배치된 복수개의 발광소자를 포함할 수 있다. 또한 확인수단 유도부(6)는 복수개의 발광소자를 이용하여 착륙을 유도하기 위한 심볼을 표시할 수 있다. 이 때 발광소자는 LED램프, IR램프 또는 할로겐램프 등의 발광소자일 수 있다.
확인수단 거치대(5)는 이벤트 발생 방향의 검출을 위한 하나 이상의 방향 센서(4)를 더 구비할 수 있다. 또한 확인수단 거치대(5)는 확인수단의 에너지 공급을 위한 에너지 공급 수단(미도시)을 더 구비할 수 있다.
확인수단(3)은 감시장치(1)와 무선네트워크(Wireless Network)를 통하여 연결될 수 있으며, 이 때 무선네트워크는 CDMA, WIFI, WIBRO 또는 LTE 등의 다양한 종류의 다양한 주파수 대역의 네트워크일 수 있다.
또한 제1 영상 센서(2) 및 확인수단 거치대(5)도 감시장치(1)와 유선 또는 무선 네트워크로 연결될 수 있다.
본 발명의 일 실시예에 따른 감시장치(1)는 방향 검출부(10), 이벤트 발생 영역 검출부(20), 확인수단 이동부(30) 정보 제공부(40) 및 착륙 유도부(50)를 포함할 수 있다. 방향 검출부(10)는 방향 센서(4)를 이용하여 이벤트 발생 방향을 검출할 수 있다. 이벤트 발생 영역 검출부(20)는 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역을 검출할 수 있다. 확인수단 이동부(30)는 이벤트 발생 영역이 기 설정된 조건을 만족 하는 경우, 이벤트 발생 영역에 해당하는 방향으로 제2 영상 센서(7)를 탑재한 확인수단(3)을 이동시킬 수 있다. 정보 제공부(40)는 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역에 해당하는 영역을, 제2 영상 센서(7)가 획득한 영상으로 확대하여 사용자에게 제공할 수 있다. 착륙 유도부(50)는 확인수단(3)을 확인수단 거치대(5)에 착륙할 수 있도록 유도할 수 있다.
도 2는 본 발명의 일 실시예에 따른 방향 검출부(10)가 방향 센서를 이용하여 이벤트 발생 방향을 검출하는 과정을 도시한다. 도 2에서는 총 12개의 방향 센서(111-122)가 구비된 예가 도시되었다.
복수개의 방향 센서(111-122)는 이벤트 발생 방향을 감지해낼 수 있도록 적절한 위치에 배치될 수 있다. 도 2는 확인수단 거치대(5)의 네 모서리에 방향 센서를 각각 3개씩 배치한 예시이다. 즉 도 2를 기준으로 상단에 방향 센서(111-113)를, 우측에 방향 센서(114-116)를, 하단에 방향 센서(117-119)를, 좌측에 방향 센서(120-122)를 배치하여, 총 네 방향에 센서를 배치함으로써 이벤트 발생의 방향을 정확히 감지해 낼 수 있다.
한편 방향 센서(111-122)는 음향센서 일 수 있으며, 그 외에 이벤트를 감지할 수 있는 다양한 센서가 사용될 수 있다. 이하에서는, 방향 센서(111-122)가 음향센서인 예를 들어 본 발명의 일 실시예를 설명할 것이지만, 이는 예시적인 사용으로 특정한 실시 형태에 대해 한정하려는 것이 아니다.
방향 검출부(10)는 방향 센서(111-122)들이 획득한 음향신호의 에너지 평균을 구하고, 에너지 평균이 기 설정된 임계 에너지 이상인 음향신호를 이벤트 음향신호로 검출할 수 있다. 또한 방향 검출부(10)는 이벤트 음향신호를 획득한 음향센서가 설치된 방향을 이벤트 발생 방향으로 검출할 수 있다. 이 때 임계 에너지는 사용자에 의해 설정될 수 있다.
예컨대 음향을 동반한 이벤트(11)가 화살표의 방향(12)에서 발생하였고, 그 때 발생하는 음향이 임계 에너지 이상이라고 할 때, 방향 센서(113)와 방향 센서(114)는 에너지가 임계 에너지 이상인 이벤트 음향신호를 감지할 수 있다. 이러한 경우 방향 검출부(10)는 이러한 감지 정보를 토대로 이벤트 발생 방향(12)을 검출할 수 있다.
한편 상술한 예시에서, 방향 센서(112) 및 방향 센서(115)도 에너지 평균이 기 설정된 임계 에너지 이상인 음향신호를 이벤트 음향신호를 감지 할 수 있다. 이러한 경우에도 방향 검출부(10)는 방향 센서(112, 113, 114, 115) 각각이 검출한 음향신호의 에너지를 고려하여 이벤트 발생 방향(12)을 검출할 수 있다.
본 발명의 일 실시예에 따른 이벤트 발생 영역 검출부(20)는 제1 영상 센서(2)가 방향 검출부(10)에 의해 검출된 이벤트 발생 방향을 촬영하도록 제1 영상 센서(2)의 촬영 방향을 제어할 수 있다. 또한 이벤트 발생 영역 검출부(20)는 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역을 검출할 수 있다.
도 3a 및 도3b는 도 1의 이벤트 발생 영역 검출부(20)가 방향 검출부(10)에 의해 검출된 이벤트 발생 방향에 따라 영상을 획득하는 과정을 도시한다.
먼저 도 3a를 참조하면, 음향을 동반한 이벤트(11)가 화살표의 방향(12)에서 발생하였고, 이 때 제1 영상 센서(2)가 150도(-X 방향을 0도, 시계방향으로 회전 하는 것을 기준) 방향을 촬영하고 있다고 가정한다. 제1 영상 센서(2)의 화각(13)은 제한된 것으로 도시되었다. 이러한 경우 제1 영상 센서(2)의 촬영범위(14)는 이벤트(11) 촬영에 적합하지 않을 수 있다.
이벤트 발생 영역 검출부(20)는 도 3b와 같이 방향 검출부(10)에서 검출된 이벤트 발생 방향(12)으로 제1 영상 센서(2)를 회전시켜 이벤트(11)를 촬영하기에 적합한 촬영범위(15)를 갖도록 할 수 있다. 또한 이벤트 발생 영역 검출부(20)는 적합한 촬영범위(15)를 갖는 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역을 검출할 수 있다.
도 4a 및 도 4b는 도 1의 이벤트 발생 영역 검출부(20)가 제1 영상 센서(2)에 의해 획득된 영상에서 이벤트 발생 영역을 검출하는 과정을 도시한다.
도 4a를 참조하면, 이벤트 발생 영역 검출부(20)는 제1 영상 센서(2)가 획득한 영상(21)에서 픽셀 속성이 기 설정된 임계치 이상 변화가 있는 영역을 움직임 영역으로 검출할 수 있다. 이 때 픽셀의 속성은 휘도, 색온도, R, G, B 등이 될 수 있으며, 검출하고자 하는 이벤트의 종류에 따라 사용자에 의해 설정될 수 있다. 또한 임계치는 사용자에 의해 설정될 수 있다. 이러한 움직임 영역은 이벤트(11)가 발생한 부분으로, 이벤트 발생 영역 검출부(20)는 도 4b와 같이 해당 영역을 이벤트 발생 영역(22)으로 검출할 수 있다. 검출된 이벤트 발생 영역(22)은 후술하는 확인수단(3)의 이동 여부 결정에 사용될 수 있다.
본 발명의 일 실시예에 따른 확인수단 이동부(30)는 검출된 이벤트 발생 영역(도 4b의 22)이 기 설정된 조건을 만족하는 경우, 검출된 이벤트 발생 영역(도 4b의 22)에 해당하는 방향으로 제2 영상 센서(7)를 탑재한 확인수단(3)을 이동시킬 수 있다. 이 때 기 설정된 조건은 이벤트 발생 영역(도 4b의 22)을 구성하는 픽셀의 수가 기 설정된 제1 임계수 이하인 조건일 수 있다.
예컨대 일 구현예에 따르면, 확인수단 이동부(30)가 확인수단(3)을 이동시키는 기 설정된 조건은 이벤트 발생 영역(도 4b의 22)을 구성하는 픽셀의 수가 기 설정된 제1 임계수 이하인 조건일 수 있다. 이러한 경우, 확인수단 이동부(30)는 이벤트 발생 영역 검출부(20)가 검출한 이벤트 발생 영역(도 4b의 22)을 구성하는 픽셀의 수를 계수하고, 픽셀의 수가 기 설정된 임계수 이하인지 여부를 판단할 수 있다. 임계수는 용도에 따라 사용자에 의하여 설정될 수 있으며, 감시하고자 하는 이벤트의 종류에 따라 달라질 수 있다.
이벤트의 규모 자체가 작거나(이벤트를 발생시킨 주체의 크기가 작거나) 또는 이벤트가 발생한 곳과 제1 영상 센서(2)가 위치하는 곳의 거리가 먼 경우 이벤트 발생 영역(22)을 구성하는 픽셀의 수가 기 설정된 임계수 이하일 수 있다. 상술한 두 가지 모두의 경우에, 제1 영상 센서(2)의 해상도의 한계로 인하여 이벤트에 관한 상세한 영상을 획득할 수 없다. 이러한 경우 확인수단 이동부(30)는 정확한 이벤트의 영상을 획득하기 위하여, 제2 영상 센서(7)가 부착된 확인수단(3)을 이벤트가 발생한 방향으로 이동시킬 수 있고, 확인수단(3)은 가까운 거리에서 이벤트가 발생한 곳을 촬영할 수 있다. 이 때 도 2의 방향 센서(4)가 검출한 이벤트 발생 방향을 이용할 수 있다.
다른 구현예에 따르면, 확인수단 이동부(30)가 확인수단(3)을 이동시키는 기 설정된 조건은 이벤트 발생 영역(도 4b의 22) 내의 객체의 형상이 기 저장된 형상과 유사하지 않을 조건일 수 있다. 기 저장된 형상은, 학습에 의해 갱신될 수 있다. 이러한 경우 확인수단 이동부(30)는 이벤트 발생 영역 검출부(20)가 검출한 이벤트 발생 영역(도 4b의 22) 내의 객체의 형상과 기 저장된 형상의 유사 여부를 판단할 수 있다. 확인수단 이동부(30)는 학습된 형상 중 객체의 형상과 유사한 형상이 존재하지 않는 경우, 정확한 이벤트의 영상을 획득하기 위하여 제2 영상 센서(7)가 부착된 확인수단(3)을 이벤트가 발생한 방향으로 이동시킬 수 있다. 이 때 도 2의 방향 센서(4)가 검출한 이벤트 발생 방향을 이용할 수 있다.
예컨대, 기 저장된 형상은 복수의 자동차에 관한 형상을 포함하고 사람의 형상을 포함하지 않고, 이벤트 발생 영역 검출부(20)가 검출한 이벤트 발생 영역(도 4b의 22)에는 사람의 형상이 포함되어 있는 경우, 확인수단 이동부(30)는 정확한 이벤트 영상을 획득하기 위하여 확인수단(3)을 이벤트가 발생한 방향으로 이동시킬 수 있다.
유사 형상의 판단에는 패턴 매칭(Pattern Matching)과 같은 기법이 사용될 수 있으나 본 발명이 이에 한정되는 것은 아니다.
도 5는 도 1의 확인수단(3)이 확인수단 이동부(30)의 제어에 따라 이벤트 영상을 획득하는 과정을 도시한다.
음향을 동반한 이벤트(11)가 화살표의 방향(12)에서 발생하였고, 제1 영상 센서(2)는 도 1의 방향 검출부(10)가 검출한 이벤트 발생 방향(12)에 따라 촬영 방향을 변경하였고, 이 때 이벤트 발생 영역을 구성하는 픽셀의 수가 기 설정된 임계수 이하라고 가정한다.
확인수단 이동부(30)는 확인수단(3)을 이벤트 발생 방향(12)으로 이동 시킬 수 있다. 확인수단(3)은 이벤트 영상을 획득하기 위한 제2 영상 센서(7)를 구비할 수 있다. 확인수단 이동부(30)는 확인수단(3)을 이벤트 발생 방향(12)으로 이동시키면서 제2 영상 센서(7)의 촬영범위(31)에 이벤트 발생 영역이 항상 포함되도록 이벤트(11)를 촬영하여 실시간으로 도 1의 감시장치(1)로 전송되도록 할 수 있다. 이 때 확인수단 이동부(30)는 제2 영상 센서(7)에 의하여 촬영된 영상에서 검출된 이벤트 발생 영역을 구성하는 픽셀 수가 기 설정된 임계수 이상이 될 때까지 확인수단(3)을 이동시킬 수 있다. 한편 임계수는 용도에 따라 사용자에 의하여 설정될 수 있으며, 감시하고자 하는 이벤트의 종류에 따라 달라질 수 있다.
한편 확인수단 이동부(30)는 확인수단(3)의 에너지 잔량 정보를 이용하여 확인수단(3)이 이벤트 발생 영역에 해당하는 방향으로 최대 이동 가능한 거리인 최대 이동거리를 산출할 수 있다. 확인수단(3)의 에너지 잔량 정보는 확인수단(3)을 구동시키는 배터리 충전 정보, 연료의 잔량 정보를 포함할 수 있다. 확인수단 이동부(30)는 확인수단(3)의 거리당 평균 에너지 소모량을 기준으로 최대 이동거리를 산출할 수 있다. 예컨대 확인수단(3)이 배터리 전력으로 구동되는 드론과 같은 비행체인 경우에 확인수단 이동부(30)는 드론의 배터리 잔량 정보 및 드론의 거리당 평균 에너지 소모량을 기준으로 최대 이동거리를 산출할 수 있다.
확인수단 이동부(30)는 산출된 최대 이동거리까지 확인수단(3)을 이동시켰을 때, 제2 영상 센서(7)가 획득한 영상에서 이벤트 발생 영역을 구성하는 픽셀의 수를 예측할 수 있다. 상세히, 확인수단 이동부(30)는 전술한 바와 같이 제1 영상 센서(2)가 획득한 영상에서, 이벤트 발생 영역(도 4b의 22)을 구성하는 픽셀의 수를 계수하고, 계수된 픽셀의 수와 확인수단(3)의 최대 이동거리를 고려하여 제2 영상 센서(7)가 획득한 영상에서의 이벤트 발생 영역을 구성하는 픽셀의 수를 예측할 수 있다. 이 때 예측되는 픽셀의 수와 거리의 관계는 실험에 의해 획득될 수 있다. 예컨대, 예측되는 픽셀의 수는 이벤트 발생 영역을 구성하는 픽셀의 수에 최대 이동거리의 제곱을 곱한 값에 비례할 수 있다.
확인수단 이동부(30)는 예측된 픽셀의 수가 기 설정된 제2 임계수 이하인 경우, 제1 영상 센서(2)가 구비된 감시장치(1)와 인접한 또 하나의 감시장치로부터 영상을 획득할 수 있다. 상기 또 하나의 감시장치에는 제1-1 영상 센서 및 제2-1 영상 센서가 구비될 수 있다. 이에 따르면, 확인수단 이동부(30)는 예측된 픽셀의 수가 기 설정된 제2 임계수 이하인 경우, 제1-1 영상 센서 및 제2-1 영상 센서로부터 영상을 획득할 수 있다. 즉 본 발명의 일 실시예에 따른 감시장치(1)는 인접하는 하나 이상의 감시장치(미도시)와 협업하여 이벤트 영상을 획득할 수 있다. 감시장치 간의 협업으로 인해 보다 정확한 이벤트 영상 획득이 가능하다.
도 6은 본 발명의 일 실시예에 따른 감시장치(1)가 인접하는 감시장치들과 협업하는 과정을 도시한다.
세 개의 감시장치(1, 1-1, 1-2) 사이에서 이벤트(11)가 발생하였고, 그 중 하나의 감시장치(1)가 이벤트를 감지하였다고 가정한다. 이러한 경우 감시장치(1)의 확인수단 이동부(30)는 최대 이동거리(32)를 산출할 수 있다. 또한 감시장치(1)의 확인수단 이동부(30)는 산출된 최대 이동거리(32)까지 확인수단(3)을 이동시켰을 때, 제2 영상 센서(7)가 획득한 영상에서의 이벤트 발생 영역을 구성하는 픽셀의 수를 예측할 수 있다. 즉 감시장치(1)의 확인수단 이동부(30)는 확인수단(3)을 이벤트가 발생한 방향으로 최대 지점(33)까지 이동시켰을 때, 확인수단(3)에 구비된 제2 영상 센서(7)가 획득한 영상에서의 이벤트 발생 영역을 구하는 픽셀의 수를 예측 수 있다. 이 때 감시장치(1)의 확인수단 이동부(30)가 예측한 픽셀의 수가 기 설정된 제2 임계수 이하라면, 감시장치(1)는 인접한 하나 이상의 감시장치(1-1, 1-2)의 제1 영상 센서 및 제2 영상 센서로부터 영상을 획득할 수 있다.
가령 감시장치(1-1)가 감시장치(1)로부터 영상 획득 명령을 수신한 경우, 감시장치(1-1)는 전술한 방법에 따라 최대 이동거리(32-1) 및 그에 따른 지점(33-1)에서 획득한 영상에서 이벤트 발생 영역을 구성하는 픽셀의 수를 예측 수 있다.
또한 감시장치(1-1)의 확인수단 이동부에 의해 예측된 픽셀의 수가 기 설정된 제2 임계수 이하인 경우, 감시장치(1-1)는 인접한 감시장치(1-2)로 영상 획득 명령을 전송할 수 있다. 이러한 경우 감시장치(1-2)는 전술한 방법에 따라 최대 이동거리(32-2) 및 그에 따른 지점(33-2)에서 획득한 영상에서 이벤트 발생 영역을 구하는 픽셀의 수를 예측 수 있다.
나아가 감시장치(1-2)의 확인수단에 구비된 제2 영상 센서가 획득한 영상에서의 이벤트 발생 영역을 구성하는 픽셀의 수가 기 설정된 제2 임계수 이상인 경우, 감시장치(1)의 확인수단 이동부(30)는 감시장치(1-2)의 제2 영상 센서로부터 이벤트 영상을 획득할 수 있다.
상술한 과정에 의해 감시장치(1)는 발생한 이벤트(11)에 대하여 최적의 영상을 획득할 수 있다.
다시 도 1로 돌아가면, 정보 제공부(40)는 제2 영상 센서(7)가 획득한 영상을 이용하여, 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역에 해당하는 영역을 확대하여 사용자에게 제공할 수 있다.
도 7은 도 1의 정보 제공부(40)가 제1 영상 센서(2) 및 제2 영상 센서(7)에 의하여 획득한 영상을 사용자에게 제공하는 화면의 예시이다.
정보 제공부(40)는 제1 영상 센서(2)가 획득한 영상(41), 및 영상(41)에서 이벤트(11)가 발생한 이벤트 발생 영역을 포함하는 영상의 일부분(43)을 확대한 제2 영상 센서(7)가 획득한 영상(42)을 사용자에게 제공할 수 있다. 한편 상술한 방식과 같이 이벤트 발생 영역을 포함하는 영상의 일부분을 확대하여 사용자에게 제공하는 방법 외에, 화면을 분할하여 두 영상을 동시에 제공하는 방법, 제2 영상 센서(7)가 획득한 영상만을 제공하는 방법 등의 다양한 방법이 사용될 수 있다.
도 8 및 도 9는 착륙 유도부(50)가 제2 영상 센서(7)가 획득한 영상으로부터 확인수단(3)과 확인수단 거치대(5)의 정렬 상태에 관한 정보를 획득하고, 그에 따라 이동 방향을 판단하여 착륙을 유도하는 과정을 설명하기 위한 도면이다.
도 8을 참조하면, 착륙 유도부(50)는 확인수단(3)에 구비된 제2 영상 센서(7)가 획득한 영상에서, 확인수단 거치대(5)에 구비된 확인수단 유도부(6)에 의하여 표시되는 심볼을 검출하여 확인수단(3)과 확인수단 거치대(5)의 정렬 상태에 관한 정보를 획득할 수 있다.
상세히, 착륙 유도부(50)는 제2 영상 센서(7)가 획득한 영상에서 확인수단 유도부(6)에 의하여 표시되는 심볼과 기 설정된 심볼의 위치를 비교하여 확인수단(3)이 이동해야 하는 방향을 판단할 수 있다.
도 9a는 확인수단(3)이 확인수단 거치대(5)의 왼쪽에 위치하고 있는 경우의 예시이다. 제2 영상 센서(7)에 의하여 획득된 영상(51)(영상의 시야를 점선으로 도시함)에서 확인수단 유도부(6)에 의하여 표시되는 심볼은 영상의 우측에 위치한다. 즉 올바른 착륙을 위한 심볼의 위치(52)보다 영상에서의 심볼의 위치가 우측에 위치하게 된다. 따라서 착륙 유도부(50)는 확인수단(3)이 확인수단 거치대(5)의 왼쪽에 위치하고 있으며, 착륙을 위해서는 확인수단(3)을 우측방향(53)으로 이동 시켜야 한다는 정보를 획득할 수 있다.
이와 유사하게, 도 9b는 확인수단(3)이 확인수단 거치대(5)의 오른쪽 아래에 위치하고 있는 경우의 예시이다. 제2 영상 센서(7)에 의하여 획득된 영상(51)(영상의 시야를 점선으로 도시함)에서, 확인수단 유도부(6)에 의하여 표시되는 심볼은 영상의 왼쪽 상단에 위치한다. 즉 올바른 착륙을 위한 심볼의 위치(52)보다 영상에서의 심볼의 위치가 왼쪽 상단에 위치하게 된다. 따라서 착륙 유도부(50)는 확인수단(3)이 확인수단 거치대(5)의 오른쪽 아래에 위치하며, 착륙을 위해서는 확인수단(3)을 좌-상단의 방향(54)으로 이동 시켜야 한다는 정보를 획득할 수 있다.
한편 확인수단(3)이 고도 방향을 축으로(도1 의 Z축) 회전하여 확인수단 거치대(5)와 정렬이 되지 않은 경우에도, 상술한 바와 마찬가지로 착륙 유도부(50)는 기 설정된 심볼의 위치와 영상에서 획득한 심볼의 위치 및 방향 비교를 통하여 확인수단(3)이 시계방향 또는 반시계 방향으로 회전해야 한다는 정보를 획득할 수 있다.
다시 도 1로 돌아가면, 착륙 유도부(50)는 제2 영상 센서(7)가 획득한 영상에서 확인수단 거치대(5)에 구비된 확인수단 유도부(6)의 광도를 검출하여 확인수단(3)의 고도에 관한 정보를 획득할 수 있다.
도 10을 참조하면, 착륙 유도부(50)는 확인수단(3)에 구비된 제2 영상 센서(7)가 획득한 영상에서, 확인수단 거치대(5)에 구비된 확인수단 유도부(6)에 의하여 조사되는 빛의 광도를 검출하여 확인수단(3)의 고도(h1, h2)를 산출할 수 있다.
상세히, 착륙 유도부(50)는 영상에서 확인수단 유도부(6)의 광도를 검출하고 기 설정된 광도와 거리의 관계 및 검출된 광도를 이용하여 확인수단(3)의 고도에 관한 정보를 획득할 수 있다.
광도란 광원으로부터 단위거리만큼 떨어진 곳에서 빛의 방향에 수직으로 놓인 단위면적을 단위시간에 통과하는 빛의 양을 말한다. 따라서 광원으로부터 멀리 떨어질수록 단위면적에 통과하는 빛의 양이 감소하기 때문에 광도가 감소한다. 광도를 L, 거리를 h, 비례상수를 k라고 하면 광도와 거리의 관계를 수학식 1과 같이 나타낼 수 있다.
착륙 유도부(50)는 확인수단 유도부(6)의 밝기에 따른 광도를 몇 개의 테스트 고도에서 측정하여 비례상수 k를 확정 하여 미리 저장한 후, 제2 영상 센서(7)가 획득한 영상으로부터 정확히 고도를 산출할 수 있다.
도 10을 참조하면, 수학식 1로부터 고도차이에 따른 광도의 차이를 수학식 2와 같이 나타낼 수 있다.
착륙 유도부(50)는 상술한 정렬 상태에 관한 정보와 고도에 관한 정보를 이용하여 확인수단(3)의 착륙을 유도할 수 있다. 예컨대, 착륙 유도부(50)는 확인수단(3)과 확인수단 거치대(5)의 정렬 상태에 관한 정보를 이용하여 확인수단(3)의 수평 방향을 제어하고, 고도에 관한 정보를 이용하여 확인수단(3)의 고도가 점차적으로 낮아지도록 제어할 수 있다.
한편 착륙 유도부(50)는 확인수단 이동부(30)에 의해 확인수단(3)이 확인수단 거치대(5)로부터 이륙을 하는 경우에도 상술한 정보들을 이용하여 확인수단(3)을 제어할 수 있다.
이하 본 발명의 다른 실시예에 대해 설명한다.
본 발명의 다른 실시예에 따르면, 도 1의 이벤트 발생 영역 검출부(20)는 360도의 화각을 갖는 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역을 검출할 수 있다. 방향 검출부(10)는 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역의 위치를 참조하여 이벤트 발생 방향을 검출할 수 있다. 확인수단 이동부(30)는 이벤트 발생 영역이 기 설정된 조건을 만족하는 경우, 이벤트 발생 영역에 해당하는 방향으로 제2 영상 센서(7)를 탑재한 확인수단(3)을 이동시킬 수 있다. 정보 제공부(40)는 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역에 해당하는 영역을, 제2 영상 센서(7)가 획득한 영상으로 확대하여 사용자에게 제공할 수 있다.
전술한 실시예에서는 제1 영상 센서(2)의 제한된 화각(도3 의 13)으로 인하여 이벤트 발생 방향의 검출을 위하여 별도의 방향 센서(4)를 사용하였다. 그러나 본 실시예에서는 화각의 제한이 없는(360도의 화각) 제1 영상 센서(2)를 사용함으로써 영상을 이용하여 이벤트 발생 방향에 관한 정보를 획득할 수 있다.
즉 방향 검출부(10)는 제1 영상 센서(2)가 획득한 영상에 기초하여 이벤트 발생 방향을 검출하고, 확인수단 이동부(30)는 방향 검출부(10)가 영상으로부터 획득한 이벤트 발생 방향으로 제2 영상 센서(7)를 탑재한 확인수단(3)을 이동시킬 수 있다.
도 11a 및 도 11b는 본 발명의 다른 실시예에 따른 감시장치(1)의 방향 검출부(10)가 제1 영상 센서(2)가 획득한 영상으로부터 이벤트 발생 방향을 검출하는 방법을 도시한다.
도 11a를 참조하면, 제1 영상 센서(2)는 360도의 화각(16)을 갖고 이에 따라 촬영범위(17)또한 360도의 범위가 된다. 이 때 음향을 동반한 이벤트(11)가 화살표의 방향(12)에서 발생한 경우, 제1 영상 센서(2)는 별도의 회전 없이 이벤트가 촬영된 영상을 획득할 수 있다. 즉 제1 영상 센서(2)는 도 12b와 같이 360도의 화각을 갖는 영상(18)을 획득할 수 있다. 이 때 이벤트 발생 영역 검출부(20)는 제1 영상 센서(2)가 획득한 영상(18)에서 상술한 실시예와 동일한 방법에 의하여 이벤트 발생 영역을 검출할 수 있다. 방향 검출부(10)는 제1 영상 센서(2)가 획득한 영상(18)에서 이벤트 발생 영역의 위치(19)를 참조하여 이벤트 발생 방향을 검출할 수 있다. 한편, 도 11b에서는 영상(18)이 파노라마 영상인 것으로 도시되었지만, 영상(18)의 종류는 이에 한정되지 않으며, 어안 렌즈를 이용하여 촬영된 영상이 사용될 수도 있다.
본 발명의 다른 실시예에 따른 감시장치(1)에서도 확인수단 이동부(30), 정보 제공부(40) 및 착륙 유도부(50)는 전술한 실시예와 동일하므로, 상세한 설명은 생략한다.
이하 본 발명의 또 다른 실시예에 대하여 설명한다.
본 발명의 또 다른 실시예에 따른 이벤트 발생 영역 검출부(20)는 제1 영상 센서(2)가 이벤트 발생 방향과 반대 방향을 촬영하도록 제1 영상 센서(2)의 촬영 방향을 제어할 수 있다. 전술한 실시예에서, 이벤트가 발생한 경우 방향 검출부(10) 및 이벤트 발생 영역 검출부(20)에 의해 제1 영상 센서(2) 및 제2 영상 센서(7)가 모두 같은 방향을 촬영하게 되므로 촬영하지 못하는 나머지 방향에 대하여는 감시의 공백이 발생하게 된다. 본 실시예에서는 이벤트가 발생한 경우 제1 영상 센서(2) 와 제2 영상 센서(7)의 촬영 방향을 서로 반대가 되도록 제어함으로써 감시의 공백을 최소화 할 수 있다.
도 12a 및 도12b는 본 발명의 다른 실시예에 따른 이벤트 발생 영역 검출부(20)가 방향 검출부(10)가 검출한 이벤트 발생 방향과 반대 방향의 영상을 획득하는 과정을 도시한다.
먼저 도 12a를 참조하면, 음향을 동반한 이벤트(11)가 화살표의 방향(12)에서 발생하였고, 이 때 제1 영상 센서(2)가 150도(-X 방향을 0도, 시계방향으로 회전 하는 것을 기준) 방향을 촬영하고 있었다고 가정한다. 제1 영상 센서(2)의 화각(13)은 제한된 것으로 도시되었다. 전술한 실시예에서는 제1 영상 센서(2)의 제한된 화각(13)으로 인하여 이벤트 발생 영역 검출부(20)는 이벤트 발생 방향(12)으로 제1 영상 센서(2)를 회전시켜 제1 영상 센서(2)가 이벤트(11)를 촬영하기에 적합한 촬영범위(15)를 갖도록 하였다.
본 실시예에서는 이벤트(11)가 발생한 경우, 이벤트 발생 영역 검출부(20)는 이벤트 발생 방향(12)과 정 반대 방향으로 제1 영상 센서(2)를 회전시킬 수 있다. 또한 확인수단 이동부(30)는 이벤트 발생 방향(12)으로 제2 영상 센서(7)가 탑재된 확인수단(3)을 이동시키고, 이 때 이벤트 발생 영역 검출부(20)는 제2 영상 센서(7)가 획득한 영상으로부터 이벤트 발생 영역을 검출할 수 있다.
즉 이벤트 발생 영역 검출부(20)는 제2 영상 센서(7)가 획득한 영상에서 이벤트 영상을 획득하고, 나머지 부분은 제1 영상 센서(2)로 감시함으로써, 감시의 공백을 최소화 할 수 있다. 또한 이벤트 발생 영역 검출부(20)는 제1 영상 센서(2) 및 제2 영상 센서(7)를 정 반대의 방향을 촬영하도록 제어함으로써, 확장된 촬영범위(15, 31)를 확보할 수 있다.
도 13에 도시된 감시방법은 전술된 도 1의 감시장치(1)에 의해 수행될 수 있다. 이하에서는 도 1 내지 도 13에서 설명한 내용과 중복하는 내용의 상세한 설명은 생략하겠다.
방향 검출부(10)는 방향 센서(4)를 이용하여 이벤트 발생 방향을 검출할 수 있다.(S10) 방향 검출부(10)는 서로 다른 방향으로 설치된 방향 센서(4)들이 획득한 신호의 에너지 평균을 구하고, 에너지 평균이 기 설정된 임계 에너지 이상인 이벤트 음향신호를 검출할 수 있다. 또한 방향 검출부(10)는 이벤트 신호를 획득한 방향 센서(4)가 설치된 방향을 이벤트 발생 방향으로 검출할 수 있다. 이 때 임계 에너지는 사용자에 의해 설정될 수 있다.
이벤트 발생 영역 검출부(20)는 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역을 검출할 수 있다.(S20) 이벤트 발생 영역 검출부(20)는 방향 검출부(10)에서 검출된 이벤트 발생 방향으로 제1 영상 센서(2)를 회전시켜 이벤트를 촬영하기에 적합한 촬영범위를 갖도록 할 수 있다. 또한 이벤트 발생 영역 검출부(20)는 제1 영상 센서(2)가 획득한 영상에서 픽셀 속성의 변화가 있는 움직임 영역을 검출할 수 있다. 이 때 픽셀의 속성은 휘도, 색온도, R, G, B 등이 될 수 있으며, 검출하고자 하는 이벤트의 종류에 따라 사용자에 의해 설정될 수 있다. 이러한 움직임 영역은 이벤트가 발생한 부분으로, 이벤트 발생 영역 검출부(20)는 해당 영역을 이벤트 발생 영역으로 검출할 수 있다. 검출된 이벤트 발생 영역은 후술하는 확인수단(3)의 이동 여부 결정에 사용될 수 있다.
확인수단 이동부(30)는 이벤트 발생 영역이 기 설정된 조건을 만족하는지 여부를 판단할 수 있다.(S30) 이 때 기 설정된 조건은 이벤트 발생 영역을 구성하는 픽셀의 수가 기 설정된 제1 임계수 이하인 조건 또는 이벤트 발생 영역 내의 객체의 형상이 기 저장된 형상과 유사하지 않은 조건 일 수 있다. 만약 이벤트 발생 영역이 기 설정된 조건을 만족하지 않는 경우, 확인수단 이동부(30)는 확인수단(3)을 이동시키지 않을 수 있다. 또한 이러한 경우에 정보 제공부(40)는 제1 영상 센서(2)가 획득한 영상만을 제공할 수 있다.(S40)
확인수단 이동부(30)는 이벤트 발생 영역이 기 설정된 조건을 만족하는 경우, 제2 영상 센서(7)를 탑재한 확인수단(3)의 에너지 잔량 정보에 기초하여 확인수단(3)이 최대 이동거리에서 획득한 영상에서 이벤트 발생 영역을 구성하는 픽셀의 수를 예측하고, 예측된 픽셀의 수가 제2 임계수 이하인지 여부를 판단할 수 있다.(S50) 이벤트 발생 영역이 기 설정된 조건을 만족하는 경우는 예컨대 이벤트 영상을 구성하는 픽셀의 수가 적어 이벤트를 식별하기 어려운 경우이거나 또는 이벤트 영상 내의 객체가 기 저장된 형상과 유사하지 않아 의심스러운 객체에 해당하는 경우 일 수 있다. 이러한 경우 확인수단 이동부(30)는 확인수단(3)을 이벤트 발생 방향으로 이동시켜 해당 이벤트가 촬영된 영상을 획득할 필요가 있는데, 확인수단(3)의 제한된 에너지에 의해 정확한 이벤트 영상의 획득이 어려울 수 있다. 따라서 보다 확실한 이벤트 영상의 획득을 위해 확인수단 이동부(30)는 확인수단(3)의 에너지 잔량 정보를 기초로 인접하는 하나 이상의 감시장치(1)와 협업하여 이벤트 영상을 획득할 수 있다. 상세히, 확인수단 이동부(30)는 확인수단(3)의 에너지 잔량정보를 이용하여 확인수단(3)이 이벤트 발생 영역에 해당하는 방향으로 최대 이동 가능한 거리인 최대 이동거리를 산출한다. 확인수단 이동부(30)는 최대 이동거리까지 확인수단(3)을 이동시켰을 때, 제2 영상 센서(7)가 획득한 영상에서의 이벤트 발생 영역을 구성하는 픽셀의 수를 예측한다.
확인수단 이동부(30)는 예측된 픽셀의 수가 기 설정된 제2 임계수 이하인 경우, 인접하는 하나 이상의 감시장치(1-1)의 제1-1 영상 센서 및 제2-1 영상 센서로부터 이벤트 영상을 획득할 수 있다.(S60) 이 때 획득된 영상은 정보 제공부(40)에 의해 사용자에게 제공될 수 있다.
한편 확인수단 이동부(30)는 예측된 픽셀의 수가 기 설정된 제2 임계수 이상인 경우 이벤트 발생 영역에 해당하는 방향으로 제2 영상 센서(7)를 탑재한 확인수단(3)을 이동시킬 수 있다. (S70) 이러한 경우에 정보 제공부(40)는 제1 영상 센서(2)가 획득한 영상에서 이벤트 발생 영역에 해당하는 영역을, 제2 영상 센서(7)가 획득한 영상으로 확대하여 사용자에게 제공할 수 있다.(S80)
착륙 유도부(50)는 이벤트 영상의 획득이 끝난 경우, 확인수단(3)을 확인수단 거치대(5)로 착륙하도록 유도할 수 있다.(S90)
본 발명의 실시예들은 확인수단을 이용하여 보다 상세한 영상을 획득하여 분석함으로써 보다 정확한 이벤트 판단이 가능한 방법 및 장치를 구현할 수 있다.
본 발명의 실시예에 따른 감시장치 및 방법은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등이 있다. 또한, 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 본 발명을 구현하기 위한 기능적인(functional) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다.
Claims (15)
- 감시 시스템의 감시 방법에 있어서,제1 영상 센서가 획득한 영상에서 이벤트 발생 영역을 검출하는 이벤트 발생 영역 검출 단계; 및상기 이벤트 발생 영역이 기 설정된 조건을 만족 하는 경우, 상기 검출된 이벤트 발생 영역에 해당하는 방향으로 제2 영상 센서를 탑재한 확인수단을 이동시키는 확인수단 이동 단계;를 포함하는 감시방법.
- 제1 항에 있어서,상기 기 설정된 조건은 상기 이벤트 발생 영역을 구성하는 픽셀의 수가 기 설정된 제1 임계수 이하인 조건인 감시방법.
- 제1 항에 있어서,상기 기 설정된 조건은 상기 이벤트 발생 영역 내의 객체의 형상이 기 저장된 형상과 유사한 조건인 감시방법.
- 제1 항에 있어서,방향 센서를 이용하여 이벤트 발생 방향을 검출하는 방향 검출 단계;를 더 포함하고,상기 이벤트 발생 영역 검출 단계는,상기 제1 영상 센서가 상기 이벤트 발생 방향을 촬영하도록 제1 영상센서의 촬영 방향을 제어하는 단계; 및상기 제1 영상 센서가 획득한 영상에서 상기 이벤트 발생 영역을 검출하는 단계를 포함하는 감시방법.
- 제4 항에 있어서,상기 방향 센서는, 서로 다른 방향으로 설치된 적어도 하나 이상의 음향센서를 포함하고,상기 방향 검출 단계는 하나 이상의 음향센서가 획득한 음향신호의 에너지 평균을 구하고, 상기 에너지 평균이 기 설정된 임계 에너지 이상인 이벤트 음향신호를 검출하여, 상기 이벤트 음향신호를 획득한 음향센서가 설치된 방향을 상기 이벤트 발생 방향으로 검출하는 감시방법.
- 제1 항에 있어서,상기 영상에 기초하여 상기 이벤트 발생 영역에 해당하는 방향을 검출하는 이벤트 발생 방향 검출 단계;를 더 포함하고,상기 확인수단 이동 단계는 상기 이벤트 발생 방향 검출 단계에 의해 검출된 이벤트 발생 영역에 해당하는 방향으로 제2 영상 센서를 탑재한 확인수단을 이동시키는 감시방법.
- 제1 항에 있어서,상기 제1 영상 센서는 고정된 지지부에 구비되고,상기 확인수단은 무인비행체인 것을 특징으로 하는 감시방법.
- 제1 항에 있어서상기 제1 영상 센서가 획득한 영상에서 이벤트 발생 영역에 해당하는 영역을상기 제2 영상 센서가 획득한 영상으로 확대하여 사용자에게 제공하는 단계를 더 포함하는 감시방법.
- 제1 항에 있어서,상기 확인수단 이동 단계는상기 확인수단의 에너지 잔량 정보를 이용하여 상기 확인수단이 상기 이벤트 발생 영역에 해당하는 방향으로 최대 이동 가능한 거리인 최대 이동거리를 산출하는 단계;상기 최대 이동거리까지 상기 확인수단을 이동시켰을 때, 상기 제2 영상 센서가 획득한 영상에서의 상기 이벤트 발생 영역을 구성하는 픽셀의 수를 예측하는 단계; 및상기 픽셀의 수가 기 설정된 제2 임계수 이하인 경우, 상기 제1 영상 센서와 인접한 하나 이상의 제 1-1 영상센서 및 제2-1 영상센서로부터 영상을 획득하는 단계;를 포함하는 감시방법.
- 제1 항에 있어서,상기 확인수단은 착륙장에 착륙 가능한 비행체이고,상기 제2 영상 센서가 획득한 영상에서 심볼을 검출하여 상기 확인수단과 상기 착륙장의 정렬 상태에 관한 정보를 획득하는 방향정보 획득단계;상기 영상에서 상기 착륙장에 구비된 발광수단의 광도를 검출하여 상기 비행체의 고도에 관한 정보를 획득하는 고도정보 획득단계; 및상기 정렬 상태에 관한 정보 및 상기 고도에 관한 정보를 토대로 상기 확인 수단을 제어하는 확인수단 제어 단계;를 더 포함하는 감시방법
- 제10 항에 있어서,상기 착륙장은 상기 제1 영상 센서가 고정되어 있는 지지부에 구비되고,상기 발광수단은 행 및 열 방향으로 배치된 복수개의 발광소자를 포함하고,상기 심볼은 상기 복수개의 발광소자의 점등 패턴에 의하여 표시되고,상기 고도정보 획득단계는상기 발광수단의 광도를 검출하는 단계; 및기 설정된 광도와 거리의 관계 및 상기 검출된 광도를 이용하여 상기 확인 수단의 고도에 관한 정보를 획득하는 단계;를 포함하는 감시방법
- 감시 시스템의 감시 방법에 있어서,방향 센서를 이용하여 이벤트 발생 방향을 검출하는 방향 검출 단계;상기 방향 검출 단계에서 검출한 상기 이벤트 발생 방향으로 확인수단을 이동시키는 확인수단 이동 단계; 및제1 영상 센서가 상기 이벤트 발생 방향과 반대 방향을 촬영하도록 상기 제1 영상 센서의 촬영 방향을 제어하는 단계;를 포함하는 감시방법.
- 제1 영상 센서가 획득한 영상에서 이벤트 발생 영역을 검출하는 이벤트 발생 영역 검출부; 및상기 이벤트 발생 영역이 기 설정된 조건을 만족하는 경우, 상기 검출된 이벤트 발생 영역에 해당하는 방향으로 제2 영상 센서를 탑재한 확인수단을 이동시키는 확인수단 이동부;를 포함하는 감시장치.
- 제13 항에 있어서,방향 센서를 이용하여 이벤트 발생 방향을 검출하는 방향 검출부;를 더 포함하고,상기 이벤트 발생 영역 검출부는,상기 제1 영상 센서가 상기 이벤트 발생 방향을 촬영하도록 제1 영상센서의 촬영 방향을 제어하고,상기 제1 영상 센서가 획득한 영상에서 상기 이벤트 발생 영역을 검출하는 감시장치.
- 제13 항에 있어서상기 제1 영상 센서가 획득한 영상에서 이벤트 발생 영역에 해당하는 영역을상기 제2 영상 센서가 획득한 영상으로 확대하여 사용자에게 제공하는 정보제공부를 더 포함하는 감시장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/580,591 US10638098B2 (en) | 2015-07-07 | 2015-11-10 | Surveillance method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0096791 | 2015-07-07 | ||
KR1020150096791A KR20170006210A (ko) | 2015-07-07 | 2015-07-07 | 감시 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017007077A1 true WO2017007077A1 (ko) | 2017-01-12 |
Family
ID=57685169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/012029 WO2017007077A1 (ko) | 2015-07-07 | 2015-11-10 | 감시 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10638098B2 (ko) |
KR (1) | KR20170006210A (ko) |
WO (1) | WO2017007077A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019208537A1 (ja) * | 2018-04-25 | 2019-10-31 | 株式会社Nttドコモ | 情報処理装置 |
JP7285058B2 (ja) * | 2018-10-04 | 2023-06-01 | 株式会社ソニー・インタラクティブエンタテインメント | センサモジュール、電子機器、被写体の検出方法、プログラムおよび処理回路 |
KR102011225B1 (ko) * | 2018-11-12 | 2019-08-16 | 장승현 | 드론을 이용한 보안 관리 시스템 및 그 방법 |
US11851179B1 (en) * | 2019-04-09 | 2023-12-26 | Alarm.Com Incorporated | Imaging controls for unmanned aerial vehicles |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012005387A1 (ko) * | 2010-07-05 | 2012-01-12 | 주식회사 비즈텍 | 다중 카메라와 물체 추적 알고리즘을 이용한 광범위한 지역에서의 물체 이동 감시 방법 및 그 시스템 |
KR20120120745A (ko) * | 2011-04-25 | 2012-11-02 | 한국과학기술원 | 협업 방식의 감시카메라 시스템 구동방법, 시스템 및 이를 위한 카메라 |
KR20150010345A (ko) * | 2013-07-19 | 2015-01-28 | 주식회사 라이브존 | 다기능 감시 카메라 제어시스템 |
KR20150062607A (ko) * | 2013-11-29 | 2015-06-08 | 삼성탈레스 주식회사 | 정찰 영상 공유 시스템 |
KR20150074251A (ko) * | 2013-12-23 | 2015-07-02 | 대우조선해양 주식회사 | Led를 사용한 헬리데크 조명장치 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2937010B1 (fr) | 2008-10-13 | 2010-12-10 | Dcns | Procede et systeme de controle de l'appontage/decollage automatique d'un drone sur ou d'une grille circulaire d'appontage d'une plate-forme notamment navale |
CN102947179A (zh) | 2010-04-22 | 2013-02-27 | 威罗门飞行公司 | 无人飞行器和操作方法说明书 |
JP5533797B2 (ja) * | 2010-07-08 | 2014-06-25 | 信越化学工業株式会社 | パターン形成方法 |
CN103425912A (zh) * | 2012-04-27 | 2013-12-04 | 网秦无限(北京)科技有限公司 | 安全设备及其显示方法 |
KR20140127574A (ko) | 2013-04-25 | 2014-11-04 | (주)유타스 | 화재 오보 감소를 위한 무인 비행체를 이용한 화재 감시 시스템 |
KR101524936B1 (ko) | 2013-10-21 | 2015-06-10 | 한국항공우주연구원 | 수직무인이착륙 비행체의 충전 및 격납을 위한 운송체 및 그 방법 |
KR102066939B1 (ko) * | 2013-09-27 | 2020-01-16 | 한화테크윈 주식회사 | 영상 감시 시스템 |
KR101650924B1 (ko) * | 2014-07-01 | 2016-08-24 | 주식회사 아이티엑스엠투엠 | 지능형 영상 분석 시스템 및 방법 |
-
2015
- 2015-07-07 KR KR1020150096791A patent/KR20170006210A/ko not_active Application Discontinuation
- 2015-11-10 US US15/580,591 patent/US10638098B2/en active Active
- 2015-11-10 WO PCT/KR2015/012029 patent/WO2017007077A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012005387A1 (ko) * | 2010-07-05 | 2012-01-12 | 주식회사 비즈텍 | 다중 카메라와 물체 추적 알고리즘을 이용한 광범위한 지역에서의 물체 이동 감시 방법 및 그 시스템 |
KR20120120745A (ko) * | 2011-04-25 | 2012-11-02 | 한국과학기술원 | 협업 방식의 감시카메라 시스템 구동방법, 시스템 및 이를 위한 카메라 |
KR20150010345A (ko) * | 2013-07-19 | 2015-01-28 | 주식회사 라이브존 | 다기능 감시 카메라 제어시스템 |
KR20150062607A (ko) * | 2013-11-29 | 2015-06-08 | 삼성탈레스 주식회사 | 정찰 영상 공유 시스템 |
KR20150074251A (ko) * | 2013-12-23 | 2015-07-02 | 대우조선해양 주식회사 | Led를 사용한 헬리데크 조명장치 |
Also Published As
Publication number | Publication date |
---|---|
US10638098B2 (en) | 2020-04-28 |
US20180359452A1 (en) | 2018-12-13 |
KR20170006210A (ko) | 2017-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017030259A1 (ko) | 자동추적 기능을 갖는 무인항공기 및 그 제어방법 | |
WO2017007077A1 (ko) | 감시 방법 | |
WO2021091021A1 (ko) | 화재 검출 시스템 | |
WO2012005387A1 (ko) | 다중 카메라와 물체 추적 알고리즘을 이용한 광범위한 지역에서의 물체 이동 감시 방법 및 그 시스템 | |
WO2014185710A1 (ko) | Tiled display에서 3d 영상을 보정하는 방법 및 장치 | |
WO2020027607A1 (ko) | 객체 탐지 장치 및 제어 방법 | |
WO2017183915A2 (ko) | 영상취득 장치 및 그 방법 | |
WO2011013862A1 (ko) | 이동 로봇의 위치 인식 및 주행 제어 방법과 이를 이용한 이동 로봇 | |
JP2023075366A (ja) | 情報処理装置、認識支援方法およびコンピュータプログラム | |
WO2016072625A1 (ko) | 영상방식을 이용한 주차장의 차량 위치 확인 시스템 및 그 제어방법 | |
WO2016024680A1 (ko) | 주행차량의 번호판 인식이 실시간으로 가능한 차량용 블랙박스 | |
WO2017111257A1 (ko) | 영상 처리 장치 및 영상 처리 방법 | |
WO2017195984A1 (ko) | 3차원 스캐닝 장치 및 방법 | |
WO2019083139A1 (en) | ELECTRONIC DEVICE, AND CONTROL METHOD THEREOF | |
WO2022039404A1 (ko) | 광시야각의 스테레오 카메라 장치 및 이를 이용한 깊이 영상 처리 방법 | |
WO2019216673A1 (ko) | 무인 이동체용 사물 유도 시스템 및 방법 | |
WO2016072627A1 (ko) | 전방위 카메라를 이용한 1대 다면 주차장 관리 시스템 및 관리방법 | |
WO2020171315A1 (ko) | 무인기 착륙 시스템 | |
WO2022244920A1 (ko) | 휴대 단말기 및 단말기 거치대의 제어 방법 | |
WO2024112174A1 (ko) | 이동용 카메라 촬영 모사 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체 | |
EP2918072A1 (en) | Method and apparatus for capturing and displaying an image | |
WO2018038300A1 (ko) | 이미지 제공 장치, 방법 및 컴퓨터 프로그램 | |
WO2017217788A2 (ko) | 차량 운전 보조 장치 및 방법 | |
WO2018092929A1 (ko) | 사물 인터넷 기반의 실내형 자가촬영사진지원 카메라 시스템 | |
WO2018084347A1 (ko) | 영상 제공 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15897799 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15897799 Country of ref document: EP Kind code of ref document: A1 |