WO2017007023A1 - Transparent screen having light-scattering film, and coating liquid for forming light-scattering film - Google Patents

Transparent screen having light-scattering film, and coating liquid for forming light-scattering film Download PDF

Info

Publication number
WO2017007023A1
WO2017007023A1 PCT/JP2016/070283 JP2016070283W WO2017007023A1 WO 2017007023 A1 WO2017007023 A1 WO 2017007023A1 JP 2016070283 W JP2016070283 W JP 2016070283W WO 2017007023 A1 WO2017007023 A1 WO 2017007023A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polymer
refractive index
coating
high refractive
Prior art date
Application number
PCT/JP2016/070283
Other languages
French (fr)
Japanese (ja)
Inventor
郁哉 橋本
忍 荒田
敬介 村田
幸宏 扇谷
藤村 忠正
塩崎 茂
Original Assignee
セントラル硝子株式会社
ビジョン開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社, ビジョン開発株式会社 filed Critical セントラル硝子株式会社
Publication of WO2017007023A1 publication Critical patent/WO2017007023A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to a transparent screen having a light scattering coating and a coating solution for forming a light scattering coating.
  • a transparent screen that projects and displays information such as advertisements on a commercial building show window or information board while maintaining light transmission has been attracting attention in the building field.
  • a transparent screen as a display for projecting position information or the like onto the windshield of an automobile has been actively studied in recent years, and has attracted attention in the automobile field.
  • a transparent screen As a transparent screen, a laminated glass type in which a hologram is encapsulated between two pieces of glass, a film type in which a resin film containing a light scatterer is pasted on the surface of a transparent substrate, and a panel in which the light scatterer is kneaded into a transparent substrate
  • a type a coating type in which a light scattering film in which a light scattering body is dispersed in a transparent dispersion medium is applied to the surface of a transparent substrate such as glass.
  • Transparent screens used for show windows, guide plates, etc. are often seen not only from the front but also from the diagonal, and the screen surface is not clouded, has good light scattering properties, It is required that the image on the screen can be clearly seen even from the angle of.
  • Patent Document 1 discloses a “nanodiamond composite” in which nanodiamond particles are coated (surface modified) with polyvinyl alcohol (PVA) and further dispersed in a cycloolefin polymer (COP). . Since the resin sheet containing the “nanodiamond composite” has high transparency and appropriate light scattering properties, an excellent transparent light diffuser can be obtained by placing the resin sheet on a glass substrate. It is described that Of the examples of the transparent light diffuser, the one with the highest pencil hardness is 5H (Example 13 of Patent Document 1).
  • nanodiamonds are used as high refractive index nanoparticles, which are dispersed in polyvinyl alcohol (PVA) or cycloolefin polymer (COP) and then molded into a sheet (nanodiamond composite).
  • PVA polyvinyl alcohol
  • COP cycloolefin polymer
  • Patent Document 3 fine particles such as silica, alumina, glass beads, and transparent polymer beads are used as a light diffusing material, and these are dispersed in a medium (binder) such as a polyester resin in the presence of a reactive silyl group-containing epoxy compound.
  • a coating solution for forming a light diffusion layer is disclosed. It has been reported that when the coating solution is applied onto a glass substrate, dried and cured, a light diffusing plate excellent in adhesion and transparency can be produced.
  • Patent Document 4 a core / shell type composite particle composed of a diamond fine particle core and an organic polymer or silica shell is prepared, and this particle is dispersed in a polyvinyl butyral resin as a light scatterer to obtain a coating film.
  • a polyvinyl butyral resin as a light scatterer
  • Patent Document 5 discloses a technique for producing a paint by dispersing diamond particles produced by a specific method and vitreous material powder (glass frit) in a medium (binder) such as acrylic resin and cellulose acetate. Yes. It is described that when the paint is applied to a glass substrate, a transmissive screen having both light scattering properties (sharpness of images) and transparency is obtained.
  • JP2013-16469A JP 2014-153708 A Republished WO2008-016088 JP 2011-1113068 (Patent 52155777) JP 2011-215568 A (Patent No. 555023)
  • Modified high refractive index particles whose surface is modified with a surface modifying polymer (hereinafter also referred to as modified particles) ”are dispersed in an inorganic oxide polymer medium.
  • a “modified particle-inorganic oxide polymer composite” (hereinafter also referred to as “composite”), and making this “composite” a light scattering film.
  • the light-scattering film which can make light-scattering property and transparency compatible can be obtained by the said structure.
  • This light-scattering coating can be used as a single coating and can be combined with a transparent substrate to form a light-scattering transparent screen.
  • modified particles are, for example, bringing “high-refractive-index particles such as nanodiamonds” into contact with “a liquid in which a“ polymer for surface modification ” such as polyvinylpyrrolidone (PVP) is dissolved or dispersed in a solvent”
  • a“ polymer for surface modification ” such as polyvinylpyrrolidone (PVP) is dissolved or dispersed in a solvent
  • PVP polyvinylpyrrolidone
  • first dispersion containing modified particles
  • the active ingredient in this is the aforementioned “modified particle”.
  • first dispersion thus prepared is further dispersed in an “inorganic oxide polymer” such as silica, whereby a liquid containing the “composite” as an active ingredient (this is referred to as “second dispersion”). Will be called).
  • This “second dispersion liquid” can be used as the “coating liquid for forming a light scattering film” in the present invention.
  • the “first dispersion” is converted into a “precursor compound (for example, tetraethyl orthosilicate) that is hydrolyzed and converted into an inorganic oxide polymer”, “acid”, “water”, and “organic solvent”. And the mixture is stirred for a predetermined time, whereby the “second dispersion liquid” can be preferably prepared. By performing this stirring, the “precursor” is hydrolyzed to generate OH groups, which undergo dehydration condensation to form inorganic oxide polymers (silica and the like).
  • a “precursor compound for example, tetraethyl orthosilicate
  • the “modified particles” it is very important to form the “modified particles” by treating the “high refractive index particles” with the “surface modifying polymer”. This is because even if high refractive index particles are directly dispersed in “inorganic oxide polymer” such as silica without using “surface modifying polymer”, “transparency” and “light scattering” This is because a light-scattering film compatible with the above cannot be obtained (see the comparative example described later).
  • the basic structure of the “modified particles” is then retained in the “composite” after being dispersed in the “inorganic oxide polymer” and reflected in the excellent physical properties of the light scattering coating of the present invention. it seems to do. Further, in the composite, high refractive index particles are present in a dispersed state in the surface modifying polymer.
  • the relative content of highly refractive particles, A / (A + B + C) needs to be within a predetermined value range. This indicates that high refractive index particles such as nanodiamonds play an indispensable role in producing the effects of the present invention.
  • the B / A ratio is 4.0 or more. It is unexpected at first glance that the polymer for surface modification is required to be “excess amount (4 times or more in terms of mass)” compared with the high refractive index particles, but by doing so, “transparency” and “ It was found that a light-scattering film having both “light-scattering properties” can be obtained specifically (see Examples and Comparative Examples described later).
  • the mass converted into the chemical form (SiO 2 in the case of silica) after complete hydrolysis / dehydration curing is used.
  • the inventors have developed a “light-scattering film having both transparency and light-scattering properties, using an inorganic oxide polymer such as silica as a medium. I succeeded for the first time in getting.
  • the “coating” refers to a film formed on a base material such as glass for imparting properties as a transparent screen, and is not limited by the method of forming the film on the base material. That is, the “second dispersion liquid” may be applied to a substrate in a liquid state, and then the solvent may be volatilized and solidified (this is also referred to as “coating film”). The “second dispersion liquid” may be once solidified and processed into a film, and then disposed on the substrate. In the present invention, the “coating” is used as a term indicating both of them.
  • the transparent screen of the present invention is a transparent screen having a substrate and a light-scattering coating on at least a part of the substrate, and the light-scattering coating is made of diamond, metal oxide, or composite metal oxide.
  • the surface of a high refractive index particle having a refractive index of 1.5 to 3.5 consisting of at least one kind of product was modified with a surface modifying polymer, “modified high refractive index particle (hereinafter referred to as modified particle).
  • modified particle “modified high refractive index particle” comprising “modified particle-inorganic oxide polymer composite” (hereinafter also referred to as “composite”) dispersed in an inorganic oxide polymer medium.
  • a + B + C of the mass (A) of the polymer for surface modification, the mass (B) of the polymer for surface modification, and the mass (C) of the inorganic oxide polymer medium is 100% by mass
  • a / (A + B + C) is 1.0-10.0% by mass
  • B / A is 4.0 or more
  • a transparent screen When the total value (A + B + C) of the mass (A) of the polymer for surface modification, the mass (B) of the polymer for surface modification, and the mass (C) of the inorganic oxide polymer medium is 100% by mass, A / (A + B + C) is 1.0-10.0% by mass and B / A is 4.0 or more And a transparent screen.
  • the present invention also provides a light-scattering film-forming coating liquid (corresponding to the second dispersion liquid) for forming the above-mentioned light-scattering film.
  • the present invention provides a preferred method for producing the above-described transparent screen.
  • the present invention there is an effect that a “coating having both transparency and light scattering properties” that is rare as a coating in which “high refractive index particles” are dispersed in an “inorganic oxide polymer medium” is provided. Moreover, the effect that the coating liquid for light-scattering film formation for that is provided is produced.
  • a transparent screen having an inorganic oxide polymer type film that achieves both transparency and image sharpness has been realized by the present invention.
  • the inorganic oxide polymer film is preferably a silicon oxide polymer (silica) film.
  • the silicon oxide polymer is a medium that forms a smooth film, and when the substrate is an inorganic substance such as glass, it is easy to ensure adhesion with the substrate.
  • the above-mentioned “first dispersion” is converted into a “precursor compound (for example, tetraethyl orthosilicate) that is hydrolyzed and converted into a silicon oxide polymer (silica)”, “ When mixed with a hydrolyzing acid, “water” and “organic solvent” and stirred for a predetermined time, the “precursor compound” undergoes hydrolysis to produce a silicon oxide polymer (silica).
  • the “first dispersion” is dispersed in the produced silica, and the “second dispersion” can be smoothly prepared under mild conditions. This method is particularly preferable in the case of producing a film using silica as a medium because a stable film can be easily produced.
  • the high refractive index particles are diamond particles (so-called nanodiamond particles), the light scattering performance is appropriate, and it is easy to process into a nano-diameter of stable quality, and the light transmittance is improved. Is also particularly preferable.
  • the surface-modifying polymer is a hydrophilic polymer because the affinity with the inorganic oxide polymer is excellent.
  • the inorganic oxide polymer film is a silicon oxide polymer film
  • the high refractive index particles are diamond particles
  • the surface modifying polymer] is hydrophilic.
  • a polymer is preferred.
  • the hardness of the coating it is easy to design to increase the hardness of the coating. Specifically, when “(A + C) / (A + B + C)”, which is “the mass ratio of the high refractive index particles and the inorganic oxide polymer in the entire coating”, is 50% or more, the hardness of the coating It is easy to achieve 3H or more, which is preferable. If this mass ratio is further increased, a film that achieves a hardness of 5H or higher can be produced (see Examples).
  • the transparent screen having a suitably increased hardness as described above can be particularly suitably used as a glass that may be touched by an unspecified number of people, such as window glass of a car dealer or a convenience store.
  • Inorganic oxide polymer As the inorganic oxide polymer used as a “medium” in the present invention, silicon oxide such as silica, alumina, titania, zirconia, iron oxide, zinc oxide, tin oxide, hafnium oxide , Tungsten oxide, and the like, or a mixture of these. In any of these, central elements (metal / metalloid atoms) are bonded to each other through an oxygen atom, thereby exhibiting a polymer structure on a network. Of these, silicon oxide is particularly preferable because it is a particularly environmentally friendly material and has high durability.
  • the “medium” needs to have a smaller refractive index than that of the high refractive index particles (to ensure the relative refractive index of the high refractive index particles in the medium). Therefore, what is actually adopted as the inorganic oxide polymer needs to be determined according to the type of “high refractive index particles”.
  • silicon oxide has a refractive index of about 1.40 to 1.45, which is compared with the refractive index of organic polymers (resins) in Patent Documents 1 to 5. Therefore, it is preferable because it is sufficiently low.
  • the refractive index of COP disclosed in Patent Document 1 is 1.55, the refractive index of silicon oxide is smaller than that, so the specific refraction of high refractive index particles in the light scattering coating It is easier to increase the rate, and as a result, it has the effect of increasing the scattered light intensity of the coating.
  • the film thickness of the light scattering film in the transparent screen of the present invention is preferably 1 to 15 ⁇ m. If it is less than 1 ⁇ m, the content per unit area of the high refractive index particles in the coating film becomes small, and it is difficult to improve the light scattering property. If it exceeds 15 ⁇ m, it will be difficult to increase the hardness of the coating. It should be noted that either the state in which the high refractive index particles are completely embedded in the light scattering coating, the state in which a part of the high refractive index particles are exposed on the surface of the coating, or the state in which both states are mixed. May be.
  • inorganic oxide polymer examples include “a pure oxide in which all central atoms are bonded to oxygen (for example, a network polymer represented by SiO 2 )”.
  • a chemical species in which a part of the central element is bonded to another substituent can also be used. Rather, the latter (a chemical species in which a part of the central element is bonded to another substituent) is more suitable for forming a film having a stable film thickness of 1 to 15 ⁇ m.
  • the “precursor” for forming the inorganic oxide polymer is R 1 (4-a) —Si—X a (where R 1 is hydrogen Or a monovalent organic group bonded to the central Si atom at the C atom, X is an alkoxy group having 1 to 3 carbon atoms or halogen, and a is an integer of 1 to 4). They can be classified into the following two types (a) and (b).
  • (A) Type When a is 4 in the chemical formula of the above “precursor”. In this case, all four bonds of Si undergo hydrolysis and are converted to “OH groups”. Specific examples include tetraethoxysilane, tetramethoxysilane, and tetrachlorosilane.
  • (B) Type In the chemical formula of the above “precursor”, a is 1, 2, or 3. In this case, only a part of the four bonds of Si undergoes hydrolysis and is converted to “OH groups”. The remaining R1 group remains unchanged. Specifically, monomethyltriethoxysilane, monomethyltrimethoxysilane, trichlorosilane, monomethyltrichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dichlorosilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyl A triethoxysilane is mentioned.
  • the following ⁇ -glycidoxypropyltrimethoxysilane When hydrolysis is performed, all three methoxy groups are hydrolyzed and incorporated into the Si—O—Si network structure, but only the “ ⁇ -glycidoxypropyl group” does not react, and Si—O— It remains in the “inorganic oxide polymer” as a “side chain” separate from the network structure by —Si bond. Since such a polymer that partially leaves the “side chain” also functions effectively as the “inorganic oxide polymer” medium of the present invention, such a polymer is also referred to as “inorganic oxide polymer”, “ It is included in the concept of “silicon oxide” and “silica”.
  • the “inorganic oxide polymer having a side chain” is considered as the above-mentioned “mass (C)”, all “a chemical species in which all central atoms are bonded to oxygen (for example, in the case of silica, SiO 2 ) ”In terms of mass.
  • TEOS tetraethoxysilane
  • GTMS ⁇ -glycidoxypropyltrimethoxysilane
  • High refractive index particles contained in the light scattering coating in the transparent screen of the present invention are components for increasing the refractive index of the light scattering coating and improving the light scattering properties.
  • the refractive index is 1.5 to 3.5, and more preferably 2.0 to 3.1. Examples thereof include particles of diamond, zirconia, titania, tin oxide, metal oxide particles such as iron oxide, and composite metal oxides such as barium titanate. These particles may be used in combination. However, it is necessary to use a material having a higher refractive index than the medium of the “inorganic oxide polymer”, and the choice of high refractive index particles may differ depending on which substance is used as the medium.
  • diamond particles have a high refractive index (2.4195), small chromatic aberration, and high hardness, so that it is easy to improve the light scattering property and durability of the light scattering coating containing diamond particles.
  • high refractive index particles having a refractive index of 2.0 to 3.5 include carbon (2.00), thallium bromide iodide (2.395), zinc selenium (2.40), silicon (3.4179), tin ( 2.00), zinc oxide (2.00), lead antimonate (2.01-2.28), iron oxide hydroxide (2.00-2.40), silver chloride (2.09), cadmium sulfide (2.35-2.48), iron (2.36), iron-chromium -Nickel alloy (stainless steel) (2.36 to 2.40), chromium (2.40), zinc (2.40), black iron (2.42), chromium oxide (III) (2.50), titanium oxide (2.50 to 2.72), titanium (2.71), Copper oxide (2.71), tungsten (2.76), mercury sulfide (2.81-3.14), mercury (2.95), platinum (2.95), ferric oxide (3.01), wurtzite (2.356), sphalerite (2.37), U antivirusite (2.405),
  • diamond particles are environmentally friendly and have a technology to process fine particles with stable quality (refractive index, etc.). Therefore, it can be said that it is a particularly preferable material.
  • the average particle diameter of the high refractive index particles is preferably 150 to 550 nm, more preferably 150 to 350 nm.
  • the average particle size is smaller than 150 nm, it is difficult to improve the light scattering property of the transparent screen having the light scattering coating containing the high refractive index particles.
  • the average particle diameter is larger than 550 nm, the appearance of the light-scattering film containing the high refractive index particles tends to cause defects such as white turbidity.
  • the average particle size means a D50 value (cumulative 50% particle size) in the particle size distribution obtained by measuring the volume distribution in a methanol solvent by the dynamic light scattering method.
  • diamond particles obtained by an explosion method are preferred.
  • Fine particles containing unpurified diamond obtained by the explosion method have a core / shell structure in which the surface of diamond is covered with graphite-based carbon, and are colored black.
  • the diamond phase is oxidized with oxygen or the like or fluorinated with fluorine or the like to remove the graphite phase. And preferably used.
  • hydrophilic functional groups such as —COOH and —OH are usually present on the surface of the remaining graphite-based carbon.
  • the diamond particles oxidized with fluorine gas are also called “fluorinated nanodiamonds” and can be suitably used in the present invention.
  • diamond treated with various oxidizing agents including fluorine is referred to as “diamond” or “nanodiamond”.
  • nanodiamonds that do not dare to perform fluorination treatment can sufficiently exhibit performance.
  • Diamond obtained by oxidation treatment is a secondary particle having an average particle size of 30 to 250 nm formed by agglomeration of nano-sized primary particles of about 2 to 10 nm, so that the particle size is small to scatter visible light as it is. . Therefore, when this particle is used as a light scatterer for visible light, it is preferably used after being aggregated to an average particle size (150 to 550 nm) at which Mie scattering occurs.
  • the refined diamond particles obtained by the oxidation treatment have a higher degree of refinement and a smaller residual amount of graphite-based carbon, so that the proportion of diamond increases and the specific gravity increases.
  • the specific gravity of the purified diamond particles used in the present invention is preferably greater than 3.38 g / cm 3 .
  • the specific gravity of the refined diamond particles approaches the specific gravity of diamond (3.50 g / cm 3 ) as the residual amount of graphite-based carbon (graphite specific gravity: 2.25 g / cm 3 ) decreases.
  • the “surface modification polymer” is a medium for holding the high refractive index particles in a dispersed state, and is brought into contact with the high refractive index particles. To form the “modified particles”.
  • the high refractive index particles are directly dispersed in an inorganic oxide polymer such as silicon oxide without being treated with the surface modifying polymer, the high refractive index particles easily aggregate. Even when a coating was formed using such a coating solution having poor dispersibility, the appearance of the coating was clouded (see Comparative Example 1 described later). However, the inventors dispersed the high refractive index particles in a predetermined amount of the “surface-modifying polymer” and then dispersed in the inorganic oxide polymer, and the appearance of the coating was significantly improved. It has been found that an excellent coating film having both transparency and light scattering properties can be obtained.
  • the mass average molecular weight of the polymer for dispersing the high refractive index particles used in the coating solution for forming a light scattering film and the light scattering film of the present invention is preferably 200,000 to 500,000, more preferably 300 to 400,000. preferable.
  • the mass average molecular weight is less than 200,000, it is difficult to improve the affinity between the high refractive index particles in the coating liquid and the organic solvent or water, and the effect of improving the dispersibility of the high refractive index particles becomes small. As a result, defects may occur in the appearance of the coating.
  • the modification of the surface of the high refractive index particles in the coating solution may be insufficient or non-uniform, resulting in high dispersibility of the high refractive index particles.
  • the effect to improve becomes small, and as a result, a defect may occur in the appearance of the film.
  • Examples of the polymer for modifying the surface of the high refractive index particles used in the coating solution for forming a light scattering film and the light scattering film of the present invention include hydrophilic polymers (polymers having a hydrophilic group as a side chain). Are preferred). Examples thereof include hydrophilic polyvinyl compounds such as polyvinyl pyrrolidone (PVP), polyvinyl alcohol, polyvinyl acetic acid, polyvinyl amine, polyurea, polyurethane, polyamide, polyimide, polyacrylic acid and the like. Among these, a hydrophilic polyvinyl compound is preferable, and polyvinyl pyrrolidone is more preferable in forming an excellent coating for a transparent screen.
  • PVP polyvinyl pyrrolidone
  • a hydrophilic polyvinyl compound is preferable, and polyvinyl pyrrolidone is more preferable in forming an excellent coating for a transparent screen.
  • “C” is a value converted to SiO 2 .
  • [A / (A + B + C)] is particularly preferably 3.0 to 7.0% by mass. When [A / (A + B + C)] is less than 1.0% by mass, the light scattering property of the coating tends to be lowered. On the other hand, when the content is more than 10.0% by mass, the light scattering property of the coating becomes too high and the transparency tends to be lost.
  • the B / A value is 4.0 or more.
  • the B / A is more preferably 4.3 or more. If it is less than 4.0, as shown in Comparative Examples 2 and 3 to be described later, a film having excellent transparency and light scattering properties cannot be formed. As described above, it is a great feature of the present invention that an excessive amount of the polymer for surface modification is used in comparison with the high refractive index particles.
  • B / A is not particularly limited, but if this value is set too large, the amount of “inorganic oxide polymer” that is the remaining material is relatively reduced, and “inorganic oxide”
  • B / A is preferably 7.5 or less, and more preferably 6.0 or less because the hardness of the coating is particularly easily increased.
  • “high refractive index particles” and “inorganic oxide polymer” have an effect of improving “the hardness of the coating”. That is, the higher the “high refractive index particles” and the “inorganic oxide polymer” content, the higher the hardness. More specifically, when [(A + C) / (A + B + C)] is 0.50 or more, the hardness of the coating tends to be 3H or more. When [(A + C) / (A + B + C)] is 0.60 or more, the hardness is likely to increase. Therefore, it is more preferable when importance is attached to the hardness.
  • the amount (A) of the “high refractive particles” does not take a value larger than 10% by mass in the present invention as described above, it actually contributes mainly to the “film hardness”. This is the amount (C) of “inorganic oxide polymer”. This “C” is determined as the remaining amount of the “high refractive index particles” (A) and the “surface modifying polymer” (B). That is, [(A + C) / (A + B + C)] cannot be increased without limit in the present invention.
  • the transparent screen of the present invention includes at least (1) A substrate preparation step of preparing a substrate, (2) A coating liquid preparation step for adjusting a coating liquid for forming a light scattering film, (3) A coating process of coating the light scattering film-forming coating liquid on the surface of the substrate, (4) including a film forming step of heating the substrate after the coating step to cure the coating to form a light-scattering coating on the surface of the substrate, and the coating liquid adjusting step includes: (2a) High refractive index particles having a refractive index of 1.5 to 3.5 made of at least one of diamond, metal oxide, and composite metal oxide are brought into contact with the polymer for surface modification, A step of forming "rate particles (hereinafter also referred to as modified particles)", (2b) The modified particles are dispersed in an inorganic oxide polymer medium at least in the presence of a solvent to obtain a “modified particle-inorganic oxide polymer composite” (hereinafter also referred to as “composite”).
  • a / (A + B + C) is 1.0 to 10.0% by mass and B / A is 4.0 or more, Can be manufactured by a method characterized by the following.
  • base material preparation process In the base material preparation process which prepares a base material, base materials, such as a glass plate, are prepared. At this time, in order to ensure adhesion, it is preferable to carefully remove dirt and the like on the surface by sufficiently polishing with cerium oxide or the like.
  • the coating liquid preparation process which prepares the coating liquid for light-scattering film formation can be implemented as follows, for example.
  • an organic solvent (alcohol or the like) for dispersing the high refractive index particles” is added to the high refractive particles, and a “dispersion of the high refractive index particles in the organic solvent” is obtained using a homogenizer or the like.
  • the dispersion thus obtained is brought into contact with a “surface-modifying polymer (polyvinylpyrrolidone or the like)”, and again dispersed using a homogenizer or the like.
  • a dispersion of “modified particles” can be obtained.
  • this "dispersed particle dispersion” is brought into contact with "a precursor that is converted into an inorganic oxide polymer by hydrolysis” and an acid and water for hydrolysis (at this stage, an organic solvent). If the reaction is carried out at a predetermined temperature, the intended coating solution for forming a light-scattering film can be obtained.
  • an organic solvent such as water or alcohol is added to the high refractive index particles, and an ultrasonic homogenizer or ultrasonic wave is added. It is preferable to disperse by a washing tank, a high-pressure homogenizer, a bead mill, or a jet mill. You may classify
  • organic solvent examples include methanol, ethanol, 1-propanol, 2-propanol, butanol, ethylene glycol, propylene glycol, butylene glycol, pentylene glycol, hexylene glycol, 1-methoxy-2-propanol, and 1-ethoxy-2.
  • the organic solvent can be contained in an amount of 1 to 99% by mass in the coating solution for forming a light scattering film of the present invention.
  • the organic solvent is a component that volatilizes after it is finally applied to the substrate and does not remain in the film, but in order to smoothly disperse the high refractive particles and the modified particles and to perform the application smoothly. It is desirable to use a relatively large amount of organic solvent.
  • the content of the high refractive index particles in the dispersion is preferably 1 to 10% by mass.
  • organic solvent as necessary to keep the dispersion state good.
  • the optimum amount of such organic solvent can be optimized by those skilled in the art.
  • Water is added to the coating solution for forming the light-scattering film in order to advance the hydrolysis / polycondensation reaction of the inorganic oxide polymer precursor.
  • Liquid water or an aqueous solution may be used as a raw material, or moisture taken in from the atmosphere may be used.
  • the acid added separately is aqueous solution, the water can be substituted.
  • Water can be contained in the coating solution in an amount of 0.1 to 90% by mass.
  • the inorganic oxide polymer is silica
  • hydrolysis of the precursor proceeds catalytically. Therefore, generally not much excess water is required. If the amount (total) of the “precursors” is 1 g, the amount of water is often 0.1-1 g, which can also be optimized by the knowledge of those skilled in the art.
  • An acid is added to the coating solution for forming a light-scattering film in order to promote hydrolysis and polycondensation reaction of the inorganic oxide polymer precursor.
  • the acid used in the coating solution for forming the light scattering film include nitric acid, hydrochloric acid, sulfuric acid, acetic acid, trifluoroacetic acid, trifluoroacetic anhydride, citric acid, sulfonic acid, methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, Vinyl sulfonic acid, maleic acid, glycolic acid and the like can be used.
  • nitric acid is preferred because it is easy to obtain in large quantities, has a large effect of hydrolyzing the “precursor”, and can smoothly produce a coating solution.
  • the concentration of the acid in the coating solution for forming a light scattering film of the present invention is preferably 0.01 to 50% by mass. If the amount is less than 0.01% by mass, the effect of promoting the hydrolysis and polycondensation reaction of the inorganic oxide polymer precursor is small. If the amount is more than 50% by mass, the reaction proceeds too quickly, The pot life tends to be shorter.
  • a known surfactant, antioxidant, ultraviolet absorber, light stabilizer, infrared absorber, flame retardant, hydrolyzing agent, and water are added as long as the object of the present invention is not impaired.
  • Components such as a decomposition inhibitor and an antifungal agent may be contained.
  • the surfactant include silicone surfactants (trade names “BYK-322”, “BYK-323”, “BYK-345”, “BYK-346”, “BYK-370”, “BYK-377”).
  • the substrate after the coating process is heated at 50 to 300 ° C. at 1 to 120.
  • a light-scattering film can be formed by heating for a minute. Heating may be performed under normal pressure, increased pressure, reduced pressure, or an inert atmosphere.
  • the substrate on which the light-scattering film is formed is not particularly limited as long as it has a heat-resistant temperature higher than the heating temperature.
  • plate glass with inorganic transparency such as window glass for vehicles, float plate glass usually used for window glass for buildings, soda-lime glass manufactured by roll-out method, glass manufactured by down-draw method, etc. Can be used. What is necessary is just to select the thickness of a base material suitably, and the external appearance with a floating feeling can be obtained using a thin thing, or the external appearance with a three-dimensional effect can be obtained using a thick thing.
  • tempered glass, film-attached glass, and laminated glass can be used as the base material, and from the viewpoint of energy saving and the like, multilayer glass can be used as the base material.
  • a layer for adjusting the refractive index may be formed between the light-scattering coating and the base material, or in the upper layer of the light-scattering coating, or on the opposite side of the base material where the light-scattering coating is not applied.
  • a low reflection layer, low radiation layer, antifouling layer, etc. may be formed on the surface of the film, and it is formed by a known physical film formation method such as sputtering, chemical film formation method such as chemical vapor deposition or wet coating, or film sticking. it can.
  • plastic base materials such as polycarbonate resin, polyethylene terephthalate resin, polymethyl methacrylate resin, polyethylene resin, polyvinyl chloride resin, and other plastic transparent base materials may be used.
  • a transparent substrate of metal oxide such as glass is preferable to a transparent substrate made of plastic.
  • the substrate on which the light-scattering film is formed is not limited to a substrate having a flat surface, but may be a substrate having an uneven surface, a substrate having a pattern formed thereon, or a substrate having a curvature.
  • a transparent screen with a light-scattering coating applied to a substrate with irregularities on the surface or a substrate on which a pattern has been formed has the effect of optical reflection due to surface irregularities and patterns in addition to the light scattering property, and the surface is flat.
  • An appearance different from that of a transparent screen having a light-scattering film formed on a substrate can be obtained. For example, a hologram-like appearance that changes color depending on the viewing angle of the transparent screen can be obtained, and the design can be improved.
  • Coating liquid for forming light-scattering film As described above, the present invention also provides a coating liquid for forming light-scattering film.
  • the “coating liquid” include the configuration of the “coating liquid” in the “coating liquid preparation step for preparing a coating liquid for forming a light-scattering film” described in [5] (2) above.
  • the inorganic oxide polymer medium in a state where the high refractive index particles are dispersed in the surface modifying polymer in a solvent of an organic solvent (alcohol or the like). Dispersed in.
  • Desirable “high refractive index particles”, “surface modifying polymer”, “inorganic oxide polymer”, and “solvent” are the same as those described above.
  • the present invention will be specifically described with reference to examples.
  • the quality of the transparent screen having the light-scattering film obtained in this example and the comparative example was evaluated by the following method.
  • the transparent screens produced in this example and the comparative example have a structure having a light scattering coating on the entire surface of one side of the glass substrate.
  • the present invention is not limited to these examples.
  • Light scattering Light of a specific wavelength is vertically incident on the transparent screen, and the position of the detector is gradually changed from the vertical transmission position, and the inclination (detection angle) of the detector with respect to the vertical incident surface is 10 ° at a wavelength of 550 nm.
  • the transmittance was measured.
  • a spectrophotometer ARSN-733 manufactured by JASCO Corporation was used as a measuring device.
  • Example 1 (Preparation of base material) The surface of a 10 cm square and 2.0 mm thick float glass plate was polished with cerium oxide, washed with ion-exchanged water, and then dried to prepare a substrate. (Preparation of coating solution for forming light scattering film) Diamond particles as the high refractive index particles, polyvinylpyrrolidone (PVP) as the polymer for surface modification, tetraethyl orthosilicate, ⁇ -glycidoxypropyltrimethoxysilane as the precursor of the inorganic oxide polymer, methanol, water as the organic solvent Ion exchange water was used as Nitric acid was used as an acid for promoting hydrolysis and polycondensation of the precursor of the inorganic oxide polymer.
  • PVP polyvinylpyrrolidone
  • tetraethyl orthosilicate tetraethyl orthosilicate
  • ⁇ -glycidoxypropyltrimethoxysilane as the precursor of
  • the resulting mixture was stirred at room temperature (20 ° C.) for 2 hours to obtain a coating solution (d) for forming a light-scattering film having a solid concentration of 10% by mass.
  • Ion exchange water was added to accelerate the hydrolysis and polycondensation reaction of the inorganic oxide polymer precursor.
  • the light-scattering film-forming coating solution is applied by a spin coating method, dried for 10 minutes in a dryer at 70 ° C., and further baked in an electric furnace at 200 ° C. for 10 minutes, A transparent screen having a light scattering coating was produced.
  • Examples 2 to 6, Comparative Examples 1 to 4 As shown in Table 1, the total of the mass% of the high refractive index particles, the mass% of the polymer for surface modification, and the mass% of the solid content of the inorganic oxide polymer (as converted into SiO 2 as described above) The same procedure as in Example 1 was performed except that the mass% of the high refractive index particles, the mass% of the polymer for surface modification, and the mass% of the solid content of the inorganic oxide polymer were changed. .
  • Table 1 shows each component of the coating solution for forming a light-scattering film and the ratio thereof for each example and each comparative example.
  • Table 2 shows the results of observation of appearance, film hardness, light scattering, haze, transmittance, film thickness, and sensory evaluation were measured. It is shown in Table 2 below.
  • “-” means an unevaluated item.
  • Example 1 As is clear from Table 2, as in Example 1, Examples 2 to 6 also have no defects in appearance such as film unevenness, white turbidity, cracks, etc., and have transparency and light scattering properties (sharpness of images). It was a satisfactory level. In particular, in Examples 1, 5 and 6 in which the nanodiamond content falls within the range of 5.0 to 7.0% by mass, the balance between permeability and sharpness was particularly good. In Examples 1 to 6, the sensory evaluation results are greatly improved as compared with Comparative Examples 1 to 4, and thus the excellent operational effects of the present invention are supported.
  • Example 2 although the haze is as small as 1.5%, the sharpness of the image is good, the image can be projected more clearly than in Comparative Example 4, and the haze is 17.0%. In the enlarged Example 3, it was found that the sharpness of the image was better.
  • Example 1 A transparent screen was produced under the same conditions as in Example 1 except that the surface modification polymer was not used. However, when the appearance was observed, irregularities and cloudiness due to particle aggregation having a size that could be visually confirmed were observed.
  • Example 2 A transparent screen was produced under the same conditions as in Example 1 except that the value (B / A) obtained by dividing the mass of the surface modifying polymer by the mass of the high refractive index particles was 3.0 and 3.5. When the appearance was observed, irregularities and cloudiness due to particle aggregation having a size that could be visually confirmed were observed.
  • Example 4 A transparent screen was produced under the same conditions as in Example 1 except that [A / (A + B + C)] was 0.5, but the light scattering property was insufficient. That is, it was found that when the content [A / (A + B + C)] of the high refractive particles is small, a good film for a transparent screen cannot be obtained.
  • the transparent screen having the light-scattering coating of the present invention can be used as a light diffuser for projector projection screens, displays, lighting equipment, for example, in the field of buildings and automobiles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a light-scattering film that has "transparency" and "light scattering" properties while using inorganic oxide polymers as a medium. This light-scattering film contains high-refractivity grains of diamond, etc., inorganic oxide polymers having a higher refractive index than the refractive index of the high-refractivity grains, and a surface-modifying polymer for dispersing the high-refractivity grains in the inorganic oxide polymers. In the light-scattering film, taking the total value (A+B+C) of the mass (A) of the high-refractivity grains, the mass (B) of the surface-modifying polymer, and the mass (C) of the inorganic oxide polymer medium to be 100% by mass, the A/(A+B+C) is 1.0 to 10.0% by mass and B/A is 4.0 or greater. A transparent screen having a light-scattering film provided to a transparent base material is also disclosed. Furthermore, a method for manufacturing a light-scattering film and a transparent screen is also disclosed.

Description

光散乱性被膜を有する透明スクリーン及び光散乱性被膜形成用塗布液Transparent screen having light scattering coating and coating liquid for forming light scattering coating
 本発明は、光散乱性被膜を有する透明スクリーン及び光散乱性被膜形成用塗布液に関する。 The present invention relates to a transparent screen having a light scattering coating and a coating solution for forming a light scattering coating.
 商業ビルのショーウィンドウや案内板等に、光透過性を保持したまま広告等の情報を投影表示する透明スクリーンが、建築物分野において近年注目を集めている。また、建築物分野だけでなく、自動車のフロントガラスに位置情報等を投影するディスプレイとしての透明スクリーンの利用も近年盛んに研究されており、自動車分野でも注目を集めている。 In recent years, a transparent screen that projects and displays information such as advertisements on a commercial building show window or information board while maintaining light transmission has been attracting attention in the building field. In addition to the building field, the use of a transparent screen as a display for projecting position information or the like onto the windshield of an automobile has been actively studied in recent years, and has attracted attention in the automobile field.
 透明スクリーンとして、2枚のガラスの間にホログラムを封入した合わせガラスタイプ、透明基材表面に光散乱体を含有する樹脂フィルムを貼ったフィルムタイプ、光散乱体を透明基材に練りこんだパネルタイプ、透明な分散媒体中に光散乱体を分散させた光散乱性被膜をガラス等の透明基材表面に塗布した塗膜タイプなどが知られている。 As a transparent screen, a laminated glass type in which a hologram is encapsulated between two pieces of glass, a film type in which a resin film containing a light scatterer is pasted on the surface of a transparent substrate, and a panel in which the light scatterer is kneaded into a transparent substrate There are known a type, a coating type in which a light scattering film in which a light scattering body is dispersed in a transparent dispersion medium is applied to the surface of a transparent substrate such as glass.
 ショーウィンドウや案内板等に用いられる透明スクリーンは、正面からだけでなく、斜めからも見られることが多く、スクリーン面の外観が白濁等しておらず、光散乱性が良好なことや、斜めの角度からでもスクリーン面の映像を鮮明に見られることが求められる。 Transparent screens used for show windows, guide plates, etc. are often seen not only from the front but also from the diagonal, and the screen surface is not clouded, has good light scattering properties, It is required that the image on the screen can be clearly seen even from the angle of.
 また、街を練り歩く人々や自動車のドライバーが、透明スクリーンの表面に触れることが想定されるため、塗膜タイプの場合は簡単には表面の塗膜が剥がれないように、実使用に耐えうる硬度を有する透明スクリーンが望まれている。 In addition, since it is assumed that people walking around the city and automobile drivers touch the surface of the transparent screen, in the case of the paint film type, the hardness that can withstand actual use so that the paint film on the surface is not easily peeled off Transparent screens having the following are desired.
 特許文献1には、ナノダイヤモンド粒子をポリビニルアルコール(PVA)によって被覆(表面改質)し、これをさらにシクロオレフィンポリマー(COP)中に分散させてなる「ナノダイヤモンド複合体」が開示されている。当該「ナノダイヤモンド複合体」を含有する樹脂シートは、透明性が高く、かつ適度な光散乱性を有するため、当該樹脂シートをガラス基板上に配置することによって、優れた透明光拡散体が得られることが、記載されている。該透明光拡散体の実施例のうち、最も鉛筆硬度の高いものは5Hである(特許文献1の実施例13)。 Patent Document 1 discloses a “nanodiamond composite” in which nanodiamond particles are coated (surface modified) with polyvinyl alcohol (PVA) and further dispersed in a cycloolefin polymer (COP). . Since the resin sheet containing the “nanodiamond composite” has high transparency and appropriate light scattering properties, an excellent transparent light diffuser can be obtained by placing the resin sheet on a glass substrate. It is described that Of the examples of the transparent light diffuser, the one with the highest pencil hardness is 5H (Example 13 of Patent Document 1).
 特許文献2には、高屈折率ナノ粒子として、ナノダイヤモンドを用い、これをポリビニルアルコール(PVA)またはシクロオレフィンポリマー(COP)中に分散させた上で、シート(ナノダイヤモンド複合体)に成型する技術が開示されている。このシート(ナノダイヤモンド複合体)は、透明であり、かつ良好な光散乱性を兼ね備えるため、透明スクリーン用に好適に使用できることが報告されている。 In Patent Document 2, nanodiamonds are used as high refractive index nanoparticles, which are dispersed in polyvinyl alcohol (PVA) or cycloolefin polymer (COP) and then molded into a sheet (nanodiamond composite). Technology is disclosed. Since this sheet (nanodiamond composite) is transparent and has good light scattering properties, it has been reported that it can be suitably used for a transparent screen.
 特許文献3には、シリカ、アルミナ、ガラスビーズ、透明ポリマービーズなどの微粒子を光拡散材とし、これらを反応性シリル基含有エポキシ化合物の存在下、ポリエステル系樹脂等の媒体(結合剤)に分散させてなる、光拡散層形成用塗布液が開示されている。該塗布液をガラス基材上に塗布し、乾燥・硬化したところ、密着性、透明性に優れた、光拡散板が作製できたことが報告されている。 In Patent Document 3, fine particles such as silica, alumina, glass beads, and transparent polymer beads are used as a light diffusing material, and these are dispersed in a medium (binder) such as a polyester resin in the presence of a reactive silyl group-containing epoxy compound. A coating solution for forming a light diffusion layer is disclosed. It has been reported that when the coating solution is applied onto a glass substrate, dried and cured, a light diffusing plate excellent in adhesion and transparency can be produced.
 特許文献4には、ダイヤモンド微粒子のコアと有機ポリマー又はシリカのシェルとからなるコア/シェル型複合粒子を作製し、この粒子を光散乱体としてポリビニルブチラール樹脂中に分散させ、塗膜を得る技術が開示されている。該塗膜をガラス表面に接着させたところ、優れた透過型スクリーンが得られたことが、記載されている。 In Patent Document 4, a core / shell type composite particle composed of a diamond fine particle core and an organic polymer or silica shell is prepared, and this particle is dispersed in a polyvinyl butyral resin as a light scatterer to obtain a coating film. Is disclosed. It is described that when the coating film was adhered to the glass surface, an excellent transmission type screen was obtained.
 特許文献5には、特定の方法で製造したダイヤモンド粒子、及びガラス質材料粉末(ガラスフリット)を、アクリル樹脂、酢酸セルロース等の媒体(バインダー)に分散させて塗料を作製する技術が開示されている。該塗料をガラス基材に塗装したところ、光散乱性(映像の鮮鋭性)と透明性を両立する透過型スクリーンが得られたことが、記載されている。 Patent Document 5 discloses a technique for producing a paint by dispersing diamond particles produced by a specific method and vitreous material powder (glass frit) in a medium (binder) such as acrylic resin and cellulose acetate. Yes. It is described that when the paint is applied to a glass substrate, a transmissive screen having both light scattering properties (sharpness of images) and transparency is obtained.
特開2013-164569号公報JP2013-16469A 特開2014-153708号公報JP 2014-153708 A 再公表WO2008-016088号公報Republished WO2008-016088 特開2011-113068(特許5214577)号公報JP 2011-1113068 (Patent 52155777) 特開2011-215568(特許5255023)号公報JP 2011-215568 A (Patent No. 555023)
 実用上、透明性の要求されるガラスに対する「映像の鮮鋭性」の要求度は高い。その点、上記の通り、特許文献1~5においては、光拡散材(高屈折率粒子)を有機高分子(樹脂)に分散させ、得られた高屈折率粒子/有機高分子の複合体を、ガラス等の基材上に配置することによって、透明性と光散乱性(映像の先鋭性に対応する)を両立する透過型スクリーンを作製することに、成功している。 In practice, there is a high demand for “sharpness of images” for glass that requires transparency. In this regard, as described above, in Patent Documents 1 to 5, a light diffusing material (high refractive index particles) is dispersed in an organic polymer (resin), and the resulting high refractive index particle / organic polymer composite is obtained. By arranging on a substrate such as glass, a transmission screen having both transparency and light scattering properties (corresponding to the sharpness of the image) has been successfully produced.
 しかし、これらは何れも有機高分子(樹脂)を媒体とするものである。一方で、これらの媒体を配置する基材として最も典型的なのは、無機物質である「ガラス」である。すなわち、これらの発明においては、ガラスを基材として用いる場合、「有機高分子(樹脂)」と「ガラス」という、異質なものどうしを接着させることになる。このため、両者の接着において、「密着性」を確保することが比較的難しい、という技術的制約があった。 However, all of these use an organic polymer (resin) as a medium. On the other hand, the most typical base material on which these media are arranged is “glass” which is an inorganic substance. That is, in these inventions, when glass is used as a base material, different materials such as “organic polymer (resin)” and “glass” are adhered to each other. For this reason, there has been a technical limitation that it is relatively difficult to ensure “adhesion” in the adhesion between the two.
 なお、上記特許文献1~5の技術によっても、ガラス基材と被膜の間の一定の密着性は満足する。しかし、風雨に晒されたり、日光に晒されたりする場所に設置される透明スクリーンなど、耐久性を要求される場合には、ガラス基材に対する密着性の一段と高い「無機酸化物高分子(例えばシリカ高分子)」を媒体とする光散乱性被膜の開発が、求められていた。 Note that, even with the techniques of Patent Documents 1 to 5, a certain degree of adhesion between the glass substrate and the coating is satisfied. However, when durability is required, such as transparent screens installed in places exposed to wind and rain or sunlight, “inorganic oxide polymers (for example, There has been a demand for the development of a light-scattering film using “silica polymer” as a medium.
 ところが、ナノダイヤなどの高屈折率粒子を、無機酸化物高分子中に良好に分散させることは大変難しい。本発明者らが種々検討を行った限り、「透明性」と「光散乱性」が両立する光散乱性被膜は、簡単に作製できるものではなかった。つまり、「透明性」を確保しようとすると、「光散乱性」は十分でなく、逆に「光散乱性」を確保しようとすると、「透明性」が十分でなく、無機酸化物高分子を媒体とする場合には、光散乱性被膜はなかなか作製することができなかった(後述の「比較例」を参照)。 However, it is very difficult to satisfactorily disperse high refractive index particles such as nanodiamonds in an inorganic oxide polymer. As long as the present inventors have made various studies, a light-scattering film having both “transparency” and “light-scattering properties” cannot be easily produced. In other words, when trying to ensure “transparency”, “light scattering” is not sufficient, and conversely, when trying to ensure “light scattering”, “transparency” is not sufficient, and inorganic oxide polymers are not suitable. When used as a medium, it was difficult to produce a light-scattering film (see “Comparative Example” described later).
 すなわち、高屈折率粒子を、シリカなどの無機酸化物高分子媒体に分散させることで、「透明性」と「光散乱性」が両立する光散乱性被膜を得る技術が、強く求められていた。 That is, there has been a strong demand for a technique for obtaining a light-scattering coating film that achieves both “transparency” and “light scattering properties” by dispersing high refractive index particles in an inorganic oxide polymer medium such as silica. .
 本発明者らは、上記課題に鑑み、種々検討した結果、以下の技術要素(1)(2)を共に満たすことによって、上記課題を解決できることを見出した。
(1)高屈折率粒子の表面が、表面修飾用重合体によって修飾された、被修飾高屈折率粒子(以下、被修飾粒子とも呼ぶ)」を、無機酸化物高分子媒体中に分散させて、「被修飾粒子-無機酸化物高分子複合体」(以下「複合体」とも称する)を形成し、この「複合体」を、光散乱性被膜とすること。
(2)前記「高屈折率粒子」の質量(A)、前記「表面修飾用重合体」の質量(B)、前記「無機酸化物高分子」の質量(C)の合計値(A+B+C)を100としたとき、A/(A+B+C)が1.0~10.0質量%であり、かつB/Aが4.0以上であること。
 本発明によれば、上記構成により、光散乱性と透明性とを両立することのできる光散乱性被膜を得ることができる。この光散乱性被膜は、単独の被膜として利用することができるとともに、透明基材と組合せることにより、光散乱性透明スクリーンとすることができる。
As a result of various studies in view of the above problems, the present inventors have found that the above problems can be solved by satisfying the following technical elements (1) and (2).
(1) Modified high refractive index particles whose surface is modified with a surface modifying polymer (hereinafter also referred to as modified particles) ”are dispersed in an inorganic oxide polymer medium. Forming a “modified particle-inorganic oxide polymer composite” (hereinafter also referred to as “composite”), and making this “composite” a light scattering film.
(2) The total value (A + B + C) of the mass (A) of the “high refractive index particles”, the mass (B) of the “polymer for surface modification”, and the mass (C) of the “inorganic oxide polymer”. When 100, A / (A + B + C) is 1.0 to 10.0% by mass and B / A is 4.0 or more.
According to this invention, the light-scattering film which can make light-scattering property and transparency compatible can be obtained by the said structure. This light-scattering coating can be used as a single coating and can be combined with a transparent substrate to form a light-scattering transparent screen.
 上記「被修飾粒子」は、例えば、「ナノダイヤモンド等の高屈折率粒子」を、「ポリビニルピロリドン(PVP)等の「表面修飾用重合体」が溶剤に溶解または分散した液体」に接触させ、ホモジェナイザー等を用いて液相中に分散させることによって、「被修飾粒子を含む分散液」(これを「第1の分散液」とも呼ぶこととする)を形成することで、作製することができる。この中の有効成分が前述の「被修飾粒子」である。 The above-mentioned “modified particles” are, for example, bringing “high-refractive-index particles such as nanodiamonds” into contact with “a liquid in which a“ polymer for surface modification ”such as polyvinylpyrrolidone (PVP) is dissolved or dispersed in a solvent” Producing by forming a “dispersion containing modified particles” (this is also referred to as “first dispersion”) by dispersing in a liquid phase using a homogenizer or the like. Can do. The active ingredient in this is the aforementioned “modified particle”.
 こうして作製した「第1の分散液」を、シリカ等の「無機酸化物高分子」中にさらに分散させることによって、前記「複合体」を有効成分として含む液(これを「第2の分散液」と呼ぶことにする)が得られる。この「第2の分散液」が、本発明における「光散乱性被膜形成用塗布液」として利用できる。 The “first dispersion” thus prepared is further dispersed in an “inorganic oxide polymer” such as silica, whereby a liquid containing the “composite” as an active ingredient (this is referred to as “second dispersion”). Will be called). This “second dispersion liquid” can be used as the “coating liquid for forming a light scattering film” in the present invention.
 具体的には、該「第1の分散液」を、「加水分解されて無機酸化物高分子に変換する前駆体化合物(例えばオルトケイ酸テトラエチル)」、「酸」「水」及び「有機溶媒」と混合し、所定時間、攪拌することにより、「第2の分散液」が好ましく調製できる。この攪拌を行うことによって、前記「前駆体」が加水分解を受け、OH基が生成し、それらが脱水縮合を起こして、無機酸化物高分子(シリカ等)が形成されていく。 Specifically, the “first dispersion” is converted into a “precursor compound (for example, tetraethyl orthosilicate) that is hydrolyzed and converted into an inorganic oxide polymer”, “acid”, “water”, and “organic solvent”. And the mixture is stirred for a predetermined time, whereby the “second dispersion liquid” can be preferably prepared. By performing this stirring, the “precursor” is hydrolyzed to generate OH groups, which undergo dehydration condensation to form inorganic oxide polymers (silica and the like).
 本発明においては、該「高屈折率粒子」を「表面修飾用重合体」によって処理して、「被修飾粒子」を形成することが大変重要である。なぜならば、「表面修飾用重合体」を用いずに、高屈折率粒子を直接、シリカ等の「無機酸化物高分子」中に分散させたとしても、「透明性」と「光散乱性」が両立する光散乱性被膜は得られないからである(後述の比較例を参照)。 In the present invention, it is very important to form the “modified particles” by treating the “high refractive index particles” with the “surface modifying polymer”. This is because even if high refractive index particles are directly dispersed in “inorganic oxide polymer” such as silica without using “surface modifying polymer”, “transparency” and “light scattering” This is because a light-scattering film compatible with the above cannot be obtained (see the comparative example described later).
 こうした事実から、「被修飾粒子」の基本構造は、その後、「無機酸化物高分子」中に分散させ「複合体」としてからも保持され、本発明の光散乱性被膜の優れた物性に反映していると考えられる。また、複合体中においては、高屈折率粒子が、表面修飾用重合体中に分散した状態で存在している。 From these facts, the basic structure of the “modified particles” is then retained in the “composite” after being dispersed in the “inorganic oxide polymer” and reflected in the excellent physical properties of the light scattering coating of the present invention. it seems to do. Further, in the composite, high refractive index particles are present in a dispersed state in the surface modifying polymer.
 さらに、上記(2)に示した通り、本発明においては、高屈折率粒子の質量(A)、表面修飾用重合体の質量(B)、無機酸化物高分子の質量(C)相互の関係も重要である。まず高屈折粒子の相対的な含有量、A/(A+B+C)が所定の値の範囲内にあることが必要である。これはナノダイヤ等の高屈折率粒子が、本発明の作用効果を生じる上で、不可欠の役割を果たしていることを示している。 Furthermore, as shown in (2) above, in the present invention, the relationship between the mass of the high refractive index particles (A), the mass of the surface modifying polymer (B), and the mass of the inorganic oxide polymer (C). It is also important. First, the relative content of highly refractive particles, A / (A + B + C), needs to be within a predetermined value range. This indicates that high refractive index particles such as nanodiamonds play an indispensable role in producing the effects of the present invention.
 また、B/Aの比率が4.0以上であることも重要である。表面修飾用重合体が、高屈折率粒子に比べて、「過剰量(質量にして4倍以上)」求められることは、一見すると意外であるが、そうすることで、「透明性」と「光散乱性」が両立する光散乱性被膜が、特異的に得られることが判った(後述の実施例と比較例を参照)。 It is also important that the B / A ratio is 4.0 or more. It is unexpected at first glance that the polymer for surface modification is required to be “excess amount (4 times or more in terms of mass)” compared with the high refractive index particles, but by doing so, “transparency” and “ It was found that a light-scattering film having both “light-scattering properties” can be obtained specifically (see Examples and Comparative Examples described later).
 なお、本発明における「無機酸化物高分子の質量(C)」としては、加水分解/脱水硬化を完全に行った後の化学形態(シリカであればSiO2)に換算した質量を用いる。 As the “mass (C) of the inorganic oxide polymer” in the present invention, the mass converted into the chemical form (SiO 2 in the case of silica) after complete hydrolysis / dehydration curing is used.
 このように、発明者らは、上記(1)(2)の技術要素を組み合わせた結果、シリカ等の無機酸化物高分子を媒体とする「透明性と光散乱性を両立する光散乱性被膜」を得ることに、初めて成功した。 Thus, as a result of combining the technical elements of (1) and (2) above, the inventors have developed a “light-scattering film having both transparency and light-scattering properties, using an inorganic oxide polymer such as silica as a medium. I succeeded for the first time in getting.
 本発明において「被膜」とは、ガラスなどの基材の上に形成された、透明スクリーンとしての性質を付与するための膜を指し、膜の基材上への形成方法によっては限定されない。すなわち、前記「第2の分散液」を液体の状態で基材上に塗布し、かかる後に溶剤を揮発させて固化しても良いし(このようなものを「塗膜」とも呼ぶ)、「第2の分散液」を一旦固化しフィルムに加工した上で、基材の上に配置してもよい。本発明において「被膜」とは、これらのどちらをも指す用語として用いる。 In the present invention, the “coating” refers to a film formed on a base material such as glass for imparting properties as a transparent screen, and is not limited by the method of forming the film on the base material. That is, the “second dispersion liquid” may be applied to a substrate in a liquid state, and then the solvent may be volatilized and solidified (this is also referred to as “coating film”). The “second dispersion liquid” may be once solidified and processed into a film, and then disposed on the substrate. In the present invention, the “coating” is used as a term indicating both of them.
 なお、前記特許文献1~5に開示される「有機高分子(樹脂)」を媒体とする被膜の場合、一般には「軟らかい膜」となることが多い。例えば、特許文献1では硬度5Hの被膜も作製されているものの、有機高分子が媒体であることから、高硬度の被膜を得るための組成の自由度の幅は、比較的狭いものとなる。これ対し、本発明においては、シリカ等の「無機酸化物高分子」が媒体となるため、硬度のアップを図る上での組成の自由度が大きい(例えば、媒体である「無機酸化物高分子」を増やすことにより、硬度を向上しやすい)。このため、本発明においては、キズのつきにくい透明スクリーン用被膜を設計しやすい、というメリットがある。このようなメリットはあくまで副次的なものであるが、「無機酸化物高分子」を媒体とする光散乱性被膜が実現したことによって、もたらされたものである。 In addition, in the case of a film using “organic polymer (resin)” as a medium disclosed in Patent Documents 1 to 5, generally, it is often a “soft film”. For example, although a film with a hardness of 5H is also prepared in Patent Document 1, since the organic polymer is a medium, the range of the degree of freedom of composition for obtaining a high-hardness film is relatively narrow. On the other hand, in the present invention, since the “inorganic oxide polymer” such as silica serves as a medium, the degree of freedom of composition in increasing the hardness is large (for example, “inorganic oxide polymer that is a medium”). ”To increase the hardness.) For this reason, in this invention, there exists an advantage that it is easy to design the film for transparent screens which is hard to be damaged. Such merits are only secondary, but are brought about by the realization of a light-scattering coating using “inorganic oxide polymer” as a medium.
 すなわち、本発明の透明スクリーンは、基材と、該基材上の少なくとも一部に光散乱性被膜を有する透明スクリーンであって、該光散乱性被膜は、ダイヤモンド、金属酸化物、複合金属酸化物の少なくとも1種からなる屈折率が1.5~3.5の高屈折率粒子の表面が、表面修飾用重合体によって修飾された、「被修飾高屈折率粒子(以下、被修飾粒子とも呼ぶ)」が、無機酸化物高分子媒体中に分散した「被修飾粒子-無機酸化物高分子複合体」(以下「複合体」とも称する)を含んでなるものであり、前記高屈折率粒子の質量(A)、前記表面修飾用重合体の質量(B)、前記無機酸化物高分子媒体の質量(C)の合計値(A+B+C)を100質量%としたとき、A/(A+B+C)が1.0~10.0質量%であり、かつB/Aが4.0以上であること、を特徴とする透明スクリーンである。 That is, the transparent screen of the present invention is a transparent screen having a substrate and a light-scattering coating on at least a part of the substrate, and the light-scattering coating is made of diamond, metal oxide, or composite metal oxide. The surface of a high refractive index particle having a refractive index of 1.5 to 3.5 consisting of at least one kind of product was modified with a surface modifying polymer, “modified high refractive index particle (hereinafter referred to as modified particle). The “high-refractive-index particles” comprising “modified particle-inorganic oxide polymer composite” (hereinafter also referred to as “composite”) dispersed in an inorganic oxide polymer medium. When the total value (A + B + C) of the mass (A) of the polymer for surface modification, the mass (B) of the polymer for surface modification, and the mass (C) of the inorganic oxide polymer medium is 100% by mass, A / (A + B + C) is 1.0-10.0% by mass and B / A is 4.0 or more And a transparent screen.
 さらに、本発明は、上述の光散乱性被膜を形成するための、光散乱性被膜形成用塗布液(上記、第2の分散液に相当する)も提供する。 Furthermore, the present invention also provides a light-scattering film-forming coating liquid (corresponding to the second dispersion liquid) for forming the above-mentioned light-scattering film.
 さらに、本発明は、上述の透明スクリーンの好ましい製造方法を提供する。  Furthermore, the present invention provides a preferred method for producing the above-described transparent screen. *
 本発明によれば、「高屈折率粒子」を「無機酸化物高分子媒体」に分散させた被膜としては珍しい「透明性と光散乱性を両立する被膜」が提供されるという効果を奏する。また、そのための光散乱性被膜形成用塗布液が提供される、という効果を奏する。 According to the present invention, there is an effect that a “coating having both transparency and light scattering properties” that is rare as a coating in which “high refractive index particles” are dispersed in an “inorganic oxide polymer medium” is provided. Moreover, the effect that the coating liquid for light-scattering film formation for that is provided is produced.
 上記被膜を、ガラスなどの基材上に配置することによって、光散乱性被膜を有する透明スクリーンが提供される、という効果を奏する。 By arranging the coating film on a substrate such as glass, an effect is provided that a transparent screen having a light-scattering coating film is provided.
 すなわち、透明性と画像鮮鋭性が両立する、無機酸化物高分子型の被膜を持つ、透明スクリーンが、本発明によって実現した。 That is, a transparent screen having an inorganic oxide polymer type film that achieves both transparency and image sharpness has been realized by the present invention.
本発明の透明スクリーンにおける光散乱性被膜の1例の断面を示す、走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross section of one example of the light-scattering film in the transparent screen of this invention.
 以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Hereinafter, embodiments of the present invention will be specifically described. However, the present invention is not limited to the following embodiments, and can be applied with appropriate modifications without departing from the scope of the present invention.
 本発明の透明スクリーンにおいては、前記無機酸化物高分子の被膜が、ケイ素酸化物高分子(シリカ)被膜であることが好ましい。ケイ素酸化物高分子は、平滑な被膜を形成する媒体であり、基材がガラスなどの無機物である場合には、基材との密着性を確保しやすい。ケイ素酸化物高分子を媒体とする場合、上述の「第1の分散液」を、「加水分解されてケイ素酸化物高分子(シリカ)に変換する前駆体化合物(例えばオルトケイ酸テトラエチル)」、「加水分解用の酸」「水」及び「有機溶媒」と混合し、所定時間、攪拌すると、前記「前駆体化合物」が加水分解を受けて、ケイ素酸化物高分子(シリカ)が生成する。その一方で、前記「第1の分散液」が生成したシリカ中に分散していき、前記「第2の分散液」が、温和な条件で円滑に調製できる。この方法は、安定した被膜を作製しやすいので、シリカを媒体とする被膜を作製する場合には、特に好ましい。 In the transparent screen of the present invention, the inorganic oxide polymer film is preferably a silicon oxide polymer (silica) film. The silicon oxide polymer is a medium that forms a smooth film, and when the substrate is an inorganic substance such as glass, it is easy to ensure adhesion with the substrate. When a silicon oxide polymer is used as a medium, the above-mentioned “first dispersion” is converted into a “precursor compound (for example, tetraethyl orthosilicate) that is hydrolyzed and converted into a silicon oxide polymer (silica)”, “ When mixed with a hydrolyzing acid, “water” and “organic solvent” and stirred for a predetermined time, the “precursor compound” undergoes hydrolysis to produce a silicon oxide polymer (silica). On the other hand, the “first dispersion” is dispersed in the produced silica, and the “second dispersion” can be smoothly prepared under mild conditions. This method is particularly preferable in the case of producing a film using silica as a medium because a stable film can be easily produced.
 本発明の透明スクリーンにおいては、前記高屈折率粒子が、ダイヤモンド粒子(いわゆるナノダイヤモンド粒子)であることが、光散乱性能が適度であり、安定した品質のナノダイヤに加工しやすく、光透過性にも優れることから、特に好ましい。 In the transparent screen of the present invention, the high refractive index particles are diamond particles (so-called nanodiamond particles), the light scattering performance is appropriate, and it is easy to process into a nano-diameter of stable quality, and the light transmittance is improved. Is also particularly preferable.
 本発明の透明スクリーンにおいては、前記表面修飾用重合体が、親水性重合体であると、無機酸化物高分子との親和性が優れることから、好ましい。 In the transparent screen of the present invention, it is preferable that the surface-modifying polymer is a hydrophilic polymer because the affinity with the inorganic oxide polymer is excellent.
 本発明の透明スクリーンにおいては、前記無機酸化物高分子被膜が、ケイ素酸化物高分子被膜であり、前記高屈折率粒子が、ダイヤモンド粒子であり、かつ前記表面修飾用重合体]が、親水性重合体であることが好ましい。 In the transparent screen of the present invention, the inorganic oxide polymer film is a silicon oxide polymer film, the high refractive index particles are diamond particles, and the surface modifying polymer] is hydrophilic. A polymer is preferred.
 本発明においては、上述の通り、被膜の硬度を高める設計がしやすい。具体的には、「被膜全体の中に占める、高屈折率粒子と無機酸化物高分子の占める質量比」である「(A+C)/(A+B+C)」が50%以上であると、被膜の硬度3H以上を達成しやすく、好ましい。この質量比をさらに高めていけば、硬度5Hあるいはそれ以上を達成する被膜も作製できる(実施例を参照)。このように硬度を適宜高めた透明スクリーンは、自動車のディーラーやコンビニ等の窓ガラスなど、不特定多数の人が触れる可能性があるガラスとして、特に好適に使用できる。 In the present invention, as described above, it is easy to design to increase the hardness of the coating. Specifically, when “(A + C) / (A + B + C)”, which is “the mass ratio of the high refractive index particles and the inorganic oxide polymer in the entire coating”, is 50% or more, the hardness of the coating It is easy to achieve 3H or more, which is preferable. If this mass ratio is further increased, a film that achieves a hardness of 5H or higher can be produced (see Examples). The transparent screen having a suitably increased hardness as described above can be particularly suitably used as a glass that may be touched by an unspecified number of people, such as window glass of a car dealer or a convenience store.
 以下、本発明について、さらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
[1]無機酸化物高分子について
 本発明において「媒体」として用いられる無機酸化物高分子としては、シリカ等のケイ素酸化物、アルミナ、チタニア、ジルコニア、酸化鉄、酸化亜鉛、酸化すず、酸化ハフニウム、酸化タングステンなどを挙げることができ、またこれらを混合して用いることもできる。これらは何れも、酸素原子を介して、中心元素(金属・半金属原子)が互いに結合され、網目上の高分子構造を呈する。中でも、ケイ素酸化物が、環境にとりわけ優しい材料である点や、耐久性が高い点から特に好ましい。
[1] Inorganic oxide polymer As the inorganic oxide polymer used as a “medium” in the present invention, silicon oxide such as silica, alumina, titania, zirconia, iron oxide, zinc oxide, tin oxide, hafnium oxide , Tungsten oxide, and the like, or a mixture of these. In any of these, central elements (metal / metalloid atoms) are bonded to each other through an oxygen atom, thereby exhibiting a polymer structure on a network. Of these, silicon oxide is particularly preferable because it is a particularly environmentally friendly material and has high durability.
 尤も、本発明において「媒体」は、高屈折率粒子に比べて屈折率が小さいことが必要である(高屈折率粒子の、媒体中における比屈折率を確保するため)。したがって、実際に何を無機酸化物高分子として採用するかは、「高屈折率粒子」の種類に応じて決める必要がある。 However, in the present invention, the “medium” needs to have a smaller refractive index than that of the high refractive index particles (to ensure the relative refractive index of the high refractive index particles in the medium). Therefore, what is actually adopted as the inorganic oxide polymer needs to be determined according to the type of “high refractive index particles”.
 その点、無機酸化物高分子の中でも、ケイ素酸化物は、屈折率が1.40から1.45付近であり、これは、特許文献1~5における有機重合体(樹脂)の屈折率と比べて、遜色ない程度に、十分低いから、好ましい。例えば特許文献1に開示されているCOPの屈折率は1.55であるが、ケイ素酸化物の屈折率はそれよりもさらに小さい値のため、光散乱性被膜中の高屈折率粒子の比屈折率を一層上げやすく、結果として、被膜の散乱光強度を高める効果がある。 In that respect, among inorganic oxide polymers, silicon oxide has a refractive index of about 1.40 to 1.45, which is compared with the refractive index of organic polymers (resins) in Patent Documents 1 to 5. Therefore, it is preferable because it is sufficiently low. For example, although the refractive index of COP disclosed in Patent Document 1 is 1.55, the refractive index of silicon oxide is smaller than that, so the specific refraction of high refractive index particles in the light scattering coating It is easier to increase the rate, and as a result, it has the effect of increasing the scattered light intensity of the coating.
 本発明の透明スクリーンにおける光散乱性被膜の膜厚は、1~15μmが好ましい。1μm未満では、被膜中の高屈折率粒子の単位面積当たりの含有量が小さくなり、光散乱性を良好にしにくい。15μmを超えると、被膜の硬度を大きくするのが難しくなる。なお、光散乱性被膜中に高屈折率粒子が完全に埋まっている状態、被膜の表面に高屈折率粒子の一部が露出している状態、両状態が混合されている状態のいずれであっても良い。 The film thickness of the light scattering film in the transparent screen of the present invention is preferably 1 to 15 μm. If it is less than 1 μm, the content per unit area of the high refractive index particles in the coating film becomes small, and it is difficult to improve the light scattering property. If it exceeds 15 μm, it will be difficult to increase the hardness of the coating. It should be noted that either the state in which the high refractive index particles are completely embedded in the light scattering coating, the state in which a part of the high refractive index particles are exposed on the surface of the coating, or the state in which both states are mixed. May be.
 本発明において、「無機酸化物高分子」「ケイ素酸化物」「シリカ」としては、「中心原子が全て酸素と結合した純粋な酸化物(例えばSiO2で表される網目状の高分子)」に限定されず、「中心元素の一部が、別の置換基と結合した化学種」も使用可能である。むしろ後者(中心元素の一部が、別の置換基と結合した化学種」)の方が、1~15μmという安定した膜厚の被膜を形成するには適していることが多い。 In the present invention, “inorganic oxide polymer”, “silicon oxide”, and “silica” include “a pure oxide in which all central atoms are bonded to oxygen (for example, a network polymer represented by SiO 2 )”. However, “a chemical species in which a part of the central element is bonded to another substituent” can also be used. Rather, the latter (a chemical species in which a part of the central element is bonded to another substituent) is more suitable for forming a film having a stable film thickness of 1 to 15 μm.
 具体的には、シリカを例にとると、該無機酸化物高分子を形成するための「前駆体」としては、R1 (4-a)-Si-Xa(但し、R1は、水素原子、または、C原子で中心のSi原子と結合する1価の有機基、Xは炭素数1~3のアルコキシ基又はハロゲン、aは1~4の整数)から選ぶことができる。それらは次の(a)(b)、2つのタイプに分類できる。 Specifically, taking silica as an example, the “precursor” for forming the inorganic oxide polymer is R 1 (4-a) —Si—X a (where R 1 is hydrogen Or a monovalent organic group bonded to the central Si atom at the C atom, X is an alkoxy group having 1 to 3 carbon atoms or halogen, and a is an integer of 1 to 4). They can be classified into the following two types (a) and (b).
(a)タイプ:上記「前駆体」の化学式において、aが4である場合。この場合、Siの4つの結合手の全てが加水分解を受けて「OH基」に変換する。具体的には、テトラエトキシシラン、テトラメトキシシラン、テトラクロロシランが挙げられる。 (A) Type: When a is 4 in the chemical formula of the above “precursor”. In this case, all four bonds of Si undergo hydrolysis and are converted to “OH groups”. Specific examples include tetraethoxysilane, tetramethoxysilane, and tetrachlorosilane.
(b)タイプ:上記「前駆体」の化学式において、aが1、2、または3である場合。この場合、Siの4つの結合手の一部のみが加水分解を受けて「OH基」に変換する。残るR1基は不変のままである。具体的には、モノメチルトリエトキシシラン、モノメチルトリメトキシシラン、トリクロロシラン、モノメチルトリクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジクロロシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシランが挙げられる。例えば、次のγ-グリシドキシプロピルトリメトキシシラン
Figure JPOXMLDOC01-appb-C000001
は、加水分解処理を行うと、3つのメトキシ基は全て加水分解され、Si-O-Siの網目構造に取り込まれるが、「γ-グリシドキシプロピル基」だけは反応せず、Si-O-Si結合による網目構造とは別の「側鎖」として、「無機酸化物高分子」中に残り続ける。このような「側鎖」を部分的に残す高分子も、本発明の「無機酸化物高分子」媒体として有効に機能することから、本発明では、こうしたものも「無機酸化物高分子」「ケイ素酸化物」「シリカ」の概念に含まれる。そして上述の「質量(C)」として、こうした「側鎖を持つ無機酸化物高分子」を考えるときは、全て、「中心原子が全て酸素と結合した化学種(例えばシリカの場合は、SiO2)」の質量に換算して考える。
(B) Type: In the chemical formula of the above “precursor”, a is 1, 2, or 3. In this case, only a part of the four bonds of Si undergoes hydrolysis and is converted to “OH groups”. The remaining R1 group remains unchanged. Specifically, monomethyltriethoxysilane, monomethyltrimethoxysilane, trichlorosilane, monomethyltrichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dichlorosilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyl A triethoxysilane is mentioned. For example, the following γ-glycidoxypropyltrimethoxysilane
Figure JPOXMLDOC01-appb-C000001
When hydrolysis is performed, all three methoxy groups are hydrolyzed and incorporated into the Si—O—Si network structure, but only the “γ-glycidoxypropyl group” does not react, and Si—O— It remains in the “inorganic oxide polymer” as a “side chain” separate from the network structure by —Si bond. Since such a polymer that partially leaves the “side chain” also functions effectively as the “inorganic oxide polymer” medium of the present invention, such a polymer is also referred to as “inorganic oxide polymer”, “ It is included in the concept of “silicon oxide” and “silica”. When the “inorganic oxide polymer having a side chain” is considered as the above-mentioned “mass (C)”, all “a chemical species in which all central atoms are bonded to oxygen (for example, in the case of silica, SiO 2 ) ”In terms of mass.
 この中では、テトラエトキシシラン(TEOS)とγ-グリシドキシプロピルトリメトキシシラン(GPTMS)を併用して、前駆体として用いると、上述した「1~15μm」という膜厚の膜を安定的に得やすいので、特に好ましい。両者の混合比に特別な制限はないが、SiO2の質量換算で、TEOS 99~60%に対して、GPTMS 1~40%の割合で用いることは好ましい態様である。 Among these, when tetraethoxysilane (TEOS) and γ-glycidoxypropyltrimethoxysilane (GPTMS) are used in combination as a precursor, the above-described film having a thickness of “1 to 15 μm” can be stably formed. It is particularly preferable because it is easy to obtain. There is no particular limitation on the mixing ratio of the two, but it is a preferred embodiment to use GPPTMS in a proportion of 1 to 40% with respect to TEOS 99 to 60% in terms of SiO 2 mass.
[2]高屈折率粒子について
 本発明の透明スクリーンにおける光散乱性被膜に含まれる「高屈折率粒子」は、光散乱性被膜の屈折率を高め、光散乱性を向上させるための成分である。屈折率は、1.5~3.5であり、2.0~3.1であることがさらに好ましい。例えば、ダイヤモンドや、ジルコニア、チタニア、酸化すず、酸化鉄等の金属酸化物粒子や、チタン酸バリウム等の複合金属酸化物等の粒子が挙げられ、これらの粒子を合わせて用いても良い。但し、前記「無機酸化物高分子」の媒体に比べて屈折率の高いものを使う必要があり、何れの物質を媒体にするかによって、高屈折率粒子の選択肢は、異なることがある。
[2] High Refractive Index Particles “High refractive index particles” contained in the light scattering coating in the transparent screen of the present invention are components for increasing the refractive index of the light scattering coating and improving the light scattering properties. . The refractive index is 1.5 to 3.5, and more preferably 2.0 to 3.1. Examples thereof include particles of diamond, zirconia, titania, tin oxide, metal oxide particles such as iron oxide, and composite metal oxides such as barium titanate. These particles may be used in combination. However, it is necessary to use a material having a higher refractive index than the medium of the “inorganic oxide polymer”, and the choice of high refractive index particles may differ depending on which substance is used as the medium.
 中でも、ダイヤモンド粒子は屈折率(2.4195)が高く、色収差が小さいことに加え、硬度が高いため、ダイヤモンド粒子を含む光散乱性被膜の光散乱性や耐久性を向上させやすい。 Among them, diamond particles have a high refractive index (2.4195), small chromatic aberration, and high hardness, so that it is easy to improve the light scattering property and durability of the light scattering coating containing diamond particles.
 屈折率が2.0~3.5の高屈折率粒子としては、ダイヤモンドの他にも、カーボン(2.00)、臭化ヨウ化タリウム(2.395)、ジンクセレン(2.40)、ケイ素(3.4179)、錫(2.00)、酸化亜鉛(2.00)、アンチモン酸鉛(2.01~2.28)、酸化水酸化鉄(2.00~2.40)、塩化銀(2.09)、硫化カドミウム(2.35~2.48)、鉄(2.36)、鉄-クロム-ニッケル合金(ステンレス鋼)(2.36~2.40)、クロム(2.40)、亜鉛(2.40)、黒鉄(2.42)、酸化クロム(III)(2.50)、酸化チタン(2.50~2.72)、チタニウム(2.71)、酸化銅(2.71)、タングステン(2.76)、硫化水銀(2.81~3.14)、水銀(2.95)、白金(2.95)、酸化第二鉄(3.01)、ウルツ鉱(2.356)、閃亜鉛鉱(2.37)、ウルフェナイト(2.405)、ルチル(2.616~2.90)、ヘマタイト(2.940)などが知られている。 In addition to diamond, high refractive index particles having a refractive index of 2.0 to 3.5 include carbon (2.00), thallium bromide iodide (2.395), zinc selenium (2.40), silicon (3.4179), tin ( 2.00), zinc oxide (2.00), lead antimonate (2.01-2.28), iron oxide hydroxide (2.00-2.40), silver chloride (2.09), cadmium sulfide (2.35-2.48), iron (2.36), iron-chromium -Nickel alloy (stainless steel) (2.36 to 2.40), chromium (2.40), zinc (2.40), black iron (2.42), chromium oxide (III) (2.50), titanium oxide (2.50 to 2.72), titanium (2.71), Copper oxide (2.71), tungsten (2.76), mercury sulfide (2.81-3.14), mercury (2.95), platinum (2.95), ferric oxide (3.01), wurtzite (2.356), sphalerite (2.37), Urufenite (2.405), rutile (2.616-2.90), hematite (2.940), etc. are known.
 但し、これらの中には、環境への影響を無視できない重金属類や、化学的に安定でないもの(例えばゼロ価の金属)も含まれている。 However, these include heavy metals whose environmental impact cannot be ignored and those that are not chemically stable (for example, zero-valent metals).
 これらを考慮すると、本発明の高屈折率粒子としては、「ダイヤモンド粒子(ナノダイヤモンド)」が、環境にも優しい上に、安定した品質(屈折率等)の微細粒子に加工する技術が確立していることから、特に好ましい材料と言うことが出来る。 Considering these, as high-refractive-index particles of the present invention, “diamond particles (nanodiamonds)” are environmentally friendly and have a technology to process fine particles with stable quality (refractive index, etc.). Therefore, it can be said that it is a particularly preferable material.
 前記高屈折率粒子の平均粒径は、150~550nmが好ましく、150~350nmがさらに好ましい。該平均粒径が150nmより小さいと、前記高屈折率粒子を含む光散乱性被膜を有する透明スクリーンの光散乱性を向上させにくい。一方、該平均粒径が550nmより大きいと、前記高屈折率粒子を含む光散乱性被膜の外観が、白濁等の不良を生じやすくなる。なお、ここで平均粒径とは、動的光散乱法でメタノール溶媒中での体積分布を測定して得られた粒度分布におけるD50値(累積50%粒径)を言う。 The average particle diameter of the high refractive index particles is preferably 150 to 550 nm, more preferably 150 to 350 nm. When the average particle size is smaller than 150 nm, it is difficult to improve the light scattering property of the transparent screen having the light scattering coating containing the high refractive index particles. On the other hand, when the average particle diameter is larger than 550 nm, the appearance of the light-scattering film containing the high refractive index particles tends to cause defects such as white turbidity. Here, the average particle size means a D50 value (cumulative 50% particle size) in the particle size distribution obtained by measuring the volume distribution in a methanol solvent by the dynamic light scattering method.
 前記高屈折率粒子としてダイヤモンド粒子を用いる場合、爆射法で得られたダイヤモンド粒子が好ましい。爆射法で得られた未精製のダイヤモンドを含む微粒子は、ダイヤモンドの表面をグラファイト系炭素が覆ったコア/シェル構造を有しており、黒く着色している。用途によってはこのまま用いても良いが、より着色の少ない光散乱膜を得るためには、ダイヤモンドを含む微粒子を、酸素等によって酸化処理し、またはフッ素等によってフッ素化処理し、前記グラファイト相を除去して用いるのが好ましい。グラファイト相を除去することにより、着色成分はほとんどなくなるが、微量に残ったグラファイト系炭素の表面には-COOH、-OH等の親水性官能基が、通常は存在する。 When diamond particles are used as the high refractive index particles, diamond particles obtained by an explosion method are preferred. Fine particles containing unpurified diamond obtained by the explosion method have a core / shell structure in which the surface of diamond is covered with graphite-based carbon, and are colored black. Depending on the application, it may be used as it is, but in order to obtain a light scattering film with less coloration, the diamond phase is oxidized with oxygen or the like or fluorinated with fluorine or the like to remove the graphite phase. And preferably used. By removing the graphite phase, almost no coloring component is present, but hydrophilic functional groups such as —COOH and —OH are usually present on the surface of the remaining graphite-based carbon.
 なお、フッ素ガスで酸化処理したダイヤモンド粒子は「フッ素化ナノダイヤ」とも呼ばれ、本発明に好適に使用できる。本発明においては、フッ素を初めとする各種酸化剤で処理したダイヤモンドも含めて、「ダイヤモンド」「ナノダイヤモンド」と称する。但し、本発明においては、敢えてフッ素化処理を行わない、通常のナノダイヤであっても十分に性能を発揮できる。 The diamond particles oxidized with fluorine gas are also called “fluorinated nanodiamonds” and can be suitably used in the present invention. In the present invention, diamond treated with various oxidizing agents including fluorine is referred to as “diamond” or “nanodiamond”. However, in the present invention, even ordinary nanodiamonds that do not dare to perform fluorination treatment can sufficiently exhibit performance.
 酸化処理して得られたダイヤモンドは、2~10nm程度のナノサイズの一次粒子が凝集してなる平均粒径30~250nmの二次粒子なので、そのままでは可視光を散乱させるには粒径が小さい。従って、この粒子を、可視光に対する光散乱体として使用する場合、更にミー散乱が起こる程度の平均粒径(150~550nm)に凝集させて使用するのが好ましい。 Diamond obtained by oxidation treatment is a secondary particle having an average particle size of 30 to 250 nm formed by agglomeration of nano-sized primary particles of about 2 to 10 nm, so that the particle size is small to scatter visible light as it is. . Therefore, when this particle is used as a light scatterer for visible light, it is preferably used after being aggregated to an average particle size (150 to 550 nm) at which Mie scattering occurs.
 酸化処理して得られた精製ダイヤモンド粒子は、精製度が高くグラファイト系炭素の残存量が少ないほどダイヤモンドの比率が多くなるので比重が大きくなる。本発明で用いる精製ダイヤモンド粒子の比重は3.38g/cm3より大きいのが好ましい。精製ダイヤモンド粒子の比重は、グラファイト系炭素(グラファイトの比重:2.25 g/cm3)の残存量が少なくなればなるほどダイヤモンドの比重(3.50 g/cm3)に近づく。 The refined diamond particles obtained by the oxidation treatment have a higher degree of refinement and a smaller residual amount of graphite-based carbon, so that the proportion of diamond increases and the specific gravity increases. The specific gravity of the purified diamond particles used in the present invention is preferably greater than 3.38 g / cm 3 . The specific gravity of the refined diamond particles approaches the specific gravity of diamond (3.50 g / cm 3 ) as the residual amount of graphite-based carbon (graphite specific gravity: 2.25 g / cm 3 ) decreases.
 グラファイト系炭素の残存量が多いと少量添加の場合は問題ないが、量が多いと黒くなり透明性が損なわれることがある。透明性を特に重視する場合には、天然ダイヤモンドを粉砕して使用してもよい。 If there is a large amount of residual graphite-based carbon, there is no problem when it is added in a small amount, but if the amount is large, it becomes black and transparency may be impaired. When transparency is particularly important, natural diamond may be crushed and used.
[3]表面修飾用重合体について
 本発明において、「表面修飾用重合体」とは、前記高屈折率粒子を分散状態で保持するための媒体であり、前記高屈折率粒子と接触させることで、前記「被修飾粒子」を形成する。
[3] Surface Modification Polymer In the present invention, the “surface modification polymer” is a medium for holding the high refractive index particles in a dispersed state, and is brought into contact with the high refractive index particles. To form the “modified particles”.
 高屈折率粒子を、表面修飾用重合体で処理することなく、直接、ケイ素酸化物等の無機酸化物高分子中に分散させようとしても、該高屈折率粒子は容易に凝集してしまい、そのような分散性が良くない塗布液を用いて被膜を形成しても、被膜の外観が白濁してしまっていた(後述の比較例1参照)。ところが、発明者らは、該高屈折率粒子を所定量の「表面修飾用重合体」に分散させてから、無機酸化物高分子中に分散させたところ、被膜の外観は格段に向上し、透明性と光散乱性の双方を両立する優れた被膜が得られることを見出したのである。 Even if the high refractive index particles are directly dispersed in an inorganic oxide polymer such as silicon oxide without being treated with the surface modifying polymer, the high refractive index particles easily aggregate. Even when a coating was formed using such a coating solution having poor dispersibility, the appearance of the coating was clouded (see Comparative Example 1 described later). However, the inventors dispersed the high refractive index particles in a predetermined amount of the “surface-modifying polymer” and then dispersed in the inorganic oxide polymer, and the appearance of the coating was significantly improved. It has been found that an excellent coating film having both transparency and light scattering properties can be obtained.
 本発明の光散乱性被膜形成用塗布液及び光散乱性被膜に用いられる、高屈折率粒子を分散させるためのポリマーの質量平均分子量は、20万~50万が好ましく、30~40万がさらに好ましい。該質量平均分子量が20万より小さ過ぎると、塗布液中での高屈折率粒子と、有機溶媒や水との親和性を向上させにくく、高屈折率粒子の分散性を向上させる効果が小さくなり、結果として被膜の外観に不具合が生じることがある。一方、該質量平均分子量が50万より大き過ぎると、塗布液中での高屈折率粒子表面の修飾が不十分であったり、不均一になったりすることで、高屈折率粒子の分散性を向上させる効果が小さくなり、結果として被膜の外観に不具合が生じることがある。 The mass average molecular weight of the polymer for dispersing the high refractive index particles used in the coating solution for forming a light scattering film and the light scattering film of the present invention is preferably 200,000 to 500,000, more preferably 300 to 400,000. preferable. When the mass average molecular weight is less than 200,000, it is difficult to improve the affinity between the high refractive index particles in the coating liquid and the organic solvent or water, and the effect of improving the dispersibility of the high refractive index particles becomes small. As a result, defects may occur in the appearance of the coating. On the other hand, if the mass average molecular weight is more than 500,000, the modification of the surface of the high refractive index particles in the coating solution may be insufficient or non-uniform, resulting in high dispersibility of the high refractive index particles. The effect to improve becomes small, and as a result, a defect may occur in the appearance of the film.
 本発明の光散乱性被膜形成用塗布液及び光散乱性被膜に用いられる、高屈折率粒子の表面を修飾するためのポリマーとしては、親水性重合体(側鎖として親水性基を有する重合体をいう)が、好ましい。例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール、ポリビニル酢酸、ポリビニルアミンなどの親水性ポリビニル化合物を始め、ポリ尿素、ポリウレタン、ポリアミド、ポリイミド、ポリアクリル酸等が挙げられる。中でも親水性ポリビニル化合物が好ましく、さらに、ポリビニルピロリドンは、優れた透明スクリーン用の被膜を形成する上で、一層好ましい。 Examples of the polymer for modifying the surface of the high refractive index particles used in the coating solution for forming a light scattering film and the light scattering film of the present invention include hydrophilic polymers (polymers having a hydrophilic group as a side chain). Are preferred). Examples thereof include hydrophilic polyvinyl compounds such as polyvinyl pyrrolidone (PVP), polyvinyl alcohol, polyvinyl acetic acid, polyvinyl amine, polyurea, polyurethane, polyamide, polyimide, polyacrylic acid and the like. Among these, a hydrophilic polyvinyl compound is preferable, and polyvinyl pyrrolidone is more preferable in forming an excellent coating for a transparent screen.
[4]各材料の量比について
 本発明の透明スクリーン用の被膜においては、「高屈折率粒子」の質量(A)、前記「表面修飾用重合体」の質量(B)、前記「無機酸化物高分子」の質量(C)の合計値(A+B+C)を100としたとき、[A/(A+B+C)]が1.0~10.0質量%であることが必要である。なお、前述の通り、「C」は、SiO2に換算した値である。この、[A/(A+B+C)]は、3.0~7.0質量%であることが特に好ましい。[A/(A+B+C)]が1.0質量%より少ないと、被膜の光散乱性が低下しやすくなる。一方、10.0質量%より多いと被膜の光散乱性が高くなり過ぎて透明性が失われやすくなる。
[4] Amount ratio of each material In the coating for a transparent screen of the present invention, the mass (A) of the “high refractive index particles”, the mass (B) of the “polymer for surface modification”, and the “inorganic oxidation” [A / (A + B + C)] needs to be 1.0 to 10.0% by mass, where the total value (A + B + C) of the mass (C) of the “polymer” is 100. As described above, “C” is a value converted to SiO 2 . [A / (A + B + C)] is particularly preferably 3.0 to 7.0% by mass. When [A / (A + B + C)] is less than 1.0% by mass, the light scattering property of the coating tends to be lowered. On the other hand, when the content is more than 10.0% by mass, the light scattering property of the coating becomes too high and the transparency tends to be lost.
 本発明の透明スクリーン用の被膜においては、前記B/Aの値が4.0以上であることも必要である。このB/Aとしては、4.3以上であることが一層好ましい。4.0未満であると、後述の比較例2、3に示すように、透明度、光散乱性が共に優れる被膜を形成するには至らない。このように、高屈折率粒子に比べて、敢えて過剰の表面修飾用重合体を用いることが、本発明の大きな特徴である。 In the coating for a transparent screen of the present invention, it is also necessary that the B / A value is 4.0 or more. The B / A is more preferably 4.3 or more. If it is less than 4.0, as shown in Comparative Examples 2 and 3 to be described later, a film having excellent transparency and light scattering properties cannot be formed. As described above, it is a great feature of the present invention that an excessive amount of the polymer for surface modification is used in comparison with the high refractive index particles.
 なお、B/Aの上限値には特に制限はないが、この値をあまり大きく設定すると、残る材料である「無機酸化物高分子」の量が相対的に減ることになり、「無機酸化物高分子」を媒体とする透明スクリーンの優れた特長が十分発現しなくなることがある。具体的に、B/Aは7.5以下であることが好ましく、6.0以下であると、被膜の硬度を特に大きくしやすいため、一層好ましい。 The upper limit value of B / A is not particularly limited, but if this value is set too large, the amount of “inorganic oxide polymer” that is the remaining material is relatively reduced, and “inorganic oxide” The excellent features of a transparent screen using a “polymer” as a medium may not be sufficiently exhibited. Specifically, B / A is preferably 7.5 or less, and more preferably 6.0 or less because the hardness of the coating is particularly easily increased.
 本発明の透明スクリーン用の被膜においては、「高屈折率粒子」と「無機酸化物高分子」が、「被膜の硬度」を向上させる効果を持つ。すなわち「高屈折率粒子」と「無機酸化物高分子」含量が高い方が、硬度は大きい。より具体的には、[(A+C)/(A+B+C)]が0.50以上であると、被膜の硬度は3H以上になりやすい。[(A+C)/(A+B+C)]が0.60以上であると、硬度はより大きくなりやすいので、硬度を重視する場合には、一層好ましい。 In the coating for a transparent screen of the present invention, “high refractive index particles” and “inorganic oxide polymer” have an effect of improving “the hardness of the coating”. That is, the higher the “high refractive index particles” and the “inorganic oxide polymer” content, the higher the hardness. More specifically, when [(A + C) / (A + B + C)] is 0.50 or more, the hardness of the coating tends to be 3H or more. When [(A + C) / (A + B + C)] is 0.60 or more, the hardness is likely to increase. Therefore, it is more preferable when importance is attached to the hardness.
 尤も「高屈折粒子」の量(A)は、前述のように、本発明においては10質量%よりも大きい値を取ることがないので、実際上「被膜の硬度」に主として寄与するのは、「無機酸化物高分子」の量(C)である。そして、この「C」は、「高屈折率粒子」の量(A)と、「表面修飾用重合体」の量(B)の残余の量として決まってくるものである。つまり、本発明において[(A+C)/(A+B+C)]を無制限に高めることはできない。 However, since the amount (A) of the “high refractive particles” does not take a value larger than 10% by mass in the present invention as described above, it actually contributes mainly to the “film hardness”. This is the amount (C) of “inorganic oxide polymer”. This “C” is determined as the remaining amount of the “high refractive index particles” (A) and the “surface modifying polymer” (B). That is, [(A + C) / (A + B + C)] cannot be increased without limit in the present invention.
[5]被膜の製造方法について
 本発明の透明スクリーンは、少なくとも、
(1)基材を準備する基材準備工程、
(2)光散乱性被膜形成用塗布液を調整する塗布液調製工程、
(3)該光散乱性被膜形成用塗布液を該基材表面に塗布する塗布工程、
(4)該塗布工程後の基材を加熱して被膜を硬化させて、該基材表面に光散乱性被膜を形成する被膜形成工程を含み、かつ、前記塗布液調整工程が、
(2a)ダイヤモンド、金属酸化物、複合金属酸化物の少なくとも1種からなる屈折率が1.5~3.5の高屈折率粒子を、表面修飾用重合体と接触させ、「被修飾高屈折率粒子(以下、被修飾粒子とも呼ぶ)」を形成する工程、
(2b)前記、被修飾粒子を、少なくとも、溶媒の存在下、無機酸化物高分子媒体中に分散させ、「被修飾粒子-無機酸化物高分子複合体」(以下「複合体」とも称する)を含む液を形成し、この液を前記塗布液とする工程、
を含むことを特徴とし、
 前記高屈折率粒子の質量(A)、前記表面修飾用重合体の質量(B)、前記無機酸化物高分子媒体の質量(C)の合計値(A+B+C)を100質量%としたとき、A/(A+B+C)が1.0~10.0質量%であり、かつB/Aが4.0以上であること、
を特徴とする方法によって、製造することができる。
[5] Method for producing coating The transparent screen of the present invention includes at least
(1) A substrate preparation step of preparing a substrate,
(2) A coating liquid preparation step for adjusting a coating liquid for forming a light scattering film,
(3) A coating process of coating the light scattering film-forming coating liquid on the surface of the substrate,
(4) including a film forming step of heating the substrate after the coating step to cure the coating to form a light-scattering coating on the surface of the substrate, and the coating liquid adjusting step includes:
(2a) High refractive index particles having a refractive index of 1.5 to 3.5 made of at least one of diamond, metal oxide, and composite metal oxide are brought into contact with the polymer for surface modification, A step of forming "rate particles (hereinafter also referred to as modified particles)",
(2b) The modified particles are dispersed in an inorganic oxide polymer medium at least in the presence of a solvent to obtain a “modified particle-inorganic oxide polymer composite” (hereinafter also referred to as “composite”). Forming a liquid containing, and using this liquid as the coating liquid,
Including,
When the total value (A + B + C) of the mass (A) of the high refractive index particles, the mass (B) of the polymer for surface modification, and the mass (C) of the inorganic oxide polymer medium is 100% by mass, A / (A + B + C) is 1.0 to 10.0% by mass and B / A is 4.0 or more,
Can be manufactured by a method characterized by the following.
 本発明における被膜の製造方法としては、この方法が特に好ましい方法であるため、以下、詳述を加える。 Since this method is a particularly preferable method as a method for producing a film in the present invention, detailed description will be given below.
(1)基材準備工程について
 基材を準備する基材準備工程においては、ガラス板等の基材を準備する。この際、密着性を確保するために、酸化セリウム等で充分に研磨することにより、表面の汚れ等を丁寧に除去しておくことが好ましい。
(1) About base material preparation process In the base material preparation process which prepares a base material, base materials, such as a glass plate, are prepared. At this time, in order to ensure adhesion, it is preferable to carefully remove dirt and the like on the surface by sufficiently polishing with cerium oxide or the like.
(2)塗布液調整工程について
 光散乱性被膜形成用塗布液を調製する塗布液調製工程は、例えば次のように実施することができる。
(2) About coating liquid adjustment process The coating liquid preparation process which prepares the coating liquid for light-scattering film formation can be implemented as follows, for example.
 すなわち、高屈折粒子に、「高屈折率粒子を分散させるための有機溶媒(アルコールなど)」を加え、ホモジナイザー等を用いて、「高屈折率粒子の有機溶媒への分散液」を得る。そうして得た分散液を、「表面修飾用重合体(ポリビニルピロリドン等)」と接触させ、再びホモジナイザー等を用いて再び、分散させる。こうして「被修飾粒子」の分散液を得ることができる。この「被修飾粒子の分散液」を、前述の通り、「加水分解によって無機酸化物高分子に変換する前駆体」、および、加水分解用の酸と水と接触させ(この段階で、有機溶媒を追加してもよい)、所定温度で反応を行うと、目的とする光散乱性被膜形成用塗布液が得られる。 That is, “an organic solvent (alcohol or the like) for dispersing the high refractive index particles” is added to the high refractive particles, and a “dispersion of the high refractive index particles in the organic solvent” is obtained using a homogenizer or the like. The dispersion thus obtained is brought into contact with a “surface-modifying polymer (polyvinylpyrrolidone or the like)”, and again dispersed using a homogenizer or the like. In this way, a dispersion of “modified particles” can be obtained. As described above, this "dispersed particle dispersion" is brought into contact with "a precursor that is converted into an inorganic oxide polymer by hydrolysis" and an acid and water for hydrolysis (at this stage, an organic solvent). If the reaction is carried out at a predetermined temperature, the intended coating solution for forming a light-scattering film can be obtained.
 前記高屈折率粒子の有機溶媒への分散液、及び、「被修飾粒子」の分散液の調製においては、高屈折率粒子に水やアルコール等の有機溶媒を添加し、超音波ホモジナイザーや超音波洗浄槽、高圧ホモジナイザー、ビーズミル、ジェットミルによって分散することが好ましい。必要に応じて遠心分離などで分級しても良い。 In the preparation of the dispersion of the high refractive index particles in the organic solvent and the dispersion of the “modified particles”, an organic solvent such as water or alcohol is added to the high refractive index particles, and an ultrasonic homogenizer or ultrasonic wave is added. It is preferable to disperse by a washing tank, a high-pressure homogenizer, a bead mill, or a jet mill. You may classify | categorize by centrifugation etc. as needed.
 該有機溶媒には、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブチレングリコール、ペンチレングリコール、ヘキシレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、2-ピロリドン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、エチルラクテート、ブチルラクトン、プロピレングリコール1-モノメチルエーテル2-アセタート、2-プロパノン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノン、2,4-ペンタンジオン、アセトニトリル、酢酸エチル、酢酸イソプロピル、酢酸ノルマルプロピル、酢酸イソブチル、酢酸ノルマルブチル、ホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、モルフォリン、テトラヒドロフラン、トルエン、キシレン等を用いることが出来る。この中ではメタノール、エタノールが高屈折率粒子を分散しやすく好ましい。 Examples of the organic solvent include methanol, ethanol, 1-propanol, 2-propanol, butanol, ethylene glycol, propylene glycol, butylene glycol, pentylene glycol, hexylene glycol, 1-methoxy-2-propanol, and 1-ethoxy-2. -Propanol, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ethyl lactate, butyl lactone, propylene glycol 1-monomethyl ether 2-acetate, 2-propanone, 2-butanone, 4-methyl -2-pentanone, 2-heptanone, 2,4-pentanedione, acetonitrile, ethyl acetate, isopropyl acetate, normal propyl acetate, isobutyl acetate, normal butyl acetate, formamide, N, N-dimethylformami , Acetamide, N, N- dimethylacetamide, dimethyl sulfoxide, morpholine, tetrahydrofuran, toluene, can be used xylene. Among these, methanol and ethanol are preferable because they easily disperse the high refractive index particles.
 本発明の光散乱性被膜形成用塗布液中に有機溶媒は、1~99質量%含有されていることができる。有機溶媒は、最終的に基材に塗布された後は揮発し、被膜中には残らない成分であるが、高屈折粒子や被修飾粒子を円滑に分散させ、塗布を滞りなく行うためには、比較的多めに有機溶媒を使うことが望ましい。高屈折粒子を有機溶媒に分散させるに際して、分散液に対する高屈折率粒子の含量は1~10質量%が好ましい態様の1つである。その後、「表面修飾用重合体」「無機酸化物高分子の前駆体」と接触させていくにつれ、必要に応じ、有機溶媒を追加し、分散状態を良好に保つことが好ましい。このような有機溶剤の最適の量は、当業者が最適化することができる。 The organic solvent can be contained in an amount of 1 to 99% by mass in the coating solution for forming a light scattering film of the present invention. The organic solvent is a component that volatilizes after it is finally applied to the substrate and does not remain in the film, but in order to smoothly disperse the high refractive particles and the modified particles and to perform the application smoothly. It is desirable to use a relatively large amount of organic solvent. When dispersing the high refractive particles in the organic solvent, the content of the high refractive index particles in the dispersion is preferably 1 to 10% by mass. Thereafter, as it is brought into contact with the “surface-modifying polymer” and “precursor of the inorganic oxide polymer”, it is preferable to add an organic solvent as necessary to keep the dispersion state good. The optimum amount of such organic solvent can be optimized by those skilled in the art.
 光散乱性被膜形成用塗布液には、前記無機酸化物高分子前駆体の加水分解・重縮合反応を進行させるために水が添加されている。原料として液体の水や水溶液を用いても良いし、大気中から取り込まれる水分を利用しても良い。また、別途加える酸が、水溶液である場合には、その水でも代用できる。 Water is added to the coating solution for forming the light-scattering film in order to advance the hydrolysis / polycondensation reaction of the inorganic oxide polymer precursor. Liquid water or an aqueous solution may be used as a raw material, or moisture taken in from the atmosphere may be used. Moreover, when the acid added separately is aqueous solution, the water can be substituted.
 塗布液中に水は、0.1~90質量%含有されていることができる。無機酸化物高分子がシリカである場合、前駆体(TEOSなど)の加水分解は、触媒的に進行する。そのため、一般にはそれほど過剰な量の水は必要とされない。「前駆体」の量(合計)が1gであれば、水の量は0.1~1gで足りることが多く、これも当業者の知識で最適化できる。 Water can be contained in the coating solution in an amount of 0.1 to 90% by mass. When the inorganic oxide polymer is silica, hydrolysis of the precursor (such as TEOS) proceeds catalytically. Therefore, generally not much excess water is required. If the amount (total) of the “precursors” is 1 g, the amount of water is often 0.1-1 g, which can also be optimized by the knowledge of those skilled in the art.
 光散乱性被膜形成用塗布液には、前記無機酸化物高分子前駆体の加水分解や重縮合反応を促進するために酸が添加されている。光散乱性被膜形成用塗布液に用いる酸としては、硝酸、塩酸、硫酸、酢酸、トリフルオロ酢酸、無水トリフルオロ酢酸、クエン酸、スルホン酸、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、ビニルスルホン酸、マレイン酸、グリコール酸等を用いることが出来る。この中では硝酸が、大量の入手が容易である上、「前駆体」を加水分解する作用が大きく、塗布液を円滑に製造できるから好ましい。 An acid is added to the coating solution for forming a light-scattering film in order to promote hydrolysis and polycondensation reaction of the inorganic oxide polymer precursor. Examples of the acid used in the coating solution for forming the light scattering film include nitric acid, hydrochloric acid, sulfuric acid, acetic acid, trifluoroacetic acid, trifluoroacetic anhydride, citric acid, sulfonic acid, methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, Vinyl sulfonic acid, maleic acid, glycolic acid and the like can be used. Of these, nitric acid is preferred because it is easy to obtain in large quantities, has a large effect of hydrolyzing the “precursor”, and can smoothly produce a coating solution.
 本発明の光散乱性被膜形成用塗布液中の酸の濃度は、0.01~50質量%であることが好ましい。0.01質量%より少な過ぎると、前記無機酸化物高分子前駆体の加水分解や重縮合反応を促進する効果が小さく、50質量%より多過ぎると上記反応が早く進み過ぎて、塗布液のポットライフが短くなりやすい。 The concentration of the acid in the coating solution for forming a light scattering film of the present invention is preferably 0.01 to 50% by mass. If the amount is less than 0.01% by mass, the effect of promoting the hydrolysis and polycondensation reaction of the inorganic oxide polymer precursor is small. If the amount is more than 50% by mass, the reaction proceeds too quickly, The pot life tends to be shorter.
 また、光散乱性被膜形成用塗布液中には、本発明の目的を損なわない限りにおいて、公知の界面活性剤、酸化防止剤、紫外線吸収剤、光安定剤、赤外線吸収剤、難燃剤、加水分解防止剤、防黴剤等の成分が含有されていてもよい。界面活性剤としては、例えば、シリコーン系界面活性剤(商品名「BYK-322」、「BYK-323」、「BYK-345」、「BYK-346」、「BYK-370」、「BYK-377」、「BYK-378」、「BYK-3455」、以上BYK社)やアクリル系界面活性剤(商品名「BYK-350」、「BYK-355」、「BYK-356」、「BYK-392」、「BYK-394」、「BYK-3441」、以上BYK社)等が挙げられる。 In addition, in the coating solution for forming a light scattering film, a known surfactant, antioxidant, ultraviolet absorber, light stabilizer, infrared absorber, flame retardant, hydrolyzing agent, and water are added as long as the object of the present invention is not impaired. Components such as a decomposition inhibitor and an antifungal agent may be contained. Examples of the surfactant include silicone surfactants (trade names “BYK-322”, “BYK-323”, “BYK-345”, “BYK-346”, “BYK-370”, “BYK-377”). ”,“ BYK-378 ”,“ BYK-3455 ”, BYK, Inc.) and acrylic surfactants (trade names“ BYK-350 ”,“ BYK-355 ”,“ BYK-356 ”,“ BYK-392 ”) , “BYK-394”, “BYK-3441”, and BYK Company).
(3)塗布工程について
 光散乱性被膜形成用塗布液を基材表面に塗布する塗布工程においては、生産性などの面からは、例えば、スピンコート法、バーコート法、リバースロールコート法、その他のロールコート法、カーテンコート法、スプレーコート法、ディップコート法、ノズルコート法、ディスペンサーコート法、スクリーン印刷法、インクジェット印刷法などの公知手段が採用でき、適宜マスキングすることにより、部分的な成膜はもちろん、任意の形状、図柄に被膜を形成することができる。なお、これらの塗布法で塗布成膜する際の光散乱性被膜形成用塗布液中の全固形分濃度としては0.1~20質量%程度が好ましい。
(3) Application process In the application process for applying the light-scattering film-forming coating solution to the substrate surface, from the viewpoint of productivity, for example, spin coating, bar coating, reverse roll coating, etc. Well-known means such as roll coating method, curtain coating method, spray coating method, dip coating method, nozzle coating method, dispenser coating method, screen printing method and ink jet printing method can be adopted, and partial formation can be achieved by appropriately masking. A film can be formed in an arbitrary shape and pattern as well as a film. Note that the total solid concentration in the coating solution for forming a light-scattering film at the time of coating by these coating methods is preferably about 0.1 to 20% by mass.
(4)被膜形成工程について
 塗布工程後の基材を加熱して、該基材表面に光散乱性被膜を形成する被膜形成工程では、塗布工程後の基材を50~300℃で1~120分間加熱を行うことで、光散乱性被膜を形成することが出来る。加熱は、常圧下、加圧下、減圧下、不活性雰囲気下で行っても良い。
(4) Film Forming Process In the film forming process in which the substrate after the coating process is heated to form a light scattering film on the surface of the substrate, the substrate after the coating process is heated at 50 to 300 ° C. at 1 to 120. A light-scattering film can be formed by heating for a minute. Heating may be performed under normal pressure, increased pressure, reduced pressure, or an inert atmosphere.
 前記の加熱温度よりも高い耐熱温度を有するものであれば、光散乱性被膜が形成される基材は特に限定されるものではない。例えば、車両用窓ガラス、建築物用窓ガラスに通常使用されているフロート板ガラス、又はロールアウト法で製造されたソーダ石灰ガラス、又はダウンドロー法で製造されたガラス等無機質の透明性がある板ガラスを使用できる。基材の厚みは適宜選択すればよく、薄いものを用いて浮遊感のある外観を得たり、厚いものを用いて立体感のある外観を得たりできる。また安全性などの観点から、基材として強化ガラス、フィルム貼付ガラス、合わせガラスを使用することができ、省エネなどの観点から、基材として複層ガラスを使用することができる。さらに、光散乱性被膜と基材との間や、光散乱性被膜の上層に屈折率を調整する層を形成していてもよいし、基材の光散乱性被膜が塗布されていない反対側の面に低反射層や低放射層、防汚層などを形成していてもよく、既知のスパッタリングなどの物理成膜法、化学蒸着や湿式コーティングなどの化学成膜法、フィルム貼付にて形成できる。 The substrate on which the light-scattering film is formed is not particularly limited as long as it has a heat-resistant temperature higher than the heating temperature. For example, plate glass with inorganic transparency such as window glass for vehicles, float plate glass usually used for window glass for buildings, soda-lime glass manufactured by roll-out method, glass manufactured by down-draw method, etc. Can be used. What is necessary is just to select the thickness of a base material suitably, and the external appearance with a floating feeling can be obtained using a thin thing, or the external appearance with a three-dimensional effect can be obtained using a thick thing. Further, from the viewpoint of safety and the like, tempered glass, film-attached glass, and laminated glass can be used as the base material, and from the viewpoint of energy saving and the like, multilayer glass can be used as the base material. Further, a layer for adjusting the refractive index may be formed between the light-scattering coating and the base material, or in the upper layer of the light-scattering coating, or on the opposite side of the base material where the light-scattering coating is not applied. A low reflection layer, low radiation layer, antifouling layer, etc. may be formed on the surface of the film, and it is formed by a known physical film formation method such as sputtering, chemical film formation method such as chemical vapor deposition or wet coating, or film sticking. it can.
 前記基材の他に、プラスチック製の基材、例えば、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタアクリレート樹脂、ポリエチレン樹脂、ポリ塩化ビニル樹脂、その他のプラスチック製の透明基材を使用することがある。耐熱性、耐候性などの耐久性の点からは、プラスチック製の透明基材よりも、ガラス等の金属酸化物の透明基材が好ましい。 In addition to the base material, plastic base materials such as polycarbonate resin, polyethylene terephthalate resin, polymethyl methacrylate resin, polyethylene resin, polyvinyl chloride resin, and other plastic transparent base materials may be used. . From the viewpoint of durability such as heat resistance and weather resistance, a transparent substrate of metal oxide such as glass is preferable to a transparent substrate made of plastic.
 光散乱性被膜が形成される基材としては、表面が平坦な基材だけでなく、表面に凹凸がある基材やパターンを形成した基材、曲率を持った形状の基材でも良い。表面に凹凸がある基材やパターンを形成した基材に光散乱性被膜を塗布した透明スクリーンでは、光散乱性に加えて表面の凹凸やパターンによる光学反射の効果も得られ、表面が平坦な基材に光散乱性被膜を形成した透明スクリーンとは異なる外観を得ることが出来る。例えば、透明スクリーンを見る角度によって色が変わる、ホログラムのような外観を得られ、意匠性を高めることができる。 The substrate on which the light-scattering film is formed is not limited to a substrate having a flat surface, but may be a substrate having an uneven surface, a substrate having a pattern formed thereon, or a substrate having a curvature. A transparent screen with a light-scattering coating applied to a substrate with irregularities on the surface or a substrate on which a pattern has been formed has the effect of optical reflection due to surface irregularities and patterns in addition to the light scattering property, and the surface is flat. An appearance different from that of a transparent screen having a light-scattering film formed on a substrate can be obtained. For example, a hologram-like appearance that changes color depending on the viewing angle of the transparent screen can be obtained, and the design can be improved.
[6]光散乱性被膜形成用塗布液について
 本発明は、前記の通り、光散乱性被膜形成用塗布液も提供する。該「塗布液」としては、上述の[5](2)の「光散乱性被膜形成用塗布液を調整する塗布液調製工程」における「塗布液」の構成が、再び挙げられる。
[6] Coating liquid for forming light-scattering film As described above, the present invention also provides a coating liquid for forming light-scattering film. Examples of the “coating liquid” include the configuration of the “coating liquid” in the “coating liquid preparation step for preparing a coating liquid for forming a light-scattering film” described in [5] (2) above.
 すなわち、本発明の光散乱性被膜形成用塗布液においては、有機溶媒(アルコールなど)の溶媒中において、高屈折率粒子が表面修飾用重合体に分散された状態で、無機酸化物高分子媒体中に分散している。 That is, in the coating solution for forming a light-scattering film of the present invention, the inorganic oxide polymer medium in a state where the high refractive index particles are dispersed in the surface modifying polymer in a solvent of an organic solvent (alcohol or the like). Dispersed in.
 上記[5]に示すような「系内での加水分解」によって無機酸化物高分子を作製した場合は、この他に、水、酸も共存することとなるが、酸や水によって腐食される基材でない限り、水、酸が共存していても、塗布液として何ら問題はない。例えば、基材がガラスである場合、塗布液中に水、酸が共存していても良い。これら水、酸は、最終的には揮発して、被膜の構成成分ではなくなる。 When an inorganic oxide polymer is produced by “hydrolysis in the system” as shown in [5] above, water and acid coexist in addition to this, but it is corroded by acid and water. As long as it is not a base material, even if water and acid coexist, there is no problem as a coating solution. For example, when the substrate is glass, water and acid may coexist in the coating solution. These water and acid eventually volatilize and become components of the film.
 好ましい「高屈折率粒子」「表面修飾用重合体」「無機酸化物高分子」「溶媒」は、これまでに既に説明したものを、再び挙げることができる。 Desirable “high refractive index particles”, “surface modifying polymer”, “inorganic oxide polymer”, and “solvent” are the same as those described above.
 実施例により本発明を具体的に説明する。本実施例および比較例で得られた光散乱性被膜を有する透明スクリーンは、以下に示す方法により品質評価を行った。本実施例および比較例で作製した透明スクリーンは、ガラス基板の片側の全面に光散乱性被膜を有する構成である。なお、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described with reference to examples. The quality of the transparent screen having the light-scattering film obtained in this example and the comparative example was evaluated by the following method. The transparent screens produced in this example and the comparative example have a structure having a light scattering coating on the entire surface of one side of the glass substrate. The present invention is not limited to these examples.
[外観]
 目視にて被膜表面を観察し、膜むら、白濁、クラックなどの外観上の不具合が無いものを合格とした。
[appearance]
The surface of the coating film was visually observed, and those having no defects in appearance such as film unevenness, white turbidity, and cracks were regarded as acceptable.
[膜硬度]
 JIS-K-5600に準拠して、基材上の被膜の鉛筆硬度を測定した。鉛筆硬度3H以上のものを合格とした。
[Film hardness]
In accordance with JIS-K-5600, the pencil hardness of the coating on the substrate was measured. Those having a pencil hardness of 3H or more were accepted.
[光散乱性]
 透明スクリーンに特定波長の光を垂直入射し、検出器の位置を垂直透過位置から徐々に変化させていき、垂直入射面に対する検出器の傾き(検出角度)が10°のときの波長550nmでの透過率を測定した。測定装置には、日本分光社の分光光度計ARSN-733を用いた。
[Light scattering]
Light of a specific wavelength is vertically incident on the transparent screen, and the position of the detector is gradually changed from the vertical transmission position, and the inclination (detection angle) of the detector with respect to the vertical incident surface is 10 ° at a wavelength of 550 nm. The transmittance was measured. As a measuring device, a spectrophotometer ARSN-733 manufactured by JASCO Corporation was used.
[ヘーズ、透過率]
 JIS-R3212の規格に準拠して、ヘーズメーター(日本電色工業製、NDH2000)を用いて透明スクリーンのヘーズ及び透過率を測定した。
[Haze, transmittance]
Based on the standard of JIS-R3212, the haze and transmittance of the transparent screen were measured using a haze meter (NDH 2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
[膜厚]
 基材上の被膜の断面を走査型電子顕微鏡(日立社製、S-5400)で撮影し、被膜の膜厚を測定した。例えば、実施例2の透明スクリーンの被膜の断面の走査型電子顕微鏡写真は図1に示されている。
[Film thickness]
A cross section of the coating on the substrate was photographed with a scanning electron microscope (S-5400, manufactured by Hitachi, Ltd.), and the thickness of the coating was measured. For example, a scanning electron micrograph of the cross section of the transparent screen coating of Example 2 is shown in FIG.
[官能評価]
 プロジェクタからの光線に対して膜面が垂直になるように設置した透明スクリーンに、プロジェクタを用いて映像を投影し、透過性、映像の鮮鋭性、視野角を以下の方法により評価した。
[sensory evaluation]
The image was projected on a transparent screen installed so that the film surface was perpendicular to the light beam from the projector, and the transparency, the sharpness of the image, and the viewing angle were evaluated by the following methods.
[透過性]
 プロジェクタと反対側において、プロジェクタからの光線に対して水平方向から、透明スクリーン越しに、プロジェクタ方向の背景の様子を目視し、評価した。
1:プロジェクタ方向の背景がきわめてくっきりと見える。
2:プロジェクタ方向の背景がくっきりと見える。
3:プロジェクタ方向の背景がやや白っぽくなるが十分見える。
4:プロジェクタ方向の背景が白っぽくなるがわずかに見える。
5:プロジェクタ方向の背景が白っぽくなりほぼ見えない。
6:プロジェクタ方向の背景が全く見えない。
[Transparency]
On the side opposite to the projector, the background in the projector direction was visually observed and evaluated from the horizontal direction with respect to the light beam from the projector through the transparent screen.
1: The background in the direction of the projector can be seen very clearly.
2: The background in the direction of the projector is clearly visible.
3: Although the background in the direction of the projector is slightly whitish, it is sufficiently visible.
4: The background in the direction of the projector becomes whitish but slightly visible.
5: Background in the projector direction becomes whitish and almost invisible.
6: No background in the projector direction is visible.
[映像の鮮鋭性]
 プロジェクタ側およびプロジェクタと反対側において、プロジェクタからの光線に対して水平方向から、投影された映像の様子を目視し、評価した。
1:投射された映像の発色が極めて鮮やかで、輪郭が極めてはっきりと見える。
2:投射された映像の発色が鮮やかで、輪郭がはっきりと見える。
3:投射された映像の発色がよく、輪郭が十分見える。
4:投射された映像が全体的に白っぽく、輪郭が薄い。
5:投射された映像の色合いがほとんど区別できず、輪郭がほとんど認識できない。
6:投射された映像が見えない。
[Sharpness of video]
On the projector side and the opposite side of the projector, the state of the projected image was visually observed and evaluated from the horizontal direction with respect to the light beam from the projector.
1: The color of the projected image is very vivid and the outline is very clear.
2: The color of the projected image is vivid and the outline is clearly visible.
3: The color of the projected image is good and the outline is sufficiently visible.
4: The projected image is generally whitish and has a thin outline.
5: The color of the projected image is almost indistinguishable and the outline is hardly recognized.
6: The projected image cannot be seen.
[視野角]
 プロジェクタ側およびプロジェクタの反対側それぞれにおいて、プロジェクタからの光線に対して斜め80°方向から、投影された映像の様子を目視し、評価した。
1:斜め80°方向からでも投射された映像の発色が鮮やかで、輪郭がはっきりと見える。
2:斜め80°方向からでも投射された映像の発色がよく、輪郭が十分見える。
3:斜め80°方向から映像が見えない。
[Viewing angle]
On each of the projector side and the opposite side of the projector, the state of the projected image was visually observed and evaluated from an angle of 80 ° with respect to the light beam from the projector.
1: The color of the projected image is vivid and the contour is clearly visible even from an oblique 80 ° direction.
2: The color of the projected image is good even from an oblique 80 ° direction, and the outline is sufficiently visible.
3: The image cannot be seen from an oblique 80 ° direction.
 [実施例1]
(基材の準備)
 10cm角で厚さ2.0mmのフロートガラス板の表面を酸化セリウムで研磨した後、イオン交換水で洗浄後、乾燥させて基材を準備した。
(光散乱性被膜形成用塗布液の調製)
 高屈折率粒子としてダイヤモンド粒子、表面修飾用重合体としてポリビニルピロリドン(PVP)、無機酸化物高分子の前駆体として、オルトケイ酸テトラエチル、γ-グリシドキシプロピルトリメトキシシラン、有機溶媒としてメタノール、水としてイオン交換水を用いた。また、無機酸化物高分子の前駆体の加水分解や重縮合を促進するための酸として硝酸を用いた。
[Example 1]
(Preparation of base material)
The surface of a 10 cm square and 2.0 mm thick float glass plate was polished with cerium oxide, washed with ion-exchanged water, and then dried to prepare a substrate.
(Preparation of coating solution for forming light scattering film)
Diamond particles as the high refractive index particles, polyvinylpyrrolidone (PVP) as the polymer for surface modification, tetraethyl orthosilicate, γ-glycidoxypropyltrimethoxysilane as the precursor of the inorganic oxide polymer, methanol, water as the organic solvent Ion exchange water was used as Nitric acid was used as an acid for promoting hydrolysis and polycondensation of the precursor of the inorganic oxide polymer.
 ダイヤモンド粒子(ビジョン開発製、平均粒径250nm、粒径分布150~550nm)5gとメタノール95gを、超音波ホモジナイザーを用いて20℃で1時間分散し、5質量%のダイヤモンド粒子分散液(a)を用意した。さらにポリビニルピロリドン(PVP、キシダ化学製、質量平均分子量36万)をメタノールに溶解し、20質量%のPVP溶液(b)を用意した。 5 g of diamond particles (made by Vision Development Co., Ltd., average particle size 250 nm, particle size distribution 150 to 550 nm) and 95 g of methanol are dispersed for 1 hour at 20 ° C. using an ultrasonic homogenizer. Prepared. Furthermore, polyvinylpyrrolidone (PVP, manufactured by Kishida Chemical Co., Ltd., mass average molecular weight 360,000) was dissolved in methanol to prepare a 20 mass% PVP solution (b).
 次に、ダイヤモンド粒子分散液(a)20g、PVP溶液(b)25g、メタノール5gを、超音波ホモジナイザーを用いて20℃で20分間分散し、PVPによってダイヤモンド粒子の表面を修飾した被修飾粒子の分散液(c)を得た。さらに、前記(c)2.52gに、メタノール2.28g、オルトケイ酸テトラエチル1.18g、γ-グリシドキシプロピルトリメトキシシラン0.47g、イオン交換水0.68g、1規定硝酸0.08gを添加して、室温(20℃)で2時間攪拌して固形分濃度10質量%の光散乱性被膜形成用塗布液(d)を得た。イオン交換水は、無機酸化物高分子前駆体の加水分解・重縮合反応を促進するために添加した。 Next, 20 g of the diamond particle dispersion (a), 25 g of the PVP solution (b), and 5 g of methanol were dispersed at 20 ° C. for 20 minutes using an ultrasonic homogenizer, and the surface of the modified particles in which the surface of the diamond particles was modified by PVP. A dispersion (c) was obtained. Furthermore, 2.28 g of methanol, 1.18 g of tetraethyl orthosilicate, 0.47 g of γ-glycidoxypropyltrimethoxysilane, 0.68 g of ion-exchanged water, and 0.08 g of 1N nitric acid are added to 2.52 g of the above (c). The resulting mixture was stirred at room temperature (20 ° C.) for 2 hours to obtain a coating solution (d) for forming a light-scattering film having a solid concentration of 10% by mass. Ion exchange water was added to accelerate the hydrolysis and polycondensation reaction of the inorganic oxide polymer precursor.
 (光散乱性被膜を有する透明スクリーンの作製)
 上記基材表面に、上記光散乱性被膜形成用塗布液をスピンコート法で塗布し、70℃の乾燥器内で10分間乾燥させたのち、さらに200℃の電気炉内で10分間焼成し、光散乱性被膜を有する透明スクリーンを作製した。
(Production of transparent screen with light-scattering coating)
On the surface of the base material, the light-scattering film-forming coating solution is applied by a spin coating method, dried for 10 minutes in a dryer at 70 ° C., and further baked in an electric furnace at 200 ° C. for 10 minutes, A transparent screen having a light scattering coating was produced.
 上記の評価方法に記載した要領で評価したところ、表2に示すとおり、官能評価において「透過性」「画像の鮮鋭性」「視野角」ともに良好な評価となった。定量的に測定した光散乱性(0.14%)や透過率(88.9%)も良好であった。外観に白濁や膜ムラはなく良好であった。また、鉛筆硬度は8Hと大きかった。これは、被膜材料の設計において、前記[(A+C)/(A+B+C)]の値を、66.7%と、比較的大きく設定できたことに起因すると考えされる。 As evaluated in the manner described in the above evaluation method, as shown in Table 2, in the sensory evaluation, both “transparency”, “image sharpness”, and “viewing angle” were good. Light scattering (0.14%) and transmittance (88.9%) measured quantitatively were also good. The appearance was good with no cloudiness or film unevenness. The pencil hardness was as high as 8H. This is considered to be due to the fact that the value of [(A + C) / (A + B + C)] can be set relatively large at 66.7% in the design of the coating material.
[実施例2~6、比較例1~4]
 表1に示すとおり、高屈折率粒子の質量%、表面修飾用重合体の質量%及び無機酸化物高分子)の固形分の質量%(前述の通り、SiO2に換算したもの)の合計を100質量%としたときの、高屈折率粒子の質量%、表面修飾用重合体の質量%、無機酸化物高分子の固形分の質量%を変え、それ以外は実施例1と同様に実施した。
[Examples 2 to 6, Comparative Examples 1 to 4]
As shown in Table 1, the total of the mass% of the high refractive index particles, the mass% of the polymer for surface modification, and the mass% of the solid content of the inorganic oxide polymer (as converted into SiO 2 as described above) The same procedure as in Example 1 was performed except that the mass% of the high refractive index particles, the mass% of the polymer for surface modification, and the mass% of the solid content of the inorganic oxide polymer were changed. .
 各実施例及び各比較例について、光散乱性被膜形成用塗布液の各成分とその比率を表1に示す。また、各実施例及び各比較例で得られた、光散乱性被膜を有する透明スクリーンに関し、外観の観察結果、膜硬度、光散乱性、ヘーズ、透過率、膜厚、官能評価の測定結果を下記の表2に示す。なお、表2中の「-」は、未評価の項目を意味する。 Table 1 shows each component of the coating solution for forming a light-scattering film and the ratio thereof for each example and each comparative example. In addition, regarding the transparent screen having a light-scattering film obtained in each example and each comparative example, the results of observation of appearance, film hardness, light scattering, haze, transmittance, film thickness, and sensory evaluation were measured. It is shown in Table 2 below. In Table 2, “-” means an unevaluated item.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2より明らかなように、実施例1と同様、実施例2~6についても、膜むら、白濁、クラックなどの外観上の不具合が無く、透過性と光散乱性(映像の鮮鋭性)も満足すべきレベルであった。特にナノダイヤの含量が5.0~7.0質量%の範囲に入る実施例1、5および6では透過性と鮮鋭性のバランスが特によく取れているという結果であった。実施例1~6は比較例1~4に比べて、官能評価の結果が、大幅に向上していることからも、本発明の優れた作用効果は裏付けられる。 As is clear from Table 2, as in Example 1, Examples 2 to 6 also have no defects in appearance such as film unevenness, white turbidity, cracks, etc., and have transparency and light scattering properties (sharpness of images). It was a satisfactory level. In particular, in Examples 1, 5 and 6 in which the nanodiamond content falls within the range of 5.0 to 7.0% by mass, the balance between permeability and sharpness was particularly good. In Examples 1 to 6, the sensory evaluation results are greatly improved as compared with Comparative Examples 1 to 4, and thus the excellent operational effects of the present invention are supported.
 なお、実施例2は、ヘーズが1.5%と小さいながらも映像の鮮鋭性が良好で、比較例4よりも映像を鮮明に投影することができており、さらにヘーズを17.0%と大きくした実施例3では、映像の鮮鋭性がより良好であることが分かった。 In Example 2, although the haze is as small as 1.5%, the sharpness of the image is good, the image can be projected more clearly than in Comparative Example 4, and the haze is 17.0%. In the enlarged Example 3, it was found that the sharpness of the image was better.
 通常、透明性の良好なスクリーンに、映像を鮮明に投影することは難しい。そのため、通常のスクリーンでは、透明性を低くして白色にし、映像を鮮明に投影している。透明性と鮮鋭性はトレードオフの関係にあり、一般的には両立は難しい。それに対し、実施例1~6においては、透過性と映像の鮮鋭性を両立することが出来ている。 Normally, it is difficult to project a clear image on a screen with good transparency. For this reason, on a normal screen, the transparency is lowered to white and the image is projected clearly. Transparency and sharpness are in a trade-off relationship, and it is generally difficult to achieve both. On the other hand, in Examples 1 to 6, both transparency and image sharpness can be achieved.
 実施例1~6では、膜硬度は3~9Hにわたっているが、いずれも十分実用的なレベルである。前記[(A+C)/(A+B+C)]が60質量%を超えている実施例1、2および4でとりわけ高い硬度が達成されていることが分かる。 In Examples 1 to 6, although the film hardness ranges from 3 to 9H, all are sufficiently practical levels. It can be seen that particularly high hardness was achieved in Examples 1, 2 and 4 in which [(A + C) / (A + B + C)] exceeded 60 mass%.
[比較例1]
 表面修飾用重合体を用いなかった以外は、実施例1と同じ条件で透明スクリーンを作製したが、外観を観察すると、目視で確認できるサイズの粒子凝集による凹凸や白濁が見られた。
[Comparative Example 1]
A transparent screen was produced under the same conditions as in Example 1 except that the surface modification polymer was not used. However, when the appearance was observed, irregularities and cloudiness due to particle aggregation having a size that could be visually confirmed were observed.
[比較例2、3]
 表面修飾用重合体の質量を高屈折率粒子の質量で割った値(B/A)を3.0、3.5とした以外は、実施例1と同じ条件で透明スクリーンを作製したが、外観を観察すると、目視で確認できるサイズの粒子凝集による凹凸や白濁が見られた。
[Comparative Examples 2 and 3]
A transparent screen was produced under the same conditions as in Example 1 except that the value (B / A) obtained by dividing the mass of the surface modifying polymer by the mass of the high refractive index particles was 3.0 and 3.5. When the appearance was observed, irregularities and cloudiness due to particle aggregation having a size that could be visually confirmed were observed.
[比較例4]
 [A/(A+B+C)]を0.5とした以外は、実施例1と同じ条件で透明スクリーンを作製したが、光散乱性は不十分であった。すなわち、高屈折粒子の含量[A/(A+B+C)]が小さいと、透明スクリーン用の良好な被膜は得られないことが判った。
[Comparative Example 4]
A transparent screen was produced under the same conditions as in Example 1 except that [A / (A + B + C)] was 0.5, but the light scattering property was insufficient. That is, it was found that when the content [A / (A + B + C)] of the high refractive particles is small, a good film for a transparent screen cannot be obtained.
 本発明の光散乱性被膜を有する透明スクリーンは、建築物分野や自動車分野において、例えばプロジェクタ投影用のスクリーン、ディスプレイ、照明機器の光拡散体として用いることが出来る。 The transparent screen having the light-scattering coating of the present invention can be used as a light diffuser for projector projection screens, displays, lighting equipment, for example, in the field of buildings and automobiles.

Claims (14)

  1.  光散乱性被膜形成用塗布液であって、溶媒中において、
    (1)ダイヤモンド、金属酸化物、複合金属酸化物の少なくとも1種からなる屈折率が1.5~3.5の高屈折率粒子と、
    (2)前記高屈折率粒子の屈折率よりも小さい屈折率を有する無機酸化物高分子と、
    (3)前記無機酸化物高分子中において、前記高屈折率粒子を分散させる表面修飾用重合体と、
    を含む光散乱性被膜形成用塗布液であって、
     前記高屈折率粒子の質量(A)、前記表面修飾用重合体の質量(B)、前記無機酸化物高分子媒体の質量(C)の合計値(A+B+C)を100質量%としたとき、A/(A+B+C)が1.0~10.0質量%であり、かつB/Aが4.0以上であることを特徴とする光散乱性被膜形成用塗布液。
    A coating solution for forming a light-scattering film, in a solvent,
    (1) high refractive index particles having a refractive index of 1.5 to 3.5, comprising at least one of diamond, metal oxide, and composite metal oxide;
    (2) an inorganic oxide polymer having a refractive index smaller than the refractive index of the high refractive index particles;
    (3) a polymer for surface modification in which the high refractive index particles are dispersed in the inorganic oxide polymer;
    A coating solution for forming a light-scattering film comprising:
    When the total value (A + B + C) of the mass (A) of the high refractive index particles, the mass (B) of the polymer for surface modification, and the mass (C) of the inorganic oxide polymer medium is 100% by mass, A / (A + B + C) is 1.0 to 10.0% by mass, and B / A is 4.0 or more.
  2.  前記無機酸化物高分子が、ケイ素酸化物である、請求項1に記載の光散乱性被膜形成用塗布液。 The coating solution for forming a light-scattering film according to claim 1, wherein the inorganic oxide polymer is silicon oxide.
  3.  前記高屈折率粒子が、ダイヤモンド粒子である、請求項1又は2に記載の光散乱性被膜形成用塗布液。 The coating solution for forming a light-scattering film according to claim 1 or 2, wherein the high refractive index particles are diamond particles.
  4.  前記表面修飾用重合体が、親水性重合体である、請求項1~3のいずれかに記載の光散乱性被膜形成用塗布液。 The coating solution for forming a light-scattering film according to any one of claims 1 to 3, wherein the polymer for surface modification is a hydrophilic polymer.
  5.  前記無機酸化物高分子が、ケイ素酸化物であり、前記高屈折率粒子が、ダイヤモンド粒子であり、かつ前記表面修飾用重合体が、親水性重合体である、請求項1に記載の光散乱性被膜形成用塗布液。 The light scattering according to claim 1, wherein the inorganic oxide polymer is silicon oxide, the high refractive index particles are diamond particles, and the surface modifying polymer is a hydrophilic polymer. Coating film forming coating solution.
  6.  前記無機酸化物高分子が、ケイ素酸化物であり、前記高屈折率粒子が、ダイヤモンド粒子であり、かつ前記表面修飾用重合体が、ポリビニルピロリドンである、請求項1に記載の光散乱性被膜形成用塗布液。 The light-scattering coating film according to claim 1, wherein the inorganic oxide polymer is silicon oxide, the high refractive index particles are diamond particles, and the surface-modifying polymer is polyvinylpyrrolidone. Coating liquid for forming.
  7.  光散乱性被膜であって、
    (1)ダイヤモンド、金属酸化物、複合金属酸化物の少なくとも1種からなる屈折率が1.5~3.5の高屈折率粒子と、
    (2)前記高屈折率粒子の屈折率よりも小さい屈折率を有する無機酸化物高分子と、
    (3)前記無機酸化物高分子中において、前記高屈折率粒子を分散させる表面修飾用重合体と、
    を含む光散乱性被膜であって、
     前記高屈折率粒子の質量(A)、前記表面修飾用重合体の質量(B)、前記無機酸化物高分子媒体の質量(C)の合計値(A+B+C)を100質量%としたとき、A/(A+B+C)が1.0~10.0質量%であり、かつB/Aが4.0以上であることを特徴とする光散乱性被膜。
    A light-scattering coating,
    (1) high refractive index particles having a refractive index of 1.5 to 3.5, comprising at least one of diamond, metal oxide, and composite metal oxide;
    (2) an inorganic oxide polymer having a refractive index smaller than the refractive index of the high refractive index particles;
    (3) a polymer for surface modification in which the high refractive index particles are dispersed in the inorganic oxide polymer;
    A light scattering coating comprising
    When the total value (A + B + C) of the mass (A) of the high refractive index particles, the mass (B) of the polymer for surface modification, and the mass (C) of the inorganic oxide polymer medium is 100% by mass, A / (A + B + C) is 1.0 to 10.0% by mass, and B / A is 4.0 or more.
  8.  前記無機酸化物高分子が、ケイ素酸化物である、請求項7に記載の光散乱性被膜。 The light-scattering film according to claim 7, wherein the inorganic oxide polymer is silicon oxide.
  9.  前記高屈折率粒子が、ダイヤモンド粒子である、請求項7又は8に記載の光散乱性被膜。 The light-scattering film according to claim 7 or 8, wherein the high refractive index particles are diamond particles.
  10.  前記表面修飾用重合体が、親水性重合体である、請求項7~9のいずれかに記載の光散乱性被膜。 10. The light-scattering coating film according to claim 7, wherein the surface modifying polymer is a hydrophilic polymer.
  11.  前記無機酸化物高分子が、ケイ素酸化物であり、前記高屈折率粒子が、ダイヤモンド粒子であり、かつ前記表面修飾用重合体が、親水性重合体である、請求項7に記載の光散乱性被膜。 The light scattering according to claim 7, wherein the inorganic oxide polymer is silicon oxide, the high refractive index particles are diamond particles, and the surface modifying polymer is a hydrophilic polymer. Coating.
  12.  前記無機酸化物高分子が、ケイ素酸化物であり、前記高屈折率粒子が、ダイヤモンド粒子であり、かつ前記表面修飾用重合体が、ポリビニルピロリドンである、請求項7に記載の光散乱性被膜。 The light-scattering coating film according to claim 7, wherein the inorganic oxide polymer is silicon oxide, the high refractive index particles are diamond particles, and the polymer for surface modification is polyvinylpyrrolidone. .
  13.  透明基材の上に設けられた請求項7~12のいずれか1項に記載の光散乱性被膜を有することを特徴とする光散乱性被膜を有する透明スクリーン。 A transparent screen having a light-scattering film, comprising the light-scattering film according to any one of claims 7 to 12 provided on a transparent substrate.
  14.  透明基材と、該透明基材上に設けられた光散乱性被膜を有する透明スクリーンの製造方法であって、
    (1)透明基材を準備する工程、
    (2)請求項1に記載の光散乱性被膜形成用塗布液を調整する工程、
    (3)該光散乱性被膜形成用塗布液を該透明基材の表面に塗布する工程、
    (4)工程(3)で得られた透明基材を加熱して、該透明基材の上に請求項7に記載の光散乱性被膜を形成させる工程、
    を有することを特徴とする、透明スクリーンの製造方法。
    A transparent substrate and a method for producing a transparent screen having a light-scattering film provided on the transparent substrate,
    (1) a step of preparing a transparent substrate;
    (2) adjusting the coating solution for forming a light-scattering film according to claim 1,
    (3) A step of applying the light-scattering film-forming coating solution to the surface of the transparent substrate,
    (4) A step of heating the transparent substrate obtained in step (3) to form the light-scattering film according to claim 7 on the transparent substrate,
    A method for producing a transparent screen, comprising:
PCT/JP2016/070283 2015-07-09 2016-07-08 Transparent screen having light-scattering film, and coating liquid for forming light-scattering film WO2017007023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015137945A JP6599666B2 (en) 2015-07-09 2015-07-09 Transparent screen having light scattering coating and coating liquid for forming light scattering coating
JP2015-137945 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017007023A1 true WO2017007023A1 (en) 2017-01-12

Family

ID=57685073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070283 WO2017007023A1 (en) 2015-07-09 2016-07-08 Transparent screen having light-scattering film, and coating liquid for forming light-scattering film

Country Status (2)

Country Link
JP (1) JP6599666B2 (en)
WO (1) WO2017007023A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196328A (en) * 2017-12-28 2018-06-22 宁波激智科技股份有限公司 A kind of environment-friendly type diffusion barrier and preparation method thereof
WO2019021643A1 (en) * 2017-07-27 2019-01-31 セントラル硝子株式会社 Coating liquid for forming visible light scattering coating film, and substrate provided with visible light scattering coating film
CN111868576A (en) * 2018-03-23 2020-10-30 日华化学株式会社 Light scattering body, composition for forming light scattering body, sheet-like laminate, projection screen, light diffusion sheet, and illumination device incorporating light intensifier

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146901A1 (en) 2017-02-08 2018-08-16 日本電気株式会社 High frequency measurement method and high frequency measurement device
JP7022421B2 (en) * 2017-12-01 2022-02-18 株式会社アイテック Paint for forming image display body and image display body
WO2018199118A1 (en) * 2017-04-28 2018-11-01 株式会社アイテック Image display body forming paint and image display body
JPWO2019039163A1 (en) * 2017-08-25 2020-08-20 セントラル硝子株式会社 Transparent screen and display system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119318A (en) * 2004-10-21 2006-05-11 Asahi Glass Co Ltd Light diffusing layer, transmissive screen, coating liquid for forming light diffusing layer, and method for manufacturing transmission type screen
WO2008016088A1 (en) * 2006-08-02 2008-02-07 Asahi Glass Company, Limited Coating solution for forming light diffusion layer, and light diffusion plate
JP2009102188A (en) * 2007-10-22 2009-05-14 Vision Development Co Ltd Ordinary temperature glass, ordinary temperature glass coating material, and method for forming ordinary temperature glass
JP2011022261A (en) * 2009-07-14 2011-02-03 Vision Development Co Ltd Light scattering plate containing diamond, diamond-containing particle, and method for producing the same
JP2011113068A (en) * 2009-11-30 2011-06-09 Vision Development Co Ltd Transmission screen containing diamond fine particle
JP2011215568A (en) * 2010-03-18 2011-10-27 Vision Development Co Ltd Light scattering film containing diamond and method for producing the same
JP2013164569A (en) * 2012-02-10 2013-08-22 Vision Development Co Ltd Transparent light diffuser containing nano diamond compound material
JP2013182141A (en) * 2012-03-02 2013-09-12 Mitsubishi Paper Mills Ltd See-through transmitting type screen
JP2014153708A (en) * 2013-02-06 2014-08-25 Vision Development Co Ltd Transparent light diffusion body and transmissive screen using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119318A (en) * 2004-10-21 2006-05-11 Asahi Glass Co Ltd Light diffusing layer, transmissive screen, coating liquid for forming light diffusing layer, and method for manufacturing transmission type screen
WO2008016088A1 (en) * 2006-08-02 2008-02-07 Asahi Glass Company, Limited Coating solution for forming light diffusion layer, and light diffusion plate
JP2009102188A (en) * 2007-10-22 2009-05-14 Vision Development Co Ltd Ordinary temperature glass, ordinary temperature glass coating material, and method for forming ordinary temperature glass
JP2011022261A (en) * 2009-07-14 2011-02-03 Vision Development Co Ltd Light scattering plate containing diamond, diamond-containing particle, and method for producing the same
JP2011113068A (en) * 2009-11-30 2011-06-09 Vision Development Co Ltd Transmission screen containing diamond fine particle
JP2011215568A (en) * 2010-03-18 2011-10-27 Vision Development Co Ltd Light scattering film containing diamond and method for producing the same
JP2013164569A (en) * 2012-02-10 2013-08-22 Vision Development Co Ltd Transparent light diffuser containing nano diamond compound material
JP2013182141A (en) * 2012-03-02 2013-09-12 Mitsubishi Paper Mills Ltd See-through transmitting type screen
JP2014153708A (en) * 2013-02-06 2014-08-25 Vision Development Co Ltd Transparent light diffusion body and transmissive screen using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021643A1 (en) * 2017-07-27 2019-01-31 セントラル硝子株式会社 Coating liquid for forming visible light scattering coating film, and substrate provided with visible light scattering coating film
CN108196328A (en) * 2017-12-28 2018-06-22 宁波激智科技股份有限公司 A kind of environment-friendly type diffusion barrier and preparation method thereof
CN111868576A (en) * 2018-03-23 2020-10-30 日华化学株式会社 Light scattering body, composition for forming light scattering body, sheet-like laminate, projection screen, light diffusion sheet, and illumination device incorporating light intensifier

Also Published As

Publication number Publication date
JP2017021155A (en) 2017-01-26
JP6599666B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6599666B2 (en) Transparent screen having light scattering coating and coating liquid for forming light scattering coating
JP5849970B2 (en) Article having a low-reflection film
WO2011027827A1 (en) Article having low-reflection film on surface of base material
JP5157143B2 (en) Base with antireflection film
JP6586897B2 (en) Base material with antiglare film, coating liquid for film formation and method for producing the same
WO2010018852A1 (en) Coating compositions and articles with formed coating films
WO2014061606A1 (en) Antifouling antireflection film, article and method for manufacturing same
EP2128091B1 (en) Hollow microparticle, method for production thereof, coating composition, and article having coating film formed thereon
KR20070046137A (en) Antiglare coating and articles
KR20070054687A (en) Antiglare coating and articles
WO2009148097A1 (en) Method for producing core-shell particle, core-shell particle, method for producing hollow particle, paint composition and article
JP2020122809A (en) Coating liquid for forming visible light scattering film, and base material for forming visible light scattering film
JP2001254072A (en) Preparation process of anti-fogging composition, anti- fogging coating agent and anti-fogging coated film- forming base material
WO2019240178A1 (en) Anti-glare film-attached substrate, image display device, and digital signage
JP2007269523A (en) Heat ray shielding glass and its manufacturing method
JP2015049319A (en) Article having transparent base material and antifouling-antireflection film and manufacturing method thereof
Morimoto et al. Wet chemical functional coatings for automotive glasses and cathode ray tubes
WO2018003772A1 (en) Light-scattering coating film in which polycrystalline nanodiamonds are dispersed, and application liquid for forming light-scattering coating film
JP2004352524A (en) Low reflective article and manufacturing method therefor
JP2017027026A (en) Glass complex, transparent screen having the same, and image projection system having the same
JP7083342B2 (en) A method for manufacturing a transparent substrate with a low-reflection film, a photoelectric conversion device, a coating liquid for forming a low-reflection film of a transparent substrate with a low-reflection film, and a transparent substrate with a low-reflection film.
WO2020039891A1 (en) Transparent screen and production method therefor
JPH10194780A (en) Glass having performance for cutting ultraviolet ray and heat ray and having antifouling performance and its production
JP4058878B2 (en) Coating liquid for forming room temperature curable solar radiation shielding film, solar radiation shielding film using the same, and substrate having solar radiation shielding function
WO2019021643A1 (en) Coating liquid for forming visible light scattering coating film, and substrate provided with visible light scattering coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821491

Country of ref document: EP

Kind code of ref document: A1