WO2017006946A1 - 送電装置、受電装置及び非接触給電システム - Google Patents

送電装置、受電装置及び非接触給電システム Download PDF

Info

Publication number
WO2017006946A1
WO2017006946A1 PCT/JP2016/069947 JP2016069947W WO2017006946A1 WO 2017006946 A1 WO2017006946 A1 WO 2017006946A1 JP 2016069947 W JP2016069947 W JP 2016069947W WO 2017006946 A1 WO2017006946 A1 WO 2017006946A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
circuit
metal plate
side coil
Prior art date
Application number
PCT/JP2016/069947
Other languages
English (en)
French (fr)
Inventor
義弘 生藤
昭博 奥井
侯武 宇都宮
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016122588A external-priority patent/JP6845624B2/ja
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to EP16821415.3A priority Critical patent/EP3322068B1/en
Priority to US15/742,791 priority patent/US10923962B2/en
Publication of WO2017006946A1 publication Critical patent/WO2017006946A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/04Supports for telephone transmitters or receivers

Definitions

  • the present invention relates to a power transmission device, a power reception device, and a non-contact power supply system.
  • NFC Near Field Communication
  • 13.56 MHz 13.56 MHz
  • a technique for performing non-contact power feeding by a magnetic field resonance method using a coil used for NFC communication has also been proposed.
  • a power transmission side resonance circuit including a power transmission side coil is disposed in a power supply device, and a power reception side resonance circuit including a power reception side coil is disposed in an electronic device as a power reception device.
  • a common reference frequency is set to a common reference frequency.
  • an alternating current of the reference frequency is generated in the power transmission side coil by passing an alternating current through the power transmission side coil.
  • this alternating magnetic field is transmitted to the power receiving side resonance circuit that resonates at the reference frequency, and an alternating current flows through the power receiving side coil. That is, power is transmitted from the power transmission side resonance circuit including the power transmission side coil to the power reception side resonance circuit including the power reception side coil.
  • the foreign object here is, for example, an object (such as a card) having a wireless IC tag having an antenna coil of 13.56 MHz that does not respond to NFC communication.
  • the foreign object is an electronic device that has the NFC communication function itself but is disabled.
  • a smartphone that has an NFC communication function but whose function is turned off by software setting can be a foreign object.
  • the smartphone without the power receiving function is classified as a foreign object.
  • the foreign object When the power transmission operation is performed, if such a foreign object is placed on the power supply stand, the foreign object may be destroyed by the strong magnetic field generated by the power transmission side coil.
  • a strong magnetic field during a power transmission operation may increase the terminal voltage of a foreign object coil on the power supply base from 100 V to 200 V. If no foreign object is formed to withstand such a high voltage, Is destroyed.
  • an iron plate etc. can also become a foreign material.
  • a foreign substance such as an iron plate may generate heat due to the magnetic field generated by the power transmission side coil. If the heat generation is a problem, it is necessary to cope with it.
  • a metal plate made of aluminum or the like may be provided from the viewpoint of improving structural strength and texture.
  • an opening is provided in the metal plate at a position opposite to the position where the power reception side coil is arranged, and during power transmission / reception, the power transmission side coil and the power reception side coil are passed through the opening. Will face each other.
  • the metal plate having the opening acts to change the resonance frequency of each resonance circuit through magnetic coupling with the coil. This change is undesirable for a system that attempts to transmit and receive power at the reference frequency.
  • An object of the present invention is to provide a power transmission device and a non-contact power feeding system that contribute to prevention of damage to foreign matters.
  • an object of the present invention is to provide a power receiving device and a non-contact power feeding system that contribute to the realization of good power reception and power transmission / reception.
  • a first power transmission device includes a power transmission side resonance including a power transmission side coil for transmitting the power in a power transmission device capable of transmitting power to the power reception device as the first power reception device by a magnetic resonance method.
  • a power transmission circuit that can supply an AC voltage to the power transmission side resonance circuit, a detection circuit that detects an amplitude of a current flowing through the power transmission side coil, and the power transmission circuit to control power transmission.
  • a control circuit wherein the control circuit controls the continuation of the power transmission based on the amplitude detection value of the detection circuit when the power is being transmitted.
  • the control circuit monitors whether or not the amplitude detection value of the detection circuit is out of a predetermined range when the power is transmitted. Thus, it is preferable to control the continuation of the power transmission.
  • the control circuit detects a deviation from the predetermined range of the amplitude detection value of the detection circuit when the power is transmitted. At this time, the power transmission may be stopped.
  • the control circuit determines whether an amplitude detection value of the detection circuit deviates from the predetermined range when the power is transmitted.
  • the power transmission may be stopped when it is determined that there is a foreign object that is different from the power receiving apparatus and can generate a current based on the magnetic field generated by the power transmission side coil.
  • the control circuit determines whether the amplitude detection value of the detection circuit exceeds an upper limit value of the predetermined range when the power is transmitted. By doing so, it is preferable to determine whether or not there is a foreign matter including a coil as the foreign matter.
  • the power reception device includes a power reception side resonance circuit including a power reception side coil for receiving the power, and the power reception side resonance circuit of the power reception side resonance circuit prior to power reception.
  • a change / short circuit for changing a resonance frequency from a resonance frequency at the time of power reception or short-circuiting the power-receiving side coil, and the control circuit is configured to perform the control on the power reception device according to a signal from the power transmission device.
  • a first control circuit that controls the power transmission circuit so that a predetermined test magnetic field is generated in the power transmission side coil prior to the power transmission in a state where the resonance frequency of the power reception side resonance circuit is changed or the power reception side coil is short-circuited.
  • a third processing unit that realizes the power transmission by controlling the power transmission circuit so that a power transmission magnetic field larger than the test magnetic field is generated in the power transmission side coil later, and the detection circuit includes the power transmission.
  • the amplitude is detected through a process of amplifying a signal indicating the amplitude of the current flowing in the side coil, and the amplification factor in the amplification is higher than that when the test magnetic field is generated in the power transmission side coil. It is better if the power transmission magnetic field is generated by the side coil.
  • a first non-contact power feeding system includes a power transmission device having a power transmission side resonance circuit including a power transmission side coil for transmitting power, and a power reception side resonance circuit including a power reception side coil for receiving the power.
  • a non-contact power feeding system capable of transmitting and receiving the power by a magnetic resonance method, wherein the power transmission device is capable of supplying an AC voltage to the power transmission resonance circuit, and the power transmission
  • a detection circuit that detects an amplitude of a current flowing through the side coil, and a control circuit that controls power transmission by controlling the power transmission circuit, and the control circuit is configured to transmit power. In this case, the continuation of the power transmission is controlled based on the amplitude detection value of the detection circuit.
  • the control circuit determines whether or not an amplitude detection value of the detection circuit deviates from a predetermined range when the power is transmitted. It is preferable to control the continuation of the power transmission by monitoring.
  • the control circuit detects a deviation of the amplitude detection value of the detection circuit from the predetermined range when the power is transmitted. When done, the power transmission should be stopped.
  • the control circuit determines whether or not an amplitude detection value of the detection circuit is out of the predetermined range when the power is transmitted.
  • the control circuit determines whether or not the amplitude detection value of the detection circuit exceeds an upper limit value of the predetermined range when the power is transmitted. It is preferable to determine whether or not there is a foreign matter including a coil as the foreign matter.
  • the power receiving device changes a resonance frequency of the power reception side resonance circuit from a resonance frequency at the time of power reception or power reception side coil prior to power reception.
  • the control circuit is provided with a change / short circuit for short-circuiting, and the control circuit is configured to change the resonance frequency of the power-receiving-side resonance circuit or short-circuit the power-receiving-side coil in the power receiving device in accordance with a signal from the power transmission device.
  • a first processing unit that controls the power transmission circuit so that a predetermined test magnetic field is generated by the power transmission coil prior to the power transmission, and an amplitude detection value of the detection circuit when the test magnetic field is generated
  • a second processing unit that determines whether or not the power transmission can be performed based on the power transmission side coil, and a power transmission magnetic field larger than the test magnetic field after the power transmission is determined to be performed by the power transmission side coil.
  • a third processing unit that realizes the power transmission by controlling the power transmission circuit to be generated, and the detection circuit undergoes a process of amplifying a signal indicating an amplitude of a current flowing through the power transmission side coil. The amplitude is detected, and the amplification factor in the amplification is higher when the power transmission side coil generates the power transmission magnetic field than when the power transmission side coil generates the test magnetic field. The smaller is better.
  • a second power receiving device receives the power in a power receiving device capable of receiving the power by a magnetic field resonance method from a power transmitting device having a power transmitting side resonance circuit including a power transmitting side coil for transmitting power.
  • a power receiving side resonance circuit including a power receiving side coil and a metal part having a metal plate provided with an opening at a position opposite to the position where the power receiving side coil is disposed. The opening is located between the power transmission side coil and the power reception side coil, and the resonance frequency of the power reception side resonance circuit and the resonance of the power transmission side resonance circuit.
  • a magnetic part is provided at a position that affects at least one of the frequencies.
  • the magnetic body portion may include an in-opening magnetic body disposed in the opening.
  • the magnetic substance in the opening cancels the change in the resonance frequency of the power receiving side resonance circuit by the metal plate, and the metal plate by the metal plate in the predetermined positional relationship. It is preferable to cancel the change in the resonance frequency of the power transmission side resonance circuit.
  • a distance between the power receiving side coil and the opening inner magnetic body may be equal to a distance between the power transmission side coil and the opening inner magnetic body.
  • the opening is preferably sealed by the magnetic substance in the opening.
  • the magnetic material in the opening is a magnetic plate fitted in the opening, and one surface of the magnetic plate and one surface of the metal plate are the same plane.
  • the other surface of the magnetic plate and the other surface of the metal plate are preferably positioned on the same plane parallel to the plane.
  • the power receiving side coil is disposed between the magnetic body portion and the metal plate, and the power transmission / reception is performed by the power transmitting side resonance circuit and the power receiving side resonance circuit.
  • the magnetic body portion cancels a change from the reference frequency of the resonance frequency of the power-receiving-side resonance circuit caused by the metal plate in the predetermined positional relationship.
  • the resonance frequency of the power transmission side resonance circuit may become the reference frequency by changing the resonance frequency of the power transmission side resonance circuit under the influence of the metal plate.
  • an electronic circuit including an integrated circuit may be provided on the opposite side of the magnetic body portion from the power receiving side coil.
  • the metal plate is disposed between the power receiving side coil and the magnetic body portion, and the power transmission / reception is performed by the power transmitting side resonance circuit and the power receiving side resonance.
  • the circuit is performed in a state where each resonance frequency of the circuit is set to a predetermined reference frequency, and the magnetic body portion cancels a change from the reference frequency in the resonance frequency of the power transmission side resonance circuit by the metal plate in the predetermined positional relationship.
  • the resonance frequency of the power reception side resonance circuit may be the reference frequency by changing the resonance frequency of the power reception side resonance circuit under the influence of the metal plate.
  • the magnetic body portion is disposed between the power receiving side coil and the metal plate, and the power transmission / reception is performed by the power transmitting side resonance circuit and the power receiving side resonance.
  • Each resonance frequency of the circuit is set to a predetermined reference frequency, and the magnetic body portion cancels a change from the reference frequency of the resonance frequency of the power receiving side resonance circuit by the metal plate, and the predetermined positional relationship
  • the resonance frequency of the power transmission side resonance circuit may be the reference frequency by changing the resonance frequency of the power transmission side resonance circuit under the influence of the metal plate.
  • the magnetic body portion may be made of ferrite.
  • the metal plate may be made of aluminum or an aluminum alloy.
  • a casing of the power receiving device may be formed by the metal portion.
  • a second contactless power feeding system includes a power receiving device as the second power receiving device, and a power transmitting device having a power transmitting side resonance circuit including a power transmitting side coil for transmitting power, and a magnetic field The power can be transmitted and received by a resonance method.
  • the power transmission device detects a power transmission circuit capable of supplying an AC voltage to the power transmission side resonance circuit and an amplitude of a current flowing in the power transmission side coil.
  • a circuit and a control circuit that performs power transmission control of the power by controlling the power transmission circuit based on an amplitude detection value of the detection circuit may be provided.
  • the power receiving device changes a resonance frequency of the power receiving side resonance circuit from a resonance frequency at the time of power reception prior to receiving power from the power transmission device, or
  • a change / short circuit for short-circuiting the power-receiving side coil is provided, and the control circuit is configured to change the resonance frequency of the power-receiving-side resonance circuit or to short-circuit the power-receiving-side coil in the power receiving device according to a signal from the power transmission device.
  • a first processing unit that controls the power transmission circuit so that a predetermined test magnetic field is generated in the power transmission side coil prior to the power transmission, and the detection circuit when the test magnetic field is generated.
  • a second processing unit that determines whether or not the power transmission can be performed based on an amplitude detection value by the power transmission, and a power transmission magnetic field that is larger than the test magnetic field after determining that the power transmission can be performed
  • a third processing unit that realizes the power transmission by controlling the power transmission circuit to be generated by the power transmission side coil, and based on the magnetic field generated by the power transmission side coil, the metal plate and the magnetic body unit It is preferable that currents flow in opposite directions.
  • a third power receiving device receives the power in a power receiving device capable of receiving the power by a magnetic field resonance method from a power transmitting device having a power transmitting side resonance circuit including a power transmitting side coil for transmitting power.
  • a power receiving side resonance circuit including a power receiving side coil and a metal part having a metal plate provided with an opening at a position opposite to the position where the power receiving side coil is disposed. The opening is positioned between the power transmission side coil and the power reception side coil, and the metal plate is directed from the opening to the outer periphery of the metal plate.
  • the slit portion is formed.
  • the slit portion may include a cutting slit extending from the opening to the outer periphery of the metal plate.
  • the metal portion includes, as the metal plate, a first metal plate provided with a first opening at a position opposite to the position where the power receiving side coil is disposed; A second metal plate provided with a second opening at a position opposite to the arrangement position of the power receiving side coil, and the first metal body and the second metal plate are coupled with an insulator interposed therebetween, and the predetermined position
  • the first opening and the second opening are located between the power transmission side coil and the power reception side coil, and the slit portion serves as the cutting slit from the first opening to the first metal.
  • the slit portion includes a plurality of slits formed at different positions from the opening toward the outer periphery of the metal plate, and each slit and the outer periphery of the metal plate The metal which comprises the said metal plate may remain between.
  • the plurality of slits may be formed radially from the opening toward the outer periphery of the metal plate.
  • the power transmission / reception is performed in a state where each resonance frequency of the power transmission side resonance circuit and the power reception side resonance circuit is set to a predetermined reference frequency, and the predetermined positional relationship
  • the resonance frequencies of the power transmission side resonance circuit and the power reception side resonance circuit change under the influence of the metal plate, so that each resonance frequency of the power transmission side resonance circuit and the power reception side resonance circuit becomes the reference frequency. It would be nice.
  • the metal plate is made of aluminum or an aluminum alloy.
  • a casing of the power receiving device may be formed by the metal portion.
  • a third non-contact power feeding system includes a power receiving device as the third power receiving device, and a power transmitting device having a power transmitting side resonance circuit including a power transmitting side coil for transmitting power, and a magnetic field The power can be transmitted and received by a resonance method.
  • the power transmission device detects a power transmission circuit capable of supplying an AC voltage to the power transmission side resonance circuit and an amplitude of a current flowing in the power transmission side coil.
  • a circuit and a control circuit that performs power transmission control of the power by controlling the power transmission circuit based on an amplitude detection value of the detection circuit may be provided.
  • the power receiving device changes the resonance frequency of the power receiving side resonance circuit from the resonance frequency at the time of power reception prior to receiving power from the power transmission device, or A change / short circuit for short-circuiting the power-receiving side coil
  • the control circuit changes the resonance frequency of the power-receiving-side resonance circuit in the power-receiving device according to a signal by communication from the power transmission device or the power-receiving-side coil.
  • a second processing unit that determines whether or not the power transmission can be performed based on an amplitude detection value by a detection circuit; and for power transmission that is larger than the test magnetic field after determining that the power transmission can be performed Field is may have a third processing unit for realizing the power transmission by controlling the transmission circuit to be generated by the power transmission coil.
  • the present invention it is possible to provide a power transmission device and a non-contact power supply system that contribute to prevention of damage to foreign matters. Or according to this invention, it becomes possible to provide the power receiving apparatus and non-contact electric power feeding system which contribute to realization of favorable power receiving and power transmission / reception.
  • FIG. 4 is a partial configuration diagram of a power supply device including an internal block diagram of an IC in the power supply device according to the first embodiment of the present invention.
  • FIG. 3 is a partial configuration diagram of an electronic device including an internal block diagram of an IC in the electronic device according to the first embodiment of the present invention.
  • FIG. 8 is a waveform diagram of a voltage drop of a sense resistor in the load detection circuit of FIG. 7.
  • circuit diagrams which show an example of the resonance state change circuit which concerns on 1st Embodiment of this invention.
  • (A)-(d) is a figure which illustrates the arrangement
  • FIGS. 1-10 These are figures which concern on 2nd Embodiment of this invention and show the relationship between a X-axis, a Y-axis, a Z-axis, and a feed stand.
  • (A) And (b) concerns on 2nd Embodiment of this invention, and is a schematic perspective view and sectional drawing of a power transmission side coil and a power receiving side coil.
  • (A) And (b) concerns on 2nd Embodiment of this invention, and is a schematic perspective view and sectional drawing of a power transmission side coil and a coil of a foreign material.
  • FIG. 1 A) to (c) relate to a second embodiment of the present invention, and are a perspective view of a metal plate, a transparent view of a part of a power feeding device and an electronic device, and a plan view of a metal plate and a power receiving coil, respectively. is there.
  • FIG. 1 A) to (c) relate to a second embodiment of the present invention, and are a perspective view of a metal plate, a transparent view of a part of a power feeding device and an electronic device, and a plan view of a metal plate and a power receiving coil, respectively. is there.
  • These are the perspective views of the metal cases which can be provided in an electronic device concerning 2nd Embodiment of this invention.
  • FIG. 1 A) to (c) relate to a second embodiment of the present invention, and are a perspective view of a metal plate, a transparent view of a part of a power feeding device and an electronic device, and a plan view of a metal plate and a power receiving coil, respectively. is there.
  • FIG. (A)-(c) is a figure which shows the relationship of the electric current which concerns on 2nd Embodiment of this invention, and flows into a metal plate, a power transmission side coil, and a receiving side coil.
  • (A) to (c) relate to an example (EX3_1) belonging to the third embodiment of the present invention, for explaining the structure and positional relationship of a power transmission side coil, a power reception side coil, a metal plate and a magnetic plate.
  • FIG. (A)-(c) is related with Example (EX3_1) which belongs to 3rd Embodiment of this invention, and is a related figure of the electric current which flows into a power transmission side coil, a power receiving side coil, a metal plate, and a magnetic body plate.
  • Example (EX3_2) which belongs to 3rd Embodiment of this invention, and is for demonstrating the structure and positional relationship of a power transmission side coil, a power receiving side coil, a metal plate, and a magnetic body plate.
  • FIG. (A) And (b) is related with Example (EX3_2) which belongs to 3rd Embodiment of this invention, and is a related figure of the electric current which flows into a power transmission side coil, a receiving side coil, a metal plate, and a magnetic body plate.
  • Example (EX3_3) which belongs to 3rd Embodiment of this invention, and is for demonstrating the structure and positional relationship of a power transmission side coil, a power receiving side coil, a metal plate, and a magnetic body plate.
  • FIG. These are related with Example (EX3_3) which belongs to 3rd Embodiment of this invention, and are a related figure of the electric current which flows into a power transmission side coil, a metal plate, and a magnetic body board.
  • FIG. These are figures which show the other structure of a magnetic body board concerning the Example (EX3_3) which belongs to 3rd Embodiment of this invention.
  • Example (EX3_4) which belongs to 3rd Embodiment of this invention, and is for demonstrating the structure and positional relationship of a power transmission side coil, a power receiving side coil, a metal plate, and a magnetic body plate.
  • FIG. These are related with Example (EX3_4) which belongs to 3rd Embodiment of this invention, and are a related figure of the electric current which flows into a receiving side coil, a metal plate, and a magnetic body plate.
  • Example (EX4_1) which belongs to 4th Embodiment of this invention, and is respectively an exploded perspective view and a perspective view of two metal plates and an insulating plate.
  • Example (EX4_1) belonging to the fourth embodiment of the present invention.
  • Example (EX4_1) belonging to the fourth embodiment of the present invention.
  • Example (EX4_2) which belongs to 4th Embodiment of this invention, and are a related figure of the electric current which flows into a power transmission side coil, a power receiving side coil, and a metal plate.
  • FIG. 1A and 1B are schematic external views of a power supply device 1 and an electronic device 2 according to the first embodiment of the present invention.
  • FIG. 1A is an external view of the power supply device 1 and the electronic device 2 when they are in a separated state
  • FIG. 1B is a state where the power supply device 1 and the electronic device 2 are in a reference arrangement state. It is the external view of those times. The significance of the separation state and the reference arrangement state will be described in detail later.
  • a contactless power supply system is formed by the power supply device 1 and the electronic device 2.
  • the power supply device 1 includes a power plug 11 for receiving commercial AC power and a power supply base 12 formed of a resin material.
  • FIG. 2 shows a schematic internal configuration diagram of the power supply device 1 and the electronic device 2.
  • the power supply device 1 generates an AC / DC conversion unit 13 that generates and outputs a DC voltage having a predetermined voltage value from a commercial AC voltage input via the power plug 11, and outputs the output voltage of the AC / DC conversion unit 13.
  • a power transmission side IC 100 (hereinafter also referred to as IC 100), which is an integrated circuit that is used and driven, and a power transmission side resonance circuit TT (hereinafter also referred to as resonance circuit TT) connected to the IC 100 are provided.
  • the AC / DC conversion unit 13, the power transmission side IC 100, and the resonance circuit TT can be arranged in the power supply base 12.
  • a circuit that is driven using the output voltage of the AC / DC conversion unit 13 may be provided in the power supply device 1 in addition to the IC 100.
  • the electronic device 2 includes a power receiving side IC 200 that is an integrated circuit (hereinafter also referred to as IC 200), a power receiving side resonance circuit RR that is connected to the IC 200 (hereinafter also referred to as resonant circuit RR), and a battery 21 that is a secondary battery. And a functional circuit 22 that is driven based on the output voltage of the battery 21.
  • the IC 200 can supply charging power to the battery 21.
  • the IC 200 may be driven by the output voltage of the battery 21 or may be driven based on a voltage from a voltage source other than the battery 21.
  • a DC voltage obtained by rectifying a signal for NFC communication (details will be described later) received from the power supply device 1 may be the driving voltage of the IC 200.
  • the IC 200 can be driven even if the remaining capacity of the battery 21 runs out.
  • the electronic device 2 may be any electronic device, such as a mobile phone (including a mobile phone classified as a smart phone), a portable information terminal, a tablet personal computer, a digital camera, an MP3 player, a pedometer, or , A Bluetooth® headset.
  • the functional circuit 22 realizes an arbitrary function that the electronic device 2 should realize. Therefore, for example, if the electronic device 2 is a smart phone, the functional circuit 22 transmits / receives information to / from other devices via a call processing unit for realizing a call with the counterpart device and a network. Including a communication processing unit.
  • the functional circuit 22 includes a drive circuit that drives the image sensor, an image processing circuit that generates image data from an output signal of the image sensor, and the like.
  • the functional circuit 22 may be considered as a circuit provided in an external device of the electronic device 2.
  • the resonant circuit TT includes a capacitor T C is a coil T L and the power transmitting side capacitor as the power transmission coil, the resonant circuit RR is the power-receiving-side capacitor and the coil R L is a receiver coil And a capacitor RC .
  • the power transmission coil T L and a resonant circuit TT by the power transmission side capacitor T C are connected in parallel to each other are formed as a parallel resonance circuit, and the power receiving side coil It is assumed that the resonance circuit RR is formed as a parallel resonance circuit by connecting R L and the power receiving side capacitor RC in parallel.
  • the resonant circuit TT by transmitting coil T L and the power-transmitting-side capacitor T C is connected in series with each other may be formed as a series resonant circuit
  • the power receiving side coil R L and the power-receiving-side capacitor R C each other The resonance circuit RR may be formed as a series resonance circuit by being connected in series.
  • NFC communication Near field communication wireless communication
  • the frequency of the communication carrier is 13.56 MHz (megahertz).
  • 13.56 MHz is referred to as a reference frequency. Since NFC communication between the devices 1 and 2 is performed by a magnetic field resonance method using the resonance circuits TT and RR, the resonance frequencies of the resonance circuits TT and RR are both set to the reference frequency. However, as will be described later, the resonance frequency of the resonance circuit RR can be temporarily changed from the reference frequency.
  • the power transmission and power reception between the devices 1 and 2 are power transmission by NFC from the power supply device 1 to the electronic device 2 and power reception by NFC in the electronic device 2.
  • This power transmission and power reception are collectively referred to as NFC power transmission or simply power transmission.
  • NFC power transmission By transmitting the power from the coil T L with respect to the coil R L by magnetic field resonance method, the power transmission is achieved in a non-contact manner.
  • the electronic device 2 is placed in a predetermined power transmission area on the power supply stand 12 (the power supply device 1 and the electronic device 2 are in a predetermined positional relationship), in other words, the electronic device 2 is within a predetermined range on the power supply stand 12.
  • a state in which the NFC communication and power transmission described above can be realized is referred to as a reference arrangement state (see FIG. 1B).
  • a reference arrangement state see FIG. 1B.
  • a state in which the electronic device 2 is sufficiently separated from the power supply stand 12 and cannot realize the above-described NFC communication and power transmission is referred to as a separated state (see FIG. 1A).
  • the surface of the power supply base 12 shown in FIG. 1A is flat, a depression or the like that matches the shape of the electronic device 2 to be placed may be formed in the power supply base 12.
  • the reference arrangement state is a state in which the electronic device 2 exists in a predetermined power transmission region (in other words, a region for performing power transmission and power reception) in which power can be transmitted and received between the power supply device 1 and the electronic device 2.
  • the belonging and separated state may be understood as belonging to a state in which the electronic device 2 does not exist in the power transmission area.
  • FIG. 4 shows a partial configuration diagram of the power supply device 1 including an internal block diagram of the IC 100.
  • the IC 100 is provided with each part referred to by reference numerals 110, 120, 130, 140, 150 and 160.
  • FIG. 5 shows a configuration diagram of a part of the electronic device 2 including an internal block diagram of the IC 200.
  • the IC 200 is provided with each part referred to by reference numerals 210, 220, 230, 240 and 250.
  • the capacitor 23 that outputs the driving voltage of the IC 200 may be connected to the IC 200.
  • the capacitor 23 can output a DC voltage obtained by rectifying a signal for NFC communication received from the power supply device 1.
  • the switching circuit 110 connects either the NFC communication circuit 120 or the NFC power transmission circuit 130 to the resonance circuit TT under the control of the control circuit 160.
  • the switching circuit 110 can be configured by a plurality of switches interposed between the resonance circuit TT and the circuits 120 and 130. Any switch described herein may be formed using a semiconductor switching element such as a field effect transistor.
  • the switching circuit 210 connects the resonance circuit RR to either the NFC communication circuit 220 or the NFC power receiving circuit 230 under the control of the control circuit 250.
  • the switching circuit 210 can be configured by a plurality of switches interposed between the resonance circuit RR and the circuits 220 and 230.
  • the state where the resonance circuit TT is connected to the NFC communication circuit 120 via the switching circuit 110 and the resonance circuit RR is connected to the NFC communication circuit 220 via the switching circuit 210 is called a communication connection state.
  • NFC communication is possible in the communication connection state.
  • the NFC communication circuit 120 can supply an AC signal (AC voltage) having a reference frequency to the resonance circuit TT.
  • NFC communication between the devices 1 and 2 is performed in a half-duplex manner.
  • NFC communication circuit 220 may transmit any information signal (response signal) from the coil R L of the resonance circuit RR to the coil T L of the resonance circuit TT.
  • this transmission is based on the ISO standard (for example, ISO 14443 standard), and is based on a load modulation method that changes the impedance of the coil R L (electronic device side antenna coil) viewed from the coil T L (power supply device side antenna coil). Realized.
  • the information signal transmitted from the electronic device 2 is extracted by the NFC communication circuit 120.
  • the state where the resonance circuit TT is connected to the NFC power transmission circuit 130 via the switching circuit 110 and the resonance circuit RR is connected to the NFC power reception circuit 230 via the switching circuit 210 is referred to as a power supply connection state.
  • the NFC power transmission circuit 130 can perform a power transmission operation, and the NFC power reception circuit 230 can perform a power reception operation.
  • Power transmission is realized by power transmission operation and power reception operation.
  • the power transmission circuit 130 supplies a power transmission magnetic field (power transmission alternating magnetic field) to the power transmission side coil TL by supplying a power transmission AC signal (power transmission AC voltage) to the resonance circuit TT.
  • a power transmission AC signal power transmission AC voltage
  • electric power is transmitted from the resonance circuit TT (power transmission side coil T L ) to the resonance circuit RR by the magnetic field resonance method.
  • the power received by the power receiving coil RL based on the power transmission operation is sent to the power receiving circuit 230.
  • the power receiving circuit 230 In the power receiving operation, the power receiving circuit 230 generates and outputs arbitrary DC power from the received power.
  • the battery 21 can be charged with the output power of the power receiving circuit 230.
  • the magnetic field strength in the NFC communication is within a predetermined range.
  • the lower limit value and the upper limit value of the range are determined by NFC standards, and are 1.5 A / m and 7.5 A / m, respectively.
  • the strength of the magnetic field generated in the power transmission coil TL (magnetic field strength of the power transmission magnetic field) in power transmission is larger than the above upper limit, for example, about 45 to 60 A / m. .
  • NFC communication and power transmission can be performed alternately, and the state of the magnetic field strength at that time is shown in FIG.
  • FIG. 7 shows a relationship among the power transmission circuit 130, the load detection circuit 140, and the resonance circuit TT in the power supply connection state. In FIG. 7, the switching circuit 110 is not shown.
  • the power transmission circuit 130 amplifies the sine wave signal generated by the signal generator 131 and the signal generator 131 that generates a sine wave signal of a reference frequency, and the amplified sine wave signal is lined with the potential of the line 134 as a reference.
  • An amplifier (power amplifier) 132 that outputs between 134 and 135 and a capacitor 133 are provided.
  • the load detection circuit 140 includes a sense resistor 141, an envelope detector 142, an amplifier 143, and an A / D converter 144.
  • the signal intensity of the sine wave signal generated by the signal generator 131 is fixed to a constant value, but the amplification factor of the amplifier 132 is variably set by the control circuit 160.
  • One end of the capacitor 133 is connected to the line 135.
  • the other end of the capacitor 133 are connected in common to one ends of the capacitor T C and coil T L, and the coil T L at the other end another line 134 and the capacitor T C via the sense resistor 141 Commonly connected to the ends.
  • the power transmission operation is realized by supplying an AC signal (AC voltage for power transmission) from the amplifier 132 to the resonance circuit TT via the capacitor 133.
  • an AC signal from the amplifier 132 is supplied to the resonance circuit TT in the power supply connection state, an AC current having a reference frequency flows in the power transmission side coil TL .
  • an AC voltage drop occurs in the sense resistor 141.
  • a solid line waveform in FIG. 8 is a voltage waveform of a voltage drop in the sense resistor 141.
  • the envelope detector 142 outputs an analog voltage signal proportional to the voltage v in FIG. 8 by detecting the envelope of the voltage drop signal in the sense resistor 141.
  • the amplifier 143 amplifies and outputs the output signal of the envelope detector 142.
  • the A / D converter 144 outputs a digital voltage value V D by converting the output voltage signal of the amplifier 143 into a digital signal.
  • the voltage value V D has a value proportional to the amplitude of the current flowing through the sense resistor 141 (and hence the amplitude of the current flowing through the power transmission side coil TL ) (increase in the amplitude). Along with this, the voltage value V D also increases).
  • the load detection circuit 140 is a current amplitude detection circuit that detects the amplitude of the current flowing through the power transmission side coil TL , and it can be considered that the amplitude detection value is the voltage value V D.
  • the envelope detector 142 may be provided after the amplifier 143. However, as shown in FIG. 7, it is advantageous to provide the envelope detector 142 in front of the amplifier 143 because it is possible to adopt the amplifier 143 having a lower response performance to a high frequency.
  • the load detection circuit 140 detects the magnitude of the load by the output voltage value V D, and can be considered.
  • the magnitude of the load here can be said to be the magnitude of the load on the power transmission side coil TL at the time of power transmission, and can also be said to be the magnitude of the load of the electronic device 2 as viewed from the power feeding device 1 at the time of power transmission.
  • the sense resistor 141 may be provided inside the IC 100 or may be provided outside the IC 100.
  • the memory 150 (see FIG. 4) is composed of a nonvolatile memory, and stores arbitrary information in a nonvolatile manner.
  • the control circuit 160 comprehensively controls the operation of each part in the IC 100.
  • the control performed by the control circuit 160 includes, for example, control of switching operation of the switching circuit 110, content control and execution presence / absence control of communication operation and power transmission operation by the communication circuit 120 and power transmission circuit 130, operation control of the load detection circuit 140, memory 150 storage controls and read controls are included.
  • the control circuit 160 has a built-in timer (not shown) and can measure the time length between arbitrary timings.
  • the electronic device 2 resonance state changing circuit 240 in (see FIG. 5), the resonance frequency change circuit for changing the reference frequency the resonance frequency of the resonance circuit RR to another predetermined frequency f M, or, the power receiving side coil R in the resonance circuit RR This is a coil short circuit for short-circuiting L.
  • a resonance frequency changing circuit 240 ⁇ / b> A in FIG. 9 is an example of a resonance frequency changing circuit as the resonance state changing circuit 240.
  • the resonance frequency changing circuit 240A includes a series circuit of a capacitor 241 and a switch 242, and one end of the series circuit is commonly connected to one end of each of the capacitor RC and the coil RL , while the other end of the series circuit is the capacitor R. C and the other end of the coil RL are commonly connected.
  • the switch 242 is turned on or off under the control of the control circuit 250.
  • the resonance circuit RR is formed by only the coil RL and the capacitor RC if the parasitic inductance and the parasitic capacitance are ignored.
  • the resonance frequency of the resonance circuit RR matches the reference frequency. That is, when the switch 242 is off, the power receiving side capacitance that determines the resonance frequency of the resonance circuit RR is the capacitor RC itself. Since the capacitor 241 is connected in parallel to the capacitor RC when the switch 242 is on, the resonance circuit RR is formed by the coil RL and the combined capacitance of the capacitors RC and 241. As a result, the resonance circuit RR resonance frequency is low frequency f M than the reference frequency.
  • the power receiving side capacitance that determines the resonance frequency of the resonance circuit RR is the above-described combined capacitance.
  • the frequency f M is such that the resonance circuit RR does not function as a load on the power transmission side coil TL (ie, enough magnetic resonance does not occur between the resonance circuits TT and RR). It is assumed that it is far from the reference frequency.
  • the resonance frequency (that is, the frequency f M ) of the resonance circuit RR when the switch 242 is on is several hundred kHz to 1 MHz.
  • the resonance frequency change circuit as changing circuit 240 is not limited to the resonance frequency change circuit 240A, the frequency f M may be higher than the reference frequency.
  • the circuit switching the unconnected When the connection is not established, the resonance frequency (>> reference frequency) of the resonance circuit RR is determined by the coil RL and the parasitic capacitance of the wiring).
  • the power receiving side resonance circuit RR can be a series resonance circuit.
  • the power reception side resonance circuit RR has a parallel circuit or series circuit of a power reception side coil (R L ) and a power reception side capacitance, and the resonance frequency of the power reception side resonance circuit RR when the power reception side capacitance matches a predetermined reference capacitance. f O matches the reference frequency.
  • the resonance frequency changing circuit increases or decreases the power receiving side capacitance from the reference capacitance at a necessary timing.
  • a parallel circuit or a series circuit is formed by the power receiving side coil (R L ) and the power receiving side capacitance larger or smaller than the reference capacity, and as a result, the resonance frequency of the power receiving side resonance circuit RR.
  • f O is changed from the reference frequency.
  • a coil short circuit 240B in FIG. 10 is an example of a coil short circuit as the resonance state changing circuit 240.
  • the coil short circuit 240B a node where one end of the capacitor RC and one end of the coil RL in the resonance circuit RR are commonly connected, and the other end of the capacitor RC and the other end of the coil RL in the resonance circuit RR are commonly connected.
  • the switch 243 is connected (inserted) between the nodes.
  • the switch 243 is turned on or off under the control of the control circuit 250. When the switch 243 is turned on, the coil RL in the resonance circuit RR is short-circuited (more specifically, both ends of the coil RL are short-circuited).
  • the power receiving side resonance circuit RR does not exist (a state equivalent to a state where the power receiving side resonance circuit RR does not exist). Therefore, while the power receiving coil RL is short-circuited, the load on the power transmitting coil TL is sufficiently lightened (that is, as if the electronic device 2 does not exist on the power supply base 12). As long as the power receiving coil RL can be short-circuited, the coil short-circuit as the changing circuit 240 is not limited to the coil short-circuit 240B.
  • the operation of changing the resonance frequency f O of the power reception side resonance circuit RR from the reference frequency in a predetermined frequency f M is called the resonant frequency changing operation, the operation of short-circuit power receiving coil R L by using a coil short circuit This is called a coil short-circuit operation.
  • the resonance frequency changing operation or the coil short-circuiting operation may be referred to as f O changing / short-circuiting operation.
  • the control circuit 250 comprehensively controls the operation of each part in the IC 200.
  • the control performed by the control circuit 250 includes, for example, control of switching operation of the switching circuit 210, content control and execution presence / absence control of communication operation and power reception operation by the communication circuit 220 and power reception circuit 230, and operation control of the change circuit 240. .
  • the control circuit 250 has a built-in timer (not shown) and can measure the time length between arbitrary timings. For example, a timer in the control circuit 250, f O changes / short operation due to the resonance frequency f O of the change or the power receiving side time measuring the short-circuit of the coil R L is maintained to a predetermined frequency f M (i.e. below the time T M Measurement; see step S207 in FIG. 19).
  • the control circuit 160 of the power supply device 1 can determine whether or not there is a foreign object on the power supply stand 12 and can control the power transmission circuit 130 to perform a power transmission operation only when there is no foreign object.
  • the foreign matter in the present embodiment has a current (based on the magnetic field generated by the power transmitting side coil TL when approaching the power feeding device 1. This includes objects that can generate a current in a foreign object.
  • the presence of foreign matter may be understood to mean that the foreign matter is present at a position where a non-negligible current flows in the foreign matter based on the magnetic field generated by the power transmission coil TL. .
  • the current that has flowed in the foreign matter based on the magnetic field generated by the power transmission side coil TL generates an electromotive force (or counter electromotive force) in the coil ( TL or RL ) that faces and couples to the foreign matter. This can have a non-negligible effect on the characteristics of the circuit including the coil.
  • FIG. 11A shows a schematic external view of a foreign material 3 which is a kind of foreign material
  • FIG. 11B shows a schematic internal configuration diagram of the foreign material 3.
  • the foreign object 3 includes a resonance circuit JJ composed of a parallel circuit of a coil J L and a capacitor J C , and a foreign substance circuit 300 connected to the resonance circuit JJ.
  • the resonance frequency of the resonance circuit JJ is set to the reference frequency.
  • the foreign material 3 is a device that does not correspond to the power supply device 1.
  • the foreign material 3 is an object (such as a non-contact IC card) having a wireless IC tag having an antenna coil (coil J L ) of 13.56 MHz that does not respond to NFC communication.
  • the foreign object 3 is an electronic device that has the NFC communication function itself but is disabled.
  • a smartphone that has an NFC communication function but whose function is turned off by software setting can be a foreign object 3.
  • a smart phone in which the NFC communication function is valid a smart phone that does not have a power receiving function is classified as the foreign object 3.
  • a strong magnetic field for example, a magnetic field strength of 12 A / m or more generated by the power transmission side coil TL is generated.
  • the foreign matter 3 may be destroyed by the magnetic field having For example, a strong magnetic field during the transmission operation, also have to increase the terminal voltage of the coil J L foreign material 3 on the feeding table 12 up to 100 V ⁇ 200V, foreign body 3 is formed to withstand such a high voltage If not, the foreign material 3 is destroyed.
  • FIG. 12 is a flowchart of foreign object detection processing (hereinafter referred to as pFOD processing) executed by the power supply device 1 before power transmission.
  • the control circuit 160 When executing the pFOD process, the power transmission circuit 130 is connected to the resonance circuit TT.
  • the control circuit 160 first sets the magnetic field strength H by the power transmission side coil TL to a predetermined test strength in step S11.
  • the magnetic field strength H is a magnetic field strength generated by the power transmission side coil TL , and more specifically indicates a magnetic field strength of an alternating magnetic field that vibrates at a reference frequency generated by the power transmission side coil TL . Setting the magnetic field strength H to the test strength means that the power transmission circuit 130 is controlled so that a predetermined test AC signal (test AC voltage) is supplied to the resonance circuit TT, thereby having the test strength and the reference frequency.
  • the control circuit 160 can variably set the magnetic field strength H by controlling the amplification factor of the amplifier 132 (see FIG. 7).
  • a predetermined test AC voltage is supplied to and applied to the resonance circuit TT when the test magnetic field is generated, and a predetermined amplitude having a larger amplitude than the test AC voltage is generated when the power transmission magnetic field is generated.
  • the amplification factor of the amplifier 132 may be controlled so that the AC voltage for power transmission is supplied and applied to the resonance circuit TT.
  • step S12 the control circuit 160 uses the load detection circuit 140 to acquire the voltage value V D when the test magnetic field is generated as the current amplitude detection value V pFOD .
  • Current amplitude detection value V PFOD has a value corresponding to the amplitude of the current flowing through the power transmitting coil T L when to generate a test magnetic field to the power transmission coil T L.
  • f O changes / short operation in the electronic apparatus 2 in accordance with an instruction from the power supply apparatus 1 via the NFC communication (resonance frequency change operation or coil short circuit operation) is being performed . Therefore, the resonance circuit RR (power reception side coil R L ) does not substantially function as a load of the power transmission side coil T L and causes no or almost no decrease in the current amplitude detection value V pFOD .
  • step S13 the control circuit 160 determines whether or not the current amplitude detection value V pFOD is within a predetermined pFOD normal range.
  • the control circuit 160 determines that the foreign material 3 does not exist on the power supply base 12 (step S14). This determination is referred to as foreign object determination.
  • the control circuit 160 determines that the foreign material 3 exists on the power supply base 12 (step S15). This determination is referred to as a foreign object determination.
  • the control circuit 160 determines that the power transmission operation by the power transmission circuit 130 is possible, permits the power transmission operation (power transmission using the resonance circuit TT), and determines whether there is a foreign object. If it has been established, it is determined that the power transmission operation by the power transmission circuit 130 is impossible, and the execution of the power transmission operation is prohibited. When it is determined that the power transmission operation can be performed, in the power transmission operation, the control circuit 160 can control the power transmission circuit 130 such that a predetermined power transmission magnetic field is generated in the power transmission side coil TL .
  • the pFOD normal range is a range that is not less than a predetermined lower limit value V pREFL and not more than a predetermined upper limit value V pREFH (0 ⁇ V pREFL ⁇ V pREFH ). Therefore, when the determination inequality “V pREFL ⁇ V pFOD ⁇ V pREFH ” is satisfied, the foreign object determination is made, and otherwise, the foreign object determination is made.
  • the resonance circuit JJ (coil J L ) of the foreign matter 3 functions as a load of the power transmission side coil TL.
  • the current amplitude detection value V pFOD is decreased as compared with the case where no foreign matter 3 exists in FIG.
  • the foreign material 3a (not shown) different from the foreign material 3 is also considered as a foreign material.
  • the foreign material 3a is, for example, a metal body (aluminum foil or aluminum plate) formed including aluminum or a metal body formed including copper.
  • the current amplitude detection value V pFOD is less than the lower limit value V pREFL , and the foreign object 3a is present on the power supply table 12. If the current amplitude detection value V pFOD exceeds the upper limit value V pREFH and no foreign matter (3 or 3a) is present on the power supply base 12, the current amplitude detection value V pFOD is pFOD.
  • the lower limit value V pREFL and the upper limit value V pREFH are set in advance and stored in the memory 150 through experiments or the like so as to be within the normal range.
  • the magnetic field for power transmission is generated in a state where the foreign object 3a exists on the power supply stand 12, the power is absorbed by the foreign object 3a, and the foreign object 3a may generate heat.
  • the reference frequency as the carrier frequency of power transmission is 13.56 MHz, it can be said that the possibility of such heat generation is sufficiently small. Therefore, the presence of foreign matter is determined only when the current amplitude detection value V pFOD falls below the lower limit value V pREFL without considering the presence of the foreign matter 3a, and the current amplitude detection value V pFOD is greater than or equal to the lower limit value V pREFL.
  • the foreign object non- existence determination may be performed (that is, the upper limit value V pREFH may be eliminated).
  • the reference frequency in the invention according to the present embodiment is not limited to 13.56 MHz, in the case where the reference frequency, for example, about several 100kHz, because fear of heat generation of the foreign matter 3a is higher, only the lower limit value V PREFL It is desirable to adopt the above-described method in which the upper limit value V pREFH is set to the normal range of pFOD.
  • FIG. 13 is an operation flowchart of the initial setting process.
  • the initial setting process is executed by the IC 100 under the following initial setting environment.
  • the initial setting process may be performed at the time of manufacturing or shipping the power supply device 1. However, if the initial setting environment can be secured, the initial setting process can be performed at an arbitrary timing.
  • the power transmission circuit 130 When executing the initial setting process, the power transmission circuit 130 is connected to the resonance circuit TT. Then, in step S21, the magnetic field strength H by the power transmission side coil TL is set to a predetermined test strength, and in the subsequent step S22, the voltage value V D acquired from the A / D converter 144 in the set state is set as the voltage. Obtained as the value V DO . In subsequent step S23, lower limit value V pREFL based on voltage value V DO is stored in memory 150. The lower limit value V pREFL is set to a value lower than the voltage value V DO so that the presence of foreign matter is determined in the pFOD process only in the presence of the foreign matter 3.
  • k is a coefficient having a positive predetermined value less than 1. Note that the voltage value V D that would be obtained when the magnetic field strength H is set to a predetermined test strength in the initial setting environment can be estimated at the design stage. Based on the value derived by this estimation, the lower limit value V pREFL may be determined and stored in the memory 150 without performing the initial setting process.
  • the load on the power transmission side coil T L is sufficiently lightly (That is, it is as if the electronic device 2 does not exist on the power supply stand 12), and the current amplitude detection value V pFOD becomes sufficiently large to determine that there is no foreign object.
  • the resonance frequency of the resonance circuit RR is changed to the frequency f M or the power reception side coil RL is short-circuited, the foreign matter 3 continues to exist as a load of the power transmission side coil TL. For this reason (because the resonance frequency of the resonance circuit JJ of the foreign material 3 remains the reference frequency), the current amplitude detection value V pFOD becomes sufficiently small and foreign matter determination is made.
  • the power supply device 1 can determine whether or not the electronic device 2 that can support power transmission exists on the power supply base 12 by NFC communication.
  • the state in which the foreign object 3 is present on the power supply base 12 is not limited to the state in which the foreign object 3 is in direct contact with the power supply base 12. For example, as shown in FIG. 15, a foreign object presence determination is also made in a state where the electronic device 2 exists in direct contact with the power supply stand 12 and the foreign material 3 exists on the electronic device 2. As long as the foreign object 3 exists on the power supply stand 12, it belongs.
  • the power supply device 1 is a transmission side and the electronic device 2 is a reception side, and the power supply device 1 (IC 100) transmits an inquiry signal 510 to a device on the power supply base 2 (hereinafter also referred to as a power supply target device) by NFC communication.
  • the power supply target device includes the electronic device 2 and may include the foreign material 3.
  • the inquiry signal 510 is, for example, a signal for inquiring unique identification information of a power supply target device, a signal for inquiring whether the power supply target device is in a state where NFC communication can be performed, and whether the power supply target device can receive power or transmit power. It includes a signal that asks if you are seeking
  • the electronic device 2 (IC 200) that has received the inquiry signal 510 transmits a response signal 520 that answers the inquiry content of the inquiry signal 510 to the power supply device 1 by NFC communication.
  • the power supply device 1 (IC 100) that has received the response signal 520 analyzes the response signal 520, and if the power supply target device is capable of NFC communication and can receive power or requests power transmission, a test request
  • the signal 530 is transmitted to the power supply target device by NFC communication.
  • the electronic device 2 (IC 200) as the power supply target device that has received the test request signal 530 transmits a response signal 540 to the test request signal 530 to the power supply device 1 by NFC communication, and then promptly changes the f O / A short-circuit operation (resonance frequency changing operation or coil short-circuit operation) is executed.
  • the test request signal 530 is a signal for requesting and instructing execution of the f O change / short circuit operation
  • the control circuit 250 of the electronic device 2 receives the test request signal 530 as an opportunity to change / short circuit the f O.
  • the operation is executed by the resonance state changing circuit 240.
  • the f O change / short-circuit operation is not executed.
  • f O changes / short test request signal 530 if the trigger for the execution of the operation may be any signal, or may be contained in the inquiry signal 510.
  • the power supply apparatus 1 (IC 100) that has received the response signal 540 executes the above-described pFOD process.
  • the electronic device 2 (IC 200) continues to execute the f 2 O change / short-circuit operation.
  • the electronic device 2 (IC 200) is built-in timer with, f O changes / short since maintaining the execution of only f O changes / short operation time corresponding to the length of the execution period of pFOD process Stop operation.
  • the power supply device 1 transmits an authentication signal 550 to the power supply target device by NFC communication.
  • the authentication signal 550 includes, for example, a signal for notifying the power supply target device that power transmission will be performed from now on.
  • the electronic device 2 (IC 200) that has received the authentication signal 550 transmits a response signal 560 corresponding to the authentication signal 550 to the power supply device 1 by NFC communication.
  • the response signal 560 includes, for example, a signal notifying that the content indicated by the authentication signal 550 has been recognized or a signal giving permission to the content indicated by the authentication signal 550.
  • the power supply device 1 (IC 100) that has received the response signal 560 executes the power transmission operation by connecting the power transmission circuit 130 to the resonance circuit TT, thereby realizing the power transmission 570.
  • the power transmission 570 is executed according to the above flow. However, in the second case of FIG. 14B, the process proceeds until the transmission / reception of the response signal 540. Since it is determined that there is a foreign object on the power supply stand 12 in the pFOD process, the power transmission 570 is not executed.
  • One power transmission 570 may be performed only for a predetermined time, and a series of processing from transmission of the inquiry signal 510 to power transmission 570 may be repeatedly executed.
  • NFC communication, pFOD processing, and power transmission NFC power transmission
  • NFC power transmission can be executed sequentially and repeatedly. That is, in the non-contact power supply system, the operation of performing NFC communication, the operation of performing pFOD processing, and the operation of performing power transmission (NFC power transmission) can be repeatedly performed in order in a time division manner.
  • FIG. 18 is an operation flowchart of the power supply device 1. The operations of the communication circuit 120 and the power transmission circuit 130 are executed under the control of the control circuit 160.
  • step S101 the control circuit 160 connects the communication circuit 120 to the resonance circuit TT through the control of the switching circuit 110.
  • the control circuit 160 transmits an inquiry signal 510 to the power supply target device by NFC communication using the communication circuit 120 and the resonance circuit TT, and then waits for reception of the response signal 520 in step S103.
  • the control circuit 160 analyzes the response signal 520, and the power supply target device is capable of NFC communication and can receive power or request power transmission.
  • step S104 Y in step S104
  • the process proceeds to step S105. Otherwise (N in step S104), the process returns to step S102.
  • step S105 the control circuit 160 transmits the test request signal 530 to the power supply target device by NFC communication using the communication circuit 120 and the resonance circuit TT, and then waits for reception of the response signal 540 in step S106.
  • the control circuit 160 connects the power transmission circuit 130 to the resonance circuit TT through the control of the switching circuit 110, and in the subsequent step S108, the above-described pFOD process is performed. Do.
  • step S109 the control circuit 160 connects the communication circuit 120 to the resonance circuit TT through the control of the switching circuit 110, and proceeds to step S110.
  • step S108 if foreign matter determination is made, the process returns from step S110 to step S102, but if foreign matter non-judgment is made, the process proceeds from step S110 to step S111.
  • step S111 the control circuit 160 transmits the authentication signal 550 to the power supply target device by NFC communication using the communication circuit 120 and the resonance circuit TT, and then waits for reception of the response signal 560 in step S112.
  • step S113 the control circuit 160 connects the power transmission circuit 130 to the resonance circuit TT through the control of the switching circuit 110, and proceeds to step S114.
  • the control circuit 160 sets the power transmission permission flag to ON in step S114, starts the power transmission operation and the mFOD process, and then proceeds to step S115.
  • step S115 the presence or absence of a foreign object during power transmission is detected by the mFOD process, and when a foreign object is detected, the power transmission permission flag is turned off.
  • the control circuit 160 measures the elapsed time from the start time of the power transmission operation, and compares the elapsed time with a predetermined time t A (for example, 10 minutes) and checks the state of the power transmission permission flag in step S115. When the elapsed time reaches a predetermined time t A or when the power transmission permission flag is set to OFF by the mFOD process, the process proceeds to step S116.
  • step S116 the control circuit 160 switches the power transmission permission flag from ON to OFF or maintains the power transmission permission flag OFF, stops the power transmission operation and the mFOD process, and then returns to step S101.
  • FIG. 19 is an operation flowchart of the electronic device 2, and the process starting from step S201 is executed in conjunction with the operation of the power supply device 1 shown in FIG.
  • the operations of the communication circuit 220 and the power receiving circuit 230 are executed under the control of the control circuit 250.
  • step S201 the control circuit 250 connects the communication circuit 220 to the resonance circuit RR through the control of the switching circuit 210.
  • the f O change / short-circuit operation is not executed when the electronic device 2 is activated.
  • step S202 control circuit 250 uses communication circuit 220 and waits for reception of inquiry signal 510.
  • step S203 the control circuit 250 analyzes the inquiry signal 510 to generate a response signal 520, and generates the response signal 520 by NFC communication using the communication circuit 220. Transmit to the power supply device 1.
  • the control circuit 250 confirms the state of the battery 21, and if the battery 21 is not fully charged and no abnormality is recognized in the battery 21, a signal for receiving power or requesting power transmission is sent to the response signal 520. include. On the other hand, if battery 21 is fully charged or if abnormality is recognized in battery 21, a signal indicating that power cannot be received is included in response signal 520.
  • step S205 the control circuit 250 transmits a response signal 540 to the feeding apparatus 1 by the NFC communication using the communication circuit 220, perform a f O changes / short operation using a resonance state changing circuit 240 at the subsequent step S206 To do. That is, short-circuiting or the power receiving coil R L changes from the reference frequency of the resonance frequency f O to the frequency f M.
  • the control circuit 250 measures the time elapsed from the start of the f O changes / short operation (step S207), and stops the f O changes / short operation when the elapsed time reaches the predetermined time t M ( Step S208).
  • the resonance frequency f O is returned to the reference frequency or the short circuit of the power receiving coil RL is eliminated. Thereafter, the process proceeds to step S209.
  • f O changes / short run operations is maintained, promptly f O changes / short the end of that time operation time t M as stopped is preset.
  • the time t M may be specified in the test request signal 530.
  • step S209 the control circuit 250 waits for reception of the authentication signal 550 using the communication circuit 220.
  • the control circuit 250 transmits a response signal 560 to the authentication signal 550 to the power supply device 1 by NFC communication using the communication circuit 220 in step S 210. If a foreign object exists on the power supply stand 12, the authentication signal 550 is not transmitted from the power supply device 1 (see step S110 in FIG. 18). Therefore, if the authentication signal 550 is not received for a predetermined time in step S209. It is good to return to step S201.
  • step S211 the control circuit 250 connects the power reception circuit 230 to the resonance circuit RR through the control of the switching circuit 210, and starts a power reception operation using the power reception circuit 230 in step S212.
  • the control circuit 250 measures the time elapsed from the start of the power receiving operation, and compares the elapsed time with a predetermined time t B (step S213). Then, the elapsed time reaches the time t B (Y in step S213), in step S214, the control circuit 250, a power receiving operation is stopped and the flow returns to step S201.
  • the time t B is predetermined or specified in the authentication signal 550 so that the period during which the power receiving operation is performed substantially coincides with the period during which the power transmission operation is performed in the power supply device 1. .
  • the control circuit 250 monitors the charging current to the battery 21 and determines that the power transmission operation is terminated when the charging current value becomes equal to or lower than the predetermined value. You may make it perform transfer to.
  • a foreign object may be placed on the power supply stand 12 after the power transmission operation is started.
  • the mFOD process functions as a foreign object detection process during power transmission, and the presence or absence of a foreign object is continuously monitored during power transmission by the mFOD process.
  • FIG. 20 is an operation flowchart of the mFOD process.
  • the control circuit 160 repeatedly executes the mFOD process in FIG. 20 during the period during which the power transmission operation is performed.
  • the control circuit 160 first acquires the latest voltage value V D as the current amplitude detection value V MFOD step S51.
  • Current amplitude detection value V MFOD has a value corresponding to the amplitude of the current flowing through the power transmitting coil T L when is generating power for the magnetic field to the power transmission coil T L.
  • the control circuit 160 determines whether or not the current amplitude detection value V mFOD belongs to a predetermined mFOD normal range.
  • step S53 If the current amplitude detection value V mFOD belongs to the mFOD normal range, the foreign object non-determination is determined (step S53), the process returns to step S51, and the processing of steps S51 and S52 is repeated, but the current amplitude detection value V mFOD is mFOD.
  • the foreign matter presence determination is made in step S54, and the power transmission permission flag is set to OFF.
  • the power transmission permission flag is a flag managed by the control circuit 160 and is set to ON or OFF. When the power transmission permission flag is ON, the control circuit 160 permits the execution of the power transmission operation, and when the power transmission permission flag is OFF, the control circuit 160 prohibits the execution of the power transmission operation or stops the power transmission operation.
  • the mFOD normal range is a range not less than a predetermined lower limit value V mREFL and not more than a predetermined upper limit value V mREFH (0 ⁇ V mREFL ⁇ V mREFH ). Therefore, when the determination inequality “V mREFL ⁇ V mFOD ⁇ V mREFH ” is satisfied, the foreign object determination is made, and otherwise, the foreign object determination is made.
  • the foreign material 3 formed as a non-contact IC card is inserted between the power supply base 12 of the power supply device 1 and the electronic device 2.
  • the coil J L of the power receiving coil R L and foreign substances 3 of the electronic device 2 is magnetically coupled, resonant frequency is the reference frequency of the resonant circuit RR of the electronic device 2 together with the resonance frequency of the resonance circuit JJ foreign matter 3 Deviation from (13.56 MHz).
  • the power received by the power receiving side coil RL decreases, and the load of power transmission viewed from the power transmitting side coil TL becomes lighter.
  • the upper limit value V mREFH may be determined so that “V mREFH ⁇ V mFOD ”.
  • a foreign material 3 b as an iron plate or a ferrite sheet is inserted between the power supply base 12 of the power supply device 1 and the electronic device 2.
  • a current flows in the foreign matter 3b through the electrical and magnetic action, and as a result, the amplitude of the current flowing in the power transmission side coil TL is reduced (in this case, the lower limit is such that “V mFOD ⁇ V mREFL ”).
  • the value V mREFL may be determined).
  • the current amplitude detection value V mFOD changes depending on the presence or absence of the foreign matter including the foreign matters 3 and 3b.
  • the lower limit value V MREFL and the upper limit value V MREFH may be stored in the memory 150. Further, it is estimated by theoretical calculation how much the current amplitude detection value V mFOD changes due to the presence of a foreign substance during power transmission, and based on the estimation result, the lower limit value V mREFL is not required.
  • the upper limit value V mREFH may be determined and stored in the memory 150. At this time, for example, an object that changes the current amplitude detection value V mFOD by a predetermined change rate or more with reference to the center value of the mFOD normal range may be defined as a foreign object.
  • the amplification factor of the amplifier 143 shown in FIG. 7 is variable.
  • the amplitude of the current flowing through the power transmitting coil T L is than when performing pFOD treatment, is much To larger when performing the power transmission operation and mFOD process. Therefore, the control circuit 160 sets the amplification factor of the amplifier 143 smaller when performing the mFOD process than when performing the pFOD process, thereby setting the input signal range of the A / D converter 144 between the pFOD process and the mFOD process. Same level.
  • the envelope detector 142 and the A / D converter 144 may be inserted between the two.
  • amplitude information obtained by performing high-frequency reduction processing in other words, averaging processing or low-pass filtering
  • V D voltage value
  • the high-frequency reduction process is a process for reducing (attenuating) a relatively high frequency signal component while allowing a relatively low frequency signal component in the voltage drop signal of the sense resistor 141 to pass.
  • a high-frequency reduction process is performed on the voltage value V D generated by the output signal of the A / D converter 144.
  • the voltage value V D after the high-frequency reduction process may be used as the current amplitude detection value V mFOD (the same may be applied to the current amplitude detection value V pFOD in the pFOD process).
  • the high frequency reduction processing by calculation is processing executed by the control circuit 160, and passes a relatively low frequency signal component in the output signal of the A / D converter 144, while relatively high frequency signal component. This is a process for reducing (attenuating).
  • the role of the mFOD process is not limited only to the presence / absence determination of foreign matter.
  • the mFOD process has a role of turning off the power transmission permission flag under any circumstances inappropriate for continuation of the power transmission operation such that the current amplitude detection value V mFOD deviates from the mFOD normal range.
  • the power transmission permission flag is turned OFF (step S54 in FIG. 20).
  • control circuit 160 controls whether or not the power transmission is continued by monitoring whether or not the current amplitude detection value V mFOD is out of the mFOD normal range when power is being transmitted by the power transmission operation. To do. As a result, since the power transmission operation is stopped through the mFOD process in a situation inappropriate for the continuation of the power transmission operation, such as when a foreign object is placed on the power supply stand 12 after the power transmission operation is started, the foreign material due to the continuation of the power transmission operation is stopped. Can be avoided.
  • a power transmission device WA 1 includes a power transmission side resonance circuit including a power transmission side coil (T L ) for transmitting the power in a power transmission device capable of transmitting power to the power reception device by a magnetic field resonance method. (TT), a power transmission circuit (130) capable of supplying an AC voltage to the power transmission side resonance circuit, a detection circuit (140) for detecting an amplitude of a current flowing in the power transmission side coil, and controlling the power transmission circuit And a control circuit (160) for performing power transmission control of the power when the power transmission is performed based on the amplitude detection value ( VmFOD ) of the detection circuit. It is characterized by controlling the continuation of
  • a non-contact power feeding system WA 2 includes a power transmission device having a power transmission side resonance circuit (TT) including a power transmission side coil (T L ) for transmitting power, and for receiving the power. And a power receiving device having a power receiving side resonance circuit (RR) including a power receiving side coil (R L ), and capable of transmitting and receiving the power by a magnetic resonance method.
  • a power transmission circuit (130) capable of supplying an AC voltage to the side resonance circuit, a detection circuit (140) for detecting an amplitude of a current flowing in the power transmission side coil, and controlling the power transmission by controlling the power transmission circuit.
  • the power transmission device WA 1 and the non-contact power feeding system WA 2 it is inappropriate for the continuation of the power transmission operation, for example, when a foreign object is present at the position where the magnetic field generated by the power transmission side coil reaches after the power transmission operation is started. Under circumstances, it is possible to stop the power transmission operation. For example, it is possible to avoid damage to foreign objects due to continued power transmission.
  • the control circuit when the power is transmitted, the control circuit has an amplitude detection value of the detection circuit within a predetermined range (mFOD normal range). It is good to control the continuation of the power transmission by monitoring whether or not it deviates.
  • the power transmission may be stopped when a deviation of the amplitude detection value of the detection circuit from the predetermined range is detected.
  • the control circuit determines whether or not the amplitude detection value of the detection circuit deviates from the predetermined range when the power is transmitted. Therefore, it is preferable to determine whether or not there is a foreign object that is different from the power receiving apparatus and can generate a current based on the magnetic field generated by the power transmission side coil.
  • the control circuit detects that the amplitude detection value of the detection circuit exceeds the upper limit value of the predetermined range when the power is transmitted. By determining whether or not there is a foreign object including a coil as the foreign object, it may be determined.
  • the power reception device includes a power reception side resonance circuit (RR) including a power reception side coil (R L ) for receiving the power, and the power reception side resonance prior to power reception.
  • RR power reception side resonance circuit
  • R L power reception side coil
  • a change / short circuit (240) for changing the resonance frequency of the circuit from the resonance frequency at the time of power reception or short-circuiting the power reception coil, and the control circuit (160) is based on communication from the power transmission device
  • a predetermined test magnetic field is generated in the power transmission side coil prior to the power transmission in a state in which the power reception device changes the resonance frequency of the power reception side resonance circuit or the power reception side coil is short-circuited in accordance with the signal.
  • a first processing unit that controls the power transmission circuit determines the possibility of execution of the transmission when said test magnetic field is generated
  • the power transmission is realized by controlling the power transmission circuit so that a power transmission magnetic field larger than the test magnetic field is generated in the power transmission side coil after determining that the power transmission can be performed by two processing units (pFOD processing)
  • a third processing unit, and the detection circuit (140) detects the amplitude through a process of amplifying a signal indicating the amplitude of the current flowing through the power transmission coil, and the amplification factor in the amplification is It is preferable that the time when the power transmission magnetic field is generated by the power transmission side coil is smaller than when the test magnetic field is generated by the power transmission side coil.
  • the power receiving device changes the resonance frequency of the power receiving side resonance circuit from the resonance frequency at the time of power reception or short-circuits the power receiving side coil before receiving the power.
  • the control circuit (160) includes a change / short circuit (240), and the control circuit (160) changes the resonance frequency of the power reception side resonance circuit or shorts the power reception side coil in the power reception device according to a signal from the power transmission device.
  • a first processing unit that controls the power transmission circuit so that a predetermined test magnetic field is generated in the power transmission side coil prior to the power transmission, and the detection circuit when the test magnetic field is generated.
  • the second processing unit that determines the possibility of execution of the transmission and (PFOD process), the test after determining that can execute the transmission based on the amplitude detection value (V pFOD)
  • a third processing unit that realizes the power transmission by controlling the power transmission circuit so that a magnetic field for power transmission larger than the field is generated by the coil on the power transmission side, and the detection circuit (140) includes the power transmission
  • the amplitude is detected through a process of amplifying a signal indicating the amplitude of the current flowing in the side coil, and the amplification factor in the amplification is higher than that when the test magnetic field is generated in the power transmission side coil. It is better if the power transmission magnetic field is generated by the side coil.
  • the second processing unit By providing the second processing unit, it is possible to prevent power transmission under circumstances inappropriate for power transmission, such as when a foreign object exists at a position where the magnetic field generated by the power transmission coil reaches, In addition, it is possible to avoid damage to foreign matters due to the execution (start of execution) of power transmission. Also, by determining the amplification factor as described above, it becomes possible to make the signal level after amplification the same level between when the test magnetic field is generated and when the power transmission magnetic field is generated. It becomes easy to share a circuit for processing the amplified signal.
  • the electric power feeder 1 in 1st Embodiment mentioned above may function as a power transmission apparatus which concerns on this invention, or a part of electric power feeder 1 in the above-mentioned 1st Embodiment functions as a power transmission apparatus which concerns on this invention. You may do it.
  • the electronic device 2 itself in the first embodiment described above may function as a power receiving device according to the present invention, or a part of the electronic device 2 in the first embodiment described above may serve as the power receiving device according to the present invention. May function.
  • Second Embodiment A second embodiment of the present invention will be described.
  • the second embodiment is an embodiment based on the first embodiment.
  • the description of the first embodiment is applied to the second embodiment as long as there is no contradiction.
  • an X axis, a Y axis, and a Z axis that are orthogonal to each other are defined.
  • a plane parallel to the X axis and the Y axis, a plane parallel to the Y axis and the Z axis, and a plane parallel to the Z axis and the X axis may be referred to as an XY plane, a YZ plane, and a ZX plane, respectively.
  • the X axis and the Y axis are parallel to the mounting surface of the power supply table 12, and therefore the Z axis is orthogonal to the mounting surface of the power supply table 12.
  • the mounting surface of the power supply base 12 is a surface on which the electronic device 2 is to be mounted, and the electronic device 2 and a foreign object can be mounted on the mounting surface.
  • the electronic device 2 is mounted on the power supply stand 12 in the standard arrangement state. It shall be placed on the surface. In the reference arrangement state, the power supply device 1 and the electronic device 2 are in a predetermined positional relationship for transmitting and receiving power.
  • FIG. 23 (a), (b) is a schematic perspective view of the power transmission coil T L and a power receiving side coil R L of the power supply device 1 and the electronic apparatus 2 in the reference arrangement, a cross-sectional view.
  • 24A and 24B show the coils T L and J in the power supply device 1 and the foreign material 3 in a state where the foreign material 3 represented by the non-contact IC card is placed on the mounting surface of the power supply table 12.
  • 2 is a schematic perspective view and a sectional view of L.
  • FIG. 23 (a) and FIG. 24 (a) the windings of the coils T L , R L and J L are represented by double circles for simplification and prevention of complication (illustration to be described later). The same applies to 25 (c) and the like).
  • a line segment extending laterally from a double circle representing the coil represents a lead wire of the coil.
  • the cross sections in the cross-sectional views of FIGS. 23B and 24B are parallel to the YZ plane.
  • Each of the coils T L , R L and J L forms a loop antenna.
  • the loop surface of the loop antenna as the coils T L and R L (that is, the surface on which the windings of the coils T L and R L are arranged) is parallel to the XY plane, and thus the coils T L and The central axis of R L is parallel to the Z axis.
  • Coil T L is the winding (such as copper) is formed by the wound around the central axis of its own (the same is true for the coil R L and J L). Also, keep state where foreign matter 3 is placed on the mounting surface of the feed table 12, the loop plane of the loop antenna as a coil J L (i.e., the surface coil windings J L is located), the usually parallel to the same XY plane as the coil T L, thus the central axis of the coil J L is parallel to the Z axis.
  • the coils T L and R L have the same shape on the XY plane (however, they may have different shapes).
  • the shape of the coil is a concept including the size of the coil.
  • the size of the coil may be considered to represent the area occupied by the outer periphery of the coil in the direction orthogonal to the central axis of the coil.
  • the area of the portion surrounded by the coil winding on the loop surface of the loop antenna (that is, the surface on which the coil winding is disposed) is It corresponds to the size of the coil.
  • the outer peripheral shape of the coils T L and RL (in other words, the outer shape) is a circle, but the outer peripheral shape of the coil is a circle in each of the coils T L and RL.
  • the shape is not limited, and may be an ellipse or a polygon (such as a rectangle), and a straight line and a curve may be mixed in the outer peripheral shape of the coil.
  • the power receiving side metal part MT 2 may constitute all or part of the casing of the electronic device 2. That is, for example, the power receiving side metal part MT 2 may be a box-shaped metal case as a casing of the electronic device 2. Alternatively, for example, the housing of the electronic device 2 and the power-receiving-side metal section MT 2 is formed of a resin material may be fixed in the housing of the electronic device 2. Power-receiving-side metal section MT 2 is mainly example, it is provided to enhance the structural strength and texture of the electronic device 2.
  • Metal constituting the power-receiving-side metal section MT 2 is assumed to be aluminum.
  • Metal constituting the power-receiving-side metal section MT 2 is an alloy of aluminum and other metals, may be i.e. aluminum alloy (e.g., duralumin serving as an alloy of aluminum and copper).
  • aluminum alloy e.g., duralumin serving as an alloy of aluminum and copper.
  • the metal constituting the power-receiving-side metal section MT 2 is other than aluminum or aluminum alloy But it ’s okay.
  • Power-receiving-side metal section MT 2 is what may shape have, but assumed to have a metal plate 270 such, having an opening 271 as shown in FIG. 25 (a).
  • the metal plate 270 is parallel to the XY plane.
  • the opening 271 is a hole that is provided in the metal plate 270 and penetrates in the Z-axis direction. Therefore, no metal exists in the opening 271.
  • the opening 271 forms a closed region on the XY plane, and there is no contact between the opening 271 and the outer periphery of the metal plate 270. Therefore, an electric circuit (current loop) made of aluminum is formed around the opening 271 in the XY plane.
  • the opening 271 can be sealed with a material other than a metal such as a resin material.
  • the resin material is, for example, polycarbonate or polypropylene.
  • the outer shape of the metal plate 270 is a rectangle on the XY plane.
  • the outer shape of the metal plate 270 is not limited to this on the XY plane, and may include a curve, or a straight line and a curve may be mixed in the outer shape of the metal plate 270.
  • the shape of the opening 271 on the XY plane is assumed to be a circle (a cylindrical shape when considered in three dimensions).
  • the shape of the opening 271 is not limited to a circle on the XY plane, and may be an ellipse or many shapes. It may be a square (rectangular or the like), and a straight line and a curve may be mixed in the shape of the opening 271.
  • Power-receiving-side metal section MT 2 in addition to the metal plate 270 may also include other metal parts. That is, for example, as shown in FIG. 26, when the power-receiving-side metal section MT 2 is a box-shaped metal case CS MT2 as a housing of the electronic device 2, the metal plate 270 is one side of the metal case CS MT2 ( Bottom surface).
  • FIG. 25A is a perspective view of the metal plate 270 in the reference arrangement state
  • FIG. 25B is a transparent view of some components of the power supply device 1 and the electronic device 2 in the reference arrangement state
  • FIG. 25C is a plan view of the metal plate 270 and the power reception side coil RL in the reference arrangement state viewed from the Z-axis direction.
  • Opening 271 is provided in (a position opposite with respect to the arrangement position of the power receiving coil R L) position opposing the arrangement position of the power receiving coil R L, the reference arrangement, the opening 271 and the coil T L Located between R L , the coils T L and R L face each other through the opening 271.
  • the size of the opening 271 is larger than the size of the coils T L and R L , and when the coil R L , the opening 271, and the coil T L are viewed along the Z-axis direction, the coils R overlapping each other.
  • the outer peripheries of L and T L are enclosed in the opening 271.
  • the shape of the opening 271 and the outer peripheral shapes of the coils R L and T L are all circles, the centers of these circles are located on one straight line parallel to the Z axis, and as shown in FIG.
  • the radius r1 of the circle as the shape of the opening 271 is larger than the radius r2 of the circle as the outer peripheral shape of the coils RL and TL .
  • the power transmission using the coils T L and R L can be satisfactorily realized with some loss.
  • the loss ratio seen from the case without the metal plate 270 is about 10 to 20%.
  • the power transmission side coil TL is magnetically coupled to the metal plate 270 having the opening 271.
  • an alternating current I 1 flows through the power transmission side coil TL
  • an alternating current in the opposite direction ie, 180 degrees out of phase
  • the current I 31 flows through the electric circuit around the opening 271 in the metal plate 270.
  • the coupling coefficient between the power transmission side coil TL and the metal plate 270 is K 13
  • the power receiving coil RL is also magnetically coupled to the metal plate 270 having the opening 271.
  • alternating current I 2 flows, whereby on the basis of the magnetic field generated in the receiver coil R L, and the AC current I 2 reverse (shifted ie 180 degrees out of phase) by electromagnetic induction AC
  • the current I 32 flows through the electric circuit around the opening 271 in the metal plate 270.
  • FIG. 28 (c) shows currents I 1 , I 2 , I 31 and I 32 on a complex plane.
  • K 12 is the coupling coefficient between coils T L and R L in the standard arrangement
  • Q is Q of the power receiving coil R L
  • j is an imaginary.
  • the phase of the current I 2 is delayed by 90 degrees with respect to the current I 1 .
  • the presence of the metal plate 270 that can generate the current I 31 is equivalent to reducing the inductance of the power transmission side coil TL (in other words, the inductance constituting the resonance circuit TT). As a result, it acts to increase the resonant frequency of the resonant circuit TT.
  • the resonance frequency of the resonance circuit RR the presence of the metal plate 270 that can generate the current I 32 is equivalent to reducing the inductance of the power receiving side coil RL (in other words, the inductance constituting the resonance circuit RR). As a result, it acts to increase the resonant frequency of the resonant circuit RR.
  • the resonance frequencies of the resonance circuits TT and RR are deviated from the reference frequency due to the presence of the metal plate 270. This is called the resonance frequency shift phenomenon).
  • the resonance frequency shift phenomenon can bring about an influence such as a decrease in efficiency of power transmission using magnetic resonance.
  • the voltage based on the current flowing through the metal plate 270 by magnetic field generated by the transmitting coil T L is generated in the power transmitting coil T L, its voltage transmission It acts to increase the amplitude of the current flowing through the side coil TL (this increase is hereinafter referred to as a current amplitude increase phenomenon).
  • the metal plate 270 may be mistaken as a foreign object (the metal plate 270 is a component of the electronic device 2 and, of course, should not be recognized as a foreign object).
  • the upper limit value in the normal range of pFOD or mFOD is set higher, but such setting leads to a deterioration in detection performance of a foreign object to be truly detected.
  • the current amplitude of TL increases due to the influence of the metal plate 270, the increase functions as noise with respect to observation of a decrease in current amplitude due to the presence of the foreign material 3, and it becomes difficult to detect the foreign material 3.
  • Third Embodiment >> Therefore, in the third embodiment of the present invention, with respect to the electronic device 2 of the second embodiment, adding a magnetic portion MG 2 which acts to cancel the effect of the metal plate 270.
  • the cancellation is ideally a complete cancellation of an object to be canceled, but can also be a partial cancellation.
  • the third embodiment is an embodiment based on the first and second embodiments. Regarding matters not specifically described in the third embodiment, the description of the first and second embodiments is the third unless there is a contradiction. This also applies to the embodiment (the description of the third embodiment is prioritized for contradictory matters).
  • Magnetic portion MG 2 is composed of any magnetic material exhibiting a high magnetic permeability, and at for example ferrite. Detailed structure example described later, but the magnetic body portion MG 2, in the reference arrangement state (i.e., at the time when the power supply device 1 and the electronic apparatus 2 is in a predetermined positional relationship for transmitting and receiving electric power), the resonant It is provided at a position that affects at least one of the resonance frequencies of the circuits TT and RR, thereby enabling power transmission in a state where the resonance frequencies of the resonance circuits TT and RR are aligned with the reference frequency.
  • Example EX3_1 will be described. Refer to FIGS. 29A to 29C.
  • magnetic plates (opening magnetic) 281 is provided as the magnetic body portion MG 2.
  • Magnetic portion MG 2 is in addition to the magnetic plate 281 may include other magnetic part, wherein the attention only to the magnetic plate 281.
  • FIG. 29B the magnetic plate 281 is disposed and fixed in the opening 271 of the metal plate 270.
  • FIG. 29B is a perspective view of the metal plate 270 in a state where the magnetic plate 281 is fixed in the opening 271
  • FIG. 29A is an exploded perspective view of the magnetic plate 281 and the metal plate 270. is there.
  • the magnetic plate 281 is represented by a dot region.
  • the magnetic plate 281 has substantially the same shape as the opening 271. With the magnetic plate 281 fitted into the opening 271, the magnetic plate 281 is opened using an adhesive or the like. Secure inside. A resin sheet (not shown) that connects the metal plate 270 and the magnetic plate 281 may be used to increase the fixing strength of the magnetic plate 281 in the opening 271. Since the configuration in which the magnetic plate 281 is fitted into the opening 271 is employed, the magnetic plate 281 has the same cylindrical shape as the shape of the opening 271 (here, a cylindrical shape). If the shape of 271 changes, the shape of the magnetic plate 281 also changes. As described above, the opening 271 is sealed by the magnetic plate 281, and there is no or very little air flow through the opening 271. As shown in FIG.
  • FIG. 29C is a cross-sectional view of the metal plate 270 and the magnetic plate 281 in a state in which the magnetic plate 281 is fitted into the opening 271 (a cross-sectional view through a cross section passing through the center of the opening 271 and parallel to the YZ plane).
  • the power transmission side coil T L , the magnetic material plate 281 and the power reception side coil RL are arranged along the Z-axis, and the distance between the power transmission side coil T L and the magnetic material plate 281 is the power reception side coil.
  • the distances between R L and the magnetic plate 281 are represented by d 1 and d 2, respectively.
  • Each of the metal plate 270 and the magnetic material plate 281 has an outer surface and an inner surface parallel to the XY plane, but the outer surface of the metal plate 270 and the outer surface of the magnetic material plate 281 are located on the same plane.
  • the inner surface of the metal plate 270 and the inner surface of the magnetic body plate 281 are located on another same plane (that is, they are flush).
  • the outer side surface is a surface closer to the power transmission side coil TL than the inner side surface, and thus the inner side surface is a surface closer to the power receiving side coil RL than the outer side surface.
  • the distance d 1 may be considered as the distance between the outer surface (or center) of the magnetic plate 281 and the center of the power transmission coil TL in the Z-axis direction.
  • the distance d 2 is Z It may be considered that the distance is the distance between the inner surface (or center) of the magnetic plate 281 and the center of the power receiving coil RL in the axial direction.
  • FIGS. 30A to 30C schematically show their relationship.
  • the power transmitting coil T L is magnetically couples both magnetic plates 281 with magnetically coupled to the metal plate 270 having openings 271.
  • the power-transmitting-side coil T L AC current I 1 flows, whereby the power transmission coil T L based on the magnetic field generated by an alternating current I 1 and (All i.e. 180 degree phase shift) reverse alternating current I 31
  • the magnetic plate 281 Since the current I 41 and the current I 31 are currents in opposite directions, the magnetic plate 281 has an action opposite to that of the metal plate 270 having the opening 271 with respect to the resonance circuit TT. That is, the presence of the magnetic plate 281 that can generate the current I 41 is equivalent to increasing the inductance of the power transmission side coil TL , in contrast to the metal plate 270 having the opening 271 (in other words, resonance). As a result, it acts to reduce the resonance frequency of the resonance circuit TT and to reduce the amplitude of the current flowing through the power transmission side coil TL ( to increase the inductance component constituting the circuit TT).
  • the magnetic plate 281 exerts an action opposite to that of the metal plate 270 on the resonance circuit TT, so that the influence on the resonance circuit TT due to the presence of the metal plate 270 is canceled (reduced) by the magnetic plate 281. )be able to.
  • the power receiving side coil RL is magnetically coupled to the metal plate 270 having the opening 271 and is also magnetically coupled to the magnetic material plate 281.
  • the receiver coil R L AC current I 2 flows, whereby the power receiving coil R L based on the magnetic field generated by an AC current I 2 reverse (shifted ie 180 degrees out of phase) AC current I 32
  • the power receiving coil R L based on the magnetic field generated by an AC current I 2 reverse (shifted ie 180 degrees out of phase) AC current I 32
  • the magnetic plate 281 Since the current I 42 and the current I 32 are currents in opposite directions, the magnetic plate 281 has an action opposite to that of the metal plate 270 having the opening 271 with respect to the resonance circuit RR. That is, the presence of the magnetic plate 281 that can generate the current I 42 is equivalent to increasing the inductance of the power receiving coil RL , in contrast to the metal plate 270 having the opening 271 (in other words, resonance). As a result, the resonance frequency of the resonance circuit RR is decreased, and the amplitude of the current flowing through the power receiving coil RL is decreased.
  • the magnetic plate 281 exerts an action opposite to that of the metal plate 270 on the resonance circuit RR, so that the influence on the resonance circuit RR due to the presence of the metal plate 270 is canceled (reduced) by the magnetic plate 281. )be able to.
  • the coil TL and the coil RL are arranged at mirror image positions with respect to the magnetic plate 281 as a reference. Then, in the reference arrangement state, the state as if the metal plate 270 and the magnetic plate 281 do not exist for the coil TL and the coil RL .
  • the resonance frequency f 1 of the resonant circuit TT determined only by L 1 and C 1 is 1 / (2 ⁇ (L 1 C 1 ) 1/2 ) (that is, the reciprocal of the product of 2 ⁇ and the square root of (L 1 C 1 )).
  • the resonance frequency f 2 of the resonant circuit RR determined only by L 2 and C 2, 1 / (2 ⁇ (L 2 C 2 ) 1/2 ) (that is, the inverse of the product of 2 ⁇ and the square root of (L 2 C 2 )).
  • the resonant resonant frequency f 1 of the circuit TT also (expressed by symbol f O in the first embodiment) the resonance frequency f 2 of the resonant circuit RR is also given reference frequency (13 .56 MHz).
  • the resonance frequency of the resonance circuit RR can change from the frequency f 2 in consideration of the influence of aluminum and / or ferrite, but the metal plate 270 and the magnetic plate 281 are arranged at a distance d as viewed from the power receiving side coil RL. If this happens, the reference frequency does not change. In this state, even if the power transmission side coil TL is placed at a distance d with respect to the metal plate 270, the resonance frequency of the resonance circuit TT does not change from the reference frequency. In other words, the metal plate 270 and the magnetic plate 281 are equivalent to the power transmission between the resonance circuits TT and RR except that a slight loss occurs.
  • the change in the resonance frequency of the resonance circuit RR caused by the presence of the metal plate 270 is canceled (decreased) by the magnetic material plate 281 and also due to the presence of the metal plate 270 in the reference arrangement state. Since the change in the resonance frequency of the generated resonance circuit TT is canceled (decreased) by the magnetic plate 281, the influence based on the resonance frequency shift phenomenon is eliminated. Further, since the increase in current amplitude of the power transmission coil TL caused by the presence of the metal plate 270 is canceled (decreased) by the action of the magnetic plate 281, the influence based on the current amplitude increase phenomenon is also eliminated.
  • the distance d 1 may slightly deviate from the distance d 1REF
  • the distance d 2 may slightly deviate from the distance d 2REF (result “d 1 ⁇ d 2 ”may be possible).
  • a resin material or the like is used separately. It is not necessary to perform the sealing process of the opening 271, and the configuration and manufacture of the electronic device 2 are simplified and facilitated.
  • the magnetic body plate 281 it is also possible to give the magnetic body plate 281 a ring shape having a hole portion penetrating along the Z-axis direction. However, in this case, since a sealing process using a resin material or the like is required for the hole, it is preferable not to provide the hole in the magnetic plate 281.
  • the magnetic plate 281 is arranged flush with the metal plate 270 on both the outer surface and the inner surface, the influence on the power receiving side coil RL of the metal plate 270 and the magnetic plate 281 and the metal plate 270 and the magnetic member.
  • the influence of the plate 281 on the power transmission side coil TL can be made equal easily and surely, and when the casing of the electronic device 2 is configured using the metal plate 270, the user of the electronic device 2 can be There is no step at the opening 271 that can give a sense of incongruity.
  • a magnetic material is formed on the outer surface of the metal plate 270. It is not essential that the plate 281 be arranged flush, and it is not essential that the magnetic plate 281 be arranged flush even on the inner surface of the metal plate 270.
  • Example EX3_2 will be described. As described above, the metal plate 270 having the opening 271 is changed to increase the resonance frequency of the resonance circuits TT and RR. In order to cancel this change and keep the resonance frequency of the resonance circuits TT and RR at the reference frequency, a magnetic plate may be provided in the vicinity of the power transmission side coil T L and the power reception side coil RL , respectively. Here, canceling the change of the resonance frequency from the reference frequency due to the presence of the metal plate 270 and keeping the resonance frequency at the reference frequency is referred to as “neutralization”. In Example EX3_2, by providing the magnetic plate in the vicinity of the power receiving coil R L, only achieve neutral with respect to the resonance circuit RR.
  • magnetic plates 282 is provided as the magnetic body portion MG 2.
  • the magnetic plate may be referred to as a thin magnetic sheet.
  • Magnetic portion MG 2 is in addition to the magnetic plate 282 may include other magnetic part, wherein the attention only to the magnetic plate 282.
  • the magnetic plate 282 acts to cancel the change from the reference frequency of the resonance frequency of the resonance circuit RR due to the presence of the metal plate 270 and keep the resonance frequency at the reference frequency.
  • it may be allowed to set the reference frequency the resonance frequency f 2 of the power receiving coil R L of the inductance L 2 and the power receiving side capacitor R C the capacitance C 2 only determined resonant circuit RR of.
  • FIG. 31A is a perspective view of the magnetic plate 282, the power reception side coil R L , the metal plate 270, and the power transmission side coil T L in the reference arrangement state.
  • FIG. 31B shows a cross-sectional view of the metal plate 270 and the magnetic plate 282 (a cross-sectional view through a center passing through the center of the opening 271 and parallel to the YZ plane) together with the coils T L and R L. Yes.
  • the magnetic plate 282 is represented by a dot region.
  • the opening 271 is sealed with a resin material or the like, but the state of the sealing is not shown in FIGS. 31 (a) and (b).
  • the magnetic plate 282 is a magnetic body having a circular outer shape on the XY plane.
  • the outer shape of the magnetic plate 282 on the XY plane can be arbitrarily changed, and may be, for example, an ellipse or a polygon.
  • the magnetic body plate 282 may be provided with a hole that penetrates in the Z-axis direction.
  • the power receiving coil R L is (in other words so as to be positioned between the magnetic material plate 282 and the metal plate 270, a plane receiver coil R L is disposed is arranged magnetic plate 282
  • the power receiving side coil R L , the magnetic material plate 282 and the metal plate 270 in the electronic device 2 using mechanical parts, substrates, etc. (not shown). It is fixed to.
  • FIGS. 32A and 32B schematically show the relationship between them.
  • the power receiving side coil RL is magnetically coupled to the metal plate 270 having the opening 271 and is also magnetically coupled to the magnetic body plate 282.
  • a receiver coil R L based on the magnetic field generated by the transmitting coil T L due to the AC current I 1 to the power transmission coil T L flowing alternating current I 2 flows.
  • the alternating current based on the magnetic field generated in the receiver coil R L by the flow of I 2 AC current I 2 and reverse (i.e. 180 ° phase-shifted) alternating current I 32 is the opening in the metal plate 270 271 (having i.e. same phase as the alternating current I 2) of while flowing through the path between the AC current I 2 in the same direction around the AC current I 42 flows through the magnetic plate 282.
  • FIG. 32B shows currents I 1 , I 2 , I 32, and I 42 on the complex plane.
  • the relationship between the currents I 1 , I 2 and I 32 is as already described (see FIG. 28C).
  • the coupling coefficient between the power receiving side coil RL and the magnetic material plate 282 is K 24
  • the magnetic plate 282 exerts an action opposite to that of the metal plate 270 having the opening 271 on the resonance circuit RR. That is, the presence of the magnetic plate 282 that can generate the current I 42 is equivalent to increasing the inductance of the power receiving coil RL (in other words, resonant), contrary to the metal plate 270 having the opening 271. As a result, the resonance frequency of the resonance circuit RR is decreased, and the amplitude of the current flowing through the power receiving coil RL is decreased.
  • the magnetic plate 282 exerts an action opposite to that of the metal plate 270 on the resonance circuit RR, so that the influence on the resonance circuit RR due to the presence of the metal plate 270 is canceled (reduced) by the magnetic plate 282. )be able to.
  • the shape and arrangement position of the magnetic plate 282 are determined according to the shape of L and the like.
  • Neutralizing for resonant circuit RR is performed by ignoring the position of the power transmission coil T L, the power transmission coil T L is strongly affected by the metal plate 270 in a position relatively closer than the magnetic plate 282. Considering this, the resonance frequency of the resonance circuit TT increases as a result of an increase in the resonance frequency of the resonance circuit TT under the influence of the metal plate 270 (or under the influence of the metal plate 270 and the magnetic body plate 282) in the reference arrangement state.
  • the predetermined lower than the reference frequency the resonance frequency f 1 of the resonant circuit TT determined only by the capacitance C 1 of the inductance L 1 and the transmission-side capacitor T C of the power transmission coil T L in the separated state It is set to a frequency (for example, 13 MHz).
  • a frequency for example, 13 MHz.
  • the magnetic plate 282 may be used for magnetic field blocking for an integrated circuit or the like.
  • the electronic device 2 is provided with a substrate SUB on which an electronic circuit EL including an integrated circuit such as a power receiving side IC 200 is mounted.
  • the electronic circuit EL is arranged on the opposite side of the magnetic plate 282 when viewed from the power receiving side coil RL . That is, the magnetic plate 282 is inserted between the electronic circuit EL including the integrated circuit and the power receiving coil RL . More specifically, for example, an electronic circuit EL including an integrated circuit is mounted on the component surface of the substrate SUB, and a magnetic plate (magnetic sheet) 282 is attached to the surface opposite to the component surface of the substrate SUB.
  • the magnetic field generated unwanted coil R L or T L is absorbed by the magnetic plate 282 for the operation of the electronic circuit EL, it contributes to the suppression of a malfunction of the electronic circuit EL. If it is originally necessary to insert a magnetic material plate (magnetic material sheet) between the electronic circuit EL and the power receiving side coil RL in order to suppress malfunction or the like of the electronic circuit EL, the magnetic material plate (magnetic material) It can be said that the sheet is used for neutralization of the resonance circuit RR.
  • the power receiving side coil R L , the metal plate 270, and the magnetic body plate 282 are fixed in the electronic device 2 using mechanism parts, a substrate, and the like not shown so that the above-described contents are realized in the example EX3_2.
  • the power transmission side coil TL is fixed in the power supply device 1 using a mechanical part and a board (not shown), and the respective housings of the power supply device 1 and the electronic device 2 are formed. .
  • Example EX3_3 will be described. In Example EX3_3, by magnetic plate between the metal plate 270 and the power transmitting coil T L in the standard arrangement is to be inserted, achieving neutralization to resonant circuit TT.
  • Example EX3_3 and Example EX3_4 described later, the shape of the opening 271 on the XY plane is rectangular. If the shape of the opening 271 is rectangular, the outer peripheral shape may be rectangular coil T L and R L.
  • magnetic plates 283 (which may be a magnetic sheet as described above) is provided as the magnetic body portion MG 2. Magnetic portion MG 2 is in addition to the magnetic plate 283 may include other magnetic part, wherein the attention only to the magnetic plate 283.
  • the magnetic plate 283 acts to cancel the change from the reference frequency of the resonance frequency of the resonance circuit TT due to the presence of the metal plate 270 and keep the resonance frequency at the reference frequency.
  • a resonant circuit the resonance frequency f 1 of the TT determined only by the capacitance C 1 of the inductance L 1 and the transmission-side capacitor T C of the power transmission coil T L sure that you set the reference frequency.
  • FIG. 34A is a plan view of the metal plate 270 and the magnetic plate 283 when the metal plate 270 is viewed from the opposite side of the power receiving side coil RL along the Z-axis direction.
  • FIG. 34 (a) also shows the coil RL .
  • the winding of the coil RL is represented by a double rectangle for simplification and prevention of complication, and the line extending from the double rectangle to the side is drawn out of the coil. A line is shown (the same applies to FIG. 36 and the like described later).
  • FIGS. 34A and 34B shows a cross-sectional view of the metal plate 270 and the magnetic plate 283 (a cross-sectional view taken along a cross-section passing through the center of the opening 271 and parallel to the YZ plane) together with the coils T L and R L. Yes.
  • the magnetic plate 283 is represented by a dot region.
  • the opening 271 is sealed with a resin material or the like, but the state of the sealing is not shown in FIGS. 34 (a) and (b).
  • the magnetic plate 283 is a square-shaped magnetic plate attached to the outer surface of the metal plate 270 so as to cover a part of the metal plate 270 around the opening 271.
  • the outer side surface is a surface closer to the power transmission side coil TL than the inner side surface, and thus the inner side surface is a surface closer to the power receiving side coil RL than the outer side surface.
  • the magnetic plate 283 also has an opening, and the opening 271 of the metal plate 270 exists inside the opening of the magnetic plate 283 on the XY plane.
  • the outer shape of the magnetic plate 283 shown here is merely an example, and for example, the outer shape of the magnetic plate 283 may include a curve (may be a circle or an ellipse). In addition, the magnetic plate 283 may not have an opening.
  • the metal plate 270 is disposed between the power receiving side coil RL and the magnetic plate 283 (in other words, the plane on which the metal plate 270 is disposed is not connected to the power receiving side coil RL.
  • the magnetic plate 283 is arranged between the metal plate 270 and the power transmission side coil TL. (In other words, in the reference arrangement state, the plane on which the magnetic plate 283 is arranged is arranged between the plane on which the metal plate 270 is arranged and the plane on which the power transmission side coil TL is arranged).
  • FIG. 35 schematically shows these relationships.
  • the power transmission side coil TL is magnetically coupled to the metal plate 270 having the opening 271 and is also magnetically coupled to the magnetic plate 283.
  • the power-transmitting-side coil T L AC current I 1 flows, whereby the power transmission coil T L based on the magnetic field generated by an alternating current I 1 and (All i.e. 180 degree phase shift) reverse alternating current I 31
  • the power transmission coil T L based on the magnetic field generated by an alternating current I 1 and (All i.e. 180 degree phase shift) reverse alternating current I 31
  • the magnetic plate 283 exerts an action opposite to that of the metal plate 270 having the opening 271 on the resonance circuit TT.
  • the presence of the magnetic plate 283 that can generate the current I 41 is equivalent to increasing the inductance of the power transmission side coil TL , in contrast to the metal plate 270 having the opening 271 (in other words, resonance).
  • it acts to reduce the resonance frequency of the resonance circuit TT and to reduce the amplitude of the current flowing through the power transmission side coil TL ( to increase the inductance component constituting the circuit TT).
  • the magnetic plate 283 exerts an action opposite to that of the metal plate 270 on the resonance circuit TT, so that the influence on the resonance circuit TT due to the presence of the metal plate 270 is canceled (reduced) by the magnetic plate 283. )be able to.
  • the shape and arrangement position of the magnetic plate 283 are determined according to the shape of L and the like.
  • the influence of the metal plate 283 on the power transmission side coil TL is almost eliminated, while the influence of the magnetic plate 283 becomes unnecessarily strong. Therefore, a part of the metal plate 270 is covered with the magnetic plate 283. At this time, the area of the outer surface of the metal plate 270 covered with the magnetic plate 283 and the magnetic plate so that the action of the metal plate 270 on the resonance circuit TT is just canceled by the action of the magnetic plate 283. It is preferable to determine the ratio of the area not covered with 283 and the shape of the magnetic plate 283 and the attachment position of the magnetic plate 283.
  • the inductance increase characteristic of the power transmission side coil TL due to ferrite is higher than the inductance decrease characteristic of the power transmission side coil TL due to aluminum.
  • the area ratio may be determined appropriately through experiments or the like while taking into account the largeness.
  • the increase in the current amplitude of the power transmission side coil TL due to the presence of the metal plate 270 can be canceled (reduced) by the magnetic plate 283, and thus the influence based on the current amplitude increase phenomenon is eliminated.
  • the power receiving side coil RL is strongly influenced by the metal plate 270 located relatively closer to the magnetic plate 283.
  • the influence of the magnetic plate 283 on the power receiving side coil RL is small enough to be ignored.
  • the resonance frequency of the resonance circuit RR becomes the reference frequency.
  • the magnetic plate 283 is in contact with the outer surface of the metal plate 270, that is, the distance between the magnetic plate 283 and the outer surface of the metal plate 270 is zero. It is also possible to shift the arrangement position of the magnetic body plate 283 so that the distance has a predetermined positive value (in the direction away from the power receiving side coil RL ).
  • FIG. 36 is a plan view of the metal plate 270 and the magnetic plate 283 when the metal plate 270 is viewed from the opposite side of the power receiving coil RL along the Z-axis direction. It is a figure which shows the example of a structure. FIG. 36 also shows the coil RL .
  • the magnetic plate 283 is composed of magnetic plates 283a, 283b, and 283c separated from each other. Each of the magnetic plates 283a, 283b, and 283c is a square-shaped magnetic plate that is attached to the outer surface of the metal plate 270 with the opening 271 as the center.
  • each of the magnetic plates 283a to 283c is a rectangular magnetic plate having an opening, and the magnetic plate 283b is disposed inside the opening of the magnetic plate 283a.
  • the magnetic plate 283c is disposed inside the opening of the magnetic plate 283b, and the opening of the magnetic plate 283c coincides with the opening 271 of the metal plate 270 (or is different from that shown in FIG.
  • the opening 271 of the metal plate 270 is located inside the opening of the magnetic plate 283c).
  • a plurality of strip-shaped (that is, rectangular) magnetic material plates are not attached to the metal plate 270 instead of the above-described square-shaped magnetic material plate. You may make it affix on the outer surface of the metal plate 270 so that a magnetic body plate may be arranged in a square shape on the metal plate 270 as a whole.
  • the power receiving side coil R L , the metal plate 270, and the magnetic body plate 283 are fixed in the electronic device 2 using mechanism parts, a substrate, and the like that are not shown so that the above-described content is achieved in the example EX3_3.
  • the power transmission side coil TL is fixed in the power supply device 1 using a mechanical part and a board (not shown), and the respective housings of the power supply device 1 and the electronic device 2 are formed. .
  • Example EX3_4 will be described.
  • the magnetic circuit plate is inserted between the power receiving side coil RL and the metal plate 270, so that the resonance circuit RR is neutralized.
  • Example EX3_4 magnetic plates 284 (which may be a magnetic sheet as described above) is provided as the magnetic body portion MG 2. Magnetic portion MG 2 is in addition to the magnetic plate 284 may include other magnetic part, wherein the attention only to the magnetic plate 284.
  • the magnetic plate 284 acts in the electronic device 2 to cancel the change from the reference frequency of the resonance frequency of the resonance circuit RR due to the presence of the metal plate 270 and keep the resonance frequency at the reference frequency. Thus, it may be allowed to set the reference frequency the resonance frequency f 2 of the power receiving coil R L of the inductance L 2 and the power receiving side capacitor R C the capacitance C 2 only determined resonant circuit RR of.
  • FIG. 37A is a plan view of the metal plate 270 and the magnetic plate 284 when the metal plate 270 is viewed from the side where the power receiving side coil RL exists along the Z-axis direction.
  • FIG. 37A also shows the coil RL .
  • FIG. 37 (b) shows a cross-sectional view of the metal plate 270 and the magnetic plate 284 (a cross-sectional view through a cross section passing through the center of the opening 271 and parallel to the YZ plane) together with the coils T L and R L. Yes.
  • the magnetic plate 284 is represented by a dot region. Actually, the opening 271 is sealed with a resin material or the like, but the state of the sealing is not shown in FIGS. 37 (a) and (b).
  • the magnetic plate 284 is a square-shaped magnetic plate attached to the inner surface of the metal plate 270 so as to cover a part of the metal plate 270 around the opening 271.
  • the inner side surface is a surface closer to the power receiving side coil RL than the outer side surface.
  • the magnetic plate 284 also has an opening, and the opening 271 of the metal plate 270 exists inside the opening of the magnetic plate 284 on the XY plane.
  • the outer shape of the magnetic plate 284 shown here is merely an example, and for example, the outer shape of the magnetic plate 284 may include a curve (may be a circle or an ellipse). Further, the magnetic material plate 284 may not have an opening.
  • the magnetic plate 284 is disposed between the power receiving side coil RL and the metal plate 270 (in other words, the plane on which the magnetic plate 284 is disposed is the power receiving side coil R).
  • L is disposed between the plane on which L is disposed and the plane on which the metal plate 270 is disposed).
  • FIG. 38 schematically shows these relationships.
  • the power receiving coil RL is magnetically coupled to the metal plate 270 having the opening 271 and is also magnetically coupled to the magnetic plate 284.
  • the AC current I 2 reverse (shifted ie 180 degrees out of phase) AC current I 32
  • alternating current I 2 and the same direction in one flowing to the path around the opening 271 in the metal plate 270
  • AC current I 42 flows through the magnetic plate 284.
  • the magnetic plate 284 Since the current I 42 and the current I 32 are currents in opposite directions, the magnetic plate 284 has an action opposite to that of the metal plate 270 having the opening 271 with respect to the resonance circuit RR. In other words, the presence of the magnetic plate 284 that generates the current I 42 is equivalent to increasing the inductance of the power receiving coil RL (in other words, resonance) in contrast to the metal plate 270 having the opening 271. As a result, the resonance frequency of the resonance circuit RR is decreased, and the amplitude of the current flowing through the power receiving coil RL is decreased.
  • the magnetic plate 284 exerts an action opposite to that of the metal plate 270 on the resonance circuit RR, so that the influence on the resonance circuit RR due to the presence of the metal plate 270 is canceled (reduced) by the magnetic plate 284. )be able to.
  • the shape and arrangement position of the magnetic plate 284 are determined according to the shape of L and the like.
  • the influence of the metal plate 270 on the power receiving side coil RL is almost eliminated, while the influence of the magnetic plate 284 becomes unnecessarily strong. Therefore, a part of the metal plate 270 is covered with the magnetic material plate 284. At this time, the area of the portion covered by the magnetic plate 284 on the inner surface of the metal plate 270 and the magnetic plate so that the action of the metal plate 270 on the resonance circuit RR is just canceled by the action of the magnetic plate 284. It is preferable to determine the ratio of the area not covered with 284 and the shape of the magnetic plate 284 and the position where the magnetic plate 284 is attached.
  • the inductance increasing characteristic of the power receiving side coil RL due to ferrite is higher than the inductance decreasing characteristic of the power receiving side coil RL due to aluminum.
  • the area ratio may be determined appropriately through experiments or the like while taking into account the largeness.
  • the power transmission side coil TL is strongly influenced by the metal plate 270 located relatively closer to the magnetic material plate 284.
  • the influence of the magnetic plate 284 on the power transmission side coil TL is small enough to be ignored.
  • the resonance frequency of the resonance circuit TT increases as a result of an increase in the resonance frequency of the resonance circuit TT due to the influence of the metal plate 270 (or the influence of the metal plate 270 and the magnetic plate 284) in the reference arrangement state.
  • the embodiment EX3_1 or EX3_3 is preferable from the viewpoint of eliminating the influence based on the current amplitude increase phenomenon.
  • the magnetic plate 284 is in contact with the inner surface of the metal plate 270, that is, the distance between the magnetic plate 284 and the inner surface of the metal plate 270 is zero. It is also possible to shift the arrangement position of the magnetic body plate 284 so that the distance has a predetermined positive value (in the direction in which the magnetic body plate 284 approaches the power receiving side coil RL ). Further, in Example EX3_3, the magnetic plate 283 shown in FIG. 34A can be deformed to that shown in FIG. 36, and the magnetic plate 284 is constituted by a plurality of magnetic plates separated from each other. Also good.
  • the shape of the magnetic plate 284 shown here is merely an example and can be variously changed.
  • a plurality of strip-shaped (that is, rectangular) magnetic material plates are not attached to the metal plate 270 instead of the above-described square-shaped magnetic material plate. You may make it affix on the inner surface of the metal plate 270 so that a magnetic body plate may be arranged in a square shape on the metal plate 270 as a whole.
  • the power receiving side coil R L , the metal plate 270, and the magnetic body plate 284 are fixed in the electronic device 2 using mechanism parts, a substrate, and the like that are not illustrated so that the above-described content is achieved in the example EX3_4.
  • the power transmission side coil TL is fixed in the power supply device 1 using a mechanical part and a board (not shown), and the respective housings of the power supply device 1 and the electronic device 2 are formed. .
  • Example EX3_5 will be described.
  • Example EX3_5 an initial setting environment (FIG. 13) in the non-contact power feeding system of the third embodiment will be described.
  • the resonance frequency of the resonance circuit TT becomes the reference frequency due to the influence of the metal plate 270 in the reference arrangement state, and the resonance frequency of the resonance circuit TT becomes the reference frequency in the separated state not affected by the metal plate 270.
  • the initial setting environment described in the first embodiment may be replaced with the following modified initial setting environment (the replacement may be applied to the examples EX3_1 and EX3_3). ).
  • the electronic device 2 is placed on the power supply base 12 in the reference arrangement state, and the fo change / short-circuit operation is continuously performed in the electronic device 2.
  • the power receiving device WB 1 can receive the power by a magnetic field resonance method from a power transmitting device having a power transmitting side resonance circuit (TT) including a power transmitting side coil (T L ) for transmitting power.
  • a power receiving side resonance circuit (RR) including a power receiving side coil (R L ) for receiving the power, and a metal plate provided with an opening (271) at a position opposite to the arrangement position of the power receiving side coil A metal part (MT 2 ) having (270), and when the power transmission device and the power reception device are in a predetermined positional relationship for performing transmission and reception of the power, the opening portion and the power transmission side coil A magnetic part is provided at a position between the power receiving side coil and at least one of a resonance frequency of the power receiving side resonance circuit and a resonance frequency of the power transmission side resonance circuit.
  • the metal part having the metal plate can be provided in the power receiving device from the viewpoint of improving mechanical strength and texture.
  • the metal plate having the opening acts to cause a change in the resonance frequency of each resonance circuit through magnetic coupling with the coil.
  • the magnetic body portion it becomes possible to cancel the change, and magnetic resonance The desired power transmission / reception by the method becomes possible.
  • a non-contact power feeding system WB 2 includes a power receiving device WB 1 and a power transmission device having a power transmission side resonance circuit including a power transmission side coil for transmitting power, and the magnetic resonance method is used for the above-mentioned The power transmission / reception is possible.
  • the power transmission device includes a power transmission circuit capable of supplying an AC voltage to the power transmission side resonance circuit, and a detection circuit that detects an amplitude of a current flowing through the power transmission side coil. And a control circuit that performs power transmission control of the power by controlling the power transmission circuit based on the amplitude detection value of the detection circuit.
  • the power receiving device changes the resonance frequency of the power receiving side resonance circuit from the resonance frequency at the time of power reception prior to receiving power from the power transmission device, or the power receiving side coil
  • the control circuit is provided with a change / short circuit for short-circuiting, and the control circuit is configured to change the resonance frequency of the power-receiving-side resonance circuit or short-circuit the power-receiving-side coil in the power receiving device in accordance with a signal from the power transmission device
  • a first processing unit that controls the power transmission circuit so that a predetermined test magnetic field is generated in the power transmission coil prior to the power transmission, and an amplitude detection value by the detection circuit when the test magnetic field is generated
  • a second processing unit that determines whether or not the power transmission can be performed based on the power transmission side coil, and a power transmission magnetic field that is larger than the test magnetic field after determining that the power transmission can be performed
  • a third processing unit that realizes the power transmission by controlling the power transmission circuit so that
  • a current based on the magnetic field generated by the power transmission side coil flows through the metal plate having the opening, and the current flowing through the metal plate generates a voltage in the power transmission side coil, causing a change in the current amplitude of the power transmission side coil.
  • a current based on the magnetic field generated by the power transmission side coil also flows through the magnetic part, but the direction (phase) of the current in the magnetic part is opposite to that of the metal plate. Therefore, it is possible to cancel the change in the current amplitude of the power transmission side coil due to the presence of the metal plate by the magnetic part, and as a result, it is possible to ensure the accuracy of the power transmission execution determination using the current amplitude of the power transmission side coil. It becomes.
  • the electric power feeder 1 itself in each above-mentioned embodiment may function as a power transmission apparatus which concerns on this invention, and a part of electric power feeder 1 in each above-mentioned embodiment functions as a power transmission apparatus which concerns on this invention. Also good.
  • the electronic device 2 itself in each of the above-described embodiments may function as a power receiving device according to the present invention, or a part of the electronic device 2 in each of the above-described embodiments functions as a power receiving device according to the present invention. May be.
  • the slit portion is additionally formed in the metal plate 270 of the second embodiment to suppress the occurrence of the resonance frequency shift phenomenon and the current amplitude increase phenomenon, and the influence based on these phenomena is eliminated. Or reduce.
  • the slit portion is formed from the opening 271 toward the outer periphery of the metal plate 270.
  • the fourth embodiment is an embodiment based on the first and second embodiments. Regarding matters not specifically described in the fourth embodiment, the description of the first and second embodiments is the fourth unless there is a contradiction. This also applies to the embodiment (the description of the fourth embodiment is prioritized for contradictory matters).
  • Example EX4_1 Example EX4_1 will be described.
  • the slit provided in the metal plate 270 includes a cutting slit extending from the opening 271 to the outer periphery of the metal plate 270.
  • Example EX4_1 two metal plates 270A and 270B are provided as the metal plate 270.
  • the openings 271 in the metal plates 270A and 270B are referred to by symbols 271A and 271B, respectively.
  • the electronic device 2 according to the example EX4_1 is provided with an insulating plate 280 made of an insulator such as a resin material or rubber.
  • the metal plates 270A and 270B are The insulating plates 280 are coupled to each other while maintaining mutual insulation.
  • FIG. 39 (a) is an exploded perspective view of the metal plate 270A, the insulating plate 280, and the metal plate 270B.
  • FIG. 39B is a perspective view of the metal plate 270A, the insulating plate 280, and the metal plate 270B in a state where the metal plate 270A, the insulating plate 280, and the metal plate 270B are coupled.
  • each of the metal plates 270A and 270B is parallel to the XY plane.
  • the openings 271A and 271B are holes provided in the metal plates 270A and 270B, respectively, penetrating in the Z-axis direction. Therefore, no metal exists in the openings 271A and 271B.
  • the shape of the insulating plate 280 is arbitrary.
  • the outer shape of the insulating plate 280 on the XY plane is the outer shape of the metal plate 270A and the metal plate 270B. Let it be the same shape.
  • the insulating plate 280 is provided with an opening 280H having the same shape and size as the openings 271A and 271B. When the outer peripheral shapes of the openings 271A, 280H and 271B are projected onto the XY plane, The outer peripheral shapes of the two overlap each other.
  • the outer peripheral shape of the opening 280H is also a circle.
  • the outer peripheral shape is a circle. It is not limited to. Note that the insulating plate 280 may not be provided with the opening 280H.
  • the metal plate 270A is provided with a cutting slit 272A extending from a predetermined position on the outer periphery of the opening 271A to the outer periphery of the metal plate 270A.
  • the cutting slit 272A is a linear hole provided in the metal plate 270A and penetrating in the Z-axis direction and having a predetermined width. Since the opening 271A and the outer periphery of the metal plate 270A are completely cut by the cutting slit 272A, no electric circuit (current loop) is formed around the opening 271A.
  • the metal plate 270B is provided with a cutting slit 272B extending from a predetermined position on the outer periphery of the opening 271B to the outer periphery of the metal plate 270B.
  • the cutting slit 272B is a linear hole provided in the metal plate 270B and penetrating in the Z-axis direction and having a predetermined width. Since the opening 271B and the outer periphery of the metal plate 270B are completely cut by the cutting slit 272B, an electric circuit (current loop) is not formed around the opening 271B.
  • FIG. 40 is an exploded plan view of the metal plate 270A, the insulating plate 280, and the metal plate 270B viewed from the X-axis direction.
  • FIG. 41 is a cross-sectional view of the metal plate 270A, the insulating plate 280, and the metal plate 270B in a state where the metal plate 270A, the insulating plate 280, and the metal plate 270B are coupled.
  • FIG. 41 also shows coils T L and R L.
  • the cross section in the cross sectional view of FIG. 41 is a cross section that passes through the centers of the openings 271A, 280H, and 271B and is parallel to the YZ plane.
  • the openings 271A, 280H and 271B and the cutting slits 272A and 272B are sealed with a resin material or the like.
  • the states of the sealing are shown in FIGS. 39 (a), 39 (b), and 40. Also, it is not shown in FIG.
  • Opening 271A, 280H and respective 271B is provided (opposing positions with respect to the arrangement position of the power receiving coil R L) receiver coil R L position opposing the arrangement position of the reference arrangement, the opening 271A, 280H and 271B are positioned between the coils T L and R L, the coil T L and R L is the mutually opposed to each other through the openings 271A, 280H and 271B.
  • Opening 271A in the XY plane, each of the size of 271B is greater than the respective coil size T L and R L, the opening 271 matters described in the second embodiment with respect to the size of the openings 271A and 271B It applies to each. For this reason, the power transmission using the coils T L and R L can be satisfactorily realized with some loss.
  • the metal plate 270A is provided with the cutting slit 272B that completely cuts between the opening 271A and the outer periphery of the metal plate 270A, a current based on the magnetic field generated by the coils T L and R L is induced in the metal plate 270A. Not. The same applies to the metal plate 270B. Therefore, the resonance frequency shift phenomenon and the current amplitude increase phenomenon do not occur, and as a result, the influence based on these phenomena does not appear.
  • the electronic device 2 may be provided with only the metal plate 270A as the metal plate 270 (in this case, the insulating plate 280 is unnecessary). is there).
  • the metal plate 270A is particularly useful when the casing of the electronic device 2 is configured using a metal plate. The measure of providing only the metal plate 270A as the plate 270 may not be preferable.
  • a plurality of metal plates provided with openings and cutting slits are stacked in a state of being insulated from each other (here, the number of stacked metal plates is 2). This is exemplified, but it is possible to increase the number to 3 or more).
  • a plurality of cutting slits in the plurality of metal plates are formed at different positions in a plane parallel to the plurality of metal plates (that is, a plane parallel to the XY plane).
  • the cutting slits 272A and 272B are formed at different positions in a plane parallel to the metal plates 270A and 270B (that is, a plane parallel to the XY plane).
  • a plane parallel to the XY plane that is, a plane parallel to the XY plane.
  • the cutting slit 272A is a cutting slit extending in a predetermined first direction from a predetermined position on the outer periphery of the opening 271A
  • the cutting slit 272B is a cutting slit that extends in a predetermined second direction from a predetermined position on the outer periphery of the opening 271B.
  • the first and second directions are directions parallel to the XY plane and are opposite to each other.
  • the first and second directions may be directions orthogonal to each other.
  • the resonance frequency f 1 of the resonant circuit TT determined only by L 1 and C 1 is 1 / (2 ⁇ (L 1 C 1 ) 1/2 ) (that is, the reciprocal of the product of 2 ⁇ and the square root of (L 1 C 1 )).
  • the resonance frequency f 2 of the resonant circuit RR determined only by L 2 and C 2, 1 / (2 ⁇ (L 2 C 2 ) 1/2 ) (that is, the inverse of the product of 2 ⁇ and the square root of (L 2 C 2 )).
  • the resonance frequency shift phenomenon does not occur, as in the first embodiment, represented in the symbol f O is at the resonance frequency f 2 (first embodiment of the resonant frequency f 1 is also resonant circuit RR of the resonant circuit TT ) May be set to a predetermined reference frequency (13.56 MHz).
  • the electronic device 2 uses the mechanical component and the substrate, etc., in which the power receiving side coil R L , the metal plate 270A, the insulating plate 280, and the metal plate 270B are not illustrated in the electronic device 2.
  • the power transmission side coil TL in the power supply device 1 is fixed in the power supply device 1 using a mechanical part, a substrate, or the like (not shown), and each case of the power supply device 1 and the electronic device 2 is fixed. It is formed.
  • Example EX4_2 will be described.
  • the metal plate 270 according to Example EX4_2 is referred to as a metal plate 270C.
  • FIG. 42 is a plan view of the metal plate 270C.
  • the metal plate 270C has a configuration in which slit groups are additionally formed on the metal plate 270 described in the second embodiment.
  • the slit group is composed of a plurality of slits 272C formed at different positions from the opening 271 toward the outer periphery of the metal plate 270C.
  • the number of slits 272C may be any number as long as it is two or more.
  • the number of slits 272C is a certain number (for example, 4
  • a plurality of slits 272C may be formed radially in order to effectively lengthen the length of the electric circuit formed around the opening 271.
  • the opening 271 and each slit 272C are sealed with a resin material or the like, but the state of the sealing is not shown in FIG.
  • the outer peripheral shape of the opening 271 on the XY plane is a circle.
  • the six points that divide the circumference of the circle into six are called first to sixth points.
  • an i-th line segment having a predetermined length is drawn from the i-th point toward the outer periphery of the metal plate 270C along the direction from the center of the opening 271 toward the i-th point (i is an integer).
  • An i-th slit 272C having a predetermined width is provided at the position of the i-th line segment. That is, in the example of FIG. 42, the first to sixth slits 272C are formed radially from the opening 271 toward the outer periphery of the metal plate 270C, and the first to sixth slits 272C constitute a slit group.
  • Each slit 272C is a hole provided in the metal plate 270C and penetrating in the Z-axis direction. Therefore, there is no metal in each slit 272C. However, there is no contact between each slit 272C and the outer periphery of the metal plate 270C. In other words, each slit 272C extending from the opening 271 ends before reaching the outer periphery of the metal plate 270C, and as a result, the metal constituting the metal plate 270C remains between each slit 272C and the outer periphery of the metal plate 270C. To do.
  • the structural strength of the metal plate alone is higher than that in the case of providing the cutting slit of Example EX4_1.
  • the metal plate 270C is provided around the opening 271 and the slit group.
  • An electric circuit (current loop) is formed by the metal constituting the.
  • the current I 2 becomes relatively larger than the current I 32 as the Q of the power receiving coil RL is increased (ultimately). Since the current I 32 can be ignored) and the influence of the current I 32 is reduced, it is preferable to configure the resonance circuit RR so that the Q of the power receiving coil RL becomes as large as possible.
  • the Q of the power receiving side coil RL can be increased by reducing the number of windings or increasing the thickness of the winding.
  • the resonance frequency of the resonance circuit TT As a result of the resonance frequency of the resonance circuit TT increasing under the influence of the metal plate 270 in the reference arrangement state, the inductance L 1 of the power transmission side coil TL and the resonance frequency of the transmission circuit TL in the separated state so that the resonance frequency of the resonance circuit TT becomes the reference frequency. is set to the power transmission side capacitor T C of the capacitance C 1 only determined resonant circuit TT of the resonance frequency f 1 lower predetermined frequency than the reference frequency (e.g. 13 MHz).
  • the reference frequency e.g. 13 MHz
  • results resonance frequency is increased the resonant circuit RR under the influence of the metal plate 270, so that the resonance frequency of the resonance circuit RR is the reference frequency, the inductance L 2 and the power receiving side capacitor T of the power receiving coil R L is set to C in the capacitance C 2 only determined resonant circuit RR of the resonance frequency f 2 lower predetermined frequency than the reference frequency (e.g. 13 MHz).
  • the embodiment EX4_1 is preferable from the viewpoint of eliminating the influence based on the current amplitude increase phenomenon.
  • the power receiving side coil RL and the metal plate 270C in the electronic device 2 are fixed in the electronic device 2 by using a mechanical component, a substrate, and the like not shown,
  • the power transmission side coil TL is fixed in the power supply device 1 using a mechanical part and a board (not shown), and the respective housings of the power supply device 1 and the electronic device 2 are formed.
  • Example EX4_3 Example EX4_3 will be described.
  • Example EX4_3 an initial setting environment (FIG. 13) in the wireless power supply system of the fourth embodiment will be described.
  • the resonance frequency of the resonance circuit TT becomes the reference frequency due to the influence of the metal plate 270 in the reference arrangement state, and the resonance frequency of the resonance circuit TT becomes higher than the reference frequency in the separated state not affected by the metal plate 270.
  • the initial setting environment described in the first embodiment may be replaced with the following modified initial setting environment (the replacement may be applied to Example EX4_1).
  • the electronic device 2 is placed on the power supply base 12 in the reference arrangement state, and the fo change / short-circuit operation is continuously performed in the electronic device 2.
  • the power receiving device WC 1 can receive the power by a magnetic field resonance method from a power transmitting device having a power transmitting side resonance circuit (TT) including a power transmitting side coil (T L ) for transmitting power.
  • a power receiving side resonance circuit (RR) including a power receiving side coil (R L ) for receiving the power, and a metal plate provided with an opening (271) at a position opposite to the arrangement position of the power receiving side coil the metal section (MT 2) with, wherein the power transmitting device and when the power receiving device is in a predetermined positional relationship for transmitting and receiving electric of the power, the opening the power receiving coil and the transmitting coil
  • a slit portion is formed from the opening toward the outer periphery of the metal plate.
  • the metal part having the metal plate can be provided in the power receiving device from the viewpoint of improving mechanical strength and texture.
  • the metal plate having the opening acts to change the resonance frequency of each resonance circuit through magnetic coupling with the coil.
  • the change can be suppressed, and magnetic resonance
  • a non-contact power feeding system WC 2 includes a power receiving device WC 1 and a power transmission device including a power transmission side resonance circuit including a power transmission side coil for transmitting power, and the magnetic resonance method is used for the above-mentioned The power transmission / reception is possible.
  • the power transmission device includes a power transmission circuit capable of supplying an AC voltage to the power transmission side resonance circuit, and a detection circuit that detects an amplitude of a current flowing through the power transmission side coil. And a control circuit that performs power transmission control of the power by controlling the power transmission circuit based on the amplitude detection value of the detection circuit.
  • the power receiving device changes the resonance frequency of the power receiving side resonance circuit from the resonance frequency at the time of power reception, or receives the coil on the power receiving side, before receiving power from the power transmission device.
  • the control circuit is configured to change a resonance frequency of the power receiving side resonance circuit or to short circuit the power receiving side coil in the power receiving device in accordance with a signal by communication from the power transmitting device.
  • a first processing unit that controls the power transmission circuit so that a predetermined test magnetic field is generated by the power transmission side coil prior to the power transmission, and an amplitude by the detection circuit when the test magnetic field is generated A second processing unit that determines whether or not the power transmission can be performed based on a detection value; and a power transmission magnetic field that is larger than the test magnetic field after the power transmission is determined to be executable. It is good to have the 3rd processing part which realizes the above-mentioned power transmission by controlling the above-mentioned power transmission circuit so that it may be generated in a pile.
  • a current based on the magnetic field generated by the power transmission side coil flows through the metal plate having the opening, the current flowing through the metal plate generates a voltage in the power transmission side coil and changes the current amplitude of the power transmission side coil.
  • Providing slits eliminates or reduces the current in the metal plate based on the magnetic field generated by the power transmission side coil, so it is possible to ensure the accuracy of power transmission execution determination using the current amplitude of the power transmission side coil. It becomes.
  • the electric power feeder 1 itself in each above-mentioned embodiment may function as a power transmission apparatus which concerns on this invention, and a part of electric power feeder 1 in each above-mentioned embodiment functions as a power transmission apparatus which concerns on this invention. Also good.
  • the electronic device 2 itself in each of the above-described embodiments may function as a power receiving device according to the present invention, or a part of the electronic device 2 in each of the above-described embodiments functions as a power receiving device according to the present invention. May be.
  • the frequency and resonance frequency of various signals are set to 13.56 MHz as a reference frequency.
  • 13.56 MHz is a setting target value, and those in an actual device.
  • the frequency includes an error.
  • the reference frequency is 13.56 MHz.
  • the reference frequency may be other than 13.56 MHz.
  • the communication and power transmission between the power supply device and the electronic device to which the present invention is applied may be communication and power transmission according to a standard other than NFC.
  • the reference frequency of the non-contact power feeding system according to the present invention is set to a frequency other than 13.56 MHz (for example, 6.78 MHz), and the resonance frequency of the resonance circuit JJ in the foreign object 3 formed as a non-contact IC card is 13 If it is .56MHz also, when the foreign object 3 is placed on the feeding table 12, since the corresponding change in the amount of the voltage value V D at pFOD treatment or mFOD process is observed, even in such a case, The foreign material 3 can be detected by the method described above.
  • the target device which is a power receiving device or a power transmitting device according to the present invention can be configured by hardware such as an integrated circuit or a combination of hardware and software.
  • Arbitrary specific functions that are all or part of the functions realized by the target device may be described as a program, and the program may be stored in a flash memory that can be mounted on the target device. Then, the specific function may be realized by executing the program on a program execution device (for example, a microcomputer that can be mounted on the target device).
  • the program can be stored and fixed on an arbitrary recording medium.
  • the recording medium for storing and fixing the program may be mounted or connected to a device (such as a server device) different from the target device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

送電側コイルを含む送電側共振回路を有する送電装置と受電側コイルを含む受電側共振回路を有する受電装置とから成り、磁界共鳴方式で電力の送受電が可能な非接触給電システムにおいて、送電装置は、電力の送電を行っているときに、送電側コイルに流れる電流の振幅を監視する。そして、電流振幅検出値(VmFOD)が所定の正常範囲を逸脱しているとき、異物が存在していると判断して送電を停止させる。

Description

送電装置、受電装置及び非接触給電システム
 本発明は、送電装置、受電装置及び非接触給電システムに関する。
 近接無線通信の一種として、13.56MHzを搬送波周波数として用いるNFC(Near field communication)による無線通信がある。一方、NFC通信に利用されるコイルを利用して、磁界共鳴方式で非接触給電を行う技術も提案されている。
 磁界共鳴を利用した非接触給電では、送電側コイルを含む送電側共振回路を給電機器に配置すると共に受電側コイルを含む受電側共振回路を受電機器としての電子機器に配置し、それらの共振回路の共振周波数を共通の基準周波数に設定しておく。そして、送電側コイルに交流電流を流すことで送電側コイルに基準周波数の交番磁界を発生させる。すると、この交番磁界が、基準周波数で共鳴する受電側共振回路に伝わって受電側コイルに交流電流が流れる。つまり、送電側コイルを含む送電側共振回路から受電側コイルを含む受電側共振回路へ電力が伝達されることになる。
特開2014-33504号公報
 通常は、給電機器に対応する電子機器のみが給電機器の給電台(給電マットや給電クレードル)上に配置されることで、所望の給電(電力伝送)が行われるのであるが、給電機器に対応しない異物が誤って給電台上に配置されることがある。ここにおける異物は、例えば、NFC通信に応答しない13.56MHzのアンテナコイルを持つ無線ICタグを有した物体(カード等)である。また例えば、異物は、NFC通信機能自体は有しているものの、その機能が無効とされている電子機器である。例えば、NFC通信機能を有するスマートホンではあるが、ソフトウェア設定で当該機能をオフにされているスマートホンは、異物となりうる。また、NFC通信機能が有効となっているスマートホンでも、受電機能を持たないスマートホンは異物に分類される。
 送電動作が行われているときに、仮に、このような異物が給電台上に置かれると、送電側コイルが発生した強磁界にて異物が破壊されることがある。例えば、送電動作時における強磁界は、給電台上の異物のコイルの端子電圧を100V~200Vまで増大させることもあり、そのような高電圧に耐えられるように異物が形成されていなければ、異物が破壊される。尚、鉄板なども異物になりえる。送電の搬送波周波数に依存するが、送電側コイルの発生磁界によって鉄板などの異物が発熱することもありえ、当該発熱が問題となる程度のものであるならば、それへの対応も必要となる。
 他方、受電機器としての電子機器において、構造的強度や質感向上などの観点からアルミニウム等による金属板が設けられることがある。磁界共鳴を利用した送受電を可能とするべく、受電側コイルの配置位置の対向位置において金属板に開口部が設けられ、送受電の際には開口部を介して送電側コイルと受電側コイルが向き合うことになる。
 しかし、開口部を有する金属板はコイルとの磁気結合を通じて各共振回路の共振周波数に変化をもたらすように作用する。この変化は、基準周波数にて送受電を行おうとするシステムにとって好ましくない。
 本発明は、異物の破損等の防止に寄与する送電装置及び非接触給電システムを提供することを目的とする。或いは本発明は、良好なる受電、送受電の実現に寄与する受電装置及び非接触給電システムを提供することを目的とする。
 本発明に係る第1の送電装置は、第1の受電装置としての受電装置に対し磁界共鳴方式で電力を送電可能な送電装置において、前記電力を送電するための送電側コイルを含む送電側共振回路と、前記送電側共振回路に交流電圧を供給可能な送電回路と、前記送電側コイルに流れる電流の振幅を検出する検出回路と、前記送電回路を制御することで前記電力の送電制御を行う制御回路と、を備え、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値に基づいて前記送電の継続是非を制御することを特徴とする。
 具体的には例えば、前記第1の送電装置において、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が所定範囲を逸脱しているか否かを監視することで、前記送電の継続是非を制御すると良い。
 より具体的には例えば、前記第1の送電装置において、前記制御回路は、前記電力の送電が行われているときにおいて、前記検出回路の振幅検出値の前記所定範囲からの逸脱が検出された際、前記送電を停止させると良い。
 また例えば、前記第1の送電装置において、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が前記所定範囲を逸脱しているか否かを判断することで、前記受電装置と異なり且つ前記送電側コイルの発生磁界に基づく電流を発生させられる異物の存否を判断し、前記異物が存在すると判断した場合に前記送電を停止させると良い。
 この際例えば、前記第1の送電装置において、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が前記所定範囲の上限値を超えているか否かを判断することで、前記異物としての、コイルを含んだ異物の存否を判断すると良い。
 また例えば、前記第1の送電装置との関係において、前記受電装置は、前記電力を受電するための受電側コイルを含む受電側共振回路と、前記電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路と、を備え、前記制御回路は、当該送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路の振幅検出値に基づき前記送電の実行可否を判断する第2処理部と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有し、前記検出回路は、前記送電側コイルに流れる電流の振幅を示す信号を増幅する処理を経て前記振幅を検出し、前記増幅における増幅率は、前記送電側コイルにて前記テスト磁界が発生せしめられているときよりも、前記送電側コイルにて前記送電用磁界が発生せしめられているときの方が小さいと良い。
 本発明に係る第1の非接触給電システムは、電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置と、前記電力を受電するための受電側コイルを含む受電側共振回路を有する受電装置と、を備え、磁界共鳴方式で前記電力の送受電が可能な非接触給電システムにおいて、前記送電装置は、前記送電側共振回路に交流電圧を供給可能な送電回路と、前記送電側コイルに流れる電流の振幅を検出する検出回路と、前記送電回路を制御することで前記電力の送電制御を行う制御回路と、を備え、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値に基づいて前記送電の継続是非を制御することを特徴とする。
 具体的には例えば、前記第1の非接触給電システムにおいて、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が所定範囲を逸脱しているか否かを監視することで、前記送電の継続是非を制御すると良い。
 より具体的には例えば、前記第1の非接触給電システムにおいて、前記制御回路は、前記電力の送電が行われているときにおいて、前記検出回路の振幅検出値の前記所定範囲からの逸脱が検出された際、前記送電を停止させると良い。
 また例えば、前記第1の非接触給電システムにおいて、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が前記所定範囲を逸脱しているか否かを判断することで、前記受電装置と異なり且つ前記送電側コイルの発生磁界に基づく電流を発生させられる異物の存否を判断し、前記異物が存在すると判断した場合に前記送電を停止させると良い。
 この際例えば、前記第1の非接触給電システムにおいて、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が前記所定範囲の上限値を超えているか否かを判断することで、前記異物としての、コイルを含んだ異物の存否を判断すると良い。
 また例えば、前記第1の非接触給電システムにおいて、前記受電装置は、前記電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路を備え、前記制御回路は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路の振幅検出値に基づき前記送電の実行可否を判断する第2処理部と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有し、前記検出回路は、前記送電側コイルに流れる電流の振幅を示す信号を増幅する処理を経て前記振幅を検出し、前記増幅における増幅率は、前記送電側コイルにて前記テスト磁界が発生せしめられているときよりも、前記送電側コイルにて前記送電用磁界が発生せしめられているときの方が小さいと良い。
 本発明に係る第2の受電装置は、電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置から磁界共鳴方式で前記電力を受電可能な受電装置において、前記電力を受電するための受電側コイルを含む受電側共振回路と、前記受電側コイルの配置位置の対向位置に開口部を設けた金属板を有する金属部と、を備え、前記送電装置及び当該受電装置が前記電力の送受電を行うための所定位置関係にあるとき、前記開口部は前記送電側コイルと前記受電側コイルとの間に位置し、前記受電側共振回路の共振周波数及び前記送電側共振回路の共振周波数の少なくとも一方に影響を与える位置に磁性体部を設けたことを特徴とする。
 具体的には例えば、前記第2の受電装置において、前記磁性体部は、前記開口部に配置される開口部内磁性体を含んでいると良い。
 より具体的には例えば、前記第2の受電装置において、前記開口部内磁性体は、前記金属板による前記受電側共振回路の共振周波数の変化を打ち消すとともに、前記所定位置関係において前記金属板による前記送電側共振回路の共振周波数の変化を打ち消すと良い。
 また例えば、前記第2の受電装置に関し、前記所定位置関係において、前記受電側コイルと前記開口部内磁性体との距離は、前記送電側コイルと前記開口部内磁性体との距離に等しいと良い。
 また例えば、前記第2の受電装置において、前記開口部内磁性体によって前記開口部が封止されると良い。
 また例えば、前記第2の受電装置において、前記開口部内磁性体は、前記開口部に嵌め込まれる磁性体板であり、前記磁性体板の一方の面と前記金属板の一方の面は同一の平面上に位置するとともに、前記磁性体板の他方の面と前記金属板の他方の面は前記平面に平行な同一の平面上に位置すると良い。
 或いは例えば、前記第2の受電装置において、前記受電側コイルは、前記磁性体部と前記金属板との間に配置され、前記電力の送受電は、前記送電側共振回路及び前記受電側共振回路の各共振周波数が所定の基準周波数とされた状態で行われ、前記磁性体部は、前記金属板による前記受電側共振回路の共振周波数の前記基準周波数からの変化を打ち消し、前記所定位置関係において、前記金属板の影響を受けて前記送電側共振回路の共振周波数が変化することを通じ、前記送電側共振回路の共振周波数が前記基準周波数となっても良い。
 この際例えば、前記第2の受電装置において、前記受電側コイルから見て前記磁性体部の反対側に集積回路を含む電子回路が設けられていても良い。
 更に或いは例えば、前記第2の受電装置において、前記金属板は、前記受電側コイルと前記磁性体部との間に配置され、前記電力の送受電は、前記送電側共振回路及び前記受電側共振回路の各共振周波数が所定の基準周波数とされた状態で行われ、前記磁性体部は、前記所定位置関係において前記金属板による前記送電側共振回路の共振周波数の前記基準周波数からの変化を打ち消し、前記金属板の影響を受けて前記受電側共振回路の共振周波数が変化することを通じ、前記受電側共振回路の共振周波数が前記基準周波数となっても良い。
 更に或いは例えば、前記第2の受電装置において、前記磁性体部は、前記受電側コイルと前記金属板との間に配置され、前記電力の送受電は、前記送電側共振回路及び前記受電側共振回路の各共振周波数が所定の基準周波数とされた状態で行われ、前記磁性体部は、前記金属板による前記受電側共振回路の共振周波数の前記基準周波数からの変化を打ち消し、前記所定位置関係において、前記金属板の影響を受けて前記送電側共振回路の共振周波数が変化することを通じ、前記送電側共振回路の共振周波数が前記基準周波数となっても良い。
 また具体的には例えば、前記第2の受電装置において、前記磁性体部はフェライトにて構成されると良い。
 また具体的には例えば、前記第2の受電装置において、前記金属板はアルミニウム又はアルミニウム合金にて構成されると良い。
 また具体的には例えば、前記第2の受電装置において、前記金属部によって当該受電装置の筐体が形成されても良い。
 本発明に係る第2の非接触給電システムは、前記第2の受電装置としての受電装置と、電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置と、を備え、磁界共鳴方式で前記電力の送受電が可能であることを特徴とする。
 具体的には例えば、前記第2の非接触給電システムにおいて、前記送電装置は、前記送電側共振回路に交流電圧を供給可能な送電回路と、前記送電側コイルに流れる電流の振幅を検出する検出回路と、前記検出回路の振幅検出値に基づき前記送電回路を制御することで前記電力の送電制御を行う制御回路と、を備えていると良い。
 そして例えば、前記第2の非接触給電システムにおいて、前記受電装置は、前記送電装置からの電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路を備え、前記制御回路は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路による振幅検出値に基づき前記送電の実行可否を判断する第2処理部と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有し、前記送電側コイルの発生磁界に基づき前記金属板と前記磁性体部には互いに逆方向の電流が流れると良い。
 本発明に係る第3の受電装置は、電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置から磁界共鳴方式で前記電力を受電可能な受電装置において、前記電力を受電するための受電側コイルを含む受電側共振回路と、前記受電側コイルの配置位置の対向位置に開口部を設けた金属板を有する金属部と、を備え、前記送電装置及び当該受電装置が前記電力の送受電を行うための所定位置関係にあるとき、前記開口部は前記送電側コイルと前記受電側コイルとの間に位置し、前記金属板において、前記開口部から前記金属板の外周に向けてスリット部を形成したことを特徴とする。
 具体的には例えば、前記第3の受電装置において、前記スリット部は、前記開口部から前記金属板の外周まで至る切断スリットを含んでいると良い。
 より具体的には例えば、前記第3の受電装置において、前記金属部は、前記金属板として、前記受電側コイルの配置位置の対向位置に第1開口部を設けた第1金属板と、前記受電側コイルの配置位置の対向位置に第2開口部を設けた第2金属板と、を有し、前記第1金属体と前記第2金属板は絶縁体を挟んで結合され、前記所定位置関係において前記第1開口部及び前記第2開口部は前記送電側コイルと前記受電側コイルとの間に位置し、前記スリット部は、前記切断スリットとして、前記第1開口部から前記第1金属板の外周まで至る第1切断スリットと、前記第2開口部から前記第2金属板の外周まで至る第2切断スリットと、を有し、前記第1金属板及び前記第2金属板に平行な面内において、前記第1切断スリット及び前記第2切断スリットは互いに異なる位置に形成されていると良い。
 また或いは例えば、前記第3の受電装置において、前記スリット部は、前記開口部から前記金属板の外周に向けて互いに異なる位置に形成された複数のスリットを含み、各スリットと前記金属板の外周との間には前記金属板を構成する金属が残存しうる。
 この際例えば、前記第3の受電装置において、前記複数のスリットは、前記開口部から前記金属板の外周に向けて放射状に形成されていると良い。
 そして例えば、前記第3の受電装置において、前記電力の送受電は、前記送電側共振回路及び前記受電側共振回路の各共振周波数が所定の基準周波数とされた状態で行われ、前記所定位置関係において、前記金属板の影響を受けて前記送電側共振回路及び前記受電側共振回路の共振周波数が変化することを通じ、前記送電側共振回路及び前記受電側共振回路の各共振周波数が前記基準周波数となると良い。
 また例えば、前記第3の受電装置において、前記金属板は、アルミニウム又はアルミニウム合金にて構成される。
 また例えば、前記第3の受電装置において、前記金属部によって当該受電装置の筐体が形成されても良い。
 本発明に係る第3の非接触給電システムは、前記第3の受電装置としての受電装置と、電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置と、を備え、磁界共鳴方式で前記電力の送受電が可能であることを特徴とする。
 具体的には例えば、前記第3の非接触給電システムにおいて、前記送電装置は、前記送電側共振回路に交流電圧を供給可能な送電回路と、前記送電側コイルに流れる電流の振幅を検出する検出回路と、前記検出回路の振幅検出値に基づき前記送電回路を制御することで前記電力の送電制御を行う制御回路と、を備えていると良い。
 そして例えば、前記第3の非接触給電システムにおいて、前記受電装置は、前記送電装置からの電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路と、を備え、前記制御回路は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路による振幅検出値に基づき前記送電の実行可否を判断する第2処理部と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有していると良い。
 本発明によれば、異物の破損等の防止に寄与する送電装置及び非接触給電システムを提供することが可能となる。或いは本発明によれば、良好なる受電、送受電の実現に寄与する受電装置及び非接触給電システムを提供することが可能となる。
(a)及び(b)は、本発明の第1実施形態に係り、夫々、離間状態における給電機器及び電子機器の概略外観図と、基準配置状態における給電機器及び電子機器の概略外観図である。 は、本発明の第1実施形態に係る給電機器及び電子機器の概略内部構成図である。 は、本発明の第1実施形態に係る給電機器及び電子機器の概略内部構成図である。 は、本発明の第1実施形態に係り、給電機器内のICの内部ブロック図を含む、給電機器の一部構成図である。 は、本発明の第1実施形態に係り、電子機器内のICの内部ブロック図を含む、電子機器の一部構成図である。 は、NFC通信及び電力伝送が交互に行われるときの磁界強度の変化の様子を示す図である。 は、給電機器内における、送電回路と負荷検出回路と共振回路の関係を示す図である。 は、図7の負荷検出回路中におけるセンス抵抗の電圧降下の波形図である。 は、本発明の第1実施形態に係る共振状態変更回路の一例を示す回路図である。 は、本発明の第1実施形態に係る共振状態変更回路の他の例を示す回路図である。 (a)及び(b)は、本発明の第1実施形態に係り、夫々、異物の概略外形図及び概略内部構成図である。 は、給電機器にて実行されるpFOD処理の動作フローチャートである。 は、給電機器にて実行される初期設定処理の動作フローチャートである。 (a)~(d)は、給電台、電子機器及び異物の配置関係を例示する図である。 は、給電台、電子機器及び異物の一配置関係を示す図である。 は、本発明の第1実施形態に係る給電機器及び電子機器間の信号のやりとりを説明するための図である。 は、本発明の第1実施形態に係り、NFC通信とpFOD処理と電力伝送が順番に繰り返し実行される様子を示す図である。 は、本発明の第1実施形態に係る給電機器の動作フローチャートである。 は、図18の動作に連動する電子機器の動作フローチャートである。 は、給電機器にて実行されるmFOD処理の動作フローチャートである。 (a)及び(b)は、電力伝送中において異物の挿入が行われたときの、送電側コイルの電流振幅変化を説明するための図である。 は、本発明の第2実施形態に係り、X軸、Y軸及びZ軸と給電台との関係を示す図である。 (a)及び(b)は、本発明の第2実施形態に係り、送電側コイル及び受電側コイルの概略的な斜視図及び断面図である。 (a)及び(b)は、本発明の第2実施形態に係り、送電側コイル及び異物のコイルの概略的な斜視図及び断面図である。 (a)~(c)は、本発明の第2実施形態に係り、夫々、金属板の斜視図、給電機器及び電子機器の一部部品の透過図、金属板及び受電側コイルの平面図である。 は、本発明の第2実施形態に係り、電子機器に設けられうる金属製ケースの斜視図である。 は、本発明の第2実施形態に係り、金属板の開口部、送電側コイル、受電側コイルの大きさ関係を説明するための図である。 (a)~(c)は、本発明の第2実施形態に係り、金属板、送電側コイル、受電側コイルに流れる電流の関係を示す図である。 (a)~(c)は、本発明の第3実施形態に属する実施例(EX3_1)に係り、送電側コイル、受電側コイル、金属板及び磁性体板の構造及び位置関係を説明するための図である。 (a)~(c)は、本発明の第3実施形態に属する実施例(EX3_1)に係り、送電側コイル、受電側コイル、金属板及び磁性体板に流れる電流の関係図である。 (a)及び(b)は、本発明の第3実施形態に属する実施例(EX3_2)に係り、送電側コイル、受電側コイル、金属板及び磁性体板の構造及び位置関係を説明するための図である。 (a)及び(b)は、本発明の第3実施形態に属する実施例(EX3_2)に係り、送電側コイル、受電側コイル、金属板及び磁性体板に流れる電流の関係図である。 は、本発明の第3実施形態に属する実施例(EX3_2)に係り、電子機器における基板及び電子回路の配置位置を説明するための図である。 (a)及び(b)は、本発明の第3実施形態に属する実施例(EX3_3)に係り、送電側コイル、受電側コイル、金属板及び磁性体板の構造及び位置関係を説明するための図である。 は、本発明の第3実施形態に属する実施例(EX3_3)に係り、送電側コイル、金属板及び磁性体板に流れる電流の関係図である。 は、本発明の第3実施形態に属する実施例(EX3_3)に係り、磁性体板の他の構造を示す図である。 (a)及び(b)は、本発明の第3実施形態に属する実施例(EX3_4)に係り、送電側コイル、受電側コイル、金属板及び磁性体板の構造及び位置関係を説明するための図である。 は、本発明の第3実施形態に属する実施例(EX3_4)に係り、受電側コイル、金属板及び磁性体板に流れる電流の関係図である。 (a)及び(b)は、本発明の第4実施形態に属する実施例(EX4_1)に係り、夫々、2枚の金属板と絶縁板の分解斜視図及び斜視図である。 は、本発明の第4実施形態に属する実施例(EX4_1)に係り、2枚の金属板と絶縁板の分解平面図である。 は、本発明の第4実施形態に属する実施例(EX4_1)に係り、2枚の金属板と絶縁板の断面図である。 は、本発明の第4実施形態に属する実施例(EX4_2)に係り、金属板の平面図である。 は、本発明の第4実施形態に属する実施例(EX4_2)に係り、送電側コイル、受電側コイル及び金属板に流れる電流の関係図である。
 以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、状態量又は部材等を参照する記号又は符号を記すことによって、該記号又は符号に対応する情報、信号、物理量、状態量又は部材等の名称を省略又は略記することがある。また、後述の任意のフローチャートにおいて、任意の複数のステップにおける複数の処理は、処理内容に矛盾が生じない範囲で、任意に実行順序を変更できる又は並列に実行できる。
<<第1実施形態>>
 本発明の第1実施形態を説明する。図1(a)及び(b)は、本発明の第1実施形態に係る給電機器1及び電子機器2の概略外観図である。但し、図1(a)は、給電機器1及び電子機器2が離間状態にあるときのそれらの外観図であり、図1(b)は、給電機器1及び電子機器2が基準配置状態にあるときのそれらの外観図である。離間状態及び基準配置状態の意義については後に詳説する。給電機器1及び電子機器2によって非接触給電システムが形成される。給電機器1は、商用交流電力を受けるための電源プラグ11と、樹脂材料にて形成された給電台12と、を備える。
 図2に、給電機器1と電子機器2の概略内部構成図を示す。給電機器1は、電源プラグ11を介して入力された商用交流電圧から所定の電圧値を有する直流電圧を生成して出力するAC/DC変換部13と、AC/DC変換部13の出力電圧を用いて駆動する集積回路である送電側IC100(以下、IC100とも言う)と、IC100に接続された送電側共振回路TT(以下、共振回路TTとも言う)と、を備える。AC/DC変換部13、送電側IC100及び共振回路TTを、給電台12内に配置しておくことができる。AC/DC変換部13の出力電圧を用いて駆動する回路が、IC100以外にも、給電機器1に設けられうる。
 電子機器2は、集積回路である受電側IC200(以下、IC200とも言う)と、IC200に接続された受電側共振回路RR(以下、共振回路RRとも言う)と、二次電池であるバッテリ21と、バッテリ21の出力電圧に基づき駆動する機能回路22と、を備える。詳細は後述するが、IC200はバッテリ21に対して充電電力を供給することができる。IC200は、バッテリ21の出力電圧にて駆動しても良いし、バッテリ21以外の電圧源からの電圧に基づき駆動しても良い。或いは、給電機器1から受信したNFC通信(詳細は後述)のための信号を整流することで得た直流電圧が、IC200の駆動電圧となっても良い。この場合、バッテリ21の残容量が無くなってもIC200は駆動可能となる。
 電子機器2は、任意の電子機器であって良く、例えば、携帯電話機(スマートホンに分類される携帯電話機を含む)、携帯情報端末、タブレット型パーソナルコンピュータ、デジタルカメラ、MP3プレイヤー、歩数計、又は、Bluetooth(登録商標)ヘッドセットである。機能回路22は、電子機器2が実現すべき任意の機能を実現する。従って例えば、電子機器2がスマートホンであれば、機能回路22は、相手側機器との間の通話を実現するための通話処理部、及び、ネットワーク網を介して他機器と情報を送受信するための通信処理部などを含む。或いは例えば、電子機器2がデジタルカメラであれば、機能回路22は、撮像素子を駆動する駆動回路、撮像素子の出力信号から画像データを生成する画像処理回路などを含む。機能回路22は、電子機器2の外部装置に設けられる回路であると考えても良い。
 図3に示す如く、共振回路TTは、送電側コイルであるコイルTと送電側コンデンサであるコンデンサTとを有し、共振回路RRは、受電側コイルであるコイルRと受電側コンデンサであるコンデンサRとを有する。以下では、説明の具体化のため、特に記述無き限り、送電側コイルT及び送電側コンデンサTが互いに並列接続されることで共振回路TTが並列共振回路として形成され、且つ、受電側コイルR及び受電側コンデンサRが互いに並列接続されることで共振回路RRが並列共振回路として形成されているものとする。但し、送電側コイルT及び送電側コンデンサTが互いに直列接続されることで共振回路TTが直列共振回路として形成されていても良いし、受電側コイルR及び受電側コンデンサRが互いに直列接続されることで共振回路RRが直列共振回路として形成されていても良い。
 図1(b)に示す如く、電子機器2を給電台12上の所定領域内に載置したとき、磁界共鳴方式にて(即ち、磁界共鳴を利用して)、機器1及び2間における通信、送電及び受電が可能となる。磁界共鳴は、磁界共振などとも呼ばれる。
 機器1及び2間における通信は、NFC(Near field communication)による無線通信(以下、NFC通信と呼ぶ)であり、通信の搬送波の周波数は13.56MHz(メガヘルツ)である。以下では、13.56MHzを基準周波数と呼ぶ。機器1及び2間におけるNFC通信は、共振回路TT及びRRを利用した磁界共鳴方式で行われるため、共振回路TT及びRRの共振周波数は、共に、基準周波数に設定されている。但し、後述されるように、共振回路RRの共振周波数は、一時的に基準周波数から変更され得る。
 機器1及び2間における送電及び受電は、給電機器1から電子機器2に対するNFCによる送電と、電子機器2におけるNFCによる受電である。この送電と受電をまとめてNFC電力伝送又は単に電力伝送と称する。磁界共鳴方式によりコイルTからコイルRに対して電力を伝達することで、電力伝送が非接触で実現される。
 磁界共鳴を利用した電力伝送では、送電側コイルTに交流電流を流すことで送電側コイルTに基準周波数の交番磁界を発生させる。すると、この交番磁界が、基準周波数で共鳴(換言すれば共振)する共振回路RRに伝わって受電側コイルRに交流電流が流れる。つまり、送電側コイルTを含む共振回路TTから受電側コイルRを含む共振回路RRへ電力が伝達される。尚、以下では、記述が省略されることがあるが、NFC通信又は電力伝送においてコイルT又はコイルRにより発生する磁界は、特に記述無き限り、基準周波数で振動する交番磁界である。
 電子機器2が給電台12上の所定の送電領域内に載置され(給電機器1と電子機器2が所定位置関係にあり)、換言すれば電子機器2が給電台12上の所定範囲内に載置され、上述のNFC通信及び電力伝送が実現できる状態を、基準配置状態と呼ぶ(図1(b)参照)。磁気共鳴を利用した場合、相手側距離との距離が比較的大きくても通信及び電力伝送が可能であるが、電子機器2が給電台12から相当距離離れれば、NFC通信及び電力伝送は実現できなくなる。電子機器2が給電台12から十分に離れていて上述のNFC通信及び電力伝送を実現できない状態を、離間状態と呼ぶ(図1(a)参照)。尚、図1(a)に示す給電台12では、表面が平らになっているが、載置されるべき電子機器2の形状に合わせた窪み等が給電台12に形成されていても構わない。基準配置状態は、給電機器1及び電子機器2間における電力の送受電が可能な所定の送電領域(換言すれば、送電及び受電を行うための領域)に電子機器2が存在している状態に属し、且つ、離間状態は、該送電領域に電子機器2が存在していない状態に属すると解して良い。
 図4に、IC100の内部ブロック図を含む、給電機器1の一部の構成図を示す。IC100には、符号110、120、130、140、150及び160によって参照される各部位が設けられる。図5に、IC200の内部ブロック図を含む、電子機器2の一部の構成図を示す。IC200には、符号210、220、230、240及び250によって参照される各部位が設けられる。また、IC200に対し、IC200の駆動電圧を出力するコンデンサ23を接続しておいても良い。コンデンサ23は、給電機器1から受信したNFC通信のための信号を整流することで得た直流電圧を出力可能である。
 切り替え回路110は、制御回路160の制御の下、NFC通信回路120及びNFC送電回路130のどちらかを共振回路TTに接続させる。共振回路TTと回路120及び130との間に介在する複数のスイッチにて、切り替え回路110を構成することができる。本明細書にて述べる任意のスイッチは、電界効果トランジスタ等の半導体スイッチング素子を用いて形成されて良い。
 切り替え回路210は、制御回路250の制御の下、共振回路RRをNFC通信回路220及びNFC受電回路230のどちらかに接続させる。共振回路RRと回路220及び230との間に介在する複数のスイッチにて、切り替え回路210を構成することができる。
 共振回路TTが切り替え回路110を介してNFC通信回路120に接続され、且つ、共振回路RRが切り替え回路210を介してNFC通信回路220に接続されている状態を、通信用接続状態と呼ぶ。通信用接続状態にてNFC通信が可能となる。通信用接続状態において、NFC通信回路120は、基準周波数の交流信号(交流電圧)を共振回路TTに供給することができる。機器1及び2間のNFC通信は半二重方式で実行される。
 通信用接続状態において給電機器1が送信側であるとき、NFC通信回路120が共振回路TTに供給する交流信号に任意の情報信号を重畳させることで、当該情報信号が給電機器側アンテナコイルとしてのコイルTから送信され且つ電子機器側アンテナコイルとしてのコイルRにて受信される。コイルRにて受信された情報信号はNFC通信回路220にて抽出される。通信用接続状態において電子機器2が送信側であるとき、NFC通信回路220は、任意の情報信号(応答信号)を共振回路RRのコイルRから共振回路TTのコイルTに送信できる。この送信は、周知の如く、ISO規格(例えばISO14443規格)に基づき、コイルT(給電機器側アンテナコイル)から見たコイルR(電子機器側アンテナコイル)のインピーダンスを変化させる負荷変調方式にて実現される。電子機器2から伝達された情報信号はNFC通信回路120にて抽出される。
 共振回路TTが切り替え回路110を介してNFC送電回路130に接続され、且つ、共振回路RRが切り替え回路210を介してNFC受電回路230に接続されている状態を、給電用接続状態と呼ぶ。
 給電用接続状態において、NFC送電回路130は送電動作を行うことができ、NFC受電回路230は受電動作を行うことができる。送電動作と受電動作にて電力伝送が実現される。送電動作において、送電回路130は、共振回路TTに基準周波数の送電用交流信号(送電用交流電圧)を供給することで送電側コイルTに基準周波数の送電用磁界(送電用交番磁界)を発生させ、これによって、共振回路TT(送電側コイルT)から共振回路RRに対し磁界共鳴方式で電力を送電する。送電動作に基づき受電側コイルRにて受電された電力は受電回路230に送られ、受電動作において、受電回路230は、受電した電力から任意の直流電力を生成して出力する。受電回路230の出力電力にてバッテリ21を充電することができる。
 通信用接続状態にてNFC通信を行う場合も、コイルT又はRにて磁界が発生するが、NFC通信における磁界強度は、所定の範囲内に収まる。その範囲の下限値及び上限値は、NFCの規格で定められ、夫々、1.5A/m、7.5A/mである。これに対し、電力伝送(即ち送電動作)において送電側コイルTにて発生する磁界の強度(送電用磁界の磁界強度)は、上記の上限値より大きく、例えば45~60A/m程度である。機器1及び2を含む非接触給電システムにおいて、NFC通信及び電力伝送(NFC電力伝送)を交互に行うことができ、その時の磁界強度の様子を図6に示す。
 負荷検出回路140は、送電側コイルTの負荷の大きさ、即ち、送電回路130から送電側コイルTに交流信号が供給されるときにおける送電側コイルTにとっての負荷の大きさを検出する。図7に、給電用接続状態における送電回路130と負荷検出回路140と共振回路TTとの関係を示す。尚、図7では、切り替え回路110の図示が省略されている。
 送電回路130は、基準周波数の正弦波信号を生成する信号生成器131と、信号生成器131にて生成された正弦波信号を増幅し、増幅した正弦波信号をライン134の電位を基準としてライン134及び135間に出力する増幅器(パワーアンプ)132と、コンデンサ133とを備える。一方、負荷検出回路140は、センス抵抗141、包絡線検波器142、増幅器143及びA/D変換器144を備える。信号生成器131が生成する正弦波信号の信号強度は一定値に固定されているが、増幅器132の増幅率は制御回路160により可変設定される。
 コンデンサ133の一端はライン135に接続される。給電用接続状態において、コンデンサ133の他端はコンデンサT及びコイルTの各一端に共通接続され、且つ、コイルTの他端はセンス抵抗141を介してライン134及びコンデンサTの他端に共通接続される。
 送電動作は、増幅器132からコンデンサ133を介し共振回路TTに交流信号(送電用交流電圧)を供給することで実現される。給電用接続状態において、増幅器132からの交流信号が共振回路TTに供給されると送電側コイルTに基準周波数の交流電流が流れ、結果、センス抵抗141に交流の電圧降下が発生する。図8の実線波形は、センス抵抗141における電圧降下の電圧波形である。共振回路TTに関し、送電側コイルTの発生磁界強度が一定の下、電子機器2を給電台12に近づけると、送電側コイルTの発生磁界に基づく電流が受電側コイルRに流れる一方で、受電側コイルRに流れた電流に基づく逆起電力が送電側コイルTに発生し、その逆起電力は送電側コイルTに流れる電流を低減するように作用する。このため、図8に示す如く、基準配置状態におけるセンス抵抗141の電圧降下の振幅は、離間状態におけるそれよりも小さい。
 包絡線検波器142は、センス抵抗141における電圧降下の信号の包絡線を検波することで、図8の電圧vに比例するアナログの電圧信号を出力する。増幅器143は、包絡線検波器142の出力信号を増幅して出力する。A/D変換器144は、増幅器143の出力電圧信号をデジタル信号に変換することでデジタルの電圧値Vを出力する。上述の説明から理解されるように、電圧値Vは、センス抵抗141に流れる電流の振幅(従って、送電側コイルTに流れる電流の振幅)に比例する値を持つ(当該振幅の増大に伴って電圧値Vも増大する)。故に、負荷検出回路140は、送電側コイルTに流れる電流の振幅を検出する電流振幅検出回路であるとも言え、その振幅検出値が電圧値Vであると考えることができる。尚、包絡線検波器142を増幅器143の後段に設けるようにしても良い。但し、図7に示す如く、包絡線検波器142を増幅器143の前段に設けた方が、高周波への応答性能がより低いものを増幅器143として採用可能となり有利である。
 磁界を発生させる送電側コイルTにとって、受電側コイルRのような、送電側コイルTと磁気結合するコイルは、負荷であると考えることができ、その負荷の大きさに依存して、負荷検出回路140の検出値である電圧値Vが変化する。このため、負荷検出回路140は電圧値Vの出力によって負荷の大きさを検出している、と考えることもできる。ここにおける負荷の大きさとは、送電の際における送電側コイルTにとっての負荷の大きさとも言えるし、送電の際における給電装置1から見た電子機器2の負荷としての大きさとも言える。尚、センス抵抗141はIC100の内部に設けられても良いし、IC100の外部に設けられても良い。
 メモリ150(図4参照)は、不揮発性メモリから成り、任意の情報を不揮発的に記憶する。制御回路160は、IC100内の各部位の動作を統括的に制御する。制御回路160が行う制御には、例えば、切り替え回路110の切り替え動作の制御、通信回路120及び送電回路130による通信動作及び送電動作の内容制御及び実行有無制御、負荷検出回路140の動作制御、メモリ150の記憶制御及び読み出し制御が含まれる。制御回路160は、タイマ(不図示)を内蔵しており任意のタイミング間の時間長さを計測できる。
 電子機器2における共振状態変更回路240(図5参照)は、共振回路RRの共振周波数を基準周波数から他の所定周波数fに変更する共振周波数変更回路、又は、共振回路RRにおける受電側コイルRを短絡するコイル短絡回路である。
 図9の共振周波数変更回路240Aは、共振状態変更回路240としての共振周波数変更回路の例である。共振周波数変更回路240Aは、コンデンサ241とスイッチ242の直列回路から成り、該直列回路の一端はコンデンサR及びコイルRの各一端に共通接続される一方、該直列回路の他端はコンデンサR及びコイルRの各他端に共通接続される。スイッチ242は、制御回路250の制御の下、オン又はオフとなる。スイッチ242がオフのとき、コンデンサ241はコンデンサR及びコイルRから切り離されるため、共振回路RRは、寄生インダクタンス及び寄生容量を無視すれば、コイルR及びコンデンサRのみで形成されて、共振回路RRの共振周波数は基準周波数と一致する。即ち、スイッチ242がオフのとき、共振回路RRの共振周波数を決定する受電側容量は、コンデンサRそのものである。スイッチ242がオンのとき、コンデンサRにコンデンサ241が並列接続されることになるため、共振回路RRはコイルRとコンデンサR及び241の合成容量とで形成され、結果、共振回路RRの共振周波数は基準周波数よりも低い周波数fとなる。即ち、スイッチ242がオンのとき、共振回路RRの共振周波数を決定する受電側容量は、上記の合成容量である。ここでは、スイッチ242がオンのとき共振回路RRが送電側コイルTの負荷として機能しない程度に(即ち、共振回路TT及びRR間で磁気共鳴が十分に発生しない程度に)、周波数fが基準周波数から離れているものとする。例えば、スイッチ242のオンのときにおける共振回路RRの共振周波数(即ち周波数f)は、数100kHz~1MHzとされる。
 共振回路RRの共振周波数を周波数fに変更できる限り、変更回路240としての共振周波数変更回路は共振周波数変更回路240Aに限定されず、周波数fは基準周波数より高くても良い。例えば、共振周波数変更回路はコイルR及びコンデンサRを接続する電流ループ上に直列に挿入されたスイッチのオン、オフによって、コイルR及びコンデンサR間の接続、非接続を切り替える回路であっても良い(非接続とされた場合、コイルRと配線の寄生容量等とで共振回路RRの共振周波数(>>基準周波数)が定まる)。つまり、受電側共振回路RRが直列共振回路でありうることをも考慮すれば、以下のことが言える。受電側共振回路RRは受電側コイル(R)と受電側容量の並列回路又は直列回路を有し、受電側容量が所定の基準容量と一致しているとき、受電側共振回路RRの共振周波数fは基準周波数と一致する。共振周波数変更回路は、必要なタイミングにおいて、受電側容量を基準容量から増加又は減少させる。これにより、受電側共振回路RRにおいて、受電側コイル(R)と、基準容量より大きい又は小さい受電側容量とで、並列回路又は直列回路が形成され、結果、受電側共振回路RRの共振周波数fが基準周波数から変更される。
 図10のコイル短絡回路240Bは、共振状態変更回路240としてのコイル短絡回路の例である。コイル短絡回路240Bは、共振回路RRにおけるコンデンサRの一端及びコイルRの一端が共通接続されるノードと、共振回路RRにおけるコンデンサRの他端及びコイルRの他端が共通接続されるノードとの間に接続(挿入)されたスイッチ243から成る。スイッチ243は、制御回路250の制御の下、オン又はオフとなる。スイッチ243がオンとなると共振回路RRにおけるコイルRが短絡される(より詳細にはコイルRの両端が短絡される)。受電側コイルRが短絡された状態では受電側共振回路RRが存在しなくなる(受電側共振回路RRが存在しない状態と等価な状態となる)。従って、受電側コイルRの短絡中では、送電側コイルTにとっての負荷が十分に軽くなる(即ち、あたかも、給電台12上に電子機器2が存在しないかのような状態となる)。受電側コイルRを短絡できる限り、変更回路240としてのコイル短絡回路はコイル短絡回路240Bに限定されない。
 以下では、受電側共振回路RRの共振周波数fを基準周波数から所定周波数fに変更する動作を、共振周波数変更動作と呼び、コイル短絡回路を用いて受電側コイルRを短絡する動作を、コイル短絡動作と呼ぶ。また、記述の簡略化上、共振周波数変更動作又はコイル短絡動作をf変更/短絡動作と称することがある。
 制御回路250(図5参照)は、IC200内の各部位の動作を統括的に制御する。制御回路250が行う制御には、例えば、切り替え回路210の切り替え動作の制御、通信回路220及び受電回路230による通信動作及び受電動作の内容制御及び実行有無制御、変更回路240の動作制御が含まれる。制御回路250は、タイマ(不図示)を内蔵しており任意のタイミング間の時間長さを計測できる。例えば、制御回路250におけるタイマは、f変更/短絡動作による共振周波数fの所定周波数fへの変更又は受電側コイルRの短絡が維持される時間の計測(即ち後述の時間Tの計測;図19のステップS207参照)を行うことできる。
 ところで、給電機器1の制御回路160は、給電台12上における異物の存否を判断し、異物が無い場合にのみ送電動作を行うよう送電回路130を制御できる。本実施形態における異物は、電子機器2及び電子機器2の構成要素(受電側コイルRなど)と異なり、給電機器1に近づいたときに、送電側コイルTの発生磁界に基づいて電流(異物内での電流)を発生させられる物体を含む。本実施形態において、異物の存在とは、送電側コイルTの発生磁界に基づく、無視できない程度の電流が異物内で流れるような位置に異物が存在することを意味する、と解して良い。尚、送電側コイルTの発生磁界に基づき異物内で流れることになった電流は、異物に対向、結合するコイル(TやR)に起電力(又は逆起電力)を発生させるため、そのコイルを含む回路の特性に無視できない影響を与えうる。
 図11(a)に、異物の一種である異物3の概略外形図を示し、図11(b)に異物3の概略内部構成図を示す。異物3は、コイルJ及びコンデンサJの並列回路から成る共振回路JJと、共振回路JJに接続された異物内回路300と、を備える。共振回路JJの共振周波数は基準周波数に設定されている。異物3は、電子機器2とは異なり、給電機器1に対応しない機器である。例えば、異物3は、NFC通信に応答しない13.56MHzのアンテナコイル(コイルJ)を持つ無線ICタグを有した物体(非接触ICカード等)である。また例えば、異物3は、NFC通信機能自体は有しているものの、その機能が無効とされている電子機器である。例えば、NFC通信機能を有するスマートホンではあるが、ソフトウェア設定で当該機能をオフにされているスマートホンは、異物3となりうる。また、NFC通信機能が有効となっているスマートホンでも、受電機能を持たないスマートホンも異物3に分類される。
 このような異物3が給電台12上に配置されている状態において、仮に、給電機器1が送電動作を行うと、送電側コイルTが発生した強磁界(例えば、12A/m以上の磁界強度を持つ磁界)にて異物3が破壊されることがある。例えば、送電動作時における強磁界は、給電台12上の異物3のコイルJの端子電圧を100V~200Vまで増大させることもあり、そのような高電圧に耐えられるように異物3が形成されていなければ、異物3が破壊される。
[pFOD処理(電力伝送前のpFOD処理)]
 図12を参照し、異物の存否を検出するための異物検出処理を説明する。図12は、電力伝送前に給電機器1により実行される異物検出処理(以下、pFOD処理という)のフローチャートである。
 pFOD処理の実行時には、送電回路130が共振回路TTに接続される。pFOD処理において、制御回路160は、まずステップS11にて送電側コイルTによる磁界強度Hを所定のテスト強度に設定する。磁界強度Hは、送電側コイルTの発生磁界強度であって、より詳しくは、送電側コイルTが発生した基準周波数で振動する交番磁界の磁界強度を指す。磁界強度Hをテスト強度に設定するとは、所定のテスト用交流信号(テスト用交流電圧)が共振回路TTに供給されるように送電回路130を制御することで、テスト強度を有し且つ基準周波数で振動する交番磁界であるテスト磁界を送電側コイルTに発生させることを指す。テスト磁界の磁界強度であるテスト強度は、電力伝送(即ち送電動作)における送電側コイルTの発生磁界強度(即ち送電用磁界の磁界強度;例えば、45~60A/m)よりも相当に小さく、通信用磁界強度の下限値“1.5A/m”から上限値“7.5A/m”までの範囲内に収まる。故に、テスト磁界によって異物3が破損等するおそれは無い又は少ない。制御回路160は、増幅器132(図7参照)の増幅率を制御することで磁界強度Hを可変設定することができる。テスト磁界を発生させる場合には所定のテスト用交流電圧が共振回路TTに供給及び印加されるように、且つ、送電用磁界を発生させる場合にはテスト用交流電圧よりも大きな振幅を有する所定の送電用交流電圧が共振回路TTに供給及び印加されるように、増幅器132の増幅率を制御すれば良い。
 ステップS11に続くステップS12において、制御回路160は、負荷検出回路140を用い、テスト磁界を発生させているときの電圧値Vを電流振幅検出値VpFODとして取得する。電流振幅検出値VpFODは、テスト磁界を送電側コイルTに発生させているときの、送電側コイルTに流れる電流の振幅に応じた値を持つ。尚、pFOD処理が実行される期間中には、NFC通信を介した給電機器1からの指示に従い電子機器2においてf変更/短絡動作(共振周波数変更動作又はコイル短絡動作)が実行されている。故に、共振回路RR(受電側コイルR)は実質的に送電側コイルTの負荷として機能せず、電流振幅検出値VpFODの減少を全く又は殆どもたらさない。
 ステップS12に続くステップS13において、制御回路160は、電流振幅検出値VpFODが所定のpFOD正常範囲内に収まるか否かを判断する。そして、電流振幅検出値VpFODがpFOD正常範囲内に収まる場合、制御回路160は、異物3が給電台12上に存在していないと判定する(ステップS14)。この判定を異物無判定と称する。一方、電流振幅検出値VpFODがpFOD正常範囲を逸脱する場合、制御回路160は、異物3が給電台12上に存在していると判定する(ステップS15)。この判定を異物有判定と称する。制御回路160は、異物無判定を成した場合、送電回路130による送電動作の実行が可能であると判断して送電動作の実行(共振回路TTを用いた送電)を許可し、異物有判定を成した場合、送電回路130による送電動作の実行が不可であると判断して送電動作の実行を禁止する。送電動作が実行可能と判断したとき、送電動作において、制御回路160は、所定の送電用磁界が送電側コイルTにて発生されるよう送電回路130を制御することができる。
 pFOD正常範囲は、所定の下限値VpREFL以上且つ所定の上限値VpREFH以下の範囲である(0<VpREFL<VpREFH)。故に、判定不等式“VpREFL≦VpFOD≦VpREFH”が満たされる場合には異物無判定が成され、そうでない場合には異物有判定が成される。
 pFOD処理の実行時において、給電台12上に異物3が存在している場合、異物3の共振回路JJ(コイルJ)が送電側コイルTの負荷として機能し、結果、給電台12上に異物3が存在しない場合と比べて、電流振幅検出値VpFODの減少がみられる。
 また、異物として、異物3と異なる異物3a(不図示)も考えられる。異物3aは、例えば、アルミニウムを含んで形成された金属体(アルミニウム箔やアルミニウム板)や銅を含んで形成された金属体である。pFOD処理の実行時において、給電台12上に異物3aが存在している場合、給電台12上に異物3aが存在しない場合と比べて、電気的及び磁気的な作用により、電流振幅検出値VpFODの増大がみられる。
 電力伝送の実行前において、給電台12上に異物3が存在している場合には電流振幅検出値VpFODが下限値VpREFLを下回るように、且つ、給電台12上に異物3aが存在している場合には電流振幅検出値VpFODが上限値VpREFHを上回るように、且つ、給電台12上に異物(3又は3a)が存在していない場合には電流振幅検出値VpFODがpFOD正常範囲内に収まるように、実験等を介して、下限値VpREFL及び上限値VpREFHが予め設定されてメモリ150に記憶されている。
 尚、給電台12上に異物3aが存在する状態で送電用磁界を発生させると、異物3aにて電力が吸収され、異物3aが発熱するおそれがある。本実施形態では、電力伝送の搬送波周波数としての基準周波数が13.56MHzであることを想定しているため、そのような発熱のおそれは十分に少ないとも言える。故に、異物3aの存在を考慮することなく、電流振幅検出値VpFODが下限値VpREFLを下回った場合に限って異物有判定を行い、電流振幅検出値VpFODが下限値VpREFL以上であれば常に異物無判定を行うようにしてもよい(即ち上限値VpREFHを撤廃しても良い)。しかしながら、本実施形態に係る発明において基準周波数は13.56MHzに限定されず、基準周波数を例えば数100kHz程度にした場合には、異物3aの発熱のおそれが高くなるため、下限値VpREFLだけでなく上限値VpREFHをpFOD正常範囲に定める、上述の方法の採用が望ましい。
 下限値VpREFLの決定方法について説明を加えておく。下限値VpREFLは初期設定処理にて決定される。図13は、初期設定処理の動作フローチャートである。初期設定処理は、以下の初期設定環境の下でIC100により実行される。初期設定環境では、送電側コイルTに対する負荷が全く無く又は無視できる程度に小さく、送電側コイルTの発生磁界により電流を生じさせられる物体(送電側コイルTに磁気結合するコイルを含む)が、給電機器1の構成部品を除いて存在しない。図1(a)の離間状態は、初期設定環境を満たすと考えても良い。初期設定環境の確保を担保すべく、例えば、給電機器1の製造時又は出荷時などにおいて初期設定処理を行うようにしても良い。但し、初期設定環境を確保できるのであれば、任意のタイミングで初期設定処理を行うことができる。
 初期設定処理の実行時には送電回路130が共振回路TTに接続される。そして、ステップS21にて送電側コイルTによる磁界強度Hを所定のテスト強度に設定し、続くステップS22にて、その設定状態でA/D変換器144から取得される電圧値Vを電圧値VDOとして得る。その後のステップS23において、電圧値VDOに基づく下限値VpREFLをメモリ150に記憶させる。下限値VpREFLは、異物3の存在下においてのみpFOD処理にて異物有判定が成されるよう、電圧値VDOよりも低い値に設定される。例えば、“VpREFL=VDO-ΔV”、又は、“VpREFL=VDO×k”とすると良い。ΔVは、所定の正の微小値である(但し、ΔV=0とすることも可能)。kは、1未満の正の所定値を有する係数である。尚、初期設定環境下において磁界強度Hを所定のテスト強度に設定したときに得られるであろう電圧値Vを、設計段階で見積もることができる。この見積によって導出された値に基づき、初期設定処理を行うことなく、下限値VpREFLを決定してメモリ150に記憶させるようにしても良い。
 図14(a)~図14(d)を参照して、異物3の検出に関する第1~第4ケースを考える。第1ケースでは、給電台12上に電子機器2のみが存在している。第2ケースでは、給電台12上に電子機器2及び異物3が存在している。第3ケースでは、給電台12上に異物3のみが存在している。第4ケースでは、給電台12上に電子機器2も異物3も存在していない。
 上述したように、pFOD処理が実行される期間中には電子機器2においてf変更/短絡動作が実行されているため、第1ケースでは、送電側コイルTにとっての負荷が十分に軽くなり(即ち、あたかも、給電台12上に電子機器2が存在しないかのような状態となり)、電流振幅検出値VpFODが十分に大きくなって異物無判定が成される。一方、第2ケースでは、共振回路RRの共振周波数が上記周波数fへと変更されるものの又は受電側コイルRが短絡されるものの、異物3は送電側コイルTの負荷として存在し続けるため(異物3の共振回路JJの共振周波数は基準周波数のままであるため)、電流振幅検出値VpFODが十分に小さくなって異物有判定が成される。
 第3及び第4ケースでは、NFC通信に応答する電子機器2が給電台12上に存在しないため、そもそも送電動作は不要であり、従ってpFOD処理自体が実行されない。給電機器1は、NFC通信により、電力伝送に対応可能な電子機器2が給電台12上に存在しているか否かを判断できる。尚、異物3が給電台12上に存在する状態は、異物3が給電台12に直接接触している状態に限定されない。例えば、図15に示す如く、給電台12上に電子機器2が直接接触する形で存在し且つ電子機器2の上に異物3が存在しているような状態も、異物有判定が成される限り、異物3が給電台12上に存在する状態に属する。
[電力伝送までの信号のやりとり:図16]
 図16を参照して、電力伝送が行われるまでの機器1及び2間の信号のやりとりを説明する。以下では、特に記述無き限り、電子機器2が基準配置状態(図1(b))にて給電台12上に存在していることを想定する。
 まず、給電機器1が送信側且つ電子機器2が受信側となり、給電機器1(IC100)が、NFC通信によって、問い合わせ信号510を給電台2上の機器(以下、給電対象機器とも言う)に送信する。給電対象機器は、電子機器2を含み、異物3を含みうる。問い合わせ信号510は、例えば、給電対象機器の固有識別情報を問い合わせる信号、給電対象機器がNFC通信を実行可能な状態にあるかを問い合わせる信号、及び、給電対象機器が電力を受け取れるか又は電力の送電を求めているかを問い合わせる信号を含む。
 問い合わせ信号510を受信した電子機器2(IC200)は、問い合わせ信号510の問い合わせ内容に答える応答信号520を、NFC通信によって給電機器1に送信する。応答信号520を受信した給電機器1(IC100)は、応答信号520を解析し、給電対象機器がNFC通信を可能であって且つ電力を受け取れる又は電力の送電を求めている場合に、テスト用要求信号530をNFC通信によって給電対象機器に送信する。テスト用要求信号530を受信した給電対象機器としての電子機器2(IC200)は、テスト用要求信号530に対する応答信号540をNFC通信によって給電機器1に送信してから、速やかに、f変更/短絡動作(共振周波数変更動作又はコイル短絡動作)を実行する。テスト用要求信号530は、例えば、f変更/短絡動作の実行を要求、指示する信号であり、電子機器2の制御回路250は、テスト用要求信号530の受信を契機としてf変更/短絡動作を共振状態変更回路240に実行させる。テスト用要求信号530の受信前においてf変更/短絡動作は非実行とされている。f変更/短絡動作の実行の契機となるならばテスト用要求信号530はどのような信号でも良く、問い合わせ信号510に内包されるものであっても良い。
 応答信号540を受信した給電機器1(IC100)は、上述のpFOD処理を実行する。pFOD処理の実行期間中、電子機器2(IC200)は、f変更/短絡動作の実行を継続する。具体的には、電子機器2(IC200)は、内蔵タイマを用いて、pFOD処理の実行期間の長さに応じた時間だけf変更/短絡動作の実行を維持してからf変更/短絡動作を停止する。
 pFOD処理において、給電台12上に異物が無いと判断すると、給電機器1(IC100)は、認証信号550をNFC通信により給電対象機器に送信する。認証信号550は、例えば、これから送電を行うことを給電対象機器に通知する信号を含む。認証信号550を受信した電子機器2(IC200)は、認証信号550に対応する応答信号560を、NFC通信によって給電機器1に送信する。応答信号560は、例えば、認証信号550が示す内容を認識したことを通知する信号又は認証信号550が示す内容に許可を与える信号を含む。応答信号560を受信した給電機器1(IC100)は、送電回路130を共振回路TTに接続して送電動作を実行し、これにより電力伝送570が実現される。
 図14(a)の第1ケースでは、上記の流れで電力伝送570が実行されるが、図14(b)の第2ケースの場合においては、応答信号540の送受信まで処理が進行するものの、pFOD処理において給電台12上に異物があると判断されるため、電力伝送570が実行されない。1回分の電力伝送570は所定時間だけ行われるものであっても良く、問い合わせ信号510の送信から電力伝送570までの一連の処理を、繰り返し実行するようにしても良い。実際には、図17に示す如く、NFC通信とpFOD処理と電力伝送(NFC電力伝送)とを順番に且つ繰り返し実行することができる。つまり、非接触給電システムでは、NFC通信を行う動作とpFOD処理を行う動作と電力伝送(NFC電力伝送)を行う動作とを、時分割で順番に且つ繰り返し行うことができる。
[給電機器及び電子機器の動作フローチャート]
 次に、給電機器1の動作の流れを説明する。図18は、給電機器1の動作フローチャートである。通信回路120及び送電回路130の動作は、制御回路160の制御の下で実行される。
 給電機器1が起動すると、まずステップS101において、制御回路160は、切り替え回路110の制御を通じて通信回路120を共振回路TTに接続する。続くステップS102において、制御回路160は、通信回路120及び共振回路TTを用いたNFC通信により問い合わせ信号510を給電対象機器に送信し、その後、ステップS103において、応答信号520の受信を待機する。通信回路120にて応答信号520が受信されると、制御回路160は、応答信号520を解析し、給電対象機器がNFC通信を可能であって且つ電力を受け取れる又は電力の送電を求めている場合に送電対象があると判断して(ステップS104のY)ステップS105に進み、そうでない場合(ステップS104のN)、ステップS102に戻る。
 ステップS105において、制御回路160は、通信回路120及び共振回路TTを用いたNFC通信によりテスト用要求信号530を給電対象機器に送信し、その後、ステップS106において、応答信号540の受信を待機する。通信回路120にて応答信号540が受信されると、ステップS107において、制御回路160は、切り替え回路110の制御を通じて送電回路130を共振回路TTに接続し、続くステップS108にて上述のpFOD処理を行う。
 pFOD処理の後、ステップS109にて、制御回路160は、切り替え回路110の制御を通じて通信回路120を共振回路TTに接続し、ステップS110に進む。ステップS108のpFOD処理にて、異物有判定が成されている場合にはステップS110からステップS102に戻るが、異物無判定が成されている場合にはステップS110からステップS111に進む。
 ステップS111において、制御回路160は、通信回路120及び共振回路TTを用いたNFC通信により認証信号550を給電対象機器に送信し、その後、ステップS112において、応答信号560の受信を待機する。通信回路120にて応答信号560が受信されると、ステップS113において、制御回路160は、切り替え回路110の制御を通じて送電回路130を共振回路TTに接続し、ステップS114に進む。
 制御回路160は、ステップS114にて送電許可フラグにONを設定すると共に、送電動作及びmFOD処理を開始し、その後、ステップS115に進む。詳細は後述されるが、mFOD処理によって電力伝送中における異物の存否が検出され、異物が検出された場合に送電許可フラグがOFFとされる。制御回路160は、送電動作の開始時点からの経過時間を計測し、ステップS115において、その経過時間を所定の時間t(例えば10分)と比較すると共に送電許可フラグの状態をチェックする。その経過時間が所定の時間tに達すると、又は、mFOD処理によって送電許可フラグにOFFが設定されると、ステップS116に進む。ステップS116において、制御回路160は、送電許可フラグをONからOFFに切り替える又は送電許可フラグをOFFに維持すると共に、送電動作及びmFOD処理を停止させ、その後ステップS101に戻る。
 次に、電子機器2の動作の流れを説明する。図19は、電子機器2の動作フローチャートであり、ステップS201から始まる処理は、図18に示す給電機器1の動作に連動して実行される。通信回路220及び受電回路230の動作は、制御回路250の制御の下で実行される。
 電子機器2が起動すると、まずステップS201において、制御回路250は、切り替え回路210の制御を通じて通信回路220を共振回路RRに接続する。電子機器2の起動時においてf変更/短絡動作は非実行とされている。続くステップS202において、制御回路250は、通信回路220を用い、問い合わせ信号510の受信を待機する。通信回路220にて問い合わせ信号510が受信されると、ステップS203において、制御回路250は、問い合わせ信号510を解析して応答信号520を生成し、通信回路220を用いたNFC通信により応答信号520を給電機器1に送信する。このとき、制御回路250は、バッテリ21の状態を確認し、バッテリ21が満充電状態でなく且つバッテリ21に異常が認められなければ、電力を受け取れる又は電力の送電を求める信号を応答信号520に含める。一方、バッテリ21が満充電状態あれば又はバッテリ21に異常が認められれば、電力を受け取れない旨の信号を応答信号520に含める。
 その後のステップS204においてテスト用要求信号530が通信回路220にて受信されると、ステップS205に進む。ステップS205において、制御回路250は、通信回路220を用いたNFC通信により応答信号540を給電機器1に送信し、続くステップS206にて共振状態変更回路240を用いてf変更/短絡動作を実行する。即ち、共振周波数fを基準周波数から周波数fに変更する又は受電側コイルRを短絡する。制御回路250は、f変更/短絡動作の実行を開始してからの経過時間を計測し(ステップS207)、その経過時間が所定時間tに達するとf変更/短絡動作を停止する(ステップS208)。即ち、共振周波数fを基準周波数に戻す又は受電側コイルRの短絡を解消する。その後、ステップS209に進む。給電機器1にてpFOD処理が実行されている期間(即ちテスト磁界が発生されている期間)中、f変更/短絡動作の実行が維持され、その期間が終了すると速やかにf変更/短絡動作が停止されるように時間tが予め設定されている。テスト用要求信号530の中で時間tが指定されていても良い。
 ステップS209において、制御回路250は、通信回路220を用い、認証信号550の受信を待機する。通信回路220にて認証信号550が受信されると、ステップS210において、制御回路250は、認証信号550に対する応答信号560を通信回路220を用いたNFC通信により給電機器1へ送信する。尚、異物が給電台12上に存在する場合には、認証信号550が給電機器1から送信されないので(図18のステップS110参照)、ステップS209にて認証信号550が一定時間受信されない場合にはステップS201に戻ると良い。
 応答信号560の送信後、ステップS211において、制御回路250は、切り替え回路210の制御を通じて受電回路230を共振回路RRに接続し、続くステップS212にて受電回路230を用いた受電動作を開始させる。制御回路250は、受電動作の開始時点からの経過時間を計測し、その経過時間と所定の時間tとを比較する(ステップS213)。そして、その経過時間が時間tに達すると(ステップS213のY)、ステップS214にて、制御回路250は、受電動作を停止させてステップS201に戻る。
 受電動作の行われる期間が給電機器1にて送電動作が行われている期間と実質的に一致するように、時間tは、予め定められている又は認証信号550の中で指定されている。受電動作の開始後、制御回路250は、バッテリ21への充電電流を監視し、充電電流値が所定値以下になった時点で送電動作が終了したと判断して、受電動作の停止及びステップS201への移行を行うようにしても良い。
[mFOD処理]
 送電動作の開始後に異物が給電台12上に置かれることもある。mFOD処理は、電力伝送中の異物検出処理として機能し、mFOD処理により電力伝送中において異物の存否が継続監視される。
 図20は、mFOD処理の動作フローチャートである。制御回路160は、送電動作を行っている期間において、図20のmFOD処理を繰り返し実行する。mFOD処理において、制御回路160は、まずステップS51にて最新の電圧値Vを電流振幅検出値VmFODとして取得する。電流振幅検出値VmFODは、送電用磁界を送電側コイルTに発生させているときの、送電側コイルTに流れる電流の振幅に応じた値を持つ。続くステップS52において、制御回路160は、電流振幅検出値VmFODが所定のmFOD正常範囲に属しているか否かを判断する。電流振幅検出値VmFODがmFOD正常範囲に属している場合、異物無判定が成されて(ステップS53)ステップS51に戻りステップS51及びS52の処理が繰り返されるが、電流振幅検出値VmFODがmFOD正常範囲を逸脱している場合、ステップS54にて異物有判定が成されて送電許可フラグにOFFが設定される。送電許可フラグは、制御回路160にて管理されるフラグであってON又はOFFに設定される。送電許可フラグがONのとき制御回路160は送電動作の実行を許可し、送電許可フラグがOFFのとき制御回路160は送電動作の実行を禁止する又は送電動作を停止する。
 mFOD正常範囲は、所定の下限値VmREFL以上且つ所定の上限値VmREFH以下の範囲である(0<VmREFL<VmREFH)。故に、判定不等式“VmREFL≦VmFOD≦VmREFH”が満たされる場合には異物無判定が成され、そうでない場合には異物有判定が成される。
 図21(a)を参照し、例えば、送電動作が実行されているときに、給電機器1の給電台12と電子機器2との間に非接触ICカードとして形成された異物3が挿入された場合を考える。この場合、電子機器2の受電側コイルRと異物3のコイルJが磁気的に結合して、異物3の共振回路JJの共振周波数と共に電子機器2の共振回路RRの共振周波数が基準周波数(13.56MHz)からずれる。そうすると、受電側コイルRでの受電電力が低下して送電側コイルTから見た送電の負荷が軽くなり、結果として、送電側コイルTに流れる電流の振幅が大きくなる(この場合に“VmREFH<VmFOD”となるように上限値VmREFHを定めておけばよい)。
 また例えば、図21(b)を参照し、送電動作が実行されているときに、給電機器1の給電台12と電子機器2との間に、鉄板又はフェライトシートとしての異物3bが挿入されると、電気的及び磁気的な作用を通じて異物3b内に電流が流れ、結果として、送電側コイルTに流れる電流の振幅が小さくなる(この場合に“VmFOD<VmREFL”となるように下限値VmREFLを定めておけばよい)。
 このように、異物3及び3bを含む異物の存否により電流振幅検出値VmFODに変化が生じる。考えられる異物の種類及び配置状態を想定した実験等を介し、予め適切に決定された下限値VmREFL及び上限値VmREFHを、メモリ150に記憶させておくと良い。また、電力伝送中に、異物が存在することで電流振幅検出値VmFODがどの程度変化するのかを理論計算により推定し、その推定結果に基づき、実験を必要とすることなく、下限値VmREFL及び上限値VmREFHを定めてメモリ150に記憶させても良い。この際例えば、mFOD正常範囲の中心値を基準として電流振幅検出値VmFODを所定の変化率以上変化させるような物体を異物と定義するようにしても良い。
 図7に示す増幅器143の増幅率は可変となっている。送電側コイルTに流れる電流の振幅は、pFOD処理を行っているときよりも、送電動作及びmFOD処理を行っているときの方が随分と大きい。故に、制御回路160は、mFOD処理を行う際において増幅器143の増幅率をpFOD処理を行う際よりも小さく設定し、これによってA/D変換器144の入力信号範囲をpFOD処理及びmFOD処理間で同程度とする。
 また例えば、包絡線検波器142とA/D変換器144との間に(より具体的には、包絡線検波器142と増幅器143との間に、又は、増幅器143とA/D変換器144との間に)高域低減回路(不図示)を挿入するようにしても良い。この場合、センス抵抗141の電圧降下信号に高域低減処理(換言すれば平均化処理又は低域通過フィルタリング)を施して得られる振幅情報が、A/D変換器144から電圧値Vとして得られるようになる。ここにおける高域低減処理は、センス抵抗141の電圧降下信号における比較的低い周波数の信号成分を通過させる一方で比較的高い周波数の信号成分を低減(減衰)させる処理である。高域低減処理により、ノイズや給電台12上の電子機器2の軽度な振動などによって送電禁止の制御が行われることが抑制される。
 或いは例えば、包絡線検波器142及びA/D変換器144間に高域低減回路を設ける代わりに、A/D変換器144の出力信号による電圧値Vに対し演算による高域低減処理を施して高域低減処理後の電圧値Vを電流振幅検出値VmFODとして用いるようにしても良い(pFOD処理における電流振幅検出値VpFODに対しても同様であって良い)。演算による高域低減処理は、制御回路160にて実行される処理であって、A/D変換器144の出力信号における比較的低い周波数の信号成分を通過させる一方で比較的高い周波数の信号成分を低減(減衰)させる処理である。
 尚、mFOD処理の役割は、異物の存否判定だけに限られない。即ち、mFOD処理は、電流振幅検出値VmFODがmFOD正常範囲を逸脱するような、送電動作の継続に不適切なあらゆる状況下で、送電許可フラグをOFFとする役割を持つ。例えば、送電動作の開始後、電子機器2が給電台12上から取り去られたとき、送電側コイルTから見た送電の負荷が軽くなって電流振幅検出値VmFODが上限値VmREFHを超えるため送電許可フラグがOFFとされる(図20のステップS54)。
 このように、制御回路160は、送電動作によって電力の送電が行われているとき、電流振幅検出値VmFODがmFOD正常範囲を逸脱しているか否かを監視することで送電の継続是非を制御する。これにより、送電動作の開始後に異物が給電台12上に置かれた場合など、送電動作の継続に不適切な状況下で、mFOD処理を通じて送電動作が停止されるため、送電動作の継続による異物の破損等を回避することができる。
 <<本発明の第1考察>>
 上述の第1実施形態にて具体化された本発明について考察する。
 本発明の一側面に係る送電装置WAは、受電装置に対し磁界共鳴方式で電力を送電可能な送電装置において、前記電力を送電するための送電側コイル(T)を含む送電側共振回路(TT)と、前記送電側共振回路に交流電圧を供給可能な送電回路(130)と、前記送電側コイルに流れる電流の振幅を検出する検出回路(140)と、前記送電回路を制御することで前記電力の送電制御を行う制御回路(160)と、を備え、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値(VmFOD)に基づいて前記送電の継続是非を制御することを特徴とする。
 本発明の一側面に係る非接触給電システムWAは、電力を送電するための送電側コイル(T)を含む送電側共振回路(TT)を有する送電装置と、前記電力を受電するための受電側コイル(R)を含む受電側共振回路(RR)を有する受電装置と、を備え、磁界共鳴方式で前記電力の送受電が可能な非接触給電システムにおいて、前記送電装置は、前記送電側共振回路に交流電圧を供給可能な送電回路(130)と、前記送電側コイルに流れる電流の振幅を検出する検出回路(140)と、前記送電回路を制御することで前記電力の送電制御を行う制御回路(160)と、を備え、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値(VmFOD)に基づいて前記送電の継続是非を制御することを特徴とする。
 送電装置WA及び非接触給電システムWAによれば、送電動作の開始後において送電側コイルの発生磁界が及ぶ位置に異物が存在するようになった場合など、送電動作の継続に不適切な状況下で、送電動作を停止するといったことが可能となるため、例えば、送電の継続による異物の破損等を回避することができる。
 具体的には例えば、送電装置WA又は非接触給電システムWAにおいて、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が所定範囲(mFOD正常範囲)を逸脱しているか否かを監視することで、前記送電の継続是非を制御すると良い。
 より具体的には例えば、送電装置WA又は非接触給電システムWAにおいて、前記検出回路の振幅検出値の前記所定範囲からの逸脱が検出された際、前記送電を停止させると良い。
 検出回路の振幅検出値が所定範囲から逸脱する状況は、送電側コイルの発生磁界が及ぶ位置に異物が存在するようになった場合など、送電動作の継続に不適切な状況に相当すると考えられる。このような状況下において送電を停止することで、例えば、送電の継続による異物の破損等を回避することが可能となる。
 また例えば、送電装置WA又は非接触給電システムWAにおいて、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が前記所定範囲を逸脱しているか否かを判断することで、前記受電装置と異なり且つ前記送電側コイルの発生磁界に基づく電流を発生させられる異物の存否を判断し、前記異物が存在すると判断した場合に前記送電を停止させると良い。
 この際例えば、送電装置WA又は非接触給電システムWAにおいて、前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が前記所定範囲の上限値を超えているか否かを判断することで、前記異物としての、コイルを含んだ異物の存否を判断すると良い。
 また例えば、送電装置WAにおいて、前記受電装置は、前記電力を受電するための受電側コイル(R)を含む受電側共振回路(RR)と、前記電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路(240)と、を備え、前記制御回路(160)は、当該送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路の振幅検出値(VpFOD)に基づき前記送電の実行可否を判断する第2処理部(pFOD処理)と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有し、前記検出回路(140)は、前記送電側コイルに流れる電流の振幅を示す信号を増幅する処理を経て前記振幅を検出し、前記増幅における増幅率は、前記送電側コイルにて前記テスト磁界が発生せしめられているときよりも、前記送電側コイルにて前記送電用磁界が発生せしめられているときの方が小さいと良い。
 また例えば、非接触給電システムWAにおいて、前記受電装置は、前記電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路(240)を備え、前記制御回路(160)は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路の振幅検出値(VpFOD)に基づき前記送電の実行可否を判断する第2処理部(pFOD処理)と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有し、前記検出回路(140)は、前記送電側コイルに流れる電流の振幅を示す信号を増幅する処理を経て前記振幅を検出し、前記増幅における増幅率は、前記送電側コイルにて前記テスト磁界が発生せしめられているときよりも、前記送電側コイルにて前記送電用磁界が発生せしめられているときの方が小さいと良い。
 第2処理部を設けることで、送電側コイルの発生磁界が及ぶ位置に異物が存在する場合など、送電の実行に不適切な状況下では、送電を行わないといったことが可能となるため、例えば、送電の実行(実行開始)による異物の破損等を回避することができる。また、上記のように増幅率を定めることで、増幅後の信号レベルを、テスト磁界の発生時と送電用磁界の発生時との間で同程度にするといったことが可能となり、これによって例えば、増幅後の信号を処理する回路の共用化が容易となる。
 尚、上述の第1実施形態における給電機器1そのものが本発明に係る送電装置として機能しても良いし、上述の第1実施形態における給電機器1の一部が本発明に係る送電装置として機能しても良い。同様に、上述の第1実施形態における電子機器2そのものが本発明に係る受電装置として機能しても良いし、上述の第1実施形態における電子機器2の一部が本発明に係る受電装置として機能しても良い。
<<第2実施形態>>
 本発明の第2実施形態を説明する。第2実施形態は第1実施形態を基礎とする実施形態であり、第2実施形態において特に述べない事項に関しては、矛盾の無い限り、第1実施形態の記載が第2実施形態にも適用される。
 図22に示すように、互いに直交するX軸、Y軸及びZ軸を定義する。X軸及びY軸に平行な面、Y軸及びZ軸に平行な面、Z軸及びX軸に平行な面を、夫々、XY面、YZ面、ZX面と称することもある。X軸及びY軸は給電台12の載置面に平行であり、従ってZ軸は給電台12の載置面に直交している。給電台12の載置面は電子機器2が載置されるべき面であり、該載置面上に電子機器2及び異物が載置されうる。第2実施形態並びに後述の第3及び第4実施形態の各記述において、及び、それらで参照される各図において、特に記述無き限り、電子機器2は基準配置状態にて給電台12の載置面上に載置されているものとする。基準配置状態では、給電機器1及び電子機器2が電力の送受電を行うための所定位置関係にある。
 図23(a)、(b)は、基準配置状態での給電機器1及び電子機器2における送電側コイルT及び受電側コイルRの概略的な斜視図、断面図である。図24(a)、(b)は、非接触ICカードに代表される異物3が給電台12の載置面上に置かれている状態での給電機器1及び異物3におけるコイルT及びJの概略的な斜視図、断面図である。図23(a)及び図24(a)では、図示の簡略化及び煩雑化防止のため、コイルT、R及びJの巻線を二重円にて表現している(後述の図25(c)等においても同様)。コイルの図示を含む図面において、コイルを表す二重円から側方に伸びる線分はコイルの引き出し線を表している。図23(b)及び図24(b)の断面図における断面はYZ面に平行である。コイルT、R及びJの夫々はループアンテナを形成している。基準配置状態において、コイルT及びRとしてのループアンテナのループ面(即ち、コイルT及びRの巻線が配置されている面)はXY面に平行であり、従ってコイルT及びRの中心軸はZ軸に平行である。コイルTは、自身の中心軸周りに巻線(銅線など)が巻かれることで形成される(コイルR及びJについても同様)。また、異物3が給電台12の載置面上に置かれている状態おいて、コイルJとしてのループアンテナのループ面(即ち、コイルJの巻線が配置されている面)は、通常、コイルTと同じくXY面に平行であり、従ってコイルJの中心軸はZ軸に平行である。
 コイルT及びR間の結合係数を高めるべく、XY面上においてコイルT及びRは互いに同じ形状を有している(但し、それらは互いに異なる形状を有し得る)。本明細書において、コイルの形状とは、コイルの大きさを含む概念である。任意のコイルに関し、コイルの大きさとは、コイルの中心軸に直交する方向においてコイルの外周が占有する面積を表すと考えて良い。コイルがループアンテナを形成している場合には、そのループアンテナのループ面(即ち、当該コイルの巻線が配置されている面)における、当該コイルの巻線に囲まれた部分の面積が当該コイルの大きさに相当する。
 尚、図23(a)等ではコイルT及びRの外周形状(換言すれば外形形状)が円とされているが、コイルT及びRの夫々において、コイルの外周形状は円に限定されず、楕円又は多角形(長方形など)であっても良いし、直線と曲線がコイルの外周形状に混在していても良い。
 以下、第2実施形態では、電子機器2に金属部(以下、受電側金属部MTと称する:不図示)が設けられていることを想定する。後述の第3及び第4実施形態においても同様の想定を行う。受電側金属部MTは、電子機器2の筐体の全部又は一部を構成していても良い。即ち例えば、受電側金属部MTは、電子機器2の筐体としての箱状の金属製ケースであっても良い。或いは例えば、電子機器2の筐体が樹脂材料にて形成され且つ受電側金属部MTが電子機器2の筐体内にて固定されていても良い。受電側金属部MTは、主として例えば、電子機器2の構造的強度や質感を高めるために設けられる。
 受電側金属部MTを構成する金属はアルミニウムであるとする。受電側金属部MTを構成する金属は、アルミニウムと他の金属との合金、即ちアルミニウム合金(例えばアルミニウムと銅の合金としてのジュラルミン)であっても良い。但し、受電側金属部MTがアルミニウム又はアルミニウム合金にて構成される場合と同様の影響をコイルR及びTに与える限り、受電側金属部MTを構成する金属はアルミニウム又はアルミニウム合金以外でも良い。
 受電側金属部MTは、どのような形状を有していても良いが、図25(a)に示すような、開口部271を有した金属板270を有しているものとする。基準配置状態において金属板270はXY面に平行である。開口部271は、金属板270に設けられたZ軸方向に貫通する穴であり、従って開口部271には金属が存在しない。XY面上において開口部271は閉領域を形成しており、開口部271と金属板270の外周との間には接点が無い。故に、XY面において開口部271の周りにはアルミニウムによる電路(電流ループ)が形成される。開口部271は、樹脂材料などの金属以外の材料にて封止されうる。樹脂材料は、例えば、ポリカーボネイト、ポリプロピレンである。
 XY面上において金属板270の外形形状は長方形である。但し、XY面上において、金属板270の外形形状はこれに限定されず、曲線を含んでいても良いし、直線と曲線が金属板270の外形形状に混在していても良い。またここでは、XY面上における開口部271の形状が円(三次元で考えると円柱形状)であると考えるが、XY面上において、開口部271の形状は円に限定されず、楕円又は多角形(長方形など)であっても良いし、直線と曲線が開口部271の形状に混在していても良い。
 受電側金属部MTは、金属板270に加えて他の金属部分を含んでいても良い。即ち例えば、図26に示す如く、受電側金属部MTが電子機器2の筐体としての箱状の金属製ケースCSMT2である場合には、金属板270は金属製ケースCSMT2の一面(底面)を形成する。
 但し、以下の説明及び以下の説明で参照される図面(図25(a)~図25(c)を含む)では、説明及び図示の簡略化のため、受電側金属部MTに関して金属板270のみに注目する。図25(a)は、基準配置状態における金属板270の斜視図であり、図25(b)は、基準配置状態における給電機器1及び電子機器2の一部部品の透過図である。図25(c)は、Z軸方向から見た基準配置状態における金属板270及び受電側コイルRの平面図である。開口部271は受電側コイルRの配置位置の対向位置(受電側コイルRの配置位置に対して対向する位置)に設けられており、基準配置状態では、開口部271がコイルT及びR間に位置して、コイルT及びRが開口部271を介して互いに対向し合うことになる。
 そして、XY面において開口部271の大きさはコイルT及びRの大きさよりも大きく、Z軸方向に沿ってコイルR、開口部271及びコイルTを見たとき、互いに重なり合うコイルR及びTの外周は開口部271内に内包される。開口部271の形状、コイルR及びTの外周形状が全て円であると考えた場合、それらの円の中心はZ軸に平行な1つの直線上に位置し、図27に示す如く、開口部271の形状としての円の半径r1は、コイルR及びTの外周形状としての円の半径r2よりも大きいことになる。このため、コイルT及びRを用いた電力伝送を、若干の損失はあるものの良好に実現できる。例えば、半径r1を半径r2よりも5mm(ミリメートル)大きくすると、金属板270が無い場合から見た損失の割合は10~20%程度となる。
 アルミニウムにて形成された金属板270の影響について説明する。
 図28(a)を参照し、基準配置状態では、送電側コイルTが開口部271を有する金属板270と磁気的に結合する。送電側コイルTに交流電流Iが流れると、それにより送電側コイルTにて発生した磁界に基づき、電磁誘導によって交流電流Iと逆方向の(即ち180度位相のずれた)交流電流I31が金属板270内の開口部271周りの電路に流れる。送電側コイルT及び金属板270間の結合係数をK13とおくと、交流電流I31は“I31=K13×I”にて表される。一方、
 図28(b)を参照し、電子機器2内においては、受電側コイルRも開口部271を有する金属板270と磁気的に結合する。受電側コイルRに交流電流Iが流れると、それにより受電側コイルRにて発生した磁界に基づき、電磁誘導によって交流電流Iと逆方向の(即ち180度位相のずれた)交流電流I32が金属板270内の開口部271周りの電路に流れる。受電側コイルR及び金属板270間の結合係数をK23とおくと、交流電流I32は“I32=K23×I”にて表される。
 図28(c)は、電流I、I、I31及びI32を複素平面上に示したものである。交流電流Iは、交流電流Iに基づき受電側コイルRに流れる共振電流であり、“I=jQK12×I”にて表される。ここで、K12は基準配置状態におけるコイルT及びR間の結合係数であり、Qは受電側コイルRのQであり、jは虚数である。電流Iは電流Iに対して位相が90度遅れることになる。
 共振回路TTの共振周波数に関して考えると、電流I31が発生せしめられる金属板270の存在は、送電側コイルTのインダクタンスを等価的に減少させるように(換言すれば共振回路TTを構成するインダクタンス成分を減少させるように)、結果、共振回路TTの共振周波数を増大させるように作用する。
 共振回路RRの共振周波数に関して考えると、電流I32が発生せしめられる金属板270の存在は、受電側コイルRのインダクタンスを等価的に減少させるように(換言すれば共振回路RRを構成するインダクタンス成分を減少させるように)、結果、共振回路RRの共振周波数を増大させるように作用する。
 このため、金属板270の存在を無視して給電機器1及び電子機器2を設計すると、金属板270の存在によって共振回路TT及びRRの共振周波数が基準周波数からずれる(このようなずれを、以下、共振周波数シフト現象という)。共振周波数シフト現象は、磁気共鳴を利用した電力伝送の効率低下などの影響をもたらしうる。
 また、送電側コイルTにて交番磁界を発生させたとき、送電側コイルTの発生磁界により金属板270に流れた電流に基づく電圧が送電側コイルTに発生し、その電圧は送電側コイルTに流れる電流の振幅を増大させるように作用する(この増大を、以下、電流振幅増加現象という)。結果、給電台12上に異物3が存在していなくても、pFOD処理又はmFOD処理において異物が存在すると誤認するおそれが生じる。つまり、金属板270が異物と誤認されるおそれがある(金属板270は電子機器2の構成部品であるので、当然、異物として認識されるべきではない)。この誤認を回避するために、pFOD正常範囲又はmFOD正常範囲における上限値を高めに設定しておくことも考えられるが、そのような設定は、真に検出されるべき異物の検知性能劣化に繋がる。また例えば、非接触ICカードに代表される異物3の検出に注目したとき、pFOD処理においては、異物3の存在による送電側コイルTの電流振幅低下を観測することになるが、送電側コイルTの電流振幅が金属板270の影響を受けて増加すると、その増加が、異物3の存在による電流振幅低下観測に対しノイズとして機能し、異物3の検出が行いにくくなる。
<<第3実施形態>>
 そこで、本発明の第3実施形態では、第2実施形態の電子機器2に対し、金属板270の影響を打ち消すように作用する磁性体部MGを追加する。本実施形態において、打ち消しとは、打ち消されるべき対象の完全なる打ち消しを理想とするが、部分的な打ち消しにもなりえる。第3実施形態は第1及び第2実施形態を基礎とする実施形態であり、第3実施形態において特に述べない事項に関しては、矛盾の無い限り、第1及び第2実施形態の記載が第3実施形態にも適用される(矛盾する事項に関しては第3実施形態の記載が優先される)。
 磁性体部MGは、高透磁率を示す任意の磁性材料から構成され、例えばフェライトにて構成される。詳細な構造例は後に述べられるが、磁性体部MGは、基準配置状態において(即ち、給電機器1及び電子機器2が電力の送受電を行うための所定位置関係にあるときにおいて)、共振回路TT及びRRの共振周波数の少なくとも一方に影響を与える位置に設けられ、これよって共振回路TT及びRRの共振周波数が基準周波数に揃えられた状態での電力伝送が可能とされる。
 以下、第3実施形態に属する実施例EX3_1~EX3_5の中で、磁性体部MGの詳細構造等を説明する。尚、矛盾無き限り、実施例EX3_1~EX3_5の内、任意の実施例で記載した事項を、他の任意の実施例に適用することもできる。
[実施例EX3_1]
 実施例EX3_1を説明する。図29(a)~(c)を参照する。実施例EX3_1では、磁性体部MGとして磁性体板(開口部内磁性体)281が設けられる。磁性体部MGは、磁性体板281に加えて他の磁性体部を含みうるが、ここでは磁性体板281にのみ注目する。図29(b)に示す如く、磁性体板281は金属板270の開口部271内に配置及び固定される。図29(b)は磁性体板281が開口部271内に固定された状態での金属板270の斜視図であり、図29(a)は磁性体板281と金属板270の分解斜視図である。尚、図29(a)~(c)では、図示の便宜上、磁性体板281をドット領域にて表現している。
 磁性体板281は開口部271と実質的に同じ形状を有しており、磁性体板281を開口部271内に嵌め込んだ状態で、接着剤等を用いて磁性体板281を開口部271内で固定する。金属板270と磁性体板281を連結する樹脂シート(不図示)を用いて、開口部271内での磁性体板281の固定強度を増加させても良い。磁性体板281を開口部271内に嵌め込むという構成を採用しているため、磁性体板281は開口部271の形状(ここでは円柱形状)と同じ円柱形状を有しているが、開口部271の形状が変化すれば磁性体板281の形状も変化する。このように、磁性体板281によって開口部271が封止され、開口部271を通じた空気の流通は無い又は極めて少ない。図26に示す如く、受電側金属部MTが電子機器2の筐体としての箱状の金属製ケースCSMT2である場合には、磁性体板281によって開口部271が封止されることで、金属製ケースCSMT2内の気密性が保たれ、またケースとしての強度も担保される。
 図29(c)に、磁性体板281が開口部271に嵌め込まれた状態における金属板270及び磁性体板281の断面図(開口部271の中心を通る、YZ面に平行な断面による断面図)を、コイルT及びRと共に示す。基準配置状態において、送電側コイルT、磁性体板281及び受電側コイルRは、Z軸に沿って並ぶことになり、送電側コイルT及び磁性体板281間の距離、受電側コイルR及び磁性体板281間の距離を、夫々、d、dにて表す。
 金属板270及び磁性体板281の夫々はXY面に平行な外側面と内側面を有することになるが、金属板270の外側面と磁性体板281の外側面は同一の平面上に位置すると共に(即ち面一とされ)、金属板270の内側面と磁性体板281の内側面は他の同一の平面上に位置する(即ち面一とされる)。金属板270及び磁性体板281において、外側面とは内側面よりも送電側コイルTに近い面であり、従って内側面とは外側面よりも受電側コイルRに近い面である。距離dは、Z軸方向における、磁性体板281の外側面(又は中心)と送電側コイルTの中心との間の距離であると考えて良く、同様に、距離dは、Z軸方向における、磁性体板281の内側面(又は中心)と受電側コイルRの中心との間の距離であると考えて良い。
 送電側コイルT、受電側コイルR、金属板270及び磁性体板281に流れる電流の関係を説明する。図30(a)~(c)にはそれらの関係が模式的に示されている。
 図30(a)を参照し、基準配置状態では、送電側コイルTが開口部271を有する金属板270と磁気的に結合すると共に磁性体板281とも磁気的に結合する。送電側コイルTに交流電流Iが流れると、それにより送電側コイルTにて発生した磁界に基づき、交流電流Iと逆方向の(即ち180度位相のずれた)交流電流I31が金属板270内の開口部271周りの電路に流れる一方で交流電流Iと同方向の(即ち交流電流Iと同じ位相を有する)交流電流I41が磁性体板281に流れる。
 電流I41と電流I31は互いに逆方向の電流であるため、共振回路TTに対し、磁性体板281は、開口部271を有する金属板270とは逆の作用を与える。つまり、電流I41が発生せしめられる磁性体板281の存在は、開口部271を有する金属板270とは逆に、送電側コイルTのインダクタンスを等価的に増大させるように(換言すれば共振回路TTを構成するインダクタンス成分を増大させるように)、結果、共振回路TTの共振周波数を減少させるように作用し、また、送電側コイルTに流れる電流の振幅を減少させるように作用する。
 このように、共振回路TTに対して磁性体板281は金属板270とは逆の作用を与えるため、金属板270が存在することによる共振回路TTへの影響を磁性体板281により打ち消す(減ずる)ことができる。共振回路TTに対する電流I31の作用と電流I41の作用とが互いに丁度打ち消し合う距離d1REFは、開口部271の形状、送電側コイルTの形状などに依存して一意に定まり、ここでは、“d=d1REF”とされる。
 図30(b)を参照し、電子機器2内においては、受電側コイルRが開口部271を有する金属板270と磁気的に結合すると共に磁性体板281とも磁気的に結合する。受電側コイルRに交流電流Iが流れると、それにより受電側コイルRにて発生した磁界に基づき、交流電流Iと逆方向の(即ち180度位相のずれた)交流電流I32が金属板270内の開口部271周りの電路に流れる一方で交流電流Iと同方向の(即ち交流電流Iと同じ位相を有する)交流電流I42が磁性体板281に流れる。
 電流I42と電流I32は互いに逆方向の電流であるため、共振回路RRに対し、磁性体板281は、開口部271を有する金属板270とは逆の作用を与える。つまり、電流I42が発生せしめられる磁性体板281の存在は、開口部271を有する金属板270とは逆に、受電側コイルRのインダクタンスを等価的に増大させるように(換言すれば共振回路RRを構成するインダクタンス成分を増大させるように)、結果、共振回路RRの共振周波数を減少させるように作用し、また、受電側コイルRに流れる電流の振幅を減少させるように作用する。
 このように、共振回路RRに対して磁性体板281は金属板270とは逆の作用を与えるため、金属板270が存在することによる共振回路RRへの影響を磁性体板281により打ち消す(減ずる)ことができる。共振回路RRに対する電流I32の作用と電流I42の作用とが互いに丁度打ち消し合う距離d2REFは、開口部271の形状、受電側コイルRの形状などに依存して一意に定まり、ここでは、“d=d2REF”とされる。
 上述したように送電側コイルTと受電側コイルRの形状が互いに同じであることを想定した場合、“d1REF=d2REF”となり、故に“d=d=d”とする。即ち、図30(c)に示す如く、磁性体板281を基準としてコイルTとコイルRを互いに鏡像の位置に配置する。そうすると、基準配置状態において、コイルTにとってもコイルRにとっても、あたかも金属板270及び磁性体板281が存在しないかのような状態となる。基準配置状態において“d=d1REF=d=d2REF”となるように、電子機器2において受電側コイルR及び金属板270が図示されない機構部品及び基板等を用いて電子機器2内に固定されていると共に給電機器1において送電側コイルTが図示されない機構部品及び基板等を用いて給電機器1内に固定され、且つ、給電機器1及び電子機器2の各筐体が形成されている。
 送電側コイルTのインダクタンスをLにて表し且つ送電側コンデンサTの静電容量をCで表すと、L及びCのみで定まる共振回路TTの共振周波数fは、1/(2π(L1/2)となる(即ち、2πと(L)の平方根との積の逆数となる)。受電側コイルRのインダクタンスをLにて表し且つ受電側コンデンサRの静電容量をCで表すと、L及びCのみで定まる共振回路RRの共振周波数fは、1/(2π(L1/2)となる(即ち、2πと(L)の平方根との積の逆数となる)。実施例EX3_1では、第1実施形態と同様、共振回路TTの共振周波数fも共振回路RRの共振周波数f(第1実施形態では記号fにて表現)も、所定の基準周波数(13.56MHz)に設定しておく。
 共振回路RRの共振周波数は、アルミニウム及び/又はフェライトの影響を考慮すると周波数fから変化しうるが、受電側コイルRから見て距離dの位置に金属板270及び磁性体板281が配置した場合には基準周波数から変化しない。この状態で、金属板270に対し距離dの位置に送電側コイルTが置かれても共振回路TTの共振周波数は基準周波数から変化しない。つまり、共振回路TT及びRR間の電力伝送にとって、金属板270及び磁性体板281は若干の損失を発生させることを除いて無いに等しい。
 実施例EX3_1の構成によれば、金属板270の存在によって生じる共振回路RRの共振周波数の変化が磁性体板281にて打ち消される(減少せしめられる)と共に、基準配置状態において金属板270の存在によって生じる共振回路TTの共振周波数の変化が磁性体板281にて打ち消される(減少せしめられる)ため、上記共振周波数シフト現象に基づく影響が解消される。また、金属板270の存在によって生じる送電側コイルTの電流振幅増加が磁性体板281の作用により打ち消される(減少せしめられる)ため、上記電流振幅増加現象に基づく影響も解消される。
 コイルT及びR間の磁気結合の度合いを高めるべくコイルT及びRの形状を同じにした場合、距離d(=d1REF)と距離d(=d2REF)を同じ距離dとしておくことで、上記打ち消しの効果が最適化される。
 但し、コイルT及びRの形状が互いに異なる場合には、距離d(=d1REF)と距離d(=d2REF)は互いに異なることになる。また、打ち消し効果が落ちはするが、距離dが距離d1REFから多少ずれることが有りえて良いし、距離dが距離d2REFから多少ずれることが有りえて良い(結果、“d≠d”であることが有りえて良い)。
 また、電子機器2の機械的強度又は気密性等を担保する観点から必要となる開口部271の封止を磁性体板281にて実現するようにすることで、別途に樹脂材料等を用いて開口部271の封止処理を行う必要がなくなり、電子機器2の構成及び製造が簡素化、容易化される。
 但し、磁性体板281に、Z軸方向に沿って貫通する穴部を有したリング状の形状を持たせることも可能である。但し、この場合には、その穴部に対して樹脂材料等を用いた封止処理が必要となるため、磁性体板281に穴部を設けないことが好ましい。
 また、磁性体板281が金属板270に対し外側面でも内側面でも面一で配置されるため、金属板270及び磁性体板281の受電側コイルRへの影響と金属板270及び磁性体板281の送電側コイルTへの影響とを容易且つ確実に等しくすることができ、また、金属板270を用いて電子機器2の筐体を構成する場合には、電子機器2のユーザに違和感を与えうる開口部271での段差が生じない。
 但し、特に例えば金属板270が電子機器2の筐体を構成しない場合にあっては(金属板270が電子機器2の最外周に位置しない場合には)、金属板270の外側面において磁性体板281が面一で配置されることは必須ではなく、また、金属板270の内側面においても磁性体板281が面一で配置されることは必須ではない。
[実施例EX3_2]
 実施例EX3_2を説明する。上述したように、開口部271を有する金属板270は、共振回路TT及びRRの共振周波数を高める方向に変化させる。この変化を打ち消して共振回路TT、RRの共振周波数を基準周波数に保つためには、夫々、送電側コイルT、受電側コイルRの近傍に磁性体板を設ければ良い。金属板270の存在による共振周波数の基準周波数からの変化を打ち消して該共振周波数を基準周波数に保つことを、ここでは「中立化」と呼ぶ。実施例EX3_2では、受電側コイルRの近傍に磁性体板を設けることで、共振回路RRに対してのみ中立化を図る。
 図31(a)及び(b)を参照する。実施例EX3_2では、磁性体部MGとして磁性体板282が設けられる。尚、本実施例に限らず、本明細書において磁性体板は厚みの薄い磁性体シートと称されるものであっても良い。磁性体部MGは、磁性体板282に加えて他の磁性体部を含みうるが、ここでは磁性体板282にのみ注目する。磁性体板282は、金属板270の存在による共振回路RRの共振周波数の基準周波数からの変化を打ち消して該共振周波数を基準周波数に保つように作用する。故に、受電側コイルRのインダクタンスL及び受電側コンデンサRの静電容量Cのみで定まる共振回路RRの共振周波数fを基準周波数に設定しておいて良い。
 図31(a)は、基準配置状態における磁性体板282、受電側コイルR、金属板270及び送電側コイルTの斜視図である。図31(b)には、金属板270及び磁性体板282の断面図(開口部271の中心を通る、YZ面に平行な断面による断面図)が、コイルT及びRと共に示されている。尚、図31(a)及び(b)では、磁性体板282をドット領域にて表現している。実際には、開口部271は樹脂材料等にて封止されるが、その封止の様子は図31(a)及び(b)に示されていない。
 磁性体板282は、XY面上において円の外形形状を有する磁性体である。但し、XY面上における磁性体板282の外形形状は任意に変更可能であり、例えば、楕円、多角形でも良い。また、磁性体板282にZ軸方向に貫通する穴部が設けられていても良い。電子機器2において、受電側コイルRが磁性体板282と金属板270との間に位置するように(換言すれば、受電側コイルRが配置される平面が磁性体板282が配置される平面と金属板270が配置される平面との間に位置するように)、受電側コイルR、磁性体板282及び金属板270が図示されない機構部品及び基板等を用いて電子機器2内に固定されている。
 送電側コイルT、受電側コイルR、金属板270及び磁性体板282に流れる電流の関係を説明する。図32(a)及び(b)にはそれらの関係が模式的に示されている。
 図32(a)を参照し、電子機器2内においては、受電側コイルRが開口部271を有する金属板270と磁気的に結合すると共に磁性体板282とも磁気的に結合する。送電側コイルTに交流電流Iが流れたことによる送電側コイルTでの発生磁界に基づき受電側コイルRに交流電流Iが流れる。そうすると、交流電流Iの流れにより受電側コイルRに発生した磁界に基づき、交流電流Iと逆方向の(即ち180度位相のずれた)交流電流I32が金属板270内の開口部271周りの電路に流れる一方で交流電流Iと同方向の(即ち交流電流Iと同じ位相を有する)交流電流I42が磁性体板282に流れる。
 図32(b)は、電流I、I、I32及びI42を複素平面上に示したものである。電流I、I及びI32の関係は既に述べた通りである(図28(c)参照)。受電側コイルR及び磁性体板282間の結合係数をK24とおくと、交流電流I42は“I42=K24×I”にて表される。
 電流I42と電流I32は互いに逆方向の電流であるため、共振回路RRに対し、磁性体板282は、開口部271を有する金属板270とは逆の作用を与える。つまり、電流I42が発生せしめられる磁性体板282の存在は、開口部271を有する金属板270とは逆に、受電側コイルRのインダクタンスを等価的に増大させるように(換言すれば共振回路RRを構成するインダクタンス成分を増大させるように)、結果、共振回路RRの共振周波数を減少させるように作用し、また、受電側コイルRに流れる電流の振幅を減少させるように作用する。
 このように、共振回路RRに対して磁性体板282は金属板270とは逆の作用を与えるため、金属板270が存在することによる共振回路RRへの影響を磁性体板282により打ち消す(減ずる)ことができる。共振回路RRに対する電流I32の作用と電流I42の作用とが互いに丁度打ち消し合うように、即ち共振回路RRに対して中立化が実現されるように、開口部271の形状、受電側コイルRの形状などに応じて、磁性体板282の形状及び配置位置などを定める。
 共振回路RRに対する中立化は送電側コイルTの位置を無視して行われ、送電側コイルTは磁性体板282よりも相対的に近い位置にある金属板270の影響を強く受ける。これを考慮し、基準配置状態で金属板270の影響を受けて(又は金属板270及び磁性体板282の影響を受けて)共振回路TTの共振周波数が増加した結果、共振回路TTの共振周波数が基準周波数となるように、離間状態において送電側コイルTのインダクタンスL及び送電側コンデンサTの静電容量Cのみで定まる共振回路TTの共振周波数fを基準周波数よりも低い所定周波数(例えば13MHz)に設定しておく。これにより、電力伝送は、共振回路TT及びRRの各共振周波数が基準周波数に設定された状態で行われることになり、上記共振周波数シフト現象に基づく影響が解消される。但し、金属板270の存在による送電側コイルTの電流振幅増加は打ち消されないため、上記電流振幅増加現象に基づく影響を解消する観点からいえば、実施例EX3_1の方が好ましい。
 磁性体板282を集積回路などに対する磁界遮断用途に流用して良い。図33に示す如く、電子機器2には、受電側IC200等の集積回路を含む電子回路ELが実装された基板SUBが設けられている。電子回路ELは受電側コイルRから見て磁性体板282の反対側に配置される。即ち、磁性体板282は集積回路を含む電子回路ELと受電側コイルRとの間に挿入される。より具体的には例えば、集積回路を含む電子回路ELを基板SUBの部品面に実装し、基板SUBの部品面と反対側の面に磁性体板(磁性体シート)282を貼り付ける。これにより、電子回路ELの動作にとって不要なコイルR又はTの発生磁界が磁性体板282にて吸収され、電子回路ELの誤動作等の抑制に寄与する。電子回路ELの誤動作等の抑制のために、電子回路EL及び受電側コイルR間に磁性体板(磁性体シート)を挿入することが元々必要であるならば、その磁性体板(磁性体シート)を共振回路RRについての中立化に流用しているとも言える。
 実施例EX3_2にて上述した内容が実現されるように、電子機器2において受電側コイルR、金属板270及び磁性体板282が図示されない機構部品及び基板等を用いて電子機器2内に固定されていると共に、給電機器1において送電側コイルTが図示されない機構部品及び基板等を用いて給電機器1内に固定され、且つ、給電機器1及び電子機器2の各筐体が形成される。
[実施例EX3_3]
 実施例EX3_3を説明する。実施例EX3_3では、基準配置状態において金属板270と送電側コイルTとの間に磁性体板が挿入されるようにすることで、共振回路TTに対し中立化を図る。
 図34(a)及び(b)を参照する。実施例EX3_3及び後述の実施例EX3_4においては、XY面上における開口部271の形状が長方形であるものとする。開口部271の形状を長方形とする場合、コイルT及びRの外周形状も長方形にしても良い。実施例EX3_3では、磁性体部MGとして磁性体板283(上述したように磁性体シートでも良い)が設けられる。磁性体部MGは、磁性体板283に加えて他の磁性体部を含みうるが、ここでは磁性体板283にのみ注目する。磁性体板283は、基準配置状態において、金属板270の存在による共振回路TTの共振周波数の基準周波数からの変化を打ち消して該共振周波数を基準周波数に保つように作用する。故に、送電側コイルTのインダクタンスL及び送電側コンデンサTの静電容量Cのみで定まる共振回路TTの共振周波数fを基準周波数に設定しておいて良い。
 図34(a)は、Z軸方向に沿って受電側コイルRの反対側から金属板270を見たときの、金属板270及び磁性体板283の平面図である。尚、図34(a)にはコイルRも示されている。図34(a)では、図示の簡略化及び煩雑化防止のため、コイルRの巻線を二重長方形にて表現しており、該二重長方形から側方に伸びる線分はコイルの引き出し線を表している(後述の図36等においても同様)。図34(b)には、金属板270及び磁性体板283の断面図(開口部271の中心を通る、YZ面に平行な断面による断面図)が、コイルT及びRと共に示されている。尚、図34(a)及び(b)では、磁性体板283をドット領域にて表現している。実際には、開口部271は樹脂材料等にて封止されるが、その封止の様子は図34(a)及び(b)に示されていない。
 磁性体板283は、開口部271の周りにおいて金属板270の一部を覆うように、金属板270の外側面に貼り付けられたロの字状の磁性体板である。既に述べたように、金属板270において、外側面とは内側面よりも送電側コイルTに近い面であり、従って内側面とは外側面よりも受電側コイルRに近い面である。金属板270と同様、磁性体板283も開口部を有し、XY面上において磁性体板283の開口部の内側に金属板270の開口部271が存在する。尚、ここで示す磁性体板283の外形形状は例示に過ぎず、例えば磁性体板283の外形形状は曲線を含んでいても良い(円又は楕円などでもよい)。また、磁性体板283に開口部が存在していなくても良い。
 上述の位置関係から明らかなように、金属板270は受電側コイルRと磁性体板283との間に配置され(換言すれば、金属板270が配置される平面は受電側コイルRが配置される平面と磁性体板283が配置される平面との間に配置され)、基準配置状態では磁性体板283が金属板270と送電側コイルTとの間に配置されることになる(換言すれば、基準配置状態では磁性体板283が配置される平面は金属板270が配置される平面と送電側コイルTが配置される平面との間に配置されることになる)。
 送電側コイルT、金属板270及び磁性体板283に流れる電流の関係を説明する。図35にはそれらの関係が模式的に示されている。基準配置状態では、送電側コイルTが開口部271を有する金属板270と磁気的に結合すると共に磁性体板283とも磁気的に結合する。送電側コイルTに交流電流Iが流れると、それにより送電側コイルTにて発生した磁界に基づき、交流電流Iと逆方向の(即ち180度位相のずれた)交流電流I31が金属板270内の開口部271周りの電路に流れる一方で交流電流Iと同方向の(即ち交流電流Iと同じ位相を有する)交流電流I41が磁性体板283に流れる。
 電流I41と電流I31は互いに逆方向の電流であるため、共振回路TTに対し、磁性体板283は、開口部271を有する金属板270とは逆の作用を与える。つまり、電流I41が発生せしめられる磁性体板283の存在は、開口部271を有する金属板270とは逆に、送電側コイルTのインダクタンスを等価的に増大させるように(換言すれば共振回路TTを構成するインダクタンス成分を増大させるように)、結果、共振回路TTの共振周波数を減少させるように作用し、また、送電側コイルTに流れる電流の振幅を減少させるように作用する。
 このように、共振回路TTに対して磁性体板283は金属板270とは逆の作用を与えるため、金属板270が存在することによる共振回路TTへの影響を磁性体板283により打ち消す(減ずる)ことができる。共振回路TTに対する電流I31の作用と電流I41の作用とが互いに丁度打ち消し合うように、即ち共振回路TTに対して中立化が実現されるように、開口部271の形状、送電側コイルTの形状などに応じて、磁性体板283の形状及び配置位置などを定める。
 仮に金属板270の外側面の全体を磁性体板283で覆うと、送電側コイルTに対する金属板270の影響が殆ど無くなる一方で、磁性体板283の影響が不必要に強くなりすぎる。故に、金属板270の一部を磁性体板283で覆うようにしている。この際、共振回路TTに対する金属板270の作用が磁性体板283の作用によってちょうど打ち消されるように、金属板270の外側面において磁性体板283にて覆われている部分の面積と磁性体板283にて覆われていない部分の面積との比を決定すると共に、磁性体板283の形状及び磁性体板283の貼り付け位置を決定すると良い。例えば、金属板270がアルミニウムにて形成され且つ磁性体板283がフェライトにて形成される場合、フェライトによる送電側コイルTのインダクタンス増大特性はアルミニウムによる送電側コイルTのインダクタンス減少特性よりも大きいこと考慮しつつ、適宜実験等を介して上記面積比を決定すると良い。
 実施例EX3_3の構成によれば、金属板270の存在による送電側コイルTの電流振幅増加を磁性体板283により打ち消す(減じる)ことができるため、上記電流振幅増加現象に基づく影響が解消される。
 一方、受電側コイルRは磁性体板283よりも相対的に近い位置にある金属板270の影響を強く受ける。図34(a)及び(b)に示すように磁性体板283を金属板270の外側面に設けた場合、受電側コイルRに対する磁性体板283の影響は無視できる程度に小さい。これを考慮し、金属板270の影響を受けて(又は金属板270及び磁性体板283の影響を受けて)共振回路RRの共振周波数が増加した結果、共振回路RRの共振周波数が基準周波数となるように、受電側コイルRのインダクタンスL及び受電側コンデンサTの静電容量Cのみで定まる共振回路RRの共振周波数fを基準周波数よりも低い所定周波数(例えば13MHz)に設定しておく。これにより、電力伝送は、共振回路TT及びRRの各共振周波数が基準周波数に設定された状態で行われることになり、上記共振周波数シフト現象に基づく影響も解消される。
 尚、ここでは、磁性体板283が金属板270の外側面に接している、即ち、磁性体板283と金属板270の外側面との距離がゼロであることを想定しているが、該距離が正の所定値を持つように(磁性体板283を受電側コイルRから離れる方向に)磁性体板283の配置位置をシフトすることも可能である。
 図36は、Z軸方向に沿って受電側コイルRの反対側から金属板270を見たときの、金属板270及び磁性体板283の平面図であって、磁性体板283の他の構成例を示す図である。図36にはコイルRも示されている。図36の例では、磁性体板283が互いに分離した磁性体板283a、283b及び283cから構成される。磁性体板283a、283b及び283cの夫々は、開口部271を中心に金属板270の外側面に貼り付けられたロの字状の磁性体板である。XY面において、磁性体板283a、283b及び283cの大きさは互いに異なり、磁性体板283aの大きさが最も大きく且つ磁性体板283cの大きさが最も小さい。より詳細には、XY面において、磁性体板283a~283cの夫々は開口部を有する長方形状の磁性体板であり、磁性体板283aの開口部の内側に磁性体板283bが配置されると共に磁性体板283bの開口部の内側に磁性体板283cが配置され、且つ、磁性体板283cの開口部は金属板270の開口部271と一致する(又は、図36に示すものと異なるが、磁性体板283cの開口部の内側に金属板270の開口部271が位置する)。
 図34(a)及び(b)並びに図36に示した磁性体板283の形状は例示に過ぎず、様々に変更可能である。例えば、上述したようなロの字状の切れ目の無い磁性体板を金属板270上に貼り付けるのではなく、複数の短冊状(即ち長方形状)の磁性体板を、該複数の短冊状の磁性体板が全体として金属板270上でロの字状に配列されるように、金属板270の外側面に貼り付けるようにしても良い。
 実施例EX3_3にて上述した内容が実現されるように、電子機器2において受電側コイルR、金属板270及び磁性体板283が図示されない機構部品及び基板等を用いて電子機器2内に固定されていると共に、給電機器1において送電側コイルTが図示されない機構部品及び基板等を用いて給電機器1内に固定され、且つ、給電機器1及び電子機器2の各筐体が形成される。
[実施例EX3_4]
 実施例EX3_4を説明する。実施例EX3_4では、受電側コイルRと金属板270との間に磁性体板が挿入されるようにすることで、共振回路RRに対し中立化を図る。
 図37(a)及び(b)を参照する。実施例EX3_4では、磁性体部MGとして磁性体板284(上述したように磁性体シートでも良い)が設けられる。磁性体部MGは、磁性体板284に加えて他の磁性体部を含みうるが、ここでは磁性体板284にのみ注目する。磁性体板284は、電子機器2内で、金属板270の存在による共振回路RRの共振周波数の基準周波数からの変化を打ち消して該共振周波数を基準周波数に保つように作用する。故に、受電側コイルRのインダクタンスL及び受電側コンデンサRの静電容量Cのみで定まる共振回路RRの共振周波数fを基準周波数に設定しておいて良い。
 図37(a)は、Z軸方向に沿って受電側コイルRの存在する側から金属板270を見たときの、金属板270及び磁性体板284の平面図である。図37(a)にはコイルRも示されている。図37(b)には、金属板270及び磁性体板284の断面図(開口部271の中心を通る、YZ面に平行な断面による断面図)が、コイルT及びRと共に示されている。尚、図37(a)及び(b)では、磁性体板284をドット領域にて表現している。実際には、開口部271は樹脂材料等にて封止されるが、その封止の様子は図37(a)及び(b)に示されていない。
 磁性体板284は、開口部271の周りにおいて金属板270の一部を覆うように、金属板270の内側面に貼り付けられたロの字状の磁性体板である。既に述べたように、金属板270において、内側面とは外側面よりも受電側コイルRに近い面である。金属板270と同様、磁性体板284も開口部を有し、XY面上において磁性体板284の開口部の内側に金属板270の開口部271が存在する。尚、ここで示す磁性体板284の外形形状は例示に過ぎず、例えば磁性体板284の外形形状は曲線を含んでいても良い(円又は楕円などでもよい)。また、磁性体板284に開口部が存在していなくても良い。
 上述の位置関係から明らかなように、磁性体板284は受電側コイルRと金属板270との間に配置される(換言すれば、磁性体板284が配置される平面は受電側コイルRが配置される平面と金属板270が配置される平面との間に配置される)ことになる。
 受電側コイルR、金属板270及び磁性体板284に流れる電流の関係を説明する。図38にはそれらの関係が模式的に示されている。電子機器2内においては、受電側コイルRが開口部271を有する金属板270と磁気的に結合すると共に磁性体板284とも磁気的に結合する。そうすると、受電側コイルRに交流電流Iが流れたことで受電側コイルRに発生した磁界に基づき、交流電流Iと逆方向の(即ち180度位相のずれた)交流電流I32が金属板270内の開口部271周りの電路に流れる一方で交流電流Iと同方向の(即ち交流電流Iと同じ位相を有する)交流電流I42が磁性体板284に流れる。
 電流I42と電流I32は互いに逆方向の電流であるため、共振回路RRに対し、磁性体板284は、開口部271を有する金属板270とは逆の作用を与える。つまり、電流I42が発生せしめられる磁性体板284の存在は、開口部271を有する金属板270とは逆に、受電側コイルRのインダクタンスを等価的に増大させるように(換言すれば共振回路RRを構成するインダクタンス成分を増大させるように)、結果、共振回路RRの共振周波数を減少させるように作用し、また、受電側コイルRに流れる電流の振幅を減少させるように作用する。
 このように、共振回路RRに対して磁性体板284は金属板270とは逆の作用を与えるため、金属板270が存在することによる共振回路RRへの影響を磁性体板284により打ち消す(減ずる)ことができる。共振回路RRに対する電流I32の作用と電流I42の作用とが互いに丁度打ち消し合うように、即ち共振回路RRに対して中立化が実現されるように、開口部271の形状、受電側コイルRの形状などに応じて、磁性体板284の形状及び配置位置などを定める。
 仮に金属板270の内側面の全体を磁性体板284で覆うと、受電側コイルRに対する金属板270の影響が殆ど無くなる一方で、磁性体板284の影響が不必要に強くなりすぎる。故に、金属板270の一部を磁性体板284で覆うようにしている。この際、共振回路RRに対する金属板270の作用が磁性体板284の作用によってちょうど打ち消されるように、金属板270の内側面において磁性体板284にて覆われている部分の面積と磁性体板284にて覆われていない部分の面積との比を決定すると共に、磁性体板284の形状及び磁性体板284の貼り付け位置を決定すると良い。例えば、金属板270がアルミニウムにて形成され且つ磁性体板284がフェライトにて形成される場合、フェライトによる受電側コイルRのインダクタンス増大特性はアルミニウムによる受電側コイルRのインダクタンス減少特性よりも大きいこと考慮しつつ、適宜実験等を介して上記面積比を決定すると良い。
 一方、送電側コイルTは磁性体板284よりも相対的に近い位置にある金属板270の影響を強く受ける。図37(a)及び(b)に示すように磁性体板284を金属板270の内側面に設けた場合、送電側コイルTに対する磁性体板284の影響は無視できる程度に小さい。これを考慮し、基準配置状態で金属板270の影響を受けて(又は金属板270及び磁性体板284の影響を受けて)共振回路TTの共振周波数が増加した結果、共振回路TTの共振周波数が基準周波数となるように、離間状態において送電側コイルTのインダクタンスL及び送電側コンデンサTの静電容量Cのみで定まる共振回路TTの共振周波数fを基準周波数よりも低い所定周波数(例えば13MHz)に設定しておく。これにより、電力伝送は、共振回路TT及びRRの各共振周波数が基準周波数に設定された状態で行われることになり、上記共振周波数シフト現象に基づく影響が解消される。但し、金属板270の存在による送電側コイルTの電流振幅増加は打ち消されないため、上記電流振幅増加現象に基づく影響を解消する観点からいえば、実施例EX3_1又はEX3_3の方が好ましい。
 尚、ここでは、磁性体板284が金属板270の内側面に接している、即ち、磁性体板284と金属板270の内側面との距離がゼロであることを想定しているが、該距離が正の所定値を持つように(磁性体板284が受電側コイルRに近づく方向に)磁性体板284の配置位置をシフトすることも可能である。また、実施例EX3_3において、図34(a)に示す磁性体板283を図36のそれに変形できるのと同様に、磁性体板284を互いに分離した複数の磁性体板にて構成するようにしても良い。
 ここで示した磁性体板284の形状は例示に過ぎず、様々に変更可能である。例えば、上述したようなロの字状の切れ目の無い磁性体板を金属板270上に貼り付けるのではなく、複数の短冊状(即ち長方形状)の磁性体板を、該複数の短冊状の磁性体板が全体として金属板270上でロの字状に配列されるように、金属板270の内側面に貼り付けるようにしても良い。
 実施例EX3_4にて上述した内容が実現されるように、電子機器2において受電側コイルR、金属板270及び磁性体板284が図示されない機構部品及び基板等を用いて電子機器2内に固定されていると共に、給電機器1において送電側コイルTが図示されない機構部品及び基板等を用いて給電機器1内に固定され、且つ、給電機器1及び電子機器2の各筐体が形成される。
[実施例EX3_5]
 実施例EX3_5を説明する。実施例EX3_5では、第3実施形態の非接触給電システムにおける初期設定環境(図13)について説明する。
 実施例EX3_2及びEX3_4では、基準配置状態において金属板270の影響を受けて共振回路TTの共振周波数が基準周波数となり、金属板270の影響を受けない離間状態では共振回路TTの共振周波数が基準周波数よりも低い。故に、実施例EX3_2及びEX3_4では、第1実施形態で述べた初期設定環境を以下の変形初期設定環境に置き換えると良い(その置き換えを、実施例EX3_1及びEX3_3にも適用するようにしても構わない)。変形初期設定環境では、基準配置状態にて電子機器2が給電台12上に載置され、且つ、電子機器2にてfo変更/短絡動作が継続実行される。
 <<本発明の第2考察>>
 上述の各実施形態(特に第3実施形態)にて具体化された本発明について考察する。
 本発明の一側面に係る受電装置WBは、電力を送電するための送電側コイル(T)を含む送電側共振回路(TT)を有する送電装置から磁界共鳴方式で前記電力を受電可能な受電装置において、前記電力を受電するための受電側コイル(R)を含む受電側共振回路(RR)と、前記受電側コイルの配置位置の対向位置に開口部(271)を設けた金属板(270)を有する金属部(MT)と、を備え、前記送電装置及び当該受電装置が前記電力の送受電を行うための所定位置関係にあるとき、前記開口部は前記送電側コイルと前記受電側コイルとの間に位置し、前記受電側共振回路の共振周波数及び前記送電側共振回路の共振周波数の少なくとも一方に影響を与える位置に磁性体部を設けたことを特徴とする。
 金属板を有する金属部は、機械的強度や質感向上などの観点から受電装置に設けられうる。この際、開口部を有する金属板はコイルとの磁気結合を通じて各共振回路の共振周波数に変化をもたらすように作用するが、磁性体部を設けることで該変化を打ち消すことが可能となり、磁界共鳴方式による所望の送受電が可能となる。
 本発明の一側面に係る非接触給電システムWBは、受電装置WBと、電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置と、を備え、磁界共鳴方式で前記電力の送受電が可能であることを特徴とする。
 具体的には例えば、非接触給電システムWBにおいて、前記送電装置は、前記送電側共振回路に交流電圧を供給可能な送電回路と、前記送電側コイルに流れる電流の振幅を検出する検出回路と、前記検出回路の振幅検出値に基づき前記送電回路を制御することで前記電力の送電制御を行う制御回路と、を備えていると良い。
 そして例えば、受電装置WBに関し、前記受電装置は、前記送電装置からの電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路を備え、前記制御回路は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路による振幅検出値に基づき前記送電の実行可否を判断する第2処理部と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有し、前記送電側コイルの発生磁界に基づき前記金属板と前記磁性体部には互いに逆方向の電流が流れると良い。
 開口部を有する金属板には送電側コイルの発生磁界に基づく電流が流れ、金属板に流れた電流は送電側コイルに電圧を発生させて送電側コイルの電流振幅に変化をもたらす。一方、磁性体部にも送電側コイルの発生磁界に基づく電流が流れるが、磁性体部の電流の方向(位相)は金属板のそれと逆である。故に、金属板の存在による送電側コイルの電流振幅変化を磁性体部によって打ち消すことが可能となり、結果、送電側コイルの電流振幅を利用した送電の実行可否判断の正確性を担保することが可能となる。
 尚、上述の各実施形態における給電機器1そのものが本発明に係る送電装置として機能しても良いし、上述の各実施形態における給電機器1の一部が本発明に係る送電装置として機能しても良い。同様に、上述の各実施形態における電子機器2そのものが本発明に係る受電装置として機能しても良いし、上述の各実施形態における電子機器2の一部が本発明に係る受電装置として機能しても良い。
<<第4実施形態>>
 本発明の第4実施形態を説明する。本発明の第4実施形態では、第2実施形態の金属板270に対しスリット部を追加形成することで共振周波数シフト現象及び電流振幅増加現象の発生を抑制し、それらの現象に基づく影響を解消又は軽減する。スリット部は、開口部271から金属板270の外周に向けて形成される。第4実施形態は第1及び第2実施形態を基礎とする実施形態であり、第4実施形態において特に述べない事項に関しては、矛盾の無い限り、第1及び第2実施形態の記載が第4実施形態にも適用される(矛盾する事項に関しては第4実施形態の記載が優先される)。
 以下、第4実施形態に属する実施例EX4_1~EX4_3の中で、スリット部の詳細構造等を説明する。尚、矛盾無き限り、実施例EX4_1~EX4_3の内、任意の実施例で記載した事項を、他の任意の実施例に適用することもできる。
[実施例EX4_1]
 実施例EX4_1を説明する。実施例EX4_1において、金属板270に設けられるスリット部は、開口部271から金属板270の外周まで至る切断スリットを含む。
 図39(a)及び(b)を参照し、実施例EX4_1においては、金属板270として2枚の金属板270A及び270Bが設けられる。金属板270A、270Bにおける開口部271を、夫々、記号271A、271Bにて参照する。また、実施例EX4_1に係る電子機器2には、樹脂材料又はゴムなどの絶縁体にて構成された絶縁板280が設けられており、図39(b)に示す如く、金属板270A及び270Bは絶縁板280を挟んで互いの絶縁状態を維持しつつ結合される。
 図39(a)は、金属板270A、絶縁板280及び金属板270Bの分解斜視図である。図39(b)は、金属板270A、絶縁板280及び金属板270Bが結合されている状態での金属板270A、絶縁板280及び金属板270Bの斜視図である。
 基準配置状態において金属板270A及び270Bの夫々はXY面に平行である。開口部271A、271Bは、夫々、金属板270A、270Bに設けられたZ軸方向に貫通する穴であり、従って開口部271A及び271Bには金属が存在しない。
 金属板270A及び金属板270B間の絶縁状態を実現できる限り、絶縁板280の形状は任意であるが、ここでは、XY面上における絶縁板280の外形形状は金属板270A及び金属板270Bの外形形状と同じであるとする。絶縁板280には、開口部271A及び271Bの夫々と同じ形状及び大きさを有した開口部280Hが設けられており、開口部271A、280H及び271Bの外周形状をXY面に投影した際、それらの外周形状は互いに重なり合う。ここでは、開口部271A及び271Bの外周形状として円を想定しているため、開口部280Hの外周形状も円となっているが、第2実施形態で述べたように、それらの外周形状は円に限定されない。尚、絶縁板280に開口部280Hが設けられていなくても良い。
 金属板270Aには、開口部271Aの外周の所定位置から金属板270Aの外周まで至る切断スリット272Aが設けられている。切断スリット272Aは、金属板270Aに設けられた、Z軸方向に貫通し且つ所定幅を有した線状の穴である。切断スリット272Aにより開口部271A及び金属板270Aの外周間が完全に切断されているため、開口部271A周りに電路(電流ループ)は形成されない。
 金属板270Bには、開口部271Bの外周の所定位置から金属板270Bの外周まで至る切断スリット272Bが設けられている。切断スリット272Bは、金属板270Bに設けられた、Z軸方向に貫通し且つ所定幅を有した線状の穴である。切断スリット272Bにより開口部271B及び金属板270Bの外周間が完全に切断されているため、開口部271B周りに電路(電流ループ)は形成されない。
 図40は、X軸方向から見た金属板270A、絶縁板280及び金属板270Bの分解平面図である。図41は、金属板270A、絶縁板280及び金属板270Bが結合されている状態での金属板270A、絶縁板280及び金属板270Bの断面図である。図41にはコイルT及びRも示されている。図41の断面図における断面は、開口部271A、280H、271Bの中心を通る、YZ面に平行な断面である。尚、実際には、開口部271A、280H及び271B並びに切断スリット272A及び272Bは樹脂材料等にて封止されるが、その封止の様子は、図39(a)及び(b)、図40並びに図41に示されていない。
 開口部271A、280H及び271Bの夫々は受電側コイルRの配置位置の対向位置(受電側コイルRの配置位置に対して対向する位置)に設けられており、基準配置状態では、開口部271A、280H及び271BがコイルT及びR間に位置して、コイルT及びRが開口部271A、280H及び271Bを介して互いに対向し合うことになる。XY面において開口部271A、271Bの夫々の大きさはコイルT及びRの夫々の大きさよりも大きく、開口部271の大きさに関して第2実施形態で述べた事項が開口部271A及び271Bの夫々に対しても適用される。このため、コイルT及びRを用いた電力伝送を、若干の損失はあるものの良好に実現できる。
 上述の如く、開口部271Aと金属板270Aの外周との間を完全に切断する切断スリット272Bを金属板270Aに設けると、コイルT及びRの発生磁界に基づく電流が金属板270Aに誘起されない。金属板270Bについても同様である。従って、共振周波数シフト現象及び電流振幅増加現象が発生せず、結果、それらの現象に基づく影響も現れなくなる。
 共振周波数シフト現象及び電流振幅増加現象を発生させないことのみに着目すれば、電子機器2において、金属板270として金属板270Aのみを設けるという方策も取り得て良い(この場合、絶縁板280は不要である)。但し、金属板270Aに切断スリット272Aが設けられることに起因して金属板270Aの構造的強度が低くなるため、特に例えば金属板を用いて電子機器2の筐体を構成する場合には、金属板270として金属板270Aのみを設けるという方策は好ましくないこともある。
 そこで、実施例EX4_1に係る電子機器2では、開口部及び切断スリットを設けた金属板を、複数、互いに絶縁された状態で積層している(ここでは、積層される金属板の枚数が2であることを例示しているが、該枚数を3以上にすることも可能である)。この際、複数の金属板に平行な平面(即ちXY面に平行な平面)内において、複数の金属板における複数の切断スリットを互いに異なる位置に形成する。
 金属板270A及び270Bに注目した場合、金属板270A及び270Bに平行な平面(即ちXY面に平行な平面)内において、切断スリット272A及び272Bは互いに異なる位置に形成されている。換言すれば、金属板270A及び270Bに平行な平面へ切断スリット272A及び272Bを投影したとき、それらの投影像は互いに異なる位置に形成される。このように切断スリット272A及び272Bの形成位置を工夫することで、金属板270A及び270B間で構造的強度が比較的弱い部分を補完し合うことができ、全体として必要な構造的強度を得ることが可能となる。
 図39(a)に示す例では、金属板270Aにおいて、切断スリット272Aは、開口部271Aの外周上の所定位置から所定の第1の向きに伸びる切断スリットである一方、金属板270Bにおいて、切断スリット272Bは、開口部271Bの外周上の所定位置から所定の第2の向きに伸びる切断スリットである。第1及び第2の向きは、XY面に平行な向きであって、且つ、互いに逆の向きである。尚、第1及び第2の向きは、互いに直交する向き等であっても良い。
 送電側コイルTのインダクタンスをLにて表し且つ送電側コンデンサTの静電容量をCで表すと、L及びCのみで定まる共振回路TTの共振周波数fは、1/(2π(L1/2)となる(即ち、2πと(L)の平方根との積の逆数となる)。受電側コイルRのインダクタンスをLにて表し且つ受電側コンデンサRの静電容量をCで表すと、L及びCのみで定まる共振回路RRの共振周波数fは、1/(2π(L1/2)となる(即ち、2πと(L)の平方根との積の逆数となる)。実施例EX4_1では、共振周波数シフト現象が発生しないため、第1実施形態と同様、共振回路TTの共振周波数fも共振回路RRの共振周波数f(第1実施形態では記号fにて表現)も、所定の基準周波数(13.56MHz)に設定しておけば良い。
 実施例EX4_1にて上述した内容が実現されるように、電子機器2において受電側コイルR、金属板270A、絶縁板280及び金属板270Bが図示されない機構部品及び基板等を用いて電子機器2内に固定されていると共に、給電機器1において送電側コイルTが図示されない機構部品及び基板等を用いて給電機器1内に固定され、且つ、給電機器1及び電子機器2の各筐体が形成される。
[実施例EX4_2]
 実施例EX4_2を説明する。実施例EX4_2に係る金属板270を金属板270Cと称する。
 図42は、金属板270Cの平面図である。金属板270Cは、第2実施形態で述べた金属板270にスリット群を追加形成した構成を有する。スリット群は、開口部271から金属板270Cの外周に向けて互いに異なる位置に形成された複数のスリット272Cから成る。スリット272Cの個数は2以上であれば幾つでも良いが、共振周波数シフト現象及び電流振幅増加現象の抑制度合いを向上させる観点から言えば、或る程度の個数が有った方が好ましく(例えば4以上とされ)、また、開口部271周りに形成される電路の長さを効果的に長くするために複数のスリット272Cを放射状に形成すると良い。尚、実際には、開口部271及び各スリット272Cは樹脂材料等にて封止されるが、その封止の様子は図42に示されていない。
 図42におけるスリット群の具体的構成例を説明する。上述したように、XY面上における開口部271の外周形状は円である。その円の円周を6分割する6つの点を第1~第6の点と呼ぶ。開口部271の中心から第iの点に向かう向きに沿って、第iの点から金属板270Cの外周に向け所定長さの第iの線分を描くとする(iは整数)。第iの線分の位置に所定幅を有した第iのスリット272Cが設けられる。つまり、図42の例では、開口部271から金属板270Cの外周に向けて第1~第6のスリット272Cが放射状に形成され、第1~第6のスリット272Cによってスリット群が構成される。
 各スリット272Cは、金属板270Cに設けられたZ軸方向に貫通する穴であり、従って各スリット272Cの部分には金属が存在しない。但し、各スリット272Cと金属板270Cの外周との間には接点が無い。つまり、開口部271から伸びる各スリット272Cは金属板270Cの外周に至る手前で終了しており、結果、各スリット272Cと金属板270Cの外周との間には金属板270Cを構成する金属が残存する。
 このため、実施例EX4_1の切断スリットを設ける場合と比べて金属板単体での構造的強度は高くなるが、一方で、図43に示す如く、開口部271及びスリット群の周りには金属板270Cを構成する金属による電路(電流ループ)が構成される。すると、第2実施形態の構成と同様に、送電側コイルTに交流電流Iが流れると開口部271周りの電路に交流電流I31が流れると共に、受電側コイルRに交流電流Iが流れると開口部271周りの電路に交流電流I32が流れる(図28(a)及び(b)参照)。
 しかし、スリット群が無い場合と比べ、開口部271周りの電路の径は大きくなっているため、送電側コイルT及び金属板270間の結合係数K13並びに受電側コイルR及び金属板270間の結合係数K23は小さくなる(図28(c)参照)。結果、共振周波数シフト現象及び電流振幅増加現象が部分的に抑制されて、それらの現象に基づく影響が軽減される。
 尚、図28(c)に示した関係からも理解できるように、受電側コイルRのQを増加させるにつれて電流Iが相対的に電流I32よりも大きくなってゆき(究極的には電流I32を無視できるようになり)、電流I32による影響が低減してゆくため、受電側コイルRのQがなるだけ大きくなるように共振回路RRを構成しておくことが好ましい。例えば、受電側コイルRにおいて、巻線の巻数を少なくしたり、巻線を太くしたりすることで、受電側コイルRのQを増大させることができる。
 実施例EX4_2では、抑制されているとはいえ或る程度の共振周波数シフト現象が発生するため、以下のように共振周波数を定めておくと良い。
 基準配置状態で金属板270の影響を受けて共振回路TTの共振周波数が増加した結果、共振回路TTの共振周波数が基準周波数となるように、離間状態において送電側コイルTのインダクタンスL及び送電側コンデンサTの静電容量Cのみで定まる共振回路TTの共振周波数fを基準周波数よりも低い所定周波数(例えば13MHz)に設定しておく。同様に、金属板270の影響を受けて共振回路RRの共振周波数が増加した結果、共振回路RRの共振周波数が基準周波数となるように、受電側コイルRのインダクタンスL及び受電側コンデンサTの静電容量Cのみで定まる共振回路RRの共振周波数fを基準周波数よりも低い所定周波数(例えば13MHz)に設定しておく。
 これにより、電力伝送は、共振回路TT及びRRの各共振周波数が基準周波数に設定された状態で行われることになり、上記共振周波数シフト現象に基づく影響が完全に解消される。但し、金属板270の存在による送電側コイルTの電流振幅増加は完全に打ち消されないため、上記電流振幅増加現象に基づく影響を解消する観点からいえば、実施例EX4_1の方が好ましい。
 実施例EX4_2にて上述した内容が実現されるように、電子機器2において受電側コイルR及び金属板270Cが図示されない機構部品及び基板等を用いて電子機器2内に固定されていると共に、給電機器1において送電側コイルTが図示されない機構部品及び基板等を用いて給電機器1内に固定され、且つ、給電機器1及び電子機器2の各筐体が形成される。
[実施例EX4_3]
 実施例EX4_3を説明する。実施例EX4_3では、第4実施形態の非接触給電システムにおける初期設定環境(図13)について説明する。
 実施例EX4_2では、基準配置状態において金属板270の影響を受けて共振回路TTの共振周波数が基準周波数となり、金属板270の影響を受けない離間状態では共振回路TTの共振周波数が基準周波数よりも低い。故に、実施例EX4_2では、第1実施形態で述べた初期設定環境を以下の変形初期設定環境に置き換えると良い(その置き換えを、実施例EX4_1にも適用するようにしても構わない)。変形初期設定環境では、基準配置状態にて電子機器2が給電台12上に載置され、且つ、電子機器2にてfo変更/短絡動作が継続実行される。
 <<本発明の第3考察>>
 上述の各実施形態(特に第4実施形態)にて具体化された本発明について考察する。
 本発明の一側面に係る受電装置WCは、電力を送電するための送電側コイル(T)を含む送電側共振回路(TT)を有する送電装置から磁界共鳴方式で前記電力を受電可能な受電装置において、前記電力を受電するための受電側コイル(R)を含む受電側共振回路(RR)と、前記受電側コイルの配置位置の対向位置に開口部(271)を設けた金属板を有する金属部(MT)と、を備え、前記送電装置及び当該受電装置が前記電力の送受電を行うための所定位置関係にあるとき、前記開口部は前記送電側コイルと前記受電側コイルとの間に位置し、前記金属板において、前記開口部から前記金属板の外周に向けてスリット部を形成したことを特徴とする。
 金属板を有する金属部は、機械的強度や質感向上などの観点から受電装置に設けられうる。この際、開口部を有する金属板はコイルとの磁気結合を通じて各共振回路の共振周波数に変化をもたらすように作用するが、スリット部を設けることで該変化を抑制することが可能となり、磁界共鳴方式による所望の送受電が可能となる。
 本発明の一側面に係る非接触給電システムWCは、受電装置WCと、電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置と、を備え、磁界共鳴方式で前記電力の送受電が可能であることを特徴とする。
 具体的には例えば、非接触給電システムWCにおいて、前記送電装置は、前記送電側共振回路に交流電圧を供給可能な送電回路と、前記送電側コイルに流れる電流の振幅を検出する検出回路と、前記検出回路の振幅検出値に基づき前記送電回路を制御することで前記電力の送電制御を行う制御回路と、を備えていると良い。
 そして例えば、受電装置WCに関し、前記受電装置は、前記送電装置からの電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路と、を備え、前記制御回路は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路による振幅検出値に基づき前記送電の実行可否を判断する第2処理部と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有していると良い。
 開口部を有する金属板に送電側コイルの発生磁界に基づく電流が流れたとすれば、金属板に流れた電流は送電側コイルに電圧を発生させて送電側コイルの電流振幅に変化をもたらす。スリット部を設けることで送電側コイルの発生磁界に基づく金属板での電流が無くなる又は低減されるため、送電側コイルの電流振幅を利用した送電の実行可否判断の正確性を担保することが可能となる。
 尚、上述の各実施形態における給電機器1そのものが本発明に係る送電装置として機能しても良いし、上述の各実施形態における給電機器1の一部が本発明に係る送電装置として機能しても良い。同様に、上述の各実施形態における電子機器2そのものが本発明に係る受電装置として機能しても良いし、上述の各実施形態における電子機器2の一部が本発明に係る受電装置として機能しても良い。
 <<変形等>>
 本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。上述の実施形態に適用可能な注釈事項として、以下に、注釈1~注釈3を記す。各注釈に記載した内容は、矛盾なき限り、任意に組み合わせることが可能である。
[注釈1]
 上述の実施形態では、各種の信号の周波数や共振周波数を、基準周波数としての13.56MHzに設定することを述べたが、13.56MHzは設定の目標値であって、実際の機器における、それらの周波数には誤差が含まれる。
[注釈2]
 本発明をNFCの規格に沿って具現化したものを実施形態中に示したため、基準周波数が13.56MHzであると述べたが、基準周波数は13.56MHz以外でも構わない。これに関連するが、本発明が適用される給電機器及び電子機器間の通信及び電力伝送は、NFC以外の規格に沿った通信及び電力伝送であっても良い。
 本発明に係る非接触給電システムの基準周波数が13.56MHz以外の周波数(例えば、6.78MHz)に設定されていて且つ非接触ICカードとして形成された異物3における共振回路JJの共振周波数が13.56MHzである場合にも、異物3が給電台12に置かれた際には、pFOD処理又はmFOD処理にて電圧値Vに相応量の変化がみられるため、そのような場合にも、上述の方法により異物3の検出が可能である。
[注釈3]
 本発明に係る受電装置又は送電装置である対象装置を、集積回路等のハードウェア、或いは、ハードウェアとソフトウェアの組み合わせによって構成することができる。対象装置にて実現される機能の全部又は一部である任意の特定の機能をプログラムとして記述して、該プログラムを対象装置に搭載可能なフラッシュメモリに保存しておいても良い。そして、該プログラムをプログラム実行装置(例えば、対象装置に搭載可能なマイクロコンピュータ)上で実行することによって、その特定の機能を実現するようにしてもよい。上記プログラムは任意の記録媒体に記憶及び固定されうる。上記プログラムを記憶及び固定する記録媒体は対象装置と異なる機器(サーバ機器等)に搭載又は接続されても良い。
  1 給電機器
  2 電子機器
130 NFC送電回路
140 負荷検出回路
160 制御回路
270、270A~270C 金属板
271、271A、271B 開口部
272A、272B 切断スリット
272C スリット
280 絶縁板
281~284 磁性体板
 TT 送電側共振回路
 T 送電側コイル
 T 送電側コンデンサ
 RR 受電側共振回路
 R 受電側コイル
 R 受電側コンデンサ

Claims (39)

  1.  受電装置に対し磁界共鳴方式で電力を送電可能な送電装置において、
     前記電力を送電するための送電側コイルを含む送電側共振回路と、
     前記送電側共振回路に交流電圧を供給可能な送電回路と、
     前記送電側コイルに流れる電流の振幅を検出する検出回路と、
     前記送電回路を制御することで前記電力の送電制御を行う制御回路と、を備え、
     前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値に基づいて前記送電の継続是非を制御する
    ことを特徴とする送電装置。
  2.  前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が所定範囲を逸脱しているか否かを監視することで、前記送電の継続是非を制御する
    ことを特徴とする請求項1に記載の送電装置。
  3.  前記制御回路は、前記電力の送電が行われているときにおいて、前記検出回路の振幅検出値の前記所定範囲からの逸脱が検出された際、前記送電を停止させる
    ことを特徴とする請求項2に記載の送電装置。
  4.  前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が前記所定範囲を逸脱しているか否かを判断することで、前記受電装置と異なり且つ前記送電側コイルの発生磁界に基づく電流を発生させられる異物の存否を判断し、前記異物が存在すると判断した場合に前記送電を停止させる
    ことを特徴とする請求項2又は3に記載の送電装置。
  5.  前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が前記所定範囲の上限値を超えているか否かを判断することで、前記異物としての、コイルを含んだ異物の存否を判断する
    ことを特徴とする請求項4に記載の送電装置。
  6.  前記受電装置は、前記電力を受電するための受電側コイルを含む受電側共振回路と、前記電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路と、を備え、
     前記制御回路は、当該送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路の振幅検出値に基づき前記送電の実行可否を判断する第2処理部と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有し、
     前記検出回路は、前記送電側コイルに流れる電流の振幅を示す信号を増幅する処理を経て前記振幅を検出し、前記増幅における増幅率は、前記送電側コイルにて前記テスト磁界が発生せしめられているときよりも、前記送電側コイルにて前記送電用磁界が発生せしめられているときの方が小さい
    ことを特徴とする請求項1~5の何れかに記載の送電装置。
  7.  電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置と、前記電力を受電するための受電側コイルを含む受電側共振回路を有する受電装置と、を備え、磁界共鳴方式で前記電力の送受電が可能な非接触給電システムにおいて、
     前記送電装置は、
     前記送電側共振回路に交流電圧を供給可能な送電回路と、
     前記送電側コイルに流れる電流の振幅を検出する検出回路と、
     前記送電回路を制御することで前記電力の送電制御を行う制御回路と、を備え、
     前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値に基づいて前記送電の継続是非を制御する
    ことを特徴とする非接触給電システム。
  8.  前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が所定範囲を逸脱しているか否かを監視することで、前記送電の継続是非を制御する
    ことを特徴とする請求項7に記載の非接触給電システム。
  9.  前記制御回路は、前記電力の送電が行われているときにおいて、前記検出回路の振幅検出値の前記所定範囲からの逸脱が検出された際、前記送電を停止させる
    ことを特徴とする請求項8に記載の非接触給電システム。
  10.  前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が前記所定範囲を逸脱しているか否かを判断することで、前記受電装置と異なり且つ前記送電側コイルの発生磁界に基づく電流を発生させられる異物の存否を判断し、前記異物が存在すると判断した場合に前記送電を停止させる
    ことを特徴とする請求項8又は9に記載の非接触給電システム。
  11.  前記制御回路は、前記電力の送電が行われているとき、前記検出回路の振幅検出値が前記所定範囲の上限値を超えているか否かを判断することで、前記異物としての、コイルを含んだ異物の存否を判断する
    ことを特徴とする請求項10に記載の非接触給電システム。
  12.  前記受電装置は、前記電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路を備え、
     前記制御回路は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路の振幅検出値に基づき前記送電の実行可否を判断する第2処理部と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有し、
     前記検出回路は、前記送電側コイルに流れる電流の振幅を示す信号を増幅する処理を経て前記振幅を検出し、前記増幅における増幅率は、前記送電側コイルにて前記テスト磁界が発生せしめられているときよりも、前記送電側コイルにて前記送電用磁界が発生せしめられているときの方が小さい
    ことを特徴とする請求項7~11の何れかに記載の非接触給電システム。
  13.  電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置から磁界共鳴方式で前記電力を受電可能な受電装置において、
     前記電力を受電するための受電側コイルを含む受電側共振回路と、
     前記受電側コイルの配置位置の対向位置に開口部を設けた金属板を有する金属部と、を備え、
     前記送電装置及び当該受電装置が前記電力の送受電を行うための所定位置関係にあるとき、前記開口部は前記送電側コイルと前記受電側コイルとの間に位置し、前記受電側共振回路の共振周波数及び前記送電側共振回路の共振周波数の少なくとも一方に影響を与える位置に磁性体部を設けた
    ことを特徴とする受電装置。
  14.  前記磁性体部は、前記開口部に配置される開口部内磁性体を含む
    ことを特徴とする請求項13に記載の受電装置。
  15.  前記開口部内磁性体は、前記金属板による前記受電側共振回路の共振周波数の変化を打ち消すとともに、前記所定位置関係において前記金属板による前記送電側共振回路の共振周波数の変化を打ち消す
    ことを特徴とする請求項14に記載の受電装置。
  16.  前記所定位置関係において、前記受電側コイルと前記開口部内磁性体との距離は、前記送電側コイルと前記開口部内磁性体との距離に等しい
    ことを特徴とする請求項14又は15に記載の受電装置。
  17.  前記開口部内磁性体によって前記開口部が封止される
    ことを特徴とする請求項14~16の何れかに記載の受電装置。
  18.  前記開口部内磁性体は、前記開口部に嵌め込まれる磁性体板であり、
     前記磁性体板の一方の面と前記金属板の一方の面は同一の平面上に位置するとともに、前記磁性体板の他方の面と前記金属板の他方の面は前記平面に平行な同一の平面上に位置する
    ことを特徴とする請求項14~17の何れかに記載の受電装置。
  19.  前記受電側コイルは、前記磁性体部と前記金属板との間に配置され、
     前記電力の送受電は、前記送電側共振回路及び前記受電側共振回路の各共振周波数が所定の基準周波数とされた状態で行われ、
     前記磁性体部は、前記金属板による前記受電側共振回路の共振周波数の前記基準周波数からの変化を打ち消し、
     前記所定位置関係において、前記金属板の影響を受けて前記送電側共振回路の共振周波数が変化することを通じ、前記送電側共振回路の共振周波数が前記基準周波数となる
    ことを特徴とする請求項13に記載の受電装置。
  20.  前記受電側コイルから見て前記磁性体部の反対側に集積回路を含む電子回路が設けられる
    ことを特徴とする請求項19に記載の受電装置。
  21.  前記金属板は、前記受電側コイルと前記磁性体部との間に配置され、
     前記電力の送受電は、前記送電側共振回路及び前記受電側共振回路の各共振周波数が所定の基準周波数とされた状態で行われ、
     前記磁性体部は、前記所定位置関係において前記金属板による前記送電側共振回路の共振周波数の前記基準周波数からの変化を打ち消し、
     前記金属板の影響を受けて前記受電側共振回路の共振周波数が変化することを通じ、前記受電側共振回路の共振周波数が前記基準周波数となる
    ことを特徴とする請求項13に記載の受電装置。
  22.  前記磁性体部は、前記受電側コイルと前記金属板との間に配置され、
     前記電力の送受電は、前記送電側共振回路及び前記受電側共振回路の各共振周波数が所定の基準周波数とされた状態で行われ、
     前記磁性体部は、前記金属板による前記受電側共振回路の共振周波数の前記基準周波数からの変化を打ち消し、
     前記所定位置関係において、前記金属板の影響を受けて前記送電側共振回路の共振周波数が変化することを通じ、前記送電側共振回路の共振周波数が前記基準周波数となる
    ことを特徴とする請求項13に記載の受電装置。
  23.  前記磁性体部はフェライトにて構成される
    ことを特徴とする請求項13~22の何れかに記載の受電装置。
  24.  前記金属板はアルミニウム又はアルミニウム合金にて構成される
    ことを特徴とする請求項13~23の何れかに記載の受電装置。
  25.  前記金属部によって当該受電装置の筐体が形成される
    ことを特徴とする請求項13~24の何れかに記載の受電装置。
  26.  請求項13~25の何れかに記載の受電装置と、
     電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置と、を備え、磁界共鳴方式で前記電力の送受電が可能である
    ことを特徴とする非接触給電システム。
  27.  前記送電装置は、
     前記送電側共振回路に交流電圧を供給可能な送電回路と、
     前記送電側コイルに流れる電流の振幅を検出する検出回路と、
     前記検出回路の振幅検出値に基づき前記送電回路を制御することで前記電力の送電制御を行う制御回路と、を備える
    ことを特徴とする請求項26に記載の非接触給電システム。
  28.  前記受電装置は、前記送電装置からの電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路を備え、
     前記制御回路は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路による振幅検出値に基づき前記送電の実行可否を判断する第2処理部と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有し、
     前記送電側コイルの発生磁界に基づき前記金属板と前記磁性体部には互いに逆方向の電流が流れる
    ことを特徴とする請求項27に記載の非接触給電システム。
  29.  電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置から磁界共鳴方式で前記電力を受電可能な受電装置において、
     前記電力を受電するための受電側コイルを含む受電側共振回路と、
     前記受電側コイルの配置位置の対向位置に開口部を設けた金属板を有する金属部と、を備え、
     前記送電装置及び当該受電装置が前記電力の送受電を行うための所定位置関係にあるとき、前記開口部は前記送電側コイルと前記受電側コイルとの間に位置し、
     前記金属板において、前記開口部から前記金属板の外周に向けてスリット部を形成した
    ことを特徴とする受電装置。
  30.  前記スリット部は、前記開口部から前記金属板の外周まで至る切断スリットを含む
    ことを特徴とする請求項29に記載の受電装置。
  31.  前記金属部は、前記金属板として、
     前記受電側コイルの配置位置の対向位置に第1開口部を設けた第1金属板と、
     前記受電側コイルの配置位置の対向位置に第2開口部を設けた第2金属板と、を有し、
     前記第1金属体と前記第2金属板は絶縁体を挟んで結合され、前記所定位置関係において前記第1開口部及び前記第2開口部は前記送電側コイルと前記受電側コイルとの間に位置し、
     前記スリット部は、前記切断スリットとして、
     前記第1開口部から前記第1金属板の外周まで至る第1切断スリットと、
     前記第2開口部から前記第2金属板の外周まで至る第2切断スリットと、を有し、
     前記第1金属板及び前記第2金属板に平行な面内において、前記第1切断スリット及び前記第2切断スリットは互いに異なる位置に形成される
    ことを特徴とする請求項30に記載の受電装置。
  32.  前記スリット部は、前記開口部から前記金属板の外周に向けて互いに異なる位置に形成された複数のスリットを含み、
     各スリットと前記金属板の外周との間には前記金属板を構成する金属が残存する
    ことを特徴とする請求項29に記載の受電装置。
  33.  前記複数のスリットは、前記開口部から前記金属板の外周に向けて放射状に形成される
    ことを特徴とする請求項32に記載の受電装置。
  34.  前記電力の送受電は、前記送電側共振回路及び前記受電側共振回路の各共振周波数が所定の基準周波数とされた状態で行われ、
     前記所定位置関係において、前記金属板の影響を受けて前記送電側共振回路及び前記受電側共振回路の共振周波数が変化することを通じ、前記送電側共振回路及び前記受電側共振回路の各共振周波数が前記基準周波数となる
    ことを特徴とする請求項32又は33に記載の受電装置。
  35.  前記金属板は、アルミニウム又はアルミニウム合金にて構成される
    ことを特徴とする請求項29~34の何れかに記載の受電装置。
  36.  前記金属部によって当該受電装置の筐体が形成される
    ことを特徴とする請求項29~35の何れかに記載の受電装置。
  37.  請求項29~36の何れかに記載の受電装置と、
     電力を送電するための送電側コイルを含む送電側共振回路を有する送電装置と、を備え、磁界共鳴方式で前記電力の送受電が可能である
    ことを特徴とする非接触給電システム。
  38.  前記送電装置は、
     前記送電側共振回路に交流電圧を供給可能な送電回路と、
     前記送電側コイルに流れる電流の振幅を検出する検出回路と、
     前記検出回路の振幅検出値に基づき前記送電回路を制御することで前記電力の送電制御を行う制御回路と、を備える
    ことを特徴とする請求項37に記載の非接触給電システム。
  39.  前記受電装置は、前記送電装置からの電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路と、を備え、
     前記制御回路は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち所定のテスト磁界が前記送電側コイルで発生されるよう前記送電回路を制御する第1処理部と、前記テスト磁界が発生されているときの前記検出回路による振幅検出値に基づき前記送電の実行可否を判断する第2処理部と、前記送電を実行可能と判断した後に前記テスト磁界よりも大きな送電用磁界が前記送電側コイルで発生されるよう前記送電回路を制御することで前記送電を実現する第3処理部と、を有する
    ことを特徴とする請求項38に記載の非接触給電システム。
PCT/JP2016/069947 2015-07-08 2016-07-05 送電装置、受電装置及び非接触給電システム WO2017006946A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16821415.3A EP3322068B1 (en) 2015-07-08 2016-07-05 Power transmission device and contactless power supply system
US15/742,791 US10923962B2 (en) 2015-07-08 2016-07-05 Power transmission device non-contact power feeding system with detection circuit to detect current amplitude in transmission-side coil

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015137293 2015-07-08
JP2015-137293 2015-07-08
JP2015-147793 2015-07-27
JP2015147793 2015-07-27
JP2015-147797 2015-07-27
JP2015147797 2015-07-27
JP2016-122588 2016-06-21
JP2016122588A JP6845624B2 (ja) 2015-07-08 2016-06-21 送電装置、受電装置及び非接触給電システム

Publications (1)

Publication Number Publication Date
WO2017006946A1 true WO2017006946A1 (ja) 2017-01-12

Family

ID=57685598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069947 WO2017006946A1 (ja) 2015-07-08 2016-07-05 送電装置、受電装置及び非接触給電システム

Country Status (1)

Country Link
WO (1) WO2017006946A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500125A (zh) * 2022-01-21 2022-05-13 珠海格力电器股份有限公司 供电及通信组件、系统、通信设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183731A (ja) * 2013-03-15 2014-09-29 Hanrim Postech Co Ltd 無線電力送信システムにおける異物検知装置及び方法
WO2015097807A1 (ja) * 2013-12-26 2015-07-02 三菱電機エンジニアリング株式会社 共振型送信電源装置及び共振型送信電源システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183731A (ja) * 2013-03-15 2014-09-29 Hanrim Postech Co Ltd 無線電力送信システムにおける異物検知装置及び方法
WO2015097807A1 (ja) * 2013-12-26 2015-07-02 三菱電機エンジニアリング株式会社 共振型送信電源装置及び共振型送信電源システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500125A (zh) * 2022-01-21 2022-05-13 珠海格力电器股份有限公司 供电及通信组件、系统、通信设备
CN114500125B (zh) * 2022-01-21 2022-12-16 珠海格力电器股份有限公司 供电及通信组件、系统、通信设备

Similar Documents

Publication Publication Date Title
JP7061212B2 (ja) 送電装置、受電装置及び非接触給電システム
JP6452844B2 (ja) 受電装置及び非接触給電システム
EP2891254B1 (en) Systems and methods for decoupling multiple wireless charging transmitters
WO2017064955A1 (ja) 送電装置及び非接触給電システム
EP2792081B1 (en) System and method for low loss wireless power transmission
US9570231B2 (en) Detecting device, power supply system, and detecting device control method
KR102123140B1 (ko) 무선 전력 수신기 코일 구성을 위한 시스템들, 장치, 및 방법들
US9601271B2 (en) Detecting device, power supply system, and detecting device control method
US9148201B2 (en) Systems and methods for calibration of a wireless power transmitter
US20170084991A1 (en) Wireless power transfer antenna having a split shield
US20140080409A1 (en) Static tuning of wireless transmitters
JP5893157B2 (ja) マルチバンド送信アンテナ
WO2015065810A1 (en) Systems, apparatus, and method for a dual mode wireless power receiver
KR20110009225A (ko) 무선 전력 전달에 있어서 네거티브 저항을 갖는 방법 및 장치
US20170063098A1 (en) Inductive and capacitive wireless power transfer
US20170236638A1 (en) Wireless power transfer antenna having auxiliary winding
WO2017006946A1 (ja) 送電装置、受電装置及び非接触給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15742791

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE