WO2017006483A1 - 移動体用の送信装置及び送信方法 - Google Patents

移動体用の送信装置及び送信方法 Download PDF

Info

Publication number
WO2017006483A1
WO2017006483A1 PCT/JP2015/069799 JP2015069799W WO2017006483A1 WO 2017006483 A1 WO2017006483 A1 WO 2017006483A1 JP 2015069799 W JP2015069799 W JP 2015069799W WO 2017006483 A1 WO2017006483 A1 WO 2017006483A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
communication
unit
transmission
frequency band
Prior art date
Application number
PCT/JP2015/069799
Other languages
English (en)
French (fr)
Inventor
リカルド ウォン
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/069799 priority Critical patent/WO2017006483A1/ja
Publication of WO2017006483A1 publication Critical patent/WO2017006483A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability

Definitions

  • the present invention relates to a transmission device and a transmission method for a mobile object.
  • a computer-implemented method for providing data communication between many host systems is known. This computer-implemented method monitors data traffic on the first network channel used for data communication between many host systems in order to obtain many attributes related to data traffic and A second network channel for data communication between many host systems is selected based on the fact that an abnormality has been detected and determined to be abnormal (Patent Document 1).
  • the status of the network channel changes frequently. Therefore, when the network channel is switched every time it is determined to be abnormal as in the above computer mounting method, the channel is frequently switched. There is a problem that the stability of communication is impaired.
  • the problem to be solved by the present invention is to provide a transmission apparatus and a transmission method with high communication stability.
  • the present invention provides a first transmission unit that transmits data in a first frequency band to a reception device existing in a mobile body, and a second transmission unit that transmits data in a second frequency band to the reception device. And a distribution unit that distributes transmission data to the first transmission unit and the second transmission unit, and the first transmission unit transmits the data distributed by the distribution unit to the reception unit corresponding to the first frequency band.
  • the above problem is solved by transmitting the data distributed by the distributing unit to the receiving unit corresponding to the second frequency band by the second transmitting unit.
  • the present invention since a plurality of distributed data are respectively transmitted by communication in a plurality of frequency bands, even when the communication quality in one frequency band is deteriorated due to external interference, the channel is not switched to a new channel. Data can be transmitted by communication in the other frequency band. As a result, the present invention can provide a transmission device and a transmission method with high communication stability.
  • FIG. 1 is a conceptual diagram of a vehicle showing an application example of a wireless communication system according to the present embodiment.
  • FIG. 2 is a block diagram of the transmission device and the reception device according to the present embodiment.
  • the wireless communication system according to the present embodiment is a system applied to a mobile object. In the following description, a case where the system is applied to a vehicle will be described.
  • the moving body is not limited to the vehicle, and may be another moving body such as an airplane or a ship.
  • the wireless communication system is a data communication system between a head unit 100 and a mobile terminal 200 in a moving body.
  • the head unit 100 is a unit in which a navigation system and an audio system are integrated, and is provided in front of the vehicle interior.
  • the head unit 100 can communicate with the mobile terminal 200 brought in by the user.
  • the head unit 100 can also control the mobile terminal 200 using an application.
  • the mobile terminal 200 is a PDA (Personal Digital Assistant) such as a smartphone or a tablet terminal.
  • the mobile terminal 200 is a terminal owned by the user, and is a terminal that the user brings into the vehicle.
  • Wi-Fi wireless communication For communication between the head unit 100 and the mobile terminal 200, for example, Wi-Fi wireless communication is used.
  • the head unit 100 is provided with an in-vehicle Wi-Fi communication device.
  • an application stored in the head unit 100 for example, there is a mobile terminal linked operation application (hereinafter also referred to as a mirroring application).
  • a mobile terminal linked operation application hereinafter also referred to as a mirroring application.
  • an operation screen for operating the mobile terminal 200 is displayed on the display of the head unit 100.
  • the display of the head unit 100 is a touch panel display. The user touches the operation screen displayed on the display of the head unit 100 and operates the operation screen.
  • the head unit 100 transmits a command corresponding to the operation on the operation screen to the mobile terminal 200 by Wi-Fi communication.
  • data transmitted from the head unit 100 side to the device side is data related to the user interface.
  • the mobile terminal 200 executes the software on the mobile terminal side based on the operation command received from the head unit 100. Thereby, the operation on the head unit 100 side and the operation on the mobile terminal 200 side are linked, and the user can operate the application of the mobile terminal 200 on the head unit 100 side.
  • the head unit 100 includes an application control unit 110, a channel adapter 120, and a wireless communication unit 130.
  • the application control unit 110 is a control unit that executes application processing of the head unit 100.
  • the application control unit 110 processes a VNC viewer (Virtual Network Computing Viewer) and the like.
  • the VNC viewer displays an operation screen for operating the application of the mobile terminal 200 on the display on the head unit 100 side.
  • the VNC viewer is linked to an application (VNC server) on the mobile terminal 200 side via Wi-Fi communication.
  • the channel adapter 120 controls communication between the head unit 100 and the mobile terminal 200.
  • the channel adapter 120 constructs a communication channel and creates data to be transmitted on the constructed channel.
  • the channel adapter 120 manages information related to channels. Further, the channel adapter 120 converts the data transmitted from the mobile terminal 200 into data that can be processed by the application control unit 110 and outputs the data to the application control unit 110.
  • the channel adapter 120 includes a data processing unit 121, a channel setting unit 122, and a memory 123.
  • the data processing unit 121 distributes transmission data to be transmitted to the mobile terminal 200 to the first transmitter / receiver 131 and the second transmitter / receiver 132. Further, the data processing unit 121 integrates the data received by the first transceiver 131 and the data received by the second transceiver 132.
  • the channel setting unit 122 sets attributes required when communicating with the mobile terminal 200.
  • the attributes include a sender attribute and a receiver attribute.
  • the channel setting unit 122 manages the attributes by storing the set attributes in the memory 123.
  • the memory 123 is a storage medium that stores the attributes set by the channel setting unit 122.
  • the memory 123 also functions as a buffer that temporarily stores transmission data and reception data in communication with the mobile terminal 200.
  • the memory 123 also functions as a data buffer for executing an application when an application is executed according to a command from the mobile terminal 200.
  • the wireless communication unit 130 is a device that can communicate in a plurality of frequency bands.
  • the plurality of frequency bands are different frequency bands.
  • the multiple frequency bands are, for example, 2.4 GHz and 5 GHz.
  • the frequency band is not limited to 2.4 GHz and 5 GHz, but may be other bands.
  • the frequency band used for communication of the wireless communication unit 130 is not limited to two types, and may be three or more types.
  • the wireless communication unit 130 includes a first transmitter / receiver 131 and a second transmitter / receiver 132, and performs simultaneous communication using a plurality of frequency bands.
  • the wireless communication unit 230 functions as a child device.
  • the first transceiver 131 transmits and receives data in the 2.4 GHz frequency band.
  • the first transmitter / receiver 131 communicates with the first transmitter / receiver 231 on the mobile terminal 200 side and transmits data to the first transmitter / receiver 231.
  • the data transmitted to the first transceiver 231 is data distributed by the data processing unit 121.
  • the second transmitter / receiver 132 transmits / receives data in a frequency band of 5 GHz.
  • the second transceiver 132 communicates with the second transceiver 232 on the mobile terminal 200 side and transmits data to the second transceiver 232.
  • Data transmitted to the second transceiver 232 is data distributed by the data processing unit 121.
  • the first transmitter / receiver 131 and the second transmitter / receiver 132 simultaneously transmit the data distributed by the data processing unit 121 to the wireless communication unit 230.
  • the wireless communication unit 130 is assigned an attribute for communicating with the wireless communication unit 230.
  • the wireless communication unit 130 has two SSIDs (Service Set Identifiers) as communication attributes for one IP address. Two SSIDs are assigned to the first transceiver 131 and the second transceiver 132, respectively. Further, the wireless communication unit 130 has a function of assigning an address to the wireless communication unit 230 that is a slave.
  • SSIDs Service Set Identifiers
  • Communication between the wireless communication unit 130 and the wireless communication unit 230 is communication using a common LAN, and communication is performed using two SSIDs on the transmission side and the reception side.
  • the wireless communication unit 130 can also communicate with other communication devices 300 and other communication devices 400.
  • the mobile terminal 200 includes an application control unit 210, a channel adapter 220, and a wireless communication unit 230.
  • the application control unit 210 is a control unit that executes application processing of the mobile terminal 200.
  • the application control unit 210 processes a VNC server (Virtual Network Computing Server) and the like.
  • the VNC server processes the application in accordance with the command transmitted from the head unit 100 and transmits the processing result to the head unit 100.
  • the VNC server is linked to an application (VNC viewer) on the head unit 100 side via Wi-Fi communication.
  • the channel adapter 220 is a control unit that controls communication between the head unit 100 and the mobile terminal 200.
  • the channel adapter 220 constructs a communication channel and creates data to be transmitted on the constructed channel.
  • the channel adapter 220 manages information related to channels.
  • the channel adapter 220 converts the data transmitted from the head unit 100 into data that can be processed by the application control unit 210 and outputs the data to the application control unit 210.
  • the channel adapter 220 includes a data processing unit 221, a channel setting unit 222, and a memory 223.
  • the data processing unit 221 distributes transmission data to be transmitted to the head unit 100 to the first transceiver 231 and the second transceiver 232.
  • the data processing unit 221 integrates the data received by the first transmitter / receiver 231 and the data received by the second transmitter / receiver 232.
  • the channel setting unit 222 sets attributes required when communicating with the head unit 100.
  • the channel setting unit 222 manages the attributes by storing the set attributes in the memory 223.
  • the memory 223 is a storage medium that stores the attributes set by the channel setting unit 222.
  • the memory 223 also functions as a buffer that temporarily stores transmission data and reception data in communication with the mobile terminal 200.
  • the memory 223 also functions as a data buffer for application execution when an application is executed according to a command from the mobile terminal 200.
  • the wireless communication unit 230 includes a first transmitter / receiver 231 and a second transmitter / receiver 232, and performs a plurality of simultaneous communications using the respective transmitters / receivers.
  • the first transmitter / receiver 231 transmits / receives data in a frequency band of 2.4 GHz.
  • the first transmitter / receiver 131 communicates with the first transmitter / receiver 231 on the mobile terminal 200 side and transmits data to the first transmitter / receiver 231.
  • the data transmitted to the first transceiver 231 is data distributed by the data processing unit 121.
  • the second transceiver 132 transmits / receives data in the 2.4 GHz frequency band.
  • the second transceiver 132 communicates with the second transceiver 232 on the mobile terminal 200 side and transmits data to the second transceiver 232.
  • Data transmitted to the second transceiver 232 is data distributed by the data processing unit 121.
  • the first transmitter / receiver 231 and the second transmitter / receiver 232 simultaneously receive the data distributed by the data processing unit 121.
  • the wireless communication unit 230 has two SSIDs corresponding to two IP addresses as communication attributes. Of the two IP addresses, one IP address is an address for communication in the frequency band of 2.4 GHz, and the other IP address is an address for communication in the frequency band of 5 GHz. Two SSIDs are assigned to the first transceiver 231 and the second transceiver 232, respectively.
  • the IP address of the wireless communication unit 230 is a fixed address or a dynamic address given from the wireless communication unit 130.
  • the communication device 300 is a device that can communicate with the head unit 100 in the 2.4 GHz frequency band.
  • the communication device 400 is a device that can communicate with the head unit 100 in a frequency band of 5 GHz.
  • the communication device 300 and the communication device 400 have one IP address. Unlike the wireless communication unit 230, the communication device 300 and the communication device 400 have only one frequency band in which communication is possible.
  • FIG. 3 is a conceptual diagram of the layer structure.
  • FIG. 3 shows a four-layer hierarchical structure, the hierarchical structure is not limited to four layers.
  • each layer structure will be described with the head unit 100 as a transmitting device and the mobile terminal 200 as a receiving device.
  • the layer structure of the head unit 100 has the following receiving layer structure
  • the mobile terminal 200 has the following layer structure: The transmission side layer structure is adopted.
  • the layer structure on the transmission side includes an application layer 11, a data processing layer 12, transport layers 13a and 13b, and physical layers 14a and 14b.
  • the layer structure on the reception side includes an application layer 21, a data processing layer 22, transport layers 23a and 23b, and physical layers 24a and 24b.
  • Application layers 11 and 21 connect to an application to be controlled and execute the application.
  • an image display request is made to a presentation layer (not shown).
  • the application layer 11 sends a communication request to the data processing layer 12 when communicating with an external terminal such as the mobile terminal 200 as the application is executed.
  • the application layer 11 sends transmission data to the data processing layer 12 in accordance with the communication request.
  • the application layer 21 executes the application using the command and data transmitted from the data processing layer 22.
  • the data processing layer 12 creates communication data, manages the attributes of a device that is a communication destination, creates data for processing in the application layer, and the like.
  • the data processing layer 12 includes a channel reconstruction unit 12a, a table 12b, and a duplication unit 12c.
  • the channel restructuring unit 12a stores channel information in the table 12b and establishes a channel.
  • the table 12b is a table for storing core communication attribute information and redundant communication attribute information (socket communication) in an application using the core communication channel and the redundant communication channel.
  • the table 12b registers applications, IP addresses, port numbers, frequency bands, and connection types in association with each other.
  • the table 12b is stored in the memory 123.
  • FIG. 4 is a table for explaining the table.
  • attributes used for communication are stored in the memory 123 using the table 12b as shown in FIG. It is remembered.
  • the transmission-side IP address, the transmission-side port number, the reception-side IP address, the reception-side port number, and the frequency band are associated with each other according to the connection type.
  • Attribute information is information related to the communication socket.
  • the IP address is identification information set on each of the transmission side and the reception side.
  • the port number is a port identification number set for each transceiver of the wireless communication units 130 and 230.
  • the sender IP address is the same address without being different depending on the connection type.
  • the receiving side IP address is also a different address depending on the connection type.
  • the port numbers of the first transmitter / receiver 131 and the second transmitter / receiver 132 on the transmission side are set with different numbers according to the connection type.
  • the port numbers of the first transmitter / receiver 231 and the second transmitter / receiver 232 on the receiving side are set with different numbers depending on the connection type.
  • the IP address and port number are set to different values on the transmission side and the reception side.
  • the connection type indicates the type of core communication or redundant communication.
  • communication in the 2.4 GHz frequency band corresponds to core communication
  • communication in the 5 GHz frequency band corresponds to core communication.
  • the attribute information (IP address and port number) on the head unit 100 side used when performing core communication is 192.168.111.2 and 49504, and the attribute information on the mobile terminal 200 side ( IP addresses and port numbers) are 192.168.111.3 and 49272.
  • the attribute information (IP address and port number) on the head unit 100 side used when performing redundant communication is 192.168.111.2 and 49503, and the attribute information (IP address) on the mobile terminal 200 side. And port numbers) are 192.168.111.4 and 49273.
  • the table shown in FIG. 4 is shared between the head unit 100 and the mobile terminal 200 and stored in the memories 123 and 223, respectively. This table is referred to when data is replicated by the replicating unit 12c and data is integrated by the integrating unit 22c.
  • the channel restructuring unit 12a acquires the IP address and port number on the receiving side and registers them in the table 12b shown in FIG. Further, when sending the attributes on the transmitting side in response to the request on the receiving side, the channel restructuring unit 12a extracts attribute information that meets the request from the table 12b and sends it to the transport layers 13a and 13b. .
  • the duplicating unit 12c creates a plurality of data by duplicating transmission data sent from the application layer.
  • the duplicating unit 12c distributes one of the created data to the transport layer 13a and distributes the other data to the transport layer 13b.
  • the transport layer 13a transfers the data distributed by the data processing layer 12 to the physical layer 14a.
  • the transport layer 13b transfers the data distributed by the data processing layer 12 to the physical layer 14b.
  • the physical layer 14a manages a physical part for wirelessly connecting to a communication partner when performing communication in the 2.4 GHz frequency band. Specifically, the physical layer 14 a manages the first transceiver 131.
  • the physical layer 14b manages a physical part for wirelessly connecting to a communication partner side when performing communication in a frequency band of 5 GHz. Specifically, the physical layer 14 a manages the first transceiver 131, and the physical layer 14 b manages the second transceiver 132.
  • the application layer 21 sends a communication request accompanying the execution of the application to the data processing layer 12.
  • the data processing layer 22 manages the attributes of the device that is the communication destination and creates data for processing in the application layer.
  • the data processing layer 22 includes a channel reconstruction unit 22a, a table 22b, an integration unit 22c, and a buffer 22d.
  • the channel restructuring unit 22a stores channel information in the table 22b and establishes a channel.
  • the table 22b associates each channel information with the connection type.
  • the integration unit 22c stores the data sent from the transport layer 23a in the buffer 22d in order of sequence.
  • the data sent from the transport layer 23a is data sent via a 2.4 GHz communication channel.
  • the integration unit 22c stores the data sent from the transport layer 23b in the buffer 22d in sequence order.
  • the data sent from the transport layer 23b is data sent via a 5 GHz communication channel.
  • the integration unit 22c integrates a plurality of data stored in the buffer 22d, and stores the integrated data in the buffer 22d.
  • the plurality of data before the integration are data sent via a 2.4 GHz communication channel and data sent via a 5 GHz communication channel. Data integration is performed in sequence order, and the combined data is stored in the buffer in sequence order.
  • the integration unit 22c sends the integrated data stored in the buffer 22d to the application layer 21. Note that the data before integration and the data after integration may be stored in separate buffers.
  • the transport layer 23 a transfers the reception data sent from the physical layer 24 a to the data processing layer 22.
  • the transport layer 23b transfers the reception data sent from the physical layer 24b to the data processing layer 22.
  • the physical layers 24 a and 24 b manage the physical parts of the transceiver, the physical layer 24 a manages the first transceiver 231, and the physical layer 24 b manages the second transceiver 232.
  • FIG. 5 is a flowchart showing a control flow when establishing communication between the head unit 100 and the mobile terminal 200.
  • the head unit 100 and the mobile terminal 200 are in a state where core communication is established under initial conditions.
  • communication is performed between the head unit 100 and the mobile terminal 200, communication is performed by at least core communication.
  • the IP address of the head unit 100 is preset in the head unit 100.
  • step S1 the channel adapter 120 of the head unit 100 transmits to the mobile terminal 200 a confirmation command for confirming whether redundant communication is possible.
  • the mobile terminal 200 confirms whether redundant communication is possible. For example, when the device on the receiving side does not have a transceiver for redundant communication, the control flow ends because redundant communication is impossible. In this case, communication is performed only by core communication.
  • step S2 the channel adapter of the mobile terminal 200 transmits to the head unit 100 as a reply to the confirmation command that redundant communication is possible.
  • step S3 the channel adapter 120 of the head unit 100 transmits a command signal for connection to the SSID 2 on the head unit (HU) side when performing redundant communication.
  • SSID2 is an attribute of the second transceiver 132 and is an identification name of an access point for 5GH Wi-Fi communication.
  • SSID1 is an attribute of the first transceiver 131 and is an identification name of an access point for 2.4GH Wi-Fi communication.
  • the channel adapter 220 of the mobile terminal 200 can specify the access destination on the transmission side when performing redundant communication by receiving the command in step S2.
  • step S4 the channel adapter 220 of the mobile terminal 200 requests the head unit side to connect to SSID2.
  • step S5 when the channel adapter 120 of the head unit 100 confirms the connection request from the mobile terminal 200, the head unit 100 sends an IP address (192.168.111) to the second transceiver 232 on the mobile terminal 200 side. .4) and the assigned IP address is transmitted to the mobile terminal 200 side. Thereby, the channel adapter 220 of the mobile terminal 200 acquires the IP address (192.168.111.4).
  • step S6 redundant communication is established between the head unit 100 and the mobile terminal 200. Also, a port number (49503) for the second transceiver 132 and a port number (49273) for the second transceiver 232 are created. The port number for redundant communication is set in advance, and is set so as not to overlap on the transmission side and the reception side.
  • step S7 the channel setting unit 122 of the head unit 100 registers the created port number in the table 12b.
  • step S8 of the mobile terminal 200 registers the created port number in the table 22b.
  • step S9 the channel setting unit 222 of the mobile terminal 200 requests the head unit 100 to create a port for core communication.
  • the channel setting unit 122 of the head unit 100 creates a port for core communication.
  • step S10 the channel setting unit 122 of the head unit 100 creates a port number (49504) for the first transmitter / receiver 131 and a port number (49272) for the first transmitter / receiver 231 respectively, and sets the port numbers in the table 12b. Register with.
  • step S11 the channel adapter 120 of the head unit 100 transmits a response command to the port number creation request requested in step S9 to the mobile terminal 200.
  • the response command includes information on the created port number.
  • step S12 the channel setting unit 122 of the head unit 100 registers the port number for core communication in the table 12b.
  • step S13 dual channel communication is established between the head unit 100 and the mobile terminal 200. Dual channel communication is communication performed by both core communication and redundant communication.
  • FIG. 6 is a flowchart showing a control flow on the transmission side.
  • FIG. 7 shows a control flow on the receiving side.
  • each control flow will be described with the head unit 100 as a transmission-side device and the mobile terminal 200 as a reception-side device.
  • the control flow of the head unit 100 is the same as the following control flow of the receiving side, and the control flow of the mobile terminal 200 is This is the same as the following control flow on the transmission side.
  • the mirroring application has already been started in a state where dual channel communication has been established. The user operates the mirroring application on the head unit 100 as a trigger, and the following control flow is executed.
  • step S21 the channel adapter 120 confirms whether there is transmission data from the application layer.
  • the mirroring application is executed by the user, a command corresponding to the user's operation is transmitted from the application control unit 110 to the channel adapter 120 as transmission data.
  • the channel adapter 120 confirms the presence or absence of this transmission data. If there is no transmission data, the channel adapter 120 stands by in the control flow state of step S21.
  • step S22 the channel setting unit 122 of the channel adapter 120 registers the transmission side attribute included in the transmission data and the reception side attribute included in the transmission data in the table 12b. Check if it exists. In the processing of the mirroring application, when communication with the receiving apparatus is not established, the receiving communication attribute is not registered in the table 12b. Therefore, by confirming the communication attribute registered in the table 12b, it is confirmed whether or not communication with the receiving apparatus is possible.
  • step S23 the channel setting unit 122 confirms whether or not the attribute for redundant communication is registered in the table 12b. If the attribute for redundant communication is registered in the table 12b, in step S24, the data processing unit 121 creates data for redundant communication. Specifically, the data processing unit 121 duplicates transmission data. The data processing unit 121 assigns a header for core communication to one of the plurality of copied data. This header includes attribute information (IP address, port number) on the transmission side, attribute information (IP address, port number) on the reception side, and a sequence number. The sequence number indicates the sequence order when stored in the buffer. In addition, the data processing unit 121 gives a header for redundant communication to the other data among the plurality of copied data. The header for redundant communication includes attribute information (IP address, port number) attribute information (IP address, port number) and sequence number on the transmission side, like the header for core communication.
  • step S25 the channel setting unit 122 stores the data for redundant communication in the memory (buffer) 123.
  • step S26 the channel setting unit 122 stores the data for core communication in the memory 123. If the attribute for redundant communication is not registered in the table 12b in the control flow of step S23, the channel setting unit 122 stores only the data for core communication in the memory 123.
  • step S27 the channel setting unit 122 sends the core communication data stored in the buffer to the transport layer 13a, and sends the redundant communication data stored in the buffer to the transport layer 13b.
  • the data for core communication is distributed to the first transmitter / receiver 131, and the first transmitter / receiver 131 transmits the data for core communication to the first transmitter / receiver 231 corresponding to 2.4 GHz.
  • the data for redundant communication is distributed to the second transmitter / receiver 132, and the second transmitter / receiver 132 transmits the data for redundant communication to the second transmitter / receiver 232 corresponding to 5 GHz.
  • the transmission timing of the core communication data and the transmission timing of the redundant communication data correspond to each other, and the first transmitter / receiver 131 and the second transmitter / receiver 132 have the core communication data and the redundant communication data. Are sent simultaneously. Thereby, the 1st transmitter / receiver 131 and the 2nd transmitter / receiver 132 are transmitting the data of the same content simultaneously in several frequency bands.
  • step S31 the channel adapter 220 determines whether there is received data by checking the presence / absence of data sent from the transport layers 23a, 23b.
  • the received data is data received by the first transmitter / receiver 231 and the second transmitter / receiver 232. If there is no received data, the channel adapter 220 stands by in the control flow state of step S31.
  • the reception timing of data for core communication corresponds to the reception timing of data for redundancy communication.
  • the first transmitter / receiver 231 and the second transmitter / receiver 232 simultaneously receive the data for core communication and the data for redundancy communication.
  • the 1st transmitter / receiver 131 and the 2nd transmitter / receiver 132 are receiving the data of the same content simultaneously in several frequency bands.
  • the wireless communication unit 130 and the wireless communication unit 130 perform communication simultaneously in a plurality of frequency bands.
  • step S32 the channel setting unit 222 confirms the attribute on the transmission side included in the reception data and the attribute on the reception side included in the reception data.
  • step S33 the channel setting unit 222 confirms whether or not the attribute for redundant communication is registered in the table 12b. If the attribute for redundant communication is registered in the table 22b, in step S34, the data processing unit 221 stores the data for redundant communication and the data for core communication in the buffer 22d. Since an area for core communication and an area for redundant communication are respectively allocated to the buffer 22d, the data processing unit 221 stores each data in the allocated area at a position corresponding to the sequence. The position of the sequence is the arrival order of data.
  • step S35 the data processing unit 221 stores only the data for core communication in the buffer 22d.
  • the data processing unit 221 confirms whether or not data for core communication can be used. For example, interference may occur in the frequency band of 2.4 GHz due to the influence of radio waves entering the vehicle from outside the vehicle, and the communication quality of core communication may deteriorate. Data received under low quality core communication may not contain enough information to execute a mirroring application. Further, since the mirroring application cannot be executed on the mobile terminal 200 side with an insufficient data command, such data becomes unusable data.
  • step S37 the data processing unit 221 uses the data for core communication as integrated data.
  • the data processing unit 221 stores the integrated data in the buffer 22d.
  • step S38 the data processing unit 221 confirms whether the data for redundant communication can be used. If the data for redundant communication can be used, in step S39, the data processing unit 221 uses the data for redundant communication as integrated data. Redundant communication uses a frequency band different from that of core communication. For example, when radio wave interference occurs while the vehicle is running, there is a low possibility that core communication and redundant communication will cause communication failures at the same time. For this reason, even when the communication quality of the core communication is deteriorated, it is highly possible that the data for redundant communication can be used. Thereby, when the communication quality of core communication falls, the receiving side can receive the data for performing a mirroring application by redundant communication.
  • step S40 the data processing unit 221 transmits the integrated data stored in the buffer 22d to the application layer.
  • the channel adapter 120 ends the control flow.
  • the application layer may be notified of data reception.
  • the first transmitter / receiver 131 that transmits data in the first frequency band to the receiving device (mobile terminal 200) existing in the moving body, and the receiving device
  • a first transmitter / receiver 132 that includes a second transmitter / receiver 132 that transmits data in two frequency bands and a data processing unit 121 that distributes transmission data to the first transmitter / receiver 131 and the second transmitter / receiver 132, and that corresponds to the first frequency band.
  • the data distributed by the data processor 121 to the transmitter 231 is transmitted by the first transmitter / receiver 131, and the data distributed by the data processor 121 to the second transmitter / receiver 232 corresponding to the second frequency band is sent to the first transmitter / receiver 131. 2 Transmit by the transceiver 132.
  • a method for improving communication within the mobile body a method of performing a plurality of wireless communications in which different wireless channels are allocated when it is detected that the reception quality is less than a predetermined quality is conceivable.
  • a delay time is generated until a new channel is added after a decrease in communication quality is detected.
  • channel addition processing is frequently performed, and communication stability is deteriorated.
  • transmission data is distributed so as to correspond to a plurality of communications performed in a plurality of frequency bands, and a plurality of distributed data are distributed. Each of them is transmitted by a plurality of communications in the frequency band.
  • the same content data for operating the application is transmitted on multiple channels, so even if the communication quality decreases on one channel, the communication quality on the other channel
  • the application can be used stably while maintaining Further, in the present embodiment, channel switching or channel addition processing is not required, and thus the above delay time does not occur.
  • the core communication attribute set for core communication and the redundant communication attribute set for redundant communication are stored in the memory 123 respectively, and in response to a request from the mobile terminal 200 side, the receiving side
  • the redundant communication attribute is set and stored in the memory 123.
  • the attributes on the transmission side and the attributes on the reception side are associated with each other and stored as core communication attributes, and the attributes on the transmission side are associated with the attributes on the reception side.
  • a plurality of data is created by duplicating transmission data, one of the plurality of data is distributed as transmission data for core communication, and the other data among the plurality of data is redundantly communicated. Distributed as transmission data for use.
  • data replication can be performed without imposing a load on the application. Also, even if the communication type is different on the receiving side, the received data has the same content, so the application on the receiving side does not have to be changed for dual communication.
  • the first transmitter / receiver 131 transmits the data distributed by the data processing unit 121 to the first transmitter / receiver 231 corresponding to the first frequency band from the initial communication with the mobile terminal 200.
  • the second transmitter / receiver 132 transmits the data distributed by the data processing unit 121 to the second transmitter / receiver 232 corresponding to the second frequency band. That is, in this embodiment, dual communication is performed from the initial stage of communication without switching the communication channel or newly starting a communication channel after detecting a decrease in communication quality. Thereby, high-quality communication can be realized without causing a delay time due to detection of communication quality or addition of a new channel.
  • the head unit 100 is described as a transmitting device and the mobile terminal 200 is described as a receiving device.
  • the head unit 100 may be used as a receiving device and the mobile terminal 200 may be used as a transmitting device.
  • the receiving-side configuration according to the present embodiment may be provided in the head unit 100
  • the transmitting-side configuration according to the present embodiment may be provided in the mobile terminal 200.
  • the first transceivers 131 and 231 correspond to the “first transmission unit” of the present invention
  • the second transceivers 132 and 232 correspond to the “second transmission unit” of the present invention.
  • DESCRIPTION OF SYMBOLS 100 ... Head unit 110 ... Application control part 120 ... Channel adapter 121 ... Data processing part 122 ... Channel setting part 123 ... Memory 130 ... Wireless communication part 131 ... 1st transmitter / receiver 132 ... 2nd transmitter / receiver 200 ... Mobile terminal 210 ... Application Control unit 220 ... Channel adapter 221 ... Data processing unit 222 ... Channel setting unit 223 ... Memory 230 ... Wireless communication unit 231 ... First transmitter / receiver 232 ... Second transmitter / receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

移動体用の送信装置において、移動体内に存在する受信装置に対して、第1周波数帯域でデータを送信する第1送信部と、受信装置に対して、第2周波数帯域でデータを送信する第2送信部と、送信データを第1送信部及び第2送信部に分配する分配部とを備え、第1送信部は、第1周波数帯域に対応する受信部に対して分配部によって分配されたデータを送信し、第2送信部は、第2周波数帯域に対応する受信部に対して分配部によって分配されたデータを送信する。

Description

移動体用の送信装置及び送信方法
 本発明は、移動体用の送信装置及び送信方法に関するものである。
 多くのホストシステム間でのデータ通信を提供するための計算機実装方法が知られている。この計算機実装方法では、データトラフィックに関連する多くの属性を取得するために多くのホストシステム間のデータ通信に使用する第一のネットワークチャンネル上のデータトラフィックを監視し、当該多くの属性に関連した異常を検出し、異常と判定したことに基づき、多くのホストシステム間のデータ通信のための第2のネットワークチャンネルを選択している(特許文献1)。
特開2014-147066号公報
 しかしながら、例えば移動体が移動している状態ではネットワークチャンネルの状況は頻繁に変わるため、上記の計算機実装方法のように異常と判定した度にネットワークチャンネルを切り替えると、チャンネルの切り替えが頻繁に発生し、通信の安定性が損なわれるという問題がある。
 本発明が解決しようとする課題は、通信の安定性の高い送信装置及び送信方法を提供することである。
 本発明は、移動体内に存在する受信装置に対して、第1周波数帯域でデータを送信する第1送信部と、当該受信装置に対して、第2周波数帯域でデータを送信する第2送信部と、送信データを第1送信部及び第2送信部に分配する分配部とを備え、第1周波数帯域に対応する受信部に対して分配部により分配されたデータを第1送信部で送信し、第2周波数帯域に対応する受信部に対して分配部により分配されたデータを第2送信部で送信することによって上記課題を解決する。
 本発明は、分配された複数のデータを、複数の周波数帯域による通信でそれぞれ送信しているため、一方の周波数帯域による通信の品質が外部干渉により低下した場合でも、新たなチャンネルに切り替えることなく、他方の周波数帯域による通信で、データを送信できる。その結果として、本発明は、通信の安定性の高い送信装置及び送信方法を提供できる。
本実施形態に係る無線通信システムを備えた車両の概念図である。 本実施形態に係る無線通信システムのブロック図である。 図2の無線通信システムのレイヤ構造の概念図である。 図2のメモリに記録されるテーブルを示す表である。 図2の無線通信システムの制御フローを示すフローチャートである。 図2のヘッドユニットの制御フローを示すフローチャートである。 図2の移動端末の制御フローを示すフローチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1は、本実施形態に係る無線通信システムの適用例を示す車両の概念図である。図2は、本実施形態に係る送信装置及び受信装置のブロック図である。本実施形態に係る無線通信システムは、移動体に適用されるシステムである。以下の説明では、システムを車両に適用した場合について説明するが、移動体は車両に限らず飛行機又は船舶等の他の移動体であってもよい。
 図1に示すように、本実施形態に係る無線通信システムは、移動体内のヘッドユニット100と移動端末200との間におけるデータ通信のシステムである。ヘッドユニット100は、ナビゲーションシステム及びオーディオシステムを一体化したユニットであって、車室内の前方に設けられている。ヘッドユニット100は、ユーザが持ち込んだ移動端末200と通信可能である。またヘッドユニット100は、アプリケーションを利用して移動端末200を制御することも可能である。移動端末200は、スマートフォン、タブレット端末などのPDA(Personal Digital Assistant)である。移動端末200は、ユーザが所有する端末であって、ユーザが車内に持ち込む端末である。
 ヘッドユニット100と移動端末200との間の通信には、例えばWi-Fi無線通信が用いられる。ヘッドユニット100には、車載用のWi-Fi通信機器が設けられている。ヘッドユニット100に保存されていているアプリケーションの一例として、例えば、移動端末の連動操作アプリ(以下、ミラリングアプリケーションとも称す)がある。連動操作アプリにおいて、移動端末200を操作するための操作画面が、ヘッドユニット100のディスプレイに表示されている。ヘッドユニット100のディスプレイはタッチパネル式のディスプレイである。ユーザは、ヘッドユニット100のディスプレイに表示された操作画面に触れて、操作画面を操作する。ヘッドユニット100は、この操作画面の操作に応じた指令を、Wi-Fi通信により、移動端末200に送信する。このとき、ヘッドユニット100側からデバイス側に送信されるデータは、ユーザインタフェイスに関連したデータである。そして、移動端末200は、ヘッドユニット100より受信した操作指令に基づいて、移動端末側のソフトウェアを実行する。これにより、ヘッドユニット100側の操作と移動端末200側の操作が連動し、ユーザは、移動端末200のアプリケーションを、ヘッドユニット100側で操作することができる。
 次に、無線通信システムにおけるヘッドユニット100及び移動端末200の各構成を説明する。図2に示すように、ヘッドユニット100は、アプリ制御部110と、チャンネルアダプタ120と、無線通信部130とを備えている。
 アプリ制御部110は、ヘッドユニット100のアプリ-ションの処理を実行する制御部である。アプリ制御部110は、ミラリングアプリケーションを制御する場合には、VNCビューア(Virtual Network Computing Viewer)等を処理する。VNCビューアは、移動端末200のアプリケーションを操作する操作画面を、ヘッドユニット100側のディスプレイに表示させる。VNCビューアは、移動端末200側のアプリケーション(VNCサーバ)とWi-Fi通信を介して連動している。
 チャンネルアダプタ120は、ヘッドユニット100と移動端末200との間の通信を制御する。チャンネルアダプタ120は、通信のチャンネルを構築し、構築したチャンネルで送信するためのデータを作成する。チャンネルアダプタ120は、チャンネルに関する情報を管理している。また、チャンネルアダプタ120は、移動端末200から送信されたデータを、アプリ制御部110で処理可能なデータに変換して、アプリ制御部110に出力する。
 チャンネルアダプタ120は、データ処理部121と、チャンネル設定部122と、メモリ123とを有している。データ処理部121は、移動端末200に送信数する送信データを、第1送受信器131及び第2送受信器132に分配する。また、データ処理部121は、第1送受信器131で受信したデータと、第2送受信器132で受信したデータを統合する。
 チャンネル設定部122は、移動端末200と通信を行う際に必要な属性を設定する。属性には、送信側の属性と受信側の属性が含まれる。チャンネル設定部122は、設定した属性をメモリ123に記憶することで、属性を管理している。
 メモリ123は、チャンネル設定部122により設定された属性を記憶する記憶媒体である。メモリ123は、移動端末200との通信において、送信データ及び受信データを一時的に記憶するバッファとしても機能する。また、メモリ123は、移動端末200からの指令によりアプリケーションを実行する場合には、アプリケーション実行用のデータのバッファとしても機能する。
 無線通信部130は、複数の周波数帯域で通信可能なデバイスである。複数の周波数帯域は、それぞれ異なる周波数帯域である。複数の周波数帯域には、例えば2.4GHzと5GHzである。周波数帯域は、2.4GHzと5GHzだけではなく、他の帯域でもよい。また、無線通信部130の通信に用いられる周波数帯域は、2種類に限らず、3種類以上であってもよい。
 無線通信部130は、第1送受信器131と第2送受信器132を有しており、複数の周波数帯域による同時通信を行う。無線通信部130が親機として機能する場合に、無線通信部230は子機として機能する。第1送受信器131は、2.4GHzの周波数帯域でデータを送受信する。第1送受信器131は、移動端末200側の第1送受信器231と通信を行い、第1送受信器231に対してデータを送信する。第1送受信器231に送信するデータは、データ処理部121で分配されたデータである。第2送受信器132は、5GHzの周波数帯域でデータを送受信する。第2送受信器132は、移動端末200側の第2送受信器232と通信を行い、第2送受信器232に対してデータを送信する。第2送受信器232に送信するデータは、データ処理部121で分配されたデータである。第1送受信器131及び第2送受信器132は、無線通信部230に対して、データ処理部121で分配されたデータを同時に送信する。
 無線通信部130には、無線通信部230と通信するための属性が割り当てられている。無線通信部130は、1つのIPアドレスに対して2つのSSID(Service Set Identifier)を、通信用の属性としてもっている。2つのSSIDは、第1送受信器131と第2送受信器132にそれぞれ割り当てられる。また無線通信部130は、子機である無線通信部230に対して、アドレスを割り当てる機能を有している。
 無線通信部130と無線通信部230の通信は、共通のLANによる通信であって、送信側と受信側で、それぞれ2つのSSIDを用いて通信を行う。また、無線通信部130は、他の通信デバイス300及び他の通信デバイス400とも通信可能である。
 移動端末200は、アプリ制御部210と、チャンネルアダプタ220と、無線通信部230とを備えている。アプリ制御部210は、移動端末200のアプリ-ションの処理を実行する制御部である。アプリ制御部210は、ミラリングアプリケーションを制御する場合には、VNCサーバ(Virtual Network Computing Server)等を処理する。VNCサーバは、ヘッドユニット100から送信された指令に応じて、アプリケーションを処理し、処理結果をヘッドユニット100に送信する。VNCサーバは、ヘッドユニット100側のアプリケーション(VNCビューア)とWi-Fi通信を介して連動している。
 チャンネルアダプタ220は、ヘッドユニット100と移動端末200との間の通信を制御する制御部である。チャンネルアダプタ220は、通信のチャンネルを構築し、構築したチャンネルで送信するためのデータを作成する。チャンネルアダプタ220は、チャンネルに関する情報を管理している。また、チャンネルアダプタ220は、ヘッドユニット100から送信されたデータを、アプリ制御部210で処理可能なデータに変換して、アプリ制御部210に出力する。
 チャンネルアダプタ220は、データ処理部221と、チャンネル設定部222と、メモリ223とを有している。データ処理部221は、ヘッドユニット100に送信する送信データを、第1送受信器231及び第2送受信器232に分配する。データ処理部221は、第1送受信器231で受信したデータと、第2送受信器232で受信したデータを統合する。
 チャンネル設定部222は、ヘッドユニット100と通信を行う際に必要な属性を設定する。チャンネル設定部222は、設定した属性をメモリ223に記憶することで、属性を管理している。
 メモリ223は、チャンネル設定部222により設定された属性を記憶する記憶媒体である。メモリ223は、移動端末200との通信において、送信データ及び受信データを一時的に記憶するバッファとしても機能する。また、メモリ223は、移動端末200からの指令によりアプリケーションを実行する場合には、アプリケーション実行用のデータのバッファとしても機能する。
 無線通信部230は、第1送受信器231と第2送受信器232を有しており、それぞれの送受信器を用いた複数の同時通信を行う。第1送受信器231は、2.4GHzの周波数帯域でデータを送受信する。第1送受信器131は、移動端末200側の第1送受信器231と通信を行い、第1送受信器231に対してデータを送信する。第1送受信器231に送信するデータは、データ処理部121で分配されたデータである。第2送受信器132は、2.4GHzの周波数帯域でデータを送受信する。第2送受信器132は、移動端末200側の第2送受信器232と通信を行い、第2送受信器232に対してデータを送信する。第2送受信器232に送信するデータは、データ処理部121で分配されたデータである。また、無線通信部130から送信されたデータを受信する場合に、第1送受信器231及び第2送受信器232は、データ処理部121で分配されたデータを同時に受信する。
 無線通信部230は、2つのIPアドレスに対応する2つのSSIDを、通信用の属性としてもっている。2つのIPアドレスのうち、一方のIPアドレスは、2.4GHzの周波数帯域による通信用のアドレスであり、他方のIPアドレスは、5GHzの周波数帯域による通信用のアドレスである。2つのSSIDは、第1送受信器231と第2送受信器232にそれぞれ割り当てられる。無線通信部230のIPアドレスは、固定アドレス、又は、無線通信部130から与えられる動的なアドレスである。
 通信デバイス300は、2.4GHzの周波数帯域でヘッドユニット100と通信可能なデバイスである。通信デバイス400は、5GHzの周波数帯域でヘッドユニット100と通信可能なデバイスである。通信デバイス300及び通信デバイス400は、1つのIPアドレスをもっている。通信デバイス300及び通信デバイス400は、無線通信部230と異なり、通信可能な周波数帯域は1つのみである。
 次に、図3を用いて、無線通信システムにおける通信機能の階層(レイヤ)構造を説明する。図3は、レイヤ構造の概念図である。図3は4層の階層構造を示しているが、階層構造は4層に限らない。なお、以下の説明ではヘッドユニット100を送信側の装置とし、移動端末200を受信側の装置とした上で、各レイヤ構造を説明する。ヘッドユニット100が受信側の装置となり、移動端末200が送信側の装置となる場合には、ヘッドユニット100のレイヤ構造は以下の受信側のレイヤ構造をとり、移動端末200のレイヤ構造は以下の送信側のレイヤ構造をとる。
 送信側のレイヤ構造は、アプリケーション層11、データ処理層12、トランスポート層13a、13b、及び物理層14a、14bを有している。受信側のレイヤ構造は、アプリケーション層21、データ処理層22、トランスポート層23a、23b、及び物理層24a、24bを有している。
 アプリケーション層11、21は、制御対象となるアプリケーションに接続して、当該アプリケーションを実行する。アプリケーション層では、図示しないプレゼンテーション層に対して、画像表示の要求を行う。
 アプリケーション層11は、アプリケーションの実行に伴い、移動端末200等の外部の端末に対して通信を行う場合には、通信要求をデータ処理層12に送る。また、アプリケーション層11は、通信要求に合わせて送信データをデータ処理層12に送る。アプリケーション層21は、ヘッドユニット100から移動端末にデータが送信された場合には、データ処理層22から送られた指令及びデータを用いて、アプリケショーションを実行する。
 データ処理層12は、アプリケーション層11からの要求に応じて、通信用のデータの作成、通信先となるデバイスの属性の管理、及び、アプリケーション層の処理用のデータの作成等を行う。
 データ処理層12は、チャンネル再構築部12aと、テーブル12bと、複製部12cとを有している。チャンネル再構築部12aは、外部の通信デバイスからの要求に応じて、チャンネル情報をテーブル12bに記憶し、チャンネルの設立を行う。
 テーブル12bは、コア通信のチャンネル及び冗長通信のチャンネルを用いるアプリケーションにおいて、コア通信の属性情報と冗長通信の属性情報(ソケット通信)とを保存するテーブルである。テーブル12bは、アプリケーション、IPアドレス、ポートナンバー、周波数帯域、及び接続タイプを対応させて登録している。なお、テーブル12bはメモリ123に記憶されている。図4は、テーブルを説明するための表である。
 例えば、ヘッドユニット100と移動端末200との間で通信を行いつつ、ミライングアプリケーションを実行する場合には、通信に用いる属性(チャンネル情報)が、図4に示すようなテーブル12bによりメモリ123に記憶されている。テーブル12bは、接続タイプに応じて、送信側のIPアドレスと、送信側のポートナンバー、受信側IPアドレス、受信側ポートナンバー、及び周波数帯域が対応付けられている。
 属性情報は、通信ソケットに関する情報である。IPアドレスは、送信側と受信側にそれぞれ設定された識別情報である。ポートナンバーは、無線通信部130、230の送受信器毎に設定されているポートの識別番号である。
 送信側IPアドレスは、接続タイプで異なることなく、同一のアドレスである。また、受信側IPアドレスも、接続タイプに応じた異なるアドレスである。送信側の第1送受信器131及び第2送受信器132のポートナンバーには、接続タイプに応じた異なるナンバーで設定されている。受信側の第1送受信器231及び第2送受信器232のポートナンバーには、接続タイプに応じた異なるナンバーで設定されている。IPアドレス、及び、ポートナンバーは、送信側と受信側で異なる値に設定されている。
 接続タイプは、コア通信か冗長通信かの種別を示している。本実施形態では、2.4GHzの周波数帯域における通信がコア通信に相当し、5GHzの周波数帯域における通信がコア通信に相当する。そして、コア通信(Core communication)を行う際に用いる、ヘッドユニット100側の属性情報(IPアドレス及びポートナンバ)は、192.168.111.2と49504であり、移動端末200側の属性情報(IPアドレス及びポートナンバ)は、192.168.111.3と49272である。冗長通信(Redundant communication)を行う際に用いる、ヘッドユニット100側の属性情報(IPアドレス及びポートナンバ)は、192.168.111.2と49503であり、移動端末200側の属性情報(IPアドレス及びポートナンバ)は、192.168.111.4と49273である。
 また図4に示すテーブルは、ヘッドユニット100と移動端末200との間で共有化されており、それぞれのメモリ123、223に記憶されている。また、このテーブルは、複製部12cによるデータの複製、及び、統合部22cによるデータの統合の際に、参照される。
 チャンネル再構築部12aは、受信側のIPアドレス及びポートナンバーを取得し、図4に示すテーブル12bに登録する。また、受信側の要求に応じて、送信側の属性を送付する場合には、チャンネル再構築部12aは、テーブル12bから、要求に合う属性の情報を抽出し、トランスポート層13a、13bに送る。
 複製部12cは、アプリケーション層から送られた送信データを複製することで、複数のデータを作成する。複製部12cは、作成した複数のデータのうち一方をトランスポート層13aに分配し、他方のデータをトランスポート層13bに分配する。
 トランスポート層13aは、データ処理層12により分配されたデータを、物理層14aに転送する。トランスポート層13bは、データ処理層12により分配されたデータを、物理層14bに転送する。
 物理層14aは、2.4GHzの周波数帯域で通信を行う際に、通信の相手側と無線で接続するための物理的な部分を管理している。具体的には、物理層14aは第1送受信器131を管理している。物理層14bは、5GHzの周波数帯域で通信を行う際に、通信の相手側と無線で接続するための物理的な部分を管理している。具体的には、物理層14aは第1送受信器131を管理し、物理層14bは第2送受信器132を管理している。
 アプリケーション層21は、アプリケーション層11と同様に、アプリケーションの実行に伴う通信要求をデータ処理層12に行う。
 データ処理層22は、通信先となるデバイスの属性の管理、及び、アプリケーション層の処理用のデータの作成等を行う。データ処理層22は、チャンネル再構築部22aと、テーブル22bと、統合部22cと、バッファ22dと、を有している。チャンネル再構築部22aは、外部の通信デバイスからの要求に応じて、チャンネル情報をテーブル22bに記憶し、チャンネルの設立を行う。テーブル22bはテーブル12bと同様に、チャンネルの各情報と接続タイプを対応付けている。
 統合部22cは、トランスポート層23aから送られたデータをシーケンス順にバッファ22dに格納する。トランスポート層23aから送られたデータは2.4GHzの通信のチャンネルを経由して送られたデータである。統合部22cは、トランスポート層23bから送られたデータをシーケンス順にバッファ22dに格納する。トランスポート層23bから送られたデータは5GHzの通信のチャンネルを経由して送られたデータである。
 統合部22cは、バッファ22dに格納された複数のデータを統合し、統合したデータをバッファ22dに格納する。統合前の複数のデータは、2.4GHzの通信のチャンネルを経由して送られたデータと、5GHzの通信のチャンネルを経由して送られたデータである。データの統合はシーケンス順に行われ、結合データはシーケンス順でバッファに格納する。統合部22cは、バッファ22dに格納された、統合済みのデータをアプリケーション層21に送る。なお、統合前のデータと統合後のデータは、それぞれ別のバッファに格納してもよい。
 トランスポート層23aは、物理層24aから送られた受信データを、データ処理層22に転送する。トランスポート層23bは、物理層24bから送られた受信データを、データ処理層22に転送する。
 物理層24a、24bは送受信器の物理的な部分を管理しており、物理層24aは第1送受信器231を管理し、物理層24bは第2送受信器232を管理している。
 次に、図5を用いて、デュアルチャネル通信を確立する際の制御フローを説明する。図5は、ヘッドユニット100と移動端末200との間で通信を確立する際の制御フローを示すフローチャートである。
 ヘッドユニット100及び移動端末200は、初期条件で、コア通信を確立した状態である。ヘッドユニット100と移動端末200との間で通信を行う場合には、少なくともコア通信にて通信を行っている。ヘッドユニット100のIPアドレスは、ヘッドユニット100に予め設定されている。
 ステップS1にて、ヘッドユニット100のチャンネルアダプタ120は、冗長通信が可能か否かを確認する確認指令を、移動端末200に送信する。移動端末200は、確認指令を受信すると冗長通信の可否を確認する。受信側の装置が、例えば、冗長通信用の送受信器を有していない場合には、冗長通信が不可能な状態となるため、制御フローは終了する。この場合には、コア通信のみで通信が行われる。
 ステップS2にて、移動端末200のチャンネルアダプタは、冗長通信が可能であることを、確認指令に対する回答として、ヘッドユニット100に送信する。
 ステップS3にて、ヘッドユニット100のチャンネルアダプタ120は、冗長通信を行う場合に、ヘッドユニット(HU)側のSSID2に接続させるための指令信号を送信する。SSID2は、第2送受信器132の属性であって、5GHのWi-Fi通信のアクセスポイントの識別名である。なお、SSID1は、第1送受信器131の属性であって、2.4GHのWi-Fi通信のアクセスポイントの識別名である。移動端末200のチャンネルアダプタ220は、ステップS2の指令を受信することで、冗長通信を行う際の送信側のアクセス先を特定できる。
 ステップS4にて、移動端末200のチャンネルアダプタ220は、ヘッドユニット側に対して、SSID2への接続を要求する。
 ステップS5にて、ヘッドユニット100のチャンネルアダプタ120は、移動端末200による接続要求を確認すると、ヘッドユニット100は、移動端末200側の第2送受信器232に対してIPアドレス(192.168.111.4)を割り当てて、割り当てたIPアドレスを、移動端末200側に送信する。これにより、移動端末200のチャンネルアダプタ220は、IPアドレス(192.168.111.4)を取得する。
 ステップS6にて、ヘッドユニット100と移動端末200との間で、冗長通信が確立する。また、第2送受信器132用のポートナンバー(49503)と第2送受信器232用のポートナンバー(49273)がそれぞれ作成される。冗長通信用のポート番号は、予め設定されており、送信側と受信側で重ならないように設定される。ステップS7にて、ヘッドユニット100のチャンネル設定部122は、作成したポートナンバーをテーブル12bに登録する。ステップS8にて、移動端末200のチャンネル設定部222は、作成したポートナンバーをテーブル22bに登録する。
 ステップS9にて、移動端末200のチャンネル設定部222は、コア通信用のポート作成をヘッドユニット100に要求する。ステップS10にて、ヘッドユニット100のチャンネル設定部122は、コア通信用のポートを作成する。
 ステップS10にて、ヘッドユニット100のチャンネル設定部122は、第1送受信器131用のポートナンバー(49504)と第1送受信器231用のポートナンバー(49272)をそれぞれ作成し、ポートナンバーをテーブル12bに登録する。
 ステップS11にて、ヘッドユニット100のチャンネルアダプタ120は、ステップS9で要求されたポートナンバーの作成要求に対する応答指令を、移動端末200に送信する。応答指令は、作成されたポートナンバーの情報を含んでいる。
 ステップS12にて、ヘッドユニット100のチャンネル設定部122は、コア通信用のポートナンバーをテーブル12bに登録する。
 ステップS13にて、ヘッドユニット100と移動端末200との間で、デュアルチャンネル通信が確立する。デュアルチャネル通信は、コア通信と冗長通信の両方で行う通信である。
 次に、アプリを起動した上で、ヘッドユニット100と移動端末200との間で通信を行う場合の、送信側の制御フロー及び受信側の制御フローをそれぞれ説明する。図6は送信側の制御フローを示すフローチャートである。図7は受信側の制御フローを示す。なお、以下の説明ではヘッドユニット100を送信側の装置とし、移動端末200を受信側の装置とした上で、各制御フローを説明する。ヘッドユニット100が受信側の装置となり、移動端末200が送信側の装置となる場合には、ヘッドユニット100の制御フローは以下の受信側の制御フローと同様であり、移動端末200の制御フローは以下の送信側の制御フローと同様である。なお、初期条件として、デュアルチャネル通信が確立している状態で、ミラリングアプリケーションが既に起動している。ユーザによりヘッドユニット100上でミラリングアプリケーションを操作したことがトリガとなり、以下の制御フローが実行される。
 送信側(ヘッドユニット100側)の制御フローを説明する。ステップS21にて、チャンネルアダプタ120は、アプリケーション層から送信データがあるか否かを確認する。ユーザによりミラリングアプリケーションが実行されると、ユーザの操作に応じた指令が、送信データとして、アプリ制御部110からチャンネルアダプタ120に送られる。チャンネルアダプタ120は、この送信データの有無を確認する。送信データが無い場合には、チャンネルアダプタ120は、ステップS21の制御フローの状態で待機する。
 送信データが有る場合には、ステップS22にて、チャンネルアダプタ120のチャンネル設定部122は、送信データに含まれる送信側の属性と、送信データに含まれる受信側の属性がテーブル12bに登録されているか否かを確認する。ミラリングアプリケーションの処理にあたって、受信側の装置と通信が確立されていない場合には、受信側の通信属性がテーブル12bに登録されていない。そのため、テーブル12bに登録されている通信属性を確認することで、受信側の装置と通信可能か否かを確認する。
 ステップS23にて、チャンネル設定部122は、冗長通信用の属性がテーブル12bに登録されているか否かを確認する。冗長通信用の属性がテーブル12bに登録されている場合には、ステップS24にて、データ処理部121は、冗長通信用のデータを作成する。具体的には、データ処理部121は、送信データを複製する。データ処理部121は、複製された複数のデータのうち、一方のデータに対して、コア通信用のヘッダを付与する。このヘッダには、送信側の属性情報(IPアドレス、ポートナンバー)、受信側の属性情報(IPアドレス、ポートナンバー)、及びシーケンス番号が含まれる。シーケンス番号は、バッファに保存される際のシーケンス順を示している。また、データ処理部121は、複製された複数のデータのうち、他方のデータに対して、冗長通信用のヘッダを付与する。冗長通信用のヘッダには、コア通信用のヘッダと同様に、送信側の属性情報(IPアドレス、ポートナンバー)属性情報(IPアドレス、ポートナンバー)、及びシーケンス番号が含まれる。
 ステップS25にて、チャンネル設定部122は、冗長通信用のデータをメモリ(バッファ)123に保存する。
 ステップS26にて、チャンネル設定部122は、コア通信用のデータをメモリ123に保存する。なお、ステップS23の制御フローにおいて、冗長通信用の属性がテーブル12bに登録されていない場合には、チャンネル設定部122は、コア通信用のデータのみをメモリ123に保存する。
 ステップS27にて、チャンネル設定部122は、バッファに保存されているコア通信用のデータをトランスポート層13aに送り、バッファに保存されている冗長通信用のデータをトランスポート層13bに送る。コア通信用のデータが第1送受信器131に分配され、第1送受信器131が2.4GHzに対応する第1送受信器231に対してコア通信用のデータを送信する。冗長通信用のデータが第2送受信器132に分配され、第2送受信器132が5GHzに対応する第2送受信器232に対して冗長通信用のデータを送信する。このとき、コア通信用のデータの送信タイミングと冗長用通信用データの送信タイミングは対応しており、第1送受信器131及び第2送受信器132は、コア通信用のデータ及び冗長用通信用データを同時に送信している。これにより、第1送受信器131及び第2送受信器132は、複数の周波数帯域で同時に、同内容のデータを送信している。
 次に、受信側(移動端末200側)の制御フローを説明する。ステップS31にて、チャンネルアダプタ220は、トランスポート層23a、23bから送られるデータの有無を確認することで、受信データが有るか否かを判定する。受信データは、第1送受信器231及び第2送受信器232で受信したデータである。受信データが無い場合には、チャンネルアダプタ220は、ステップS31の制御フローの状態で待機する。
 デュアルチャネル通信でデータを受信する場合には、コア通信用のデータの受信タイミングと冗長用通信用データの受信タイミングは対応している。第1送受信器231及び第2送受信器232は、コア通信用のデータ及び冗長用通信用データを同時に受信している。これにより、第1送受信器131及び第2送受信器132は、複数の周波数帯域で同時に、同内容のデータを受信している。また無線通信部130と無線通信部130は、複数の周波数帯域で、同時に通信を行っている。
 ステップS32にて、チャンネル設定部222は、受信データに含まれる送信側の属性と、受信データに含まれる受信側の属性を確認する。
 ステップS33にて、チャンネル設定部222は冗長通信用の属性がテーブル12bに登録されているか否かを確認する。冗長通信用の属性がテーブル22bに登録されている場合には、ステップS34にて、データ処理部221は、冗長通信用のデータと、コア通信用のデータをバッファ22dに保存する。バッファ22dには、コア通信用の領域と冗長通信用の領域がそれぞれ割り当てられているため、データ処理部221は、割り当てられた領域に、それぞれのデータを、シーケンスに相当する位置で保存する。シーケンスの位置はデータの到着順である。
 冗長通信用の属性がテーブル22bに登録されていない場合には、ステップS35にて、データ処理部221は、コア通信用のデータのみをバッファ22dに保存する。
 ステップ36にて、データ処理部221は、コア通信用のデータを利用できるか否かを確認する。例えば車外から車内に入り込む電波の影響により、2.4GHzの周波数帯域で干渉が発生し、コア通信の通信品質が低下することがある。品質の低いコア通信下で受信したデータは、ミラリングアプリケーションを実行する上で、十分な情報を含んでいない可能性がある。そして、不十分なデータの指令では、移動端末200側でミラリングアプリケーションを実行させることができないため、このようなデータは、利用できないデータとなる。
 コア通信用のデータを利用できる場合には、ステップS37にて、データ処理部221は、コア通信用のデータを統合データとして利用する。データ処理部221は、統合データをバッファ22dに保存する。
 コア通信用のデータを利用できない場合には、ステップS38にて、データ処理部221は、冗長通信用のデータを利用できるか否かを確認する。冗長通信用のデータを利用できる場合には、ステップS39にて、データ処理部221は、冗長通信用のデータを統合データとして利用する。冗長通信は、コア通信とは異なる周波数帯域を用いている。例えば車両走行中の電波干渉が発生した場合に、コア通信と冗長通信が同時に通信不良となる可能性は低い。そのため、コア通信の通信品質が低下した場合でも、冗長通信のデータは利用できる可能性が高い。これにより、コア通信の通信品質が低下した場合に、受信側はミラリングアプリケーションを実行するためのデータを冗長通信で受信することができる。
 ステップS40にて、データ処理部221は、バッファ22dに保存した統合データをアプリケーション層に送信する。
 コア通信用のデータ及び冗長通信用のデータが共に利用できない場合には、チャンネルアダプタ120は制御フローを終了させる。なお、利用可能なデータを受信した場合には、アプリケーション層に、データの受信を通知してもよい。
 上記のように、本実施形態は、移動体内に存在する受信装置(移動端末200)に対して、第1周波数帯域でデータを送信する第1送受信器131と、当該受信装置に対して、第2周波数帯域でデータを送信する第2送受信器132と、送信データを第1送受信器131及び第2送受信器132に分配するデータ処理部121とを備え、第1周波数帯域に対応する第1送受信器231に対してデータ処理部121により分配されたデータを第1送受信器131で送信し、第2周波数帯域に対応する第2送受信器232に対してデータ処理部121により分配されたデータを第2送受信器132で送信する。これにより、異なる周波数帯域で動作する複数の通信チャンネルを用意し、両方の通信チャンネルを介した通信を行うことで、通信の安定性の高い送信装置を実現できる。また、移動体の外からの干渉により通信環境が変わりやすい移動体において、安定性の高い通信を実現できる。また、本実施形態では、通信の可用性が高いため、通信干渉に敏感なアプリ-ケーションを移動体内で利用することもできる。
 ところで、移動体内の通信を改善する方法として、通常の通信チャンネルの品質が低下したら、予備の通信チャンネルに切り替える方法も考えられる。しかしながら、このような方法では、通信品質の低下を検出してから予備のチャンネルに切り替えるまで遅延時間が発生するため、パケットロスが生じてしまう。また、遅延時間の間に通信状況が変化して、切り替え先の通信チャンネルの品質が低下することも考えられる。このような場合には、予備の通信チャンネルに切り替えたとしても、通信の改善が見込まれない。また、移動体内で通信チャンネルの切り替え方式を採用した場合には、移動体では通信状況が頻繁に変化するため、チャンネルの切り替えが頻繁に行われることになり、かえって通信の安定性が損なわれる。
 また、移動体内の通信を改善する方法として、受信品質が所定の品質に満たないことを検出した場合に、互いに異なる無線チャンネルを割り当てた複数の無線通信を行う方法も考えられる。しかしながら、このような方法では、通信品質の低下を検出してから新たなチャンネルを追加するまで遅延時間が発生する。また、移動体では通信状況が頻繁に変化するため、チャンネルの追加処理が頻繁に行われることになり、かえって通信の安定性が損なわれる。
 本実施形態では、移動端末200との通信開始時に(無線通信の初期状態で)、複数の周波数帯域で行われる複数の通信に対応するように、送信データを分配し、分配されたデータを複数の周波数帯域による複数の通信でそれぞれ送信している。これにより、移動体内の通信品質とは関係なく、アプリケーションを動作させる同内容のデータを複数のチャンネルで送信しているため、一方のチャンネルで通信品質が低下しても、他方のチャンネルで通信品質を維持しつつ、アプリケーションを安定に利用できる。また、本実施形態では、チャンネルの切り替え、又は、チャンネルの追加処理を必要としないため、上記のような遅延時間も発生しない。
 また本実施形態では、コア通信用に設定されたコア通信属性と、冗長通信用に設定された冗長通信属性とをそれぞれメモリ123に記憶し、移動端末200側からの要求に応じて、受信側の冗長通信の属性を設定しつつ、メモリ123に記憶している。また、メモリ123に属性を記憶する際には、送信側の属性と受信側の属性とを対応付けた上でコア通信属性として記憶し、送信側の属性と受信側の属性とを対応付けた上で冗長通信属性として記憶する。これにより、冗長通信の確立を要求するための通信プロトコルを設けることで、冗長通信を容易に確立できる。
 また本実施形態では、送信データを複製することで複数のデータを作成し、複数のデータのうち一方のデータをコア通信用の送信データとして分配し、複数のデータのうち他方のデータを冗長通信用の送信データとして分配する。これにより、アプリケーションに負荷をかけることなく、データの複製を行うことができる。また、受信側では、通信タイプが異なっても、受信するデータは同じ内容になるため、受信側のアプリケーションをデュアル通信用に変更しなくてもよい。
 また本実施形態では、移動端末200との初期段階の通信より、第1周波数帯域に対応する第1送受信器231に対してデータ処理部121により分配されたデータを第1送受信器131で送信し、移動端末200との初期段階の通信より、第2周波数帯域に対応する第2送受信器232に対してデータ処理部121により分配されたデータを第2送受信器132で送信する。すなわち、本実施形態では、通信チャンネルの切り替え、又は、通信品質の低下を検出した後に新規に通信チャンネルを立ち上げることなく、通信の初期段階からデュアル通信を行っている。これにより、通信品質の検出又は新規チャンネルの追加による遅延時間が発生せずに、高品質の通信を実現できる。
 なお、本実施形態では、ヘッドユニット100を送信側の装置とし、移動端末200を受信側の装置として説明したが、ヘッドユニット100を受信側の装置とし、移動端末200を送信側の装置としてもよく、この場合には、本実施形態に係る受信側の構成をヘッドユニット100に設け、本実施形態に係る送信側の構成を移動端末200に設ければよい。
 上記の第1送受信器131、231は本発明の「第1送信部」に相当し、第2送受信器132、232は本発明の「第2送信部」に相当する。
100…ヘッドユニット
110…アプリ制御部
120…チャンネルアダプタ
121…データ処理部
122…チャンネル設定部
123…メモリ
130…無線通信部
131…第1送受信器
132…第2送受信器
200…移動端末
210…アプリ制御部
220…チャンネルアダプタ
221…データ処理部
222…チャンネル設定部
223…メモリ
230…無線通信部
231…第1送受信器
232…第2送受信器

Claims (6)

  1. 移動体用の送信装置において、
     移動体内に存在する受信装置に対して、第1周波数帯域でデータを送信する第1送信部と、
     前記受信装置に対して、第2周波数帯域でデータを送信する第2送信部と、
     送信データを前記第1送信部及び前記第2送信部に分配する分配部とを備え、
    前記第1送信部は、前記第1周波数帯域に対応する受信部に対して前記分配部によって分配されたデータを送信し、
    前記第2送信部は、前記第2周波数帯域に対応する受信部に対して前記分配部によって分配されたデータを送信する
    送信装置。
  2.  前記第1周波数帯域の通信用に設定された第1属性と、前記第2周波数帯域の通信用に設定された第2属性とをそれぞれ記憶する記憶媒体と、
     前記第2周波数帯域で通信するための前記受信装置側の属性を設定する属性設定部とを備え、
    前記記憶媒体は、前記送信装置側の属性と前記受信装置側の属性を対応づけて前記第1属性としてそれぞれ記憶し、前記送信装置側の属性と前記受信装置側の属性とを対応付けて前記第2属性としてそれぞれ記憶し、
    前記属性設定部は、
     前記受信装置からの要求に応じて、前記受信装置側の前記第2属性を設定し、設定した前記第2属性を前記記憶媒体に記憶させる
    請求項1記載の送信装置。
  3. 前記分配部は、
     前記送信データを複製することで複数のデータを作成し、複数のデータのうち一方のデータを前記第1送信部に分配し、前記複数のデータのうち他方のデータを前記第2送信部に分配する
    請求項1又は2記載の送信装置。
  4. 前記第1送信部は、前記受信装置との通信の初期段階より、前記第1周波数帯域に対応する受信部に対して前記分配部によって分配されたデータを送信し、
    前記第2送信部は、前記受信装置との通信の初期段階より、前記第2周波数帯域に対応する受信部に対して前記分配部によって分配されたデータを送信する
    請求項1~3のいずれか一項に記載の送信装置。
  5. 前記第1送信部及び前記第2送信部は、前記受信装置に対して、前記分配部によって分配されたデータを同時に送信する
    請求項1~4のいずれか一項に記載の送信装置。
  6. 移動体内で、受信装置に対してデータを送信する送信装置の送信方法であって、
     第1周波数帯域でデータを送信する第1送信部、及び、第2周波数帯域でデータを送信する第2送信部に対して、送信データを分配し、
     前記第1送信部を用いて、分配されたデータを前記第1周波数帯域に対応する受信部に送信し、
     前記第2送信部を用いて、分配されたデータを前記第2周波数帯域に対応する受信部に送信する
    送信方法。
PCT/JP2015/069799 2015-07-09 2015-07-09 移動体用の送信装置及び送信方法 WO2017006483A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069799 WO2017006483A1 (ja) 2015-07-09 2015-07-09 移動体用の送信装置及び送信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069799 WO2017006483A1 (ja) 2015-07-09 2015-07-09 移動体用の送信装置及び送信方法

Publications (1)

Publication Number Publication Date
WO2017006483A1 true WO2017006483A1 (ja) 2017-01-12

Family

ID=57686184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069799 WO2017006483A1 (ja) 2015-07-09 2015-07-09 移動体用の送信装置及び送信方法

Country Status (1)

Country Link
WO (1) WO2017006483A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515487A (ja) * 2005-11-08 2009-04-09 マイクロソフト コーポレーション 変化する条件への通信ネットワークの適応
JP2009284412A (ja) * 2008-05-26 2009-12-03 Nec Electronics Corp 無線通信装置
WO2013179397A1 (ja) * 2012-05-29 2013-12-05 三菱電機株式会社 無線通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515487A (ja) * 2005-11-08 2009-04-09 マイクロソフト コーポレーション 変化する条件への通信ネットワークの適応
JP2009284412A (ja) * 2008-05-26 2009-12-03 Nec Electronics Corp 無線通信装置
WO2013179397A1 (ja) * 2012-05-29 2013-12-05 三菱電機株式会社 無線通信装置

Similar Documents

Publication Publication Date Title
US8265081B2 (en) Obtaining multiple port addresses by a fibre channel from a network fabric
US9125238B2 (en) Wireless communication device, wireless communication method
JPH01112839A (ja) コンピュータ・ネットワークにおける通信方法
CN104052540A (zh) 飞机通信交换系统
CN109558273B (zh) 一种磁盘阵列备份方法、电子设备及磁盘阵列
CN111865704B (zh) 数据传输方法、系统和网络设备
US9832271B2 (en) Method and apparatus for connection between client and server
US20190037028A1 (en) Distributed gateways with centralized data center for high throughput satellite (hts) spot beam network
US10425801B2 (en) Method and device for providing contents in communication system
WO2017006483A1 (ja) 移動体用の送信装置及び送信方法
WO2017006484A1 (ja) 移動体用の受信装置及び受信方法
US20230007460A1 (en) Method and system for segmenting and transmiting data between computing devices and vehicle head units
CN102387012A (zh) 一种半双工总线上数据传输的方法和接口设备
WO2016015614A1 (zh) 一种密文发送、传输的方法、移动终端及通信基站
WO2020250778A1 (ja) 通信装置および通信方法、並びにプログラム
US20160227595A1 (en) Wireless communication control method and wireless communication control system
JP2020088712A (ja) 通信装置およびその制御方法
US10154538B2 (en) Communications system for speech communication
JP3862717B2 (ja) 無線通信システム
CN102098340A (zh) 一种传递数据的方法及系统
JP2017516394A (ja) リソースブロードキャスト方法およびリソースブロードキャスト装置
EP4020936B1 (en) Switchable communication transport for communication between primary devices and vehicle head units
KR20190130812A (ko) 차량 및 그의 통신 제어 방법
JP6584603B2 (ja) 通信装置及びその制御方法、並びにプログラム
WO2019092848A1 (ja) 画像制御方法および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP