WO2017006401A1 - 画像処理装置、画像処理方法及び画像処理プログラム - Google Patents

画像処理装置、画像処理方法及び画像処理プログラム Download PDF

Info

Publication number
WO2017006401A1
WO2017006401A1 PCT/JP2015/069322 JP2015069322W WO2017006401A1 WO 2017006401 A1 WO2017006401 A1 WO 2017006401A1 JP 2015069322 W JP2015069322 W JP 2015069322W WO 2017006401 A1 WO2017006401 A1 WO 2017006401A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
intensity
calculating
pixel
input image
Prior art date
Application number
PCT/JP2015/069322
Other languages
English (en)
French (fr)
Inventor
日淑 江崎
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017526806A priority Critical patent/JPWO2017006401A1/ja
Priority to PCT/JP2015/069322 priority patent/WO2017006401A1/ja
Publication of WO2017006401A1 publication Critical patent/WO2017006401A1/ja
Priority to US15/831,756 priority patent/US20180096470A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration by the use of local operators
    • G06T5/73
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20192Edge enhancement; Edge preservation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Definitions

  • the present invention relates to an image processing apparatus, an image processing method, and an image processing program, and more particularly, to an image processing apparatus, an image processing method, and an image processing program that perform edge enhancement.
  • Patent Document 1 discloses that each image obtained in different frequency bands is subjected to gain adjustment by applying a correction curve corresponding to a predetermined contrast, and processing results for images related to each frequency band.
  • An image processing apparatus is disclosed that performs edge enhancement processing by integrating.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to obtain a good image in which edges are naturally emphasized by suppressing edge breaks and unnatural edge enhancement.
  • the present invention provides the following means.
  • a difference value calculation unit that calculates a difference value for each pixel based on a target pixel and peripheral pixels centered on the target pixel with respect to an input image, and an average value of the difference values Based on this, a reference value calculation means for calculating a reference value for calculating an intensity value for each pixel of the input image, and an intensity correction expression for calculating the intensity value are generated using the reference value.
  • An intensity correction formula generating means an intensity value calculating means for calculating an intensity value for each pixel based on the intensity correction formula, and adding the intensity value to a pixel value of a corresponding pixel of the input image
  • a synthesizing unit for generating the image processing apparatus.
  • a difference value is calculated for each pixel based on a target pixel and peripheral pixels centered on the target pixel, and a reference value is calculated based on an average value of the difference values.
  • the reference value is a value serving as a reference when calculating an intensity value for each pixel of the input image.
  • an intensity correction formula is generated using the calculated reference value, an intensity value is calculated for each pixel based on the intensity correction formula, and the obtained intensity value is added to the pixel value of the corresponding pixel of the input image.
  • the characteristics of the input image such as whether the pixel of interest is an edge or whether there is an edge very near the pixel of interest, can be grasped according to the magnitude of the difference value. can do.
  • a reference value serving as a reference for calculating the intensity value based on the average value of the difference values is calculated, and an intensity correction formula is generated based on the reference time. Therefore, parameters for performing image processing according to the input image are set.
  • the intensity value is a value that is calculated for each pixel of the input image and indicates the level of strength when edge enhancement processing is performed on the input image.
  • edge breaks and unnatural edges are generated. It is possible to obtain a good image that suppresses the enhancement and naturally enhances the edge.
  • the reference value calculation means is configured to use the reference value based on at least one of a noise amount or a contrast value in the input image or a noise amount or a contrast value for a predetermined region in the input image. Is preferably corrected. By doing so, it is possible to perform image processing according to the amount of noise and the contrast value.
  • the reference value calculation unit corrects the reference value based on at least one of the size of the input image and ISO sensitivity information at the time of capturing the input image. In this way, image processing according to the input image can be performed.
  • the intensity correction formula generating means decreases the intensity value as the difference value is smaller than the reference value, and decreases the intensity value as the difference value is larger than the reference value. It is preferable to generate an intensity correction formula. In this way, it is possible to calculate an intensity value for performing appropriate image processing on both the pixel whose edge should be emphasized and the pixel where it is not desirable to enhance the edge, according to the input image.
  • the input image is an image obtained by performing processing with a low-pass filter on the original image.
  • a difference value calculating step for calculating a difference value for each pixel based on a target pixel and a peripheral pixel having the target pixel as a center with respect to an input image; Based on the average value, a reference value calculating step for calculating a reference value for calculating an intensity value for each pixel of the input image, and an intensity correction formula for calculating the intensity value using the reference value
  • An intensity correction expression generating step for generating the intensity value
  • an intensity value calculating step for calculating an intensity value for each pixel based on the intensity correction expression, and adding the intensity value to a pixel value of a corresponding pixel of the input image.
  • An image processing method comprising: a combining step for generating a combined image.
  • a difference value calculating step for calculating a difference value for each pixel based on a target pixel and a peripheral pixel having the target pixel as a center with respect to an input image; Based on the average value, a reference value calculating step for calculating a reference value for calculating an intensity value for each pixel of the input image, and an intensity correction formula for calculating the intensity value using the reference value
  • An intensity correction expression generating step for generating the intensity value
  • an intensity value calculating step for calculating an intensity value for each pixel based on the intensity correction expression, and adding the intensity value to a pixel value of a corresponding pixel of the input image.
  • an image processing program for causing a computer to execute a synthesis step of generating a synthesized image.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an image processing apparatus according to an embodiment of the present invention. It is a figure which shows an example of the sobel filter in the difference value calculation part of the image processing apparatus which concerns on one Embodiment of this invention. It is a figure which shows an example of the sobel filter in the difference value calculation part of the image processing apparatus which concerns on one Embodiment of this invention.
  • 6 is an intensity value correction graph in which a horizontal axis obtained by an intensity correction formula generation unit of an image processing apparatus according to an embodiment of the present invention is a difference value and a vertical axis is a weighting coefficient. It is an example of the graph regarding intensity correction. It is an example of the graph regarding intensity correction. It is an example of the graph regarding intensity correction. It is an example of the graph regarding intensity correction.
  • FIG. 6 is a flowchart for performing edge enhancement processing in the image processing apparatus according to the embodiment of the present invention. It is a block diagram which shows schematic structure of the modification 1 of the image processing apparatus which concerns on one Embodiment of this invention. It is a block diagram which shows schematic structure of the modification 2 of the image processing apparatus which concerns on one Embodiment of this invention.
  • the image processing apparatus includes a difference value calculation unit 2, a reference value calculation unit 3, an intensity correction formula generation unit 4, an intensity value calculation unit 5, and a synthesis unit 6.
  • the difference value calculation unit 2 calculates a difference value for each pixel based on the target pixel and peripheral pixels centered on the target pixel with respect to the input image.
  • the difference value calculation unit 2 can calculate the difference value for each pixel by using, for example, a sobel filter.
  • FIGS. 2 and 3 show examples of the sobel filter.
  • the sobel filter 3 pixels ⁇ 3 pixels vertical is filter_H (p, q)
  • the horizontal is filter_V (p, q), respectively, according to the following formulas (1) and (2).
  • the difference between the vertical direction and the horizontal direction is calculated with respect to the pixel.
  • Edge (x, y) has a sign of ⁇ .
  • Ks represents a kernel area. In this embodiment, as shown in FIGS. 2 and 3, Ks is a 3 pixel ⁇ 3 pixel ⁇ area including the target pixel.
  • the value having the larger absolute value in Sobel_H (x, y) and Sobel_V (x, y) calculated for the target pixel is set as a difference value Edge (x, y). To do.
  • the difference value Edge (x, y) has a sign of ⁇ .
  • the sobel filter is not limited to the examples shown in FIGS. 2 and 3, and filters having different coefficients of filter_V (p, q) and filter_H (p, q) and filters having different sizes may be used.
  • the difference value calculation unit 2 can also calculate a difference value by using a low cut filter, as shown in the following formula.
  • Ave (x, y) an average value in Ks according to Equation (4) and subtracting Ave (x, y), which is a low frequency component, from the input image In (x, y) according to Equation (5), A signed difference value Edge (x, y) including a high frequency component can be obtained.
  • the reference value calculation unit 3 calculates a reference value that serves as a reference when calculating the intensity value for each pixel of the input image.
  • the average value of the difference values calculated by the difference value calculation unit 2 can be used as the reference value.
  • it can be set to a value larger than the average value by a predetermined value.
  • a value smaller than the average value is set as a reference value, and the amount of noise in the input image or When the amount of noise for a predetermined region in the input image is larger than a predetermined threshold value, it is preferable to correct so that a value larger than the average value is used as a reference value.
  • the contrast value in the input image or the contrast value for a predetermined region in the input image is lower than a predetermined threshold value
  • the contrast value in the input image or the input image is set so that a value smaller than the average value is used as a reference value.
  • the contrast value for a predetermined region in the middle is higher than a predetermined threshold value, it is preferable to correct the reference value to a value larger than the average value.
  • the intensity correction formula generation unit 4 generates an intensity correction formula for calculating an intensity value using the reference value calculated by the reference value calculation unit. That is, the intensity correction expression is generated by applying the reference value calculated by the reference value calculation section to the graph or expression stored in the intensity correction expression generation section 4 or the storage section (not shown).
  • the sign of the reference value is plus will be described.
  • an expression relating to a normal distribution is stored in advance, and an intensity correction expression can be generated using this. That is, in the following formula (6), a reference value is applied as ⁇ and a predetermined value is applied as ⁇ .
  • the calculation formula is to obtain an intensity value correction graph with the horizontal axis as the difference value and the vertical axis as the weighting coefficient.
  • An intensity correction formula can be generated.
  • FIGS. 5A to 5F Other examples of graphs relating to intensity correction are shown in FIGS. 5A to 5F.
  • FIG. 5A is a linear and left-right symmetric graph
  • FIG. 5B is a linear and left-right asymmetric graph
  • 5C is a graph in which the left side in the drawing is nonlinear and the right side in the drawing is linear than the reference value
  • FIG. 5D is a linear graph in which the left side in the drawing is linear and the right side in the drawing is nonlinear.
  • FIG. 5E is non-linear and left-right asymmetric
  • FIG. 5F is non-linear and left-right symmetric.
  • the characteristics of the input image are grasped, the shape of the intensity correction graph is determined, and the intensity value correction formula is generated.
  • the reference value By calculating the reference value, it is possible to set various forms of linear and nonlinear graphs on the left and right sides of the graph with the reference value as the peak of the weighting factor, for example, to prevent noise and artifacts contained in low-frequency components In addition, it is possible to suppress enhancement of high frequency components.
  • the reference value has a value of ⁇ , as shown in FIG. 6, a positive weighting factor may be determined if it is positive, and a negative weighting factor may be determined if it is a negative value.
  • the intensity value calculation unit 5 calculates the intensity value for each pixel based on the intensity correction formula generated by the intensity correction formula generation unit 5.
  • the weight value is calculated by substituting the difference value edge (x, y) obtained from the difference value calculation unit 2 into the intensity correction formula obtained from the strength correction formula generation unit 4, and the calculated weight factor is taken into consideration.
  • the calculation is performed by taking the absolute value, and a sign is attached after the calculation is completed.
  • An expression for calculating the sign of the weight value by the sign of the difference value edge (x, y) is shown in Expression (8).
  • the intensity value calculation unit 5 obtains the maximum value lim_max and the minimum value lim_min of the predetermined enhancement amount, and the weight coefficient weight calculated from the intensity correction formula, and lim_max when the weight coefficient is positive, When the coefficient is negative, the product of lim_min is taken and the intensity value Add (x, y) to be added to the input image is determined.
  • the synthesizing unit 6 adds the intensity value calculated by the intensity value calculating unit 5 to the pixel value of the corresponding pixel of the input image to generate a synthesized image. That is, the intensity value Add (x, y) calculated by the intensity value calculation unit 5 is added to the input image In (x, y) for each pixel.
  • the difference value calculation unit 2 applies a 3 pixel ⁇ 3 pixel sobel filter to the input image in step S1.
  • a difference value is calculated for each target pixel.
  • the average value of the difference values is calculated by the reference value calculation unit 3, and this is used as the reference value.
  • the reference value may be corrected as appropriate using information on the characteristics (noise amount and contrast) of the input image and the shooting environment (image size, ISO sensitivity, etc.).
  • step S3 the intensity correction formula generation unit 4 applies the reference value calculated in the previous step S3 to generate an intensity correction formula.
  • the intensity value calculation unit 5 calculates an intensity value for each pixel of the input image based on the intensity correction formula generated by the intensity correction formula generation unit 4 and outputs the intensity value to the synthesis unit 6.
  • the synthesis unit 6 adds an intensity value for each pixel of the input image, and generates a synthesized image as an output image.
  • the image processing apparatus by calculating a difference value for each pixel of the input image, it is determined whether the pixel of interest is an edge or the like based on the size of the difference value, and the difference value is used. Since a reference value serving as a reference for edge enhancement processing is determined, parameters for performing image processing according to the characteristics of the input image can be obtained. Then, the intensity value calculated from the intensity correction formula using this reference value is added to the corresponding pixel value of the input image for each pixel to generate a composite image, thereby causing edge breaks and unnatural edge enhancement. It is possible to obtain a good image in which the edges are naturally enhanced.
  • the difference value and the reference value are calculated as they are for the input image.
  • the present invention is not limited to this.
  • noise reduction processing or the like is performed on the input image.
  • the image processing apparatus includes a preprocessing unit 7 that performs at least one of noise reduction processing and gradation correction processing on the input image as preprocessing.
  • the image processed in step S ⁇ b> 1 can be input to the difference value calculation unit 2.
  • the synthesis unit 6 Since the difference value calculation unit 2, the reference value calculation unit 3, the intensity correction formula generation unit 4, the intensity value calculation unit 5, and the synthesis unit 6 are the same as the processes in the above-described image processing apparatus, description thereof will be omitted. Note that the synthesis unit 6 generates a synthesized image by adding an intensity value to each pixel of the input image before being processed by the preprocessing unit 7.
  • the difference value, the reference value, and the like are directly calculated for the input image.
  • the difference value can be calculated by performing low-pass filter processing on the input image and calculating the difference between the input image and an image obtained by performing low-pass filter processing on the input image in the difference value calculation unit 2.
  • the image processing apparatus includes an LPF unit 8 that performs low-pass filter processing on the input image, and inputs the image processed by the LPF unit 8 to the difference value calculation unit 2. Then, the difference value calculation unit 2 calculates a difference value by calculating a difference between the input image and an image obtained by performing low-pass filter processing on the input image. Further, the intensity value calculation unit 5 calculates the intensity value by adding the weighting coefficient obtained from the intensity correction formula obtained by the intensity correction formula generation unit and the difference value according to the following formula (11). The weighting coefficient is calculated based on the above formulas (7) and (8).
  • the synthesis unit 6 Since the reference value calculation unit 3, the intensity correction formula generation unit 4, the intensity value calculation unit 5, and the synthesis unit 6 are the same as the processes in the above-described image processing apparatus, description thereof will be omitted. Note that the synthesis unit 6 generates a synthesized image by adding an intensity value to each pixel of the image after the low-pass filter processing by the LPF unit 8. That is, a composite image is generated according to the following formula (12).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

エッジの途切れや不自然なエッジ強調を抑制し、自然にエッジを強調した良好な画像を得る。入力画像に対して、注目画素と該注目画素を中心とする周辺画素とに基づいて画素毎に差分値を算出する差分値算出手段(2)と、差分値の平均値に基づいて、入力画像の各画素に対する強度値を算出する際の基準となる基準値を算出する基準値算出手段(3)と、基準値を用いて、強度値を算出する強度補正式を生成する強度補正式生成手段(4)と、強度補正式に基づいて、画素毎の強度値を算出する強度値算出手段(5)と、強度値を入力画像の対応する画素の画素値に加算して合成画像を生成する合成手段(6)と、を備えた画像処理装置を提供する。

Description

画像処理装置、画像処理方法及び画像処理プログラム
 本発明は、画像処理装置、画像処理方法及び画像処理プログラムに係り、特に、エッジの強調を行う画像処理装置、画像処理方法及び画像処理プログラムに関するものである。
 従来、画像の輪郭成分を強調するいわゆるエッジ強調処理を行うことにより画質を向上させる画像処理装置が種々提案されている。
 例えば、特許文献1には、互いに異なる周波数帯域において得られた各画像に対して、予め定めたコントラストに応じた補正曲線を適用して夫々ゲイン調整を行い、各周波数帯域に係る画像に対する処理結果を統合してエッジ強調処理を行う画像処理装置が開示されている。
特開2014-110624号公報
 しかしながら、上記した特許文献1に記載の画像処理装置では、検出されたエッジ成分に対して、予め定めた補正曲線を適用して画一的にゲイン調整を行っている。ところが、画像処理対象の画像はコントラスト等その特性が必ずしも同一でなく、全ての入力画像に対して予め定めた同一の補正曲線を適用したゲイン調整では、所望のエッジ強調処理を行うことができず、ノイズを強調する等不自然な強調やエッジの途切れなどが生じる虞がある。
 本発明は、上述した事情に鑑みてなされたものであって、エッジの途切れや不自然なエッジ強調を抑制し、自然にエッジを強調した良好な画像を得ることを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、入力画像に対して、注目画素と該注目画素を中心とする周辺画素とに基づいて画素毎に差分値を算出する差分値算出手段と、前記差分値の平均値に基づいて、前記入力画像の各画素に対する強度値を算出する際の基準となる基準値を算出する基準値算出手段と、前記基準値を用いて、前記強度値を算出する強度補正式を生成する強度補正式生成手段と、前記強度補正式に基づいて、前記画素毎の強度値を算出する強度値算出手段と、前記強度値を前記入力画像の対応する画素の画素値に加算して合成画像を生成する合成手段と、を備えた画像処理装置を提供する。
 本発明によれば、入力画像に対して、注目画素と該注目画素を中心とする周辺画素とに基づいて画素毎に差分値を算出し、差分値の平均値に基づいて基準値を算出する。ここで、基準値とは、入力画像の各画素に対する強度値を算出する際の基準となる値である。そして、算出された基準値を用いて、強度補正式を生成し、強度補正式に基づいて画素毎に強度値を算出し、得られた強度値を入力画像の対応する画素の画素値に加算して合成画像を生成する。
 この場合において、差分値を算出することで、差分値の大きさによって、注目画素がエッジであるか否か、或いは注目画素の極めて周辺にエッジがあるか否か等の入力画像の特徴を把握することができる。そして、差分値の平均値に基づいて強度値を求める際の基準となる基準値を算出し、基準時に基づいて強度補正式を生成するので、入力画像に応じた画像処理を行うためのパラメータを得ることができる。ここで、強度値とは、入力画像の各画素に対して画素毎に算出され、入力画像に対してエッジ強調処理を行う際の強弱の程度を示す値である。従って、このようにして生成された強度補正式から算出された強度値を、画素毎に入力画像の対応する画素値に加算して合成画像を生成することで、エッジの途切れや不自然なエッジ強調を抑制し、自然にエッジを強調した良好な画像を得ることができる。
 上記発明においては、前記基準値算出手段が、前記入力画像におけるノイズ量又は若しくはコントラスト値又は前記入力画像中の所定の領域についてのノイズ量若しくはコントラスト値のうち、少なくとも1つに基づいて前記基準値を補正することが好ましい。
 このようにすることで、ノイズ量やコントラスト値に応じた画像処理を行うことができる。
 上記発明においては、前記基準値算出手段が、前記入力画像の大きさ及び該入力画像の撮像時のISO感度情報の少なくとも1つに基づいて前記基準値を補正することが好ましい。
 このようにすることで、入力画像に応じた画像処理を行うことができる。
 上記発明においては、前記強度補正式生成手段が、前記差分値が前記基準値よりも小さい程前記強度値が小さくなり、かつ、前記差分値が前記基準値よりも大きい程前記強度値が小さくなる強度補正式を生成することが好ましい。
 このようにすることで、入力画像に応じて、エッジを強調すべき画素及びエッジを強調することが好ましくない画素の双方に適切な画像処理を行うための強度値を算出することができる。
 上記発明においては、前記入力画像が、元画像に対してローパスフィルタによる処理を施した画像であることが好ましい。
 このようにすることで、高周波を保存し、その特性を維持したまま良好にエッジを強調することができる。
 また、本発明の他の態様は、入力画像に対して、注目画素と該注目画素を中心とする周辺画素とに基づいて画素毎に差分値を算出する差分値算出ステップと、前記差分値の平均値に基づいて、前記入力画像の各画素に対する強度値を算出する際の基準となる基準値を算出する基準値算出ステップと、前記基準値を用いて、前記強度値を算出する強度補正式を生成する強度補正式生成ステップと、前記強度補正式に基づいて、前記画素毎の強度値を算出する強度値算出ステップと、前記強度値を前記入力画像の対応する画素の画素値に加算して合成画像を生成する合成ステップと、を備えた画像処理方法を提供する。
 また、本発明の他の態様は、入力画像に対して、注目画素と該注目画素を中心とする周辺画素とに基づいて画素毎に差分値を算出する差分値算出ステップと、前記差分値の平均値に基づいて、前記入力画像の各画素に対する強度値を算出する際の基準となる基準値を算出する基準値算出ステップと、前記基準値を用いて、前記強度値を算出する強度補正式を生成する強度補正式生成ステップと、前記強度補正式に基づいて、前記画素毎の強度値を算出する強度値算出ステップと、前記強度値を前記入力画像の対応する画素の画素値に加算して合成画像を生成する合成ステップと、をコンピュータに実行させる画像処理プログラムを提供する。
 本発明によれば、エッジの途切れや不自然なエッジ強調を抑制し、自然にエッジを強調した良好な画像を得ることができるという効果を奏する。
本発明の一実施形態に係る画像処理装置の概略構成を示すブロック図である。 本発明の一実施形態に係る画像処理装置の差分値算出部におけるsobelフィルタの一例を示す図である。 本発明の一実施形態に係る画像処理装置の差分値算出部におけるsobelフィルタの一例を示す図である。 本発明の一実施形態に係る画像処理装置の強度補正式生成部により得られる横軸を差分値、縦軸を重み係数とした強度値補正グラフである。 強度補正に関するグラフの例である。 強度補正に関するグラフの例である。 強度補正に関するグラフの例である。 強度補正に関するグラフの例である。 強度補正に関するグラフの例である。 強度補正に関するグラフの例である。 基準値が±の値を持つ場合における強度補正に関するグラフの例である。 本発明の一実施形態に画像処理装置において、エッジ強調処理を行う際のフローチャートである。 本発明の一実施形態に係る画像処理装置の変形例1の概略構成を示すブロック図である。 本発明の一実施形態に係る画像処理装置の変形例2の概略構成を示すブロック図である。
 以下に、本発明の一実施形態に係る画像処理装置について図面を参照して説明する。
 図1に示すように、画像処理装置は、差分値算出部2、基準値算出部3、強度補正式生成部4、強度値算出部5、及び合成部6を備えている。
 差分値算出部2は、入力画像に対して、注目画素と該注目画素を中心とする周辺画素とに基づいて画素毎に差分値を算出する。
 入力画像について差分値を求める場合、差分値算出部2は、例えば、sobelフィルタを用いることにより画素毎に差分値を算出することができる。
 図2及び図3に、sobelフィルタの例を示す。図2及び図3において、sobelフィルタ3画素×3画素の縦をfilter_H(p,q)とし、横をfilter_V(p,q)として、下記の数式(1)及び数式(2)に従って、夫々注目画素に対して縦方向及び横方向の差分を算出する
 続いて、それぞれの結果の絶対値が大きい方の値をEdge(x,y)とする式である。Edge(x,y)は±の符号を持つ。Ksはカーネル領域を表し、本実施形態においては、図2及び図3に示すように、Ksは注目画素を含む3画素×3画素×の領域とする。
Figure JPOXMLDOC01-appb-M000001
 
 続いて、以下の数式(3)に従って、注目画素に対して算出されたSobel_H(x,y)及びSobel_V(x,y)において絶対値が大きい方の値を差分値Edge(x,y)とする。差分値Edge(x,y)は±の符号を持つ。
Figure JPOXMLDOC01-appb-M000002
 
 なお、sobelフィルタとして、図2及び図3に示す例に限られず、filter_V(p,q),filter_H(p,q)の係数が異なるものや、フィルタのサイズが異なるものを用いても良い。
 また、差分値算出部2は、以下の数式に示すように、ローカットフィルタを用いることによって差分値を算出することもできる。数式(4)に従ってKs内の平均値Ave(x,y)を算出し、数式(5)に従って入力画像In(x,y)から低周波成分であるAve(x,y)を引くことで、高周波成分を含んだ符号付きの差分値Edge(x,y)を得ることができる。
Figure JPOXMLDOC01-appb-M000003
 基準値算出部3は、差分値算出部2において算出された差分値の平均値に基づいて、前記入力画像の各画素に対する強度値を算出する際の基準となる基準値を算出する。
 具体的には、差分値算出部2において算出された差分値の平均値を基準値とすることができる。その他、平均値よりも予め定めた値だけ大きい値とすることができる。
 また、入力画像と共に当該入力画像を撮像した際のISO感度情報を得ている場合には、例えば、ISO感度情報がISO100よりも低い値を示す場合には、平均値よりも小さい値を基準値とするように補正することが好ましい。
 この他、入力画像におけるノイズ量又は入力画像中の所定の領域についてのノイズ量が所定の閾値よりも小さい場合には平均値より小さい値を基準値とするように、また入力画像におけるノイズ量又は入力画像中の所定の領域についてのノイズ量が所定の閾値よりも大きい場合には平均値よりも大きい値を基準値とするように補正することが好ましい。
 さらに、入力画像におけるコントラスト値又は入力画像中の所定の領域についてのコントラスト値が所定の閾値よりも低い場合には平均値より小さい値を基準値とするように、入力画像におけるコントラスト値又は入力画像中の所定の領域についてのコントラスト値が所定の閾値よりも高い場合には平均値より大きい値を基準値とするように補正することが好ましい。
 強度補正式生成部4は、基準値算出部において算出された基準値を用いて、強度値を算出するための強度補正式を生成する。つまり、強度補正式生成部4又は図示しない記憶部に記憶しておいたグラフ又は式に対して、基準値算出部において算出された基準値を適用することにより強度補正式を生成する。以下、基準値の符号がプラスの場合について説明する。例えば、予め正規分布に関する式を記憶しておき、これを用いて強度補正式を生成することができる。
 すなわち、以下の数式(6)において、μとして基準値を適用し、σとして予め定めた値を適用する。
Figure JPOXMLDOC01-appb-M000004
 
 図4にμ=10、σ=3の例を示す。つまり、正規分布の式にμ=10、σ=3を適用することにより、図4に示すように、横軸を差分値、縦軸を重み係数とした強度値補正グラフを求める演算式である強度補正式を生成することができる。
 この他、図5A~図5Fに強度補正に関するグラフの他の例を示す。図5Aは、線形で左右対称のグラフであり、図5Bは線形で左右非対称のグラフである。図5Cは、基準値よりも図中左側が非線形で図中右側が線形のグラフであり、図5Dは、図中左側が線形で図中右側が非線形のグラフである。図5Eは、非線形で左右非対称であり、図5Fは非線形で左右対称である。
 このように、入力される画像の特性を把握して、強度補正グラフの形を決定し、強度値補正式を生成する。基準値が算出されることで、基準値を重み係数のピークとして、グラフ左右に様々な形の線形・非線形グラフを設定することができ、例えば、低周波成分に含まれるノイズやアーティファクトを防ぐことや、高周波成分の強調の抑制を行うことができる。なお、基準値が±の値を持つ場合は、図6のように、プラスの場合はプラスの重み係数、マイナスの値の場合はマイナスの重み係数が決まるような形にしても良い。
 強度値算出部5は、強度補正式生成部5により生成された強度補正式に基づいて、前記画素毎の強度値を算出する。
 すなわち、差分値算出部2から得られた差分値edge(x,y)を、強度補正式生成部4から得られた強度補正式に代入して重み係数を算出し、算出した重み係数を勘案して強度値を得る。但し、差分値がマイナスの場合は、絶対値をとって演算し、演算の終了後に符号を付ける。例えば、数式(6)にμ=10及びσ=3を適用して得られた強度値補正式は、数式(7)のようになる。差分値edge(x,y)の符号によって、weightの値の符号を算出する式を、数式(8)に示す。
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000006
 
 また、強度値算出部5において、予め定められた強調量の最大値lim_max、最小値lim_minを得て、強度補正式から演算された重み係数weightと、重み係数がプラスの場合はlim_maxを、重み係数がマイナスの場合はlim_minの積をとり、入力画像に加算するための強度値Add(x,y)を決定する。
Figure JPOXMLDOC01-appb-M000007
 
 但し、-1<weight<1である。
 合成部6は、強度値算出部5において算出された強度値を入力画像の対応する画素の画素値に加算して合成画像を生成する。
 つまり、強度値算出部5で算出された強度値Add(x,y)を、入力画像In(x,y)に画素毎に加算する。
Figure JPOXMLDOC01-appb-M000008
 
 続いて、このように構成された画像処理装置によって実行される画像処理方法について図7のフローチャートに従って説明する。
 本実施形態に係る画像処理装置によって入力画像に対してエッジ強調処理を行うために、ステップS1において、差分値算出部2により、入力画像に対して、3画素×3画素のsobelフィルタを適用することにより注目画素毎に差分値を算出する。
 続いて、ステップS2において、基準値算出部3により差分値の平均値を算出し、これを基準値とする。なお、入力画像の特徴(ノイズ量やコントラスト)や撮影環境(画像サイズ、ISO感度など)の情報を用いて適宜基準値を補正してもよい。
 続いて、ステップS3において、強度補正式生成部4において、先のステップS3において算出された基準値を適用して強度補正式を生成する。ステップS4において、強度値算出部5において、強度補正式生成部4により生成された強度補正式に基づいて、入力画像の画素毎に強度値を算出し、合成部6へ出力する。ステップS5において、合成部6は、入力画像について画素毎に強度値を加算し、出力画像としての合成画像を生成する。
 このように、本実施形態における画像処理装置によれば、入力画像の画素毎に差分値を算出することで、差分値の大きさによって注目画素がエッジであるか等を判別し、差分値からエッジ強調処理の際の基準となる基準値を定めるので、入力画像の特性に応じた画像処理を行うためのパラメータを得ることができる。そして、この基準値を用いた強度補正式から算出された強度値を、画素毎に入力画像の対応する画素値に加算して合成画像を生成することで、エッジの途切れや不自然なエッジ強調を抑制し、自然にエッジを強調した良好な画像を得ることができる。
 (変形例1)
 上記した実施形態においては、入力画像に対して、そのまま差分値、基準値の算出等を行う構成としたが、これに限られるものでなく、例えば、入力画像に対してノイズ低減処理等を施した後に差分値算出部2に入力し、処理後の画像に対して差分値、基準値の算出等の処理を行う構成とすることもできる。
 この場合、例えば図8に示すように、画像処理装置は、入力画像に対して、前処理としてノイズ低減処理又は階調補正処理の少なくとも何れか一方を施す前処理部7を備え、前処理部において処理された画像を差分値算出部2に入力する構成とすることができる。
 差分値算出部2、基準値算出部3、強度補正式生成部4強度値算出部5及び合成部6については、上述した画像処理装置における処理と同様であるので、説明を省略する。
 なお、合成部6においては、前処理部7による処理前の入力画像の各画素に強度値を加算することにより合成画像を生成する。
 このように入力画像に対して前処理を行った後に差分値算出等の処理を行うことにより、上記した画像処理装置に比して、ノイズやコントラストの影響を受けにくく、より好ましい差分値を算出することができるので、より自然なエッジ強調処理を行うことができる。
 (変形例2)
 上記した実施形態においては、入力画像に対して、そのまま差分値、基準値の算出等を行う構成としたが、これに限られるものでない。例えば、入力画像に対してローパスフィルタ処理を施し、差分値算出部2において、入力画像と入力画像にローパスフィルタ処理を施した画像との差分を算出することにより差分値を算出することができる。
 本変形例では、図9に示すように、画像処理装置は、入力画像に対してローパスフィルタ処理を施すLPF部8を備え、LPF部8により処理された画像を差分値算出部2に入力し、差分値算出部2において、入力画像と入力画像にローパスフィルタ処理を施した画像との差分を算出することにより差分値を算出する。
 また、強度値算出部5では、以下の数式(11)に従って、強度補正式生成部により得られた強度補正式から得られた重み係数と差分値とを加算して、強度値を算出する。なお、重み係数は上記した数式(7)及び数式(8)に基づいて算出する。
Figure JPOXMLDOC01-appb-M000009
 
 基準値算出部3、強度補正式生成部4、強度値算出部5及び合成部6については、上述した画像処理装置における処理と同様であるので、説明を省略する。
 なお、合成部6においては、LPF部8によるローパスフィルタ処理後の画像の各画素に強度値を加算することにより合成画像を生成する。つまり、以下の数式(12)に従って合成画像を生成する。
Figure JPOXMLDOC01-appb-M000010
 
 このように入力画像にローパスフィルタ処理を施して得られた画像を用いて差分値算出等を行うことで、周波数の特性を大幅に変えることなく、より自然なエッジ強調を行うことができる。
 なお、上記した実施形態及びその変形例によって行われる画像処理を画像処理プログラムとして、専用又は汎用のコンピュータに実行させることも可能である。
 2 差分値算出部
 3 基準値算出部
 4 強度補正式生成部
 5 強度値算出部
 6 合成部
 7 前処理部
 8 LPF部

Claims (7)

  1.  入力画像に対して、注目画素と該注目画素を中心とする周辺画素とに基づいて画素毎に差分値を算出する差分値算出手段と、
     前記差分値の平均値に基づいて、前記入力画像の各画素に対する強度値を算出する際の基準となる基準値を算出する基準値算出手段と、
     前記基準値を用いて、前記強度値を算出する強度補正式を生成する強度補正式生成手段と、
     前記強度補正式に基づいて、前記画素毎の強度値を算出する強度値算出手段と、
     前記強度値を前記入力画像の対応する画素の画素値に加算して合成画像を生成する合成手段と、
     を備えた画像処理装置。
  2.  前記基準値算出手段が、前記入力画像におけるノイズ量若しくはコントラスト値又は前記入力画像中の所定の領域についてのノイズ量若しくはコントラスト値のうち、少なくとも1つに基づいて前記基準値を補正する請求項1記載の画像処理装置。
  3.  前記基準値算出手段が、前記入力画像の大きさ及び該入力画像の撮像時のISO感度情報の少なくとも1つに基づいて前記基準値を補正する請求項1記載の画像処理装置。
  4.  前記強度補正式生成手段が、前記差分値が前記基準値よりも小さい程前記強度値が小さくなり、かつ、前記差分値が前記基準値よりも大きい程前記強度値が小さくなる強度補正式を生成する請求項1乃至請求項3の何れか1項記載の画像処理装置。
  5.  前記入力画像が、元画像に対してローパスフィルタによる処理を施した画像である請求項1乃至請求項4の何れか1項記載の画像処理装置。
  6.  入力画像に対して、注目画素と該注目画素を中心とする周辺画素とに基づいて画素毎に差分値を算出する差分値算出ステップと、
     前記差分値の平均値に基づいて、前記入力画像の各画素に対する強度値を算出する際の基準となる基準値を算出する基準値算出ステップと、
     前記基準値を用いて、前記強度値を算出する強度補正式を生成する強度補正式生成ステップと、
     前記強度補正式に基づいて、前記画素毎の強度値を算出する強度値算出ステップと、
     前記強度値を前記入力画像の対応する画素の画素値に加算して合成画像を生成する合成ステップと、
     を備えた画像処理方法。
  7.  入力画像に対して、注目画素と該注目画素を中心とする周辺画素とに基づいて画素毎に差分値を算出する差分値算出ステップと、
     前記差分値の平均値に基づいて、前記入力画像の各画素に対する強度値を算出する際の基準となる基準値を算出する基準値算出ステップと、
     前記基準値を用いて、前記強度値を算出する強度補正式を生成する強度補正式生成ステップと、
     前記強度補正式に基づいて、前記画素毎の強度値を算出する強度値算出ステップと、
     前記強度値を前記入力画像の対応する画素の画素値に加算して合成画像を生成する合成ステップと、
     をコンピュータに実行させる画像処理プログラム。
PCT/JP2015/069322 2015-07-03 2015-07-03 画像処理装置、画像処理方法及び画像処理プログラム WO2017006401A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017526806A JPWO2017006401A1 (ja) 2015-07-03 2015-07-03 画像処理装置、画像処理方法及び画像処理プログラム
PCT/JP2015/069322 WO2017006401A1 (ja) 2015-07-03 2015-07-03 画像処理装置、画像処理方法及び画像処理プログラム
US15/831,756 US20180096470A1 (en) 2015-07-03 2017-12-05 Image processing device, image processing method, and non-transitory computer-readable medium storing image processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069322 WO2017006401A1 (ja) 2015-07-03 2015-07-03 画像処理装置、画像処理方法及び画像処理プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/831,756 Continuation US20180096470A1 (en) 2015-07-03 2017-12-05 Image processing device, image processing method, and non-transitory computer-readable medium storing image processing program

Publications (1)

Publication Number Publication Date
WO2017006401A1 true WO2017006401A1 (ja) 2017-01-12

Family

ID=57685058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069322 WO2017006401A1 (ja) 2015-07-03 2015-07-03 画像処理装置、画像処理方法及び画像処理プログラム

Country Status (3)

Country Link
US (1) US20180096470A1 (ja)
JP (1) JPWO2017006401A1 (ja)
WO (1) WO2017006401A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292325A (ja) * 2000-04-06 2001-10-19 Casio Comput Co Ltd エッジ強調装置、エッジ強調方法および記録媒体
JP2014110624A (ja) * 2012-12-04 2014-06-12 Samsung R&D Institute Japan Co Ltd 画像処理装置、画像処理方法及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG115542A1 (en) * 2003-05-21 2005-10-28 St Microelectronics Asia Adaptive coring for video peaking
US7433535B2 (en) * 2003-09-30 2008-10-07 Hewlett-Packard Development Company, L.P. Enhancing text-like edges in digital images
US8724919B2 (en) * 2012-09-21 2014-05-13 Eastman Kodak Company Adjusting the sharpness of a digital image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292325A (ja) * 2000-04-06 2001-10-19 Casio Comput Co Ltd エッジ強調装置、エッジ強調方法および記録媒体
JP2014110624A (ja) * 2012-12-04 2014-06-12 Samsung R&D Institute Japan Co Ltd 画像処理装置、画像処理方法及びプログラム

Also Published As

Publication number Publication date
JPWO2017006401A1 (ja) 2018-04-19
US20180096470A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
EP2833317B1 (en) Image display device and/or method therefor
JP4858610B2 (ja) 画像処理方法
US9390482B2 (en) Image processing apparatus and method of processing image
US8428388B2 (en) Image generating apparatus and method for emphasizing edge based on image characteristics
JP4523926B2 (ja) 画像処理装置、画像処理プログラムおよび画像処理方法
EP2854390B1 (en) Image sharpening method and device, and shooting terminal
JP6390847B2 (ja) 画像処理装置、画像処理方法及びプログラム
TWI433053B (zh) 運用像素區域特性之影像銳利度強化方法及系統
JP2010244360A5 (ja) 画像処理装置、画像処理方法、及びプログラム
JP2012108898A (ja) 画像処理装置、画像処理方法
JP2009025862A (ja) 画像処理装置、画像処理方法、画像処理プログラム及び画像表示装置
CN109064413B (zh) 图像对比度增强方法及采用其的图像采集医疗设备
JP5410378B2 (ja) 映像信号補正装置および映像信号補正プログラム
WO2017098832A1 (ja) 画像処理装置及びプログラム
JP5614550B2 (ja) 画像処理方法、画像処理装置及びプログラム
WO2017006401A1 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP4769332B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP5135134B2 (ja) 画像処理装置及びその方法
JP2007234034A (ja) 画像処理装置及び画像処理方法
KR101514152B1 (ko) 특이값 분해를 이용한 화질 개선 방법 및 장치
JP5753437B2 (ja) 画像強調装置
WO2015151279A1 (ja) フォーカス評価を補助するための装置、プログラム及び方法
US10475166B2 (en) Video image enhancement method
JP2010288040A (ja) 輪郭補正方法及び輪郭補正装置
KR20160103213A (ko) 레티넥스 기법을 이용한 고속의 영상처리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526806

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897664

Country of ref document: EP

Kind code of ref document: A1