WO2017004896A1 - 应用于光伏组件故障检测中的检测系统和检测方法 - Google Patents

应用于光伏组件故障检测中的检测系统和检测方法 Download PDF

Info

Publication number
WO2017004896A1
WO2017004896A1 PCT/CN2015/090348 CN2015090348W WO2017004896A1 WO 2017004896 A1 WO2017004896 A1 WO 2017004896A1 CN 2015090348 W CN2015090348 W CN 2015090348W WO 2017004896 A1 WO2017004896 A1 WO 2017004896A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic panel
unit
photovoltaic
temperature
cleaning device
Prior art date
Application number
PCT/CN2015/090348
Other languages
English (en)
French (fr)
Inventor
张意铃
Original Assignee
喀什博思光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54276280&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017004896(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 喀什博思光伏科技有限公司 filed Critical 喀什博思光伏科技有限公司
Publication of WO2017004896A1 publication Critical patent/WO2017004896A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the field of cleaning and fault detection of photovoltaic components, and particularly relates to a detection system and a detection method applied to fault detection of photovoltaic components.
  • the photovoltaic power generation industry has become a new trend in the domestic and international power generation industry due to its environmental protection and high energy quality.
  • the photovoltaic panel used for photovoltaic power generation is usually installed outdoors, The outdoor dust, smog, rain, bird droppings, etc. will cause pollution and coverage of the photovoltaic panel, and the photovoltaic power generation components work in series. If one component unit fails, the temperature of the faulty unit will rise, seriously affecting the whole The photovoltaic module's power generation efficiency and service life, so the photovoltaic components need regular cleaning and fault detection, at present, domestic and foreign for PV module intelligent cleaning and fault intelligent detection have failed to achieve an effective solution.
  • the embodiment of the present application provides a detection system and a detection method applied to fault detection of a photovoltaic component, which can solve the problem that the power generation efficiency of the whole group of photovoltaic components is low and the service life is short due to the failure of the photovoltaic panel to be detected in time in the prior art.
  • Technical problem is a problem that the power generation efficiency of the whole group of photovoltaic components is low and the service life is short due to the failure of the photovoltaic panel to be detected in time in the prior art.
  • the present application discloses a detection system applied to failure detection of photovoltaic components.
  • the system is disposed on an automatic cleaning device of the photovoltaic component, and the automatic cleaning device is configured to clean the photovoltaic panel and clean the photovoltaic panel during the moving process.
  • the detection system comprises: a first temperature detecting unit, configured to The automatic cleaning device detects the temperature of the photovoltaic panel when cleaning the photovoltaic panel; the intelligent control unit is connected to the first temperature detecting unit for receiving and processing the first temperature The temperature detected by the degree detecting unit; and the wireless communication unit is connected to the intelligent control unit for transmitting the temperature processed by the intelligent control unit to the main control room.
  • the first temperature detecting unit includes at least one thermal infrared scanning device, and the photovoltaic panels (power generating units) are subjected to thermal infrared scanning one by one during the movement of the automatic cleaning device.
  • the detecting system further includes: a position detecting unit, configured to detect a position of the photovoltaic panel when the first temperature detecting unit detects the temperature of the photovoltaic panel; the intelligent control unit is connected to the position detecting unit to detect according to the position detecting unit The position reached and the temperature detected by the first temperature detecting unit determine the position of the abnormal photovoltaic panel.
  • the position detecting unit includes a proximity switch or a photoelectric switch for detecting the position of the photovoltaic panel by detecting a gap of the photovoltaic panel.
  • the detection system shares an intelligent control unit, a wireless communication unit, and a power supply unit with the automatic cleaning device, and the power supply unit includes a self-contained photovoltaic power generation assembly and a storage battery.
  • the automatic cleaning device comprises: a frame comprising two end portions and an intermediate portion, the middle portion is parallel to the photovoltaic panel to be cleaned when the frame is spanned on the photovoltaic panel to be cleaned; the walking unit is disposed at both ends of the frame and / or the middle part, for driving the automatic cleaning device to wait for the cleaning of the photovoltaic panel to move; the guiding unit is arranged at both ends of the frame for limiting the walking track of the walking unit; the cleaning unit is arranged at the middle of the frame for During the movement of the automatic cleaning device, the photovoltaic panel to be cleaned is cleaned; the driving unit, including the motor and the transmission part, is used to supply power to the cleaning unit and the traveling unit; the intelligent control unit is connected to the motor, including an intelligent control circuit board. Used to intelligently control the start and stop of the motor.
  • the guiding unit comprises a supporting wheel.
  • the supporting wheel disposed at one end of the frame is placed on the upper side of the photovoltaic panel, and the supporting wheel disposed at the other end of the frame and the lower side of the photovoltaic panel
  • the side has a predetermined gap, and the end faces of the support wheels disposed at the two ends of the frame are parallel to the photovoltaic panel;
  • the walking unit comprises a driving wheel, wherein the driving wheel is along the photovoltaic panel, the photovoltaic module frame, the fixing bracket of the photovoltaic panel and/or the photovoltaic
  • the connecting member of the panel travels, and the cleaning unit comprises a brush.
  • the transmission part of the driving unit comprises: a first transmission shaft connected to the motor and configured as a brush. a mandrel for driving the brush to rotate; a second drive shaft coupled to the travel unit for providing travel power to the travel unit; and a transmission assembly including the drive wheel, the driven wheel and the drive belt, the drive wheel and the first drive Axial connection, driven wheel and second drive shaft Connected, the driving wheel drives the driven wheel to rotate in the opposite direction through the belt.
  • the detecting system further includes: a heating unit for heating the battery; a second temperature detecting unit for detecting an ambient temperature and a temperature of the battery, wherein the intelligent control unit is connected to the heating unit and the second temperature detecting unit For controlling the heating unit to heat the battery when the ambient temperature cannot meet the working condition of the battery, and controlling the heating unit to stop heating when the temperature of the battery rises to a preset temperature, and controlling the self-contained photovoltaic power generation component to charge the battery .
  • the present application discloses a detection method applied to failure detection of photovoltaic components.
  • the detection system used in the method is disposed on an automatic cleaning device of the photovoltaic module, wherein the automatic cleaning device is used for cleaning the photovoltaic panel to move, and cleaning the photovoltaic panel during the moving process, the detecting method comprises: in the automatic cleaning device pair When the photovoltaic panel is cleaned, the temperature of the photovoltaic panel is detected; the temperature of the detected photovoltaic panel is processed; and the processed temperature is sent to the main control room.
  • the detecting method further comprises: detecting a position of the photovoltaic panel when detecting the temperature of the photovoltaic panel; determining a position of the abnormal photovoltaic panel according to the detected position and the detected temperature; and transmitting the position of the abnormal photovoltaic panel to the main Control room.
  • a detection system for detecting failure of a photovoltaic component is provided, and the detection system is disposed on an automatic cleaning device of the photovoltaic component, thereby completing the detection of the temperature of the photovoltaic panel in the process of cleaning the photovoltaic panel by the automatic cleaning device, At the same time, the machine realizes cleaning and fault detection, and realizes multi-purpose use of one machine.
  • the temperature of the photovoltaic panel is detected by the first temperature detecting unit, and is sent to the main control room through the wireless communication unit after being processed by the intelligent control unit, so that the main control room can timely know the abnormal photovoltaic panel, and then replace the photovoltaic panel with abnormal power generation in time.
  • the increase in power generation efficiency and service life of photovoltaic modules are provided, and the detection system is disposed on an automatic cleaning device of the photovoltaic component, thereby completing the detection of the temperature of the photovoltaic panel in the process of cleaning the photovoltaic panel by the automatic cleaning device, At the same time, the machine realizes
  • the first temperature detecting unit uses the thermal infrared scanning device to perform thermal infrared scanning on the photovoltaic panel one by one, and since the thermal infrared scanning device does not directly contact the photovoltaic panel, the photovoltaic panel is not damaged; and the thermal infrared scanning device has a fast reaction time. No need to wait for the heat balance process to achieve accurate and fast detection.
  • the detecting system is further provided with a position detecting unit, which realizes the acquisition of the position of the photovoltaic panel while the first temperature detecting unit detects the temperature of the photovoltaic panel, so that the position of the abnormal photovoltaic panel can be accurately positioned.
  • a position detecting unit which realizes the acquisition of the position of the photovoltaic panel while the first temperature detecting unit detects the temperature of the photovoltaic panel, so that the position of the abnormal photovoltaic panel can be accurately positioned.
  • the position detecting unit specifically adopts a proximity switch to detect the position of the photovoltaic panel by detecting the gap of the photovoltaic panel, and the positioning is accurate, and is applicable to the outdoor environment where the photovoltaic panel is located.
  • the detection system shares the intelligent control unit, the wireless communication unit and the power supply unit with the automatic cleaning device, thereby reducing the cost, reducing the overall weight of the automatic cleaning device, and avoiding unnecessary energy loss.
  • the power supply unit includes its own photovoltaic power generation components and storage batteries. It avoids the problems of setting up lines and setting power supply facilities for external power supply, and uses photovoltaic modules to generate electricity, making full use of the environmental conditions of the photovoltaic panels to be tested.
  • the automatic cleaning device is straddled on the photovoltaic panel to be cleaned by the frame.
  • the walking unit drives the automatic cleaning device to move the photovoltaic panel to be cleaned as a whole
  • the cleaning unit can clean the photovoltaic panel to clean the follow-up Detection.
  • the guiding unit is used to limit the walking trajectory of the walking unit, so as to ensure that the automatic cleaning device as a whole can clean the photovoltaic panel without the positional deviation;
  • the intelligent control unit realizes the intelligent start-stop control of the motor, and realizes the automatic cleaning device. Effective control of cleaning time, start and stop time, etc.
  • the guiding unit is specifically implemented by the structure of the supporting wheel to ensure the walking trajectory of the walking unit.
  • the support wheel on the lower side of the photovoltaic panel has a predetermined gap with the lower side of the photovoltaic panel, so that the automatic cleaning device can both clean the photovoltaic panel movement without being stuck due to the edge variation.
  • the walking unit is realized by the structure of the driving wheel, and can walk along the connecting members of the photovoltaic panel, the photovoltaic module frame, the fixing bracket of the photovoltaic panel and/or the photovoltaic panel, and does not need to additionally set the walking track, and has the advantages of simple structure and cost saving.
  • the cleaning unit is realized by the structure of the brush, and the brush is attached to the photovoltaic panel to clean the photovoltaic panel without using water and saving water resources.
  • the transmission portion is such that the direction of rotation of the brush is opposite to the direction of advancement of the walking unit, and the linear speed of the brush rotation is greater than the speed at which the walking unit advances, so that the cleaning effect is better.
  • the battery can be operated under better working conditions, and the battery has high charging efficiency, strong storage capacity, and long service life.
  • a detection method applied to fault detection of a photovoltaic module is also provided.
  • the detection system used in the method is disposed on an automatic cleaning device of the photovoltaic component, thereby completing the detection of the temperature of the photovoltaic panel in the process of cleaning the photovoltaic panel by the automatic cleaning device.
  • Through a machine to achieve cleaning and fault detection at the same time to achieve a multi-purpose machine.
  • After detecting the temperature of the photovoltaic panel it is sent to the main control room after being processed, so that the main control room can know the abnormal photovoltaic panel in time, and then replace the photovoltaic panel with abnormal power generation in time, thereby greatly improving the power generation efficiency and the service life of the photovoltaic module.
  • the photovoltaic panel position is realized while detecting the temperature of the photovoltaic panel The detection enables accurate positioning of the abnormal photovoltaic panel.
  • FIG. 8 are schematic structural diagrams of Embodiment 1 of the present application.
  • FIG. 12 are schematic structural diagrams of Embodiment 2 of the present application.
  • FIG. 18 are schematic structural diagrams of Embodiment 3 of the present application.
  • FIG. 19 is a flowchart of a method according to Embodiment 4 of the present application.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • Disconnecting, or integrally connecting may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • Disconnecting, or integrally connecting may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • FIG. 1 to FIG. 8 a schematic diagram of a detection system applied to failure detection of a photovoltaic module provided by Embodiment 1 of the present application is shown, and the detection system is disposed on an automatic cleaning device of the photovoltaic module.
  • the automatic cleaning device is used to clean the photovoltaic panel movement and clean the photovoltaic panel during the moving process.
  • the inspection system simultaneously detects the temperature of the cleaned photovoltaic panel.
  • the detection system includes a first temperature detecting unit.
  • the first temperature detecting unit is a thermal infrared temperature probe 36 that detects the temperature of the photovoltaic panel when the automatic cleaning device cleans the photovoltaic panel.
  • the detection system also includes an intelligent control unit 13 that is shared with the automatic cleaning device, which is provided as part of the power assembly 9 at a position near the end portion 6 of the frame.
  • the intelligent control unit 13 is coupled to respective thermal infrared temperature probes 36 for receiving and processing the temperatures detected by the respective thermal infrared temperature probes 36.
  • the detection system further includes a wireless communication unit connected to the intelligent control unit 13, which transmits the processed temperature of the intelligent control unit 13 to the main control room, and the wireless communication unit is also shared by the detection system and the automatic cleaning device.
  • the detection system further includes a power supply unit shared with the automatic cleaning device.
  • the power supply unit includes a battery 14 and a photovoltaic power generation assembly 8, wherein the battery 14 is also disposed as a part of the power assembly 9 at a position near the end portion 6 of the frame.
  • the photovoltaic power generation assembly 8 is disposed adjacent to the other end portion 7 of the frame.
  • the temperature of the photovoltaic panel can be detected in the process of cleaning the photovoltaic panel by the automatic cleaning device, and the cleaning and fault detection can be realized simultaneously by one machine, thereby realizing multi-purpose of one machine.
  • the temperature of the photovoltaic panel is detected by the thermal infrared temperature probe, and the intelligence is
  • the control unit sends the wireless control unit to the main control room, so that the main control room can know the abnormal photovoltaic panel in time, and then replace the photovoltaic panel with abnormal power generation in time, thereby greatly improving the power generation efficiency and service life of the photovoltaic module.
  • the detecting system further includes a position detecting unit configured to detect the position of the photovoltaic panel when the first temperature detecting unit detects the temperature of the photovoltaic panel, and the intelligent control unit 13 is connected to the position detecting unit to detect according to the position detecting unit.
  • the position and temperature detected by the thermal infrared temperature probe 36 determine the location of the abnormal photovoltaic panel.
  • the frame of the automatic cleaning device comprises two end portions 6, 7 and an intermediate portion, and the intermediate portion is an integral type, and the protective cover 10 is also integrally disposed on the top surface of the intermediate portion.
  • the intelligent control unit 13, the motor 12, and the battery 14 are collectively disposed as the power unit 9 of the cleaning device, and the power unit 9 is disposed at a position close to the one end portion 6 of the frame.
  • the walking unit comprises two drive wheels 2 arranged at one end 6 of the frame and two drive wheels 2 arranged at the other end 7 of the frame, the four drive wheels all running along the metal frame of the photovoltaic panel.
  • the guiding unit comprises three support wheels 4 arranged at one end 6 of the frame and two support wheels 3 arranged at the other end 7 of the frame, the end faces of each support wheel being parallel to the photovoltaic panel.
  • the traveling trajectory of the driving wheel 2 is restricted by the supporting wheels arranged up and down, and the driving wheel 2 is prevented from being deflected during the traveling.
  • the two support wheels 3 arranged at the other end 7 of the frame have a predetermined gap with the lower side of the photovoltaic panel, the gap enabling the cleaning device to adapt to variations in the width of the photovoltaic panel, for example, due to photovoltaic panel manufacturing
  • the automatic cleaning device can both clean the photovoltaic panel movement without being stuck due to the edge variation.
  • the number of support wheels on the upper side of the photovoltaic panel is three, and the number of support wheels on the lower side of the photovoltaic panel is two, which can ensure that the automatic cleaning device waits for the cleaning of the photovoltaic panel to move. Further, fewer support wheels are used at the end portion 7, which saves costs.
  • the cleaning unit is a spiral rotatable brush 1 disposed at the intermediate portion 5 of the frame and disposed on the lower side of the protective cover 10, and the photovoltaic panel is to be cleaned during the process of rolling the driving wheel 2 to move the cleaning device as a whole. Clean up.
  • Fig. 6 is a schematic structural view of a transmission portion of a driving unit provided at the end portion 6, and Fig. 7 is a schematic cross-sectional view taken along line A-A.
  • the transmission assembly includes a first transmission shaft 26, a second transmission shaft 25, and a transmission assembly, and the transmission assembly specifically includes a driving pulley 22, a driven pulley 21, and a transmission belt 24,
  • the tensioning pulley 23 is further included, and the driving wheel 22, the driven wheel 21 and the tensioning pulley 23 are both provided with a sprocket structure, and the transmission belt 24 is correspondingly arranged as a chain.
  • the first transmission shaft 26 is connected to the motor and is disposed as a mandrel of the brush 1.
  • the driving wheel 22 transmits power to the transmission belt 24 to Two driven wheels 21, two second transmission shafts 25 are respectively connected with the driven wheel 21 and the driving wheel 2, and the power is transmitted from the driven wheel 21 to the driving wheel 2, so that the driving wheel 2 also rotates while the brush rotates.
  • the entire cleaning device can be driven forward.
  • the driving wheel 22 drives the driven wheel 21 to rotate in the opposite direction by the driving belt 24, so that the rotating direction of the brush is opposite to the traveling direction of the driving wheel, so that the cleaning effect is better.
  • the driving wheel 22 is smaller than the driven wheel 24, the rotation speed of the brush 1 is greater than the rotation speed of the driving wheel 2, and the linear speed of the brush 1 is greater than the speed of the traveling unit, further improving the cleaning effect.
  • the automatic cleaning device may further comprise a heating unit and a temperature detecting unit (not shown), for example, the heating unit and The temperature detecting unit is packaged and set as a detachable component.
  • the heating unit and The temperature detecting unit is packaged and set as a detachable component.
  • the working environment temperature is relatively high, the component is not set or the component is detached from the automatic cleaning device, and the working environment temperature is relatively low, and the use scenario will be The assembly is mounted on an automatic cleaning device.
  • the heating unit is configured to heat the battery
  • the temperature detecting unit detects the ambient temperature and the temperature of the battery
  • the intelligent control unit is connected to the heating unit and the temperature detecting unit respectively, as the controlled brain, the battery temperature cannot be satisfied at the ambient temperature.
  • the heating unit is controlled to heat the battery, and when the temperature of the battery rises to a preset temperature, the heating unit is controlled to stop heating, and the photovoltaic power generation component is controlled to charge the battery, thereby enabling the battery to operate at a higher level.
  • the battery has high charging efficiency, strong storage capacity and long service life.
  • FIG. 9 to FIG. 12 a schematic diagram of a detection system applied to failure detection of a photovoltaic module according to Embodiment 2 of the present application is shown.
  • the main difference between the embodiment 2 and the embodiment 1 is that the detection system of the embodiment 2 is
  • the frame of the automatic cleaning device is segmented.
  • the thermal infrared temperature probes 36 are evenly distributed on the segmented frame.
  • Other identical portions are referred to the above-mentioned embodiment 1, and are not described herein again. It is divided into two sections and can be divided into two or more sections. This application is not limited.
  • the protective cover 10 and the brush 1 are also correspondingly arranged in a two-stage segmented structure, as described below.
  • the frame comprises two ends 6, 7 and an intermediate portion, the middle portion is segmented, and the protective cover 10 is also segmented.
  • the formula is placed on the top surface of the intermediate portion.
  • the intelligent control unit, the motor, and the battery are collectively disposed as the power assembly 9 of the cleaning device.
  • the power assembly 9 is disposed at a midpoint of the intermediate portion of the frame, and the self-contained photovoltaic power generation assembly 8 is disposed at a position close to the one end portion 6 of the frame.
  • the driving unit includes two driving wheels 2 disposed at the two ends of the frame, and two driving wheels 2 disposed on the intermediate portion 5, and the six driving wheels all travel along the metal frame of the photovoltaic panel as a running track.
  • the number of support wheels on the upper side of the photovoltaic panel is three, and the number of support wheels on the lower side of the photovoltaic panel is two, which can ensure that the automatic cleaning device needs to clean the photovoltaic panel, and The use of fewer support wheels at the end 7 saves cost.
  • the cleaning unit is a spiral rotatable brush 1, correspondingly also arranged in two sections, and is disposed on the lower side of the protective cover 10, and the photovoltaic panel is to be cleaned during the process of rolling the driving wheel 2 to move the cleaning device as a whole. Clean up.
  • Two position detecting units 15 are further provided at the midpoint of the intermediate portion 5, and specifically may be a proximity switch or a limit switch.
  • the photovoltaic module automatic cleaning device includes an upper end box assembly 30, an intermediate section assembly 35, a lower end box assembly 33, a frame, a motor 12, a transmission assembly 31 and a cleaning assembly 32, the upper end box assembly 30, the lower end box assembly 33 and the intermediate section assembly 35 is integrally joined by a frame, and the cleaning assembly 32 is respectively installed between the upper end box assembly 30 and the intermediate section assembly 35, between the lower end box assembly 33 and the intermediate section assembly 35, and the upper end box assembly 30 and the lower end box assembly 33 and the intermediate section assembly 35 are respectively provided with driving wheels 2, which are respectively connected to the driving wheels 2 and the cleaning assembly 32, and the upper end box assembly 30 is provided with at least two supporting wheels 4, the supporting wheels 4 disposed at the bottom of the upper end box assembly 30, the end surface of the support wheel 4 is parallel to the plane of
  • the drive wheel 2 provided on the lower end box assembly 33 is extendable from the lower end surface of the lower end box assembly 33.
  • the lower end box assembly 33 is designed as an open structure, and only the support wheel 4 is disposed on the upper end box assembly 30 to limit the cleaning direction of the device, and there is no restriction on the width and narrowness of the photovoltaic module within a certain range, thereby improving the adaptation of the device.
  • the top surface of the photovoltaic module automatic cleaning device frame is provided with a protective cover 10, and the protective cover 10 includes an upper protective cover and a lower protective cover.
  • the upper protective cover is disposed at the upper end box assembly 30 and the intermediate section assembly 35.
  • the lower protective cover is disposed between the lower end box assembly 33 and the intermediate section assembly 35.
  • the thermal infrared detection system further includes an intelligent control unit 13, and the intelligent control unit 13 can simultaneously control the automatic cleaning device and the thermal infrared detection system.
  • the photovoltaic module automatic cleaning device further includes a power supply module. As shown in FIG. 17, the power supply module includes a photovoltaic power generation assembly 8 and a battery 14. The photovoltaic power generation assembly 8 and the battery 14 are connected by a current transformer 14, and the battery 14 is connected. Power is supplied to the operation of the motor 12; the intelligent control unit 13 controls the start and stop of the motor 12.
  • a limit switch 15 is disposed on the photovoltaic module automatic cleaning device, and the limit switch 15 includes a left limit switch and a right limit switch respectively disposed on the left and right sides of the device, the left limit switch and the right limit switch
  • the intelligent control unit 13 is connected separately.
  • the photovoltaic module automatic cleaning device comprises an upper end box assembly 30, an intermediate section assembly 35, a lower end box assembly 33, a frame, a cleaning assembly 32, a photovoltaic power generation assembly 8, and the upper and lower end box assemblies and the intermediate section assembly are integrally connected by a frame.
  • Two cleaning brushes in the cleaning assembly 32 are mounted between the upper end box assembly 30 and the intermediate section assembly 35 and the lower end box assembly 33 and the intermediate section assembly 35.
  • a drive assembly 31 is provided in the upper and lower end box assemblies for driving the drive wheel 2 and the sweep assembly 32, wherein the drive wheel 2 and the sweep assembly 32 rotate in opposite directions.
  • the upper end box assembly 30 is provided with a support wheel 4 and an upper drive wheel 2, the lower end box assembly 33 is provided with a lower drive wheel 2, and the intermediate section assembly 7 is provided with an intermediate drive wheel 2.
  • the support wheel 4 of the upper end box assembly 30 is placed on the upper side of the photovoltaic module for limiting the running direction of the photovoltaic module automatic cleaning device; the entire photovoltaic module automatic cleaning device passes Each driving wheel is disposed on the photovoltaic component; the photovoltaic component automatic cleaning device designs the lower end box assembly into an open structure, and only the supporting wheel on the upper end box assembly limits the cleaning direction of the device, compared to the existing cleaning device Because the support wheel on the lower end box assembly is eliminated, the original clamping limit guiding structure is transformed into an open limit guiding structure, and under the premise of ensuring the limit guiding function, the width and width of the photovoltaic module are not within a certain range. Restrictions, thereby improving the adaptability and versatility
  • the motor 12 installed in the intermediate section assembly 35 first transmits power to the core of the cleaning component 32 for cleaning the brush, and the power of the cleaning brush core respectively transmits the power to the upper and lower end box assemblies.
  • the movable assembly 31 decelerates the power and transmits the reverse direction to the drive wheels. Since the drive wheels are connected together by the transmission assembly 31, the synchronous operation between the drive wheels can be maintained.
  • the electrical part of the embodiment includes: a photovoltaic power generation component 8, a motor 12, a DC-DC current conversion 34, a battery 14, an intelligent control unit 13, a right limit switch 15 and a left limit switch 15;
  • the power generation component 8 starts to generate electricity, and the output current is processed by the DC-DC current converter 34 to charge the battery 14.
  • the battery 14 is powered by the intelligent control unit 13 for the motor 12 of the cleaning device, and the battery capacity thereof can satisfy the cleaning device. The power used to clean the cycle.
  • the intelligent control unit 13 can set the working time of the cleaning device. When the set time is reached, the intelligent control unit 13 automatically starts the cleaning device to start the cleaning operation, and the left limit switch 15 is disposed on the left and right sides of the cleaning device. And the right limit switch 15 is connected to the intelligent control unit 13, and the left limit switch 15 and the right limit switch 15 are respectively used to determine the operating position of the cleaning device, and transmit the position signal to the intelligent control unit 13, by intelligence
  • the control unit 13 controls the steering of the motor 12, that is, when the cleaning device is operated to the extreme position of the photovoltaic module, the determination can be automatically made and the reverse motion can be realized, thereby realizing the automatic up and down circulation of the cleaning device.
  • the limit switch of the cleaning device is used to check the stroke limit position. When the limit position is reached, the limit switch transmits a signal to the intelligent control unit 13, and the intelligent control unit 13 automatically controls the cleaning device. Stop cleaning.
  • the automatic cleaning device for photovoltaic modules in the above embodiments is an automated mechanical device developed for efficient cleaning of photovoltaic modules in the photovoltaic power generation industry.
  • the cleaning device is laterally spanned on the cleaned photovoltaic module, and the driving wheel is rolled along the frame of the photovoltaic module, and the length of the brush on the cleaning component is consistent with the width of the surface of the photovoltaic module.
  • the driving component drives the brush mandrel and the transmission component, and drives the driving wheel through the transmission component to drive the cleaning device to follow the surface of the photovoltaic component; the brush in the cleaning component is closely attached to the surface of the photovoltaic component, and the steering is turned during operation. It is opposite to the direction in which the drive wheel rotates.
  • the cleaning brush rotates in the reverse direction of the running direction, and is cleaned against the surface of the photovoltaic module. Only one cleaning cycle is required, and the surface of the photovoltaic module can be cleaned.
  • a support wheel is arranged on the upper end box assembly, and the support wheel rolls on the side end surface of the photovoltaic panel. Since the photovoltaic module is installed on the inclined surface, when the walking direction of the cleaning device is biased When tilted, the support wheel can play the role of automatic correction.
  • the thermal infrared detection system and the automatic cleaning device share an intelligent control unit 13, a thermal infrared probe 36, Proximity switch 37.
  • the intelligent control unit 13 can set the working time of the cleaning device. When the set time is reached, the intelligent control unit 13 will automatically start the cleaning device to start the cleaning work, and the infrared temperature probe 36 starts to work after starting the operation (if the photovoltaic string More than 2 will increase the infrared temperature probe, and each PV string corresponds to an infrared probe) to scan the temperature of the photovoltaic panel.
  • the intelligent control unit 13 is connected to the proximity switch 37, and the position signal is returned to the intelligent control unit 13 by the proximity switch 37.
  • the position signal intelligent control unit 13 can accurately calculate the position of the abnormal photovoltaic module. The specific process is shown in Figure 18.
  • the detection system applied to the failure detection of the photovoltaic module in the present application can be applied to the automatic cleaning device of any photovoltaic module, and is not limited to the specific structure described in the above embodiments.
  • FIG. 19 is a flowchart of a method according to Embodiment 4 of the present application. As shown in FIG. 19, this embodiment provides a detection method applied to fault detection of a photovoltaic module.
  • the detection system used in the method may be the above embodiment 1 to In the automatic cleaning device for the photovoltaic module of any of the embodiments 3, the detecting method includes the following steps S102 to S106.
  • Step S102 detecting the temperature of the photovoltaic panel when the automatic cleaning device cleans the photovoltaic panel.
  • Step S104 Processing the temperature of the detected photovoltaic panel.
  • Step S106 Send the processed temperature to the main control room.
  • the temperature data may be combined with the geographic location data of the photovoltaic panel, the current time data of the detected temperature, etc., and then sent to the main control room; the detected temperature may also be determined when the temperature is higher than the predetermined temperature.
  • an early warning signal is generated and sent to the main control room; or the detected temperature-forming log file is sent to the main control room at a predetermined interval; or the detected temperature data and the interval between the two detected temperatures are
  • the time and the speed of the automatic cleaning device are packaged and sent to the main control room, so that the main control room can know which temperature of each photovoltaic panel is detected according to the interval time and the speed of the automatic cleaning device.
  • the detecting method further comprises the steps of: detecting a position of the photovoltaic panel when detecting the temperature of the photovoltaic panel; determining a position of the abnormal photovoltaic panel according to the detected position and the detected temperature; and positioning the abnormal photovoltaic panel Send to the main control room.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种应用于光伏组件故障检测中的检测系统和检测方法。该系统设置于光伏组件的自动清扫装置上,该自动清扫装置用于顺待清扫光伏面板移动,并在移动过程中对光伏面板进行清扫,该检测系统包括:第一温度检测单元(36),用于在自动清扫装置对光伏面板进行清扫时,检测光伏面板的温度;智能控制单元(13),与第一温度检测单元(36)相连接,用于接收和处理第一温度检测单元(36)检测到的温度;以及无线通信单元,与智能控制单元(13)相连接,用于将智能控制单元(13)处理后的温度发送至主控室。该系统能够在清扫光伏面板的同时检测光伏面板的温度,并将检测到的温度传输至主控室,以便及时替换发电异常的光伏面板,大幅度提高光伏组件的发电效率和使用寿命。

Description

应用于光伏组件故障检测中的检测系统和检测方法
本申请要求2015年7月7日递交的申请号为201510395539.6、发明名称为“应用于光伏组件故障检测中的检测系统和检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏组件清扫及故障检测领域,特别涉及一种应用于光伏组件故障检测中的检测系统和检测方法。
背景技术
目前,随着光伏发电行业的高速发展,光伏发电产业以其环保、能源质量高等优点,已成为国内外发电行业的一种新的趋势,但由于光伏发电所用的光伏板面通常安装在室外,而室外的扬尘、雾霾、雨水、鸟类粪便等都会对光伏板面造成污染和覆盖,并且光伏发电组件串联工作,如果一个组件单元存在故障,该故障单元温度将会升高,严重影响整组光伏组件的发电效率和使用寿命,所以光伏组件需要定期清扫和故障检测,目前国内外对于光伏组件智能清洁及故障智能检测都未能实现有效的解决手段。
针对现有技术中,由于故障光伏面板没有被及时检测到而导致整组光伏组件的发电效率低、使用寿命短的技术问题,目前尚未提出有效地解决方案。
申请内容
本申请实施例提供一种应用于光伏组件故障检测中的检测系统和检测方法,可解决现有技术中由于故障光伏面板没有被及时检测到而导致整组光伏组件的发电效率低、使用寿命短的技术问题。
为了解决上述问题,本申请公开了一种应用于光伏组件故障检测中的检测系统。该系统设置于光伏组件的自动清扫装置上,该自动清扫装置用于顺待清扫光伏面板移动,并在移动过程中对光伏面板进行清扫,该检测系统包括:第一温度检测单元,用于在自动清扫装置对光伏面板进行清扫时,检测光伏面板的温度;智能控制单元,与第一温度检测单元相连接,用于接收和处理第一温 度检测单元检测到的温度;以及无线通信单元,与智能控制单元相连接,用于将智能控制单元处理后的温度发送至主控室。
进一步地,第一温度检测单元包括至少一个热红外扫描装置,在自动清扫装置移动的过程中,对光伏面板(发电单元)进行逐个的热红外扫描。
进一步地,该检测系统还包括:位置检测单元,用于在第一温度检测单元检测光伏面板的温度时,检测光伏面板的位置;智能控制单元与位置检测单元相连接,以根据位置检测单元检测到的位置和第一温度检测单元检测到的温度确定异常光伏面板的位置。
进一步地,位置检测单元包括接近开关或光电开关,用于通过检测光伏面板的缝隙来检测光伏面板的位置。
进一步地,检测系统与自动清扫装置共用智能控制单元、无线通信单元和供电单元,供电单元包括自带的光伏发电组件和蓄电池。
进一步地,自动清扫装置包括:框架,包括两端部和中间部,框架跨搭在待清扫的光伏面板上时,中间部与待清扫光伏面板平行;行走单元,设置在框架的两端部和/或中间部,用于带动自动清扫装置顺待清扫光伏面板移动;导向单元,设置在框架的两端部,用于限制行走单元的行走轨迹;清扫单元,设置在框架的中间部,用于在自动清扫装置移动的过程中,对待清扫光伏面板进行清扫;驱动单元,包括电机和传动部分,用于向清扫单元和行走单元提供动力;智能控制单元与电机相连接,包括智能控制电路板,用于智能化的控制电机的启停。
进一步地,导向单元包括支撑轮,当框架整体跨搭在光伏面板上时,设置在框架一端的支撑轮搭在光伏面板的上侧边,设置在框架另一端的支撑轮与光伏面板的下侧边具有预定的间隙,设置在框架两端部的支撑轮的端面均与光伏面板平行;行走单元包括驱动轮,其中,驱动轮沿光伏面板、光伏组件边框、光伏面板的固定支架和/或光伏面板的连接件行走,清扫单元包括毛刷,在行走单元行走的过程中,毛刷贴附于光伏面板上,驱动单元的传动部分包括:第一传动轴,与电机相连接,设置为毛刷的芯轴,用于带动毛刷旋转;第二传动轴,与行走单元相连接,用于向行走单元提供行走动力;以及传动组件,包括主动轮、从动轮和传动带,主动轮与第一传动轴相连接,从动轮与第二传动轴 相连接,主动轮通过传动带带动从动轮反向旋转。
进一步地,该检测系统还包括:加热单元,用于向蓄电池加热;第二温度检测单元,用于检测环境温度和蓄电池的温度,其中,智能控制单元与加热单元和第二温度检测单元相连接,用于在环境温度不能满足蓄电池工作的条件时,控制加热单元向蓄电池加热,并在蓄电池的温度上升至预设温度时,控制加热单元停止加热,并控制自带的光伏发电组件对蓄电池充电。
为了解决上述问题,本申请公开了一种应用于光伏组件故障检测中的检测方法。该方法采用的检测系统设置于光伏组件的自动清扫装置上,该自动清扫装置用于顺待清扫光伏面板移动,并在移动过程中对光伏面板进行清扫,该检测方法包括:在自动清扫装置对光伏面板进行清扫时,检测光伏面板的温度;对检测到的光伏面板的温度进行处理;以及将处理后的温度发送至主控室。
进一步地,该检测方法还包括:在检测光伏面板的温度时,检测光伏面板的位置;根据检测到的位置和检测到的温度确定异常光伏面板的位置;以及将异常光伏面板的位置发送至主控室。
与现有技术相比,本申请具有以下优点:
提供了一种应用于光伏组件故障检测中的检测系统,将该检测系统设置于光伏组件的自动清扫装置上,从而在自动清扫装置对光伏面板清扫的过程中完成光伏面板温度的检测,通过一机同时实现清扫与故障检测,实现一机多用。在第一温度检测单元检测到光伏面板的温度,经智能控制单元处理后通过无线通信单元发送至主控室,以便主控室能够及时获知异常光伏面板,进而及时替换发电异常的光伏面板,大幅度提高光伏组件的发电效率和使用寿命。
优选地,第一温度检测单元采用热红外扫描装置对光伏面板进行逐个的热红外扫描,并且由于热红外扫描装置不直接接触光伏板面,对光伏面板无损伤;且热红外扫描装置反应时间快,无需等待热平衡过程,实现精准快速检测。
优选地,检测系统还设置有位置检测单元,在第一温度检测单元检测光伏面板温度的同时,实现光伏面板位置的获取,从而能够准确的定位到异常光伏面板的位置。
优选地,位置检测单元具体采用接近开关,通过检测光伏面板的缝隙来检测光伏面板的位置,定位准确,且适用于光伏面板所在的室外环境。
优选地,检测系统与自动清扫装置共用智能控制单元、无线通信单元和供电单元,降低成本,减轻自动清扫装置整体重量,避免不必要的能量损耗。供电单元包括自带的光伏发电组件和蓄电池,避免外接电源需要设置线路、设置供电设施等问题,而且采用光伏组件发电,充分利用了待检测光伏面板的环境条件。
优选地,自动清扫装置通过框架跨搭在待清扫的光伏面板上,当行走单元带动自动清扫装置整体顺待清扫光伏面板移动时,清扫单元能够对待清扫光伏面板进行清扫,实现随动随扫随检测。其中,通过导向单元限制行走单元的行走轨迹,以保证自动清扫装置整体能够顺待清扫光伏面板移动而不出现位置偏差;通过智能控制单元实现对电机智能化的启停控制,实现自动清扫装置的清扫时长、启停时间等有效控制。
优选地,导向单元具体采用支撑轮的结构实现,保证行走单元的行走轨迹。搭在光伏面板的下侧边的支撑轮与光伏面板的下侧边具有预定的间隙,使得自动清扫装置既能够顺待清扫光伏面板移动,又不会由于边沿参差而被卡。行走单元采用驱动轮的结构实现,能够沿光伏面板、光伏组件边框、光伏面板的固定支架和/或光伏面板的连接件行走,无需额外设置行走轨道,结构简单,节省成本。清扫单元采用毛刷的结构实现,毛刷贴附于光伏面板上,对光伏面板进行清扫,无需消耗水,节省水资源。传动部分使得使毛刷的旋转方向与行走单元的前进方向相反,毛刷旋转的线速度大于行走单元前进的速度,使得清扫效果更好。
优选地,通过设置加热单元和温度检测单元,能够使蓄电池在较好的工作条件下工作,电池的充电效率高、储电能力强、使用寿命长。
还提供了一种应用于光伏组件故障检测中的检测方法,该方法采用的检测系统设置于光伏组件的自动清扫装置上,从而在自动清扫装置对光伏面板清扫的过程中完成光伏面板温度的检测,通过一机同时实现清扫与故障检测,实现一机多用。在检测到光伏面板的温度,经处理后发送至主控室,以便主控室能够及时获知异常光伏面板,进而及时替换发电异常的光伏面板,大幅度提高光伏组件的发电效率和使用寿命。
优选地,在该检测方法中,检测光伏面板温度的同时,实现光伏面板位置 的检测,从而能够准确的定位到异常光伏面板的位置。
附图说明
图1至图8为本申请实施例1的结构示意图;
图9至图12为本申请实施例2的结构示意图;
图13至图18为本申请实施例3的结构示意图;
图19为本申请实施例4的方法流程图。
图中:
1-毛刷;2-驱动轮;3-支撑轮;4-支撑轮;5-框架中间部;6-框架一端部;7-框架另一端部;8-光伏发电组件;9-电力组件;10-防护盖板;12-电机;13-智能控制单元;14-蓄电池;15-位置检测单元;21-从动轮;22-主动轮;23-张紧轮;24-传动带;25-第二传动轴;26-第一传动轴;30-上端箱组件;31-传动组件;32-清扫组件;33-下端箱组件;34-DC-DC电流变换器;35-中间段组件;36-热红外温度探头;37-接近开关。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆 卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例1
参照图1至图8,示出了本申请实施例1提供的应用于光伏组件故障检测中的检测系统的示意图,该检测系统设置于光伏组件的自动清扫装置上。自动清扫装置用于顺待清扫光伏面板移动,并在移动过程中对光伏面板进行清扫。在清扫过程中,检测系统同时对待清扫的光伏面板的温度进行检测。
具体地,检测系统包括第一温度检测单元,在该实施例中第一温度检测单元为热红外温度探头36,在自动清扫装置对光伏面板进行清扫时,检测光伏面板的温度。检测系统还包括与自动清扫装置共用的智能控制单元13,该智能控制单元13作为电力组件9的一部分,设置于靠近框架一端部6的位置。智能控制单元13与各个热红外温度探头36相连接,用于接收和处理各个热红外温度探头36检测到的温度。检测系统还包括与智能控制单元13相连接的无线通信单元,该无线通信单元将智能控制单元13处理后的温度发送至主控室,无线通信单元也是检测系统与自动清扫装置共用的。此外,检测系统还包括与自动清扫装置共用的供电单元,供电单元包括蓄电池14和光伏发电组件8,其中,蓄电池14也作为电力组件9的一部分,设置于靠近框架一端部6的位置,自带的光伏发电组件8设置于靠近框架另一端部7的位置。
通过在光伏组件的自动清扫装置上设置该检测系统,能够在自动清扫装置对光伏面板清扫的过程中完成光伏面板温度的检测,通过一机同时实现清扫与故障检测,实现一机多用。在热红外温度探头检测到光伏面板的温度,经智能 控制单元处理后通过无线通信单元发送至主控室,以便主控室能够及时获知异常光伏面板,进而及时替换发电异常的光伏面板,大幅度提高光伏组件的发电效率和使用寿命。
优选地,检测系统还包括位置检测单元,用于在第一温度检测单元检测光伏面板的温度时,检测光伏面板的位置,智能控制单元13与位置检测单元相连接,以根据位置检测单元检测到的位置和热红外温度探头36检测到的温度确定异常光伏面板的位置。
其中,自动清扫装置的框架包括两端部6,7和中间部,中间部为一体式,防护盖板10也为一体式设置于中间部的顶面。将智能控制单元13、电机12以及蓄电池14统一设置为清扫装置的电力组件9,该电力组件9设置于靠近框架一端部6的位置。
行走单元包括设置在框架的一端部6的两个驱动轮2和设置在框架另一端部7的两个驱动轮2,四个驱动轮均沿光伏面板金属边框为运行轨道行走。导向单元包括设置在框架的一端部6的三个支撑轮4和设置在框架另一端部7的两个支撑轮3,各支撑轮的端面均与光伏面板平行。通过上下设置的支撑轮,限制驱动轮2的行走轨迹,避免驱动轮2在行进的过程中走偏。同时,设置在框架另一端部7的两个支撑轮3与光伏面板的下侧边具有预定的间隙,该间隙使得清扫装置能够适应光伏面板宽度在一定范围内的变化,例如,由于光伏面板制造工艺或安装操作导致光伏面板边沿参差不齐时,由于上下支撑轮的设置以及该间隙的存在,使得自动清扫装置既能够顺待清扫光伏面板移动,又不会由于边沿参差而被卡。并且搭在光伏面板的上侧边的支撑轮的个数为3个,搭在光伏面板的下侧边的支撑轮的个数为2个,既能够保证自动清扫装置顺待清扫光伏面板移动,又在端部7采用了较少的支撑轮,节省了成本。
清扫单元为螺旋可旋转的毛刷1,设置在框架的中间部5,并设置在防护盖板10的下侧,在驱动轮2滚动向前带动清扫装置整体移动的过程中,对待清扫光伏面板进行清扫。
图6为设置于端部6的驱动单元的传动部分的结构示意图,图7为沿A-A方向的剖面示意图。如图6和图7所示,传动组件包括第一传动轴26、第二传动轴25和传动组件,传动组件具体包括主动轮22、从动轮21和传动带24, 优选还包括张紧轮23,且主动轮22、从动轮21和张紧轮23均采用链轮结构,传动带24相应设置为链条。第一传动轴26与电机相连接,并且设置为毛刷1的芯轴,第一传动轴26获得电机动力进行旋转时,带动毛刷1旋转;同时,主动轮22将动力通过传动带24传递至两个从动轮21,两个第二传动轴25分别与从动轮21和驱动轮2连接,将动力再由从动轮21传递至驱动轮2,从而在毛刷旋转的同时,驱动轮2也旋转,由此能够带动清扫装置整体前进。优选地,主动轮22通过传动带24带动从动轮21反向旋转,使毛刷的旋转方向与驱动轮的前进方向相反,使清扫效果更好。优选地,主动轮22小于从动轮24,使毛刷1旋转的速度大于驱动轮2的旋转速度,进而毛刷1的线速度大于行走单元前进的速度,进一步使清扫效果更好。
进一步优选地,针对清扫工作在环境温度相对较低工况下光伏面板的自动清扫装置,该自动清扫装置还可包括加热单元和温度检测单元(图中未示出),例如,将加热单元和温度检测单元封装并设置为可拆卸的组件,在工作环境温度相对较高的使用场景,不设置该组件或将该组件从自动清扫装置上拆卸,在工作环境温度相对较低的使用场景,将该组件安装在自动清扫装置上。具体地,加热单元用于对蓄电池进行加热,温度检测单元于检测环境温度和蓄电池的温度,智能控制单元与加热单元和温度检测单元分别相连接,作为控制的大脑,在环境温度不能满足蓄电池工作的条件时,控制加热单元向蓄电池加热,并在蓄电池的温度上升至预设温度时,控制加热单元停止加热,并控制自带的光伏发电组件对蓄电池充电,由此,能够使蓄电池工作在较好的温度条件下,从而使得蓄电池的充电效率高、储电能力强、使用寿命长。
实施例2
参照图9至图12,示出了本申请实施例2提供的应用于光伏组件故障检测中的检测系统的示意图,该实施例2与实施例1的主要区别在于,该实施例2的检测系统所在的自动清扫装置的框架是分段的,相应的,热红外温度探头36均匀分布在分段的框架上,其他相同的部分参考上述实施例1,此处不再赘述。具体分为两段,也可分为两段以上,本申请不做限定。在本实施例中,防护盖板10和毛刷1也相应设置为两段的分段式结构,具体说明如下。
框架包括两端部6,7和中间部,中间部为分段式,防护盖板10也为分段 式,设置于中间部的顶面。将智能控制单元、电机以及蓄电池统一设置为清扫装置的电力组件9,该电力组件9设置于框架中间部的中点位置,自带的光伏发电组件8设置于靠近框架一端部6的位置。行走单元除设置在框架两端部的驱动轮2,还包括设置于中间部5的两个驱动轮2,六个驱动轮均沿光伏面板金属边框为运行轨道行走。搭在光伏面板的上侧边的支撑轮的个数为3个,搭在光伏面板的下侧边的支撑轮的个数为2个,既能够保证自动清扫装置顺待清扫光伏面板移动,又在端部7采用了较少的支撑轮,节省了成本。
清扫单元为螺旋可旋转的毛刷1,相应也设置为两段,并设置在防护盖板10的下侧,在驱动轮2滚动向前带动清扫装置整体移动的过程中,对待清扫光伏面板进行清扫。在中间部5的中点位置还设置有两个位置检测单元15,具体可以为接近开关或限位开关。
实施例3
该实施例提供了一种应用于光伏组件故障检测中的检测系统,具体为热红外检测系统,该热红外探测检测系统集成并安装在光伏组件自动清扫装置中,如图13至图16所示,光伏组件自动清扫装置包括上端箱组件30、中间段组件35、下端箱组件33、框架、电机12、传动组件31和清扫组件32,所述上端箱组件30、下端箱组件33和中间段组件35由框架连接成一个整体,所述清扫组件32分别安装在上端箱组件30与中间段组件35之间、下端箱组件33与中间段组件35之间,所述上端箱组件30、下端箱组件33和中间段组件35上分别设置有驱动轮2,所述传动组件31分别连接各驱动轮2和清扫组件32,所述上端箱组件30上设置有至少两个支撑轮4,所述支撑轮4设置在上端箱组件30箱体的底部,支撑轮4端面平行于待清扫的光伏组件平面,所述下端箱组件33的下端面高于上端箱组件30的下端面,且下端箱组件33上设置的驱动轮2可从下端箱组件33的下端面伸出。该实施例中将下端箱组件33设计成开放式结构,只在上端箱组件30上设置支撑轮4对装置的清扫方向进行限制,对光伏组件一定范围内的宽窄没有限制,从而提高装置的适应性和通用性;当该装置下端箱组件33底部驱动轮2紧贴光伏组件平面时,下端箱组件33的下端面高于光伏组件平面,从而消除了该清扫装置在光伏组件上组装时的宽度限制,允许光伏组件安装时的误差,从而提高本装置针对光伏发电环境实际 状况的适应能力。
光伏组件自动清扫装置框架顶面设置有防护盖板10,所述防护盖板10包括上防护盖板和下防护盖板,所述上防护盖板设置在上端箱组件30与中间段组件35之间,下防护盖板设置在下端箱组件33与中间段组件35之间。
另外,该热红外检测系统还包括智能控制单元13,智能控制单元13可同时对自动清扫装置和热红外检测系统进行控制。光伏组件自动清扫装置还包括供电模块,如图17所示,供电模块包括光伏发电组件8和蓄电池14,所述光伏发电组件8和蓄电池14之间通过电流变换器14进行连接,所述蓄电池14为电机12的运行进行供电;所述智能控制单元13对电机12的启停进行控制。
光伏组件自动清扫装置上设置有限位开关15,所述限位开关15包括分别设置在该装置的左右两侧的左限位开关和右限位开关,所述左限位开关和右限位开关分别连接智能控制单元13。
光伏组件自动清扫装置,包括上端箱组件30、中间段组件35、下端箱组件33、框架、清扫组件32、光伏发电组件8,上、下端箱组件和中间段组件由框架相连接组成一个整体,清扫组件32中的两个清扫毛刷安装于上端箱组件30与中间段组件35及下端箱组件33与中间段组件35之间。上、下端箱组件中设有传动组件31,用于对驱动轮2和清扫组件32进行驱动,其中驱动轮2和清扫组件32旋转方向相反。上端箱组件30设有支撑轮4和上驱动轮2,下端箱组件33设有下驱动轮2,中间段组件7上设置有中间驱动轮2。该自动清扫装置跨搭在光伏组件上时,上端箱组件30的支撑轮4搭在光伏组件上侧边上,用于对光伏组件自动清扫装置的运行方向进行限制;整个光伏组件自动清扫装置通过各个驱动轮设置在光伏组件上;该光伏组件自动清扫装置将下端箱组件设计成开放式结构,只在上端箱组件上设置支撑轮对装置的清扫方向进行限制,相比于现有的清扫装置,由于取消了下端箱组件上的支撑轮,将原有的夹持限位导向结构转变为开放式限位导向结构,在保证限位导向功能的前提下,对光伏组件一定范围内的宽窄没有限制,从而提高装置的适应性和通用性,可适用于各种不同规格光伏组件的清扫。
本申请中,安装于中间段组件35中的电机12首先将动力传给清扫组件32上清扫毛刷的芯轴,由清扫毛刷芯轴分别将动力传给上、下端箱组件,传 动组件31将动力减速并将转向反向后传给驱动轮,由于各个驱动轮之间通过传动组件31连接在一起,从而可以保持各驱动轮之间同步运行。
本实施例的电气部分包括:光伏发电组件8、电机12、DC-DC电流变换34、蓄电池14、智能控制单元13、右限位开关15和左限位开关15;在光照足够条件下,光伏发电组件8开始发电,其输出电流经过DC-DC电流变换器34处理后为蓄电池14充电,蓄电池14通过智能控制单元13为该清扫装置的电机12进行供电,其电池容量可满足该清扫装置一个清扫循环所用电力。
智能控制单元13可对该清扫装置的工作时间能进行设定,当到达设定时间后智能控制单元13将自动启动清扫装置开始清扫工作,设置在该清扫装置左右两侧的左限位开关15和右限位开关15连接智能控制单元13,左限位开关15和右限位开关15分别用于对该清扫装置的运行位置进行判断,并将该位置信号传输到智能控制单元13,由智能控制单元13控制电机12的转向,即当该清扫装置运行到光伏组件的极限位置时,可自动进行判断,并实现反向运动,从而实现该清扫装置的自动上下循环。当一个清扫循环结束时,该清扫装置的限位开关用于检查行程极限位置,当运行到极限位置时,限位开关将信号传输到智能控制单元13,由智能控制单元13自动控制该清扫装置停止清扫作业。
上述实施例中的光伏组件自动清扫装置,是针对光伏发电行业,光伏组件高效清扫而开发的自动化机械装置。该清扫装置横向跨搭于被清扫的光伏组件上,驱动轮顺着光伏组件边框滚动行走,清扫组件上的毛刷长度和光伏组件的板面宽度一致。驱动组件驱动毛刷心轴和传动组件,通过传动组件带动驱动轮,驱动该清扫装置顺着光伏组件的板面行走;清扫组件中的毛刷紧贴于光伏组件的板面,运行时其转向和驱动轮转动方向相反。该清扫装置工作过程中,清扫毛刷沿运行方向逆向旋转,紧贴着光伏组件板面进行清扫,只需一个清扫循环,光伏组件板面就可以清扫干净。为保证该清扫装置可靠平行于光伏组件板面行走,在上端箱组件上设有支撑轮,支撑轮在光伏板侧端面滚动,由于光伏组件为倾斜面安装,当该清扫装置的行走方向出现偏斜时,支撑轮可起到自动纠偏的作用。
热红外检测系统与自动清扫装置共用智能控制单元13、热红外探头36、 接近开关37。智能控制单元13可对该清扫装置的工作时间能进行设定,当到达设定时间后智能控制单元13将自动启动清扫装置开始清扫工作,开始工作后红外温度探头36开始工作(如果光伏组串多于2个将增加红外温度探头,每个光伏组串对应一个红外探头),对光伏板温度进行扫描。智能控制单元13和接近开关37相连,由接近开关37返回位置信号给智能控制单元13,通过位置信号智能控制单元13就可以精确的计算异常的光伏组件的位置。具体流程如图18所示。
需要说明的是,本申请中的应用于光伏组件故障检测中的检测系统可以应用于任意光伏组件的自动清扫装置上,并不现定于上述实施例描述的具体结构。
实施例4
图19为本申请实施例4的方法流程图,如图19所示,该实施例提供了一种应用于光伏组件故障检测中的检测方法,该方法采用的检测系统可以为上述实施例1至3中任一实施例的光伏组件的自动清扫装置上,该检测方法包括如下的步骤S102至步骤S106。
步骤S102:在自动清扫装置对光伏面板进行清扫时,检测光伏面板的温度。
步骤S104:对检测到的光伏面板的温度进行处理。
步骤S106:将处理后的温度发送至主控室。
在该实施例中,可将温度数据结合光伏面板所在的地理位置数据、检测温度当前的时间数据等封装处理后发送至主控室;也可对检测到的温度进行判断,当温度高于预定温度时,生成一个预警信号发送至主控室;或者间隔较短的预定时间将检测到的温度形成日志类文件发送至主控室;或者将检测到的温度数据和每两次检测温度的间隔时间以及自动清扫装置的速度封装处理后发送至主控室,从而主控室根据间隔时间、自动清扫装置的速度能够获知每个检测到的温度是哪一光伏面板的温度。优选地,该检测方法还包括如下的步骤:在检测光伏面板的温度时,检测光伏面板的位置;根据检测到的位置和检测到的温度确定异常光伏面板的位置;以及将异常光伏面板的位置发送至主控室。
需要说明的是,上述装置实施例属于优选实施例,所涉及的单元和模块并 不一定是本申请所必须的。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
以上对本申请所提供的一种应用于光伏组件故障检测中的检测系统和检测方法,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种应用于光伏组件故障检测中的检测系统,所述检测系统设置于光伏组件的自动清扫装置上,所述自动清扫装置用于顺待清扫光伏面板移动,并在移动过程中对所述光伏面板进行清扫,所述检测系统包括:
    第一温度检测单元,用于在所述自动清扫装置对所述光伏面板进行清扫时,检测所述光伏面板的温度;
    智能控制单元,与所述第一温度检测单元相连接,用于接收和处理所述第一温度检测单元检测到的温度;以及
    无线通信单元,与所述智能控制单元相连接,用于将所述智能控制单元处理后的温度发送至主控室。
  2. 根据权利要求1所述的应用于光伏组件故障检测中的检测系统,其中,所述第一温度检测单元包括至少一个热红外扫描装置,在所述自动清扫装置移动的过程中,对所述光伏面板进行逐个的热红外扫描。
  3. 根据权利要求1所述的应用于光伏组件故障检测中的检测系统,其中,还包括:
    位置检测单元,用于在第一温度检测单元检测所述光伏面板的温度时,检测所述光伏面板的位置;
    所述智能控制单元与所述位置检测单元相连接,以根据所述位置检测单元检测到的位置和所述第一温度检测单元检测到的温度确定异常光伏面板的位置。
  4. 根据权利要求3所述的应用于光伏组件故障检测中的检测系统,其中,所述位置检测单元包括接近开关或光电开关,用于通过检测所述光伏面板的缝隙来检测所述光伏面板的位置。
  5. 根据权利要求1所述的应用于光伏组件故障检测中的检测系统,其中,所述检测系统与所述自动清扫装置共用所述智能控制单元、所述无线通信单元和供电单元,所述供电单元包括自带的光伏发电组件和蓄电池。
  6. 根据权利要求5所述的应用于光伏组件故障检测中的检测系统,其中,所述自动清扫装置包括:
    框架,包括两端部和中间部,所述框架跨搭在所述待清扫的光伏面板上时,所述中间部与所述待清扫光伏面板平行;
    行走单元,设置在所述框架的两端部和/或中间部,用于带动所述自动清扫装置顺所述待清扫光伏面板移动;
    导向单元,设置在所述框架的两端部,用于限制所述行走单元的行走轨迹;
    清扫单元,设置在所述框架的中间部,用于在所述自动清扫装置移动的过程中,对所述待清扫光伏面板进行清扫;
    驱动单元,包括电机和传动部分,用于向所述清扫单元和所述行走单元提供动力;
    所述智能控制单元与所述电机相连接,包括智能控制电路板,用于智能化的控制所述电机的启停。
  7. 根据权利要求6所述的应用于光伏组件故障检测中的检测系统,其中,
    所述导向单元包括支撑轮,当所述框架整体跨搭在所述光伏面板上时,设置在所述框架一端的支撑轮搭在所述光伏面板的上侧边,设置在所述框架另一端的支撑轮与所述光伏面板的下侧边具有预定的间隙,设置在所述框架两端部的支撑轮的端面均与所述光伏面板平行;
    所述行走单元包括驱动轮,其中,所述驱动轮沿所述光伏面板、所述光伏组件边框、所述光伏面板的固定支架和/或所述光伏面板的连接件行走,
    所述清扫单元包括毛刷,在所述行走单元行走的过程中,所述毛刷贴附于所述光伏面板上,
    所述驱动单元的传动部分包括:第一传动轴,与所述电机相连接,设置为所述毛刷的芯轴,用于带动所述毛刷旋转;第二传动轴,与所述行走单元相连接,用于向所述行走单元提供行走动力;以及传动组件,包括主动轮、从动轮和传动带,所述主动轮与所述第一传动轴相连接,所述从动轮与所述第二传动轴相连接,所述主动轮通过所述传动带带动所述从动轮反向旋转。
  8. 根据权利要求5所述的应用于光伏组件故障检测中的检测系统,其中,还包括:
    加热单元,用于向所述蓄电池加热;
    第二温度检测单元,用于检测环境温度和所述蓄电池的温度,
    其中,所述智能控制单元与所述加热单元和所述第二温度检测单元相连接,用于在所述环境温度不能满足所述蓄电池工作的条件时,控制所述加热单 元向所述蓄电池加热,并在所述蓄电池的温度上升至预设温度时,控制所述加热单元停止加热,并控制所述自带的光伏发电组件对所述蓄电池充电。
  9. 一种应用于光伏组件故障检测中的检测方法,所述方法采用的检测系统设置于光伏组件的自动清扫装置上,所述自动清扫装置用于顺待清扫光伏面板移动,并在移动过程中对所述光伏面板进行清扫,所述检测方法包括:
    在所述自动清扫装置对所述光伏面板进行清扫时,检测所述光伏面板的温度;
    对检测到的所述光伏面板的温度进行处理;以及
    将处理后的温度发送至主控室。
  10. 根据权利要求9所述的应用于光伏组件故障检测中的检测方法,其中,所述检测方法还包括:
    在检测所述光伏面板的温度时,检测所述光伏面板的位置;
    根据检测到的位置和检测到的温度确定异常光伏面板的位置;以及
    将所述异常光伏面板的位置发送至所述主控室。
PCT/CN2015/090348 2015-04-27 2015-09-23 应用于光伏组件故障检测中的检测系统和检测方法 WO2017004896A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510202706 2015-04-27
CN201510395539.6A CN104980107A (zh) 2015-04-27 2015-07-07 应用于光伏组件故障检测中的检测系统和检测方法
CN201510395539.6 2015-07-07

Publications (1)

Publication Number Publication Date
WO2017004896A1 true WO2017004896A1 (zh) 2017-01-12

Family

ID=54276280

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/000312 WO2016172810A1 (zh) 2015-04-27 2015-05-05 一种应用于光伏组件故障检测中的热红外检测系统
PCT/CN2015/090348 WO2017004896A1 (zh) 2015-04-27 2015-09-23 应用于光伏组件故障检测中的检测系统和检测方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000312 WO2016172810A1 (zh) 2015-04-27 2015-05-05 一种应用于光伏组件故障检测中的热红外检测系统

Country Status (2)

Country Link
CN (2) CN204810230U (zh)
WO (2) WO2016172810A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016172810A1 (zh) * 2015-04-27 2016-11-03 张意铃 一种应用于光伏组件故障检测中的热红外检测系统
CN106625692B (zh) * 2015-10-29 2021-04-06 新疆西北星信息技术有限责任公司 太阳能光伏电池连排清扫机器人
CN105680787B (zh) * 2016-03-02 2018-05-04 杭州舜海光伏科技有限公司 光伏电池板清扫设备的刮刀机构
CN105841829B (zh) * 2016-05-13 2018-08-17 北京中电博顺智能设备技术有限公司 一种光伏板清洗设备
CN106200503A (zh) * 2016-08-29 2016-12-07 常州索拉克林智能科技有限公司 光伏组件清扫检测系统及运维方法
CN106269601B (zh) * 2016-09-12 2019-02-05 合肥市惠全智能科技有限责任公司 太阳能电池板清扫装置及系统
CN106475332B (zh) * 2016-11-11 2019-08-27 中国计量大学 太阳能光伏板自动清洁及缺陷检测装置
CN107508547A (zh) * 2017-07-18 2017-12-22 青海黄河上游水电开发有限责任公司光伏产业技术分公司 一种移动式自动化光伏检测平台
CN107241062A (zh) * 2017-08-08 2017-10-10 上海安乃基能源科技有限公司 光伏面板检测装置及系统
CN108011578B (zh) * 2017-12-19 2024-01-12 华电电力科学研究院有限公司 具备热斑测试反馈功能的光伏组件清洗机器人与清洗方法
CN108111118B (zh) * 2017-12-25 2020-07-24 中民新科(北京)能源技术研究院有限公司 一种光伏组件清扫机器人及其控制方法
CN109227568A (zh) * 2018-10-29 2019-01-18 阳光电源股份有限公司 一种智能清扫机器人
US11990867B2 (en) 2019-03-08 2024-05-21 Kyocera Corporation Information processing apparatus, control method, and program
CN112577545B (zh) * 2020-12-01 2022-09-13 合肥仁洁智能科技有限公司 光伏清扫装置的检测方法及光伏发电系统
CN112583353B (zh) * 2020-12-09 2021-11-12 浙江龙能电力发展有限公司 一种光伏发电系统检测设备
CN114325000B (zh) * 2021-12-31 2023-03-24 江苏朗道新能源有限公司 一种具有防偏移功能的太阳能电池组件耐压测试装置
CN116274088A (zh) * 2023-04-03 2023-06-23 云南自由贸易试验区苇航智能科技有限责任公司 一种装配式光伏板清扫机器人及装配方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006531A1 (de) * 2010-02-01 2011-08-04 Armut, Halil, 91315 Vorrichtung zum Reinigen von Flächen, insbesondere Reinigungsroboter zum Reinigen von Solarpanelscheiben und sonstigen Glasflächen
WO2014103290A1 (ja) * 2012-12-25 2014-07-03 株式会社未来機械 自走式掃除ロボット
CN103984292A (zh) * 2013-02-07 2014-08-13 阿特斯(中国)投资有限公司 光伏系统
CN203991403U (zh) * 2014-06-24 2014-12-10 兰州万桥智能科技有限责任公司 一种太阳能电池板综合维护清扫装置
CN104467649A (zh) * 2014-12-23 2015-03-25 张意铃 一种光伏组件自动清扫装置
CN104607400A (zh) * 2015-01-05 2015-05-13 北京天诚同创电气有限公司 光伏电池板的清洁扫描装置及清洁方法
CN204810230U (zh) * 2015-04-27 2015-11-25 张意铃 应用于光伏组件故障检测中的检测系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2527017Y (zh) * 2001-12-12 2002-12-18 中国科学院电工研究所 高寒地区太阳能光伏发电的充电储能控制器
CN201262973Y (zh) * 2008-08-12 2009-06-24 陈赖容 改善蓄电池低温性能的装置
JP5990054B2 (ja) * 2012-07-17 2016-09-07 プロトラスト株式会社 太陽光発電パネル洗浄装置
US8756739B1 (en) * 2012-10-01 2014-06-24 Taft Instruments, Inc. Automatic solar power surface-cleaner
CN204148221U (zh) * 2014-05-19 2015-02-11 敦煌国润太阳能野外实验站有限公司 全自动太阳能阵列空压水/汽两用清洁系统
CN104467646B (zh) * 2014-11-24 2017-03-29 韩国海 太阳能电池板自动清洁装置及其转运接驳机
CN104539879A (zh) * 2014-11-25 2015-04-22 国家电网公司 一种无人值班变电站遥控带红外探头的巡视装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006531A1 (de) * 2010-02-01 2011-08-04 Armut, Halil, 91315 Vorrichtung zum Reinigen von Flächen, insbesondere Reinigungsroboter zum Reinigen von Solarpanelscheiben und sonstigen Glasflächen
WO2014103290A1 (ja) * 2012-12-25 2014-07-03 株式会社未来機械 自走式掃除ロボット
CN103984292A (zh) * 2013-02-07 2014-08-13 阿特斯(中国)投资有限公司 光伏系统
CN203991403U (zh) * 2014-06-24 2014-12-10 兰州万桥智能科技有限责任公司 一种太阳能电池板综合维护清扫装置
CN104467649A (zh) * 2014-12-23 2015-03-25 张意铃 一种光伏组件自动清扫装置
CN104607400A (zh) * 2015-01-05 2015-05-13 北京天诚同创电气有限公司 光伏电池板的清洁扫描装置及清洁方法
CN204810230U (zh) * 2015-04-27 2015-11-25 张意铃 应用于光伏组件故障检测中的检测系统

Also Published As

Publication number Publication date
WO2016172810A1 (zh) 2016-11-03
CN204810230U (zh) 2015-11-25
CN104980107A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
WO2017004896A1 (zh) 应用于光伏组件故障检测中的检测系统和检测方法
WO2016206204A1 (zh) 一种光伏组件及其自动清扫装置
CN106475332B (zh) 太阳能光伏板自动清洁及缺陷检测装置
CN103406292A (zh) 光伏组件清扫机器人
CN109980681A (zh) 光伏电站的发电量优化系统
CN203875067U (zh) 轨道式节水光伏发电站电池组件清洁设备
CN104315736B (zh) 一种带自走式清洗装置的槽式太阳能集热器
CN106000931A (zh) 一种智能清洁机器人
CN205056510U (zh) 一种全天候光伏太阳能电池板清扫机器人
KR101914029B1 (ko) 집광판을 이용한 태양광 발전장치
CN204272005U (zh) 一种光伏组件自动清扫装置
CN106025441A (zh) 一种智能清洁机器人的电池保护系统
CN106026891A (zh) 一种智能清洁机器人的无水清洁系统
CN109158345A (zh) 一种可转动的柔性驱动光伏清洁系统及控制方法
CN116388675B (zh) 一种晶硅光伏发电系统
CN116718273A (zh) 一种巡逻式光伏板表面状态监测装置
CN203886827U (zh) 光伏组件清扫机器人
CN210474739U (zh) 一种槽式集热器的镜面清洗装置
CN112337854A (zh) 一种光伏板清扫鸟粪及热斑监测装置
CN208418527U (zh) 自动清洁式环保太阳能路灯
CN210688791U (zh) 一种带有清扫结构的太阳能平板集热器
CN205797826U (zh) 一种智能清洁机器人
CN213763036U (zh) 一种光伏板清扫鸟粪及热斑监测装置
CN205797842U (zh) 一种智能清洁机器人的自动充电系统
CN205723876U (zh) 一种智能清洁机器人的电池保护系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897552

Country of ref document: EP

Kind code of ref document: A1