WO2017000461A1 - 水合物气液固三相分离的实验装置 - Google Patents

水合物气液固三相分离的实验装置 Download PDF

Info

Publication number
WO2017000461A1
WO2017000461A1 PCT/CN2015/093999 CN2015093999W WO2017000461A1 WO 2017000461 A1 WO2017000461 A1 WO 2017000461A1 CN 2015093999 W CN2015093999 W CN 2015093999W WO 2017000461 A1 WO2017000461 A1 WO 2017000461A1
Authority
WO
WIPO (PCT)
Prior art keywords
venturi
liquid
water jacket
gas
water
Prior art date
Application number
PCT/CN2015/093999
Other languages
English (en)
French (fr)
Inventor
韩青云
许文革
吉顺荣
Original Assignee
江苏宏博机械制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏宏博机械制造有限公司 filed Critical 江苏宏博机械制造有限公司
Publication of WO2017000461A1 publication Critical patent/WO2017000461A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor

Definitions

  • the utility model relates to the technical field of manufacturing a device for preparing CO 2 saturated water.
  • CO 2 saturated water is prepared by filling a pure CO 2 gas in a vessel with a volume of 150 L and a pressure of 40 MPa, and injecting a low temperature aqueous solution through a high pressure jet nozzle into a high pressure with a 400 L/h/7.5 KW high pressure piston pump. The mixture is stirred for 4 to 6 hours in the vessel, and the aqueous solution and the CO 2 gas are reacted under high pressure and low temperature to form a hydrate slurry solution, and then the hydrate solution is sent to the hydrate line of the subsequent stage to continue to form a hydrate solid.
  • the outer layer of the container has a cooling jacket and a refrigeration system connection to ensure cooling water circulation. The temperature of the cooling is controlled to ensure that the CO 2 saturated water temperature is lower than 3 °C.
  • the defects of the container the pressure resistance of the container is up to 40 MPa, the design and manufacturing cost is high, the processing is difficult, the high-pressure piston pump is 400L/h/7.5KW, the power consumption is high, the running cost is high, and the mixing time of the gas and the aqueous solution is long.
  • the formation of the hydrated paddle solution is uneven, and the formation of the hydrate of the latter stage is slow.
  • the utility model provides an experimental device for liquefaction gas-liquid-solid three-phase separation.
  • the utility model comprises a container cylinder, an upper sealing head and a lower sealing head, wherein the container cylinder body and the upper and lower sealing heads are respectively connected by a flange, and a water jacket is arranged outside the container cylinder, the water clip
  • the upper part of the sleeve is provided with a water inlet, the bottom of the water jacket is provided with a water outlet, and the water jacket is overwrapped by the heat insulation layer;
  • a return liquid interface is arranged on the upper head, and the lower head is arranged on the lower head a gas interface, a venturi interface;
  • a multi-layer separator is disposed in the container cylinder, the partition plate is composed of an integral half-plate and a half-hole plate, and the flat plate and the hole plate of each of the partitions are respectively from bottom to top Alternate settings.
  • the utility model connects the venturi atomization module to the venturi interface
  • the venturi atomization module comprises a venturi tube
  • the venturi tube is a section with an axial direction gradually increasing from the middle to the both ends.
  • a tubular body of the through hole, a radial through hole is disposed in a middle portion of the venturi, a saturated solution inlet pipe is connected in a middle portion of the venturi, and the saturated solution inlet pipe communicates with the radial through hole
  • the two ends of the venturi are respectively a mixed gas inlet and a gas-liquid mixed outlet.
  • the utility model relates to a container with a volume of 150L and a pressure of 10 MPa, which is filled with pure CO 2 gas.
  • the container has a plurality of partition plates with different pore diameters and different directions, and the gas enters from the bottom of the container and exits from the top because of the partition plate.
  • the gas is in full contact with water, and after 3 hours, water and CO 2 are saturated.
  • the saturated aqueous solution is gas-liquid mixed and atomized by a high pressure gas in a CO 2 high pressure gas cylinder.
  • the atomization module adopts the principle of Venturi effect, which is mainly composed of a lava nozzle, a negative pressure chamber and a receiving tube which are firstly contracted and expanded.
  • the air supply ports There are air supply ports, exhaust ports and suction ports.
  • the nozzle When the supply pressure of the air supply port is higher than a certain value, the nozzle emits a supersonic jet. Due to the viscosity of the gas, the high velocity jet draws away the gas in the negative pressure chamber, creating a very low vacuum. The liquid is sucked from the suction port, and the liquid is atomized into tiny droplets in the throat section, and is ejected from the outlet to thoroughly mix the gas and liquid to form fine hydrate particles. The hydrate line entering the subsequent stage quickly forms a hydrate solid.
  • the outer layer of the container has a cooling jacket and a refrigeration system connection to ensure cooling water circulation. The temperature of the cooling is controlled to ensure that the CO 2 saturated water temperature is lower than 3 °C.
  • the utility model has the beneficial effects that the container has a low pressure resistance of 10 MPa, low design and manufacturing cost, easy processing, no high-pressure plunger pump, low running cost, and short mixing time of gas and water solution.
  • the formation of the hydrate paddle solution is uniform, and the formation of the hydrate of the latter stage is fast.
  • Figure 1 is a schematic view of the structure of the utility model
  • FIG. 2 is a schematic structural view of a venturi atomization module.
  • the experimental device for liquid-liquid-solid three-phase separation of the hydrate comprises a container cylinder 1, an upper head 2, a lower head 3, a container cylinder 1 and upper and lower heads 2, 3
  • the water jacket 4 is arranged outside the container cylinder 1 through the flange connection, the water jacket 4 is provided with a water inlet 5, and the water jacket 4 is provided with a water outlet 6 at the bottom, and the water jacket 4 is over-insulated.
  • a layer 7 a return liquid interface 8 is disposed on the upper head 2, an air inlet port 9 and a venturi interface 10 are disposed on the lower head 3; a plurality of partition plates 11 are disposed in the container body 1, and the partition plate 11 is integrally provided
  • the half plate 12 and the half plate 13 are formed, and the flat plate 12 and the orifice plate 13 of each partition 11 are alternately arranged from bottom to top.
  • venturi interface 10 is connected to the venturi atomization module 14, and the venturi atomization module 14 includes a venturi 15 which is a section of axial passage which is gradually enlarged from the central portion toward the both ends.
  • a pipe body of the hole, a radial through hole 17 is arranged in the middle of the venturi pipe 15, a saturated solution inlet pipe 16 is connected in the middle of the venturi pipe 15, and a saturated solution inlet pipe 16 is connected to the radial through hole, and the venturi pipe 15
  • the two ends are a mixed gas inlet 18 and a gas-liquid mixed outlet 19, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

水合物气液固三相分离的实验装置,包括容器筒体(1)、上封头(2)、下封头(3),容器筒体(1)与上、下封头(2、3)之间分别通过法兰连接,在容器筒体(1)外设置水夹套(4),水夹套(4)上部设有进水口(5),水夹套(4)底部设有出水口(6),在水夹套(4)外包裹保温层(7);在上封头(2)上设置回流液体接口(8),在下封头(3)上设置进气接口(9)、文丘里接口(10);在容器筒体(1)内设置多层隔板(11),隔板(11)由一体设置的半块平板(12)和半块孔板(13)组成,各隔板(11)的平板(12)、孔板(13)由下至上分别交替设置。

Description

水合物气液固三相分离的实验装置 技术领域
本实用新型涉及一种CO2饱和水的制备装置的制造技术领域。
背景技术
目前,CO2饱和水的制备是在一个体积为150L,耐压40MPa的容器内,充入纯CO2气体,用400L/h/7.5KW高压柱塞泵将低温水溶液通过高压射流喷嘴注入到高压容器内进行4到6小时的混合搅拌,让水溶液和CO2气体在高压低温条件下进行反应,形成水合物桨溶液,然后将水合物溶液送入后级的水合物管路继续生成水合物固体。容器外层有制冷夹套和制冷系统连接保证冷却水循环,制冷的温度控制在保证CO2饱和水温度低于3℃。
其存在的缺陷:容器耐压高达40MPa,设计制造成本高加工难度大,高压柱塞泵400L/h/7.5KW,消耗功率大运行成本高,气、水溶液混合时间长。形成水合物桨溶液不均匀,后级水合物固体生成慢。
实用新型内容
为了克服上述缺陷,本实用新型提供水合物气液固三相分离的实验装置。
本实用新型包括容器筒体、上封头、下封头,所述容器筒体与上、下封头之间分别通过法兰连接,在所述容器筒体外设置水夹套,所述水夹套上部设有进水口,所述水夹套底部设有出水口,在所述水夹套外包过保温层;在所述上封头上设置回流液体接口,在所述下封头上设置进气接口、文丘里接口;在所述容器筒体内设置多层隔板,所述隔板由一体设置半块平板和半块孔板组成,各所述隔板的平板、孔板由下至上分别交替设置。
本实用新型在所述文丘里接口连接文丘里雾化模块,所述文丘里雾化模块包括文丘里管,所述文丘里管为一段设有由中部逐渐向两端直径逐渐变大的轴向通孔的管体,在所述文丘里管的中部设置径向通孔,在所述文丘里管的中部连接饱和溶液进口管,所述饱和溶液进口管与所述径向通孔连通,所述文丘里管的两端分别为混合气体进口、气液混合出口。
本实用新型一个体积为150L,耐压10MPa的容器内,充入纯CO2气体,容器内有多块不同孔径、不同方向的隔板,气体从容器底部进,从顶部出,因为隔板的作用,气体与水充分接触,3小时后,水、CO2达到饱和。在CO2高压气瓶内的高压气体作用下将饱和水溶液气液混合及雾化模块。雾化模块采用文丘里效应的原理主要先收缩后扩张的拉瓦喷嘴、负压腔和接受管组成。有供气口、排气口和吸入口。当供气口的供气压力高于一定值后,喷管射出超声速射流。由于气体的粘度性,高速射流吸走负压腔内的气体,使该腔形成很低的真 空度。将液体从吸入口吸入,液体在喉管段雾化成微小液滴,从出口喷出,使气液充分混合均匀形成细小的水合物颗粒。进入后级的水合物管路快速生成水合物固体。容器外层有制冷夹套和制冷系统连接保证冷却水循环,制冷的温度控制在保证CO2饱和水温度低于3℃。
其有益效果是:容器耐压低10MPa,设计制造成本低加工容易,没有高压柱塞泵消耗运行成本低,气、水溶液混合时间短。形成水合物桨溶液均匀,后级水合物固体生成速度快。
附图说明
图1位本实用新型的一种结构示意图;
图2为文丘里雾化模块的一种结构示意图。
具体实施方式
如图1、2所示,本水合物气液固三相分离的实验装置,包括容器筒体1、上封头2、下封头3,容器筒体1与上、下封头2、3之间分别通过法兰连接,在容器筒体1外设置水夹套4,水夹套4上部设有进水口5,水夹套4底部设有出水口6,在水夹套4外包过保温层7;在上封头2上设置回流液体接口8,在下封头3上设置进气接口9、文丘里接口10;在容器筒体1内设置多层隔板11,隔板11由一体设置半块平板12和半块孔板13组成,各隔板11的平板12、孔板13由下至上分别交替设置。
进一步的,在文丘里接口10连接文丘里雾化模块14,文丘里雾化模块14包括文丘里管15,文丘里管15为一段设有由中部逐渐向两端直径逐渐变大的轴向通孔的管体,在文丘里管15的中部设置径向通孔17,在文丘里管15的中部连接饱和溶液进口管16,饱和溶液进口管16与径向通孔连通,文丘里管15的两端分别为混合气体进口18、气液混合出口19。

Claims (2)

  1. 水合物气液固三相分离的实验装置,包括容器筒体、上封头、下封头,所述容器筒体与上、下封头之间分别通过法兰连接,在所述容器筒体外设置水夹套,所述水夹套上部设有进水口,所述水夹套底部设有出水口,在所述水夹套外包过保温层;在所述上封头上设置回流液体接口,其特征在于在所述下封头上设置进气接口、文丘里接口;在所述容器筒体内设置多层隔板,所述隔板由一体设置半块平板和半块孔板组成,各所述隔板的平板、孔板由下至上分别交替设置。
  2. 根据权利要求1所述的水合物气液固三相分离的实验装置,其特征在于在所述文丘里接口连接文丘里雾化模块,所述文丘里雾化模块包括文丘里管,所述文丘里管为一段设有由中部逐渐向两端直径逐渐变大的轴向通孔的管体,在所述文丘里管的中部设置径向通孔,在所述文丘里管的中部连接饱和溶液进口管,所述饱和溶液进口管与所述径向通孔连通,所述文丘里管的两端分别为混合气体进口、气液混合出口。
PCT/CN2015/093999 2015-06-30 2015-11-06 水合物气液固三相分离的实验装置 WO2017000461A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520473282.7U CN204746272U (zh) 2015-06-30 2015-06-30 水合物气液固三相分离的实验装置
CN201520473282.7 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017000461A1 true WO2017000461A1 (zh) 2017-01-05

Family

ID=54461031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093999 WO2017000461A1 (zh) 2015-06-30 2015-11-06 水合物气液固三相分离的实验装置

Country Status (2)

Country Link
CN (1) CN204746272U (zh)
WO (1) WO2017000461A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108412468A (zh) * 2018-04-27 2018-08-17 四川宏华石油设备有限公司 一种天然气水合物开采装置
CN109707377B (zh) * 2019-01-28 2023-06-06 中国地质大学(武汉) 水合物开采储层响应与出砂综合模拟实验系统及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1537666A (zh) * 2003-04-14 2004-10-20 石油大学(北京) 用于水合物法分离气体混合物的反应器
CN101096010A (zh) * 2006-06-30 2008-01-02 上海理工大学 喷雾强化水合物连续制备方法及装置
KR20090100118A (ko) * 2008-03-19 2009-09-23 한국에너지기술연구원 가스 하이드레이트 제조장치 및 제조방법
US20130195730A1 (en) * 2010-10-27 2013-08-01 Mitsui Engineering & Shipbuilding Co., Ltd. Device for Producing Gas Hydrate
CN103623766A (zh) * 2013-12-10 2014-03-12 中国科学院广州能源研究所 一种快速形成气体水合物的喷雾装置
CN104445197A (zh) * 2014-10-30 2015-03-25 上海理工大学 二氧化碳水合物制备装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1537666A (zh) * 2003-04-14 2004-10-20 石油大学(北京) 用于水合物法分离气体混合物的反应器
CN101096010A (zh) * 2006-06-30 2008-01-02 上海理工大学 喷雾强化水合物连续制备方法及装置
KR20090100118A (ko) * 2008-03-19 2009-09-23 한국에너지기술연구원 가스 하이드레이트 제조장치 및 제조방법
US20130195730A1 (en) * 2010-10-27 2013-08-01 Mitsui Engineering & Shipbuilding Co., Ltd. Device for Producing Gas Hydrate
CN103623766A (zh) * 2013-12-10 2014-03-12 中国科学院广州能源研究所 一种快速形成气体水合物的喷雾装置
CN104445197A (zh) * 2014-10-30 2015-03-25 上海理工大学 二氧化碳水合物制备装置

Also Published As

Publication number Publication date
CN204746272U (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2015085829A1 (zh) 一种快速形成气体水合物的喷雾装置
CN106964267A (zh) 微纳米气泡发生器及微纳米气泡制备系统
WO2017000461A1 (zh) 水合物气液固三相分离的实验装置
CN203647929U (zh) 一种多相射流灭火喷头
CN205099393U (zh) 一种海水淡化装置用喷射器
WO2011006280A1 (zh) 一种微量润滑系统
CN104815569A (zh) 液气混合器及采用这种混合器的气液回收装置
CN202012912U (zh) 一种高效雾化介质为蒸汽/空气雾化燃料油油枪
CN203985718U (zh) 一种抽吸式喷雾的喷雾车
CN103452800B (zh) 带有气体回输装置的气泡泵
CN205146496U (zh) 一种新型旋流自吸式两相流喷嘴
CN106861475B (zh) 气液混合注液结构及其方法
CN103253779A (zh) 一种改进的盘式射流曝气器
CN208907620U (zh) 高效雾化喷嘴
CN108178348B (zh) 强正压喷雾曝气系统
CN203985719U (zh) 一种采用风箱式喷雾的喷雾车
CN202123018U (zh) 注醇旋流型雾化喷嘴
CN209564995U (zh) 一种从甘油制备二氯丙醇的喷射反应装置
CN101709360B (zh) 雾化气体淬火装置
CN212468131U (zh) 一种快速生成气体水合物的装置
CN203269666U (zh) 一种改进的盘式射流曝气器
CN105174336A (zh) 一种海水淡化装置用喷射器
CN205803133U (zh) 一种密集养殖用的增氧装置
WO2018157770A1 (zh) 泡沫产生方法和灭火方法及泡沫灭火设备
CN204293911U (zh) 脱气及芳香回收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896989

Country of ref document: EP

Kind code of ref document: A1