WO2017000423A1 - 触控显示面板、制备方法、驱动方法及显示装置 - Google Patents

触控显示面板、制备方法、驱动方法及显示装置 Download PDF

Info

Publication number
WO2017000423A1
WO2017000423A1 PCT/CN2015/091921 CN2015091921W WO2017000423A1 WO 2017000423 A1 WO2017000423 A1 WO 2017000423A1 CN 2015091921 W CN2015091921 W CN 2015091921W WO 2017000423 A1 WO2017000423 A1 WO 2017000423A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
display panel
self
metal layer
electrode
Prior art date
Application number
PCT/CN2015/091921
Other languages
English (en)
French (fr)
Inventor
王磊
陈小川
王海生
杨盛际
许睿
王倩
李昌峰
杨明
卢鹏程
丁小梁
刘伟
刘红娟
刘英明
赵卫杰
吕振华
王世君
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/113,776 priority Critical patent/US10268304B2/en
Publication of WO2017000423A1 publication Critical patent/WO2017000423A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a touch display panel, a preparation method, a driving method, and a display device.
  • the touch structure is developed from the touch sensing plug-in to the touch sensing embedded, so that the thickness of the touch panel can be reduced. Thin, can also greatly reduce the cost of the touch screen.
  • in-cell touch panels there are three main types of in-cell touch panels: a resistive touch panel, a capacitive touch panel, and an optical touch panel.
  • the corresponding in-cell touch technology has been initially applied to small-sized display screens, and its excellent touch performance has become the direction of future touch design. Therefore, it also provides excellent touch performance for large-size display panels. The direction of hard work.
  • a single touch point electrode m is designed as a square electrode of about 5 mm*5 mm, and then the electrode is used with a wire n.
  • the driving chip is applied with a driving signal through the touch chip p, and the electrode m can receive the feedback signal by itself, that is, when the finger is not touched, the capacitance of the electrode m is a fixed value; When the finger is touched, the capacitance of the electrode m is the finger capacitance plus the original capacitance.
  • connection between the connection electrode and the touch chip needs to be disposed on the frame area on both sides of the touch panel, so that the area of the frame area needs to be increased, which is disadvantageous to the narrow frame design of the touch panel.
  • At least one of the embodiments of the present invention provides a touch display panel, a preparation method, a driving method, and a display device for implementing a narrow bezel design of the touch display panel and improving touch performance of the touch display panel.
  • the embodiment of the invention provides a self-capacitive touch display panel, comprising: an array substrate having a first metal layer and a self-capacitance touch electrode; and a touch chip;
  • Each of the self-capacitive touch electrodes includes a plurality of common electrodes, and the first metal layer includes a plurality of touch leads that are in one-to-one correspondence with the self-capacitance touch electrodes, and each of the self-capacitance touch electrodes passes through Corresponding the touch lead is connected to the touch chip;
  • the touch lead is configured to transmit a common electrode signal to the self-capacitance touch electrode during a display phase, and transmit a touch scan signal to the self-capacitance touch electrode during a touch phase, and the touch position is generated at the touch position
  • the touch signal generated from the capacitive touch electrode is transmitted to the touch chip.
  • the first metal layer in a case where the gate metal layer is disposed adjacent to the substrate substrate of the array substrate, the first metal layer is located in the gate Between the polar metal layer and the source and drain electrode layers and the three are insulated from each other; or
  • the first metal layer is located above the source and drain electrode layers and insulated from each other.
  • the touch lead wire includes a first portion extending along a gate line direction and a second portion extending along a data line direction.
  • the first metal layer includes: a plurality of bases corresponding to the self-capacitance touch electrodes; The base is provided with a via hole, and the self-capacitance touch electrode is connected to the corresponding touch lead via hole through the base.
  • the self-capacitance touch electrodes are arranged in a matrix and the plurality of common electrodes included in each self-capacitance touch electrode Also arranged in a matrix, each of the common electrodes in each of the self-capacitance touch electrodes is connected by a connection line, and each of the self-capacitance touch electrodes is adjacent to the same row
  • the common electrodes of the columns are connected by jumpers on the first metal layer or by jumpers on the pixel electrode layer.
  • the self-capacitive touch display panel provided by the embodiment of the present invention is configured to connect a plurality of common electrodes in each of the common electrodes of each of the self-capacitance touch electrodes.
  • the connecting lines are arranged in the same layer as the gate lines and are parallel to each other.
  • the method further includes a second metal layer disposed in the same layer as the gate metal layer and disposed in parallel with the first metal layer.
  • the embodiment of the invention provides a method for preparing the self-capacitive touch display panel provided by the embodiment of the invention, which includes:
  • Each of the self-capacitance touch electrodes formed therein includes a plurality of common electrodes
  • a pattern of the first metal layer is formed on the base substrate on which the self-capacitance touch electrode pattern is formed.
  • the method for fabricating the self-capacitive touch display panel provided by the embodiment of the present invention before or after forming a pattern of self-capacitance touch electrodes arranged in a matrix on the base substrate, include:
  • a pattern of gate lines, gate lines, and connection lines is formed by one patterning process.
  • the method for fabricating the self-capacitive touch display panel provided by the embodiment of the present invention before or after forming a pattern of self-capacitance touch electrodes arranged in a matrix on the base substrate, include:
  • a pattern of the gate, the canal, the connecting line, and the second metal layer is formed by one patterning process.
  • the first metal layer is formed on the base substrate on which the self-capacitance touch electrode pattern is formed.
  • Patterns including:
  • a pattern of the first metal layer is formed on a base substrate on which the source/drain electrode layer pattern is formed.
  • the method for fabricating the self-capacitive touch display panel provided by the embodiment of the present invention further includes:
  • a pattern including a passivation layer and a pixel electrode is formed on the base substrate on which the pattern of the first metal layer is formed.
  • the embodiment of the invention provides a driving method for the self-capacitive touch display panel provided by the embodiment of the invention, which includes:
  • the embodiment of the invention provides a mutual capacitive touch display panel, comprising: an array substrate having a first metal layer and a touch drive electrode arranged in a matrix, a touch chip, and a color filter substrate having a touch sensing electrode; ;among them,
  • Each of the touch driving electrodes includes a plurality of common electrodes, and the first metal layer includes a plurality of touch driving leads corresponding to the column of touch driving electrodes.
  • the touch driving lead is connected to the touch chip;
  • the touch driving lead is used to transmit a common electrode signal to the touch driving electrode.
  • the touch driving lead is used to transmit a touch scan signal to the touch driving electrode.
  • the touch sensing electrode is configured to couple the touch scan signal and output the coupled touch signal to the touch chip, and the touch chip determines a position at which the touch occurs according to the touch signal.
  • the first metal layer is located at the gate Between the polar metal layer and the source and drain electrode layers and the three are insulated from each other; or
  • the first metal layer is located above the source and drain electrode layers and insulated from each other.
  • the touch driving lead includes a first portion extending along a gate line direction and a second portion extending along a data line direction.
  • the first metal layer includes: a plurality of bases corresponding to the touch driving leads; the base The stage is provided with a via hole, and the touch driving electrode is connected to the corresponding touch driving lead via via the base.
  • each of the touch driving electrodes includes a plurality of common electrodes arranged in a matrix, and each of the touch driving A plurality of common electrodes of each row of the electrodes are connected by a connecting line, and each of the touch driving driving electrodes is adjacent to the common electrode of the same column and passes through the first metal layer
  • the jumpers are connected or connected by jumpers on the pixel electrode layer.
  • the mutual capacitive touch display panel provided by the embodiment of the present invention is configured to connect between a plurality of common electrodes in each of the common electrodes of each of the touch driving electrodes
  • the connecting lines are arranged in the same layer as the gate lines and are parallel to each other.
  • the method further includes a second metal layer disposed in the same layer as the gate metal layer and disposed in parallel with the first metal layer.
  • the first metal layer includes two sets of touch driving leads with left and right symmetry, and each column of the touch driving electrodes Corresponding to the two touch driving leads.
  • a common electrode is disposed between the adjacent touch driving electrodes, and the device is located on the color film substrate.
  • the touch sensing electrodes are disposed corresponding to each of the common electrodes and are parallel to each other.
  • the embodiment of the invention provides a method for preparing the mutual capacitive touch display panel provided by the embodiment of the invention, which includes:
  • Each of the touch driving electrodes includes a plurality of common electrodes
  • a pattern of the touch sensing electrodes is formed on the color filter substrate.
  • the method before or after forming a pattern of the touch drive electrodes arranged in a matrix on the base substrate, the method further includes :
  • a pattern of gate lines, gate lines, and connection lines is formed by one patterning process.
  • the method before or after forming a pattern of the touch drive electrodes arranged in a matrix on the base substrate, the method further includes :
  • a pattern of gate electrodes, gate lines, connection lines, and a second metal layer is formed by one patterning process.
  • a pattern of a first metal layer is formed on a base substrate on which the touch driving electrode pattern is formed.
  • a pattern of the first metal layer is formed on a base substrate on which the source/drain electrode layer pattern is formed.
  • the method for preparing the mutual capacitive touch display panel provided by the embodiment of the present invention further includes:
  • the embodiment of the invention provides a driving method for the mutual capacitive touch display panel provided by the embodiment of the invention, which includes:
  • a touch scan signal to the touch drive driving line in the touch display panel, and applying a synchronization signal modulated by the touch scan signal to the gate line and the data line in the touch display panel.
  • the touch sensing electrode couples the touch scan signal and outputs the coupled touch signal to the touch chip, and the touch chip determines the position at which the touch occurs according to the touch signal.
  • the embodiment of the present invention provides a display device, including the self-capacitive touch display panel provided by the embodiment of the present invention or the mutual capacitive touch display panel provided by the embodiment of the present invention.
  • the embodiment of the invention provides a touch display panel, a preparation method, a driving method and a display device.
  • the touch display panel comprises a self-capacitive touch display panel or a mutual capacitive touch display panel.
  • the self-capacitive touch display panel multiplexes the common electrode into a self-capacitance touch electrode in the touch phase, and sets a first metal layer separately, and sets the touch lead on the first metal layer, and the respective capacitive touch electrodes pass through The corresponding touch lead is connected to the touch chip to implement the touch function.
  • the mutual capacitive touch display panel multiplexes the common electrode as a touch driving electrode in the touch phase, and the touch driving lead is disposed on the first metal layer by separately providing a first metal layer, and the color film substrate A mutual capacitance is formed between the touch sensing electrodes to implement a touch function.
  • the touch display panel provided by the embodiment of the present invention is separately provided with a first metal layer, and the touch lead or the touch lead or the touch control layer is provided in the peripheral area of the display panel to implement the touch function.
  • the touch driving lead is disposed on the peripheral circuit pattern, and the unnecessary frame position is not required in the prior art, which is advantageous for implementing the narrow frame design, and the common electrode is a self-capacitive touch electrode or a touch driving electrode.
  • the common electrode is disposed in an area defined by the adjacent gate line and the adjacent data line, so that the common electrode does not overlap with the gate line and the data line, and in the touch stage, the self-capacitive touch electrode or the touch drive electrode and other
  • the parasitic capacitance between the signal lines is small, which is beneficial to improve the touch performance.
  • FIG. 1 is a schematic structural view of a self-capacitive touch display panel in the prior art
  • FIG. 2 is a schematic structural diagram of an array substrate of a self-capacitive touch display panel according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a self-capacitance touch electrode according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the structure of an array substrate of the self-capacitive touch display panel according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a method for fabricating the self-capacitive touch display panel according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a specific method for preparing the self-capacitive touch display panel according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of another example of an array substrate of the self-capacitive touch display panel according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a driving method of the self-capacitive touch display panel according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an array substrate of a mutual capacitive touch display panel according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic structural diagram of an array substrate of the mutual capacitive touch display panel according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a touch driving electrode of the mutual capacitive touch display panel according to an embodiment of the present disclosure
  • FIG. 12 is a cross-sectional view of an array substrate of the mutual capacitive touch display panel according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of the mutual capacitive touch display panel according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of the mutual capacitive touch display panel according to an embodiment of the present disclosure.
  • FIG. 15 is a flowchart of a method for preparing the mutual capacitive touch display panel according to an embodiment of the present invention.
  • FIG. 16 is a flowchart of a specific method for preparing the mutual capacitive touch display panel according to an embodiment of the present disclosure
  • FIG. 17 is a cross-sectional view showing another example of an array substrate of the mutual capacitive touch display panel according to an embodiment of the present disclosure.
  • FIG. 18 is a flowchart of a driving method of the mutual capacitive touch display panel according to an embodiment of the present invention.
  • the embodiment of the present invention provides a self-capacitive touch display panel, as shown in FIG. 2 , which may include: an array substrate having a first metal layer and a self-capacitance touch electrode 1 arranged in a matrix, and a touch chip 4 .
  • each of the self-capacitance touch electrodes 1 includes a plurality of common electrodes 2 .
  • the first metal layer includes a plurality of touch leads 3 corresponding to the self-capacitance touch electrodes 1 .
  • the self-capacitance touch electrode 1 is connected to the touch chip 4 through a corresponding touch lead 3 .
  • the touch lead 3 is configured to transmit a common electrode signal to the self-capacitance touch electrode 1 during the display phase, and transmit a touch scan signal to the self-capacitance touch electrode 1 during the touch phase, and the self-capacitance touch at the touch position will occur.
  • the touch signal generated by the electrode 1 is transmitted to the touch chip 4.
  • the self-capacitive touch display panel may include an array substrate having a self-capacitance touch electrode 1 and a first metal layer arranged in a matrix; wherein each self-capacitance touch electrode 1 includes multiple
  • the common electrode 2 includes a plurality of touch leads 3 corresponding to the self-capacitance touch electrodes 1 , and each of the self-capacitance touch electrodes 1 is connected to the touch chip 4 through a corresponding touch lead 3;
  • the control lead 3 is configured to transmit a common electrode signal to the self-capacitance touch electrode 1 during the display phase, and transmit a touch scan signal to the self-capacitance touch electrode 1 during the touch phase, and the touch signal generated at the touch position is generated.
  • the self-capacitive touch display panel multiplexes the common electrode into a self-capacitance touch electrode in the touch phase, and the touch lead is disposed on the first metal layer by separately providing a first metal layer.
  • Each self-capacitance touch electrode is connected to the touch chip through a corresponding touch lead to realize a touch function.
  • the touch display panel provided by the embodiment of the present invention is separately provided with a first metal layer, and the touch lead can be disposed at the periphery of the display.
  • the common electrode is a self-capacitance touch electrode in the touch phase, as shown in FIG.
  • the common electrode 2 is disposed in an area defined by the adjacent gate line N and the adjacent data line M, such that the common electrode 2 does not overlap with the gate line N and the data line M.
  • the self-capacitance touch electrode and other signals The parasitic capacitance between the lines is small, which is beneficial to improve the touch performance.
  • a first metal layer is separately disposed, and then The touch lead is disposed on the first metal layer.
  • the embodiment of the present invention separately provides a first metal layer to set the touch lead to realize the narrow frame design of the touch display panel. As shown in FIG. 4, in a case where the gate metal layer Gate is disposed adjacent to the substrate substrate of the array substrate, the first metal layer (the position where the touch lead 3 is located) for setting the touch lead may be located at the gate metal layer.
  • the gate and the source-drain electrode layer SD are insulated from each other.
  • the touch lead 3 is connected to the self-capacitance touch electrode 1 at a position where a via U is provided, and the self-capacitance touch electrode 1 is realized through the via U.
  • Electrical connection of the touch lead 3; the first metal layer may be disposed on the source and drain electrode layers and insulated from each other to realize connection between the touch lead and the self-capacitance touch electrode, and both methods may be implemented
  • Touch guide The line is disposed on the first metal layer.
  • the position of the first metal layer can be adjusted according to the actual production process and product requirements to implement the touch function, which is not limited herein.
  • each of the touch leads connects the corresponding self-capacitance touch electrodes to the touch chip one by one. Since the self-capacitance touch electrodes are arranged in a matrix, as shown in FIG. 2, the touch leads 3 include along the gate lines.
  • the touch leads 3 are in one-to-one correspondence with the respective capacitive touch electrodes 1 through the first portion 31 and the respective capacitors extending along the gate line N
  • the touch electrodes 1 are connected to each other, and then connected to the touch chip 4 through the second portion 32 extending along the data line M.
  • the touch chip 4 is disposed in a direction extending along the data line;
  • the extended second portion is connected to the respective capacitive touch electrodes, and is connected to the touch chip through the first portion extending along the gate line.
  • the connection method is adopted, the touch chip is disposed in a direction extending along the gate line. It is not limited here.
  • the self-capacitive touch display panel provided by the embodiment of the present invention, as shown in FIG. 2, the first metal layer includes: a plurality of bases P corresponding to the self-capacitance touch electrodes 1;
  • the base P is provided with a via U, and the self-capacitance touch electrode 1 is connected to the corresponding touch lead 3 through the base P.
  • the self-capacitance touch electrode 1 and the touch lead 3 are required.
  • the via connection is performed.
  • the base P corresponding to the respective capacitive touch electrodes 1 is disposed on the first metal layer, so that the via hole process is facilitated at the position of the base P, which is helpful.
  • a good electrical connection between the self-capacitance touch electrode and the touch lead is achieved.
  • the self-capacitance touch electrodes 1 can be connected to the respective touch leads 3 through the base station P, or can be directly connected to the respective touch leads 3.
  • each of the plurality of common electrodes 2 included in the self-capacitance touch electrode 1 may be arranged in a matrix, each of which is self-contained.
  • a plurality of common electrodes 2 in each row of the common electrode of the capacitive touch electrode 1 are connected by a connecting line 5, and each of the self-capacitive touch electrodes 1 passes between adjacent rows of common electrodes 2 in the same column.
  • Jumpers L on the first metal layer are connected or connected by jumpers L on the pixel electrode layer.
  • the common electrode 2 is multiplexed into a self-capacitance touch electrode, and the touch function is implemented in the touch phase, wherein the common electrode is located on the array substrate.
  • the bottom substrate is located on the same layer as the gate.
  • Each self-capacitance touch electrode includes a plurality of common electrodes.
  • a plurality of common capacitors are required to be included in the self-capacitance touch electrode. Electrodes connected into one A complete self-capacitance touch electrode enables the touch function of the self-capacitance touch electrode.
  • the plurality of common electrodes included in the self-capacitance touch electrode may be arranged in a matrix, so that a plurality of common electrodes in each of the common electrodes of each self-capacitance touch electrode may be connected through a connection line, each of which The common electrodes of adjacent rows of the self-capacitance touch electrodes are connected by jumpers on the first metal layer or by jumpers on the pixel electrode layer.
  • an existing metal film layer in the array substrate such as a first metal layer or a pixel electrode layer, can be used.
  • metal layers that can be provided with jumpers to connect adjacent rows of common electrodes, such that adjacent row common electrodes pass through other
  • the jumper connection of the metal layer is arranged to avoid cross-short-circuiting with the gate line, and the common electrodes included in the self-capacitance touch electrode are connected as a whole, thereby realizing the touch function of the self-capacitance touch electrode, and utilizing the existing
  • the metal film layer is provided with a jumper, which simplifies the fabrication process of the array substrate, simplifies the film structure, and reduces the production cost.
  • the self-capacitive touch display panel provided in the embodiment of the present invention is configured to connect a connection line and a gate between a plurality of common electrodes in each common electrode of each self-capacitance touch electrode. Lines are set in the same layer and parallel to each other.
  • the common electrode is disposed on the base substrate and can be disposed in the same layer as the gate, and thus is used for connecting each row of each self-capacitance touch electrode.
  • the connecting lines between the plurality of common electrodes in the electrode may be disposed in the same layer as the gate lines and parallel to each other.
  • the connecting lines may be made of a gate metal material, so that in the fabrication process of the array substrate, the gate can be formed by the same patterning process. , grid lines, connecting lines, which can simplify the fabrication process of the array substrate and reduce the production cost.
  • the self-capacitive touch display panel provided by the embodiment of the present invention may further include: a second metal layer disposed in the same layer as the gate metal layer and connected in parallel with the first metal layer Settings.
  • the resistance of the touch lead on the first metal layer may be further reduced, that is, by the gate metal a second metal layer is disposed on the layer, and the pattern of the second metal layer is disposed in a shape of a plurality of common electrodes, and is disposed in parallel with the touch leads on the first metal layer, and the common electrode and the gate of the second metal layer are the same
  • the patterning process is formed, and the common electrode included in the second metal layer is disposed in parallel at a corresponding position through the via hole and the touch wire on the first metal layer, so that the parallel connection of the first metal layer and the second metal layer can be realized. Therefore, the resistance of the first metal layer can be lowered, and the touch driving frequency of the touch display panel can be increased by about 30%.
  • an embodiment of the present invention provides a method for fabricating the self-capacitive touch display panel provided by the embodiment of the present invention. As shown in FIG. 5, the method may specifically include:
  • the self-capacitance touch electrode formed therein includes a plurality of common electrodes
  • the first metal layer includes a plurality of touch leads corresponding to the self-capacitance touch electrodes, and each self-capacitance touch electrode is connected to the touch chip through a corresponding touch lead;
  • the touch lead is used to transmit a common electrode signal to the self-capacitance touch electrode during the display phase, and the touch scan signal is transmitted to the self-capacitance touch electrode during the touch phase, and the self-capacitance touch electrode at the touch position is generated.
  • the touch signal is transmitted to the touch chip.
  • a pattern of self-capacitance touch electrodes arranged in a matrix is formed on the substrate, wherein the self-capacitance touch electrode formed includes a plurality of common electrodes Forming a pattern of the first metal layer on the base substrate formed with the self-capacitance touch electrode pattern, the first metal layer formed includes a plurality of touch leads corresponding to the self-capacitance touch electrodes, each self-capacitance
  • the touch electrodes are connected to the touch chip through the corresponding touch leads, that is, the touch wires are disposed by separately providing a first metal layer, and the respective touch electrodes are connected to the touch chips through the corresponding touch wires to realize the touch.
  • the self-capacitive touch display panel provided by the embodiment of the present invention is separately provided with a first metal layer, and the touch lead can be disposed on the touch-control layer.
  • the common electrode is a self-capacitance touch electrode, and the common electrode is disposed on the adjacent coaming line.
  • the area defined by the adjacent data lines is such that the common electrode does not overlap with the gate lines and the data lines.
  • the parasitic capacitance between the self-capacitance touch electrodes and other signal lines is small, and the small parasitic capacitance can be Ensure that there is sufficient time for touch drive scanning, which is beneficial to touch drive scanning and detection, which is beneficial to improve touch performance.
  • the method may further include: A patterning process forms a pattern of gates, gate lines, and connecting lines.
  • the gate before forming a pattern of self-capacitive touch electrodes arranged in a matrix on the substrate, the gate may be formed by one patterning process.
  • the pattern of the gate lines and the connection lines may also form a pattern of the self-capacitance touch electrodes arranged in a matrix on the base substrate, and then form a pattern of gate lines, gate lines and connection lines by one patterning process, wherein the self-capacitance touch
  • the electrode is located on the base substrate and can be disposed in the same layer as the gate.
  • the common electrode is usually made of ITO material
  • the gate is made of metal such as copper or aluminum.
  • connection line for connecting a plurality of common electrodes of each row of each self-capacitance touch electrode can be formed by the same patterning process as the gate, which simplifies the manufacturing process and reduces the production cost.
  • the method further includes: forming a pattern of the gate, the gate lines, the connection lines, and the second metal layer by one patterning process.
  • the gate before forming a pattern of self-capacitive touch electrodes arranged in a matrix on the substrate, the gate may be formed by one patterning process. a pattern of the gate line, the connection line and the second metal layer, after forming a pattern of self-capacitive touch electrodes arranged in a matrix on the base substrate, forming a gate, a gate line, a connection line and a second by a patterning process
  • the setting is not formed by the same patterning process, and the connecting line for connecting the plurality of common electrodes of each row of each self-capacitance touch electrode can be formed by the same patterning process as the gate, and the touch is improved.
  • the driving frequency of the display panel, the second metal layer disposed in parallel with the first metal layer can be formed by the same patterning process as the gate, which can simplify the fabrication Arts and reduce production costs.
  • the pattern of the first metal layer is formed on the substrate substrate on which the self-capacitive touch electrode pattern is formed, which may specifically include: Forming a pattern of the source/drain electrode layer on the base substrate on which the pattern of the first metal layer is formed; or forming a pattern of the first metal layer on the base substrate on which the active drain electrode layer pattern is formed.
  • the gate may be formed Forming a pattern of a gate insulating layer on the base substrate of the pole pattern, forming a pattern of the first metal layer on the base substrate forming the gate insulating layer pattern, and forming an insulating layer on the base substrate forming the first metal layer pattern a pattern, further forming a pattern of the active layer and the source/drain electrode layer on the base substrate on which the insulating layer pattern is formed, or placing the first metal layer over the source/drain electrode layer and insulating each other, that is, forming active leakage
  • a pattern of an insulating layer is formed on the base substrate of the pole pattern, and a pattern of the first metal layer is formed on the base substrate on which the insulating layer pattern is formed, which is not limited herein.
  • the method for fabricating the self-capacitive touch display panel provided by the embodiment of the present invention may further include: forming a passivation layer and a pixel electrode on the substrate formed with the pattern of the first metal layer picture of.
  • the preparation of the necessary functional film layer is provided in the preparation process of the touch display panel.
  • the preparation process thereof Membrane knot
  • the method for preparing the self-capacitive touch display panel provided by the embodiment of the present invention may specifically include:
  • the overall film layer structure of the self-capacitive touch display panel formed by the above preparation method is as shown in FIG. 7 , wherein the gate electrode 6 and the common electrode 2 (ie, the self-capacitance touch electrode) are disposed in the same layer on the substrate substrate G.
  • the common electrode 2 is in contact with the connecting line 5
  • above the gate electrode 6 and the common electrode 2 is a gate insulating layer 7, and above the gate insulating layer 7, an active layer 8 and a source/drain electrode 9
  • the first metal layer (not shown) provided with the touch lead 3 may be located between the gate insulating layer 7 and the active layer 8, and the passivation layer is located above the active layer 8 and the source and drain electrodes 9.
  • the passivation layer 10 above the passivation layer 10 is a pixel electrode 11, the above is only a specific embodiment of the self-capacitive touch display panel structure, in the actual production and application, the specific structure of the self-capacitive touch display panel is not In this case, the display layer of the multi-mode display panel can be applied to the display panel according to the actual production requirements, and is not limited thereto.
  • an embodiment of the present invention provides a driving method of the self-capacitive touch display panel provided by the embodiment of the present invention. As shown in FIG. 8 , the following steps may be specifically included:
  • the display function and the touch function are implemented corresponding to the driving display panel in the display phase and the touch phase, so that the touch and display phases are divided.
  • the common electrode is multiplexed into a self-capacitance touch electrode, and in the display phase, a common electrode signal is applied to the touch lead to provide a common electrode signal for the common electrode, and a touch scan is applied to the touch lead during the touch phase.
  • the signal drives the touch display panel to perform touch scanning, and the gate line and the data line apply a synchronization signal modulated with the touch scan signal to reduce parasitic capacitance between the self-capacitance touch electrode and other electrode lines, thereby reducing self-capacitance.
  • the capacitive in-cell touch technology combines the in-line technology with the existing large-size display panel to achieve an excellent experience of display and touch of a large-sized display panel at a low cost, and the common electrode is disposed adjacent to The area defined by the gate line and the adjacent data line, so that the common electrode does not overlap with the gate line and the data line, and in the touch phase, the self-capacitive touch electrode and other signal lines Parasitic capacitance between the small, will help improve touch performance.
  • an embodiment of the present invention provides a mutual capacitive touch display panel, as shown in FIG. 9 and FIG. 10, which may include an array having a first metal layer and a touch drive electrode 01 arranged in a matrix. a substrate, a touch chip 4, and a color filter substrate having a touch sensing electrode.
  • the touch driving electrode 01 includes a plurality of common electrodes 2.
  • the first metal layer includes a plurality of touch driving leads 03 corresponding to each column of the touch driving electrodes 01, and each column of the touch driving electrodes 01 passes through the corresponding touch driving leads 03 and The touch chips 4 are connected.
  • the touch driving lead 03 is used to transmit the common electrode signal to the touch driving electrode 01.
  • the touch driving lead 03 is used to transmit the touch scanning signal to the touch driving electrode 01, and the touch sensing is performed.
  • the electrode is used to couple the touch scan signal and output the coupled touch signal to the touch chip 4, and the touch chip 4 determines the position where the touch occurs according to the touch signal.
  • the self-capacitive touch display panel may include an array substrate having a touch driving electrode 01 and a first metal layer arranged in a matrix; wherein the touch driving electrode 01 includes a plurality of common electrodes 2,
  • the first metal layer includes a plurality of touch driving leads 03 corresponding to each column of the touch driving electrodes 01.
  • Each of the touch driving electrodes 01 is connected to the touch chip 4 through a corresponding touch driving lead 03, and the touch driving is performed.
  • the lead wire 03 is configured to transmit a common electrode signal to the touch driving electrode 01 during the display phase, and transmit a touch scan signal to the touch driving electrode 01 during the touch phase, and the touch sensing electrode is configured to couple the touch scan signal and output the coupled signal.
  • the touch signal is applied to the touch chip 4, and the touch chip 4 determines the position of the touch according to the touch signal, so that the mutual capacitive touch display panel multiplexes the common electrode as the touch drive electrode in the touch phase, and is separately set.
  • a first metal layer is disposed on the first metal layer, and each of the touch driving electrodes is connected to the touch chip through a corresponding touch wire to implement a touch function.
  • the touch lead is disposed in the peripheral area of the display panel.
  • the mutual capacitive touch display panel provided by the embodiment of the present invention is separately provided with a first metal layer, and the touch driving lead can be disposed on the peripheral circuit pattern, which is not related to the prior art.
  • the common electrode is multiplexed in the touch phase to form a mutual capacitance between the touch driving electrode and the touch sensing electrode to realize a touch function.
  • the common electrode 2 is disposed in a region defined by the adjacent gate line N and the adjacent data line M, such that the common electrode 2 does not overlap with the gate line N and the data line M, and is touched during the touch phase.
  • the parasitic capacitance between the control drive electrode and other signal lines is small, and the small parasitic capacitance can ensure sufficient time for the touch drive scan, which is beneficial to the touch drive scanning and detection, thereby improving the touch performance.
  • a first metal layer is separately disposed, and then The touch driving lead can be disposed on the first metal layer, so that the first metal layer is separately disposed in the embodiment of the present invention.
  • the narrow bezel design of the touch display panel can be realized. As shown in FIG.
  • the first method for setting the touch drive lead A metal layer may be located between the gate metal layer Gate and the source/drain electrode layer SD and insulated from each other, wherein the position of the touch driving lead 03 connected to the touch driving electrode 01 is set.
  • the first metal layer may be disposed on the source/drain electrode layer and the phase Insulation, in order to realize the connection between the touch driving lead and the touch driving electrode, both methods can realize the setting of the touch driving lead on the first metal layer, and of course, according to the actual production process and product requirements, the first The position of the metal layer is adjusted to implement the touch function, which is not limited herein.
  • each touch driving lead connects the corresponding column touch driving electrodes to the touch chip. Since the touch driving electrodes are arranged in a matrix, as shown in FIG. 9 and FIG. 10, the touch driving leads 03 include along the gate. a first portion 031 extending in the N direction of the line and a second portion 032 extending in the direction of the data line M, such that the touch driving leads 03 are in one-to-one correspondence with the column touch driving electrodes 01, and pass through the first portion 031 extending along the gate line N.
  • each touch driving electrode 01 Connected to each touch driving electrode 01, and connected to the touch chip through the second portion 032 extending along the data line M.
  • the touch chip is disposed in a direction extending along the data line;
  • the second portion of the line extension is connected to each of the touch driving electrodes, and then connected to the touch chip through the first portion extending along the gate line.
  • the touch chip is disposed along the gate line. Up, this is not limited.
  • the first metal layer includes: a plurality of base stations corresponding to the touch driving electrodes 01. P, abutment P set The via hole U is disposed, and the touch driving electrode 01 is connected to the corresponding touch driving lead 03 through the base P.
  • the first metal layer includes a set of touch drive leads on the left side of the figure; in FIG. 10, the first metal layer includes two sets of touch drive leads symmetrical in the left and right directions as illustrated.
  • the touch driving electrode 01 and the touch driving lead 03 in order to realize the connection between the touch driving electrode 01 and the touch driving lead 03, between the touch driving electrode 01 and the touch driving lead 03 is required.
  • the via connection is performed.
  • the base P corresponding to each touch driving electrode 01 is disposed on the first metal layer, so that the via hole process is facilitated at the position of the base P, which is helpful.
  • a good electrical connection between the touch drive electrode and the touch drive lead is achieved.
  • the plurality of common electrodes 2 included in the touch driving electrode 01 are arranged in a matrix, and each touch driving electrode 01
  • the plurality of common electrodes 2 in each row of the common electrodes are connected by a connecting line 5, and the adjacent common electrodes 2 in the same row of each of the touch driving electrodes 01 pass through the first metal layer.
  • the jumper L is connected or connected by a jumper L on the pixel electrode layer.
  • the common electrode is multiplexed into a touch driving electrode, and the touch function is implemented in the touch phase, wherein the common electrode is located on the base substrate of the array substrate.
  • the touch drive driving electrode includes a plurality of common electrodes.
  • a plurality of common electrodes included in one touch driving electrode are connected to form a complete
  • the touch driving electrode can realize the touch function of the touch driving electrode.
  • the plurality of common electrodes included in the touch driving electrode can be arranged in a matrix, so that each row in each touch driving electrode can be common.
  • the plurality of common electrodes in the electrode are connected by a connecting line, and the common electrodes of adjacent rows in each of the touch driving electrodes are connected by a jumper on the first metal layer or by a jumper on the pixel electrode layer.
  • an existing metal film layer in the array substrate such as a first metal layer or a pixel electrode layer, can be used.
  • other jumpers can be provided to connect adjacent rows.
  • the metal layer of the common electrode is connected to the common electrode of the adjacent row through the jumper of the other metal layer to avoid cross-short-circuiting with the gate line, and the common electrode included in the self-capacitance touch electrode can be connected as a whole.
  • the touch function of the self-capacitance touch electrode is realized, and the jumper is provided by using the existing metal film layer, which can simplify the fabrication process of the array substrate, simplify the structure of the film layer, and reduce the production cost.
  • the mutual capacitive touch display panel provided by the embodiment of the present invention is configured to connect a connection line and a gate line between a plurality of common electrodes in each common electrode of each touch driving electrode.
  • the same layer is set and parallel to each other.
  • the common electrode is disposed on the base substrate and can be disposed in the same layer as the gate, and thus is used for connecting each row of the common electrode in each touch driving electrode.
  • the connecting lines between the plurality of common electrodes may be disposed in the same layer and parallel to the gate lines, so that in the manufacturing process of the array substrate, the gate, the gate lines and the connecting lines may be formed by the same patterning process, which simplifies the manufacturing process. reduce manufacturing cost.
  • the mutual capacitive touch display panel provided by the embodiment of the present invention may further include: a second metal layer disposed in the same layer as the gate metal layer and connected in parallel with the first metal layer Settings.
  • the resistance of the touch driving lead on the first metal layer may be further reduced, that is, by the gate
  • the metal layer is provided with a second metal layer, and the pattern of the second metal layer is disposed in a shape of a plurality of common electrodes, which are disposed in parallel with the touch driving leads on the first metal layer, and the second metal layer includes a common electrode and a gate a sub-patterning process is formed, and the common electrode included in the second metal layer is disposed in parallel with the touch driving leads on the first metal layer through the via holes at corresponding positions, so that the first metal layer and the second metal layer can be realized.
  • Parallel setting can reduce the resistance of the first metal layer, and the touch driving frequency of the touch display panel can be increased by about 30%.
  • the first metal layer in order to improve the touch driving frequency of the touch display panel, may be disposed to include bilateral symmetry.
  • a row of touch driving electrodes 01 are connected to the same touch driving lead 03, and the touch is implemented in units of columns.
  • the control electrode scan is provided with a common electrode 2 between two adjacent rows of touch driving electrodes 01.
  • the touch sensing electrodes 02 on the color film substrate are disposed corresponding to the common electrodes 2 and are parallel to each other.
  • the sensing electrode 02 and the longitudinally disposed touch driving electrode arrays form a mutual capacitance to realize a touch function, wherein the touch sensing electrode 02 and the touch driving electrode 01 do not overlap, so that parasitic formation between the two The capacitance is small, and the mutual capacitance change between the touch sensing electrode and the touch driving electrode is relatively obvious when the touch occurs, and the touch signal generated at the touch position is easily detected, thereby facilitating the occurrence of the touch position.
  • the mutual-capacitive touch display panel includes an array substrate having a touch driving electrode 01 and a color filter substrate having a touch sensing electrode 02, which are laterally disposed. Controlling the touch sensing electrodes 02 disposed longitudinally between the driving column electrodes are formed in order to achieve a mutual capacitance touch function.
  • the embodiment of the present invention provides a method for preparing the mutual capacitive touch display panel provided by the embodiment of the present invention. As shown in FIG. 15 , the following steps may be specifically included:
  • the formed touch driving electrode includes a plurality of common electrodes
  • the first metal layer is formed by a plurality of touch driving leads corresponding to each column of the touch driving electrodes, and each column of the touch driving electrodes is connected to the touch chip through corresponding touch driving leads;
  • the touch driving lead is used to transmit the common electrode signal to the touch driving electrode
  • the touch driving lead is used to transmit a touch scan signal to the touch driving electrode
  • the touch sensing electrode is configured to couple the touch scan signal and output the coupled touch signal to the touch chip, and the touch chip The position at which the touch occurs is determined according to the touch signal.
  • a pattern of touch drive electrodes arranged in a matrix is formed on the base substrate, wherein the touch drive electrode formed includes a plurality of common electrodes.
  • the first metal layer formed includes a plurality of touch driving leads corresponding to each column of the touch driving electrodes, and each column touch driving The electrodes are connected to the touch chip through the corresponding touch driving leads, that is, the touch driving leads are disposed by separately providing a first metal layer, and the columns of the touch driving electrodes are connected to the touch chip through the corresponding touch driving leads. Touch function.
  • the touch driving driving leads are disposed in the peripheral area of the display panel to implement the touch function.
  • the mutual capacitive touch display panel provided by the embodiment of the present invention separately provides a first metal layer, and the touch driving lead can be used. It is disposed on the peripheral circuit pattern, and does not require an extra frame position relative to the prior art, which is advantageous for implementing a narrow bezel design, and the common electrode is used as the touch driving electrode, and the common electrode is disposed on the adjacent grid. The area defined by the line and the adjacent data line, so that the common electrode does not overlap with the gate line and the data line.
  • the parasitic capacitance between the touch drive electrode and other signal lines is small, and the small parasitic capacitance can be Ensure that there is sufficient time for touch drive scanning, which is beneficial to touch drive scanning and detection, which is beneficial to improve touch performance.
  • the method may further include: once The patterning process forms a pattern of gates, gate lines, and connecting lines.
  • the gate and the gate may be formed by one patterning process.
  • a pattern of the lines and the connecting lines after the patterns of the touch driving electrodes arranged in a matrix are formed on the base substrate, the patterns of the gate lines, the gate lines and the connecting lines are formed by one patterning process, wherein the touch driving electrodes are located in the lining Above the base substrate, it can be placed in the same layer as the gate, but the common electrode is usually made of ITO material, and the gate is made of copper.
  • a metal material such as aluminum so the two layers may be formed in the same layer, but may not be formed by the same patterning process, and the connection line for connecting a plurality of common electrodes of each row of each touch driving electrode may be the same as the gate.
  • the sub-patterning process is formed, which simplifies the manufacturing process and reduces the production cost.
  • the method may further include: once The patterning process forms a pattern of gates, gate lines, connecting lines, and a second metal layer.
  • the gate and the gate may be formed by one patterning process.
  • the pattern of the line, the connecting line and the second metal layer may also form a gate, a gate line, a connecting line and a second metal layer by one patterning process after forming a pattern of the touch driving electrodes arranged in a matrix on the base substrate.
  • the pattern of the touch driving electrode is located on the substrate substrate and can be disposed in the same layer as the gate electrode, but the common electrode is generally made of ITO material, and the gate electrode is made of a metal material such as copper or aluminum, so although the two layers are disposed in the same layer,
  • the same patterning process may not be used, and the connection line for connecting the plurality of common electrodes of each row of each touch driving electrode may be formed by the same patterning process as the gate, and the driving of the touch display panel is improved.
  • a pattern of the first metal layer is formed on the substrate substrate on which the touch driving electrode pattern is formed, which may specifically include : forming a pattern of the source/drain electrode layer on the base substrate on which the pattern of the first metal layer is formed; or forming a pattern of the first metal layer on the base substrate on which the active drain electrode layer pattern is formed.
  • the gate may be formed Forming a pattern of a gate insulating layer on the base substrate of the pole pattern, forming a pattern of the first metal layer on the base substrate forming the gate insulating layer pattern, and forming an insulating layer on the base substrate forming the first metal layer pattern a pattern, further forming a pattern of the active layer and the source/drain electrode layer on the base substrate on which the insulating layer pattern is formed, or placing the first metal layer over the source/drain electrode layer and insulating each other, that is, forming active leakage
  • a pattern of an insulating layer is formed on the base substrate of the pole pattern, and a pattern of the first metal layer is formed on the base substrate on which the insulating layer pattern is formed, which is not limited herein.
  • the method for fabricating the mutual capacitive touch display panel provided by the embodiment of the present invention may further include: forming a passivation layer and a pixel electrode on the substrate formed with the pattern of the first metal layer picture of.
  • the preparation of the necessary functional film layer is provided in the preparation process of the touch display panel.
  • the preparation process thereof After forming the first metal layer, further comprising forming a pattern including a passivation layer and a pixel electrode on the substrate formed with the pattern of the first metal layer, the preparation process thereof
  • the structure of the film layer is the same as that of the prior art and will not be described in detail herein.
  • the method for preparing the mutual-capacitive touch display panel provided by the embodiment of the present invention may specifically include:
  • the overall film structure of the mutual capacitive touch display panel formed by the above preparation method is as shown in FIG. 17, and only the structure of the array substrate having the touch driving electrodes is shown, and the color filter substrate having the touch sensing electrodes is The structure is not shown.
  • the gate electrode 6 and the common electrode 2 ie, the touch driving electrode
  • the common electrode 2 are disposed on the substrate substrate G in the same layer, wherein the common electrode 2 is in contact with the connection line 5, and is located at the gate electrode 6
  • Above the common electrode 2 is a gate insulating layer 7, above the gate insulating layer 7, an active layer 8 and a source/drain electrode 9, and a first metal layer provided with a touch driving lead 03 (not shown) ) may be located between the gate insulating layer 7 and the active layer 8 , above the active layer 8 and the source and drain electrodes 9 is a passivation layer 10 , above the passivation layer 10 is a pixel electrode 11 , the above is only A specific embodiment of the mutual capacitive touch display panel structure,
  • the embodiment of the present invention provides a driving method for the mutual capacitive touch display panel provided by the embodiment of the present invention. As shown in FIG. 18, the following steps may be specifically included:
  • the touch display panel realizes the display function and the touch function in the display phase and the touch phase, that is, the touch control and the display phase adopt the time-sharing driving.
  • the common electrode is multiplexed into a self-capacitance touch electrode.
  • a common electrode signal is applied to the touch drive lead to provide a common electrode signal for the common electrode, and the touch drive lead is used in the touch phase. Applying a touch scan signal to drive the touch display panel to perform touch scan, and simultaneously applying a synchronization signal modulated with the touch scan signal to the gate line and the data line to reduce the parasitic capacitance between the touch drive electrode and the other electrode lines.
  • the RC delay between the touch driving electrode and the other electrode lines is reduced, and the touch sensing electrode couples the touch scanning signal and outputs the coupled touch signal to the touch chip, and the touch chip determines the touch according to the touch signal.
  • Position, which realizes the display and touch function of the touch display panel, and the common electrode is disposed on the adjacent gate line and the adjacent data line Defined region, so that the common electrode and the gate line, without overlapping the data line, the touch phase, a small parasitic capacitance between the touch drive electrode and the other signal lines, help to improve the performance of the touch.
  • an embodiment of the present invention provides a display device, including the self-capacitive touch display panel provided by the embodiment of the present invention or the mutual capacitive touch display panel provided by the embodiment of the present invention, the display device It can be applied to any product or component with display function such as mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame, navigator.
  • the implementation of the display device is similar to the self-capacitive touch display panel or the mutual capacitive touch display panel. Therefore, the implementation of the display device can be referred to the self-capacitive touch display panel or the mutual capacitive touch display. The implementation of the panel, the repetition will not be repeated.
  • the common electrode described herein may also be referred to as a storage capacitor electrode for constituting a liquid crystal capacitor.
  • the storage capacitor electrode can be placed in the same layer as the gate. Since this is well known in the art, it will not be described in detail herein.
  • the embodiment of the invention provides a touch display panel, a preparation method, a driving method and a display device.
  • the touch display panel comprises a self-capacitive touch display panel or a mutual capacitive touch display panel.
  • the self-capacitive touch display panel multiplexes the common electrode into a self-capacitance touch electrode in the touch phase, and separately sets a first metal layer, and then sets the touch lead on the first metal layer, and each capacitive touch electrode
  • the touch function is implemented by connecting the touch control chip to the touch chip.
  • the mutual capacitive touch display panel multiplexes the common electrode as a touch driving electrode in the touch phase, and separately sets a first metal layer, and then sets the touch driving lead on the first metal layer, and the color film A mutual capacitance is formed between the touch sensing electrodes on the substrate to implement a touch function.
  • the touch display panel is provided with a touch layer or a touch drive lead to realize a touch function.
  • the touch display panel provided by the embodiment of the present invention can separately set a first metal layer, thereby enabling the touch lead or the touch drive lead.
  • the common electrode is a self-capacitance touch electrode.
  • the common electrode is disposed in an area defined by the adjacent gate line and the adjacent data line, such that the common electrode does not overlap with the gate line and the data line, and in the touch stage, the self-capacitive touch electrode or the touch drive electrode and other signal lines The parasitic capacitance between them is small, which is beneficial to improve the touch performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种触控显示面板、制备方法、驱动方法及显示装置,包括自电容式触控显示面板或互电容式触控显示面板。该自电容式触控显示面板包括:具有第一金属层和自电容触控电极(1)的阵列基板,以及触控芯片(4)。每个所述自电容触控电极(1)包括多个公共电极(2),所述第一金属层包括多条与所述自电容触控电极(1)一一对应的触控引线(3),每个所述自电容触控电极(1)通过对应的所述触控引线(3)与所述触控芯片(4)相连。所述触控引线(3)用于在显示阶段向所述自电容触控电极(1)传递公共电极信号,在触控阶段向所述自电容触控电极(1)传递触控扫描信号,且将发生触控位置处的所述自电容触控电极(1)产生的触控信号传输到所述触控芯片(4)。

Description

触控显示面板、制备方法、驱动方法及显示装置 技术领域
本发明涉及显示技术领域,尤其涉及触控显示面板、制备方法、驱动方法及显示装置。
背景技术
目前,随着显示技术的发展,显示技术被广泛应用于电视、手机以及公共信息的显示,大尺寸显示面板逐渐成为人们生活中比较重要的一部分,同时随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中,在追求优异体验功能的今天,触控性能一直是大尺寸显示面板的一大缺陷,或受限于技术或受限于成本。
随着触摸屏技术的发展,随着市场要求,整体模组减薄是市场发展趋势,所以触摸结构由触摸传感外挂式向触摸传感内嵌式发展,这样既可以实现触控面板的厚度减薄,也可以在很大程度上降低触摸屏的成本。目前内嵌式触控面板主要有三种类型:电阻式触控面板、电容式触控面板、光学式触控面板。相应的内嵌式触控技术现已初步运用于小尺寸显示屏中,其优异的触控性能成为未来触控设计的方向,因此,也为实现大尺寸显示面板的优异触控性能,提供了努力的方向。
在现有技术中,自电容式的触控面板的实现原理如图1所示,一般地,单个触控点电极m设计成5mm*5mm左右的方形电极,然后将该电极用一根导线n连接至触控芯片p内部,通过触控芯片p给该电极施加驱动信号,并且该电极m可以自己接收反馈信号,即当手指未触控时,电极m所承受的电容为一固定值;当手指触控时,电极m承受的电容为手指电容加上原有电容,由于电容大小不同,信号的RC延迟(resistance capacitance delay)时间也不相同,这样手指触控的前后就会接收到不一样的电信号,从而实现触控点的确定,其中由于手指为直接耦合的方式,故手指引起的触控变化量会比较大,触控点易于确定。然而这种设计方案中,连接电极与触控芯片的走线需要设置在触控面板两侧的边框区域,这样就需要增大边框区域的面积,不利于触控面板的窄边框设计。
因此,如何实现触控显示面板的窄边框设计,同时提高触控显示面板的触控性能,是本领域技术人员亟待解决的技术问题。
发明内容
本发明实施例中的至少一个提供了触控显示面板、制备方法、驱动方法及显示装置,用以实现触控显示面板的窄边框设计,同时提高触控显示面板的触控性能。
本发明实施例提供了一种自电容式触控显示面板,包括:具有第一金属层和自电容触控电极的阵列基板,以及触控芯片;其中,
每个所述自电容触控电极包括多个公共电极,所述第一金属层包括多条与所述自电容触控电极一一对应的触控引线,每个所述自电容触控电极通过对应的所述触控引线与所述触控芯片相连;
所述触控引线用于在显示阶段向所述自电容触控电极传递公共电极信号,在触控阶段向所述自电容触控电极传递触控扫描信号,且将发生触控位置处的所述自电容触控电极产生的触控信号传输到所述触控芯片。
在一种可能的实施方式中,本发明实施例提供的上述自电容式触控显示面板中,在栅极金属层紧邻阵列基板的衬底基板设置的情况下,所述第一金属层位于栅极金属层和源漏电极层之间且三者相互绝缘;或
所述第一金属层位于源漏电极层之上且相互绝缘。
在一种可能的实施方式中,本发明实施例提供的上述自电容式触控显示面板中,所述触控引线包括沿栅线方向延伸的第一部分和沿数据线方向延伸的第二部分。
在一种可能的实施方式中,本发明实施例提供的上述自电容式触控显示面板中,所述第一金属层包括:多个与所述自电容触控电极一一对应的基台;所述基台设置有过孔,所述自电容触控电极通过所述基台与相应的所述触控引线过孔连接。
在一种可能的实施方式中,本发明实施例提供的上述自电容式触控显示面板中,所述自电容触控电极呈矩阵排列并且每个自电容触控电极所包括的多个公共电极也呈矩阵排列,每个所述自电容触控电极中的每行公共电极中的多个公共电极之间通过连接线相连,每个所述自电容触控电极中相邻行的且位于同一列的公共电极之间通过所述第一金属层上的跳线连接或通过像素电极层上的跳线连接。
在一种可能的实施方式中,本发明实施例提供的上述自电容式触控显示面板中,用于连接每个所述自电容触控电极中的每行公共电极中的多个公共电极之间的连接线与栅线同层设置且相互平行。
在一种可能的实施方式中,本发明实施例提供的上述自电容式触控显示面板中, 还包括:第二金属层,所述第二金属层与所述栅极金属层同层设置且与所述第一金属层并联设置。
本发明实施例提供了一种本发明实施例提供的上述自电容式触控显示面板的制备方法,包括:
在衬底基板上形成呈矩阵排列的自电容触控电极的图案;
其中形成的每个所述自电容触控电极包括多个公共电极;
在形成有所述自电容触控电极图案的衬底基板上形成第一金属层的图案。
在一种可能的实施方式中,本发明实施例提供的上述自电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的自电容触控电极的图案之前或之后,还包括:
通过一次构图工艺形成栅极、栅线和连接线的图案。
在一种可能的实施方式中,本发明实施例提供的上述自电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的自电容触控电极的图案之前或之后,还包括:
通过一次构图工艺形成栅极、棚线、连接线和第二金属层的图案。
在一种可能的实施方式中,本发明实施例提供的上述自电容式触控显示面板的制备方法中,在形成有所述自电容触控电极图案的衬底基板上形成第一金属层的图案,包括:
在形成有所述第一金属层的图案的衬底基板上形成源漏电极层的图案;或
在形成有所述源漏电极层图案的衬底基板上形成所述第一金属层的图案。
在一种可能的实施方式中,本发明实施例提供的上述自电容式触控显示面板的制备方法中,还包括:
在形成有所述第一金属层的图案的衬底基板上形成包括钝化层和像素电极的图案。
本发明实施例提供了一种本发明实施例提供的上述自电容式触控显示面板的驱动方法,包括:
在显示阶段,对所述触控显示面板中的触控引线施加公共电极信号,同时,对所述触控显示面板中的栅线依次施加栅扫描信号,对数据线施加数据信号;
在触控阶段,对所述触控显示面板中的触控引线施加触控扫描信号,同时,所述触控显示面板中的栅线和数据线施加与触控扫描信号相调制的同步信号,且触控引线 将发生触控位置处的所述自电容触控电极产生的触控信号传输到触控芯片,所述触控芯片根据所述触控信号确定触控点位置。
本发明实施例提供了一种互电容式触控显示面板,包括:具有第一金属层和呈矩阵排列的触控驱动电极的阵列基板、触控芯片,以及具有触控感应电极的彩膜基板;其中,
每个所述触控驱动电极包括多个公共电极,所述第一金属层包括多条与所述列触控驱动电极一一对应的触控驱动引线,每列所述触控驱动电极通过对应的所述触控驱动引线与所述触控芯片相连;
在显示阶段,所述触控驱动引线用于向所述触控驱动电极传递公共电极信号,在触控阶段,所述触控驱动引线用于向所述触控驱动电极传递触控扫描信号,且所述触控感应电极用于耦合所述触控扫描信号并输出耦合后的触控信号到所述触控芯片,所述触控芯片根据所述触控信号确定发生触控的位置。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板中,在栅极金属层紧邻阵列基板的衬底基板设置的情况下,所述第一金属层位于栅极金属层和源漏电极层之间且三者相互绝缘;或
所述第一金属层位于源漏电极层之上且相互绝缘。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板中,所述触控驱动引线包括沿栅线方向延伸的第一部分和沿数据线方向延伸的第二部分。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板中,所述第一金属层包括:多个与触控驱动引线一一对应的基台;所述基台设置有过孔,所述触控驱动电极通过所述基台与相应的所述触控驱动引线过孔连接。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板中,每个所述触控驱动电极包括的多个公共电极呈矩阵排列,每个所述触控驱动电极中的每行公共电极中的多个公共电极之间通过连接线相连,每个所述触控驱动电极中相邻行的且位于同一列的公共电极之间通过所述第一金属层上的跳线连接或通过像素电极层上的跳线连接。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板中,用于连接每个所述触控驱动电极中的每行公共电极中的多个公共电极之间的连接线与栅线同层设置且相互平行。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板中, 还包括:第二金属层,所述第二金属层与所述栅极金属层同层设置且与所述第一金属层并联设置。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板中,所述第一金属层包括左右对称的两组触控驱动引线,每列所述触控驱动电极对应两条所述触控驱动引线。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板中,相邻行所述触控驱动电极之间设置有公共电极,位于所述彩膜基板上的所述触控感应电极与所述公共电极中的每个对应设置且相互平行。
本发明实施例提供了一种本发明实施例提供的上述互电容式触控显示面板的制备方法,包括:
在衬底基板上形成呈矩阵排列的触控驱动电极的图案;
其中每个所述触控驱动电极包括多个公共电极;
在形成有所述触控驱动电极图案的衬底基板上形成第一金属层的图案;
在彩膜基板上形成触控感应电极的图案。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的触控驱动电极的图案之前或之后,还包括:
通过一次构图工艺形成栅极、栅线和连接线的图案。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的触控驱动电极的图案之前或之后,还包括:
通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板的制备方法中,在形成有所述触控驱动电极图案的衬底基板上形成第一金属层的图案,包括:
在形成有所述第一金属层的图案的衬底基板上形成源漏电极层的图案;或
在形成有所述源漏电极层图案的衬底基板上形成所述第一金属层的图案。
在一种可能的实施方式中,本发明实施例提供的上述互电容式触控显示面板的制备方法中,还包括:
在形成有所述第一金属层的图案的衬底基板上形成包括钝化层和像素电极的图 案。
本发明实施例提供了一种本发明实施例提供的上述互电容式触控显示面板的驱动方法,包括:
在显示阶段,对所述触控显示面板中的触控驱动引线施加公共电极信号,同时,对所述触控显示面板中的栅线依次施加栅扫描信号,对数据线施加数据信号;
在触控阶段,对所述触控显示面板中的触控驱动引线施加触控扫描信号,同时,所述触控显示面板中的栅线和数据线施加与触控扫描信号相调制的同步信号,且所述触控感应电极耦合所述触控扫描信号并输出耦合后的触控信号到所述触控芯片,所述触控芯片根据所述触控信号确定发生触控的位置。
本发明实施例提供了一种显示装置,包括本发明实施例提供的上述自电容式触控显示面板或本发明实施例提供的上述互电容式触控显示面板。
本发明实施例提供的有益效果至少包括以下中的一个方面:
本发明实施例提供了触控显示面板、制备方法、驱动方法及显示装置,其触控显示面板包括自电容式触控显示面板或互电容式触控显示面板。自电容式触控显示面板在触控阶段复用公共电极为自电容触控电极,通过单独设置一层第一金属层,将触控引线设置于第一金属层上,各自电容触控电极通过对应的触控引线连接至触控芯片实现触控功能。互电容式触控显示面板在触控阶段复用公共电极为触控驱动电极,通过单独设置一层第一金属层,将触控驱动引线设置于第一金属层上,与彩膜基板上的触控感应电极之间形成互电容实现触控功能。相对于现有技术在显示面板周边区域设置触控引线或触控驱动引线以实现触控功能,本发明实施例提供的触控显示面板单独设置一层第一金属层,可将触控引线或触控驱动引线设置在周边原有的电路图案之上,相对于现有技术不需要多余的边框位置,有利于实现窄边框设计,同时复用公共电极为自电容触控电极或触控驱动电极,将公共电极设置于由相邻栅线与相邻数据线定义的区域,这样公共电极与栅线、数据线无交叠,在触控阶段,自电容触控电极或触控驱动电极与其他信号线之间的寄生电容很小,有利于提高触控性能。
附图说明
图1为现有技术中自电容式触控显示面板的结构示意图;
图2为本发明实施例提供的一种自电容式触控显示面板的阵列基板结构示意图;
图3为本发明实施例提供的自电容触控电极的结构示意图;
图4为本发明实施例提供的所述自电容式触控显示面板的阵列基板结构的剖面示意图;
图5为本发明实施例提供的所述自电容式触控显示面板的制备方法流程图;
图6为本发明实施例提供的所述自电容式触控显示面板的具体制备方法流程图;
图7为本发明实施例提供的所述自电容式触控显示面板的阵列基板的另一示例的结构示意图;
图8为本发明实施例提供的所述自电容式触控显示面板的驱动方法流程图;
图9为本发明实施例提供的一种互电容式触控显示面板的阵列基板结构示意图之一;
图10为本发明实施例提供的所述互电容式触控显示面板的阵列基板结构示意图之二;
图11为本发明实施例提供的所述互电容式触控显示面板的触控驱动电极的结构示意图;
图12为本发明实施例提供的所述互电容式触控显示面板的阵列基板的剖面示意图;图13为本发明实施例提供的所述互电容式触控显示面板的结构示意图;
图14为本发明实施例提供的所述互电容式触控显示面板的原理结构示意图;
图15为本发明实施例提供的所述互电容式触控显示面板的制备方法流程图;
图16为本发明实施例提供的所述互电容式触控显示面板的具体制备方法流程图;
图17为本发明实施例提供的所述互电容式触控显示面板的阵列基板的另一示例的结构剖面示意图;
图18为本发明实施例提供的所述互电容式触控显示面板的驱动方法流程图。
具体实施方式
下面结合附图,对本发明实施例提供的触控显示面板、其制备方法、驱动方法及显示装置的具体实施方式进行详细地说明。
附图中各膜层的厚度和区域的大小形状不反映触控显示面板各部件的真实比例,目的只是示意说明本发明的内容。
本发明实施例提供了一种自电容式触控显示面板,如图2所示,可以包括:具有第一金属层和呈矩阵排列的自电容触控电极1的阵列基板,以及触控芯片4。如图 3所示,每个自电容触控电极1包括多个公共电极2,如图2所示,第一金属层包括多条与自电容触控电极1一一对应的触控引线3,每个自电容触控电极1通过对应的触控引线3与触控芯片4相连。
触控引线3用于在显示阶段向自电容触控电极1传递公共电极信号,在触控阶段向自电容触控电极1传递触控扫描信号,且将发生触控位置处的自电容触控电极1产生的触控信号传输到触控芯片4。
本发明实施例提供的上述自电容式触控显示面板,可以包括具有呈矩阵排列的自电容触控电极1和第一金属层的阵列基板;其中,每个自电容触控电极1包括多个公共电极2,第一金属层包括多条与自电容触控电极1一一对应的触控引线3,每个自电容触控电极1通过对应的触控引线3与触控芯片4相连;触控引线3用于在显示阶段向自电容触控电极1传递公共电极信号,在触控阶段向自电容触控电极1传递触控扫描信号,且将发生触控位置处产生的触控信号传输到触控芯片4,这样自电容式触控显示面板在触控阶段复用公共电极为自电容触控电极,通过单独设置一层第一金属层,将触控引线设置于第一金属层上,每个自电容触控电极通过对应的触控引线连接至触控芯片实现触控功能。相对于现有技术在显示面板周边区域设置触控引线以实现触控功能,本发明实施例提供的触控显示面板单独设置一层第一金属层,可将触控引线设置在周边原有的电路图案之上或上方,相对于现有技术不需要多余的边框位置,有利于实现窄边框设计,同时在触控阶段复用公共电极为自电容触控电极,如图3所示,可以将公共电极2设置于由相邻栅线N与相邻数据线M定义的区域,这样公共电极2与栅线N、数据线M无交叠,在触控阶段,自电容触控电极与其他信号线之间的寄生电容很小,有利于提高触控性能。
在具体实施时,本发明实施例提供的上述自电容式触控显示面板中,为了实现自电容式触控显示面板在触控阶段的触控功能,单独设置一层第一金属层,进而可以将触控引线设置于第一金属层上。这样相对于现有技术中采用增大显示面板的边框区域来设置触控引线的方式,本发明实施例单独设置一层第一金属层来设置触控引线可以实现触控显示面板的窄边框设计,如图4所示,在栅极金属层Gate紧邻阵列基板的衬底基板设置的情况下,用于设置触控引线的第一金属层(触控引线3所在位置)可以位于栅极金属层Gate和源漏电极层SD之间且三者相互绝缘,其中触控引线3与自电容触控电极1相连接的位置设置有过孔U,进而通过过孔U实现自电容触控电极1与触控引线3的电性连接;也可以将第一金属层设置于源漏电极层之上且相互绝缘,以实现触控引线与自电容触控电极的连接,上述两者方式均可以实现将触控引 线设置于第一金属层上,当然也可以根据实际生产工艺和产品要求,对第一金属层的设置位置进行调整以实现触控功能,在此不作限定。
在具体实施时,本发明实施例提供的上述自电容式触控显示面板中,为了实现将各自电容触控电极连接至触控芯片,以实现触控显示面板在触控阶段的触控功能,因此各触控引线将各自对应的自电容触控电极一一对应连接至触控芯片,由于自电容触控电极呈矩阵排列的方式,如图2所示,因此触控引线3包括沿栅线N方向延伸的第一部分31和沿数据线M方向延伸的第二部分32,这样各触控引线3与各自电容触控电极1一一对应,通过沿栅线N延伸的第一部分31与各自电容触控电极1相连,再通过沿数据线M延伸的第二部分32连接至触控芯片4,采用该连接方式时触控芯片4设置于沿数据线延伸的方向上;也可以通过沿数据线延伸的第二部分与各自电容触控电极相连,再通过沿栅线延伸的第一部分连接至触控芯片,采用该连接方式时触控芯片设置于沿栅线延伸的方向上,在此不作限定。
在具体实施时,本发明实施例提供的上述自电容式触控显示面板中,如图2所示,第一金属层包括:多个与自电容触控电极1一一对应的基台P;基台P设置有过孔U,自电容触控电极1通过基台P与相应的触控引线3过孔连接。
具体地,本发明实施例提供的上述自电容式触控显示面板中,为了实现自电容触控电极1与触控引线3的连接,需要对自电容触控电极1与触控引线3之间进行过孔连接,为了便于实施过孔工艺,因此在第一金属层上设置与各自电容触控电极1一一对应的基台P,这样在基台P位置便于实施过孔工艺,有助于实现自电容触控电极与触控引线的良好电性连接。当然,本领域技术人员可以根据需要选择是否设置基台P,即自电容触控电极1可以通过基台P与各自的触控引线3相连,也可以直接与各自的触控引线3相连。
在具体实施时,本发明实施例提供的上述自电容式触控显示面板中,如图3所示,每个自电容触控电极1包括的多个公共电极2可以呈矩阵排列,每个自电容触控电极1中的每行公共电极中的多个公共电极2之间通过连接线5相连,每个自电容触控电极1中相邻行的且位于同一列的公共电极2之间通过第一金属层上的跳线L连接或通过像素电极层上的跳线L连接。
具体地,本发明实施例提供的上述自电容式触控显示面板中,将公共电极2复用为自电容触控电极,在触控阶段以实现触控功能,其中公共电极位于阵列基板的衬底基板上,与栅极位于同层,每个自电容触控电极包括多个公共电极,为了实现自电容触控电极的触控功能,需要将一个自电容触控电极所包含的多个公共电极连接成一 个完整的自电容触控电极,这样才能实现自电容触控电极的触控功能。一般地,自电容触控电极包括的多个公共电极可以呈矩阵排列,因此可以将每个自电容触控电极中的每行公共电极中的多个公共电极之间通过连接线相连,每个自电容触控电极中相邻行的公共电极之间通过第一金属层上的跳线连接或通过像素电极层上的跳线连接。这样利用阵列基板中现有金属膜层,例如第一金属层或者像素电极层,当然也可以是其他可以设置跳线以连接相邻行公共电极的金属层,这样将相邻行公共电极通过其他金属层设置的跳线连接,避免与栅线形成交叉短路,可以实现一个自电容触控电极包含的各个公共电极连接为一个整体,进而实现自电容触控电极的触控功能,同时利用现有金属膜层设置跳线,可以简化阵列基板的制作工艺,简化膜层结构,降低生产成本。
在具体实施时,本发明实施例提供的上述自电容式触控显示面板中,用于连接每个自电容触控电极中的每行公共电极中的多个公共电极之间的连接线与栅线同层设置且相互平行。
具体地,本发明实施例提供的上述自电容式触控显示面板中,公共电极位于衬底基板上可与栅极同层设置,因此用于连接每个自电容触控电极中的每行公共电极中的多个公共电极之间的连接线可以与栅线同层设置且相互平行,当然连接线可以采用栅极金属材料,这样在阵列基板制作过程中,可以采用同一次构图工艺形成栅极、栅线、连接线,这样可以简化阵列基板的制作工艺、降低生产成本。
在具体实施时,本发明实施例提供的上述自电容式触控显示面板中,还可以包括:第二金属层,该第二金属层与栅极金属层同层设置且与第一金属层并联设置。
具体地,本发明实施例提供的上述自电容式触控显示面板中,为了提高触控显示面板的驱动频率,可以进一步降低第一金属层上的触控引线的电阻,即通过在栅极金属层上设置第二金属层,第二金属层的图案设置成多个公共电极的形状,与第一金属层上的触控引线平行设置,第二金属层包括的公共电极与栅极可同一次构图工艺形成,且第二金属层包括的公共电极在相应的位置通过过孔与第一金属层上的触控引线连接形成并联设置,这样可以实现第一金属层与第二金属层的并联设置,从而可以将低第一金属层的电阻,其触控显示面板的触控驱动频率可以大约提高30%。
基于同一发明构思,本发明实施例提供了一种本发明实施例提供的上述自电容式触控显示面板的制备方法,如图5所示,可以具体包括:
S101、在衬底基板上形成呈矩阵排列的自电容触控电极的图案;
其中形成的自电容触控电极包括多个公共电极;
S102、在形成有自电容触控电极图案的衬底基板上形成第一金属层的图案;
其中,形成的第一金属层包括多条与自电容触控电极一一对应的触控引线,每个自电容触控电极通过对应的触控引线与触控芯片相连;
触控引线用于在显示阶段向自电容触控电极传递公共电极信号,在触控阶段向自电容触控电极传递触控扫描信号,且将发生触控位置处的自电容触控电极产生的触控信号传输到触控芯片。
本发明实施例提供的上述自电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的自电容触控电极的图案,其中形成的自电容触控电极包括多个公共电极,在形成有自电容触控电极图案的衬底基板上形成第一金属层的图案,形成的第一金属层包括多条与自电容触控电极一一对应的触控引线,每个自电容触控电极通过对应的触控引线与触控芯片相连,即通过单独设置一层第一金属层来设置触控引线,各自电容触控电极通过对应的触控引线连接至触控芯片实现触控功能。相对于现有技术在显示面板周边区域设置触控引线以实现触控功能,本发明实施例提供的上述自电容式触控显示面板单独设置一层第一金属层,可将触控引线设置在周边原有的电路图案之上,相对于现有技术不需要多余的边框位置,有利于实现窄边框设计,同时复用公共电极为自电容触控电极,将公共电极设置于由相邻棚线与相邻数据线定义的区域,这样公共电极与栅线、数据线无交叠,在触控阶段,自电容触控电极与其他信号线之间的寄生电容很小,较小的寄生电容可以保证有充足的时间进行触控驱动扫描,有利于触控驱动扫描与检测,进而有利于提高触控性能。
在具体实施时,本发明实施例提供的上述自电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的自电容触控电极的图案之前或之后,还可以包括:通过一次构图工艺形成栅极、栅线和连接线的图案。
具体地,本发明实施例提供的上述自电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的自电容触控电极的图案之前,可以通过一次构图工艺形成栅极、栅线和连接线的图案,也可以在衬底基板上形成呈矩阵排列的自电容触控电极的图案之后,通过一次构图工艺形成栅极、栅线和连接线的图案,其中自电容触控电极位于衬底基板之上,可以与栅极同层设置,但公共电极一般采用ITO材料,栅极采用铜、铝等金属材料,因此两者虽然同层设置,但不可以采用同一次构图工艺形成,而用于连接每个自电容触控电极中每行的多个公共电极的连接线可以与栅极采用同一次构图工艺形成,这样可以简化制作工艺、降低生产成本。
在具体实施时,本发明实施例提供的上述自电容式触控显示面板的制备方法 中,在衬底基板上形成呈矩阵排列的自电容触控电极的图案之前或之后,还可以包括:通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案。
具体地,本发明实施例提供的上述自电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的自电容触控电极的图案之前,可以通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案,也可以在衬底基板上形成呈矩阵排列的自电容触控电极的图案之后,通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案,其中自电容触控电极位于衬底基板之上,可以与栅极同层设置,但公共电极一般采用ITO材料,栅极采用铜、铝等金属材料,因此两者虽然同层设置,但不可以采用同一次构图工艺形成,而用于连接每个自电容触控电极中每行的多个公共电极的连接线可以与栅极采用同一次构图工艺形成,而为了提高触控显示面板的驱动频率,设置与第一金属层并联的第二金属层可以与栅极采用同一次构图工艺形成,这样可以简化制作工艺降低生产成本。
在具体实施时,本发明实施例提供的上述自电容式触控显示面板的制备方法中,在形成有自电容触控电极图案的衬底基板上形成第一金属层的图案,可以具体包括:在形成有第一金属层的图案的衬底基板上形成源漏电极层的图案;或在形成有源漏电极层图案的衬底基板上形成第一金属层的图案。
具体地,本发明实施例提供的上述自电容式触控显示面板的制备方法中,由于第一金属层可以设置于栅极金属层与源漏电极层之间且相互绝缘,因此可以在形成栅极图案的衬底基板上形成栅绝缘层的图案,在形成栅绝缘层图案的衬底基板上形成第一金属层的图案,在形成第一金属层图案的衬底基板上形成一层绝缘层的图案,进而在形成绝缘层图案的衬底基板上形成有源层和源漏电极层的图案,或者将第一金属层设置于源漏电极层之上且相互绝缘,即在形成有源漏电极层图案的衬底基板上形成一层绝缘层的图案,在形成有绝缘层图案的衬底基板上形成第一金属层的图案,在此不作限定。
在具体实施时,本发明实施例提供的上述自电容式触控显示面板的制备方法中,还可以包括:在形成有第一金属层的图案的衬底基板上形成包括钝化层和像素电极的图案。
具体地,为了实现触控显示面板的显示与触控功能,在触控显示面板的制备过程中,还包括钝化层和像素电极层等必要功能膜层的制备,本发明实施例提供的上述自电容式触控显示面板的制备方法中,在形成第一金属层之后,还包括在形成有第一金属层的图案的衬底基板上形成包括钝化层和像素电极的图案,其制备工艺与膜层结 构与现有技术相同,在此不作详述。
具体地,经过上述实施例的描述,本发明实施例提供的上述自电容式触控显示面板的制备方法,如图6所示,可以具体包括:
S111、在衬底基板上通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案;
S112、在衬底基板上形成呈矩阵排列的自电容触控电极的图案;
S113、在形成有自电容触控电极图案的衬底基板上形成第一金属层的图案;
S114、在形成有第一金属层的图案的衬底基板上形成源漏电极层的图案;
S115、在形成有源漏电极层的图案的衬底基板上形成包括钝化层和像素电极的图案。
其中,相应工艺步骤之间的顺序可以改变,已在上述实施例中有详细的说明,在此不作详述。
经过上述制备方法形成的自电容式触控显示面板的整体膜层结构如图7所示,其中,栅极6和公共电极2(亦即自电容触控电极)同层设置位于衬底基板G之上,其中公共电极2与连接线5相接触,位于栅极6与公共电极2之上的为栅绝缘层7,位于栅绝缘层7之上的为有源层8和源漏电极9,而设置有触控引线3的第一金属层(图中未示出)可位于栅绝缘层7与有源层8之间,位于有源层8和源漏电极9之上的为钝化层10,位于钝化层10之上的为像素电极11,以上仅为自电容式触控显示面板结构的一个具体实施例,在实际生产和应用中,自电容式触控显示面板的具体结构不限于此,可根据实际生产需要,增减或改变其膜层结构,以便适用于多种模式的显示面板,在此不作限定。
基于同一发明构思,本发明实施例提供了一种本发明实施例提供的上述自电容式触控显示面板的驱动方法,如图8所示,可以具体包括以下步骤:
S201、在显示阶段,对触控显示面板中的触控引线施加公共电极信号,同时,对触控显示面板中的栅线依次施加栅扫描信号,对数据线施加数据信号;
S202、在触控阶段,对触控显示面板中的触控引线施加触控扫描信号,同时,触控显示面板中的栅线和数据线施加与触控扫描信号相调制的同步信号,且触控引线将发生触控位置处的自电容触控电极产生的触控信号传输到触控芯片,触控芯片根据触控信号确定发生触控的位置。
本发明实施例提供的上述自电容式触控显示面板的驱动方法中,在显示阶段和触控阶段对应驱动显示面板实现了显示功能和触控功能,这样触控和显示阶段采用分 时驱动方式,将公共电极复用为自电容触控电极,在显示阶段,对触控引线施加公共电极信号,为公共电极提供公共电极信号,在触控阶段,对触控引线施加触控扫描信号,驱动触控显示面板进行触控扫描,同时栅线和数据线施加与触控扫描信号相调制的同步信号,以降低自电容触控电极与其他电极线间的寄生电容,从而降低自电容触控电极与其他电极线间的RC延迟,且触控引线将发生触控位置处产生的触控信号传输到触控芯片,触控芯片根据触控信号确定触控点位置,这样融合了自电容式的内嵌触控技术,将内嵌技术与现有的大尺寸显示面板相结合,实现了低成本下大尺寸显示面板的显示和触控的优异体验,将公共电极设置于由相邻栅线与相邻数据线定义的区域,这样公共电极与栅线、数据线无交叠,在触控阶段,自电容触控电极与其他信号线之间的寄生电容很小,有利于提高触控性能。
基于同一发明构思,本发明实施例提供了一种互电容式触控显示面板,如图9和图10所示,可以包括:具有第一金属层和呈矩阵排列的触控驱动电极01的阵列基板、触控芯片4,以及具有触控感应电极的彩膜基板。
如图11所示,触控驱动电极01包括多个公共电极2。如图9和图10所示,第一金属层包括多条与每列触控驱动电极01一一对应的触控驱动引线03,每列触控驱动电极01通过对应的触控驱动引线03与触控芯片4相连。
在显示阶段,触控驱动引线03用于向触控驱动电极01传递公共电极信号,在触控阶段,触控驱动引线03用于向触控驱动电极01传递触控扫描信号,且触控感应电极用于耦合触控扫描信号并输出耦合后的触控信号到触控芯片4,触控芯片4根据触控信号确定发生触控的位置。
本发明实施例提供的上述自电容式触控显示面板,可以包括具有呈矩阵排列的触控驱动电极01和第一金属层的阵列基板;其中,触控驱动电极01包括多个公共电极2,第一金属层包括多条与每列触控驱动电极01一一对应的触控驱动引线03,每列触控驱动电极01通过对应的触控驱动引线03与触控芯片4相连,触控驱动引线03用于在显示阶段向触控驱动电极01传递公共电极信号,在触控阶段向触控驱动电极01传递触控扫描信号,且触控感应电极用于耦合触控扫描信号并输出耦合后的触控信号到触控芯片4,触控芯片4根据触控信号确定发生触控的位置,这样互电容式触控显示面板在触控阶段复用公共电极为触控驱动电极,通过单独设置一层第一金属层,将触控驱动引线设置于第一金属层上,各列触控驱动电极通过对应的触控引线连接至触控芯片实现触控功能。相对于现有技术在显示面板周边区域设置触控引线以实 现触控功能,本发明实施例提供的互电容式触控显示面板单独设置一层第一金属层,可将触控驱动引线设置在周边原有的电路图案之上,相对于现有技术不需要多余的边框位置,有利于实现窄边框设计,同时在触控阶段复用公共电极为触控驱动电极与触控感应电极形成互电容实现触控功能。如图11所示,将公共电极2设置于由相邻栅线N与相邻数据线M定义的区域,这样公共电极2与栅线N、数据线M无交叠,在触控阶段,触控驱动电极与其他信号线之间的寄生电容很小,较小的寄生电容可以保证有充足的时间进行触控驱动扫描,有利于触控驱动扫描与检测,进而有利于提高触控性能。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板中,为了实现互电容式触控显示面板在触控阶段的触控功能,因此单独设置一层第一金属层,进而可以将触控驱动引线设置于第一金属层上,这样相对于现有技术中采用增大显示面板的边框区域来设置触控驱动引线的方式,本发明实施例单独设置一层第一金属层来设置触控驱动引线可以实现触控显示面板的窄边框设计,如图12所示,在栅极金属层Gate紧邻阵列基板的衬底基板设置的情况下,用于设置触控驱动引线的第一金属层(触控驱动引线03所在位置)可以位于栅极金属层Gate和源漏电极层SD之间且三者相互绝缘,其中触控驱动引线03与触控驱动电极01相连接的位置设置有过孔U,进而通过过孔U实现触控驱动电极01与触控驱动引线03的电性连接;也可以将第一金属层设置于源漏电极层之上且相互绝缘,以实现触控驱动引线与触控驱动电极的连接,上述两者方式均可以实现将触控驱动引线设置于第一金属层上,当然也可以根据实际生产工艺和产品要求,对第一金属层的设置位置进行调整以实现触控功能,在此不作限定。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板中,为了实现将各触控驱动电极连接至触控芯片,以实现触控显示面板在触控阶段的触控功能,因此各触控驱动引线将各自对应的列触控驱动电极连接至触控芯片,由于触控驱动电极呈矩阵排列的方式,如图9和图10所示,因此触控驱动引线03包括沿栅线N方向延伸的第一部分031和沿数据线M方向延伸的第二部分032,这样各触控驱动引线03与各列触控驱动电极01一一对应,通过沿栅线N延伸的第一部分031与各触控驱动电极01相连,再通过沿数据线M延伸的第二部分032连接至触控芯片,采用该连接方式时触控芯片设置于沿数据线延伸的方向上;也可以通过沿数据线延伸的第二部分与各触控驱动电极相连,再通过沿栅线延伸的第一部分连接至触控芯片,采用该连接方式时触控芯片设置于沿栅线延伸的方向上,在此不作限定。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板中,如图9和图10所示,第一金属层包括:多个与触控驱动电极01一一对应的基台P,基台P设 置有过孔U,触控驱动电极01通过基台P与相应的触控驱动引线03相连。在图9中,第一金属层包括在图示的左侧的一组触控驱动引线;在图10中,第一金属层包括在图示的左右对称的两组触控驱动引线。
具体地,本发明实施例提供的上述互电容式触控显示面板中,为了实现触控驱动电极01与触控驱动引线03的连接,需要对触控驱动电极01与触控驱动引线03之间进行过孔连接,为了便于实施过孔工艺,因此在第一金属层上设置与各触控驱动电极01一一对应的基台P,这样在基台P位置便于实施过孔工艺,有助于实现触控驱动电极与触控驱动引线的良好电性连接。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板中,如图11所示,触控驱动电极01包括的多个公共电极2呈矩阵排列,每个触控驱动电极01中的每行公共电极中的多个公共电极2之间通过连接线5相连,每个触控驱动电极01中相邻行的且位于同一列的公共电极2之间通过第一金属层上的跳线L连接或通过像素电极层上的跳线L连接。
具体地,本发明实施例提供的上述互电容式触控显示面板中,将公共电极复用为触控驱动电极,在触控阶段以实现触控功能,其中公共电极位于阵列基板的衬底基板上,与棚极位于同层,每个触控驱动电极包括多个公共电极,为了实现触控驱动电极的触控功能,需要将一个触控驱动电极所包含的多个公共电极连接成一个完整的触控驱动电极,这样才能实现触控驱动电极的触控功能,一般地,触控驱动电极包括的多个公共电极可以呈矩阵排列,因此可以将每个触控驱动电极中的每行公共电极中的多个公共电极之间通过连接线相连,每个触控驱动电极中相邻行的公共电极之间通过第一金属层上的跳线连接或通过像素电极层上的跳线连接,这样利用阵列基板中现有金属膜层,例如第一金属层或者像素电极层,当然也可以是其他可以设置跳线以连接相邻行公共电极的金属层,这样将相邻行公共电极通过其他金属层设置的跳线连接,避免与栅线形成交叉短路,可以实现一个自电容触控电极包含的各个公共电极连接为一个整体,进而实现自电容触控电极的触控功能,同时利用现有金属膜层设置跳线,可以简化阵列基板的制作工艺,简化膜层结构,降低生产成本。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板中,用于连接每个触控驱动电极中的每行公共电极中的多个公共电极之间的连接线与栅线同层设置且相互平行。
具体地,本发明实施例提供的上述互电容式触控显示面板中,公共电极位于衬底基板上可与栅极同层设置,因此用于连接每个触控驱动电极中的每行公共电极中的 多个公共电极之间的连接线可以与栅线同层设置且相互平行,这样在阵列基板制作过程中,可以采用同一次构图工艺形成栅极、栅线、连接线,这样可以简化制作工艺、降低生产成本。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板中,还可以包括:第二金属层,该第二金属层与栅极金属层同层设置且与第一金属层并联设置。
具体地,本发明实施例提供的上述互电容式触控显示面板中,为了提高触控显示面板的驱动频率,可以进一步降低第一金属层上的触控驱动引线的电阻,即通过在栅极金属层设置第二金属层,第二金属层的图案设置成多个公共电极的形状,与第一金属层上的触控驱动引线平行设置,第二金属层包括的公共电极与栅极可同一次构图工艺形成,且第二金属层包括的公共电极在相应的位置通过过孔与第一金属层上的触控驱动引线连接形成并联设置,这样可以实现第一金属层与第二金属层的并联设置,从而可以降低第一金属层的电阻,其触控显示面板的触控驱动频率可以大约提高30%。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板中,如图10所示,为了提高触控显示面板的触控驱动频率,可以将第一金属层设置成包括左右对称的两组触控驱动引线03,每列触控驱动电极01对应两条触控驱动引线03,这样触控显示面板在触控阶段可以实现双边驱动,进而可以提高触控扫描的频率,进一步提高触控性能。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板中,如图13所示,将一列触控驱动电极01连接到同一条触控驱动引线03,以列为单位实现触控驱动扫描,在相邻的两行触控驱动电极01之间设置有公共电极2,位于彩膜基板上的触控感应电极02与公共电极2对应设置且相互平行,这样横向设置的触控感应电极02与纵向设置的触控驱动电极列之间形成互电容以实现触控功能,其中,触控感应电极02与触控驱动电极01之间无交叠,这样二者之间形成的寄生电容很小,在发生触控时触控感应电极与触控驱动电极之间的互电容变化比较明显,易于检测到发生触控位置处产生的触控信号,进而易于对发生触控位置处的检测与确定,具体地,如图14所示,互容式触控显示面板包括具有触控驱动电极01的阵列基板和具有触控感应电极02的彩膜基板,横向设置的触控感应电极02与纵向设置的触控驱动电极列之间形成互电容以实现触控功能。
基于同一发明构思,本发明实施例提供了一种本发明实施例提供的上述互电容式触控显示面板的制备方法,如图15所示,可以具体包括以下步骤:
S301、在衬底基板上形成呈矩阵排列的触控驱动电极的图案;
其中,形成的触控驱动电极包括多个公共电极;
S302、在形成有触控驱动电极图案的衬底基板上形成第一金属层的图案;
其中,形成的第一金属层包括多条与每列触控驱动电极一一对应的触控驱动引线,每列触控驱动电极通过对应的触控驱动引线与触控芯片相连;
S303、在彩膜基板上形成触控感应电极的图案;
在显示阶段,触控驱动引线用于向触控驱动电极传递公共电极信号;
在触控阶段,触控驱动引线用于向触控驱动电极传递触控扫描信号,且触控感应电极用于耦合触控扫描信号并输出耦合后的触控信号到触控芯片,触控芯片根据触控信号确定发生触控的位置。
本发明实施例提供的上述互电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的触控驱动电极的图案,其中形成的触控驱动电极包括多个公共电极,在形成有触控驱动电极图案的衬底基板上形成第一金属层的图案,形成的第一金属层包括多条与每列触控驱动电极一一对应的触控驱动引线,每列触控驱动电极通过对应的触控驱动引线与触控芯片相连,即通过单独设置一层第一金属层来设置触控驱动引线,各列触控驱动电极通过对应的触控驱动引线连接至触控芯片实现触控功能。相对于现有技术在显示面板周边区域设置触控驱动引线以实现触控功能,本发明实施例提供的上述互电容式触控显示面板单独设置一层第一金属层,可将触控驱动引线设置在周边原有的电路图案之上,相对于现有技术不需要多余的边框位置,有利于实现窄边框设计,同时复用公共电极为触控驱动电极,将公共电极设置于由相邻栅线与相邻数据线定义的区域,这样公共电极与栅线、数据线无交叠,在触控阶段,触控驱动电极与其他信号线之间的寄生电容很小,较小的寄生电容可以保证有充足的时间进行触控驱动扫描,有利于触控驱动扫描与检测,进而有利于提高触控性能。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的触控驱动电极的图案之前或之后,还可以包括:通过一次构图工艺形成栅极、栅线和连接线的图案。
具体地,本发明实施例提供的上述互电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的触控驱动电极的图案之前,可以通过一次构图工艺形成栅极、栅线和连接线的图案,也可以在衬底基板上形成呈矩阵排列的触控驱动电极的图案之后,通过一次构图工艺形成栅极、栅线和连接线的图案,其中触控驱动电极位于衬底基板之上,可以与栅极同层设置,但公共电极一般采用ITO材料,栅极采用铜、 铝等金属材料,因此两者虽然同层设置,但不可以采用同一次构图工艺形成,而用于连接每个触控驱动电极中每行的多个公共电极的连接线可以与栅极采用同一次构图工艺形成,这样可以简化制作工艺降低生产成本。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的触控驱动电极的图案之前或之后,还可以包括:通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案。
具体地,本发明实施例提供的上述互电容式触控显示面板的制备方法中,在衬底基板上形成呈矩阵排列的触控驱动电极的图案之前,可以通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案,也可以在衬底基板上形成呈矩阵排列的触控驱动电极的图案之后,通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案,其中触控驱动电极位于衬底基板之上,可以与栅极同层设置,但公共电极一般采用ITO材料,栅极采用铜、铝等金属材料,因此两者虽然同层设置,但不可以采用同一次构图工艺形成,而用于连接每个触控驱动电极中每行的多个公共电极的连接线可以与栅极采用同一次构图工艺形成,而为了提高触控显示面板的驱动频率,设置与第一金属层并联的第二金属层可以与栅极采用同一次构图工艺形成,这样可以简化制作工艺降低生产成本。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板的制备方法中,在形成有所述触控驱动电极图案的衬底基板上形成第一金属层的图案,可以具体包括:在形成有第一金属层的图案的衬底基板上形成源漏电极层的图案;或在形成有源漏电极层图案的衬底基板上形成第一金属层的图案。
具体地,本发明实施例提供的上述互电容式触控显示面板的制备方法中,由于第一金属层可以设置于栅极金属层与源漏电极层之间且相互绝缘,因此可以在形成栅极图案的衬底基板上形成栅绝缘层的图案,在形成栅绝缘层图案的衬底基板上形成第一金属层的图案,在形成第一金属层图案的衬底基板上形成一层绝缘层的图案,进而在形成绝缘层图案的衬底基板上形成有源层和源漏电极层的图案,或者将第一金属层设置于源漏电极层之上且相互绝缘,即在形成有源漏电极层图案的衬底基板上形成一层绝缘层的图案,在形成有绝缘层图案的衬底基板上形成第一金属层的图案,在此不作限定。
在具体实施时,本发明实施例提供的上述互电容式触控显示面板的制备方法中,还可以包括:在形成有第一金属层的图案的衬底基板上形成包括钝化层和像素电极的图案。
具体地,为了实现触控显示面板的显示与触控功能,在触控显示面板的制备过程中,还包括钝化层和像素电极层等必要功能膜层的制备,本发明实施例提供的上述互电容式触控显示面板的制备方法中,在形成第一金属层之后,还包括在形成有第一金属层的图案的衬底基板上形成包括钝化层和像素电极的图案,其制备工艺与膜层结构与现有技术相同,在此不作详述。
具体地,经过上述实施例的描述,本发明实施例提供的上述互电容式触控显示面板的制备方法,如图16所示,可以具体包括:
S331、在衬底基板上通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案;
S332、在衬底基板上形成呈矩阵排列的触控驱动电极的图案;
S333、在形成有触控驱动电极图案的衬底基板上形成第一金属层的图案;
S334、在形成有第一金属层的图案的衬底基板上形成源漏电极层的图案;
S335、在形成有源漏电极层的图案的衬底基板上形成包括钝化层和像素电极的图案;
S336、在彩膜基板上形成触控感应电极的图案。
其中,相应工艺步骤之间的顺序可以改变,已在上述实施例中有详细的说明,在此不作详述。
经过上述制备方法形成的互电容式触控显示面板的整体膜层结构如图17所示,其中仅示出了具有触控驱动电极的阵列基板的结构,具有触控感应电极的彩膜基板的结构未示出,具体地,栅极6和公共电极2(亦即触控驱动电极)同层设置位于衬底基板G之上,其中公共电极2与连接线5相接触,位于栅极6与公共电极2之上的为栅绝缘层7,位于栅绝缘层7之上的为有源层8和源漏电极9,而设置有触控驱动引线03的第一金属层(图中未示出)可位于栅绝缘层7与有源层8之间,位于有源层8和源漏电极9之上的为钝化层10,位于钝化层10之上的为像素电极11,以上仅为互电容式触控显示面板结构的一个具体实施例,在实际生产和应用中,互电容式触控显示面板的具体结构不限于此,可根据实际生产需要,增减或改变其膜层结构,以便适用于多种模式的显示面板,在此不作限定。
基于同一发明构思,本发明实施例提供了一种本发明实施例提供的上述互电容式触控显示面板的驱动方法,如图18所示,可以具体包括以下步骤:
S401、在显示阶段,对触控显示面板中的触控驱动引线施加公共电极信号,同时,对触控显示面板中的栅线依次施加栅扫描信号,对数据线施加数据信号;
S402、在触控阶段,对触控显示面板中的触控驱动引线施加触控扫描信号,同时,触控显示面板中的栅线和数据线施加与触控扫描信号相调制的同步信号,且触控感应电极耦合触控扫描信号并输出耦合后的触控信号到触控芯片,触控芯片根据触控信号确定发生触控的位置。
本发明实施例提供的上述互电容式触控显示面板的驱动方法中,触控显示面板在显示阶段和触控阶段对应实现了显示功能和触控功能,即将触控和显示阶段采用分时驱动方式,在触控阶段将公共电极复用为自电容触控电极,在显示阶段,对触控驱动引线施加公共电极信号,为公共电极提供公共电极信号,在触控阶段,对触控驱动引线施加触控扫描信号,驱动触控显示面板进行触控扫描,同时对栅线和数据线施加与触控扫描信号相调制的同步信号,以降低触控驱动电极与其他电极线间的寄生电容,从而降低触控驱动电极与其他电极线间的RC延迟,且触控感应电极耦合触控扫描信号并输出耦合后的触控信号到触控芯片,触控芯片根据触控信号确定发生触控的位置,这样实现了触控显示面板的显示与触控功能,将公共电极设置于由相邻栅线与相邻数据线定义的区域,这样公共电极与栅线、数据线无交叠,在触控阶段,触控驱动电极与其他信号线之间的寄生电容很小,有利于提高触控性能。
基于同一发明构思,本发明实施例提供了一种显示装置,包括本发明实施例提供的上述自电容式触控显示面板或本发明实施例提供的上述互电容式触控显示面板,该显示装置可以应用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。由于该显示装置解决问题的原理与上述自电容式触控显示面板或互电容式触控显示面板相似,因此该显示装置的实施可以参见上述自电容式触控显示面板或互电容式触控显示面板的实施,重复之处不再赘述。
需要说明的是,本文所述的公共电极也可以称为用于构成液晶电容的存储电容电极。在一个示例中,该存储电容电极可以与栅极同层设置。鉴于这在本领域中是公知的,故在此不再详述。
本发明实施例提供了触控显示面板、制备方法、驱动方法及显示装置,其触控显示面板包括自电容式触控显示面板或互电容式触控显示面板。自电容式触控显示面板在触控阶段复用公共电极为自电容触控电极,通过单独设置一层第一金属层,进而将触控引线设置于第一金属层上,各自电容触控电极通过对应的触控引线连接至触控芯片以实现触控功能。相应地互电容式触控显示面板在触控阶段复用公共电极为触控驱动电极,通过单独设置一层第一金属层,进而将触控驱动引线设置于第一金属层上,与彩膜基板上的触控感应电极之间形成互电容实现触控功能。相对于现有技术在 显示面板周边区域设置触控引线或触控驱动引线以实现触控功能,本发明实施例提供的触控显示面板通过单独设置一层第一金属层,进而可以将触控引线或触控驱动引线设置在周边原有的电路图案之上,相对于现有技术不需要占用多余的边框位置,这样有利于实现触控显示面板的窄边框设计,同时复用公共电极为自电容触控电极,将公共电极设置于由相邻栅线与相邻数据线定义的区域,这样公共电极与栅线、数据线无交叠,在触控阶段,自电容触控电极或触控驱动电极与其他信号线之间的寄生电容很小,有利于提高触控性能。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (29)

  1. 一种自电容式触控显示面板,包括:具有第一金属层和自电容触控电极的阵列基板,以及触控芯片;其中,
    每个所述自电容触控电极包括多个公共电极,所述第一金属层包括多条与所述自电容触控电极一一对应的触控引线,每个所述自电容触控电极通过对应的所述触控引线与所述触控芯片相连;
    所述触控引线用于在显示阶段向所述自电容触控电极传递公共电极信号,在触控阶段向所述自电容触控电极传递触控扫描信号,且将发生触控位置处的所述自电容触控电极产生的触控信号传输到所述触控芯片。
  2. 如权利要求1所述的自电容式触控显示面板,其中,在栅极金属层紧邻阵列基板的衬底基板设置的情况下,
    所述第一金属层位于栅极金属层和源漏电极层之间且三者相互绝缘;或
    所述第一金属层位于源漏电极层之上且相互绝缘。
  3. 如权利要求2所述的自电容式触控显示面板,其中,所述触控引线包括沿栅线方向延伸的第一部分和沿数据线方向延伸的第二部分。
  4. 如权利要求2或3所述的自电容式触控显示面板,其中,所述第一金属层包括:多个与所述自电容触控电极一一对应的基台;所述基台设置有过孔,所述自电容触控电极通过所述基台与相应的所述触控引线过孔连接。
  5. 如权利要求1-4任一项所述的自电容式触控显示面板,其中,所述自电容触控电极呈矩阵排列并且每个自电容触控电极所包括的多个公共电极也呈矩阵排列,每个所述自电容触控电极中的每行公共电极中的多个公共电极之间通过连接线相连,每个所述自电容触控电极中相邻行的且位于同一列的公共电极之间通过所述第一金属层上的跳线连接或通过像素电极层上的跳线连接。
  6. 如权利要求5所述的自电容式触控显示面板,其中,用于连接每个所述自电容触控电极中的每行公共电极中的多个公共电极之间的连接线与栅线同层设置且相互平行。
  7. 如权利要求2-6中任一项所述的自电容式触控显示面板,还包括:第二金属层,所述第二金属层与所述栅极金属层同层设置且与所述第一金属层并联设置。
  8. 一种如权利要求1-7任一项所述的自电容式触控显示面板的制备方法,包括:
    在衬底基板上形成呈矩阵排列的自电容触控电极的图案,其中形成的每个所述自电容触控电极包括多个公共电极;
    在形成有所述自电容触控电极图案的衬底基板上形成第一金属层的图案。
  9. 如权利要求8所述的自电容式触控显示面板的制备方法,其中,在衬底基板上形成呈矩阵排列的自电容触控电极的图案之前或之后,还包括:
    通过一次构图工艺形成栅极、栅线和连接线的图案。
  10. 如权利要求8所述的自电容式触控显示面板的制备方法,其中,在衬底基板上形成呈矩阵排列的自电容触控电极的图案之前或之后,还包括:
    通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案。
  11. 如权利要求8-10任一项所述的自电容式触控显示面板的制备方法,其中,在形成有所述自电容触控电极图案的衬底基板上形成第一金属层的图案包括:
    在形成有所述第一金属层的图案的衬底基板上形成源漏电极层的图案;或
    在形成有所述源漏电极层图案的衬底基板上形成所述第一金属层的图案。
  12. 如权利要求11所述的自电容式触控显示面板的制备方法,还包括:
    在形成有所述第一金属层的图案的衬底基板上形成包括钝化层和像素电极的图案。
  13. 一种如权利要求1-7任一项所述的自电容式触控显示面板的驱动方法,包括:
    在显示阶段,对所述触控显示面板中的触控引线施加公共电极信号,同时,对所述触控显示面板中的栅线依次施加栅扫描信号,对数据线施加数据信号;
    在触控阶段,对所述触控显示面板中的触控引线施加触控扫描信号,同时,所述触控显示面板中的栅线和数据线施加与触控扫描信号相调制的同步信号,且触控引线将发生触控位置处的所述自电容触控电极产生的触控信号传输到触控芯片,所述触控芯片根据所述触控信号确定发生触控的位置。
  14. 一种互电容式触控显示面板,包括:具有第一金属层和呈矩阵排列的触控驱动电极的阵列基板、触控芯片以及具有触控感应电极的彩膜基板;其中,
    每个所述触控驱动电极包括多个公共电极,所述第一金属层包括多条与每列触控驱动电极一一对应的触控驱动引线,每列所述触控驱动电极通过对应的所述触控驱动引线与所述触控芯片相连;
    在显示阶段,所述触控驱动引线用于向所述触控驱动电极传递公共电极信号,在触控阶段,所述触控驱动引线用于向所述触控驱动电极传递触控扫描信号,且所述触控感应电极用于耦合所述触控扫描信号并输出耦合后的触控信号到所述触控芯片,所述触控芯片根据所述触控信号确定发生触控的位置。
  15. 如权利要求14所述的互电容式触控显示面板,其中,在栅极金属层紧邻阵列基板的衬底基板设置的情况下,
    所述第一金属层位于栅极金属层和源漏电极层之间且三者相互绝缘;或
    所述第一金属层位于源漏电极层之上且相互绝缘。
  16. 如权利要求15所述的互电容式触控显示面板,其中,所述触控驱动引线包括沿栅线方向延伸的第一部分和沿数据线方向延伸的第二部分。
  17. 如权利要求15或16所述的互电容式触控显示面板,其中,所述第一金属层包括:多个与触控驱动电极一一对应的基台;所述基台设置有过孔,所述触控驱动电极通过所述基台与相应的所述触控驱动引线过孔连接。
  18. 如权利要求14-17任一项所述的互电容式触控显示面板,其中,每个所述触控驱动电极包括的多个公共电极呈矩阵排列,每个所述触控驱动电极中的每行公共电极中的多个公共电极之间通过连接线相连,每个所述触控驱动电极中相邻行的且位于同一列的公共电极之间通过所述第一金属层上的跳线连接或通过像素电极层上的跳线连接。
  19. 如权利要求18所述的互电容式触控显示面板,其中,用于连接每个所述触控驱动电极中的每行公共电极中的多个公共电极之间的连接线与栅线同层设置且相互平行。
  20. 如权利要求19所述的互电容式触控显示面板,还包括:第二金属层,所述第二金属层与所述栅极金属层同层设置且与所述第一金属层并联设置。
  21. 如权利要求20所述的互电容式触控显示面板,其中,所述第一金属层包括左右对称的两组触控驱动引线,每列所述触控驱动电极对应两条所述触控驱动引线。
  22. 如权利要求21所述的互电容式触控显示面板,其中,相邻的两行触控驱动电极之间设置有公共电极,位于所述彩膜基板上的所述触控感应电极与所述公共电极中的每个对应地设置且相互平行。
  23. 一种如权利要求14-22任一项所述的互电容式触控显示面板的制备方法,包括:
    在衬底基板上形成呈矩阵排列的触控驱动电极的图案,每个所述触控驱动电极包括多个公共电极;
    在形成有所述触控驱动电极图案的衬底基板上形成第一金属层的图案;
    在彩膜基板上形成触控感应电极的图案。
  24. 如权利要求23所述的互电容式触控显示面板的制备方法,其中,在衬底基板上形成呈矩阵排列的触控驱动电极的图案之前或之后,还包括:
    通过一次构图工艺形成栅极、栅线和连接线的图案。
  25. 如权利要求24所述的互电容式触控显示面板的制备方法,其中,在衬底基板上形成呈矩阵排列的触控驱动电极的图案之前或之后,还包括:
    通过一次构图工艺形成栅极、栅线、连接线和第二金属层的图案。
  26. 如权利要求23-25任一项所述的互电容式触控显示面板的制备方法,其中,在形成有所述触控驱动电极图案的衬底基板上形成第一金属层的图案,包括:
    在形成有所述第一金属层的图案的衬底基板上形成源漏电极层的图案;或
    在形成有所述源漏电极层图案的衬底基板上形成所述第一金属层的图案。
  27. 如权利要求26所述的互电容式触控显示面板的制备方法,还包括:
    在形成有所述第一金属层的图案的衬底基板上形成包括钝化层和像素电极的图案。
  28. 一种如权利要求14-22任一项所述的互电容式触控显示面板的驱动方法,包括:
    在显示阶段,对所述触控显示面板中的触控驱动引线施加公共电极信号,同时,对所述触控显示面板中的栅线依次施加栅扫描信号,对数据线施加数据信号;
    在触控阶段,对所述触控显示面板中的触控驱动引线施加触控扫描信号,同时,所述触控显示面板中的栅线和数据线施加与触控扫描信号相调制的同步信号,且所述触控感应电极耦合所述触控扫描信号并输出耦合后的触控信号到所述触控芯片,所述触控芯片根据所述触控信号确定发生触控的位置。
  29. 一种显示装置,包括如权利要求1-7任一项所述的自电容式触控显示面板或如权利要求14-22任一项所述的互电容式触控显示面板。
PCT/CN2015/091921 2015-06-30 2015-10-14 触控显示面板、制备方法、驱动方法及显示装置 WO2017000423A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/113,776 US10268304B2 (en) 2015-06-30 2015-10-14 Touch display panel, manufacturing method for the same, driving method for the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510378155.3A CN105094479B (zh) 2015-06-30 2015-06-30 触控显示面板、制备方法、驱动方法及显示装置
CN201510378155.3 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017000423A1 true WO2017000423A1 (zh) 2017-01-05

Family

ID=54575079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091921 WO2017000423A1 (zh) 2015-06-30 2015-10-14 触控显示面板、制备方法、驱动方法及显示装置

Country Status (3)

Country Link
US (1) US10268304B2 (zh)
CN (1) CN105094479B (zh)
WO (1) WO2017000423A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278194B (zh) 2015-11-24 2019-06-07 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置及其控制方法
CN105653087B (zh) * 2015-12-25 2019-04-16 上海中航光电子有限公司 一种显示面板和显示装置
CN105609037B (zh) * 2015-12-31 2019-07-09 上海中航光电子有限公司 一种阵列基板、触控显示面板及触控显示装置
CN105487735A (zh) * 2016-01-19 2016-04-13 深圳市华星光电技术有限公司 触摸面板以及其制造方法
CN105487717A (zh) * 2016-01-19 2016-04-13 深圳市华星光电技术有限公司 触摸面板以及其制造方法
CN105867686A (zh) * 2016-03-28 2016-08-17 南京中电熊猫液晶显示科技有限公司 一种In-Cell触控显示面板
CN105843454B (zh) * 2016-06-01 2019-08-02 京东方科技集团股份有限公司 阵列基板、显示装置、驱动电路及驱动方法
CN106201144A (zh) * 2016-07-21 2016-12-07 京东方科技集团股份有限公司 触控显示基板及其制作方法、触控显示装置
WO2018027598A1 (zh) * 2016-08-09 2018-02-15 深圳信炜科技有限公司 电容式传感器的制作方法和电容式传感装置的制作方法
CN106648212B (zh) * 2016-10-31 2020-04-03 京东方科技集团股份有限公司 一种显示基板、装置及制作方法
TWI594165B (zh) * 2016-11-04 2017-08-01 友達光電股份有限公司 觸控裝置
CN106708320B (zh) * 2016-12-27 2020-10-16 厦门天马微电子有限公司 阵列基板、显示面板和显示装置
CN106775162B (zh) * 2016-12-28 2019-09-24 厦门天马微电子有限公司 触控显示面板及其驱动方法、触控显示装置
CN106814910B (zh) * 2017-01-16 2019-09-24 厦门天马微电子有限公司 触控显示面板及其驱动方法、触控显示装置
CN106898623B (zh) * 2017-04-19 2020-04-03 京东方科技集团股份有限公司 一种阵列基板和显示装置
CN107045412B (zh) * 2017-05-04 2020-05-22 厦门天马微电子有限公司 电容式触控结构、触控显示面板、显示装置及扫描方法
CN107085483A (zh) * 2017-05-16 2017-08-22 武汉华星光电技术有限公司 一种触控显示面板
US10423255B2 (en) 2017-05-16 2019-09-24 Wuhan China Star Optoelectronics Technology Co., Ltd. Touch control display panel
CN107515701B (zh) * 2017-08-30 2020-01-24 京东方科技集团股份有限公司 触控显示面板及其驱动方法、制造方法、触控显示装置
WO2019058485A1 (ja) * 2017-09-21 2019-03-28 シャープ株式会社 表示デバイス
CN107589874B (zh) * 2017-10-23 2023-11-10 京东方科技集团股份有限公司 一种阵列基板及制备方法、触控显示面板和触控显示装置
US10488694B2 (en) * 2017-10-31 2019-11-26 Wuhan China Star Optoelectronics Technology Co., Ltd. In-cell touch panel and display device
CN108897445B (zh) * 2018-05-15 2024-05-24 京东方科技集团股份有限公司 触控显示装置、触控显示面板及其制造方法
CN109117030B (zh) * 2018-09-28 2022-01-21 上海摩软通讯技术有限公司 显示模组的感应层、显示模组及触摸屏
WO2020079838A1 (ja) * 2018-10-19 2020-04-23 凸版印刷株式会社 容量センサ基板及び電子デバイス
CN109634459B (zh) 2018-12-06 2022-03-15 武汉天马微电子有限公司 有机发光显示面板和显示装置
KR20200089059A (ko) * 2019-01-16 2020-07-24 삼성전기주식회사 기판 배선 쇼트 검출 장치 및 방법
CN109857277B (zh) * 2019-02-25 2022-07-19 广州国显科技有限公司 触控显示面板及其制备方法、驱动方法和触控显示装置
US20220137751A1 (en) * 2019-07-26 2022-05-05 Boe Technology Group Co., Ltd. Display substrate, display device, manufacturing method and driving method for display substrate
CN111367431B (zh) * 2020-02-25 2023-01-13 京东方科技集团股份有限公司 阵列基板及显示装置
CN113970986B (zh) * 2020-07-23 2024-04-12 乐金显示有限公司 触摸显示装置、触摸电路及其触摸驱动方法
US20230176691A1 (en) * 2020-11-30 2023-06-08 Beijing Boe Display Technology Co., Ltd. Display panel and driving method thereof and display device
KR20220094273A (ko) * 2020-12-28 2022-07-06 삼성디스플레이 주식회사 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129706A1 (en) * 2006-12-04 2008-06-05 Samsung Electronics Co., Ltd. Liquid crystal display device
CN103699284A (zh) * 2013-12-27 2014-04-02 京东方科技集团股份有限公司 一种电容式内嵌触摸屏及其制备方法、显示装置
CN103995617A (zh) * 2014-05-30 2014-08-20 京东方科技集团股份有限公司 内嵌式触控显示面板、其操作方法及显示装置
CN104699356A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板、触控显示面板和触控显示装置
CN104699351A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板、触控显示面板和触控显示装置
CN204706018U (zh) * 2015-06-30 2015-10-14 京东方科技集团股份有限公司 触控显示面板及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024913B1 (en) * 2014-04-28 2015-05-05 Lg Display Co., Ltd. Touch sensing device and driving method thereof
CN104078470B (zh) * 2014-06-18 2017-02-15 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129706A1 (en) * 2006-12-04 2008-06-05 Samsung Electronics Co., Ltd. Liquid crystal display device
CN103699284A (zh) * 2013-12-27 2014-04-02 京东方科技集团股份有限公司 一种电容式内嵌触摸屏及其制备方法、显示装置
CN103995617A (zh) * 2014-05-30 2014-08-20 京东方科技集团股份有限公司 内嵌式触控显示面板、其操作方法及显示装置
CN104699356A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板、触控显示面板和触控显示装置
CN104699351A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板、触控显示面板和触控显示装置
CN204706018U (zh) * 2015-06-30 2015-10-14 京东方科技集团股份有限公司 触控显示面板及显示装置

Also Published As

Publication number Publication date
US20170147123A1 (en) 2017-05-25
US10268304B2 (en) 2019-04-23
CN105094479A (zh) 2015-11-25
CN105094479B (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2017000423A1 (zh) 触控显示面板、制备方法、驱动方法及显示装置
WO2016206265A1 (zh) 触控显示面板、其制备方法、驱动方法及显示装置
WO2017024763A1 (zh) 触控显示面板、其制作方法、驱动方法及显示装置
WO2016201838A1 (zh) 触控面板及其制备方法、触控显示装置
WO2017197934A1 (zh) 阵列基板及其制作方法、触控显示装置
US9933645B2 (en) Array substrate, display panel, display device and manufacturing method thereof
WO2015180312A1 (zh) 内嵌式触摸屏及显示装置
US9619089B2 (en) Capacitive touch panel, manufacturing method of capacitive touch panel and display device
WO2015180359A1 (zh) 阵列基板及其制作方法、以及显示装置
WO2015180303A1 (zh) 内嵌式触摸屏及显示装置
WO2015180316A1 (zh) 内嵌式触摸屏及显示装置
US20180292693A1 (en) A display panel and an array substrate thereof
WO2015180358A1 (zh) 阵列基板及其制作方法和显示装置
WO2016119373A1 (zh) 阵列基板、触控面板及阵列基板的制作方法
WO2016197501A1 (zh) 阵列基板及其制备方法、触控显示面板
CN204706018U (zh) 触控显示面板及显示装置
WO2016110016A1 (zh) 一种内嵌式触摸屏及显示装置
WO2015180313A1 (zh) 内嵌式触摸屏及显示装置
WO2015103824A1 (zh) 阵列基板、电容式触摸屏和触控显示装置
WO2015096315A1 (zh) 一种电容式内嵌触摸屏及其制备方法、显示装置
WO2014139229A1 (zh) 电容式内嵌触摸屏及显示装置
WO2014153809A1 (zh) 电容式内嵌触摸屏及显示装置
WO2015135289A1 (zh) 内嵌式触摸屏及显示装置
WO2016206245A1 (zh) 内嵌式触摸屏及显示装置
US10222918B2 (en) Touch substrate, touch control display apparatus, and fabricating method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15113776

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896953

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.06.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15896953

Country of ref document: EP

Kind code of ref document: A1